Skip to Main content Skip to Navigation

Sur la conjecture d'André-Oort et courbes modulaires de Drinfeld

Abstract : We prove a characteristic p analogue of a special case of the André-Oort conjecture. More precisely, let Z be a product of n Drinfeld modular curves, and let X be an irreducible algebraic subvariety of Z. We prove that X contains a Zariski-dense set of CM points (i.e. points corresponding to n-tuples of Drinfeld A-modules of rank 2 with complex multiplication, where A=F_q[T], and q is a power of an odd prime) if and only if X is a so-called modular subvariety. Our approach is based on a characteristic 0 approach of Edixhoven.
Document type :
Complete list of metadatas

Cited literature [72 references]  Display  Hide  Download
Contributor : Florian Breuer <>
Submitted on : Thursday, November 21, 2002 - 1:50:45 PM
Last modification on : Tuesday, December 1, 2020 - 2:34:03 PM
Long-term archiving on: : Friday, April 2, 2010 - 6:34:43 PM


  • HAL Id : tel-00001994, version 1



Florian Breuer. Sur la conjecture d'André-Oort et courbes modulaires de Drinfeld. Mathématiques [math]. Université Paris-Diderot - Paris VII, 2002. Français. ⟨tel-00001994⟩



Record views


Files downloads