Accéder directement au contenu Accéder directement à la navigation
Thèse

Holomorphie discrète et modèle d'Ising

Résumé : Ma thèse généralise la notion de criticité pour le modèle d'Ising en dimension 2. J'y définis une nouvelle notion d'holomorphie discrète sur une décomposition cellulaire d'une surface de Riemann. Le modèle d'Ising converge, à la limite thermodynamique vers une théorie conforme continue, quand la limite est prise sur un réseau (carré, triangulaire), près de la température critique. J'étends cette criticité à des décompositions cellulaires générales et je décompose le spineur en parties holomorphes et antiholomorphes discrètes, analogues discrets des blocs conformes. On définit une équation de Cauchy-Riemann discrète sur le double d'une décomposition cellulaire. Des théorèmes classiques sont encore transposables: harmonicité, base des différentielles, pôle, théorème des résidus. Il y a des différences, le produit point par point ne préserve pas l'holomorphie, les pôles sont d'ordre un, l'espace des formes holomorphes est de dimension double du genre. On définit une carte comme étant semi-critique si d'une fonction holomorphe discrète $f$ et d'une carte locale plate $Z$ on peut faire une $1$-forme fermée $fdZ$ et critique si $fdZ$ est holomorphe. Cette classe contient les réseaux mais bien plus. Une suite convergente de fonctions holomorphes discrètes sur une suite convergente de cartes critiques a pour limite une fonction holomorphe sur la surface de Riemann. Dans le cas des réseaux triangulaires et carrés, on démontre que la criticité statistique d'Ising équivaut à notre criticité pour une structure conforme reliée aux constantes d'intéraction. On définit une équation de Dirac sans masse, l'existence d'une solution équivaut à la criticité. Le spineur de Dirac permet alors de décomposer le fermion d'Ising en une partie holomorphe et une partie antiholomorphe.
Liste complète des métadonnées

https://tel.archives-ouvertes.fr/tel-00001851
Contributeur : Christian Mercat <>
Soumis le : mardi 22 octobre 2002 - 09:44:25
Dernière modification le : vendredi 19 juin 2020 - 09:10:04
Archivage à long terme le : : mardi 11 septembre 2012 - 18:10:35

Identifiants

  • HAL Id : tel-00001851, version 1

Collections

Citation

Christian Mercat. Holomorphie discrète et modèle d'Ising. Mathématiques [math]. Université Louis Pasteur - Strasbourg I, 1998. Français. ⟨tel-00001851⟩

Partager

Métriques

Consultations de la notice

639

Téléchargements de fichiers

423