Contribution d’orbites périodiques diffractives à la formule de trace

Luc Hillairet

3 septembre 2002
Remerciements

Il serait fastidieux d'énumérer toutes les raisons pour lesquelles je tiens à remercier Yves Colin de Verdière. En plus de toutes les idées mathématiques qu’il m’a fait partager, j’ai particulièrement apprécier l’équilibre qu’il a su trouver entre sa façon de diriger mes recherches et la liberté qu’il m’a laissée.

Je remercie Raymond Brummelhuis et Georgi Popov de l’intérêt qu’ils ont porté à mes travaux ainsi que d’avoir accepté de rapporter sur ma thèse; c’est un grand honneur qu’ils me font. Avec eux, Pierre Bérard et Alain Joye ont accepté de faire partie du jury, c’est avec plaisir que je les en remercie.

Merci à Laurent Bonavero et à Gilles Carron pour les nombreuses discussions, mathématiques ou non que nous avons échangées. Elles m’ont beaucoup apporté, mathématiquement, ou non !

L’Institut Fourier est un cadre agréable pour faire une thèse, j’associe à ces remerciements l’ensemble des personnes que j’y ai cotoyé. Je pense notamment à Arlette et aux thésards ; les anciens : Julien, Nicolas, Freddy, Xavier, les actuels : Nicolas, David, Olivier, Vidian, et tous les autres (la liste est bien longue).

Puisque les mathématiques ne sont pas tout, je remercie aussi Claire et Pierre, Anne-Laure, Sonia et Matthieu, François, Cécile et Mathias, Sybille et Julien, Sophie et Rémy. Tous m’ont aidé à respirer quand il le fallait.

Enfin, il m’est impossible de dire à quel point la présence et le soutien de Magali m’ont été indispensables. Cette thèse est pour elle et pour notre fils Malo.
Introduction
Motivations

L’optique géométrique étudie la propagation des rayons lumineux dans un milieu inhomogène. La version infinitésimale de la loi de réfraction de Snell-Descartes ramène cette étude à la recherche de géodésiques sur une variété riemannienne \((M,g)\), ou encore après transformation de Legendre, à l'étude d'un système hamiltonien sur \(T^*M\) (cf [4]). La métrique \(g\) est reliée à l'indice de réfraction par la formule \(g = n^2 g_0\) (cf [9]). Dans cette même situation, l'optique ondulatoire étudie, elle, le problème de Cauchy associé à l’équation des ondes

\[\partial_t^2 u + \Delta_g u = 0, \]

version scalaire de l’équation de Maxwell, dans laquelle \(\Delta_g\) désigne le laplacien (positif) associé à \(g\). Ces deux formulations peuvent être considérées comme les versions respectivement “classique” et “quantique” du même problème. D’une façon très générale, on appellera système classique, un système hamiltonien d’énergie \(H\) sur une variété symplectique \(Z\) et système quantique un opérateur autoadjoint \(A\) sur un espace de Hilbert \(\mathcal{H}\). La manière d’associer un système classique \((Z,H)\) et un système quantique \((\mathcal{H},A)\) est un sujet à part entière, et relève des problèmes de quantification, cf [71] (on trouvera notamment dans cette référence un petit dictionnaire reliant les objets classiques et les objets quantiques correspondants). Une fois que cette association est réalisée, il devient très intéressant de relier résultats classiques et quantiques, voire d’utiliser des résultats ou des méthodes classiques pour démontrer des résultats “quantiques” et vice-versa.

La première question quantique concerne le spectre de l’opérateur \(A\). Les moyens d’accéder au spectre sont multiples et reviennent souvent à étudier la trace de certaines fonctions de l’opérateur \(A\), par exemple:
- la résolvante \((z - A)^{-1},\)
- le propagateur de l’équation des ondes (cf 3.1),
- le propagateur \(\exp itA/h\) de l’équation de Schrödinger :

\[\frac{\hbar}{i} \partial_t u = Au, \]

- la solution fondamentale de l’équation de la chaleur.

L’introduction de l’article [49] détaille ces différentes approches et certains résultats qu’elles permettent d’obtenir. Historiquement, le point de vue classique apparaît le premier, la démarche la plus courante consiste donc à étudier les problèmes précédents à la lumière du problème classique “connu”. On peut mentionner plusieurs résultats, ou méthodes qui relèvent de cette démarche :
- Comportement asymptotiques des valeurs propres de \(A\), formule de Weyl, cf [19, 49].
- Développement pour les temps petits de la trace du noyau de la chaleur (la fonction de partition), et interprétation géométrique des coefficients, cf [60, 8].
- Méthode BKW pour l’étude de l’équation de Schrödinger, développement asymptotique, quand \(\hbar\) tend vers \(0\), des valeurs propres \(E_n(h)\) (règles de Bohr-Sommerfeld cf [70, 22])
- Solution de l’équation des ondes pour une donnée initiale oscillant avec une haute fréquence, cf [55, 24].

Ces deux dernières classes d’examles permettent alors de donner un sens mathématique à des phrases telles que :
- La mécanique classique est la limite de la mécanique quantique quand \(\hbar\) tend vers \(0\).
- L’optique géométrique est la limite haute fréquence de l’optique ondulatoire.
Comme on peut le remarquer sur ces différents exemples, la recherche de propriétés classiques dans un problème quantique est relativement ancienne, on peut aussi noter une légère différence d’état d’esprit entre les résultats que l’on interprète après coup classiquement, et des méthodes qui essayent, dès le début, de tirer profit de propriétés classiques. Pour mettre en oeuvre une telle démarche, il faut disposer d’objets quantiques sur lesquels les caractéristiques classiques sont facilement observables. À ce titre la théorie des opérateurs intégraux de Fourier (OIF) est particulièrement intéressante. Cette théorie est construite dans les articles [48, 26] et le livre [24] en fournir une bonne introduction. Notons que cette théorie est largement inspirée de celle des transformations canoniques quantifiées de Maslov (cf [57]) qui en est une version avec petit paramètre. Un des apports de la théorie des OIF est une géométrisation de la théorie de Maslov connue sous le vocable de calcul symbolique. Cette théorie est devenue dans les années 70 un outil incontournable de l’étude des équations aux dérivées partielles linéaires. Ces théories permettent de revoir ou d’améliorer les résultats mentionnés ci-dessus, ainsi l’article [49] étudie le reste de la formule de Weyl, et les résultats de Lax peuvent être ré-interprétés dans le langage des OIF (cf [24], chapitre 5) dont ils sont aussi des précursors. Cette interprétation nécessite en particulier la notion de front d’onde, centrale pour ce genre de problèmes. On peut ainsi énoncer les théorèmes de propagation des singularités (ou propagation des fronts) qui assurent que les singularités d’une solution de l’équation des ondes se trouvent en propagant les singularités initiales par le flot géodésique. L’analogue classique de la propagation des singularités est donc le flot géodésique. Techniquement, et à l’aide des OIF, cela résulte de l’application du principe de la phase stationnaire.

Un champ d’application privilégié des idées présentées ci-dessus est l’étude de formules de trace qui donnent des relations entre les longueurs des géodésiques périodiques du système classique et les valeurs propres du système quantique correspondant. Il y a des variantes dans l’écriture des formules de trace ; pour fixer les idées donnons le prototype suivant :

\[\text{supp. sing} \left(\sum \exp(i \sqrt{\lambda_n} t) \right) \subset \mathbb{L}, \]

où les \(\lambda_n \) sont les valeurs propres du laplacien, et \(\mathbb{L} \) est l’ensemble des longueurs des géodésiques périodiques. Les premières formules de trace sont la formule sommatoire de Poisson (cf [28]) et la formule de Selberg (cf [44]). Ce sont des formules exactes dues aux grandes symétries des systèmes considérés. Leur interprétation dynamique n’a été perçue que plus tard. Des physiciens ont découvert dans les années 70 la relation entre les oscillations de la densité spectrale d’un système quantique et les périodes des trajectoires classiques associées : Balian-Bloch ([5]) pour les billards et Gutzwiller ([43]) pour l’opérateur de Schrödinger dans la limite semi-classique. Les premiers utilisent ce qu’ils appellent un développement en réflexions multiples, remis au goût du jour récemment par Zelditch ([72]). Gutzwiller utilise l’outil plus intuitif, mais moins mathématisable, de l’intégrale de Feynman.

Les mathématiciens ont ensuite réussi à donner des versions rigoureuses de ces formules d’abord dans le cas d’une variété riemannienne compacte sans bord : Colin de Verdière dans sa thèse ([17]) en utilisant la fonction de partition quantique et la méthode de Balian et Bloch ; ensuite Chazarain, puis Duistermaat-Guillemin [25, 12] ont vu comment la théorie des OIF permettait de donner une formule de trace pour l’équation des ondes. Les formules de trace ont alors été généralisées à bon nombre de situations : variété riemannienne à bord [42], limite semi-classique d’opérateurs de Schrödinger (de la forme \(h^2 \Delta + V \)) [11].

De par sa nature, liant les valeurs propres du laplacien aux longueurs des géodésiques périodiques, la formule de trace s’est révélée dès le début, et comme suggéré par Balian et Bloch, un outil précieux pour le problème spectral inverse. Ce problème, popularisé par l’article de Kac [50], consiste à savoir dans quelle mesure la géométrie d’une variété riemannienne
est déterminée par le spectre de son laplacien. Les singularités de la distribution intervenant dans la formule de trace sont des invariants spectraux ; leur détermination constitue donc un travail intéressant pour étudier l’isospectralité (cf [73, 56, 61, 62, 63] pour la recherche de tels invariants). Il faut noter que l’on connaît des exemples de variétés isospectrales (cf [38]), c’est-à-dire ayant même spectre du laplacien bien que non isométriques.

Notre travail s’inscrit pleinement dans la continuité des travaux évoqués ci-dessus ; plus précisément, on s’intéresse aux extensions de la formule de trace en présence d’un point singulier. On étudie plus particulièrement deux types de singularités :

- la présence d’un potentiel Dirac,
- la présence d’une singularité conique.

La notion de potentiel Dirac est assez populaire en physique pour diverses raisons, principalement sans doute parce qu’elle sert à modéliser un système de plusieurs particules, de façon à prendre en compte des collisions éventuelles (cf [3] chapitre 7). On ne s’intéressera toutefois pas à ce type de potentiel Dirac, concentré sur une sous-variété, mais à un modèle plus simple dans lequel le potentiel Dirac est ponctuel. Les livres ([2, 3]) fournissent une introduction assez complète de la notion de potentiel Dirac ainsi que de leurs diverses applications physiques. A la lecture de ces livres, il apparaît aussi que la restriction au potentiel Dirac ponctuel est une étape non dénuée d’intérêt. Mentionnons deux autres motivations de cette étude : premièrement ce type de problème débouche sur des modèles dans lesquels tout peut se calculer de façon plus ou moins explicite, deuxièmement, la notion de pseudo-laplacien introduite par Colin de Verdière dans l’article [16] coïncide avec la notion de potentiel Dirac ponctuel. L’établissement de la formule de trace dans ce cas-là prolonge donc l’étude spectrale des pseudo-laplaciens commencés dans l’article [16]. La question principale consiste à savoir si la présence d’un potentiel Dirac placé en un point \(p \) fait apparaître dans la formule de trace la contribution d’orbites “diffractives” en \(p \), c’est-à-dire de lacets géodésiques joignant \(p \) à \(p \). Notre travail étudiera l’équation des ondes associée à un potentiel Dirac, et on peut noter que la référence [1] s’intéresse à l’équation de la chaleur correspondante.

Plan et résultats principaux

Précisons maintenant le cadre et les résultats principaux de cette thèse. On a choisi, par commodité de séparer clairement l'étude des potentiels Dirac et l'étude des singularités coniques. Les deux parties ainsi obtenues peuvent se lire indépendamment, ce qui occasionnera quelques redites.

Potentiels Dirac

L'article [45], à paraître, correspond à ce travail.

Cette partie débute par quelques éléments concernant les potentiels Dirac ponctuels et leur spectre. On montrera notamment que de tels potentiels n'existent qu'en dimension inférieure à 3. Par la suite, seule la dimension 3 sera considérée, car c'est la situation dans laquelle les calculs sont les plus simples. Le laplacien avec un potentiel Dirac en un point p est une extension autoadjointe du laplacien riemannien habituel défini sur $C_0^\infty(M\setminus\{p\})$.

Cette extension est caractérisée par son domaine, et paramétrée par $\beta \in \mathbb{R} \cup \{\infty\}$; on note Δ_β l'extension correspondante. Δ_{∞} est le laplacien riemannien standard (cf [8]), avec la convention de signe telle que ses valeurs propres soient positives, c'est-à-dire qu'on a:

$$\Delta_\infty = -\sum_i \frac{\partial^2}{\partial x_i^2},$$

dans le cas euclidien. Le domaine de Δ_β est caractérisé par :

$$\text{dom}(\Delta_\beta) = \{ f \in H^2(M\setminus\{p\}), f \text{ vérifie } C^\beta \text{en } p \}.$$

La condition C^β signifie qu'au voisinage de p, on a :

$$C^\beta \quad \exists A \in \mathbb{R} \mid f(x) = A\left(\frac{1}{\rho^\beta} + \beta\right) + o(1),$$

où ρ désigne la distance riemannienne entre x et p (cf [16, 47] et partie 0.1).

L'équation des ondes relative à Δ_β s'écrit

$$\frac{\partial^2}{\partial t^2} + \Delta_\beta,$$

et on veut écrire le noyau de $\sin(\sqrt{\Delta_\beta}t)$ (noté E_β) pour en déduire une formule de trace. La comparaison à l'équation des ondes habituelles, ainsi que la propagation à vitesse 1 va nous permettre de développer E_β en diffractions multiples, c'est-à-dire écrire

$$E_\beta = E_\infty + \sum_{n=1}^{\infty} K_n,$$

où E_∞ désigne la solution fondamentale de l'équation des ondes habituelle et K_n est un opérateur qui prend en compte n diffractions.

La deuxième partie du travail consiste à montrer qu'on peut prendre la trace (au sens des distributions) de ces opérateurs et à localiser leurs singularités. On obtient alors le résultat attendu (cf Théorème 1):

Théorème 1

$$\text{supp } \text{sing}(\text{Tr}(E_\beta)) \subset \text{supp } \text{sing}(\text{Tr}(E_\infty)) \cup \Lambda,$$
avec
\[\Lambda = \bigcup_{n \geq 1} L_n, \]
\[L_n = \{ L \mid \exists n \geq 1, \exists \gamma_1 \ldots \gamma_n, \text{lacet géod. joignant } p \text{ à } p, L = \sum L_{\gamma_i} \}. \]

Dans ce théorème, une géodésique brisée en \(p \) s'obtient en suivant un lacet géodésique issu de \(p \), qui y revient (éventuellement en faisant un angle), puis en suivant un second et ainsi de suite. Les éléments de \(L_n \) correspondent donc aux longueurs des géodésiques brisées formées de \(n \) lacets géodésiques.

Pour calculer de plus le premier terme du développement de \(\text{Tr}(E_\beta) \) au voisinage de chaque singularité, deux hypothèses supplémentaires seront nécessaires : une concernant la géométrie de \(M \) (\(p \) n'est pas conjugué à lui même, voir partie 0.3.2), et l'autre concernant le nombre de manières d'écrire \(L = \sum L_{\gamma_i} \), voir partie 0.3.3. Dans le cas du tore, on peut mener des calculs explicites du début à la fin et on obtient le développement total de la trace.

Singularités coniques

Le résultat principal cherché est la formule de trace pour une surface compacte euclidienne à singularités coniques. On commencera cette partie par un ensemble de définitions fixant le cadre géométrique, insistant notamment sur la définition de géodésique (éventuellement) diffractive. Rapidemment (on renvoie à la définition 3 page 54 pour plus de précision), on appelle géodésique une application qui, localement en dehors des points coniques, est une géodésique riemannienne, et qui en un point conique fait un angle quelconque. L'ensemble \(\Gamma_T(M) \) des géodésiques de longueur \(T \) est un espace métrique dont on étudiera la géométrie locale. On montrera notamment que la géométrie locale au voisinage d'une géodésique \(g \) dépend d'un nombre \(c_c(g) \), appelé complexité classique que l'on reliera à la suite des angles de diffraction rencontrés le long de \(g \). Ce nombre décrit au voisinage d'une géodésique \(g \) la suite de points coniques possibles pour des géodésiques proches de \(g \). Un résultat typique représentant ces calculs est :

Proposition 1 (voir prop. 25)

Si la suite des angles de diffraction le long de \(g \) est de la forme
\[\left(\varepsilon_0 \pi, \cdots, \varepsilon_0 \pi, j_0 \beta_{g,j_0}, \cdots, j_1 \beta_{g,j_1}, \varepsilon_1 \pi, \cdots, \varepsilon_1 \pi \right), \]
avec \(\varepsilon_i = \pm 1 \), et \(\beta_{g,j_i} \neq \varepsilon_i \pi \), \(i = 0; 1 \), alors
\[c_c(g) = (k_0 + 1) \times (k_1 + 1). \]

La deuxième partie étudiera essentiellement les propriétés spectrales d'une s.e.s.c. Elle s'attachera notamment à montrer que bon nombre de résultats valables sur une surface lisse subsistent en présence de singularités coniques. On trouvera notamment dans cette partie la définition de \(\Delta \), la notion d'espaces de Sobolev associés à \(\Delta \) et les propriétés de base concernant les opérateurs à trace.

La troisième partie s'intéresse plus particulièrement à la propagation des singularités. La définition de \(\Gamma_T(M) \) nous permet de définir une relation canonique \(\Lambda_T \) de \(T^*M \) dans
T^*M. Cette relation canonique généralise la notion de flot géodésique sur une surface lisse. La propagation des singularités consiste alors à montrer le théorème suivant

Théorème 2 (voir th. 13)

Pour toute donnée initiale u_0, et tout temps T_0, on a l’inclusion suivante :

$$WF(e^{i\tau_0 \sqrt{\Delta}} u_0) \subset \bigcup_{\tau \in \mathbb{R}} WF(u_0).$$

La preuve de ce théorème pour les temps petits s’obtiendra à l’aide des résultats sur le cône établis dans [15]. Pour les temps grands, il résultera de la propriété de groupe de l’exponentielle et de la façon “classique” dont les géodésiques se composent. On montrera aussi dans cette partie un analogue du développement en diffractions multiples démontré dans le cas du potentiel Dirac. Plus précisément, on introduira la notion d’opérateurs microlocalisés le long d’une géodésique g, que l’on notera $K_g(t)$. On pourra alors montrer le théorème suivant :

Théorème 3 (voir th. 14)

Soit $m_0 \in M_0$, et T_0 un temps arbitrairement grand, il existe alors un rayon r_0, et un opérateur régularisant R_{r_0} de $L^2(B(m_0,r))$ dans $H^\infty(M)$, et un nombre fini de géodésique g_j tels que l’égalité suivante soit vérifiée :

$$\forall u_0 \in L^2(B(m_0,r)) \quad e^{i\tau_0 \sqrt{\Delta}} u_0 = \sum_{j=1}^{\infty} K_{g_j}(T_0) u_0 + R_{r_0} u_0.$$ (1)

La quatrième partie traitera de la formulation de trace proprement dite. Attendu la contribution de géodésiques périodiques diffractives, on commencera par étudier ces dernières. De cette étude résultera la classification suivante.

Une géodésique périodique g d’une s.e.s.c. compacte orientée satisfait une des propriétés suivantes :

- Soit g est non-diffractive, elle appartient alors à une famille de géodésiques non-diffractives de même longueur. Cette famille a deux bords qui sont des géodésiques diffractives.
- Soit g est diffractive et la suite de ses angles de diffraction n’est ni (π,π,\ldots,π), ni $(-\pi,-\pi,\ldots,-\pi)$; g est isolée parmi les géodésiques périodiques de longueur arbitrairement bornée.
- so\it g est diffractive et la suite de ses angles de diffraction est l’une des deux précédentes, alors g est le bord d’une famille de géodésiques non-diffractives.

On notera L l’ensemble des longueurs des géodésiques périodiques. On montrera ensuite une version faible de la formule de trace obtenue en localisant $e^{i\tau \sqrt{\Delta}}$ hors d’un voisinage fixé des points coniques. Notons que cette version tronquée est exactement celle énoncée par Friedlander dans l’introduction de [33]. Pour obtenir la formule de trace forte, on utilisera un principe qui nous permettra, à l’aide de la cyclicité de la trace de nous décaler du sommet du cône (cf 110). Notant $\sigma(T) = \sum \exp(i\lambda_n T)$, la formule de trace sera énoncée dans le théorème 16 :

Théorème 4

Sur une s.e.s.c. compacte :

$$WF(\sigma) \subset \{(T_0,\tau) \mid T_0 \in L, \tau > 0\}.$$

On terminera enfin cette étude par le calcul de la contribution principale à la formule de trace dans les deux cas suivants :

- g est une géodésique périodique diffractive dont tous les angles de diffractions sont différents de $\pm \pi$,

...
-- (g) est une famille de géodésiques non-diffraactivs telle que chacune des géodésique
bordante n’a qu’un angle de diffraction.

Ces contributions sont données par les théorèmes 21 et 22 que l’on regroupe ici.

Théorème 5

- *La contribution d’une géodésique périodique diffractive g, de longueur L, dont tous les
angles de diffraction sont différents de ±π est donnée à l’ordre principal par :*

\[I(s) \sim_p s^{-\frac{3}{2}} c_3 f(L)e^{-isL}L_0, \]

où \(c_3 = (2\pi)^{3/2} e^{-\frac{\pi}{2} \frac{d_3}{l_3^2}} \), \(d_3 \) et \(l_3 \) étant des quantités géométriques attachées à \(g \), et \(L_0 \)
est la longueur primitive de \(g \).

- *La contribution d’une famille de géodésiques périodiques non-diffraactivs \(g \), de longueur
\(L \), dont les orbites diffraactivs bordantes n’ont qu’une diffraction est donnée à l’ordre
principal par :*

\[\frac{e^{i\frac{\pi}{2}}}{2\pi s^{3/2}} \frac{1}{L} f(L)e^{-isL}|A_g|, \]

où \(|A_g|\) représente l’aire balayée par la famille.

Notons que le premier cas relève de la théorie géométrique de la diffraction (cf [7]). Notre
démarche se distingue toutefois par l’utilisation autant que possible de la théorie des OIF.
On montre notamment que pour une géodésique \(g \) dont aucun des angles de diffraction ne
vaut ±π l’opérateur \(K_g \) défini précédemment est un OIF, dont on précise la phase et le
symbole principal. Dans le cas de la famille, la contribution s’obtient par un calcul direct,
ce qui pour des raisons a priori purement techniques impose la restriction à un seul point
diffraactiv au bord. La contribution principale d’une famille de géodésiques non-diffraactivs
s’exprime alors en fonction de l’aire balayée exactement de la même façon que dans le cas
d’une surface lisse. Ce résultat est cohérent avec ceux exprimés dans [7] bien qu’ils soient
obtenus de façon complètement différente.

Perspectives

Ce travail débouche naturellement sur un certain nombre de questions qu’il serait inté-
ressant de traiter. Celles-ci peuvent se regrouper en trois grands thèmes : des généralisations
plus ou moins directes de ce travail, des questions relatives à la propagation des singularités,
des questions concernant plus précisément les billards polygonaux.

Généralisations

Il serait intéressant d’essayer de lever un certain nombre de restrictions imposées dans le
texte pour étudier les problèmes suivants :

1. potentiel Dirac en dimension 2,
2. potentiel Dirac concentré le long d’une sous-variété de codimension plus petite,
3. contribution d’une géodésique périodique (ou d’une famille) quelconque sur une s.e.s.c.,
4. contribution d’une géodésique périodique dans un billard polygonal.

Notons que ces problèmes sont de difficulté variable ; par exemple, l’étude du potentiel Dirac
en dimension 2, ou le calcul de la contribution d’une géodésique périodique dans un billard,
en se restreignant aux cas étudiés ici ne posent vraisemblablement pas de problème majeur.
En revanche, le potentiel Dirac sur une sous-variété semble un problème plus ardu du fait de la présence de rayons pouvant arriver tangcntiellement à la sous-variété singulière. La thèse [20] étudie précisément ce type de potentiel Dirac. Concernant le calcul de la contribution d'une géodésique périodique quelconque sur une s.e.s.c., notre méthode s'applique vraisemblablement dans toutes les situations, mais les calculs risquent de vite devenir compliqués. Il serait nettement plus agréable d'établir un calcul symbolique valable y compris près des intersections de variétés lagrangiennes. La deuxième direction dans laquelle on peut faire évoluer ce travail concerne précisément ce type de question.

Propagation des ondes

Comme cela sera mentionné dans le coeur du texte, les opérateurs intégraux de Fourier ne sont plus adaptés pour décrire précisément ce qui se passe au voisinage de l'intersection front primaire-front diffracté. Les articles [39, 59] construisent des opérateurs associés à ce type de géométrie. Toutefois, il n'est pas évident que le propagateur sur un cône appartient à la classe construite dans ces articles, de plus il resterait alors à étudier ce qui se passe après plusieurs diffractions. On peut aussi citer l'article [58] qui considère le type de géométrie obtenu après plusieurs diffractions. Il serait intéressant de comprendre plus en détail quelle est la "bonne" généralisation des OIF permettant de traiter ce type de géométrie des fronts et développer ensuite un calcul symbolique. Notons que cette question est différente de celle qui consisterait à regarder les singularités précisément au sommet du cône.

De façon parallèle, il existe d'autres problèmes où apparaissent ce type d'intersection entre plusieurs variétés lagrangiennes. L'équation intermédiaire étudiée dans [30] présente par exemple ce type de géométrie. En effet, cette équation est hyperbolique dans un demi-plan et elliptique dans l'autre, de plus les bicaractéristiques arrivent tangentially à la frontière. On peut alors se demander ce qui arrive quand une singularité, se propageant dans la partie hyperbolique, arrive sur la frontière.

On peut aussi mentionner le billard dans un stade ; quand une onde arrive au point de jonction entre une partie circulaire et une partie droite, il est probable qu'une onde diffractée apparaissa alors. L'étude du billard dans un stade est un problème modèle du point de vue classique, et certaines études numériques (quantiques) ont été faites ; ce qui motive certainement l'étude de l'équation des ondes dans ce billard. Plus généralement, notre travail soulève quelques questions plus directement axées sur les billards polygonaux, que l'on détaille maintenant.

Billards polygonaux

Tout d'abord, l'étude de \(\Gamma_T(M) \) que l'on a présentée, est relativement succincte. Une étude plus approfondie déterminant par exemple la géométrie globale apporterait peut-être des éléments nouveaux. Restant dans des questions de nature plutôt classique, on peut se demander si, génériquement, la complexité classique peut prendre n'importe quelle valeur. Le même genre de question sur les géodésiques périodiques invite à se demander si les géodésiques dont on calcule ici la contribution ne sont pas "génériquement" les seules.

La question du problème spectral inverse pour les polygones est aussi une direction intéressante dans la mesure où il existe des exemples de polygones isospectraux (cf [38]). On peut distinguer deux types de questions allant dans ce sens. Pour quelles orbites périodiques est-on sûr qu'il n'y a pas de compensation dans les contributions principales calculées? Ces orbites suffisent-elles à déterminer le polygone?

Enfin, et d'un point de vue très général, l'étude quantique des billards polygonaux ne se termine pas avec la formule de trace, et la continuer apporterait sûrement des éléments
nouveaux. On peut par exemple mentionner le problème de l’ergodicité quantique. L’article [74] montre qu’un billard polygonal, dont le flot géodésique est ergodique, est ergodique quantiquement, mais la question de l’unique ergodicité quantique reste posée : soit \(\phi_n \) les fonctions propres du laplacien dans un polygone, a-t-on

\[
|\phi_n|^2 \to 1 \text{ faiblement dans } L^1(M).
\]

Dans le même ordre d’idées, des travaux récents d’Eskin, Masur et Schmoll (cf [29]) étudient le billard sur un rectangle pourvu d’une barrière. Dans cette situation, notre travail peut être assez facilement adapté pour étudier le versant quantique de ce problème.
Table des matières

Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Formule de trace avec un potentiel Dirac</td>
<td>19</td>
</tr>
<tr>
<td>0.1</td>
<td>Potentiel Dirac</td>
<td>21</td>
</tr>
<tr>
<td>0.1.1</td>
<td>Définition</td>
<td>21</td>
</tr>
<tr>
<td>0.1.2</td>
<td>Propriétés Spectrales</td>
<td>22</td>
</tr>
<tr>
<td>0.2</td>
<td>Développement en diffractions multiples</td>
<td>24</td>
</tr>
<tr>
<td>0.2.1</td>
<td>Un opérateur auxiliaire</td>
<td>25</td>
</tr>
<tr>
<td>0.2.2</td>
<td>Développement en diffractions multiples</td>
<td>28</td>
</tr>
<tr>
<td>0.2.3</td>
<td>Écriture des noyaux</td>
<td>29</td>
</tr>
<tr>
<td>0.3</td>
<td>Singularités de la trace</td>
<td>30</td>
</tr>
<tr>
<td>0.3.1</td>
<td>Expression de la trace</td>
<td>30</td>
</tr>
<tr>
<td>0.3.2</td>
<td>Singularités des opérateurs auxiliaires</td>
<td>33</td>
</tr>
<tr>
<td>0.3.3</td>
<td>Retour à la trace</td>
<td>37</td>
</tr>
<tr>
<td>0.4</td>
<td>Cas du tore de dimension 3</td>
<td>40</td>
</tr>
</tbody>
</table>

Conclusion

42

Appendice A: prolongement à L^2 | 43

Appendice B: K_n est à trace | 46

II Formule de trace en présence de singularités coniques | 49

1 | Surface euclidienne à singularités coniques | 51 |
1.1	Géométrie d’une s.e.s.c.	51
1.1.1	Distance sur M	52
1.1.2	Géodésiques de M	54
1.1.3	Étude globale de $\Gamma_\Gamma(M)$	58
1.2	Complexité classique des géodésiques	59
1.2.1	Géodésiques régulières	59
1.2.2	Construction de géodésiques exceptionnelles	62
1.2.3	Calcul de la complexité	69

2 | Laplacien sur une surface euclidienne à singularités coniques | 75 |
2.1	Théorie spectrale	76
2.1.1	Extensions autoadjointes de Δ	76
2.1.2	Diagonalisation de Δ	79
2.2	Classes d’opérateurs	80
2.2.1	Espaces de Sobolev, microlocalisation	80
2.2.2 Opérateurs à trace 82

3 Propagation des singularités 87
 3.1 Introduction .. 87
 3.2 Aspects symplectiques 88
 3.3 Temps petits 94
 3.3.1 Résultats sur le cône 94
 3.3.2 Retour sur M 95
 3.4 Temps grands 98
 3.4.1 Au voisinage microlocal d’une géodésique 99

4 Formule de trace sur une s.e.s.c 107
 4.1 Relation de Poisson 108
 4.1.1 Relation de Poisson faible 108
 4.1.2 Passage des points coniques 109
 4.2 Classification des géodésiques périodiques 111
 4.3 Propagation sur le cône : premier ordre 114
 4.3.1 Expression générale 114
 4.3.2 Singularités de G_a 119
 4.3.3 Loin de Σ 121
 4.3.4 Au voisinage de Σ 122
 4.4 Au voisinage d’une géodésique localement régulière 124
 4.4.1 Propagateur microlocalisé 124
 4.4.2 Calcul de la contribution 127
 4.5 Famille de géodésiques 130
 4.5.1 À l’intérieur de la famille 131
 4.5.2 Au bord de la famille 131
 Appendice A : Periodisation de G 136
 Appendice B : Phases stationnaires 139

Bibliographie 146
Première partie

Formule de trace avec un potentiel Dirac
Comme annoncé dans l'introduction, ce travail concerne l'étude de l'équation des ondes sur une variété de dimension 3 présentant un potentiel Dirac en un point \(p \), et a fait l'objet d'un article accepté à *Comm. P.D.E.*. Commençons par rappeler la définition d'un potentiel Dirac, ainsi que quelques propriétés spectrales de l'opérateur ainsi obtenu.

0.1 Potentiel Dirac

0.1.1 Définition

Il y a plusieurs manières équivalentes de définir un potentiel Dirac ponctuel sur une variété. Les livres d'Albeverio et al. (cf. [2, 3]) fournissent une présentation très complète de ces problèmes incluant notamment une motivation physique, et justifiant leur écriture sous la forme \(\Delta + \alpha \delta \), à l'origine du nom "potentiel Dirac". On propose ici de suivre l'approche de Colin de Verdière (cf. [16]), qui étudie notamment très en détail les propriétés spectrales de ces opérateurs. Cette approche n'est pas la plus courante et on renvoie au livres mentionnés ci-dessus [2, 3] pour d'autres méthodes aboutissant aux mêmes opérateurs.

Considérons donc une variété riemannienne \(M \), muni de son laplacien (que l'on note \(\Delta_{\infty} \)), \(\Delta \) désignera le laplacien riemannien pris au sens des distributions, et \(H^s \) l'espace de Sobolev associé. On cherche des extensions autoadjointes de l'opérateur défini par \(\Delta \) sur le domaine \(C^\infty(M\setminus\{p\}) \). On veut utiliser la théorie de Von Neumann, et on commence donc par décrire le domaine de \(\Delta^* \), \(\text{dom}(\Delta^*) \). Il est important de remarquer que, pour \(f \) dans le domaine de \(\Delta^* \), \(\Delta^* f - \Delta f \) est une distribution \(H^{-2} \), supportée en \(\{p\} \).

Les théorèmes d'injectivité de Sobolev habituels montrent alors les propriétés suivantes.

1. En dimension supérieure ou égale à 4, \(\Delta^* f \) et \(\Delta f \) sont égaux, donc \(f \) appartient à \(H^2 \).

2. Le laplacien défini sur \(C^\infty(M\setminus\{p\}) \) est alors essentiellement autoadjoint.

3. En dimension 2 ou 3, il existe \(C \) tel que

\[
\Delta^* f = \Delta f + C \delta_p.
\]

4. En dimension 1, il existe \(a, b \):

\[
\Delta^* f = \Delta f + a \delta_p + b \delta'_p.
\]

Une fois décrit le domaine de \(\Delta^* \), la recherche des extensions autoadjointes se fait alors en recherchant les sous-espaces de \(\text{dom}(\Delta^*) \) maximaux annulant la "formule de Green":

\[
\langle \Delta^* u, v \rangle = \langle u, \Delta^* v \rangle.
\]

Cette formule s'exprime uniquement en fonction du comportement au voisinage de \(p \) et on obtient le théorème suivant (on ne donne que l'énoncé concernant la dimension 3).

Théorème 6

L'opérateur \(\Delta \) défini sur le domaine \(C^\infty(M\setminus\{p\}) \) admet plusieurs extensions autoadjointes. Celles-ci sont paramétrées par \(\beta \in \mathbb{R} \cup \{\infty\} \) et caractérisées par leur domaine. Si on note \(\Delta_{\beta} \) l'extension correspondant à \(\beta \), on a :

\[
\text{dom}(\Delta_{\beta}) = \{ f \in H^2(M\setminus\{p\}), f \text{ vérifie } C^\beta \text{ en } p \},
\]

où la condition \(C^\beta \) signifie qu'au voisinage de \(p \), on a :

\[
C^\beta \quad \exists A \in \mathbb{R} \mid f(x) = A \left(\frac{1}{d_p^p} + \beta \right) + o(1),
\]

\(d_p \) désignant la distance riemannienne entre \(x \) et \(p \).
Remarque : ce théorème est compatible avec le fait que Δ_∞ désigne le laplacien riemannien habituel.

Avant de passer à l'étude des propriétés spectrales de ces opérateurs, on peut noter qu'il y a d'autres approches pour définir ces potentiels Dirac :
- Dans [3], les auteurs généralisent la notion d'opérateurs s'écrit $\Delta + \alpha(\phi_\nu)\phi$. Cette écriture ne pose pas de problème si ϕ est L^2, et la difficulté est de donner un sens à cette écriture quand ϕ est un élément de H^{-1} ou de H^{-2}. Dans le cas où ϕ appartient à H^{-1}, $\Delta + \alpha(\phi_\nu)\phi$ s'interprète bien en terme de formes quadratiques et peut se définir via le théorème KLMN. Dans le cas où $\phi \in H^{-2}\setminus H^{-1}$ (e.g. en dimension 2 et 3) il faut travailler un peu plus (cf. [3] pp32-35, et pp49 et suivantes).
- Les potentiels Dirac peuvent aussi s'obtenir comme limite (dans une topologie convenable) d'opérateurs $\Delta + V_\varepsilon$, où V_ε est un potentiel (bien choisi) lisse à support dans la boule de centre p et de rayon ε (cf. [2, 3]).
- La définition proposée offre l'avantage de montrer clairement une démarche possible pour définir un potentiel Dirac le long d'une sous-variété.

0.1.2 Propriétés Spectrales

On rappelle que dans [16] se trouve la description précise du spectre de Δ_β sur une variété compacte. Notre but est ici de montrer que les valeurs propres de Δ_β vérifient la même formule de Weyl que celles de Δ_∞.

Rappelons que Δ_β et Δ_∞ sont deux extensions autoadjointes du même opérateur. Notamment, si on note H^2_0 le complété de $C^\infty(M\setminus\{p\})$ pour la norme du graphe de Δ_∞ (i.e. la norme H^2), la théorie générale des extensions autoadjointes (cf. [64] pp138-143 par exemple) nous permet d'affirmer le lemme suivant.

Lemme 1

*Pour tout $\beta \in \mathbb{R} \cup \{\infty\}$, H^2_0 est un sous-espace de codimension 1 dans $\text{dom}(\Delta_\beta)$. De plus,

$$\forall f \in H^2_0, \quad \Delta_\beta f = \Delta_\infty f.$$*

Preuve : les indices de défaut de Δ valent ici 1. Dans ce cas, on sait alors que le domaine de la fermeture de Δ est un sous-espace de codimension 1 dans le domaine de toute extension autoadjointe. Ce qui donne le premier point. L'Injection de H^2 dans $C^0(M)$ montre

$$H^2_0 = \{u \in H^2 \mid u(p) = 0\}.$$

De plus, pour un β quelconque, d'après [16], on a la description :

$$f \in \text{dom}(\Delta_\beta) \Leftrightarrow \exists u \in H^2_0, A \in \mathbb{R} \mid f = A(G_d(x) + \beta) + u,$$

où G_d est telle que $\Delta G_d - \delta_p = r \in L^2$ (d étant la dimension).

Avec l'écriture ci-dessus, on a aussi :

$$\Delta_\beta f = \Delta_\infty u + Ar.$$
Ainsi, sur H^2_0, Δ_β coïncide avec Δ_∞. Ce qui termine la preuve. □

On note maintenant $\lambda_n(\beta)$ la n-ième valeur propre de Δ_β (en les rangeant dans l’ordre croissant). Le principe du min-max (cf. [21] section 4.5) permet alors de montrer le théorème.

Théorème 7

Pour tous β, β' de $\mathbb{R} \cup \{\infty\}$, et $n \geq 1$ l’inégalité suivante est vérifiée :

$$\lambda_n(\beta) \geq \lambda_{n-1}(\beta').$$

Preuve : pour tout β, Δ_β est un opérateur à résolvante compacte, borné inférieurement. Son spectre est donc donné par le principe du min-max :

$$\lambda_n(\beta) = \min_F \left(\max_{f \in F, \|f\| = 1} \langle \Delta_\beta f, f \rangle \right),$$

où le minimum est pris sur les sous-espaces F, de dimension $n+1$, inclus dans $\text{dom}(\Delta_\beta)$.

Soit donc F un tel sous-espace,

$$\max_{f \in F, \|f\| = 1} \langle \Delta_\beta f, f \rangle \geq \max_{f \in F \cap H^2_0, \|f\| = 1} \langle \Delta_\beta f, f \rangle,$$

mais, sur $F \cap H^2_0$, Δ_β et $\Delta_{\beta'}$ coïncident d’où :

$$\max_{f \in F, \|f\| = 1} \langle \Delta_\beta f, f \rangle \geq \max_{f \in F \cap H^2_0, \|f\| = 1} \langle \Delta_{\beta'} f, f \rangle.$$ Maintenant, $F \cap H^2_0$ est un sous-espace du domaine de $\Delta_{\beta'}$, de dimension $n+1$ ou n. Le membre de droite de l’inégalité précédente est donc minoré par $\lambda_{n-1}(\beta')$ (en appliquant le min-max à $\Delta_{\beta'}$) :

$$\max_{f \in F, \|f\| = 1} \langle \Delta_\beta f, f \rangle \geq \lambda_{n-1}(\beta').$$

Le minimum sur F donne alors le résultat. □

Le corollaire de ce théorème nous dit alors que les asymptotiques de Weyl de tous les opérateurs Δ_β sont identiques.

Corollaire 1 Soit $N_\beta(T) = \#\{n \mid \lambda_n(\beta) \leq T\}$, alors

$$\forall \beta, N_\beta(T) \sim T \rightarrow \infty N_\infty(T).$$

Preuve : on fixe T, et on note $N = N_\infty(T)$ alors :

$$\lambda_N(\infty) \leq T < \lambda_{N+1}(\infty) \leq \lambda_{N+2}(\beta),$$

donc

$$N_\beta(T) \leq N_\infty(T) + 1.$$

En échangeant les rôles de β et ∞, on montre :

$$N_\infty(T) - 1 \leq N_\beta(T) \leq N_\infty(T) + 1.$$ Comme $N_\infty(T)$ tend vers l’infini, l’équivalence est prouvée. □

Remarques :

- Ce résultat est compatible avec le cas générique signalé dans [16], pour lequel les valeurs propres sont entrelacées.
- Le théorème 7 s’applique dès qu’on a un couple d’opérateurs autoadjoints A, A_0 qui coïncident sur un sous-espace de codimension finie dans $\text{dom}(A)$ et $\text{dom}(A_0)$ (pour la partie du spectre donnée par le min-max).

On peut maintenant passer à l’étude de l’équation des ondes associée à l’opérateur Δ_β ainsi construit.

0.2 Développement en diffractions multiples

Dans tout cette partie, M désignera une variété riemannienne compacte, de dimension 3, et β un nombre réel fixé. Δ désignera le laplacien riemannien pris au sens des distributions, avec la convention de signe donnée dans l’introduction, Δ_∞ sera l’extension autoadjointe à l’espace de Sobolev H^2 et Δ_β celle correspondant à la condition C^β, cf. [16], [47] et la partie précédente.

Principe

Le principe du développement en diffractions multiples est le suivant : on part de $v_\infty(t,x)$, solution de l’équation des ondes relative à Δ_∞ pour la donnée initiale u_i(voir ci-dessous système (2)) . Si u est à support loin de p, la solution libre est nulle en p jusqu’à un temps t_0, elle coïncide donc avec la solution perturbée. Quand elle n’est plus nulle en p, la condition C^β n’est alors plus vérifiée. Il faut donc rajouter une fonction $v_1(t,x)$ pour forcer la condition C^β en p. La fonction v_1 doit aussi vérifier l’équation des ondes en dehors de p et être nulle tant que la solution libre convient. Il est donc naturel de chercher cette fonction comme solution de l’équation des ondes inhomogène dont le second membre est de la forme $a_1(t)\delta_{x=p}$ (voir système (3)).

Le fait de vérifier la condition C^β va déterminer $a_1(t)$ en fonction des valeurs de la solution libre en p. Plus précisément, a_1 sera solution d’une équation de Volterra dont le second membre est $v_\infty(t,p)$. Pour établir cette équation de Volterra, on utilise la paramétrie d’Hadamard (cf. prop 2) qui n’est pas valable que pour des temps petits. Cette restriction nous amènera à écrire v_1 comme la somme de deux fonctions w_1 et r_1 telles que ce soit $v_\infty + w_1$ qui vérifie C^β en p, et ceci pour tout temps. Il suffira alors de montrer qu’on peut faire jouer à r_1 le rôle de la solution libre pour itérer le processus et faire ainsi apparaître ce qu’on appelle le développement en diffractions multiples.

Notations :
On notera $E_\beta(t,x,y) = \frac{\sin(\sqrt{\Delta_\beta}t)}{\sqrt{\Delta_\beta}} \delta_y$, de sorte que $E_\beta(t,x,y)$ est le noyau distribution de l’opérateur E_β caractérisé par :

$$\forall u, \ E_\beta u \ \text{vérifie} \ \left\{ \begin{array}{ll}
\left(\frac{\partial^2}{\partial t^2} + \Delta \right) E_\beta u = 0, & \text{dans } \mathcal{D}'(\mathbb{R} \times M \setminus \{p\}) \\
\lim_{t \to 0} E_\beta u(t, \cdot) = 0, & \\
\lim_{t \to 0} \frac{\partial E_\beta u}{\partial t} = u, & \\
\forall t, \ E_\beta u(t, \cdot) \ \text{vérifie } C^\beta \ \text{en } p.
\end{array} \right.$$

(2)

On notera de la même manière E_∞ solution fondamentale de l’équation des ondes relative à Δ_∞, c’est-à-dire que dans le système précédent la dernière condition est remplacée par :

$$\forall t, \ E_\infty u(t, \cdot) \ = \ H^2,$$
où H^2 est l’espace de Sobolev. Cette dernière condition peut être remplacée par :

$$E_\infty u(t, \cdot) \text{ est continue en } p.$$

On notera ϕ_n une base orthonormée de fonctions propres de Δ_∞, et λ_n les valeurs propres associées.

La distance riemannienne entre x et y sera désignée par \overline{xy}, et R_ϵ sera le rayon d’injectivité de M.

On choisit $r < R_\epsilon/2$, et on prend deux fonctions χ et ρ de $C^\infty(\mathbb{R}^+)$ telles que $\chi + \rho = 1$, et $\chi(s)$ vaut 1 si $s < r$ et 0 si $s > 2r$.

Dans la construction expliquée ci-dessus, u est la condition initiale dans $C^\infty_0(M \setminus \{p\})$.

On note $v_\beta(t,x) = (E_\beta u)(t,x)$, et $v_\infty(t,x) = (E_\infty u)(t,x)$.

On va rajouter v_1 à v_∞ pour forcer la condition C^β tout en continuant à vérifier l’équation des ondes en dehors de p. Pour cela, on cherche v_1 solution du système suivant:

$$
\begin{align*}
\frac{\partial^2}{\partial t^2} v_1 + \Delta v_1 &= a_1(t) \delta_{x=p} \text{ dans } D'(\mathbb{R} \times M) \\
\lim_{t \to 0^-} v_1(t, \cdot) &= 0, \\
\lim_{t \to 0^+} \frac{\partial v_1}{\partial t} &= 0.
\end{align*}
$$

où a_1 est à déterminer.

La solution du problème inhomogène précédent est reliée à la solution fondamentale par le principe de Duhamel (cf. [24] p. 120 par exemple). On peut donc écrire:

$$v_1(t,x) = \int_0^\infty E_\infty(s,x,p) a_1(t-s) ds.$$

On va tout de suite séparer ce qui se passe pour les s petits, et ce qui se passe pour les s grands. On note donc :

$$w_1(t,x) = \int_0^\infty \chi(s) E_\infty(s,x,p) a_1(t-s) ds,$$

$$r_1(t,x) = \int_0^\infty \rho(s) E_\infty(s,x,p) a_1(t-s) ds.$$

Remarque : on va chercher à exprimer le noyau de E_β en fonction d’expressions plus ou moins compliquées de E_∞, on va donc oublier l’indice ∞. À partir de maintenant, E désigne la solution fondamentale de l’équation des ondes non perturbée.

0.2.1 Un opérateur auxiliaire

Le but de cette partie est de déterminer a_1 en fonction de $v_\infty(t,x)$. D’après le principe de construction, a_1 est choisie de telle manière que $w_1 + v_\infty$ vérifie C^β pour tout temps. En fait seules les valeurs de v_∞ en p sont importantes ; on va donc noter $r_0(t) = v_\infty(t,p) H(t)$, où H est la fonction de Heaviside. Du fait de la propagation à vitesse 1, $v_\infty(t,p)$ est nulle pour $t < t_0$ (où t_0 désigne la distance du support de u à p), et comme de plus, v_∞ appartient à $C^\infty(\mathbb{R}^+ \times M)$, on peut affirmer que r_0 est C^∞ et nulle si $t < t_0$.

Pour relier a_1 à r_0, il faut avoir le développement de $u_1(t,x)$ au voisinage de p. Dans la définition de u_1 (cf. (4)), le noyau de l’équation des ondes n’intervient que pour des temps petits. On peut donc utiliser la paramétrie d’Hadamard. Celle-ci nous est donnée par la proposition suivante déduite de [6] pp. 254–257. Avant de l’énoncer, on va rappeler quelques notations. La fonction $\Theta(x,y)$ est par définition telle que :

$$
\int_M \phi(y) dv_B(y) = \int_{T_xM} \phi \circ \exp_x(m) \Theta(x, \exp_x(m)) dm,
$$

pour toutes les fonctions ϕ à support dans la boule de centre x et de rayon R_x. On a noté \exp_x l’application exponentielle en x (qui est un difféomorphisme sur le support de ϕ), dv_B la mesure riemanienne, et dm la mesure de Lebesgue euclidienne dans l’espace tangent en x à M (noté T_xM) cf. [8].

Proposition 2 Pour $\overline{xy} \leq t < r < R_x$, R_x rayon d’injectivité de M

$$
E(t,x,y) = u_0(x,y)\delta(\overline{xy}^2 - t^2) + \sum_{k=1}^{N} u_k(x,y)(\overline{xy}^2 - t^2)^{k-1} + \mathcal{R}_N(t,x,y),
$$

\mathcal{R}_N est $C^{\infty}([0;r]\times\{\overline{xy} < r\})$, et les u_i sont C^{∞} sur $\overline{xy} < R_x$. De plus on a :

$$
u_0 = \frac{1}{2\pi} \Theta(x,y)^{-\frac{3}{2}},$$

Remarque : si N est une variété riemanienne et $F : N \to \mathbb{R}$ une sousmersion $\delta(F(x))$ désigne la distribution $F^*\delta$ (cf. [13] p. 40). Si S_0 est l’hypersurface $F^{-1}(0)$ et $d\mu_0$ la mesure riemanienne induite par N sur S_0, on a :

$$
\forall \chi \in C_c(N) \int_N \delta(F(x)) \chi(x) = \int_{S_0} \chi \frac{d\mu_0}{|\text{grad } F|}.
$$

En considérant le feuilletage par les hypersurfaces $F(x) = a$, on a aussi la décomposition suivante de la mesure riemanienne $|dz|$

$$
\int f(x)|dz| = \int \left[\int_{N_a} f(x) \delta(F(x) - a) \right] da.
$$

Ce qui donne, dans le cas qui nous intéresse, pour f, fonction C^{∞} à support dans la boule de centre x et de rayon r_1 :

$$
\int_M \delta(\overline{xy}^2 - t^2)f(y) dv_B(y) = \frac{1}{2} \tilde{f}(t,x),
$$

avec :

$$
\tilde{f}(t,x) = \int_{\omega \in S^2} f \circ \exp_x(t\omega) \Theta(x, \exp_x(t\omega)) d\omega.
$$

On appellera $\tilde{E}(t,x,y) = E(t,x,y) - u_0(x,y)\delta(x^2 - t^2)$. D’après la proposition 2, $\tilde{E}(t,p,p)$ est bien définie et continue sur $[0,r]$. On peut maintenant décrire le comportement de w_1 au voisinage de p.

Lemme 2 Au voisinage de $x = p$, on a le développement suivant:

$$w_1(t,x) = u_0(x,v)\frac{a_1(t - \frac{x}{p})}{2\pi p} + \int_0^\infty \chi(s)\tilde{E}(s,p,p)a_1(t - s)ds.$$

Preuve : c’est une conséquence directe de l’expression du noyau de l’équation des ondes aux temps petits.

Il ne reste plus qu’à écrire la condition C^β pour $w_1 + r_0$ pour obtenir la proposition suivante :

Théorème 8 Étant donnée $r_0 \in C^\infty(\mathbb{R} \times M)$, nulle au voisinage de $t = -\infty$, il existe z_β distribution sur \mathbb{R} telle que si on pose :

$$a_1 = z_\beta * r_0(a_0),$$

alors w_1 définie par

$$w_1(t,x) = \int_0^\infty \chi(s)\tilde{E}(s,x,p)a_1(t - s)ds,$$

est telle que $w_1(t,x) + r_0(t,x)$ vérifie C^β en p. De plus, z_β est unique si on impose la condition suivante :

$$(r_0 = 0 \forall t < t_0) \Rightarrow (a_1 = 0 \forall t < t_0).$$

La distribution z_β est alors nulle pour les temps négatifs, et C^∞ en dehors de 0. Au voisinage de 0, on a le développement suivant :

$$z_\beta(t) = 4\pi H(t) + R_\beta(t),$$

avec R_β continue, et H la fonction de Heaviside.

Preuve : on écrit ce que veut dire la condition C^β. D’après le lemme précédent, on peut écrire, au voisinage de p :

$$w_1(t,x) + r_0(t,x)) = \frac{1}{4\pi t^p}a_1(t) - \frac{1}{4\pi}a_1'(t)
+ \int_0^\infty \chi(s)\tilde{E}(s,p,p)a_1(t - s)ds + r_0(t,p)) + o(1),$$

car $\Theta(x,p) = 1 + o(\frac{1}{p^2})$ (cf. [8] pp. 99-100). Pour vérifier la condition C^β, on doit donc avoir :

$$\beta\frac{1}{4\pi}a_1(t) - \frac{1}{4\pi}a_1'(t) + \int_0^\infty \chi(s)\tilde{E}(s,p,p)a_1(t - s)ds + r_0(t,p) = 0.$$

Cette équation se récrit sous la forme :

$$a_1'(t) - \beta a_1(t) - 4\pi \int_0^\infty \chi(s)\tilde{E}(s,p,p)a_1(t - s)ds = 4\pi r_0(t,p).$$

(7)

Il suffit de résoudre avec δ comme second membre, et le résultat pour un second membre quelconque sera donné par convolution. On résout par approximations successives (le fait que
le processus converge est un résultat classique de la théorie des équations de type Volterra cf. [52]). La condition supplémentaire sert à fixer la constante d’intégration. On trouve donc

\[z_\beta(t) = 4\pi \exp(\beta t) \mathcal{H}(t) + \tilde{R}_\beta(t), \]

avec \(\tilde{R}_\beta \) continu, ce qui donne le même début de développement que celui donné dans la proposition.

Dans l’optique du développement en diffractions multiples, on va vouloir faire jouer à \(r_1 \) le rôle de \(r_0 \). Pour cela, on a besoin du lemme suivant :

Lemme 3 Si \(a_1 \) est \(C^\infty(\mathbb{R}) \) nulle pour \(t < t_0 \) alors \(r_1(t,x) \) définie par :

\[r_1(t,x) = \int_0^\infty \rho(s)E(s,x,p)a_1(t - s)ds, \]

est \(C^\infty(\mathbb{R} \times M) \) et est nulle pour \(t < t_0 + r \).

Preuve : la nullité est obtenue en regardant les supports respectifs de \(\rho \) et \(a_1 \). Pour la régularité, on peut par exemple décomposer \(r_1 \) suivant les \(\phi_n \) :

\[r_1(t,x) = \sum \left(\int_0^\infty \rho(s) \sin\left(\sqrt{\lambda_n}s\right) a_1(t - s)ds \right) \phi_n(x)\phi_n(p). \]

Les dérivations par rapport à \(t \) porteront uniquement sur \(a_1 \), et en intégrant par parties, il est clair que :

\[\forall K \text{ compact en } t, \forall k, \forall d, \exists A \in \mathbb{R} \]

telle que

\[\left| \int_0^\infty \rho(s) \sin\left(\sqrt{\lambda_n}s\right) \partial^k a_1(t - s)ds \right| \leq A|\lambda_n|^{-d}. \]

Par ailleurs, on a \(|\phi_n(p)| \leq \tilde{A}(1 + \lambda_n) \) car \(H^2 \) s’injecte continûment dans \(C^0 \). On voit donc qu’uniformément localement en \(t \) les coefficients décroissent plus vite que toutes les puissances négatives de \(\lambda_n \) ce qui donne le résultat annoncé.

Remarque : La partie principale de l’équation pseudodifférentielle (7) ne dépend pas de \(\beta \). Il est donc normal que le symbole principal de \(z_\beta \) n’en dépende pas non plus. Comme, dans la partie 0.3, on ne calculera que le premier ordre des singularités, ces dernières ne dépendront pas non plus de \(\beta \).

0.2.2 Développement en diffractions multiples

Tout ce qui a été montré dans la partie précédente nous permet de construire les objets suivants :

Proposition 3 Étant donnée \(u \in C^\infty_0(M \setminus \{p\}) \), on peut construire, pour tout \(n \), les objets suivants par récurrence :

\[a_n(t) = (z_\beta * r_n(\cdot,p))(t), \]

\[w_{n+1}(t,x) = \int \chi(s)E(s,x,p)a_n(t - s)ds, \]

\[r_{n+1}(t,x) = \int \rho(s)E(s,x,p)a_n(t - s)ds, \]

\[v_n = w_n + r_n, \]
avec comme condition initiale : \(r_0 = v_\infty \), et \(z_\beta \) est donné par le théorème \(8 \).

\[\text{Preuve : la seule chose à vérifier est que } r_n(s,p) \text{ peut prendre la place de } r_0 \text{ dans le théorème } 8. \text{ Or, d’après le lemme } 3, r_n \text{ est } C^\infty, \text{ et est nulle au voisinage de } -\infty. \] \[\square \]

De plus la propagation à vitesse 1 nous permet d’affirmer le corollaire suivant :

Corollaire 2 Pour tout \(n \), \(v_n \) est nulle au moins jusqu’à \(t_0 + (n - 1)r \), et \(r_n \) jusqu’à \(t_0 + nr \).

On peut maintenant énoncer le théorème principal :

Théorème 9 (Développement en diffractions multiples)
Avec les notations de la proposition précédente, on a :

\[v_\beta(t,x) = v_\infty(t,x) + \sum_{n \geq 1} v_n(t,x). \]

\[\text{Preuve : il faut montrer que la somme de droite vérifie les propriétés qui caractérisent } v_\beta. \text{ Il y a donc trois choses à examiner :} \]

- **L’équation des ondes en dehors de } p :**
 C’est clair car tous les termes de la somme la vérifient.

- **La condition } C^\beta :**
 On réécrit la somme comme :

\[v_\beta(t,x) = v_\infty(t,x) + w_1(t,x) + \sum_{n \geq 2} (w_n(t,x) + r_{n-1}(t,x)). \]

 Par construction, \(w_1 \) et les \(w_n \) sont tels que \(v_\infty + w_1 \) ainsi que \(w_n + r_{n-1} \) vérifient \(C^\beta \) en \(p \).

- **La condition initiale :**
 La propagation à vitesse 1 ainsi que la condition de support mise sur \(u \) nous ont permis de montrer que, pour \(t < t_0 \), tous les termes sauf \(v_\infty \) sont nuls. De plus, \(v_\infty \) vérifie la bonne condition initiale par construction. \[\square \]

Remarque : d’après le corollaire 2, localement en temps, la somme est toujours finie.

Dans la suite, on appellera \(K_n \) l’opérateur qui permet de passer de \(u \) à \(v_n \). Intuitivement, il correspond à \(n \) diffractions au sens où \(v_n \) a besoin des valeurs de tous les \(r_i \), \(i < n \) pour se construire.

Remarque : d’après la construction, \(K_n \) va dépendre du choix de la fonction de troncature \(\rho \). Ce choix n’influence bien sûr pas \(v_\beta \), mais seulement la manière de l’écrire comme une somme. Les résultats des parties suivantes dépendront de \(\rho \) chaque fois qu’on traitera \(K_n \) individuellement, cette dépendance disparaîtra en sommant sur \(n \).

0.2.3 Écriture des noyaux

Il suffit en fait d’examiner la manière dont sont définis les \(a_n, \ r_n, \ v_n \). On peut noter \(U(t) = E(t,p,p) \), où on a noté \(E(t,p,p) = r^t E \) avec \(i \) l’application qui à \(t \) associe \((t,p,p) \). Comme \(\beta \) est fixé, on va oublier l’indice \(\beta \). On note donc simplement \(z \) la fonction \(z_\beta \). D’après la partie précédente, on a l’expression :

\[a_n = z * \rho U * z * \rho U ... * z * r_0. \]
On note z_n la distribution sur \mathbb{R} définie par récurrence :

\[
\begin{cases}
 z_1 = z, \\
 z_{n+1} = z \ast \rho U \ast z_n.
\end{cases}
\]

Cette distribution auxiliaire nous est utile puisqu'on a la proposition suivante :

Proposition 4

\[
K_n(t,x,y) = \int_{s_1 \geq 0, s_2 \geq 0} E(s_1,x,y)z_n(t-s_1-s_2)E(s_2,y,x)ds_1ds_2.
\]

Preuve : on écrit K_nu pour u dans $C_c^\infty(M \setminus \{p\})$ et on identifie ainsi le noyau.

Jusqu'ici, on n'a construit des solutions que pour des conditions initiales $C_c^\infty(M \setminus \{p\})$, si on peut prolonger à L^2 la construction, on aura bien construit l'opérateur $\frac{\sin(\sqrt{3}a)}{\sqrt{3}a}$ (on sait qu'il est continu par le calcul fonctionnel). Cette vérification est faite dans l'appendice A.

0.3 Singularités de la trace

0.3.1 Expression de la trace

Dans tout ce qui suit, la trace est entendue au sens des distributions. Les égalités sont donc aussi au sens des distributions.

Avant de commencer à parler de la trace des opérateurs K_n, il faut montrer que cette dernière existe. On reporte cette démonstration un peu lourde à l'appendice B. Le but est maintenant de localiser les singularités de la trace de K_n. Pour cela on va d'abord exprimer cette trace sous une forme plus simple à étudier. De façon formelle, on peut écrire :

\[
Tr(K_n)(t) = \int_M K_n(t,x,x)dx \\
= \int_{s_1,s_2 \geq 0} z_n(t-s_1-s_2) \left[\int_M E(s_2,y,x)E(s_1,x,y)dx \right] ds_1ds_2.
\]

On voit alors apparaître le noyau de $\frac{\sin(\sqrt{3}a)s_1}{\sqrt{3}a}$ ou $\frac{\sin(\sqrt{3}a)s_2}{\sqrt{3}a}$ pris entre p et p. Grâce au calcul fonctionnel on peut réécrire cette distribution :

\[
\frac{1}{2} [V(s_1 - s_2) - V(s_1 + s_2)],
\]

où on a noté $V(s) = \left(\frac{\cos(\sqrt{3}a)s - 1}{\sqrt{3}a} \right)(p,p)$.

Remarque : on a $V'(t) = -U(t)$, où U est définie au début de la partie 0.2.3.

On va un peu continuer ce calcul formel que l'on justifiera, par régularisation à la fin de cette section.

\[
S_n(t) = Tr(K_n)(t) = \frac{1}{2} \int_{s_1,s_2 \geq 0} z_n(t-s_1-s_2) [V(s_1-s_2) - V(s_1+s_2)] ds_1ds_2.
\]
On fait le changement de variable \(r = s_1 + s_2, \ s = s_1 - s_2 \):

\[
S_n(t) = \frac{1}{4} \int_{r \geq 0, r \geq s \geq -r} z_n(t - r) \left[V(s) - V(r) \right] dr ds
\]

\[
= \frac{1}{2} \int_{r \geq 0} z_n(t - r) \left(\int_0^r V(s) ds - r V(r) \right) dr,
\]

car \(V \) est paire. On fait une intégration par parties, en posant \(Z_n(t) = \int_{-\infty}^t z_n(r) dr \), de sorte que \(Z_n(0) \) est toujours nul. On obtient finalement :

\[
S_n(t) = \frac{1}{2} \int_{r \geq 0} Z_n(t - r) r U(r) dr.
\]

On veut maintenant justifier cet enchaînement de calculs. Pour cela on va régulariser. Notons \(P_m \), le projecteur sur les \(m \) premiers \(\phi_j \). Le noyau de \(P_m K_n P_m \) est alors :

\[
\sum_{i,j \leq m} \int z_n(t - s_1 - s_2) \frac{\sin(s_1 \sqrt{\lambda_i})}{\sqrt{\lambda_i}} \frac{\sin(s_2 \sqrt{\lambda_j})}{\sqrt{\lambda_j}} ds_1 ds_2 \phi_i(x) \phi_j(p) \phi_j(y),
\]

que l'on peut réécrire

\[
\int_{s_1, s_2} z_n(t - s_1 - s_2) E_m(s_1, x, p) E_m(s_2, p, y) ds_1 ds_2,
\]

avec \(E_m = P_m E P_m \). Comme \(P_m K_n P_m \) est de rang fini, c'est un opérateur à trace. Comme son noyau est \(\mathcal{C}^\infty \) on obtient sa trace en faisant \(x = y \) et en intégrant sur \(M \) (ici, tous les calculs sont faits au sens des distributions en \(t \), il faut donc penser qu'on a utilisé une fonction test avant de les faire). On a donc :

\[
\text{Tr}(P_m K_n P_m) = \int_{s_1, s_2} z_n(t - s_1 - s_2) \left(\int_M E_m(t, x, p) E_m(t, p, x) dv_3(x) \right) ds_1 ds_2.
\]

Mais maintenant tous les calculs présentés dans le début de cette section sont légitimes, et on trouve donc :

\[
\text{Tr}(P_m K_n P_m) = \frac{1}{2} \int_{s \geq 0} Z_n(t - s) s U_m(s) ds,
\]

où

\[
U_m(s) = E_m(s, p, p) = \sum_{i \leq m} \frac{\sin(s \sqrt{\lambda_i})}{\sqrt{\lambda_i}} \phi_i(j)^2.
\]

On veut maintenant faire tendre \(m \) vers l'infini. Il faut tout d’abord s’assurer que \(P_m K_n P_m \) tend vers \(K_n \) dans les opérateurs à trace. C’est ce qu’implique la proposition suivante :

Proposition 5 *Dans un espace de Hilbert \(\mathcal{H} \), on considère \((A_m)_m \) une approximation de l’identité, et \(T \) un opérateur à trace alors :

\[
A_m T A_m^* \to T \text{ dans les opérateurs à trace.}
\]

Preuve : on appelle ici approximation de l’identité une suite \(A_m \) telle que :

\[
\forall x \in \mathcal{H}, \ A_m x \to x \text{ (fortement).}
\]
D’après le théorème de Banach-Steinhaus, cela implique l’existence d’une constante M telle que :
\[\forall m, x \quad \| A_m x \| \leq M \| x \|. \]

T est à trace, donc s’écrit
\[T = \sum_{n} a_n \langle x_n, y_n \rangle, \]
avec $\sum |a_n| < \infty$ et $\| x_n \| = \| y_n \| = 1$. $T_m = A_m T A_m^*$ s’écrit alors :
\[T_m = \sum_{n} a_n \langle A_m x_n, A_m y_n \rangle. \]

On peut donc écrire :
\[
T_m = R_m + S_m, \quad \text{avec}
\]
\[
R_m = \sum_{n} a_n \langle A_m x_n - x_n, A_m y_n \rangle
\]
\[
S_m = \sum_{n} a_n \langle x_n, (A_m y_n - y_n) \rangle.
\]

On va montrer que cette somme converge vers 0 dans I_1 :
\[
\| R_m \|_{I_1} \leq \sum |a_n| \| A_m x_n - x_n \| \| y_n \|, \]
qui tend vers 0 par convergence dominée. Le terme S_m se traite de la même manière, ce qui conclut la proposition. \hfill \Box

On applique cette proposition pour $A_m = P_m$ (P_m est autoadjoint).

On veut maintenant passer à la limite dans l’égalité (9) pour obtenir la proposition suivante.

Proposition 6 La trace de K_n est donnée par la formule :
\[
\text{Tr}(K_n)(t) = \frac{1}{2} \int_{s \geq 0} s U(s) Z_n(t - s) ds,
\] (10)

avec $U(s) = E(s, p, p)$, et $Z_n(s) = \int_{-\infty}^{s} z_n(r) dr$.

Preuve : le passage à la limite dans (9) est un peu plus délicat qu’il n’y paraît, et cela à cause de la borne de l’intégrale. Pour le faire proprement, on découpe encore une fois avec les fonctions χ et ρ. On réécrit donc l’égalité (9) en deux morceaux. Pour le terme loin de 0 : on choisit une fonction test f et on note
\[
\tilde{f}(s) = \int Z_n(t - s) f(s) ds.
\] (11)

On s’intéresse donc à la convergence de :
\[
c_m = \int_{s \geq 0} s \rho(s) E_m(s, p, p) \tilde{f}(s) ds.
\]
On peut dans cette intégrale faire autant d’intégrandations par parties que l’on veut de sorte qu’on obtient :
\[
c_m = \int [E_m]^{[-k]}(s, p, p) [s \rho(s) \tilde{f}^{[k]}(s)] ds.
\]

Potentiel Dirac
où
\[E_m^{(-k)}(s, \cdot, \cdot) = - \int_0^s [E_m]^{(-k+1)}(s_1, \cdot, \cdot) ds_1. \]

En examinant cette opération sur le développement en fonctions propres, on voit que pour
tout \(n \), on peut trouver un \(k \) de sorte que
\[E_m^{(-k)}(s, \cdot, \cdot) \rightarrow E_m^{(-k)}(s, \cdot, \cdot) \text{ dans } H^n(M \times M). \]

On choisit le \(n \) suffisant pour que le passage à la limite se passe bien, et on fait ensuite les
intégrations par parties dans l'autre sens.

Pour le terme avec \(\chi \) on est obligé de faire plus attention. Ce sera l'objet d'un calcul
ultérieur. Pour l'instant on note abusivement :
\[\int_{s \geq 0} s\chi(s)E(s,p,\nu)Z_n(t-s) ds, \]
sa limite. □

Finalement, on se rend compte que pour analyser les singularités de \(Tr(K_n) \) on a besoin
de connaître les singularités d'une part de \(U(t) \), et d'autre part de \(Z_n \).

0.3.2 Singularités des opérateurs auxiliaires

Commençons par \(\rho U \), qui sert à construire tous les autres opérateurs.

Singularités de \(\rho U \)

Il faut pour cela examiner \(E(t,x,y) \). On sait déjà (cf. [24]) que \(E(t,x,y) \) est un opérateur
intégral de Fourier (OIF) associé à :
\[\Lambda^+ \cup \Lambda^- , \]
où
\[\Lambda^\varepsilon = \left\{ (t,\tau,x,\xi,y,\eta) \mid \Phi_t(y,\eta/|\eta|) = (x,\xi/|\xi|) \right\} , \]
\[|\xi| = |\eta| = \varepsilon \tau \]
\(\Phi \) est le flot géodésique. Dans ce qui suit, on va se placer au voisinage d'une géodésique \(\gamma \).
La contribution de \(\gamma \) à \(E \) peut s'écrire : \(I^+ + I^- \), \(I^\varepsilon \) étant un OIF associé à \(\Lambda^\varepsilon \) et localisé au
voisinage de \(\gamma \). Lorsque \(x \) et \(y \) ne sont pas conjugués le long de \(\gamma \), on peut écrire :
\[I^\varepsilon = \int_0^\infty \exp[-i\varepsilon \theta(d_\gamma(xy) - t)]a_\varepsilon(t,x,y,\theta)d\theta, \]
où \(d_\gamma \) représente la distance comptée le long de \(\gamma \).

On ne va plus maintenant s'intéresser qu'à la partie principale de \(I^\varepsilon \). Grâce à la para-
métrix d'Hadamard, on peut écrire (pour des temps petits) :
\[I^\varepsilon(t,x,y) = \int_0^\infty \exp[-i\varepsilon \theta(d_\gamma(xy) - t)]\frac{1}{4\pi} \frac{u_0(x,y)}{d_\gamma(xy)} d\theta, \]
car ainsi, en faisant la somme \(I^+ + I^- \), on retrouvera bien :
\[u_0(x,y)\delta(x^2 - t^2). \]
Remarque : Dans l’égalité précédente, on n’a écrit que la partie principale de I^z, ce qui rend l’emploi du signe = abusif. Comme on ne s’interessera qu’à la partie principale des singularités, cet abus sera très souvent répété.

Rappelons que $u_0(x,y) = \frac{1}{2\pi} \Theta(x,y)|^{-\frac{1}{2}}$, et que la fonction Θ peut être définie par :

$\Theta(x,y) = |\det D \exp_y(m)|$ où m est le point de T_yM tel que $\exp_y(m) = x$ (cf. [8]). Si x et y ne sont pas conjugués le long de la géodésique γ, on peut définir de la même manière

$$u_\gamma(x,y) = \frac{1}{2\pi} |\det D \exp_y(m_\gamma)|^{-\frac{1}{2}},$$

où m_γ est tel que $\exp_y(sm_\gamma)$ décrit la portion de γ allant de y à x.

Les propriétés du symbole principal nous permettent alors de dire, qu’à une phase près, la contribution principale de I^z est :

$$\int_0^\infty \exp[-i\varepsilon(d_\gamma(xy) - t)] \cdot \frac{1}{4\pi} \frac{u_\gamma(x,y)}{d_\gamma(xy)}d\theta.$$

Il reste à calculer la phase, ce que l’on fait à l’aide du résultat de [18] : pour un OIF associé à Λ^+, le symbole principal est multiplié par i^{-n} au passage d’un point conjugué d’indice n.

Remarque : les OIF I^z sont complexes conjugués l’un de l’autre.

Après un point conjugué d’indice n, on a donc l’expression :

$$E(t,x,y) = \frac{1}{4\pi} \frac{u_\gamma(x,y)}{d_\gamma(xy)} \int_0^\infty \exp(-i\theta(d_\gamma(xy) - t))d\theta$$

$$+ i^n \int_0^\infty \exp(i\theta(d_\gamma(xy) - t))d\theta.$$
- μ_γ est la somme des indices des points conjugués le long de γ ;
- $\theta_\gamma = |\det D\exp_p(L_\gamma \gamma'(0))|^{-\frac{1}{2}}$.

Remarque : μ_γ est l’indice de Morse du lacet γ pour le problème du plus court chemin à extrémités fixées, (cf. [18])

Proposition 7

$$WF(pU) \subset \{(L,\lambda) \mid \gamma \in \Gamma\}.$$

De plus, sous l’hypothèse (H_1), on a, au premier ordre :

$$pU(t) = \sum_{\gamma \in \Gamma} F_\gamma(t),$$

avec :

$$F_\gamma(t) = (-1)^{\mu_\gamma} \frac{1}{4\pi L_\gamma} \theta_\gamma \delta(t - L_\gamma) \quad \text{si} \ \mu_\gamma \ \text{est pair},$$

$$F_\gamma(t) = (-1)^{\mu_\gamma+1} \frac{1}{4\pi^2 L_\gamma \nu_p} \left(\frac{1}{t - L_\gamma}\right) \quad \text{si} \ \mu_\gamma \ \text{est impair},$$

Preuve : la première partie résulte d’un calcul classique de Wave-Front (car $U = i^* E$, cf. 0.2.3), quant à la deuxième, elle découle du calcul précédent. \Box

Singularités de z_n

Comme z_1 et z_2 sont égales, on peut supposer dans cette partie qu’on étudie z_n pour n plus grand que 2. Un calcul de Wave-Front permet de localiser les singularités de z_{n+1} :

$$WF(z_{n+1}) \subset \{(L,\lambda) \mid L = \sum_{i=1}^{n} L_{\gamma_i}\}.$$

Notations :

- $[\gamma]_n = (\gamma_1, \ldots, \gamma_n)$ en tenant compte de l’ordre,
- $L_{[\gamma]_n} = \sum_{i=1}^{n} L_{\gamma_i}$,
- $\mu_{[\gamma]_n} = \sum_{i=1}^{n} \mu_{\gamma_i}$,
- $d_{[\gamma]_n} = \prod_{i=1}^{n} \theta_{\gamma_i}$

Pour calculer maintenant la singularité principale, il suffit dans l’expression de z_n de remplacer tous les pU par la singularité principale en L_{γ_i}. Il nous faut donc examiner les distributions qui s’écrivent :

$$z \ast F_{\gamma_1} \ast z \ast F_{\gamma_2} \ast \ldots \ast F_{\gamma_n} \ast z,$$

où les F_{γ_i} sont donnés dans la proposition 7. Pour les γ_i qui donnent une masse de Dirac (μ_{γ_i} pair), la convolution ne pose pas de problème. Il faut travailler un peu plus pour les autres. On multiplie d’abord par une fonction g qui tronque la distribution. Plus précisément on remplace $F_{\gamma_i}(s)$ par $F_{\gamma_i}(s)g(s - L_{\gamma_i})$ où g est C^∞_0 et identiquement 1 au voisinage de 0. Ceci ne change pas la singularité.
On pose \(T_0(s) = g(s)\, v.p.\left(\frac{1}{s}\right) \) et \(T_L(s) = T_0(s - L) \). Pour avoir la singularité principale de \(z_n \) on est amené à faire des convolutions de \(T_{L_1} \) avec \(T_{L_2} \). Le résultat nous est donné par le lemme suivant :

Lemme 4 Pour toutes les valeurs de \(L_1 \) et \(L_2 \), on a :
\[
T_{L_1} \ast T_{L_2}(t) = -\pi^2 \delta(t - (L_1 + L_2)) .
\]

Preuve : on va noter \(\mathcal{F} \) la transformée de Fourier (normalisée comme dans [36]), et \(f \) la fonction telle que : \(\mathcal{F}(f) = g \), c’est à dire :
\[
\int \exp(ix\sigma)f(x)dx = g(\sigma) .
\]

Avec cette définition, on a :
\[
\mathcal{F}^{-1} = \frac{1}{\sqrt{\pi}}\mathcal{F},
\]
\[
\mathcal{F}[a \ast b] = \mathcal{F}[a] \ast \mathcal{F}[b],
\]
\[
\mathcal{F}[ab] = \frac{1}{\sqrt{\pi}}\mathcal{F}[a] \ast \mathcal{F}[b],
\]
\[
\mathcal{F}[H(\sigma)] = iv.p\left(\frac{1}{\sigma}\right) + \pi\delta(\sigma),
\]
on renvoie à [36] pour ces résultats.

On note \(F = f \ast H \) de sorte que \(F \) est la primitive de \(f \) s’annulant en \(-\infty\). Notamment, on a l’égalité \(2H \ast fF = F^2 \).

On va écrire de deux manières \(\mathcal{F}[2\pi\exp(-iL_1x)F\exp(-iL_2x)F] \).

D’une part on a :
\[
\mathcal{F}[2\pi\exp(-iL_1x)F\exp(-iL_2x)F] = \mathcal{F}[\exp(-iL_1x)F] \ast \mathcal{F}[\exp(-iL_2x)F]
\]
\[
= \pi^2\delta(-L_1-L_2)-T_{L_1} \ast T_{L_2}+2i\pi T_{L_1+L_2}
\]
et d’autre part, on peut écrire :
\[
\mathcal{F}[2\pi\exp(-iL_1x)F\exp(-iL_2x)F] = \mathcal{F}[2\pi\exp[-i(L_1 + L_2)x]F^2]
\]
\[
= \mathcal{F}[H \ast 4\pi fF](- (L_1 + L_2))
\]
\[
\mathcal{F}[H \ast 4\pi fF](\sigma) = 4i\pi F[fF](\sigma)v.p\left(\frac{1}{\sigma}\right) + 4\pi^2 F[fF](0)\delta(\sigma).
\]

On vérifie à l’aide d’une intégration par parties que \(F[fF](0) = \frac{1}{\pi}g(0)^2 = \frac{1}{\pi} \). Il suffit alors d’identifier parties réelles et imaginaires pour avoir le résultat.

On peut maintenant énoncer la proposition relative aux singularités de \(z_n \).

Proposition 8 Pour tout \(n \geq 1 \)
\[
WF(z_{n+1}) \subset \{ (L,\lambda) \mid L = \sum_{1}^{n} L_{\gamma_i} \},
\]
de plus, au voisinage d’un point \(L = \sum_{1}^{n} L_{\gamma_i} \), la contribution apportée par \(\gamma \), est :
\[
\frac{4\pi}{n}(-1)^{\mu_{\gamma_{\ell}}-1} a_{\gamma_{\ell}}^{\mu_{\gamma_{\ell}}}(t-L)^{\mu_{\gamma_{\ell}}-1} \quad \text{si } \mu_{\gamma_{\ell}} \text{ est pair,}
\]
\[
\frac{4}{n!}(-1)^{\mu_{\gamma_{\ell}}} a_{\gamma_{\ell}}^{\mu_{\gamma_{\ell}}-1}(t-L)^{n}Ln|t-L| \quad \text{si } \mu_{\gamma_{\ell}} \text{ est impair}
\]
Preuve : on calcule d’abord la convolution $F_{[\gamma_n]} = F_{\gamma_1} * F_{\gamma_2} \cdots * F_{\gamma_n}$, on va noter k le nombre de γ_i dont l’indice est impair, il y a alors deux formules suivant la parité de k.

Si k est pair $F_{[\gamma_n]}(t) = C_p \delta(t - L)$ et si k est impair, $F_{[\gamma_n]}(t) = C_i \text{v.p.} \left(\frac{1}{t-L}\right)$, où C_p et C_i sont des constantes à déterminer. Un calcul direct donne :

\[
C_p = (-1)^n \left(\frac{1}{(4\pi)^n} \frac{a_{[\gamma_n]}}{n!} \right)^{\frac{1}{n}} \frac{1}{\pi^n} \sum_{k=1}^{n} \frac{a_{[\gamma_k]}}{n!} \pi^k \]

\[
C_i = (-1)^n \left(\frac{1}{(4\pi)^n} \frac{a_{[\gamma_n]}}{n!} \right)^{\frac{1}{n}} \frac{1}{\pi^n} \sum_{k=1}^{n} \frac{a_{[\gamma_k]}}{n!} \pi^k \]

On fait ensuite $n+1$ convolutions avec z, ce qui revient, du point de vue de la singularité principale, à intégrer $n + 1$ fois et à multiplier par $(4\pi)^{n+1}$. Ce qui donne le résultat annoncé pour la singularité principale. \hfill \Box

0.3.3 Retour à la trace

Pour revenir à la trace, il faut d’abord examiner chaque S_n et ensuite sommer tous les résultats obtenus.

Singularités de S_n

Dans S_n interviennent deux types de contribution :
- celle apportée par $\int s\bar{R}(s)U(s)Z_n(t-s)ds$,
- celle apportée par $\int s\bar{R}(s)U(s)Z_n(t-s)ds$.

La première expression crée des singularités aux points $L = \sum_{i=1}^{n} L_{\gamma_i}$. En un tel point L, la contribution apportée par $[\gamma_n]_n$ (on rappelle que l’ordre est important) est :

\[
(sF_{\gamma_n}(s)) * H * z * F_{\gamma_{n-1}} * z * \cdots * F_{\gamma_1} * z.
\]

Le fait de remplacer $sF_{\gamma_n}(s)$ par $L_{\gamma_n} F_{\gamma_n}(s)$ ne change pas la singularité principale. On doit donc calculer :

\[
L_{\gamma_n} F_{\gamma_n} * H * z * F_{\gamma_{n-1}} * z * \cdots * F_{\gamma_1} * z.
\]

Ce calcul est le même que celui fait dans la partie précédente, exceptée la dernière convolution qui est par H et non par z. Ce qui change le résultat d’un facteur 4π. La singularité principale est donc finalement :

\[
\frac{L_{\gamma_n}(-1)^{\frac{1}{n}} a_{[\gamma_n]}(t - L_{\gamma_k})^n}{n!} \quad \text{si } \mu_{[\gamma_n]} \text{ est pair},
\]

\[
\frac{L_{\gamma_n}(-1)^{\frac{1}{n}} a_{[\gamma_n]}(t - L_{\gamma_k})^{n+1} \nu \log(t - L_{\gamma_k})}{n!} \quad \text{si } \mu_{[\gamma_n]} \text{ est impair}.
\]

Remarque : l’ordre de la singularité est le nombre de lacets géodésiques suivis.
Il reste la singularité apportée par la borne de l’intégrale. On rappelle que l’expression
\[\int s \chi(s)U(s)Z_n(t - s)ds \] a été définie comme:
\[
\lim_{m \to \infty} \int s \chi(s)U_m(s)Z_n(t - s)ds.
\]
On calcule directement cette limite grâce au lemme suivant:

Lemme 5
\[
\lim_{m \to \infty} \int s + \chi(s)U_m(s)Z_n(t - s)ds = \frac{1}{4\pi} Z_n(t).
\]

Preuve : on calcule d’abord la singularité principale de \(U_m(t) \) au voisinage de 0. On part de
la définition de \(E_m \):
\[
E_m(t,x,y) = \int E(t,x,z)P_m(z,y)dz,
\]
on se place au voisinage de \(x = p \), et de \(t > 0 \) petit. On remplace alors dans l’égalité précédente \(E(t,x,y) \) par le premier terme de la paramétrix d’Hadamard (les autres donneront
des contributions plus régulières). En utilisant la formule (6), on trouve donc (en écrivant
abusiveusement que \(E_m \) est égal à son premier terme):
\[
E_m(t,p,y) = \frac{t}{2} \int_{\omega \in \mathbb{S}^2} u_0(p,t,\omega)P_m(t,\omega,y)\Theta(t,\omega,y)d\omega.
\]
on évalue en \(y = p \), comme \(E_m(t,p,p) = U_m(t) \) doit être impaire on trouve :
\[
U_m(t) = \frac{t}{2} \int_{\omega \in \mathbb{S}^2} u_0(p,t,\omega)P_m(t,\omega,p)\Theta(t,\omega,p)d\omega.
\]
Maintenant, pour toute fonction \(f \in C_0^\infty \) à support près de 0, on veut la limite de :
\[
\int s + \chi(s)U_m(s)Z_n(t - s)f(t)dsdt.
\]
on a utilisé la notation intégrale pour l’évaluation d’une distribution,
\[
\int s + \chi(s)U_m(s)Z_n(t - s)f(t)dsdt = \int s + \chi(s)U_m(s)\hat{f}(s)ds,
\]
où la définition de \(\hat{f} \) est la même qu’au (11), on a donc :
\[
\int s + \chi(s)U_m(s)\hat{f}(s) = \frac{1}{2} \int_{s > 0,\omega \in \mathbb{S}^2} \hat{f}(s)u_0(p,sw)P_m(sw,\omega)\Theta(sw,\omega,p)\omega d\omega ds
\]
\[
= \int_M P_m(p,y)g(y)dy(g(y),
\]
avec
\[
g(y) = \frac{u_0(p,y)}{2}\chi(\overrightarrow{py})\hat{f}(\overrightarrow{py}).
\]
Il faut maintenant faire tendre \(m \) vers l’infini, mais comme \(P_m(p,y) \) tend vers \(\delta(y = p) \) on trouve :
\[
\int s + \chi(s)U(s)\hat{f}(t) = g(p) = \frac{1}{4\pi} \hat{f}(0).
\]
Comme \(\hat{f}(0) = \int Z_n(t)f(t)dt \), ceci achève la preuve du lemme. \(\square \)
On a donc montré que $\int s_{+} \chi(s) U(s) Z_{\gamma}(t - s) ds$ a ses singularités au même endroit que z_{1}, c'est-à-dire uniquement en $t = 0$. Pour $n \geq 1$, on obtient les singularités de $\int s_{+} \chi(s) U(s) Z_{n+1}(t - s) ds$ en intégrant une fois celles de z_{n+1} (et en divisant par 4π). D'après la proposition 8, pour $n \geq 1$, la distribution $\int s_{+} \chi(s) U(s) Z_{n+1}(t - s) ds$ a ses singularités aux points L qui s'écrivent $\sum_{i=1}^{n} L_{\gamma_{i}}$ et la contribution principale est :

\[
\frac{1}{(n+1)!} (-1)^{\mu_{[\gamma]}_{n}} a_{[\gamma]_{n}} (t - L_{[\gamma]_{n}})^{n+1} \quad \text{si } \mu_{[\gamma]_{n}} \text{ est pair,}
\]

\[
\frac{1}{\pi (n+1)!} (-1)^{\mu_{[\gamma]}_{n} - 1} a_{[\gamma]_{n}} (t - L_{[\gamma]_{n}})^{n+1} \operatorname{Ln}|t - L_{[\gamma]_{n}}| \quad \text{si } \mu_{[\gamma]_{n}} \text{ est impair.}
\]

Remarque : l'ordre de la singularité est le nombre de lacets géodésiques suivis plus 1. De plus, on rappelle que la contribution que l'on vient de calculer est associée à z_{n+1}, et se retrouve donc dans S_{n+1}.

Finalement, pour revenir à S_{n}, on a montré que ses singularités étaient localisées aux points L qui s'écrivent soit $\sum_{i=1}^{n} L_{\gamma_{i}}$, soit $\sum_{i=1}^{n-1} L_{\gamma_{i}}$. Et on peut résumer cette partie dans la proposition suivante :

Proposition 9 Un élément $[\gamma]_{n}$ apporte une contribution à la singularité en $L_{[\gamma]_{n}}$ dans S_{n} mais aussi dans S_{n+1}. Cette contribution est :

\[
\begin{cases}
\frac{1}{2(n+1)!} (-1)^{\mu_{[\gamma]}_{n}} a_{[\gamma]_{n}} (t - L_{[\gamma]_{n}})^{n+1} & \text{si } \mu_{[\gamma]_{n}} \text{ est pair,} \\
\frac{1}{2\pi (n+1)!} (-1)^{\mu_{[\gamma]}_{n} - 1} a_{[\gamma]_{n}} (t - L_{[\gamma]_{n}})^{n+1} \operatorname{Ln}|t - L_{[\gamma]_{n}}| & \text{si } \mu_{[\gamma]_{n}} \text{ est impair.}
\end{cases}
\]

Singularité de la trace totale

Tout ce qui a été fait dans les parties précédentes va nous permettre d'établir le théorème principal concernant les singularités de $S(t)$. Concernant la localisation de ces singularités, on a montré qu'elles se trouvaient aux points L qui peuvent s'écrire $\sum_{j=1}^{n} L_{\gamma_{j}}$.

Remarque : ce fait découle uniquement de considérations de Wave-Front et l'hypothèse (H_{1}) ne sert donc pas pour l'établir ce fait. En revanche, on ne calcule la contribution dominante que lorsque cette hypothèse est vérifiée.

On va noter :

\[\Lambda = \bigcup_{n \geq 1} L_{n}, \]

et pour $L \in \Lambda$ on posera :

\[n(L) = \inf \{n \mid L \in L_{n}\}, \]

de sorte que L intervient la première fois comme singularité de $S_{n(L)}$. De plus, d'après la proposition 9 les contributions venant des S_{n}, pour $n > n(L)$ sont forcément plus régulières. On va rajouter une hypothèse qui permettra de calculer la singularité de L dans $S_{n(L)}$:

(H2) : pour $L \in \Lambda$, il y a une seule manière d’écrire $L = \sum_{i=1}^{n(L)} L_{\gamma_i}$ (modulo l’ordre des facteurs).

On pourrait utiliser l’hypothèse (H2') :

(H2') : les L_{γ} sont indépendants sur \mathbb{Z}.

Cette dernière est toutefois un peu plus forte que (H2).

On a alors le théorème suivant :

Théorème 10

$$supp.\ sing(S_{\beta}(t)) \subset supp.\ sing(S_{\infty}(t)) \cup \Lambda.$$

De plus sous les hypothèses (H1) (cf. 0.3.2) et (H2), au voisinage d’un point L de Λ, la singularité principale de $S_{\beta} - S_{\infty}$ est :

$$\frac{L}{2n} (-1)^{\gamma[L]} a_{[\gamma]}(t-L)^2 \quad si \mu_{[\gamma]} est pair,$$

$$\frac{L}{2n^2} (-1)^{\gamma[L]-1} a_{[\gamma]}(t-L)^n Ln|t-L| \quad si \mu_{[\gamma]} est impair,$$

où on a noté $n = n(L)$ et $[\gamma]_n$ le n-uple tel que $L = L_{[\gamma]}$.

Preuve : il reste à sommer les contributions données dans la proposition 9. Dans cette proposition, l’ordre est important. D’après l’hypothèse (H2) il n’y a qu’une seule manière d’écrire $L = L_{[\gamma]}$ si on ne tient pas compte de l’ordre. Il y a donc n contributions à considérer. On remarque que, dans la proposition 9, le terme qui nous intéresse dépend de γ_n. On a n choix pour le dernier lacet, et il y a $(n - 1)!$ contributions une fois le dernier lacet fixé. Il suffit ensuite de faire la somme. \hfill \Box

Remarques :

- Comme annoncé dans la remarque p.28, la contribution principale ne dépend pas de β. Pour voir cette dépendance, il faudrait aller aux ordres supérieurs.

- Les hypothèses (H1) et (H2') sont vraies “généralement”. Lever l’hypothèse (H1) revient à décrire la singularité de $E(t,p,p)$ lorsque p est son propre conjugué. On peut le faire au prix d’une complication certaine des calculs. En revanche, lever l’hypothèse (H2) semble assez difficile : sur le tore cela correspondrait à être capable de dénombrer les polygones dont les sommets sont sur un réseau, et dont le nombre de côtés et le périmètre sont fixés.

- Concernant un potentiel Dirac le long d’une sous-variété Σ, la démarche proposée se généralisera a priori bien si on a une description de l’opérateur autoadjoint considéré en terme de comportement au voisinage de Σ. Dans ce cas, il faut toutefois s’attendre à ce que la fonction z_β soit remplacée par un opérateur agissant dans la sous-variété ; la propagation des singularités dépendant alors de la propagation des singularités à l’intérieur de Σ (caractérisée par cet opérateur). Il n’est pas à exclure qu’apparaissent alors dans ce problème des choses aussi compliquées que l’étude des rayons rasants pour l’équation des ondes habituelle sur une variété à bord.

0.4 Cas du tore de dimension 3

Dans ce cas, tout se calcule plus ou moins facilement, car la paramétrix d’Hadamard est exacte pour tout temps, et $\Theta = 1$. On peut calculer les noyaux des K_n explicitement et prendre la trace. Le cadre est celui d’un tore T quotient de \mathbb{R}^3 euclidien par un réseau Γ. On note $|ab|$ la distance. Le point diffractant sera placé en 0. L’ensemble des longueurs des
géodésiques qui joignent \(p \) à \(p \) s’identifie à \(\Gamma \setminus \{0\} \). La première chose à faire est de transporter le problème dans \(\mathbb{R}^3 \). Quelques notations simplifiant les expressions :

- \((\gamma)_n\) désignera un \(n \)-uplet \((\gamma_1, \ldots, \gamma_n)\) \(\in \Gamma^n \) tel que pour tout \(i < n-1 \), \(\gamma_{i+1} \neq \gamma_i \) (l’ordre est important),
- \(\mathcal{D}_{(\gamma)_n}(x,y) = |x - \gamma_n| + |y| + \sum_{i=1}^{n-1} |\gamma_{i+1} - \gamma_i| \),
- \(\mathcal{P}_{(\gamma)_n}(x,y) = |x - \gamma_n||y| \prod_{i=1}^{n-1} |\gamma_{i+1} - \gamma_i| \).

On va donc relever \(p \) en 0, et considérer que tous les points \(\gamma \in \Gamma \) diffractent avec la même constante. On cherche alors dans un premier temps des opérateurs \(K_{(\gamma)_n} \) qui consistent à faire \(n \) diffractions successives aux points \(\gamma_j \) qui doivent donc être différents.

On a alors la proposition suivante :

Proposition 10

\[
K_{(\gamma)_n}(t,x,y) = \frac{1}{4\pi (n-1)} \mathcal{D}_{(\gamma)_n}(x,y)^{n-1} \exp(\beta(\mathcal{D}_{(\gamma)_n}(x,y) - t)) \times \frac{(t - \mathcal{D}_{(\gamma)_n}(x,y))_{+}^{n-1}}{\mathcal{P}_{(\gamma)_n}(x,y)}.
\]

On établit cette proposition en suivant exactement la même démarche que le cas général. L’équation de Volterra est ici une équation différentielle ordinaire puisque la paramétrix d’Hadamard est exacte.

Pour revenir au tore il faut d’une part périodiser les \(K_{(\gamma)_n} \), et d’autre part faire la somme sur tous les \(n \)-uplets possibles. Il reste alors à intégrer pour trouver la trace. En utilisant la périodicité pour regrouper des termes, on se ramène à calculer les intégrales suivantes (sur \(\mathbb{R}^3 \)) :

\[
I_{n,u}(t) = c_n(u) \int_{\mathbb{R}^3} 1_{|x - u_n| + |x| + \sum_{i=1}^{n-1} |u_i| < t} \exp(\beta(|x - u_n| + |x| + \sum_{i=1}^{n-1} |u_i| - t)) \times \frac{(t - |x - u_n| - |x| - \sum_{i=1}^{n-1} |u_i|)^{n-1}}{|x - u_n||x|} |dx|,
\]

où \(u \in \Gamma^n \) et les \(n - 1 \) premiers \(u_j \) ne sont pas nuls. De plus on a \(c_n(u) = [4\pi (n - 1)!|u_1||u_2| \ldots |u_{n-1}|]^{-1} \). Les \(u_i \) sont formés à partir des points diffractants, et apparaissent du fait de la périodisation. Quand \(u_n \) est nul, l’intégrale se calcule directement par un passage en polaire, s’il ne l’est pas un changement de variable utilisant les ellipsoïdes de foyer 0 et \(u_n \) permet de calculer l’intégrale. Ces deux calculs différents donnent des singularités différentes (cf. 9).

On arrive finalement à écrire la trace sous la forme suivante :

Proposition 11

\[\text{supp } \text{sing } S = \{0\} \cup \Lambda,\]

et plus précisément :

\[
S(t) = \sum_{L \in \Lambda} \sum_{n \geq 1} \sum_{\sigma \in \sigma_n(L)} [A_n(\sigma)F_{n-1}(t-L) + B_n(\sigma)F_n(t-L)],
\]
avec
\[\Lambda_n = \{L \mid L = \sum^n |\gamma_i|\}, \]
\[\Lambda = \bigcup_{n \geq 1} \Lambda_n, \]
\[\sigma_n(L) = \{\text{nombre de manières d'écrire } L = \sum^n |\gamma_i|\}, \]
\[\sigma(L) = \bigcup_n \sigma_n(L), \]
\[A_n(\sigma) = \frac{1}{2}(\prod^n |\gamma_i|)^{-1}, \quad \sigma \text{ correspond à l'écriture } L = \sum^n |\gamma_i|, \]
\[B_n(\sigma) = \frac{1}{2}(\prod^n |\gamma_i|)^{-1}, \quad \text{"} \quad \text{"} \quad \text{"} \quad \text{"} \quad \text{"} \]
\[F_n(x) = H(x) \int_0^x e^{-\beta z} z^n dz. \]

Remarques :
- Dans \(\sigma_n(L) \), on a levé la dégénérescence liée à l’ordre des facteurs, mais pour décrire \(\sigma(L) \), il faudrait être capable de dénombrer les polygones à sommets sur un réseau et de les regrouper en fonction de leur périmètre.
- La formule générale est compatible avec ce cas particulier car on a \(F_{n-1}(x) \sim \frac{1}{n} x^n \) quand \(x \to 0 \).

Conclusion

Pour arriver à cette formule de trace, on aurait sans doute pu opérer de manière différente. Comme les opérateurs considérés ont une différence à trace (de rang 1), on pourrait se placer dans un contexte de scattering, et chercher une formule de type Krein–Milman. On aurait pu aussi partir de l'expression des noyaux de la chaleur ou de Schrödinger donnée dans [1]. Toutefois, on a trouvé que l’approche “développement en diffractions multiples” était assez naturelle, et permettait de bien voir l’influence du point singulier. Cette idée, consistant à chercher le propagateur d’une équation des ondes perturbée comme une série dont le premier terme est une “solution libre”, est relativement classique. Elle a par exemple été utilisée dans le contexte des formules de trace dans la série d’articles [5].

Concernant les généralisations possibles, la même démarche s’étend au cas de plusieurs potentiels Dirac ponctuels sur une même variété. Le développement en diffractions multiples fera alors apparaître des opérateurs prenant en compte toutes les suites possibles de diffractions aux différents points singuliers. Les lacets géodésiques joignant les différentes singularités contribueront donc à la formule de trace. Concernant les potentiels Dirac le long d’une sous-variété, pour pouvoir généraliser la démarche proposée, il faudrait d’abord décrire de tels potentiels en fonction du comportement au voisinage de la sous-variété singulière. Il est possible qu’une approche moins constructive donne des résultats plus directement que le passage par une paramétrix, tel qu’on le fait ici. Cela donnerait la première partie du théorème 10 concernant la localisation des singularités de la trace. Il est cependant probable que le calcul de la singularité principale soit nettement plus compliqué ; notamment à cause de l’existence de rayons rasants, et au fait qu’une singularité arrivant sur \(\Sigma \) pourrait a priori y séjourner un certain temps avant d’être réémise.
APPENDICE A : Prolongement à L^2

On fait dans cette partie des estimations de norme. Comme souvent, différentes manipulations ne sont autorisées que pour des fonctions C^∞_0, mais l’estimation finale permet de prolonger à l’espace choisi.

La première estimation concerne la valeur d’une solution de l’équation des ondes en un point de la variété. On va travailler avec l’exponentielle plutôt que le sinus pour pouvoir utiliser la propriété de groupe.

Lemme 6

$$\forall v_0 \in L^2(M), \quad [\exp(it\sqrt{\Delta})v_0](p) \text{ est } H^{-1}_{loc}(\mathbb{R})$$

Preuve : grâce à la propriété de groupe de l’exponentielle, il suffit de le montrer sur un intervalle I fixé. On sait de plus (cf. [25] pp. 247–248, ou [6] pp. 251–252) que $\exp(it\sqrt{\Delta})$ est un O.I.F. associé à la variété A^+ (cf. 0.3.2). On va choisir I un intervalle en temps sur lequel on peut prendre la fonction phase :

$$[t - \mathcal{P}^2] \theta,$$

on peut donc écrire la partie principale :

$$\exp(it\sqrt{\Delta})[x,y] = f(t) \int \exp(i[t - \mathcal{P}^2] \theta)a(x,y)g(\theta)d\theta d\theta,$$

où f est un fonction de troncature qui vaut 1 au voisinage de 0 et g une fonction qui vaut 0 au jusqu’à $\theta = 1$ et 1 au voisinage de $+\infty$.

Pour v_0 on veut donc étudier (sur I) :

$$A(t) = \int f(t - \mathcal{P}^2) \exp(i[t - \mathcal{P}^2] \theta)a(p,y)g(\theta)d\theta d\theta d\theta dy.$$

On passe en coordonnées polaires autour de p et on pose

$$u_0(r) = \int S^2 a(p,r)v_0(r) e^2 d\omega,$$

de sorte que :

$$A(t) = \int \exp(i[t - r] \theta) f(t - r) g(\theta) d\theta d\theta dr.$$

Pour avoir $A(t)$ sur I il suffit d’avoir $u_0(r)$ sur I, et on peut choisir I et f de sorte que I ne s’approche ni de 0 ni du rayon d’injectivité en p. La formule donnant $A(t)$ en fonction de u_0 est un opérateur pseudo différentiel d’ordre 1 qui envoie donc $L^2_{comp}(\mathbb{R}^2)$ dans $H^{-1}(\mathbb{R}^2)$. Notamment il envoie $L^2(I)$ dans $H^{-1}(I)$. Comme I ne s’approche pas de 0 on a :

$$\forall v_0, \quad ||u_0||_2 \leq M ||v_0||_2.$$

Cette estimation achève la démonstration du lemme.

Ce qui nous intéresse vraiment est :

$$a(t) = H(t) \frac{\sin(\sqrt{\Delta}t)}{\sqrt{\Delta}} v_0(p).$$
Par rapport à l’estimation du lemme précédent, il faut donc prendre la partie réelle et intégrer par rapport à \(t \). On a donc :
\[
\forall \psi_0, \ a \in L^2_{loc,+}(\mathbb{R}_t),
\]
\[\square\]

Remarque : l’indice \(+ \) indique que pour toute fonction dans l’ensemble considéré, il existe un \(t_0 \) tel que la fonction est nulle sur \(]-\infty,t_0[\).

On doit maintenant examiner ce qui se passe quand on convole avec \(z_n \). Comme on fait agir un opérateur pseudodifférentiel d’ordre \(-n \), on a immédiatement le lemme :

Lemme 7
\[
\forall n \geq 1 \ \forall a \in L^2_{loc,+} \ \ z_n * a \in H^1_{loc,+}.
\]
Il reste à examiner la régularité de \(v(t,x) = \int E(s,x,p)a(t-s)ds \) lorsque \(a \) est dans \(H^1_{loc,+} \).

Proposition 12
\[
\forall a \in H^1_{loc,+} \ \ t \rightarrow \int E(s,x,p)a(t-s)ds,
\]
est continue à valeurs dans \(L^2(M) \), et
\[
\sup_{t \in K} \| \int E(s,x,p)a(t-s)ds \|_2 \leq M_K \| a \|_{H^1}.
\]

Preuve : le principe est de faire une intégration par parties. On va la faire sur le développement en fonctions propres.
\[
v(t) = \sum_{n \geq 1} \int_0^\infty \sin(\sqrt{\lambda_n}s) a(t-s)ds \frac{\phi_n(p)}{\sqrt{\lambda_n}} \phi_n(x).
\]
L’intégration par parties donne :
\[
\int_0^\infty \sin(\sqrt{\lambda_n}s) a(t-s)ds = \frac{a(t)}{\sqrt{\lambda_n}} - \frac{1}{\lambda_n} \int_0^\infty \cos(\sqrt{\lambda_n}s)d'(t-s)ds.
\]
On peut donc écrire (modulo la partie suivant \(\phi_0 \), i.e. la constante)
\[
v(t) = \sum_{n \geq 1} [a(t) - v_n(t)] \frac{\phi_n(p)}{\lambda_n} \phi_n(x),
\]
avec
\[
v_n(t) = \int_0^\infty \cos(\sqrt{\lambda_n}s)a'(t-s)ds.
\]
Comme \(\frac{\phi_n(p)}{\lambda_n} \) est \(\ell^2 \) (car \(\delta(x - p) \) est \(H^{-2} \)) il faut montrer que \(v_n(t) \) est continue en \(t \).
borné par rapport à \(n \).

\[
v_n(t) = \int_0^\infty \cos(\sqrt{\lambda_n} s) a'(t - s) \, ds
= \int_{-\infty}^t \cos(\sqrt{\lambda_n} (t - s)) a'(s) \, ds
= \cos(\sqrt{\lambda_n} t) \int_{-\infty}^t \cos(\sqrt{\lambda_n} s) a'(s) \, ds
- \sin(\sqrt{\lambda_n} t) \int_{-\infty}^t \sin(\sqrt{\lambda_n} s) a'(s) \, ds.
\]

La dernière expression rend claire les propriétés que l'on cherchait. Toutes ces estimations permettent de prolonger \(K_n \) à \(L^2(M) \).

\[\square\]

Remarque : en examinant le cas du tore, on voit qu'on ne peut pas obtenir plus de régularité en \(x \) (il y a \(\frac{1}{|x|} \) en facteur, cf. prop 10). Pour la régularité en \(t \), il faut examiner non seulement la régularité des \(v_n \) (ces fonctions sont \(H^1 \)) mais aussi la croissance par rapport à \(n \); si on dérive \(v_n \), on fait sortir un \(\sqrt{\lambda_n} \) en facteur qui empêche de conclure sur le caractère \(L^2 \) en \(x \).
APPENDICE B: \(K_n \) est à trace

Le but de cette partie est de montrer que les noyaux \(K_n \) représentent des opérateurs à trace au sens des distributions. C’est-à-dire que pour toute fonction test \(\psi \) de \(\mathcal{C}^\infty(\mathbb{R}) \), l’opérateur défini par

\[
\int_{\mathbb{R}} K_n(t) \psi(t) dt
\]

est dans \(\mathcal{L}_1 \) (ensemble des opérateurs à trace). On part de l’expression :

\[
K_n(t, x, y) = \int_{s_1, s_2 \geq 0} E(s_1, x, p) z_n(t - s_1) E(s_2, p, y) ds_1 ds_2.
\]

Les difficultés proviennent de deux types de singularités : la première, habituelle dans le contexte des formules de trace, vient des singularités de \(E \), et se traite classiquement par des considérations de Wave-Front, cf. [25, 12]. La deuxième vient des bords de l’intégrale et on va la traiter en utilisant la paramétrix d’Hadamard.

Soit \(\psi(t) \), \(\mathcal{C}^\infty \) à support compact, on cherche à estimer :

\[
\int_{\mathbb{R}} K_n(t) \psi(t) dt = \int_{s_1, s_2 \geq 0} E(s_1, x, p) z_n(t) \psi(s_1 + s_2) E(s_2, p, y) ds_1 ds_2.
\]

On appelle \(\Psi = z_n \ast \psi \). On utilise la paramétrix d’Hadamard qui nous dit que :

\[
\chi(t) E(t, x, y) = \left[u_0(x, p) \delta(t^2 - \bar{p}^2) + \sum u_i(x, p) (t^2 - \bar{p}^2) R_n(t, x) \right] \chi(t),
\]

et on a la même expression pour \(\chi(t) E(t, p, y) \). L’intégrale se découpe en termes de 16 différentes sortes qu’on examine séparément :

\[
CC_{00}(x, y) = \int \chi(s_1) u_0(x, p) \delta(s_1^2 - \bar{p}^2) \Psi(s_1 + s_2) \delta(s_2^2 - \bar{p}^2) u_0(p, y) \chi(s_2) ds_1 ds_2,
\]

\[
CC_{0i}(x, y) = \int \chi(s_1) u_0(x, p) \delta(s_1^2 - \bar{p}^2) \Psi(s_1 + s_2) (s_2^2 - \bar{p}^2) u_i(p, y) \chi(s_2) ds_1 ds_2,
\]

\[
CC_{ia}(x, y) = \text{id en échangeant } s_1, s_2, \ (x, p), (p, y),
\]

\[
CC_{0r}(x, y) = \int \chi(s_1) u_0(x, p) \delta(s_1^2 - \bar{p}^2) \Psi(s_1 + s_2) R(s_2, p, y) \chi(s_2) ds_1 ds_2,
\]

\[
RR_{0r}(x, y) = \text{id en échangeant } s_1, s_2, \ (x, p), (p, y),
\]

\[
CC_{ir}(x, y) = \int \chi(s_1) u_i(x, p) (s_1^2 - \bar{p}^2) \Psi(s_1 + s_2) R(s_2, p, y) \chi(s_2) ds_1 ds_2,
\]

\[
CC_{ij}(x, y) = \int \chi(s_1) u_i(x, p) (s_1^2 - \bar{p}^2) u_j(p, y) \chi(s_2) ds_1 ds_2,
\]

\[
RR_{rr}(x, y) = \int \rho(s_1) R(s_1, x, p) \Psi(s_1 + s_2) R(s_2, p, y) \rho(s_1) ds_1 ds_2,
\]

et ainsi de suite.
On peut calculer tous ces termes de manière à mettre en évidence le fait qu’ils représentent des opérateurs à trace. On rappelle que pour \(N \) suffisamment grand, un noyau \(C^N \) est à trace.

\[
CC_{00}(x,y) = u_0(x,y) \frac{\Psi(xp + yp)}{xp,yp} u_0(p,y) \chi(xp) \chi(yp),
\]
avec \(\Psi(s) \in C^\infty \). On va montrer qu’un tel noyau est à trace : en effet, on peut écrire :

\[
\Psi(r_1 + r_2) = \sum r_1^i a_i(r_2) + r_1^N e_N(r_1,r_2),
\]
avec les \(a_i \), et \(e_N \in C^\infty \), on fait le même développement pour \(e_N \), mais par rapport à \(r_2 \) et on trouve que \(\Psi(r_1 + r_2) \) s’écrit :

\[
\Psi(r_1 + r_2) = \sum r_1^i a_i(r_2) + r_2^j b_j(r_1) + r_1^N r_2^N e_1(r_1,r_2).
\]
Mais alors si on remplace \(r_1 \) par \(xp \) et \(r_2 \) par \(yp \), on est de la forme "rang fini + \(C^N \) " donc à trace.

\[
CC_{0i}(x,y) = \chi(xp) \frac{u_0(x,y)}{xp} \int yp \Psi(xp + s_2)(s_2 + yp)^i u_0(p,y) \chi(s_2) ds_2,
\]
qui après réduction se met sous la forme :

\[
CC_{0i}(x,y) = \chi(xp) \frac{u_0(x,y)}{xp} \sum yp^i G_j(xp,yp),
\]
avec (à un coefficient près)

\[
G_j(r_1, r_2) = \int_{r_2} \Psi(s + r_1) s^{2(i-j)} ds \in C^\infty.
\]
On décompose chaque \(G_j \) comme ci-dessus, et on conclut de même. Les termes \(RR_{i0} \) se traitent de même par symétrie.

\[
CC_{0r} = \chi(xp) \frac{u_0(x,y)}{xp} \int yp \Psi(xp + s_2) \chi(s_2) R(s_2, y) ds_2 = \frac{u_0(x,y)}{xp} G_{0r}(xp, y).
\]
$G_{0r}(r_1, y)$ est C^∞ par rapport à la première variable, et C^n par rapport à la deuxième (par convergence dominée). On décompose suivant la première jusqu'à ce que le reste soit C^n de x,y quand on fait $r_1 = x_1$, ce qui montre le caractère "à trace". Le terme symétrique RR_{xy} se traite de la même façon.

Les termes CC_{ij}, CC_{rr}, CC_{ri}, et CC_{ir} ne présentent pas de difficultés nouvelles, et se traitent donc en utilisant les mêmes méthodes.

Pour les termes où la troncature en χ intervient, il nous faut de plus un argument de Wave Front pour affirmer que :

$$\int \Psi(s_1 + s_2) \rho(s_1) E(s_1, p, y) ds_1 \in C^\infty(\mathbb{R} \times M),$$

ce qui, combiné avec les techniques précédentes, permet de traiter les cas RC_0, RC_1, et RC_r, de même que les symétriques CR_0, CR_1, CR_r.

Le dernier terme RR est directement C^∞ car son Wave Front est vide. Tout ceci nous permet d'affirmer la proposition suivante:

Proposition 13 Pour tout n, l'opérateur représenté par $K_n(t, x, y)$ est à trace au sens des distributions.
Deuxième partie

Formule de trace en présence de
singularités coniques
Chapitre 1

Surface euclidienne à singularités coniques

Introduction

Le but de ce chapitre est de fournir le cadre géométrique dans lequel va se dérouler notre étude. On va donc dans un premier temps définir ce qu’est une surface euclidienne à singularités coniques. On introduira ensuite la notion de distance et la notion de géodésique. Cette dernière notion nous sera utile pour décrire la propagation des ondes sur une telle surface M. Dans ce but, il est nécessaire de tenir compte des géodésiques qui passent par les points coniques. On définira donc l’ensemble $\Gamma_T(M)$ formé de toutes les géodésiques de M, de longueur T, y compris celles passant par les singularités. La fin de cette partie étudiera plus particulièrement cet ensemble $\Gamma_T(M)$ et notamment sa géométrie locale. Au voisinage d’une géodésique g, la géométrie de $\Gamma_T(M)$ est relié à un nombre, que l’on note $c_c(g)$ et que l’on appelle complexité classique.

1.1 Géométrie d’une s.e.s.c

Le cône euclidien épointé d’angle α est la surface paramétrée globalement par $(R,x) \in]0,\infty[\times \mathbb{R}/\alpha \mathbb{Z}$ et muni de la métrique riemannienne $dR^2 + R^2 dx^2$. On note cette surface C_α et elle est localement isométrique au plan \mathbb{R}^2. On obtient C_α, le cône euclidien d’angle α en complétant le cône épointé par un point p qu’on appelle sommet du cône. Une base de voisinages de p est formée des ensembles $\{p\} \cup]0,r[\times \mathbb{R}/\alpha \mathbb{Z}$.

On appellera surface euclidienne à singularités coniques une surface dont la géométrie locale est donnée soit par le plan, soit par un cône. Plus précisément, on donne la définition suivante.

Définition 1 (s.e.s.c.)
On appelle surface euclidienne à singularités coniques (s.e.s.c), une surface M sur laquelle on trouve un nombre fini de points p_i vérifiant les propriétés suivantes :
- $M\setminus\{p_i\}$ est muni d’une métrique riemannienne localement isométrique à la métrique euclidienne de \mathbb{R}^2 ;
- au voisinage de chaque p_i, $M\setminus\{p_i\}$ est isométrique à un voisinage épointé du sommet de C_α_i .

On notera $P = \{p_i\}$ et $M_0 = M \setminus P$.
Avec cette définition, le cône C_{α} lui-même est une s.e.s.c. Certaines constructions donnent de manière automatique des s.e.s.c. Donnons en trois exemples.

1. Recoller deux copies d'un même polygone euclidien Q le long de ses arêtes donne une surface compacte sur laquelle il y a une singularité conique par sommet de Q (l'intérieur des arêtes se recolle bien !). L'angle α_i de chaque singularité est le double de l'angle du polygone correspondant. De la même manière, on peut recoller deux tores euclidiens le long d'une coupure géodésique, faisant ainsi apparaître deux sommets d'angle 4π (cf [29]).

2. Une variante de la construction précédente (collage de polygones le long d'arêtes) permet d'associer à tout polygone "rationnel" une s.e.s.c.. On renvoie à [34] pour la définition de "rationnel", et pour le détail de cette construction, notons tout de même que, dans ce cas, tous les angles α_i sont des multiples de 2π.

3. Sur une surface M de genre plus grand que 1, la donnée d'une différentielle quadratique fournit une structure de s.e.s.c. sur M (cf [69]).

Remarque : on ne travaillera qu'avec des s.e.s.c. orientées et complètes.

On pourra consulter [69] (dont on a emprunté la terminologie) pour une approche plus détaillée. On trouvera notamment dans cet article une démonstration de la formule de Gauss-Bonnet pour une s.e.s.c. compacte :

$$\sum_i k_i = 2\pi \chi(M), \text{ où } k_i = 2\pi - \alpha_i,$$

et $\chi(M)$ est la caractéristique d'Euler de la surface. Une conséquence de cette formule est que les angles d'une s.e.s.c. (orientable) en déterminent la topologie. Ils ne peuvent donc être fixés de façon indépendante.

On a localement au voisinage de chaque point de M_0 une notion de distance donnée par la métrique riemannienne. Cette distance, donnée par la définition, sera par la suite appelée distance locale. La partie suivante est consacrée à la définition d'une distance globale sur M, et à montrer que localement, la distance globale coïncide avec la distance locale.

1.1.1 Distance sur M

Pour définir la distance entre deux points il est pratique de passer par la longueur des courbes joignant ces deux points. Il faut donc dans un premier temps définir, sur M, une telle longueur. Notons que pour une application continue g de $[0,\ell]$ dans M_0, la métrique riemannienne de M_0 donne un sens précis à la longueur de g, notons ℓ_0 cette longueur. On peut ainsi définir la longueur d'une application continue g de $[0,T]$ dans M telle que $g([0,T]) \subset M_0$ en posant :

$$\ell(g) = \sup_{[\ell_1,\ell_2] \subset [0,\ell]} \{\ell_0(g|_{[\ell_1,\ell_2]})\}.$$

Par addition, ℓ est étendue aux applications continues g de $[0,\ell]$ dans M telles que $g^{-1}(P)$ est discret. Remarquons que la longueur d'une courbe peut être infinie. Si on note $C_0(I,M)$ l'ensemble des applications continues g d'un intervalle I dans M, telles que $g^{-1}(P)$ est discret, on a ainsi défini une application ℓ de $\bigcup I C_0(I,M)$ dans $[0,\infty]$ qui est une longueur au sens de [40]. Pour toute courbe γ et g une application de $C_0([0,T],M)$ la paramétrant, $\ell(g)$ ne dépend pas du paramétrage choisi. Il est donc plus naturel de considérer que ℓ est définie sur l'ensemble des courbes, et de parler de $\ell(\gamma)$. Pour une courbe γ, de longueur finie, on notera $g^\gamma : [0,\ell(\gamma)] \rightarrow M$ une paramétrisation par longueur d'arc. Celle-ci devient unique
dès lors qu’on choisit l’origine et l’orientation ; ce choix étant en général non-ambigu, on parlera de la paramétrisation g^γ.

On peut alors définir :

$$d_M(m,m') = \inf \{\ell(\gamma), \gamma \text{ joignant } m \text{ à } m'\}.$$

On a alors la proposition tautologique suivante

Proposition 14

Munie de d_M et de ℓ, M est un espace de longueurs.

Preuve : on renvoie à [40] pour la définition d’un espace de longueurs. \(\square\)

On a donc fait de M un espace métrique. On notera $B_M(m,r)$ la boule ouverte de centre m et de rayon r.

Exemple :

Sur le cône C_α, on vérifie la propriété suivante ; la distance entre (R_1,x_1) et (R_2,x_2) sur C_α est définie par :

$$r_1 + r_2 \begin{cases} |r_1^2 + r_2^2 - 2r_1r_2 \cos(|x_1,x_2|)|^{1/2} & \text{si } |x_1,x_2| \leq \pi, \\
\end{cases}$$

où $|x_1,x_2|$ désigne la distance sur le cercle $\mathbb{R}/\alpha\mathbb{Z}$.

Notation : on notera, pour $r \geq 0$,

$$M_r = M \setminus \bigcup_i B_M(p_i,r).$$

Cette notation est compatible avec la notation M_0 déjà introduite.

Par définition de M, on a une structure métrique locale. Il reste à vérifier que la structure métrique locale coïncide localement avec la structure métrique globale.

Lemme 8

1. *Soit $m_0 \in M_0$, alors il existe r tel que $B_M(m_0,r)$ est isométrique à la boule de \mathbb{R}^2 de rayon r.*

2. *Soit $p \in P$, et α l’angle correspondant. Il existe alors r tel que $B_M(p,r)$ est isométrique à la boule de C_α, centrée au sommet et de rayon r.*

Preuve : on montre le premier cas, le deuxième se fait de façon analogue. Par définition de M, il existe autour de m un voisinage V_R qui, muni de la distance locale, est isométrique à $B_{\mathbb{R}^2}(0,R)$, m correspondant à 0. Par définition de ℓ, la longueur d’une courbe incluse dans ce voisinage est la longueur de son image dans \mathbb{R}^2. On prend $r = \frac{R}{2}$, et on affirme qu’il satisfait alors les propriétés du lemme. En effet, $B_{\mathbb{R}^2}(0,r)$ est isométrique à un voisinage V_ℓ de m (muni de la distance locale). Soit m_1,m_2 dans ce voisinage, et γ une courbe joignant m_1 à m_2. Si γ reste incluse dans V_R, alors $\ell(\gamma) = \ell_{\mathbb{R}^2}(\gamma)$ et quand on prend l'inf sur ces courbes-là, on trouve $d_{\mathbb{R}^2}(m_1,m_2)$. Si γ sort de V_R, alors $\ell(\gamma) \geq 2r$ (on regarde γ sur $[0,T_1]$), où T_1 est le premier temps pour lequel γ sort de V_R et sur $[T_1,T_2]$, où T_2 est le dernier temps pour lequel γ est hors de V_R.) Comme $d_{\mathbb{R}^2}(m_1,m_2) < 2r$, on a, par définition de d_M,

$$d_M(m_1,m_2) = d_{\mathbb{R}^2}(\tilde{m}_1,\tilde{m}_2).$$
Donc \mathcal{V}_r est isométrique à $B_{\mathbb{R}^2}(0,r)$ (pour la distance globale). Il reste à voir que $\mathcal{V}_r = B_M(m,r)$, mais une courbe joignant m à un point extérieur à \mathcal{V}_r doit forcément quitter \mathcal{V}_r, donc sa longueur est plus grande que r. □

Ce lemme assure que la définition suivante a un sens.

Définition 2 (rayon d’injectivité ponctuel)
Soit $m \in M$ on appelle rayon d’injectivité en m le nombre défini par:

$$r_i(m_0) = \sup \{ r \mid B_M(m_0,r) \text{ isom. à } B_{\mathbb{R}^2}(0,r) \}, \text{ si } m_0 \in M$$

et par

$$r_i(p_j) = \sup \{ r \mid B_M(m_0,r) \text{ isom. à } B_{\mathbb{R}^2}(0,r) \} \text{ sinon.}$$

Remarque: la fonction $m \mapsto r_i(m)$ est continue sur M_0 mais pas sur M.

Pour définir un rayon d’injectivité global sur une s.c.s.e., on peut procéder de la manière suivante. On appelle $B_\alpha(r)$ la boule de C_α, centrée au sommet et de rayon r. On commence par choisir un r tel qu’autour de chaque point conique, $B_M(p_j,r)$ soit isométrique $B_\alpha(r)$. On prend ensuite $r^* = \inf_{M_r} \{ r_i(m) \}$, et on suppose que M est telle que $r^* > 0$ (ce qui est le cas par exemple si M est compacte). Ce nombre r^* est alors tel que $\forall m \in M_r, B_M(m,r^*)$ est isométrique à $B_{\mathbb{R}^2}(0,r^*)$.

Cette construction, sur un cône d’angle $\alpha < 2\pi$, donne $r^* \leq \sin(\frac{\alpha}{2}) \times r$. S’il existe sur M des angles plus petits que 2π, on ne peut donc avoir $r = r^*$, et il faudrait chercher une optimisation du couple (r,r^*).

Cette phase d’optimisation n’étant pas nécessaire pour la suite, on se contente de noter (r_0,r^*_0) un couple vérifiant :

$$\forall j, B_M(p_j,r_0) \text{ isom. à } B_\alpha(r_0)$$

$$\forall m \in M_r, B_M(m,r^*_0) \text{ isom. à } B_{\mathbb{R}^2}(0,r^*_0).$$

On a vu qu’un tel couple existait dès que $\inf_{M_r} r_i > 0$. Quitte à restreindre r_0 et/ou r^*_0, on peut imposer des conditions supplémentaires. On demandera les deux choses suivantes:

$$\forall j, B_M(p_j,r_0 + r^*_0) \text{ isom. à } B_\alpha(r_0 + r^*_0) \text{ et}$$

$$\forall j \neq i, B_M(p_j,r_0 + r^*_0) \cap B_M(p_i,r_0 + r^*_0) = \emptyset.$$

La distance globale sur M nous permet de définir la notion de géodésique.

1.1.2 Géodésiques de M

Hors des points coniques, on veut que la notion de géodésique coïncide avec celle associée à la métrique riemannienne sur M_0; on prend donc la définition suivante :

Définition 3
Une géodésique de longueur T est une application g, continue de $[0,T]$ dans M et satisfaisant les deux propriétés suivantes :

$$g^{-1}(P) \text{ est discret},$$

$$\forall t_0, t \text{ t.q. } g(t_0) \in M_0, \exists \text{ t.q.}$$

$$\forall t,s \in]t_0 - \varepsilon, t_0 + \varepsilon[, d_M(g(t),g(s)) = |t - s|. \tag{1.1}$$
Remarques:
1. La propriété (1.1) exprime qu’une géodésique minimise localement la distance (près de \(g(t_0) \)). Notamment, au voisinage d’un tel \(g(t_0) \), l’image de \(g \) est un segment de droite.
2. On discutera un peu plus loin de la nécessité d’imposer la condition \(g(t_0) \in M_0 \).
3. Dans \(M_0 \), on dispose d’une autre notion de géodésique associée à la métrique rieman- niennne qui est définie sur \(M_0 \). La condition (1.1) implique qu’au dessus de \(M_0 \), les deux notions de géodésiques coïncident. Notamment, sur la surface riemannienne \(M_0 \), il existe un opérateur différentiel \(P_0 \) de second ordre, dont les solutions sont les géodésiques (riemanniennes) paramétrées à vitesse constante (cf [34]). Les géodésiques telles qu’on vient de les définir sont donc aussi des solutions de \(P_0 \).
4. Pour tout \(t_0 \) tel que \(g(t_0) \in M_0 \), la condition (1.1) implique que la vitesse en \(t_0 \) est 1. Comme de plus \(g^{-1}(P) \) est discret, toute géodésique est 1 lipschitzienne:

\[
\forall t,s \quad d_M(g(t),g(s)) \leq |t-s|.
\]

(1.2)

L’équation différentielle \(P_0 \) satisfaite par les géodésiques peut se voir comme une équation du premier ordre sur \(TM_0 \) ou \(T^*M_0 \) (fibres tangent et cotangent à \(M_0 \)). On notera \(G^0_{(m_0,\mu_0)}(t) \) la solution de cette équation différentielle (dans \(T^*(M_0) \)) de donnée initiale \((m_0,\mu_0) \). On sait que les solutions sont incluses dans les sous-variétés \(\|\mu\| = \text{cste} \). Notamment, si \((m_0,\mu_0) \in S^*(M_0) \) (fibre unitaire cotangent), \(G^0_{(m_0,\mu_0)}(t) \) reste dans \(S^*(M_0) \). On note \(g^0_{(m_0,\mu_0)}(t) \) la projection de \(G^0_{(m_0,\mu_0)}(t) \) sur \(M_0 \). On va maintenant montrer que, conformément à l’intuition qu’on peut en avoir, les géodésiques de \(M \) correspondent à des solutions maximales de \(P_0 \) recollées aux points coniques de manière arbitraire.

Le théorème général de prolongement des solutions d’une équation différentielle s’exprime ici de la façon suivante :

Lemme 9

Soit \((m_0,\mu_0) \in S^*(M_0) \), et soit \([0,T_0[\) l’intervalle maximal pour lequel est défini \(G^0_{(m_0,\mu_0)} \), alors :

- Ou bien \(T_0 = \infty \)
- Ou bien

\[
\exists i \quad \lim_{t \to T_0} g^0_{(m_0,\mu_0)}(t) = p_i.
\]

Preuve : l’alternative classique dit que si \(T_0 \neq \infty \) alors l’image de \([0,T_0[\) par \(G^0_{(m_0,\mu_0)} \) sort de tout compact de \(T^*(M_0) \). Comme on reste dans \(S^*(M_0) \), c’est donc que \(g^0_{(m_0,\mu_0)}([0,T]) \) sort de tout compact de \(M_0 \). Comme \(M \) est complète et que \(g^0_{(m_0,\mu_0)} \) est 1-lipschitzienne, on a alors :

\[
\exists i \quad \lim_{t \to T_0} g^0_{(m_0,\mu_0)}(t) = p_i.
\]

\[\square\]

Dans le deuxième cas, on dira que \((m_0,\mu_0) \) pointe vers un point conique dans le temps \(T_0 \). On notera aussi \(g^0_{(p,x)} \) la paramétrisation d’une solution de \(P_0 \) sur \([0,T_0[\) tendant vers \(p \) en \(t = 0 \) en suivant le rayon défini par \(x \in C_\alpha \).

Exemple : considérons un point \(m \) sur le cône d’angle \(\alpha \) et de sommet \(p \). En coordonnées,

\[m = (R m, x m), \quad R > 0, \quad \text{prenons} \quad \mu \in T^*_m(C_\alpha), \quad \text{on a alors l’alternative suivante :}\]

- si \(\mu \neq -R m \) alors \(g^0_{(m,\mu)} \) est défini sur \([0,\infty[\),
- si \(\mu = -R m \), alors \(g^0_{(m,\mu)} \) est défini sur \([0, R m]\), et \(g^0_{(m,\mu)} = (R m - t, x) \).
On a ainsi toutes les géodésiques qui évitent le sommet, ou qui s’y terminent (et aussi celles qui y commencent en inversant le temps). Maintenant, si \(g \) passe par le sommet, comme elle ne peut y stationner, elle est formée de la juxtaposition d’une géodésique se terminant en \(p \) et d’une y commençant.

Une géodésique de longueur \(T \) évitant le sommet du cône s’écrit donc \(\{ g_{[t_0, \mu_0]}^0 (t) \}_{t \in [0, T]} \) et on peut la prolonger sur \(\mathbb{R}^+ \) dès que \(\mu_0 \neq -dR_{x_{0}} \). Si \(g \) passe par le sommet du cône sans que celui-ci ne soit une extrémité, on peut trouver \(0 < T_1 < T \), \(x_i \) et \(x_d \) dans \(\mathbb{R}/\alpha \mathbb{Z} \) tels que:

\[
\begin{align*}
 g^+(t) &= (T_1 - t, x_i) \quad t < T_1, \\
 g^+(T_1) &= p \\
 g^+(t) &= (t - T_1, x_d) \quad t > T_1,
\end{align*}
\]

Le rayon suivi avant \(T_1 \) s’appelle rayon incident et celui suivi après \(T_1 \) s’appelle rayon diffracté. On appelle angle de diffusion de la géodésique l’élément \(x_2 - x_1 \). Si la géodésique commence en \(p \) (respectivement s’achève en \(p \)), sa description est donnée par les deux dernières lignes de (1.3) avec \(T_1 = 0 \) (resp. les deux premières et \(T_1 = T \)).

Remarque : sur le cône \(C_\alpha \), on voit alors qu’une géodésique diffractante \(g \) est localement minimisante au voisinage de \(p \) uniquement lorsque l’angle de diffusion n’est pas compris entre \(-\pi \) et \(\pi \) (donc nécessairement \(\alpha > 2\pi \)). Comme on aura besoin de considérer tous les angles de diffraction possibles, il est nécessaire d’imposer dans la définition des géodésiques, la condition \(g(t_0) \in M_\theta \).

Cas particulier : \(\alpha = \frac{2\pi}{T} \)

Dans le cas où l’angle du cône est de la forme \(\frac{2\pi}{T} \), il y a une manière canonique de prolonger une géodésique frappant le sommet du cône en utilisant le fait que \(\mathbb{R}^2 \) est un revêtement de \(C_\alpha \). On reviendra sur ce point lors de la construction de géodésiques exceptionnelles (cf 62), notamment ce prolongement correspond à un angle de diffusion de \(\pm\pi \) (qui correspond au même angle puisque \(\alpha = \frac{2\pi}{T} \)).

L’étude des géodésiques sur le cône nous permet de donner une description des géodésiques alternative à la définition 3.

Proposition 15 Sur \(M \), les deux propositions suivantes sont équivalentes:

1. \(g \) est une géodésique de \(M \) de longueur \(T \).
2. \(g \) est une application continue de \([0, T] \) dans \(M \) vérifiant les propriétés suivantes :
 - Il existe \(0 < t_1 < t_2 \cdots < t_n \leq T \) tels que \(g(t_i) \in P \).
 - Sur \([0, T] \setminus \{t_i \mid 1 \leq i \leq n\} \), \(g \) est une solution de \(P_0 \) parcourue à vitesse 1.

Preuve : le sens 2 \(\implies \) 1 est direct dans la mesure où une solution de \(P_0 \) minimise localement la distance. Dans l’autre sens, comme \(g^{-1}(P) \) est discret, on trouve la suite de temps \(t_0 \) et la condition (1.1) impose à \(g \) d’être une solution de \(P_0 \) de vitesse 1 au voisinage de tout point \(t_0 \) tel que \(g(t_0) \in M_\theta \).

Les principales propriétés des géodésiques de \(M \) sont énumérées ci-dessous (avec les notations de la proposition précédente).

- Quand une géodésique passe par un point critique d’angle \(\frac{2\pi}{T} \), il n’est pas naturel de considérer tous les angles de diffractions possibles. À partir de maintenant, les géodésiques que l’on considère, lorsqu’elles passent par un tel point critique y feront un angle de \(\pm\pi \).
Généralités

- Une géodésique qui ne rencontre que des points coniques de la forme $\frac{2\pi}{\alpha}$ sera dite non-diffarctive et diffarctive dans le cas contraire. Le nombre de diffarctions de g (ou nombre de points singuliers) sera le nombre de points coniques rencontrés tels que $\alpha \neq \frac{2\pi}{\alpha}$.

- Comme P_0 définit un flot sur $T^*(M_0)$, pour une géodésique diffarctive g, le morceau de g correspondant à $[t_i, t_{i+1}]$ est uniquement déterminé par $(g(t_0), g'(t_0))$ pour un $t_0 \in [t_i, t_{i+1}]$. Si par hasard on rencontre à l’une de ces extrémités un point conique d’angle $\frac{2\pi}{\alpha}$ la manière d’y prolonger g est unique. Pour définir sans ambiguïté une géodésique de M, il suffit donc de se donner un couple $(g(t_0), g'(t_0))$ par intervalle $[t_i, t_{j}]$, où les points coniques ainsi sélectionnés sont diffarctants.

- La condition (1.1) est une condition locale, notamment sur $[0, t_i] \cap [t_i - r_0, t_i + r_0]$, g s’identifie à une géodésique diffarctive de C_α où α est l’angle du cône pointé en $g(t_i)$.

D’après la description des géodésiques diffarctives du cône, on peut parler de rayon incident et de rayon diffarcté en t_i. La donnée de t_1, du rayon incident en chaque point singulier et du dernier rayon diffarcté permet aussi de définir uniquement g. Si M est orientée ; pour chaque $p \in P$, on a une orientation du cercle centré en p et de rayon $r \leq r_0$. Cette orientation est telle que le vecteur tangent au cercle dans la direction positive, \mathbf{t}_m est tel que $(\frac{\partial}{\partial t_m}, \mathbf{t}_m)$ est une base directe de $T_m \cdot M$. Ceci permet de définir sans ambiguïté la différence $x_p - x_i$ entre les rayons incidents et diffarctés : c’est l’angle de diffraction de g en ce point conique.

Exemple : un angle de diffraction nul signifie que la géodésique γ arrive en suivant un rayon et en repart en suivant le même rayon.

Notations : soit g une géodésique de longueur T. On pose :
- $p_{g,i}$ le i-ème point conique diffarctant rencontré,
- $t_{g,i}$ l’instant de la i-ème diffarction,
- $\alpha_{g,i}$ l’angle au sommet du cône de sommet $p_{g,i}$, (rappelons que $\alpha_{g,i}$ n’est donc pas de la forme $\frac{2\pi}{\alpha}$),
- $\beta_{g,i}$ l’angle de diffarction en $p_{g,i}$ (c’est un élément de $\mathbb{R}/\alpha_{g,i} \mathbb{Z}$),
- $I_{g,j} = [T_{g,i} - r_0, T_{g,i} + r_0] \cap [0, T]$; de sorte que $g|_{I_{g,j}}$ a son image incluse dans $B_M(p_{g,i}, r_0)$ et s’identifie donc à une géodésique de $C_{\alpha_{g,i}}$.

Remarques :
- Conformément à ce qui a été dit, on a volontairement supprimé les points coniques d’angle de la forme $\frac{2\pi}{\alpha}$ en lesquels on ne choisit pas d’angle de diffarction.

- Toute géodésique de longueur T de M est un élément de $C([0, T]; M)$. On note, pour toute partie O de M :

$$\Gamma_T(O) = \{ g \in C([0, T]; M), \text{ géod. de long. } T \text{ t.q. } g(0) \in O \}.$$

- Dans le contexte des systèmes dynamiques sur un telle surface (par exemple dans le cas de l’étude du billard dans un polygone), on ne définit en général pas les géodésiques après les points de diffarction. On se contente de ne pas considérer le flot dans les directions qui arrivent sur un point singulier en temps fini (en s’assurant auparavant qu’on ne perd qu’un ensemble de mesure nulle). On pourra toutefois comparer notre définition à celle de diagonale généralisée de [53].

Avant d’étudier $\Gamma_T(M)$, on termine cette partie par un lemme sur les géodésiques au voisinage du sommet.

Lemme 10 Soit deux nombres $r < T$ tels que $B_M(p_i, T + r)$ est isométrique à $B_{\alpha_i}(T + r)$, alors, l’extrémité de toute géodésique g, de longueur T et dont l’origine se trouve dans
$B_M(p_i, r)$ satisfait l’inégalité suivante :

$$T - r < d_M(g(T), p_i) < T + r.$$

Preuve : l’inégalité (1.2) montre que sur $[0, T]$, on a :

$$d_M(g(0), g(t)) \leq t.$$

L’inégalité triangulaire donne donc :

$$\forall t \in [0, T], d_M(g(t), p_i) < t + r.$$

Donc, d’une part l’inégalité de droite du lemme est satisfaite, et d’autre part la géodésique g ne quitte pas $B_M(p_i, T + r)$. Tout se passe donc comme si on était sur le cône d’angle α_i. Sur ce dernier, on montre l’inégalité de gauche de la façon suivante. Pour les géodésiques diffractives, le rayon diffracté mesure au moins $T - r$ donc l’inégalité est bonne. Pour les géodésiques non-diffractives, on le montre d’abord sur le cône d’angle infini, puis on quotiente pour retrouver le cône C_{α_i}. \(\square\)

Remarque : ce lemme simple est en fait essentiel. Un des buts de la construction du propagateur des ondes sur M sera de montrer que l’équivalent “quantique” est vrai : c’est-à-dire qu’une solution de l’équation des ondes supportée dans $B_M(p_i, r)$, après avoir évolué pendant un temps T n’a plus de singularités près de p_i (avant qu’éventuellement elle n’y revienne).

1.1.3 Étude globale de $\Gamma_T(M)$

Cette partie est destinée à préciser la topologie de $\Gamma_T(M)$ et à montrer la proposition :

Proposition 16 Il y a équivalence entre :

1. K est une partie compacte de M.
2. $\Gamma_T(K)$ est une partie compacte de $C([0, T]; M)$.

Avant de pouvoir montrer une telle proposition, il faut munir $C([0, T]; M)$ d’une topologie. Comme M est un espace métrique complet, il est naturel de mettre sur $C([0, T]; M)$ la topologie de convergence uniforme. Muni de cette topologie, $C([0, T]; M)$ est alors un espace métrique complet. (cf [23])

On notera $B_{\Gamma_T(M)}(g, r)$ la boule centrée en g et de rayon r pour cette topologie.

On a alors directement le sens (2) \implies (1) de la proposition 16. En effet, si $\Gamma_T(K)$ est compact, alors $K = \text{ev}_0[\Gamma_T(K)]$, où

$$\text{ev}_0 : C([0, T]; M) \to M \quad g \mapsto g(0).$$

Comme ev_0 est continue pour les topologies employées, ce sens est prouvé.

Pour montrer l’autre sens, il faut d’abord remarquer que l’ensemble $\Gamma_T(K)$ est équicontinu car toute géodésique g est 1-lipschitziennne. De plus, pour $g \in \Gamma_T(K)$ et $t \in [0, T]$, $g(t) \in V_T(K)$, où $V_T(K)$ désigne le voisinage tubulaire de taille T de K. Ce dernier étant précompact si K est compact, on peut utiliser le théorème d’Ascoli (cf [23]). On vient donc de montrer :

$$K \text{ compact } \implies \Gamma_T(K) \text{ précompact}.$$

Pour finir de montrer le sens (1) \implies (2) de la proposition 16, il suffit donc de montrer le lemme :

Lemme 11 Si K est fermé, alors $\Gamma_T(K)$ l’est aussi.
Preuve : il y a deux choses à montrer :
1. Si $g_n \to g$ dans $\mathcal{C}([0,T]; M)$, alors g est une géodésique.
2. De plus, si toutes les g_n ont leur origine dans K, g a aussi son origine dans K.
 Le deuxième point est évident puisque $g(0) = \lim_{n \to \infty} g_n(0)$, et que K est fermé.
 Le premier revient à dire qu’une suite de géodésiques converge vers une géodésique. On veut utiliser la proposition 15.
 On se place d’abord au voisinage d’un temps t_0 tel que $g(t_0) \in M_0$, alors à partir d’un certain rang, tout se passe dans $B_M(g(t_0), r'_0)$ qui est isométrique à la boule correspondante de \mathbb{R}^2. Or, sur une variété riemannienne, une courbe qui est limite uniforme de géodésiques est aussi une géodésique (cf [34]). Ainsi, de proche en proche, on définit autour de chaque t_0 tel que $g(t_0) \in M_0$ un intervalle maximal $[t_0^{-}; t_0^{+}]$ sur lequel g est géodésique. Comme l’intervalle est maximal, nécessairement, $g(t_0^{+})$ est un point conique de M.
 Pour pouvoir conclure que g est une géodésique, il nous suffit maintenant de montrer premièrement que $g^{-1}(P)$ est discret, et deuxièmement qu’en un point conique d’angle de la forme $\frac{2\pi}{r}$, l’angle de diffraction est π. Soit donc t_0 tel que $g(t_0) = p \in P$. On choisit $\varepsilon < r_0^2$ et η suffisamment petit pour que $\varepsilon + \eta < r_0$. En utilisant le caractère lipschitzien des g_n et la limite $\lim_{n \to \infty} g_n(t_0) = p$, on trouve n_0 tel que :
 $$\forall n \geq n_0, \ d_M(g_n(t_0 - \varepsilon), p) \leq \varepsilon + \eta.$$
 Les restrictions sur ε et η associées au lemme 10, montrent que toute géodésique issue de $g_n(t_0 - \varepsilon)$ de longueur 2ε, d’une part reste dans $B_M(p, r_0)$ et d’autre part se termine au moins à distance $\varepsilon - \eta$ de p. Notamment :
 $$\forall n \geq n_0, \ d_M(g_n(t_0 + \varepsilon), p) \geq \varepsilon - \eta.$$
 Un démonstration analogue montre que pour les mêmes ε et η, on a un entier n_1 tel que :
 $$\forall n \geq n_1, \ d_M(g_n(t_0 - \varepsilon), p) \geq \varepsilon - \eta.$$
 Comme on peut faire tendre ε vers 0, on a bien montré qu’au voisinage de t_0, $g(t_0)$ est le seul point conique. De plus, si par hasard l’angle au sommet de $g(t_0)$ est de la forme $\frac{2\pi}{r}$, on peut relever la situation à \mathbb{R}^2 dans lequel la suite de géodésiques converge alors (sur $[t_0 - \varepsilon, t_0 + \varepsilon]$), ce qui impose à g d’avoir un angle de diffraction égal à π. Ce qui achève alors de montrer le lemme et donc la proposition.

1.2 Complexité classique des géodésiques

Le but de cette partie est de donner des renseignements assez précis sur la géométrie locale de $\Gamma_T(M)$. La surface M étant fixée, on se contentera de parler de Γ_T. Il est naturel dans un premier temps de partitionner Γ_T en regroupant ensemble les géodésiques qui ont les mêmes points de diffraction. La manière dont ces différentes parties s’agencent les unes par rapport aux autres peut être relativement compliquée. Il est donc nécessaire d’éclaircir un peu ce point.

1.2.1 Géodésiques régulières

Comme annoncé dans l’introduction de cette partie, on commence par regrouper les géodésiques suivant leurs points de diffraction. On note $[p]_N = (p_1, p_2, \cdots, p_m)$ un N-uplet
de points coniques (en tenant compte de l’ordre). On appelle alors $\Gamma_T^{[p]_{\infty}}$ l’ensemble des géodésiques g, de longueur T, qui ont N points de diffractions et telles que

$$\forall j \leq N \quad p_{g,j} = p_i,$$

(avec les notations de la page 57). De tels $\Gamma_T^{[p]_{\infty}}$ peuvent être vides (c’est notamment le cas si N est trop grand par rapport à T).

Par convention, on notera Γ_T^n, l’ensemble des géodésiques non-diffractions, de longueur T.

Définition 4 Soit $g \in \Gamma_T^{[p]_{\infty}}$, g est régulière s’il existe un ε tel que :

$$B_{\varepsilon}(g, \varepsilon) \subset \Gamma_T^{[p]_{\infty}}.$$

Elle est exceptionnelle dans le cas contraire.

On peut donner une caractérisation des éléments réguliers de $\Gamma_T^{[p]_{\infty}}$ par les suites. Celle-ci découle principalement du lemme suivant:

Lemme 12

Soit $g \in \Gamma_T$, alors, il existe r_1 tel que tout élément g' de $B_{r_1}(g, r_1)$ vérifie les deux propriétés suivantes :

1. Sur chaque intervalle $I_{g,j}$, g' s’identifie à une géodésique de $C_{\alpha, j}$.
2. En dehors de ces intervalles, g' est non diffraction.

Preuve : commençons par le cas non-diffraction. Au voisinage de t_0 tel que $g(t_0) \in M_0$, on peut mettre une boule isométrique à la boule de \mathbb{R}^2. Si $g(t_0) \in P$ alors l’angle du point conique est de la forme $\frac{2\pi}{k}$, on a alors un revêtement de la boule $B_M(g(t_0), r_0)$ par la boule de \mathbb{R}^2 de même rayon. Ce revêtement est ramifié d’ordre k au dessus de $g(t_0)$. En prenant ε assez petit et en recollant les boules précédentes, on définit une application continue j entre le rectangle de \mathbb{R}^2 défini par

$$[\varepsilon, T] + \varepsilon[\varepsilon] - \varepsilon, \varepsilon[\varepsilon]$$

et un voisinage de g, de plus $j(t,0) = g(t)$, et j est une isométrie locale sur ce même rectangle privé des points $(t_0, 0)$ correspondant aux points coniques de g. Les géodésiques de M proches de $g([0,T])$ correspondent alors à l’image par j des segments inclus dans ce rectangle. Pour tout $r_1 \leq \varepsilon$, le lemme est alors vérifié

Si g est diffraction, considérons $g' \in B_{r_1}(g, r_0')$. Comme $B_M(p_i, r_0 + r_0')$ est isométrique à $B_{C_{\alpha, j}}(r_0 + r_0')$, sur chaque intervalle $I_{g,j}$, l’image de g' s’identifie à une géodésique de $C_{\alpha, j}$. En dehors de l’intérieur de ces intervalles, on fait la construction précédente, ce qui fournit un r_1'. En posant $r_1 = \min(r_0', r_1')$, le lemme est vérifié. □

Exemples :

1. le lemme précédent montre qu’une géodésique non-diffraction est régulière.
2. Une géodésique se terminant sur un point conique est forcément exceptionnelle.

En effet, soit g une géodésique de longueur T et telle que $g(T) \in P$. Il est toujours possible de trouver un ε et de définir une géodésique \tilde{g} sur $[-\varepsilon, T]$ coïncidant avec g sur $[0, T]$, et non diffraction sur $[-\varepsilon, 0]$ (les est unique dès que ε est assez petit et que $g(0) \in M_0$). Pour $\varepsilon' \leq \varepsilon$, on pose $g_{\varepsilon'}(t) = \tilde{g}(t - \varepsilon')$ sur $[0, T]$, alors $g_{\varepsilon'}$ est dans $B_{r_1}(g, \varepsilon')$ et possède une diffraction de moins que g. Comme ε' peut être choisi aussi petit que l’on veut, g est exceptionnelle.
Le lemme 12 permet aussi de montrer la proposition suivante :

Proposition 17
Soit $g \in \Gamma_{T}^{[p]}$, les deux assertions suivantes sont équivalentes :
- g est régulière.
- Toute suite $(g_{n})_{n \in \mathbb{N}}$ de Γ_{T}, tendant vers g, vérifie la propriété suivante :

$$\begin{cases}
\exists n_{0} & \forall j \leq N \quad \forall n \geq n_{0} \quad g_{n}[I_{g,j}] \\
\text{est une géodésique diffusive de } \mathcal{C}_{a_{i,j}}.
\end{cases}$$

(1.4)

Preuve : soit $g \in \Gamma_{T}^{[p]}$, et soit r_{1} fourni par le lemme précédent. Si g est régulière, il existe $r \leq r_{1}$ tel que $B_{T}(g_{r}r) \subset \Gamma_{T}^{[p]}$. Comme g_{n} tend vers g, il existe alors n_{0} rang à partir duquel g_{n} est dans cette boule, et donc nécessairement diffusive en chacun des $p_{g,j}$. Mais comme $r < r_{1}$, d’après le lemme 12, ces diffusions ont forcément lieu dans les intervalles $I_{g,j}$; ce qui montre le point 2. Inversement, si g n’est pas régulière, le lemme précédent fournit r_{1}. Pour tout n tel que $\frac{1}{n} \leq r_{1}$, il y a un élément de $B_{T}(g_{\frac{1}{n}})$ qui n’est pas dans $\Gamma_{T}^{[p]}$. On construit donc ainsi une suite g_{n} tendant vers g et infirmant le point 2. □

On peut définir un concept un petit peu plus précis que la seule distinction régulière/exceptionnelle ; en comptant à combien de parties $\Gamma_{T}^{[p]}$ une géodésique g est adjacente. On définit ainsi la complexité classique d’une géodésique.

Définition 5 (complexité classique)
Soit $g \in \Gamma_{T}$, la complexité classique de g est le nombre de N-uplets $[p]_{N}$ (N n’étant pas fixé) tels que :

$$g \in \Gamma_{T}^{[p]}.$$

On notera ce nombre $c_{c}(g)$.

Remarques :
1. g est régulière si et seulement si $c(g) = 1$.
2. Si N_{0} est le nombre de diffusions le long de g,

$$g \in \Gamma_{T}^{[p]} ,$$

implique $N \leq N_{0}$. En effet, la limite d’une suite d’éléments de $\Gamma_{T}^{[p]}$ a au moins N diffusions.
3. Les complexités de g et de $g(T - \cdot)$ sont égales. La complexité classique semble donc attachée à la géodésique “physique” plutôt qu’à sa paramétrisation. Toutefois, pour une géodésique périodique, la complexité classique dépend du point de départ choisi.
4. Il existe une notion de complexité d’une trajectoire (semi)-infinie dans un billard polygonal (cf [68]). Elle n’est, a priori, pas reliée avec la complexité classique qu’on vient de définir ici.

Le résultat principal de cette partie relie la complexité d’une géodésique à la suite des angles de diffraction. La partie suivante est consacrée à la construction de géodésiques exceptionnelles.
1.2.2 Construction de géodésiques exceptionnelles

Soit g une géodésique de longueur T ayant N points de diffractions. La restriction de g à $I_{p,j}$ définit une géodésique de M qui s'identifie à une géodésique de $C_{\alpha_{p,j}}$. De plus, si $g' \in B_{\Gamma_{T}}(M)(g_{0}^{'})$, alors $g'|_{I_{p,j}}$ s'identifie aussi à une géodésique de $C_{\alpha_{p,j}}$. On peut, à l'aide de la proposition 17, montrer le lemme suivant, qui relie les géodésiques exceptionnelles du cône à celle sur M.

Lemme 13
Soit $g \in \Gamma_{T}(M)$,

\[[\forall j, g_{n_{p,j}} \text{ régulière (dans } C_{\alpha_{p,j}})] \Rightarrow g \text{ régulière (dans } M). \]

Preuve : prenons (g_{n}) une suite d’éléments de $\Gamma_{T}(M)$ tendant vers g, alors, pour tout j, à partir d’un certain rang, $g_{n}|_{I_{p,j}}$ s’identifie à une suite d’éléments de $\Gamma_{I_{p,j}}(C_{\alpha_{p,j}})$ qui tend nécessairement vers $g|_{I_{p,j}}$. Si cette dernière est régulière, alors, à partir d’un certain rang, $g_{n}|_{I_{p,j}}$ est diffusive en $p_{y,j}$. Comme il n’y a qu’un nombre fini de points diffusifs le long de g, on peut trouver un rang à partir duquel g_{n} est diffusive en chacun des $p_{y,j}$ (et nulle part ailleurs en utilisant le lemme 12). La géodésique g est donc régulière d’après la proposition 17.

Remarque : la réciproque est fausse comme on le verra par la suite.

Une conséquence de ce lemme est qu’il est important de comprendre les géodésiques exceptionnelles de C_{α}.

A- Sur le cône C_{α}

On sait déjà que les géodésiques non-diffusives du cône sont régulières. II reste donc à examiner les géodésiques diffusives. D’après l’exemple 2 page 60, on peut se contenter de considérer une géodésique diffusive dont aucune des extrémités n’est le sommet du cône.

On va commencer par construire une classe de géodésiques exceptionnelles, et ensuite montrer qu’on les a ainsi toutes décrites.

On rappelle que (R,x) sont des coordonnées polaires sur C_{α} ; $R \in [0,\infty]$, $x \in \mathbb{R}/\alpha\mathbb{Z}$. Pour $m = (R_{m},x_{m}) \in C_{\alpha}$ situé à distance R_{m} du sommet du cône, on note

\[g^{m} : [0,R_{m}] \rightarrow C_{\alpha} \]

la paramétrisation du rayon issu de m.

La paramétrisation de la géodésique diffusive de longueur $T(> R_{m})$ issue de m et faisant un angle de diffraction β est alors :

\[g : [0,T] \rightarrow C_{\alpha} \]

\[t \rightarrow \begin{cases} (R_{m} - t,x_{m}) & t \leq R_{m} \\ (t - R_{m},x_{m} + \beta) & t \geq R_{m} \end{cases} \]

Remarques :

1. g ainsi défini se prolonge à $[0,\infty]$.
2. On notera $g^{m,\pm}$ les deux paramétrisations correspondant à $\beta = \pm \pi$ (considérées sur $[0,\infty]$). Par définition, l’angle de diffraction le long de $g^{m,\pm}$ est $\pm \pi$.
3. Si α est de la forme $\frac{2\pi}{k}$, les images de $g^{m,+}$ et $g^{m,-}$ sont confondues. Dans ce cas, du point de vue classique, le flot géodésique se prolonge par continuité au passage d'un tel point conique et on n'a pas besoin de définir les géodésiques diffractives en ce point. D'un point de vue quantique, on traite la propagation des ondes par la méthode des images.

4. Si la s.e.s.c. vient d'un polygone, la condition précédente revient à ne traiter que des polygones dont les angles ne sont pas de la forme $\frac{2\pi}{k}$.

La figure ci-dessous représente $g^{m,\pm}$ sur le cône C_α, et éclaire la démonstration de la proposition suivante.

![Diagram](image)

Proposition 18 Pour tout m de $C_\alpha \setminus \{p\}$ et $T > R_m$, la restriction de $g^{m,\pm}$ à $[0,T]$ est une géodésique exceptionnelle de longueur T.

Preuve : on va montrer que $g^{m,\pm}$ est limite d'une suite de géodésiques de longueur T non-diffractives. Ce qui assurera alors la conclusion.

On commence par munir \mathbb{R}^2 de coordonnées cartésiennes (u,v) et on notera (R,x) les coordonnées polaires habituelles associées. On définit alors les secteurs angulaires :

$$S^+ = \{(R,x) \mid R > 0, x \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\}$$
$$S^- = \{(R,x) \mid R > 0, x \in \left[-\frac{\pi}{2}, -\frac{\pi}{2}\right]\}$$

Les applications définies par

$$E^{m,\pm} : S^{\pm} \quad \rightarrow \quad C_\alpha$$

$$(R,x) \quad \mapsto \quad (R,x_m + x - \pi)$$

sont des isométries locales, dont l'image évite le sommet. On a de plus les propriétés suivantes :

1. Comme $E^{m,\pm}$ sont des isométries locales, un segment de \mathbb{R}^2 de longueur L, inclus dans S^+ (resp S^-) est envoyé via $E^{m,+}$ (resp $E^{m,-}$) sur une géodésique de C_α, de longueur L et non-diffactive.
2. Par $E^{m,\pm}$, les cercles de \mathbb{R}^2 centrés à l'origine sont envoyés sur les cercles de C_α centrés au sommet. Notamment, si une suite de point de S^+ (ou de S^-) tend vers l'origine (dans \mathbb{R}^2), son image tend vers le sommet du cône.

3. $E^{m,+}$ et $E^{m,-}$ coïncident sur $S^+ \cap S^-$.

4. Les applications $E^{m,\pm}$ sont injectives sur tout secteur angulaire d'ouverture $< \alpha$.

5. Si $\alpha < 2\pi$, les applications $E^{m,\pm}$ sont surjectives.

6. Si $\alpha > 2\pi$, $E^{m,\pm}$ sont injectives, et les images de $E^{m,+}$ et $E^{m,-}$ restreintes respectivement à $S^+ \setminus S^- \cap S^+$ et $S^- \setminus S^+ \cap S^-$ sont disjointes.

7. Dans le cas où $\alpha > 2\pi$, on peut faire de $E^{m,\pm}$ une isométrie, mais il faut alors munir S^\pm non pas de la distance induite par \mathbb{R}^2, mais de la distance induite par la longueur des courbes (cf [40]).

Pour $\varepsilon > 0$, les applications définies par $\tilde{g}_\varepsilon^\pm(t) = (t, \pm \varepsilon)$ définissent des géodésiques incluses respectivement dans S^\pm. En effectuant $E^{m,\pm}$, on obtient donc deux familles $(g_\varepsilon^\pm)_{\varepsilon > 0}$ de géodésiques non-diffactives de C_α. Grâce aux propriétés de E^{\pm}, on montre alors:

$$\lim_{\varepsilon \to 0} g_\varepsilon^\pm = g^\pm,$$

ce qui termine la preuve de la proposition.

On veut maintenant montrer qu'on a ainsi construit toutes les géodésiques exceptionnelles de C^α. Pour cela, on commence par montrer un lemme dans le plan.

Lemme 14
Dans \mathbb{R}^2, on fixe T et $[a,b] \subset [0,T]$. Il existe alors une constante C telle que: si g_1 et g_2 sont les paramétrisations par longueur d'arc de deux segments de longueur T l'inégalité suivante est satisfaite:

$$\|g_1 - g_2\|_{\infty,[0,T]} \leq C\|g_1 - g_2\|_{\infty,[a,b]},$$

où $\|.\|_{\infty,I}$ désigne la norme de la convergence uniforme sur l'intervalle I.

Preuve : cela découle directement de l'écriture:

$$g(t) = g(a) + \frac{g(b) - g(a)}{b - a} \times (t - a),$$

valable pour tout segment.

On peut maintenant montrer la proposition:

Proposition 19
Soit g une géodésique exceptionnelle de C_α de longueur T et d'origine m, alors $T \geq R_m$ et $g = g^{m,+}_{[0,T]}$ (ou $g = g^{m,-}_{[0,T]}$).

Preuve : comme g est une géodésique exceptionnelle, elle est diffactive. De plus $g \in T^0_T(C_\alpha)$. Il existe donc une suite (g_n) de géodésiques non-diffactives tendant vers g.

Au voisinage de $g(0)$, en utilisant $E^{m,\pm}$ on trouve des segments \tilde{g}_n définis sur $[0,b]$ et inclus dans $S^+ \cap S^-$. Ces segments se prolongent de proche en proche en restant, soit dans S^+, soit dans S^- (car les g_n sont non-diffactives). Donc,

$$\forall n, \exists \pm | g_n = E^{m,\pm}(\tilde{g}_n).$$

En passant à la limite, cela a deux conséquences (on rappelle, que α n’est pas de la forme $\frac{2\pi}{n}$): premièrement, à partir d’un certain rang, il n’y a plus qu’une seule possibilité ($+$ ou $-$), deuxièmement, $g_n \to g^{m,\pm}$ (suivant l’alternative précédente).

Cette proposition a pour corollaire :

Corollaire 3 Soit \((g_n)\) une suite de géodésiques non diffracitives de \(C_\alpha\) tendant vers \(g^{m,+}\) (resp. \(g^{m,-}\)), \(\exists n_0 \mid \forall n \geq n_0\) telle qu’on ait respectivement :

\[\exists g_n \subset S^+ \text{-q } g_n = E^{m,+}(\tilde{g}_n),\]

(resp. \(\subset S^-\)).

Les deux propositions précédentes peuvent être résumées dans le corollaire suivant :

Corollaire 4 Une géodésique \(g\) de \(C_\alpha\) est exceptionnelle si et seulement si elle satisfait une des deux propriétés suivantes :

1. Une des extrémités de \(g\) est le sommet du cône.
2. L’angle de diffraction le long de \(g\) est \(\pm \pi\).

Avant de passer à une description détaillée des géodésiques exceptionnelles de \(M\), et au calcul de la complexité classique, on va généraliser la construction des \(g^{m,\pm} \) à \(M\).

B- Généralisation à \(M\)

Le cas du cône nous apprend que les angles de diffraction valant \(\pm \pi\) jouent un rôle particulier, on peut notamment reformuler le lemme 13, et donner une condition suffisante de régularité.

Proposition 20 Sur \(M\), pour une géodésique \(g\) diffracitive, dont les extrémités ne sont pas des points coniques, on a l’implication suivante :

\[\forall i \beta_{g,i} \neq \pm \pi \implies g \text{ est régulière.}\]

Remarque : la réciproque de cette proposition n’est pas vraie.

Pour chercher des géodésiques exceptionnelles sur \(M\), on va partir d’un élément \((m_0, \mu_0) \in \mathbb{S}^*(M_0)\) pointant vers un point conique et construire deux géodésiques \(g^{(m_0, \mu_0)}{\pm}\) le long desquelles TOUS les angles de diffractions seront \(\pi\) (resp. \(-\pi\)).

Ceci est rendu possible par la proposition suivante, qui sert aussi de définition.

Proposition 21 Soit \((m_0, \mu_0) \in \mathbb{S}^*(M_0)\) pointant vers un point conique, on peut alors définir

- une suite de temps \((T^+_i)_{i \geq 1}\) strictement croissante, sans point d’accumulation, éventuellement finie,
- une géodésique \(g^{(m_0, \mu_0)}{},^+\) de \([0, +\infty[\) dans \(M\),

telle que :

\[\forall T_i, g^{(m_0, \mu_0)}{},^+ \in \Gamma_T(M),\]

et, le long de cette géodésique, les \(T^+_i\) correspondent aux diffractions, et en chaque diffraction, l’angle de diffraction est \(\pi\).

Preuve : comme \((m_0, \mu_0)\) pointe vers un point conique, il existe un temps \(T_1\) et un point diffracatif \(p_{T_1}\) tel que \(g^0_{(m_0, \mu_0)}\) soit défini sur \([0, T_1]\), et tende vers \(p_{T_1}\) en \(T_1\). En ce point, on prolonge la géodésique ainsi trouvée en faisant un angle de diffraction de \(\pi\), on définit ainsi \(g^{(m_0, \mu_0)}{},^+\) jusqu’au temps \(T_1 + r_0\), et on pose \(T_1^+ = T_1\). On prolonge alors cette géodésique, indéfiniment si on ne rencontre plus de point diffracatif, ou bien jusqu’au point diffracatif suivant où on la prolonge en faisant le même angle de \(\pi\). Par induction on a bien la proposition. \(\square\)

Remarques :

1. On notera \(T_{j,T}^+\) la suite des temps le long de \(g^+\) correspondant à des points coniques non-diffracifs.
2. On a la même proposition en faisant à chaque diffraction un angle de $-\pi$. Ce qui
fournit une suite (T_i^-), et une géodésique $g^{(m_0, \mu_0)}$.-
3. Il est commode de poser par convention $T_0^\pm = 0$, et, dans le cas où la suite T_i^\pm est finie
et comporte N éléments, $T_{N+1}^\pm = +\infty$.
4. Par définition, les géodésiques $g^{(m, \mu), +}$ se recollent en vérifiant la propriété suivante.
Soit (m_0, μ_0) et (m_1, μ_1) le point et la direction atteintes par $g^{(m, \mu), +}$ au temps
$T \neq T_i^\pm$, alors:
$$g^{(m_1, \mu_1), +}(t) = g^{(m_0, \mu_0), +}(T + t).$$
5. Dans les cas où le point de départ n’est pas ambigu, on pourra omettre de préciser
(m_0, μ_0) (abus que l’on a d’ailleurs déjà fait pour la suite des temps T_i^\pm).
On vo maintenant montrer que ces géodésiques sont elles aussi exceptionnelles (cf prop
18). La preuve de la proposition 18 consiste à trouver une isométrie locale entre un ouvert
du plan et \mathcal{C}, dans laquelle la géodésique concernée est clairement identifiée. Pour définir
ici des ouverts jouant le même rôle que les S^\pm sur le cône. Il faut faire attention à deux
choses, d’une part que le long de la géodésique il peut y avoir plusieurs points diffactifs,
d’autre part, entre les points diffactifs, la géodésique peut passer `assez` près de P. Ce sont
donc des espaces de rectangles “fendus” de \mathbb{R}^2, dont on donne ci-dessous la définition, qui
vont nous être utiles. De façon rapide, on obtient ces rectangles “fendus” en mettant bout à
bout, les rectangles construits autour d’une géodésique non-diffactifs (cf lemme 12) et les
secteurs angulaires S^\pm construits sur le cône.
On rappelle que (u, v) est un système de coordonnées cartésiennes sur \mathbb{R}^2.

Définition 6 Soit $(T_i)_{1 \leq i \leq N}$ et $(t_j)_{1 \leq j \leq M}$ deux suites croissantes de nombres strictement
positifs, et tous distincts. Pour $\varepsilon \in \mathbb{R}^{+*}$ et $T \leq \max(T_N, t_m)$ on définit:
$$\mathcal{R}_T((T_i), (t_j), \varepsilon) = \left\{ v \mid v = x \varepsilon \right\} \cup \bigcup_{j=1}^N \left\{ (T_i, v) \mid 0 \leq v < \varepsilon \right\} \cup \{ (t_j, v) \mid 0 \leq v < \varepsilon \}.$$

Ces rectangles nous sont utiles grâce au lemme suivant :

Lemme 15 Soit (m_0, μ_0) pointant vers un point conique. Soit $T \in [T_i^+, T_{i+1}^+]$, il existe alors
ε et une application continue E^+ de
$$\mathcal{R}_T((T_i^+), (t_j^+), \varepsilon) \cup \{ T_1, \ldots, T_i, t_1, \ldots, t_i \},$$
dans M vérifiant les deux propriété suivantes :
1. E^+ est une isométrie locale de $\mathcal{R}_T((T_i^+), (t_j^+), \varepsilon)$ dans M_0,
2. pour $t \in [0, T)$, $E^+(t, 0) = g^{(m_0, \mu_0)}(t)$.

Preuve : on va montrer le lemme dans le cas où il n’y a pas de points coniques non-diffactifs.
La présence de ceux-ci ne change rien. Au voisinage de t_i, E^+ est alors le revêtement à k
feuilles de $\mathcal{C}_{\varepsilon}$ par \mathbb{R}^2.

Soit $T \in [T_i^+, T_{i+1}^+]$, et considérons la géodésique $g^{(m_0, \mu_0), +}$. Le lemme 12 fournit un r_1
tel que le voisinage tubulaire de taille r_1 de chaque morceau de $g^{(m_0, \mu_0), +}$ correspondant à
$[T_j^+ + r_0, T_{j+1}^+] \cap [0, T]$ ne rencontre pas P (et ceci pour $0 \leq j \leq i$, avec la convention
donnée dans la remarque 3 ci-dessus). On prend $\varepsilon = r_1 / \sqrt{2}$, et on note
$$\mathcal{U}_j = \mathcal{R}_T((T_i^+, \ldots, T_i^+), \varepsilon) \cap \{ (u, v) \mid (u, v) \in [T_j^+ + r_0 - r_1, T_{j+1}^+ - r_0 + r_1] \cap [0, T] \}.$$

On peut alors construire, pour chaque j, une isométrie locale de \mathcal{U}_j dans M_0, ayant la
propriété 2 de la proposition (la propriété 1 n’a ici pas d’objet).
Au voisinage de chaque $p_{o,j}$ toujours, d’après le lemme 12, tout se passe comme si on était dans $B_{2x_{i,j}}(r_{0})$. Comme g^+ est définie en faisant un angle de diffraction de $+\pi$, on a une isométrie locale directe de $S^+ \cap B_{2r_{0}+r_{0}'}(0)$ dans M vérifiant le point 1. On translate $S^+ \cap B_{2r_{0}+r_{0}'}(0)$ de manière à amener l’origine sur le point $(T_{i}^{+},0)$, et on définit \mathcal{V}_{i} comme l’intersection de cette boule fendue avec $\mathcal{R}_{i}^{+}(T_{i}^{+}, \cdots , T_{i}^{+}, \varepsilon)$ On a alors une isométrie locale directe vérifiant 1 et 2 définie sur \mathcal{V}_{j}.

Il reste à voir que sur les intersections $\mathcal{U}_{j} \cap \mathcal{V}_{j'}$, les deux isométries locales directes coïncident. Quitte à restreindre ε, on peut supposer que les isométries associées aux \mathcal{U}_{j} et \mathcal{V}_{j} sont bijectives sur de telles intersections. La fonction de transition est alors bien définie, et c’est une isométrie locale directe. Comme elle laisse invariant un petit segment (d’après la propriété 2), c’est l’identité. On a donc bien défini globalement sur $\mathcal{R}_{i}^{+}(T_{1}^{+}, \cdots , T_{i}^{+}, \varepsilon)$ une isométrie locale directe avec les propriétés 1 et 2. Celle-ci se prolonge par continuité aux points $(T_{i},0)$.

Remarques :
1. On a la même proposition en mettant des exposants $-\varepsilon$ partout.
2. Comme auparavant, on notera E^{+} l’isométrie locale de $\mathcal{R}_{i}^{+}(T_{1}^{+}, \cdots , T_{i}^{+}, \varepsilon)$ dans M.
3. Pour ne pas alourdir trop les notations, on parlera d’un rectangle de type \mathcal{R}^{+} (resp. \mathcal{R}^{-}) pour un rectangle de \mathbb{R}^{2} avec un certain nombre de coupures “vers le haut” (resp. “vers le bas”). De manière générale, le nombre de coupure est donné par la suite T_{i}^{+} (resp T_{i}^{-}), et la largeur du rectangle par le lemme 12.

Le fait que les applications E^{\pm} soient des isométries locales donne tout de suite la proposition suivante :

Proposition 22 Soit (m_{0}, μ_{0}) pointant vers un point conique en un temps T_{1}, alors

$$\forall T \geq T_{1} , \ g_{[[0,T]]}^{(m_{0}, \mu_{0})}, \pm$$

sont des géodésiques exceptionnelles.

Preuve : on le prouve pour $g_{[[0,T]]}^{(m_{0}, \mu_{0})},^{+}$. On peut supposer que $T \neq T_{i}$ sinon, la géodésique s’arrête dans un point conique, et est donc exceptionnelle. On peut donc trouver i tel que $T_{i}^{+} < T < T_{i+1}^{+}$, on construit alors le rectangle $\mathcal{R}_{i}^{+}(T_{1}^{+}, \cdots , T_{i}^{+}, \varepsilon)$ et E^{+} fournis par le lemme précédent. Dans ce rectangle, les segments $[0,T] \times \{s\}$, pour $-\varepsilon < s < 0$ sont des géodésiques, et s’envoient sur des géodésiques de M. Cette famille de géodésiques non-diffactives tend alors vers $g_{[[0,T]]}^{(m_{0}, \mu_{0})},^{+}$.

On va maintenant montrer deux propriétés utiles sur la suite, et découle de l’existence de ces rectangles \mathcal{R}_{i}^{\pm}.

Lemme 16 Soit (m_{0}, μ_{0}) pointant vers un point conique en un temps T_{1}, alors, pour tout temps $T \geq T_{1}$, il existe un η tel que toute géodésique issue de (m_{0}, μ) avec $\mu \in]\mu_{0} - \eta \mu_{0} + \eta[\{\mu_{0}\} \text{ est non-diffactives jusqu’au temps } T$.

Preuve : il existe un $T' > T$ tel que T' n’appartienne ni au (T_{i}^{+}), ni au (T_{i}^{-}). On considère les rectangles \mathcal{R}^{\pm} associés aux géodésiques $g_{[[0,T']]}^{(m_{0}, \mu_{0}), \pm}$. Pour une direction μ suffisamment proche de μ_{0}, la géodésique de longueur T' issue de (m_{0}, μ) sera incluse dans un de ces deux rectangles et sera donc non-diffactives.

Ce lemme a deux corollaires intéressants :

Corollaire 5 Soit $m_{0} \in M_{0}$, et T_{0} fixé, le nombre de direction μ pointant vers P en un temps inférieur à T_{0} est fini.
Preuve : Soit μ une direction telle que la géodésique de longueur T issue de (m_0, μ) est non-diffRACTive. Comme cette dernière est régulière, on peut trouver η_μ tel que, toutes les géodésiques de longueur T issues de (m_0, μ'), avec $|\mu - \mu'| < \eta_\mu$ sont non-diffRACTives. Autour d’une direction diffRACTive μ avant le temps T, le lemme précédent fournit aussi un η_μ tel que parmi les directions μ' telles que $|\mu' - \mu| < \eta_\mu$, il n’y a qu’une seule direction diffRACTive en un temps inférieur à T_0. Comme S^1 est compact, il suffit d’extraire un sous-recouvrement du recouvrement par les $|\mu - \eta_\mu, \mu + \eta_\mu|$ pour avoir le corollaire.

\textbf{Corollaire 6} Soit $(m_0, \eta_0) \in S^+(M_0)$ pointant vers un point conique, alors, pour tout temps T on a :

$$g^\pm_{\eta_0}[0, T] = \lim_{\mu \rightarrow \mu_{\eta_0}^\pm} g^0_{(m_0, \mu)}[0, T].$$

Preuve : on fixe T, le corollaire précédent assure que pour μ suffisamment proche de μ_0, $g^0_{(m_0, \mu)}$ est bien définie sur $[0, T]$. En utilisant l’isométrie locale au voisinage de m_0, il existe un b telle que la convergence soit uniforme sur $[0, b]$. Le lemme 14 montre alors premièrement que l’image de $g^0_{(m_0, \mu)}$ reste dans l’image de S^\pm (suivant le signe de $\mu - \mu_0$), et deuxièmement que la convergence est uniforme sur $[0, T]$.

Le lemme précédent dit que partant d’un point de M_0 les directions pointant vers un point conique, en un temps inférieur à T sont isolées. Si on ne met pas de borne sur le temps, on obtient alors le lemme suivant.

\textbf{Lemme 17} Sur une s.e.s.c. compacte, pour tout point m_0, l’ensemble des directions dans lesquelles la géodésique issue de m_0 finit par arriver sur un point conique est dense.

Preuve : elle se fait par l’absurde. Supposons qu’il existe un intervalle de directions, centré sur μ_0 sur lequel g^0 est définie pour tout temps positif. La distance entre $g^0_{(m_0, \mu)}(t)$ et P tend alors vers l’infini avec t, ce qui n’est pas possible si M est compacte.

Le lemme 5 est encore vrai si on part d’un point conique. La démonstration est un peu plus longue, car il faut raccorder les rectangles R^\pm à la boule $B_M(p_i, r_0 + r')$, mais elle est essentiellement identique.

\textbf{Lemme 18} Soit $p_i \in P$, et m_0 un point situé à distance r_0 de p_i tel que la géodésique prolongeant le rayon issu de p_i et passant par m_0 est non-diffRACTive sur $[0, T_1]$ et tend vers un point conique p_j en T_1. Soit $T > T_1$, il existe r tel que toute géodésique g de longueur T issue de p_i et telle que $0 < d_M(g(r_0), m_0) < r$ est non diffRACTive sur $[0, T]$.

Preuve : soit μ_0 la direction du rayon issu de p_i en m_0, on considère $g^{(m_0, \mu_0)}$, (c’est possible puisque la géodésique issue de (m_0, μ_0) pointe vers p_j, et y arrive dans le temps $T_1 - r_0$). Soit $T > T_1$ Comme dans la preuve du lemme précédent, on trouve un $T' > T$ qui ne correspond à aucune diffraction, ni le long de g^+ ni le long de g^-, et on construit les rectangles $R^\pm_{T'}(\varepsilon)$ correspondants. En recollant l’image de ces rectangles avec $B_M(p_i, r_0 + r')$, on voit que le cercle centré en p_i et de rayon r_0 sur M, et le cercle de centre $(-r_0, 0)$ et de rayon r_0 dans \mathbb{R}^2 se correspondent par E^\pm. Or, dans \mathbb{R}^2, considérons les segments issus d’un point de $S((-r_0, 0), r_0) \cap B(0, r)$, dirigés suivant la normale extérieure à ce cercle, et de longueur T'. Si r est assez petit, ceux-ci sont inclus dans R^\pm (le + ou le – étant déterminé par le signe de l’ordonnée de départ). Une fois ce r choisi, considérons les rayons issus de p_i et passant dans $B_M(m_0, r)$. Sur l’intervalle $[r_0, r_0 + r']$, ils sont images par E^\pm d’un des segments de \mathbb{R}^2.
précités. On peut donc les prolonger dans \mathbb{R}^2 en restant dans un des \mathcal{R}^\pm. Le rayon dont on est parti se prolonge donc de façon non-diffрактив jusqu’au temps T^*.

On a alors le corollaire :

Corollaire 7 Le corollaire 6 reste vrai en partant d’un point conique.

Le but de la partie suivante est de trouver une caractérisation des géodésiques exceptionnelles par la suite de ses angles de diffraction. On va en fait calculer la complexité d’une géodésique suivant ses angles de diffractions.

1.2.3 Calcul de la complexité

On va revenir sur la caractérisation des géodésiques régulières par les suites. Celle-ci dit qu’une géodésique g est régulière dès que toute suite l’approchant a les mêmes diffractions que g à partir d’un certain rang. Plus généralement, pour une géodésique (régulière ou non) il est intéressant de savoir quels sont les points diffractions “obligatoires”, c’est-à-dire les points diffraits par lesquels toute suite approchant g doit passer. On a donc la définition :

Définition 7 (point diffractions régulier le long d’une géodésique)

*Étant donnée g une géodésique diffractions de longueur T. Soit $p_{g,j}$ un de ses points diffractions et $T_{g,j}$ le temps correspondants. On dira que $p_{g,j}$ est régulier (relativement à g) si toute suite (g_n) de Γ_T, tendant vers g, vérifie la propriété suivante :

$$
\exists n_0 \mid \forall n \geq n_0 \ g_n|T_{g,j}
$$

est une géodésique diffractions de $C_{o_g,j}$. (1.5)

Si $p_{g,j}$ n’est pas régulier, on dira qu’il est exceptionnel. On notera $R(g)$ l’ensembles des j pour lesquels $p_{g,j}$ est régulier.

On commence par faire quelques remarques concernant cette définition :

1. Cette notion de point régulier est une notion attachée à la géodésique, et pas seulement au point conique. On peut donner une version “locale” de la définition précédente en disant que $p_{g,j}$ est un point régulier local dès que $p_{g,j}$ est régulier pour la restriction de g à un voisinage de $T_{g,j}$. La régularité locale se voit alors uniquement sur le cône et on a l’équivalence suivante :

$$
p_{g,j} \text{ point régulier local } \iff \beta_{g,j} \neq \pm \pi.
$$

2. La propriété 1.5 est à rapprocher de 1.4, et la proposition 17 revient à l’équivalence suivante (pour une géodésique ayant N diffractions) :

$$
\gamma \text{ est régulière } \iff R(\gamma) = \{1, \cdots , N\}.
$$

3. Si $p_{g,j}$ est exceptionnel le long de g, il existe une suite g_n de géodésiques, non-diffractions sur $I_{g,j}$ et tendant vers g. En restriction à cet intervalle, tout se passe sur $C_{o_g,j}$ et donc d’après la partie précédente, $\beta_{g,j} = \pm \pi$, mais la réciproque n’est pas vraie (cf exemple ci-dessous).

4. Soit $p_{g,j}$ un point régulier de g. Prenons une suite (g_n) tendant vers g, à partir d’un certain rang g_n passe nécessairement par $p_{g,j}$, on peut donc définir les rayon incident et diffractions de g_n. De plus, ces rayons tendent vers les rayons incident et diffractions de g.

La remarque 3 donne une condition nécessaire pour qu’un point diffractif soit exceptionnel. Le but de l’exemple suivant est de montrer que cette condition n’est pas suffisante.

Exemple : Soit g une géodésique de longueur T possédant trois points diffractifs et dont les angles de diffraction sont $+\pi$, $-\pi$, $+\pi$. On va montrer qu’alors $p_{g,2}$ est exceptionnel. On commence par construire dans \mathbb{R}^2 un rectangle analogue aux R_T^\pm mais dont les coupures sont situées différemment. On pose donc

$$R(\varepsilon) = \left]-\varepsilon,\varepsilon]\times[\varepsilon,\varepsilon[\right| \left. \{(T_{\gamma,1},v) \quad 0 \leq v < \varepsilon \} \right| \cup \left\{ (T_{\gamma,2},\varepsilon) \quad -\varepsilon < v \leq 0 \right\} \cup \left\{ (T_{\gamma,3},v) \quad 0 \leq v < \varepsilon \right\}.$$

On montre de la même manière que pour les R_T^{\pm} que, pour ε assez petit, il existe une isométrie locale E, de $R(\varepsilon)$ dans M_0, et ayant les mêmes propriétés que les E^{\pm}.

Supposons que $p_{g,2}$ soit régulier, et considérons une suite (g_n) tendant vers g, et évitant $p_{g,2}$. A partir d’un certain rang, on peut trouver une suite g_n de segments de \mathbb{R}^2 tendant vers $[0,T] \times \{0\}$ au voisinage de $T_{g,2} - r_0$. Comme g_n doit tendre vers g, g_n doit être inclus dans $R(\varepsilon)$, mais la position des coupures interdit l’existence de tels g_n. Le point conique $p_{g,2}$ est donc bien régulier.

Une démonstration analogue montre que si la suite des angles de diffraction contient une séquence

$$(\pm\pi, \mp\pi, \cdots \pm\pi, \mp\pi),$$

alors, excepté éventuellement le premier et le dernier, tous les points coniques de cette séquence sont réguliers.

Notamment, on a le lemme :

Lemme 19 Soit g une géodésique diffractive ayant N diffractions, $R(g) = \emptyset$ implique que la suite des diffractions est

$$(\pi, \cdots, \pi, -\pi, \cdots, -\pi)$$

k fois $N-k$ fois

ou

$$(\mp\pi, \cdots, -\pi, \mp\pi, \cdots, \pi)$$

k fois $N-k$ fois

$(k$ éventuellement nul$).$

Preuve : tout d’abord $R(g) = \emptyset$ implique que tous les angles de diffractions sont $\pm\pi$, et l’exemple interdit une séquence $(\pi, -\pi, \cdots, -\pi, \pi)$ (ou $(-\pi, \pi, \cdots, \pi, -\pi)$, ce qui assure le lemme.

La dernière remarque suivant la définition des points diffractifs réguliers, associée au lemme 18 permet de montrer le lemme suivant.

Lemme 20

Soit g une géodésique, s’il existe j_0, j_1 deux éléments de $R(g)$ tels que $j_0 < j_1$, alors $j_0 + 1 \in R(g)$.

Preuve : on considère une suite g_n tendant vers g (de longueur T). A partir d’un certain rang, g_n est diffractive à la fois en p_{g, j_0} et en p_{g, j_1}. Notamment, g_n suit un rayon issu de p_{g, j_0}. De plus, comme g_n tend vers g à partir d’un certain rang, le rayon suivi par g_n est proche du rayon défini par g. Or le lemme 18 dit précisément que localement, le rayon suivi par g est le seul qui rencontre un nouveau point conique (avant le temps T). Comme g_n,
doit être diffractive en p_{g,j_1}, g_n suit forcément le même rayon que g (avec éventuellement un petit décalage de temps), et rencontre donc forcément le point conique suivant.

On déduit de ce lemme la proposition :

Proposition 23

Pour toute géodésique diffractive telle que $R(g) \neq \emptyset$, il existe j_0 et j_1 tels que :

$$R(g) = \{j \mid j_0 \leq j \leq j_1\}.$$

Preuve : on appelle j_0 et j_1 les plus petit et plus grand éléments de $R(g)$, et on applique le lemme précédent $j_1 - j_0 - 1$ fois.

On va maintenant caractériser j_0 et j_1 en fonction des angles de diffraction le long de γ.

Proposition 24

Soit g de longueur T, ayant N diffractions et telle que $R(g) = \{j_0 \leq j \leq j_1\}$, on a alors les propriétés suivantes :

$$j_1 = N \Leftrightarrow \beta_{g,N} \neq \pm \pi$$

$$j_1 < N \Rightarrow \exists \varepsilon_1 = \pm 1, \mid \forall j > j_1, \beta_{g,j} = \varepsilon_1 \pi, \text{et} \beta_{g,j_1} \neq \varepsilon_1 \pi.$$

Remarque : les propriétés symétriques concernant j_0 sont également vraies :

$$j_0 = 1 \Leftrightarrow \beta_{g,1} \neq \pm \pi$$

$$j_0 > 1 \Rightarrow \exists \varepsilon_0 = \pm 1, \mid \forall j < j_0, \beta_{g,j} = \varepsilon_0 \pi, \text{et} \beta_{g,j_0} \neq \varepsilon_0 \pi.$$

Preuve : on montre d’abord que si $p_{g,N} = \pm \pi$ alors $j_1 < N$. En effet, s’il n’y a qu’une diffraction, la géodésique considérée est de la forme g^\pm. Elle est donc exceptionnelle, et son point conique ne peut être régulier.

S’il y a au moins deux diffractions, on construit une suite approchant g et évitant le dernier point conique de la façon suivante : on suit g jusqu’au $N – 1$ point conique, et à partir de ce dernier, comme $\beta_{g,N} = \pm \pi$, on peut trouver une suite de rayons donnée par le lemme 18. D’après ce lemme, la suite de géodésique ainsi construite n’est pas diffractive en $p_{g,N}$ et converge vers g.

Supposons maintenant que $j_1 \neq N$, alors p_{g,j_1+1} est exceptionnel, on peut donc trouver une suite g_n tendant vers g et évitant p_{g,j_1+1}. Tous les éléments de cette suite passent forcément par p_{g,j_i} et suivent un rayon issu de ce point conique. Le lemme 18 assure alors qu’à partir d’un certain rang, g_n n’est plus diffractive après avoir rencontré p_{g,j_i} et que sa limite est forcément de la forme g^\pm, d’où l’existence de ε_1.

Pour montrer que $\beta_{g,j_i} \neq \varepsilon_1 \pi$, on examine l’alternative suivante :

ou bien, $j_1 = 1$ et dans ce cas $\beta_{g,j_1} \neq \varepsilon_1 \pi$, sinon la géodésique est du type g^ε_1,

ou bien $j_1 > 1$ et dans ce cas, si $\beta_{g,j_i} = \varepsilon_1 \pi$, en utilisant p_{g,j_i-1} comme pivot, on peut construire une suite tendant vers g et évitant p_{g,j_i}, ce qui est contradictoire.

Cette proposition permet de décrire assez précisément la suite des diffractions le long de g en vue du calcul de la complexité :

Corollaire 8 *Le long d’une géodésique diffractive g la suite des angles de diffraction est de la forme :*

$$\left(\varepsilon_0 \pi, \cdots, \varepsilon_0 \pi, -\varepsilon_0 \pi, \cdots, -\varepsilon_0 \pi\right)_{k_0}$$

$$\left(\varepsilon_0 \pi, \cdots, \varepsilon_0 \pi, \beta_{g,j_0}, \cdots, \beta_{g,j_1} \varepsilon_1 \pi, \cdots, \varepsilon_1 \pi\right)_{k_1}$$
avec \(k_0, k_1 \) éventuellement nuls, et dans le deuxième cas \(\beta_{g,j} \neq \varepsilon_i \pi, i = 0, 1 \). De plus, dans le deuxième cas, \(R(g) = \{ j_0 \leq j \leq j_1 \} \).

Preuve : le premier cas inclut le cas \(R(g) = \emptyset \), et le deuxième correspond à la proposition précédente.

Calcul de la complexité, \(R(g) \neq \emptyset \)

C’est le cas dès lors que la suite des angles de diffraction est sous la forme :

\[
\left(\varepsilon_0 \pi, \cdots, \varepsilon_0 \pi, \beta_{g,j_0}, \cdots, \beta_{g,j_1}, -\varepsilon_0 \pi, \cdots, -\varepsilon_0 \pi \right)
\]

On a alors la proposition suivante :

Proposition 25 Si la suite des angles de diffraction est de la forme précédente, alors :

\[c_c(g) = (k_0 + 1) \times (k_1 + 1). \]

Preuve : il s’agit de compter les différentes manières d’approcher \(g \) par une suite de géodésiques \(g_s \). Quelle que soit cette suite, tous les éléments doivent être diffractifs en \(p_{g,j_0} \) et en \(p_{g,j_1} \). La même démonstration que le lemme 20 prouve que le long de \(g' \) géodésique infiniment proche de \(g \), les diffractions communes à \(g \) et \(g' \) concernent un ensemble \(\{ j_0' \leq j \leq j_1' \} \) d’indices. Inversement, en utilisant un rectangle fendu le long du début de la géodésique, et un autre le long de la fin de la géodésique, on voit qu’à toute sous-quence de ce type pour laquelle \(j_0' \leq j_0 \) et \(j_1' \geq j_1 \), on peut associer un \(\Gamma_{T}^{\pm} \) adjacent à \(g \). Il suffit donc de dénombrer les sous séquences du type : \(\{ j_0' \leq j \leq j_1' \} \), avec \(j_0' \leq j_0, j_1' \geq j_1 \). Ce qui donne le résultat.

Calcul de la complexité, cas restant

Il reste à examiner le cas ou la suite des points de diffractions est de la forme :

\[
\left(\varepsilon_0 \pi, \cdots, \varepsilon_0 \pi, -\varepsilon_0 \pi, \cdots, -\varepsilon_0 \pi \right).
\]

1. \(k_0 k_1 = 0 \).

Dans ce cas la géodésique est de la forme \(g^\pm \). On met autour le rectangle fendu \(\mathcal{R}^\pm \) correspondant. On a déjà vu que \(g \) était limite de géodésiques non-diffractives, il reste donc à étudier les géodésiques diffractives proches de \(g \). La même démonstration que le lemme 20 prouve que les points diffractants communs à \(g \) et à une autre géodésique infiniment proche forment une sous séquence du type \(\{ j_0 \leq j \leq j_1 \} \). Inversement, pour toute sous-quence de ce style, on peut trouver une géodésique infiniment proche de \(g \) n’ayant que ces points diffractifs là (comme on peut le voir dans \(\mathcal{R}^\pm \)). Il suffit donc de dénombrer le nombre de sous-sequences de ce genre, et il y en a :

\[
\frac{N(N+1)}{2}.
\]

On a donc la proposition :

Proposition 26 Soit \(g \) une géodésique du type \(g^\pm \) comportant \(N \) point de diffractions, on a :

\[c_c(g) = \frac{N(N+1)}{2} + 1. \]
2. $k_0k_1 \neq 0$

On remarque tout d’abord qu’une géodésique de ce type est limite de géodésiques non-diffractions. En effet, on peut mettre autour de g un ouvert formé par la réunion d’un rectangle de type \mathcal{R}^+ avec un rectangle de type \mathcal{R}^-, ces deux rectangles s’intersectant autour du segment joignant p_{g,k_0} à p_{g,k_0+1}. Notamment, $\mathcal{R}(g) = \emptyset$.

Il reste à voir quelles sont les géodésiques diffractives infiniment proches de g. L’existence de ce rectangle prouve aussi qu’hormis les géodésiques non diffractives dont on vient de parler, toutes les géodésiques infiniment proches de g sont diffractives soit en p_{g,k_0} ou en p_{g,k_0+1}. Ce fait, rapproché de l’argument précédent, montre que la suite de diffractons d’une géodésique infiniment proche est de la forme : $\{j_0 \leq j \leq j_1\}$ avec $j_0 \leq k_0 + 1$, et $j_1 \geq k_0$. Il reste à dénombrer ces sous-équences, et il y en a :

$$k_0 \times (k_1 + 1) + k_1 + 1 = (k_0 + 1)(k_1 + 1).$$

Proposition 27 Une géodésique g dont la suite de diffractons est de la forme :

$$\left(\varepsilon_0 \pi, \ldots, \varepsilon_0 \pi, -\varepsilon_0 \pi, \ldots, -\varepsilon_0 \pi\right)_{k_0,k_1},$$

avec $k_0k_1 \neq 0$ est telle que :

$$c_c(g) = (k_0 + 1)(k_1 + 1).$$
Chapitre 2

Laplacien sur une surface euclidienne à singularités coniques

Le but de cette section est de fournir le matériel analytique nécessaire à l’étude de l’équation des ondes sur une surface à singularités coniques compacte.

On a déjà vu dans l’étude de la géométrie d’une s.e.s.e. qu’il était très courant de séparer ce qui se passe loin des points coniques et ce qui se passe au voisinage d’un tel point. On va donc définir des fonctions tronquant soit dans M_0, soit au voisinage d’un point conique.

Dans la suite χ_i désignera un fonction C^∞ valant 1 sur $B_M(p_i,r_0)$ et 0 hors de $B_M(p_i,r_0+r')$. Par construction de r_0 et r', χ_i s’identifie à une fonction de C_α_i, et les supports des χ_i sont deux à deux disjoints. Comme M est compacte, il existe alors un nombre fini de points m_0 auxquels on associe deux nombre r_{m_0} et ε et une fonction χ_{m_0} vérifiant les propriétés suivantes. Au voisinage d’un point m_0 la boule $B_M(m_0, r_{m_0} + \varepsilon)$ est isométrique à la boule correspondante de \mathbb{R}^2. La fonction χ_{m_0} est une fonction C^∞ nulle hors de $B_M(m_0, r_{m_0} + \varepsilon)$, et valant 1 sur $B_M(m_0, r_{m_0})$. On obtient finalement une partition de l’unité :

$$1 = \sum_i \chi_i + \sum_{\text{finie}} \chi_{m_0}.$$

On identifiera (abusivement sans changer de notations) une fonction sur C_α et à support dans $B_{\alpha_i}(r_0 + r')$ et une fonction sur M à support dans $B(p_i,r_0 + r')$. Notamment si u est une fonction sur M, $\chi_i u$ pourra désigner une fonction sur M ou sur C_α. Sur $B_{\alpha_i}(r_0 + r')$, on a des coordonnées polaires (R,x); on peut dans la définition des χ_i demander de plus que cette fonction soit radiale.

Avant d’étudier l’équation des ondes sur M, il faut définir un laplacien qui reflète la géométrie de M. Au voisinage d’un point où la métrique est non-dégénérée (c’est-à-dire sur M_0), on prend le laplacien euclidien Δ. Associé à la métrique, on a aussi la mesure riemannienne sur M_0 qui nous permet de définir $L^2(M)$; dans un voisinage isométrique à \mathbb{R}^2, c’est la mesure de Lebesgue, et au voisinage d’un point conique, elle s’écrit $Rd\theta dx$ dans un système de coordonnées polaires. On notera, en fait dm l’élément de volume, (\cdot, \cdot) le produit scalaire associé à ce L^2, et $\|\cdot\|$ la norme. De sorte qu’on a :

$$\langle u, v \rangle = \int_M \pi \, v \, \text{d}m, \quad \|u\|^2 = \langle u, u \rangle$$

On a donc un opérateur Δ défini sur $\text{dom}(\Delta) = C_0^\infty(M_0) \subset L^2(M)$, dont on cherche dans un premier temps des extensions autoadjointes.
2.1 Théorie spectrale

2.1.1 Extensions autoadjointes de Δ

On va d’abord montrer qu’il en existe toujours. L’opérateur Δ tel qu’il est défini ci-dessus est formellement autoadjoint. En effet si u,v sont dans $C_0^\infty(M\setminus P)$, on peut utiliser la formule de Green, et on a :

$$\int \overline{\Delta u} \ v - \overline{u} \Delta v = 0.$$

De plus, toujours avec la formule de Green, on a :

$$\forall u \in \text{dom}(\Delta), \quad \int \Delta \overline{u} \ u = \int |\nabla u|^2 \geq 0.$$

On peut donc définir l’extension de Friedrichs Δ_F de Δ (cf [64]).

C’est avec cette extension que l’on va travailler, cependant il est plus pratique d’avoir une description des éléments de $\text{dom}(\Delta_F)$ en fonction de leur comportement près des points coniques.

Remarque : sur le cône d’angle α, on a aussi un opérateur Δ_α défini sur les fonctions C^∞ à support compact dans le cône privé de son sommet. On peut, de la même manière, considérer $\Delta_{\alpha,F}$ l’extension de Friedrichs de Δ_α sur C_α. C’est l’extension autoadjointe utilisée dans [15]. Cette extension peut aussi être obtenue en utilisant une décomposition en série de Fourier par rapport à la variable angulaire. Cette méthode permet de relier simplement Δ_α au laplacien dans un secteur angulaire d’angle $\frac{\alpha}{2}$, avec les conditions de Dirichlet et Neumann. En effet, on peut distinguer dans la décomposition en série de Fourier la partie paire et la partie impaire (relativement à l’involution $x \rightarrow \alpha - x$) qui donnent le laplacien sur le secteur angulaire avec les conditions de Neumann et Dirichlet (respectivement).

Le but de cette partie est de montrer que les éléments de $\text{dom}(\Delta_F)$ sont caractérisés par le fait d’être dans $\Delta_{\alpha,F}$ au voisinage de p_i. On va au passage montrer un résultat plus général qui peut s’énoncer de la manière suivante : “le choix d’une extension autoadjointe de Δ_α au voisinage de p_i donne une extension autoadjointe de Δ sur M” (cf proposition 28).

On commence par décrire $\text{dom}(\Delta^*)$:

$$\text{dom}(\Delta^*) = \{ u \in L^2(M) \mid \hat{\Delta} u \in L^2 \},$$

où $\hat{\Delta}$ désigne le laplacien euclidien dans $\mathcal{D}'(M_0)$ (c.à.d. au sens des distributions). Notamment,

$$u \in \text{dom}(\Delta^*) \implies u \in H^2(M_0).$$

Il reste à examiner ce qui se passe près des p_i. Au sens des distributions, on a (pour u dans $\text{dom}(\Delta^*)$) :

$$\hat{\Delta} \chi_i u = \chi_i \hat{\Delta} u + 2 \nabla \chi_i \nabla u + u \Delta \chi_i.$$

Le seul morceau à ne pas être L^2 de manière évidente est $2 \nabla \chi_i \nabla u$, mais comme $\nabla \chi_i$ est à support dans M_0 et que u est dans $H^2(M_0)$, ce terme est aussi L^2. Ainsi, en interprétant l’égalité précédente dans $\mathcal{D}'(C_\alpha)$ on voit que :

$$u \in \text{dom}(\Delta^*) \implies \forall i, \chi_i u \in \text{dom}(\Delta_{\alpha,i}^*).$$

D’où le lemme :
Lemme 21

\[u \in \text{dom}(\Delta)^\ast \iff \begin{cases}
 u \in H^2(M_0) \\
 \forall i \chi_i u \in \text{dom}(\Delta_{\alpha_i})
\end{cases} \]

(2.1)

\text{Preuve : le sens direct est fait avant l'énoncé du lemme, il reste à examiner la réciproque. Comme } u \in H^2(M_0), \text{ pour tout } m_0, \chi_{m_0} u \text{ est dans dom}(\Delta^\ast). \text{ Ainsi, à l'aide de la partition de l'unité, le second membre de (2.1) implique le premier.} \quad \Box

Pour décrire certaines extensions autoadjointes de \(\Delta \), on forme

\[G(u,v) = \langle \Delta^\ast u,v \rangle - \langle u,\Delta^\ast v \rangle, \]

pour \(u,v \) dans \(\text{dom}(\Delta^\ast) \). On a aussi:

\[G(u,v) = \lim_{\varepsilon \to 0} G_{\varepsilon}(u,v), \]

où \(G_{\varepsilon} \) s'obtient en prenant la même définition que \(G \) mais en intégrant sur \(M_\varepsilon \). La formule de Green donne alors:

\[G_{\varepsilon}(u,v) = \sum_{i=0}^{N} \int_{S(p_i,\varepsilon)} \frac{\partial}{\partial \nu} u \, v - \nu \frac{\partial}{\partial \nu} v \, |ds|, \]

(2.2)

\text{où } S(p_i,\varepsilon) \text{ est le cercle de centre } p_i \text{ et de rayon } \varepsilon, \text{ et } \nu \text{ est la normale dirigée vers l'intérieur de } B(p_i,\varepsilon). \text{ Le second membre de (2.2) est bien défini car, } u \text{ et } v \text{ étant dans dom}(\Delta^\ast), \text{ ces deux fonctions sont } H^2(M_0). \text{ Pour } \varepsilon \text{ suffisamment petit, on peut remplacer dans chaque terme de (2.2) } u \text{ et } v \text{ par } \chi_i u, \chi_i v. \text{ Ceci nous permet d'énoncer la proposition suivante caractérisant certaines extensions autoadjointes de } \Delta:

Proposition 28 \text{ Étant donnée une collection } \hat{\Delta}_{\alpha_i} \text{ d'extensions autoadjointes de } \Delta_{\alpha_i},

\[\hat{D} = \{ u \in H^2(M \setminus P) \mid \forall i = 1..N, \chi_i u \in \text{dom}(\hat{\Delta}_{\alpha_i}) \}, \]

est le domaine d'une extension autoadjointe de \(\Delta \).

\text{Preuve : il faut montrer l'équivalence :}

\[u \in \text{dom}(\Delta^\ast) \text{ et } G(u,v) = 0 \quad \forall v \in \hat{D} \iff u \in \hat{\Delta}. \]

On remarque tout d'abord que le lemme 21 nous assure que \(\hat{\Delta} \) est bien inclus dans dom(\(\Delta^\ast \)).

Sur \(C_{\alpha} \), on peut définir de la même manière que ci-dessus \(G_{\alpha}(u,v) \) et \(G_{\alpha,\varepsilon}(u,v) \) (pour \(u,v \) dans dom(\(\Delta_{\alpha_i}^\ast \))). On a alors \(G_{\alpha} = \lim G_{\alpha,\varepsilon} \), et la formule de Green sur le cône donne la même égalité que (2.2) mais avec maintenant un seul terme dans la somme. Ce qui permet de réécrire l'égalité (2.2):

\[G_{\varepsilon}(u,v) = \sum_{i=0}^{N} G_{\alpha_i,\varepsilon}(\chi_i u,\chi_i v) \]

(2.3)

Si on prend \(u \) et \(v \) dans \(\hat{D} \), par définition \(\chi_i u \) et \(\chi_i v \) sont dans le domaine d'une extension autoadjointe de \(\Delta_{\alpha_i} \); donc:

\[G_{\alpha_i}(\chi_i u,\chi_i v) = 0. \]
Donc, dans (2.3), tous les termes sont nuls, d'où \(G(u,v) = 0 \). Ce qui donne une des implications de l'équivalence cherchée. Réciproquement, supposons que

\[
 u \in \text{dom}(\Delta^*) \quad \text{et} \quad \left[G(u,v) = 0 \quad \forall v \in \tilde{D} \right],
\]

et considérons \(\chi_i u \) sur \(C_{\alpha_i} \), on veut montrer que \(\chi_i u \) est dans \(\text{dom}(\tilde{\Delta}_{\alpha_i}) \). On prend donc \(v \) dans \(\text{dom}(\tilde{\Delta}_{\alpha_i}) \), en écrivant la formule de Green avec \(\varepsilon \) suffisamment petit, on voit que :

\[
 G_{\alpha_i,\varepsilon}(\chi_i u,v) = G_{\alpha_i,\varepsilon}(\chi_i u,\chi_i v) = G_{\alpha_i,\varepsilon}(u,\chi_i v),
\]

Mais par hypothèse, \(\chi_i v \in \tilde{D} \) et donc, \(G(u,\chi_i v) = 0 \). Comme \(\chi_i v \) (vu sur \(M \)) est nulle au voisinage des autres points coniques,

\[
 G(u,\chi_i v) = \lim_{\varepsilon \to 0} G_{\varepsilon}(u,\chi_i v) = \lim_{\varepsilon \to 0} G_{\alpha_i,\varepsilon}(u,\chi_i v).
\]

On en conclut donc que \(G_{\alpha_i}(\chi_i u,v) = 0 \) mais comme ceci est vrai pour tout \(v \) et que \(\tilde{\Delta}_{\alpha_i} \) est une extension autoadjointe : \(\chi_i u \in \text{dom}(\tilde{\Delta}_{\alpha_i}) \).

Ce calcul est valable pour tout \(i \), ce qui finit de démontrer l'équivalence cherchée. \(\square \)

Remarques :
- La proposition précédente nous dit qu'en certain nombre d'extensions autoadjointes de \(\Delta \) peuvent se traiter en regardant les points coniques séparément. De plus, au voisinage des points coniques tout se passe comme si on était sur le cône. Ceci nous incitera très souvent à étudier les problèmes en séparant ce qui se passe à distance finie des points coniques, et ce qui se passe sur \(C_{\alpha} \) dans \(B(2r_0) \).
- Toutes les extensions autoadjointes de \(\Delta \) ne s'écrivent pas de cette manière ; seulement celles pour lesquelles dans (2.2), tous les termes tendent vers 0. Il pourrait y avoir des compensations entre plusieurs points coniques.

En utilisant la proposition précédente, il est maintenant naturel de regarder l'extension obtenue si on prend pour \(\tilde{\Delta}_{\alpha_i} \) l'extension de Friedrichs. Le résultat (attendu) est donné par le corollaire :

Corollaire 9

\[
 \text{dom}(\Delta_{F}) = \{ u \in H^2(M\setminus P) \mid \forall i, \chi_i u \in \text{dom}(\Delta_{\alpha_i,\varepsilon}) \} \\
 = \{ u \in H^2(M\setminus P) \mid \forall i, \chi_i u \text{ et } \nabla\chi_i u \in L^2(C_{\alpha}) \}
\]

Preuve : l'extension de Friedrichs est la seule dont le domaine est inclus dans

\[Q(\Delta) = \{ u \mid \tilde{\nabla} u \in L^2(M) \} \]

D'après la proposition précédente, le second membre définit bien une extension autoadjointe (l'égalité entre les deux écritures est une conséquence de la remarque précédente). Comme \(u \) est dans \(H^2(M\setminus P) \), \(\nabla\chi_{\alpha_i} u \) est \(L^2(M) \), et comme \((\chi_i)_{i=0,N} \) est une partition de l'unité on obtient sans difficultés que \(u \) est dans \(Q(\Delta) \), ce qui achève la démonstration. \(\square \)

A partir de maintenant et pour éviter une surcharge de notations, on va oublier l'indice \(F : \Delta \) désignera donc l'extension de Friedrichs sur \(M \), et \(\Delta_{\alpha} \) l'extension de Friedrichs sur \(C_{\alpha} \).

Remarque : si \(u \in \text{dom}(\Delta) \), on a l'inégalité suivante :

\[
 ||\nabla u||^2 \leq < u,\Delta u >.
\]

\text{(2.4)}
Exemple : considérons une s.e.s.c. M qui est le double d’un polygone Q (cf page 52). Cette surface est naturellement muni d’une involution σ. Décomposant $L^2(M)$ en utilisant les parties paires et impaires relativement à σ, on obtient l’égalité $L^2(M) = L^2_\sigma(M) \oplus L^2_{\sigma'}(M)$ dans laquelle L^2_σ et $L^2_{\sigma'}$ s’identifient chacun à $L^2(Q)$. Cette décomposition fournit ainsi une isométrie :

$$L^2(M) \sim (L^2(Q) \oplus L^2(Q)).$$

On a alors la proposition suivante :

Proposition 29 Avec l’isométrie précédente on a l’égalité :

$$\Delta_M = (\Delta_N \Delta_D),$$

dans laquelle $\Delta_{N,D}$ désigne le laplacien sur Q avec les conditions de Neumann et Dirichlet.

Preuve : elle consiste à découper ce qui se passe près des points coniques et loin des points coniques. Loin des points coniques, cela revient à comparer le laplacien dans le plan par rapport aux laplaciens de Neumann et Dirichlet dans un demi-plan. Près des points coniques cela revient à utiliser le lien entre secteur angulaire d’angle $\frac{\pi}{2}$ et cône d’angle α (cf remarque page 76).

2.1.2 Diagonalisation de Δ

Par construction Δ est un opérateur autoadjoint positif. On va montrer l’existence d’une base orthonormée de fonctions propres lorsque M est compacte. Pour cela, on commence par montrer un théorème de type Rellich.

Théorème 11 (Rellich)

L’injection de $\text{dom}(\Delta)$ dans $L^2(M)$ est compacte dès que M est compacte.

Preuve : ce théorème résulte de deux faits :

1. Pour $a > 0$ fixé, l’injection de $\text{dom}(\Delta_a)$ dans $L^2(B_a(a))$ est compacte. (cf [15])
2. Quand M est compacte, on peut recouvrir M par un nombre fini de boules de \mathbb{R}^2 et des $B_a(2r_0)$.

On peut donc montrer que $(u_n)_{n \in \mathbb{N}}$ est une suite de $\text{dom}(\Delta)$ telle que (u_n) et (Δu_n) sont uniformément bornées dans $L^2(M)$, on peut extraire de (u_n) une sous-suite convergente.

On peut recouvrir M par un nombre fini de boules $(B_i)_{i \leq N}$ où $N_1 > N$, $B_i = B(p_i, 2r_0)$ $\forall i \leq N$, on peut alors construire une partition de l’unité $(\chi_i)_{i \leq N}$ telle que pour $i \leq N$, χ_i soit la fonction déjà construite.

Les suites $(\chi_i u_n)_{n \in \mathbb{N}}$ sont uniformément bornées dans $L^2(B_i)$, de plus :

$$\Delta \chi_i u_n = \chi_i \Delta u_n + 2 \nabla \chi_i \nabla u_n + u_n \nabla \chi_i.$$

Les premier et dernier terme de cette somme sont uniformément bornés dans L^2 par hypothèse. D’après l’inégalité (2.4), $\nabla \chi_i \nabla u_n$ est aussi uniformément bornée.

Donc, pour tout $i \leq N$, $\Delta \chi_i u_n$ est uniformément bornée dans $L^2(B_i)$. On peut extraire de $(\chi_i u_n)_{i \leq N}$ une sous-suite convergeant dans $L^2(B(p_i, r_0))$ d’après [15]

$$\forall i \leq N \quad \chi_i u_n \underset{\text{sous-suite}}{\longrightarrow} u_i.$$

Pour $i > N$ on a une suite bornée de $H^2_0(B_i)$ dont on peut aussi extraire une sous-suite convergente (car l’injection de $H^2_0(B_i)$ dans L^2 est aussi compacte, cf [10]). Donc :

$$\forall N < i \leq N_1 \quad \chi_i u_n \underset{\text{sous-suite}}{\longrightarrow} u_i.$$
En choisissant les sous-suites pour que toutes convergent simultanément, on voit qu’on peut extraire une sous suite de \(u_n \) convergeant, dans \(L^2 \), vers \(u_1 + u_2 + \cdots + u_{N_1} \); ce qui assure la proposition.

Le corollaire classique de ce théorème est l’existence d’une base orthonormée de fonctions propres réelles et de valeurs propres tendant vers \(+\infty \) (car \((I + \Delta)^{-1} \) est autoadjoint positif et compact).

Corollaire 10 Il existe une suite de nombres positifs \(\lambda_i \) tendant vers \(+\infty \), et une suite de fonctions \(\phi_i \) à valeurs réelles de \(L^2(M) \), formant une base orthonormée de \(L^2 \) telle que :

\[
\begin{align*}
\text{dom}(\Delta) &= \{ \psi = \sum a_i \phi_i \mid \sum |\lambda_i a_i|^2 < \infty \} \\
\forall \psi \in \text{dom}(\Delta), \quad \Delta(\sum a_i \phi_i) &= \sum \lambda_i a_i \phi_i.
\end{align*}
\] (2.5)

Exemple : quand la surface \(M \) est le double d’un polygone \(Q \), la proposition 29 montre alors que le spectre de \(\Delta \) s’obtient en faisant la réunion des spectres de Dirichlet et de Neumann sur \(Q \).

Continuons à faire l’analogie avec le cas sans singularités ; il nous faut construire l’échelle d’espaces de Sobolev appropriée à l’étude de l’équation des ondes sur \(M \) ainsi que la notion de de fonction “lisse” appropriée.

2.2 Classes d’opérateurs

2.2.1 Espaces de Sobolev, microlocalisation

L’objet de cette partie est de décrire les espaces de distributions qui vont nous être utiles par la suite. Pour étudier les singularités, il est naturel de généraliser la notion d’espace de Sobolev. De plus, on cherchera toujours à découper les distributions utilisées en une partie lisse près des points coniques, et ayant éventuellement des singularités au sens habituel dans \(D'(M_0) \). De cette manière on peut éviter d’avoir à étendre la notion de front d’onde au-dessus de \(P \). En revanche, on ne peut se passer d’une notion de lisse au voisinage des singularités.

L’énoncé typique que l’on cherchera à obtenir sur la localisation des singularités d’une distribution \(u \) sera donc :

1. La distribution \(u \) est lisse près des points coniques.
2. Le front d’onde de \(u \) est donc une partie conique fermée de \(T^*(M_0) \) dont on peut donner la description : ...

Pour avoir la notion de distribution lisse, on construit l’échelle de Sobolev associée à \(\Delta \).

Définition 8 Pour tout \(s > 0 \) on définit “l’espace de Sobolev” d’ordre \(s \) :

\[
H^s_\Delta = \text{dom}(\Delta^s).
\]
On rajoute par convention $H_0^0(M) = L^2(M)$. On peut aussi définir les espaces de Sobolev d’ordre négatif par dualité.

On peut tout de suite donner un corollaire direct de la définition et de l’existence de la diagonalisation.

Corollaire 11 Une fonction u de $L^2(M)$ est dans H^s_Δ si et seulement si :

$$u = \sum a_i \phi_i \quad \text{et} \quad \sum \lambda_i^s |a_i|^2 < \infty.$$

Les H^s_Δ sont emboîtés et on peut définir :

$$H^\infty_\Delta = \bigcap_{s > 0} H^s_\Delta = \bigcap_{s \to \infty} H^s_\Delta.$$

Les fonctions de H^∞_Δ seront dites *lisses*. On peut aussi localiser ces notions : on dira que u est H^s_Δ au voisinage de $m \in M$, s’il existe une fonction $\rho \in C^\infty$ et identiquement égale à 1 au voisinage de m telle que $\rho u \in H^s_\Delta$.

On va examiner d’un peu plus près ce que veut dire être lisse au voisinage de m. Le cas où $m \in M_0$ est traité par le lemme suivant :

Lemme 22 Soit $m \in M_0$, il y a équivalence entre :
- u est lisse au voisinage de m.
- u est C^∞ au voisinage de M.

Preuve : on choisit la fonction de troncature ρ nulle en dehors de $B(m, \varepsilon)$, où ε est choisi pour que cette boule s’injecte isométriquement dans le plan. Appliquer Δ sur M, on le laplacien dans le plan revient au même et le lemme découle des injections de Sobolev dans \mathbb{R}^2 (cf. [10]).

On regarde maintenant au voisinage d’un point conique p_i. On remarque tout d’abord qu’on peut définir, de la même manière que précédemment les espaces $H^s_{\Delta_{\alpha_i}}$ sur C_{α}, on aimerait montrer que, pour une fonction à support dans $B(p_i, r_0)$, être dans H^s_{Δ} signifie la même chose qu’être dans $H^s_{\Delta_{\alpha_i}}$.

On va se borner à le montrer pour $s = 2k$, $k \in \mathbb{N}$ (cf remarque après le lemme).

Lemme 23 Pour $k \in \mathbb{N}$, il y a équivalence entre :

$$u \in H^{2k}_\Delta, \quad \text{supp}.(u) \subset B(p_i, 2r_0),$$

$$u \in H^{2k}_{\Delta_{\alpha_i}}, \quad \text{supp}.(u) \subset B_{\alpha_i}(2r_0).$$

Preuve : pour $k = 1$, c’est la proposition 28. On montre le reste par récurrence :

$$u \in H^{2k}_\Delta (M) \quad \text{et} \quad \text{supp}.(u) \subset B(p_i, r_0) \quad \Leftrightarrow \quad \begin{cases} u \in H^{2k-2}_\Delta (M) \text{et supp}.(u) \subset B(p_i, r_0) \\ \Delta^k u \in H^2_\Delta (M) \end{cases}$$

$$u \in H^{2k}_{\Delta_{\alpha_i}} (M) \quad \text{et} \quad \text{supp}.(u) \subset B_{\alpha_i}(r_0) \quad \Leftrightarrow \quad \begin{cases} u \in H^{2k-2}_{\Delta_{\alpha_i}} (M) \text{et supp}.(u) \subset B_{\alpha_i}(r_0) \\ \Delta^k u \in H^2_{\Delta_{\alpha_i}} (M) \end{cases}$$

(le premier point par hypothèse de récurrence, et le second grâce au cas $k = 1$). Comme le dernier point signifie $u \in H^s_{\Delta_{\alpha_i}}, \text{supp}.(u) \subset B_{\alpha_i}(r_0)$, le lemme est prouvé.

Corollaire 12 u est lisse (sur M) au voisinage de p_i si et seulement si u est lisse au voisinage (sur C_{α_i}) au voisinage du sommet.
Preuve : on prend une fonction qui tronque dans $B(p_i, r_0)$, et on applique le lemme précédent pour tous les $k \in \mathbb{N}$. □

Remarques :

1. Le lemme précédent est encore vrai si on remplace $2k$ par un s réel quelconque. On ne va pas le démontrer ici (on le montrera plus loin pour $k = 1$), juste esquisser le raisonnement. La difficulté est que quand $s \notin 2\mathbb{N}$, le noyau de Δ^s (respectivement Δ^s_{ϕ}) n’est plus concentré sur la diagonale. Il faut donc découper entre ce qui se passe “près” de la diagonale et “loin” de celle-ci. On montre ensuite que la partie loin de la diagonale est régularisante, et que “près” de la diagonale, il se passe la même chose sur M et sur C_{α}.

Ce découpage est typique des techniques d’opérateurs pseudo-différentiels, mais on ne veut pas ici rentrer dans l’extension de cette théorie aux variétés avec points singuliers (cf [67])). On renvoie aussi au lemme 3.9 de [15] que l’on peut adapter pour écrire la preuve esquissée ci-dessus. On se servira de cet argument pour montrer le lemme 27.

2. On peut aussi caractériser $H^s \Delta$ au voisinage des points coniques en examinant le comportement des fonctions sous l’application successive d’opérateur différentiel de degré 1 ($R^{\frac{\partial}{\partial \nu}}$, $\frac{\partial}{\partial \nu}$ en coordonnées polaires), cf [27, 32]. Attention toutefois, on ne peut pas prendre directement la caractérisation donnée dans ces articles où l’opérateur étudié est l’extension de Dirichlet du laplacien dans un secteur angulaire.

2.2.2 Opérateurs à trace

Le but de cette partie est de rappeler les définitions concernant les opérateurs à trace. On veut entre autre relie, pour un opérateur $f(\Delta)$, le caractère à trace à la décroissance de f. Beaucoup d’arguments s’expriment simplement en terme du développement en fonctions propres et deviennent alors similaires aux arguments développés dans le cadre non-singulier.

La formule de Weyl (cf corollaire 13 ci dessous) est un outil essentiel pour ce travail. Il est donc important d’établir que cette formule est vraie sur une $s.e.s.c$. On choisit de présenter la méthode s’appuyant sur le développement aux temps petits du noyau de la chaleur. Bien que cette méthode ne soit pas la plus simple pour aboutir à la formule de Weyl, il nous a paru intéressant de la mentionner notamment parce qu’elle fournit par ailleurs d’autres invariants spectraux que ceux donnés par la formule de trace (obtenue avec l’équation des ondes).

Généralités

Rappelons tout d’abord la définition d’un opérateur à trace.

Définition 9 (opérateur à trace) Soit A un opérateur borné agissant de $L^2(M)$ dans lui-même, il est dit à trace s’il existe deux suites (a_n) et (b_n) d’éléments de $L^2(M)$ vérifiant la condition

$$\sum ||a_n|| ||b_n|| < \infty,$$

et telles que :

$$A \phi = \sum (a_n \phi) b_n.$$

Exemple : si (a_n) est une base orthonormée de L^2 et si

$$\sum ||A a_n|| < \infty,$$
alors A est à trace.

Remarquons aussi que d’après la définition, si A est à trace, alors A^* l’est aussi.

On définit alors la norme trace:

$$\|A\|_1 = \inf_{(a_n)_{b.o.n}} \sum \|Aa_n\|,$$

et la trace (indépendante de la base orthonormée (a_n) choisie):

$$\text{Tr}(A) = \sum (a_n, Aa_n).$$

L’ensemble des opérateurs à trace est alors un idéal de l’ensemble des opérateurs bornés. On renvoie à [66] pour une étude des opérateurs à trace dans un cadre général abstrait.

Donnons ici deux propriété simple des opérateurs à trace mais qui nous sera très utile par la suite:

Cyclicité : si A est à trace, alors pour tout opérateur borné B, AB et BA sont à trace et

$$\text{Tr}(AB) = \text{Tr}(BA).$$

Soit A un opérateur à trace, et χ et ρ deux fonctions (constantes près des points coniques) à support disjoint alors:

$$\text{Tr}(\chi A\rho) = 0.$$ (2.7)

Le second point est une application directe du premier vu qu’alors l’opérateur de multiplication par $\rho \chi$ est 0.

On peut alors, de la façon suivante, ramener le calcul de la trace d’un opérateur sur M à des calculs de trace soit dans \mathbb{R}^2, soit dans \mathcal{C}_α. On commence par choisir une partition de l’unité ρ_i de sorte que, pour tout i, il existe $\tilde{\rho}_i$ valant 1 sur le support de ρ et telle que le support de $\tilde{\rho}_i$ soit isométrique soit à une boule de \mathbb{R}^2 soit à une boule de \mathcal{C}_α. Par linéarité de la trace, on a:

$$\text{Tr}(A) = \sum_i \text{Tr}(A\rho_i),$$

et d’après le principe (2.7), pour tout i,

$$\text{Tr}(A\rho_i) = \text{Tr}(\tilde{\rho}_i A\rho_i).$$

L’opérateur $\tilde{\rho}_i A\rho_i$ s’identifie alors avec un opérateur à trace, agissant sur $L^2(\mathbb{R}^2)$ ou sur $L^2(\mathcal{C}_\alpha)$. De plus, avec cette identification, la trace calculée dans \mathbb{R}^2 (ou \mathcal{C}_α) et celle calculée dans M sont égales.

Formule de Weyl

Ces définitions permettent d’énoncer le développement asymptotique de la chaleur, et la formule de Weyl. Dans ce cadre, la démonstration (que l’on ne reproduit pas ici) est due à Cheeger [14].

Théorème 12 Pour tout temps $t > 0$, l’opérateur $e^{-t\Delta}$ est à trace. Pour t s’approchant de 0 on a de plus le développement suivant:

$$\text{Tr}(e^{-t\Delta}) \sim \frac{S}{4\pi} t^{-\frac{1}{2}},$$

où S est l’aire de M.
L'utilisation d'un théorème taubérien (cf [60, 8]) permet alors d'énoncer la formule de Weyl.

Corollaire 13 (formule de Weyl)

Notons \(N(\lambda) = \# \{ \lambda_j \leq \lambda \} \). On a alors l'équivalent suivant :

\[
N(\lambda) \sim \frac{S}{4\pi} \lambda.
\]

Remarques :
- On n’a donné que l’ordre principal du développement de la chaleur, alors que le résultat de [14] fournit un développement asymptotique complet. Rappelons ici que les coefficients de ce développement sont des invariants spectraux, entre autres le coefficient constant (calculé dans [14]) :

\[
\sum_p \frac{4\pi^2 - \alpha^2}{24\alpha}.
\]

- La formule de Weyl a la même expression (au premier ordre) que dans le cas non-singulier. Ici aussi, cette formule prouve que l’aire de \(M \) est un invariant spectral.

- Mentionnons aussi l’article [51] qui établit aussi la formule de Weyl, mais en passant par l’équation des ondes.

- La formule de Weyl fournit directement un équivalent de \(\lambda_n \) :

\[
\lambda_n \sim \frac{4\pi}{S} n.
\]

Le fait que la formule de Weyl soit vraie permet de lier simplement la régularité d’un opérateur avec le caractère à trace.

Trace et régularité

De l’équivalent de \(\lambda_n \) on peut tirer le lemme suivant :

Lemme 24 Soit \(A \) un opérateur borné, et \(s > 1 \) si \(A \Delta^s \) (resp. \(\Delta^s A \)) est borné, alors \(A \) est à trace.

Preuve : on peut se contenter de montrer que \(A \Delta^s \) borné implique \(A \) à trace, dans la mesure où l’autre assertion se déduit de celle-là en passant par l’adjoint de \(A \). Il faut donc montrer que si \(A \Delta^s \) est borné, alors \(\|A\phi_n\| \) est le terme général d’une série convergente. Par hypothèse, il existe \(M \) tel que :

\[
\|A\Delta^s \phi_n\| \leq M,
\]

d'où l'inégalité :

\[
\lambda_n^s \|A\phi_n\| \leq M,
\]

et finalement, comme \(\lambda_n = O(n) \),

\[
\|A\phi_n\| = O(n^{-s}).
\]

Ce qui termine la preuve.

Ce lemme admet les deux corollaires suivants :

Corollaire 14 Si \(A \) est régularisant alors \(A \) est à trace.
Corollaire 15 Si f est une fonction bornée sur \mathbb{R} telle que

$$f(\lambda) = O(\lambda^{-s}) \text{ avec } s > 1,$$

alors l’opérateur $f(\Delta)$ défini par le calcul fonctionnel est à trace.

Exemple : pour toute fonction ρ appartenant à $C^\infty(\mathbb{R})$, considérons la fonction $f_\rho(\lambda)$ définie par

$$f_\rho(\lambda) = \int \rho(\lambda) \exp(i\lambda t)|dt|.$$

Cette fonction est la transformée de Fourier de ρ et vérifie donc l’hypothèse du corollaire précédent (avec s aussi grand que l’on veut). On peut donc calculer la trace de $f_\rho(\Delta)$. On obtient ainsi une distribution σ définie par :

$$\langle \sigma, \varphi \rangle = \text{Tr}(\int e^{it\sqrt{\Delta}} \rho(t)|dt|),$$

ce qui justifie l’emploi de l’expression suivante :

$e^{it\sqrt{\Delta}}$ est à trace au sens des distributions.

L’objectif principal de notre travail est d’étudier cette distribution σ, et plus précisément ses singularités. D’après le développement en fonctions propres, la distribution σ est donnée par :

$$\sigma(t) = \sum e^{it\sqrt{\lambda_n}}.$$

La démarche des formules de trace ([25, 12]) consiste à essayer d’exprimer cette distribution à l’aide du noyau de l’opérateur $e^{it\sqrt{\Delta}}$. Il nous faut donc dans un premier temps expliquer comment on récupère la trace d’un opérateur A à partir de son noyau.

Trace et noyau

Le résultat principal permettant de calculer la trace d’un opérateur A à l’aide de son noyau est la proposition suivante.

Proposition 30 Il existe N tel que pour tout opérateur A de noyau $a(m_1, m_0)$. Si $A\Delta^N$ est borné, alors

$$\text{Tr}(A) = \int_M a(m, m)|dm|.$$

Preuve : notons $\psi_n = A\phi_n$. Le noyau de A a l’expression :

$$a(m_1, m_0) = \sum_n \psi_n(m_1)\overline{\sigma_n}(m_0),$$

et

$$\text{Tr}(A) = \sum \langle \psi_n, \phi_n \rangle.$$

Par hypothèse, $A\Delta^N$ est continu, donc

$$||\psi_n|| = O(n^{-N}),$$

ce qui assure que la somme définissant a converge dans $L^2(M) \otimes L^2(M)$, que l’on peut définir $a(m,m)$ dans $L^1(M)$ et que

$$\text{Tr}(A) = \int a(m, m)|dm|.$$
Ce qui termine la preuve. □

Remarques :
- Par dualité, l’énoncé précédent reste vrai si $\Delta^N A$ est borné (en particulier si A est régularisant).
- La conclusion du théorème précédent est fausse si on suppose seulement que $a(x,x)$ est bien définie et intégrable.
- La proposition précédente est identique à celle qu’on peut écrire dans le cadre non-singulier.

Singularités de la trace

Un des aspects de la construction développée dans la prochaine partie va être de savoir quelles parties du propagateur de l’équation des ondes vont à terme contribuer aux singularités de σ. Il est donc important de savoir a priori que certains opérateurs donnent une contribution C^∞. On s’intéresse plus particulièrement aux opérateurs qui s’écrivent $e^{it\sqrt{\Delta}} A$ avec A régularisant.

Proposition 31 Soit A un opérateur régularisant, alors l’opérateur $e^{it\sqrt{\Delta}} A$ est à trace au sens des distributions, et $\text{Tr}(e^{it\sqrt{\Delta}} A)$ est C^∞.

Preuve : on choisit un compact K de \mathbb{R} une fonction test $\rho(t)$ à support dans K. Notons σ_A la trace de $e^{it\sqrt{\Delta}} A$. Pour k donné, on va montrer que $\sigma_A^{(2k)}$ est dans $L^2(K)$. On évalue donc

$$\langle \sigma_A, \rho^{(2k)} \rangle = \sum_n \langle \int \rho^{(2k)}(t)e^{it\sqrt{\Delta}}|dt|A\phi_n,\phi_n \rangle.$$

Effectuant $2k$ intégrations par parties on doit écrire la somme de terme général

$$\langle \int \rho(t)e^{it\sqrt{\Delta}}|dt|\Delta^k A\phi_n,\phi_n \rangle.$$

Par une manipulation d’écriture, on peut réécrire ce terme :

$$a_n = \langle \int \rho(t)e^{it\sqrt{\Delta}}|dt|(I + \Delta)^N A\phi_n,\phi_n \rangle.$$

Comme A est régularisant, l’opérateur

$$(I + \Delta)^N \Delta^k A$$

est borné. De plus, on peut estimer la norme opérateur de $\int e^{it\sqrt{\Delta}} \rho(t)|dt|$ par :

$$\| \int e^{it\sqrt{\Delta}} \rho(t)|dt| \| \leq C_K \| \rho \|_{L^2}.$$

On obtient finalement la majoration suivante :

$$|a_n| \leq C\| \rho \|_{L^2}(1 + \lambda)^{-N}.$$

Choisissant N pour que cette dernière somme converge, on a bien montré que la $2k$-ième dérivée de σ_A était L^2. Les choix de k et K étant arbitraires, la distribution σ_A est donc C^∞. □

Finalement, la conclusion de cette étude est que comme dans le cas sans singularités, les singularités de σ sont reliées aux singularités de $e^{it\sqrt{\Delta}}$. L’objectif de la partie suivante va être de donner une description précise de celles-ci, en essayant de conserver l’information géométrique véhiculée par l’équation des ondes.
Chapitre 3

Propagation des singularités

3.1 Introduction

Étudier l’équation des ondes associée à un opérateur autoadjoint positif Δ consiste à résoudre le problème de Cauchy suivant :

$$\begin{align*}
\left\{ \begin{array}{l}
[\partial_t^2 + \Delta] u(t,m) = 0, \\
\lim_{t \to 0} u(t,\cdot) = 0, \\
\lim_{t \to 0} \partial_t u(t,\cdot) = u_0,
\end{array} \right.
\end{align*}$$

pour une donnée initiale u_0 quelconque.

Ce problème est bien posé dès que u_0 est L^2, et grâce au calcul fonctionnel continu, la solution du système précédent s’écrit :

$$u(t) = \frac{\sin(t\sqrt{\Delta})}{\sqrt{\Delta}} u_0.$$

Ce qui peut se traduire dans la base des (ϕ_i) par :

$$u_0 = \sum a_i \phi_i \implies u(t) = \sum a_i \frac{\sin(t\sqrt{\lambda_i})}{\sqrt{\lambda_i}} \phi_i.$$

Remarque : il faut prolonger $\frac{\sin(t\sqrt{\gamma})}{\sqrt{\gamma}}$ par t en $z = 0$.

On peut alternativesmement étudier une des demi-équation des ondes :

$$\begin{align*}
\left\{ \begin{array}{l}
[\pm i\partial_t \pm \sqrt{\lambda}] u_\pm (t,m) = 0, \\
\lim_{t \to 0} u(t,\cdot) = u_0,
\end{array} \right.
\end{align*}$$

dont les solutions sont

$$u_\pm (t) = \exp[\pm i t \sqrt{\lambda}] u_0,$$

et les développements en fonctions propres associés.

La question de la propagation des singularités se présente alors en deux parties.

- Peut-on, connaissant le lieu des singularités de u_0 localiser celles de $u(t)$ (ou de $u_\pm(t)$) ?
Peut-on, connaissant la nature des singularités de u_0, estimer celles de $u(t)$ (ou de $u_\pm(t)$) ?

Dans le cas le plus favorable, où Δ est le laplacien riemannien sur une variété compacte lisse sans bord, les réponses à ces questions sont liées au flot géodésique sur la variété. En particulier, les singularités de $u(t)$ se trouvent à l’extrémité des géodésiques de longueur t dont l’origine est une singularité de u_0.

Ce résultat a été étendu aux variétés à bord (cf [42]) et aux cônes (cf [15]). Dans ce dernier cas, il faut aussi tenir compte des géodésiques diffractives. Le but de cette partie est de montrer que cette propriété est encore vraie sur une s.e.s.c. M. De plus, on veut montrer que la singularité au voisinage d’une géodésique diffractive ne dépend que des points coniques rencontrés et des angles de diffraction le long de cette géodésique. Ce résultat n’est pas à proprement parler nouveau ; les étapes de la preuve sont données dans [15], et il est montré dans le cadre des polygones dans [30, 27]. L’intérêt de la construction que l’on présente ici réside surtout dans la précision avec laquelle on suit les géodésiques diffractées ; précision qui permet de mettre en place un calcul symbolique dans la partie suivante.

Le cadre symplectique est naturel pour l’étude de la propagation des singularités. On va donc commencer par étudier les propriétés symplectiques des géodésiques d’une s.e.s.c. On rappellera ensuite les résultats principaux de [15]. Ces derniers entraîneront directement la propagation des singularités sur M pour des temps suffisamment petits. On discutera à ce moment-là des avantages et inconvénients de travailler avec $\frac{\sin(t \Delta)}{\sqrt{\Delta}}$ ou avec $e^{it \sqrt{\Delta}}$. La fin de ce chapitre traitera particulièrement de l’écriture du propagateur de l’équation des ondes pour des temps arbitrairement grands. Après avoir examiné ce qui se passe le long d’une géodésique ayant au plus une diffraction, on mettra en place un découpage géométrique qui permet de “suivre” les géodésiques diffractives. Ce découpage nous permettra de donner une description du propagateur de l’équation des ondes à l’aide de termes faisant apparaître les diffractions successives.

3.2 Aspects symplectiques

La référence [24] fournit les notions concernant le comportement du front d’onde $WF(u)$
d’une distribution u sous l’action de diverses opérations.

Notations :

- Considérons une variété X, le point générique de T^*X sera noté (x, ξ), et d’une manière générale la lettre grecque désignera la variable duale de la lettre latine correspondante (avec la convention que η correspond à y). Ainsi, (x, y, ξ, η) désignera le point générique de $T^*(X \times Y)$. On notera ω_X la structure symplectique canonique de T^*X, $\omega_X \oplus \omega_Y$ fournit une forme symplectique sur $T^*(X \times Y)$.
- Lorsque X est muni d’une structure riemannienne, on a une identification naturelle entre TX et T^*X, dans cette identification, si (x, ξ) correspond à (x, u), on posera $\xi = (u_x)_x$ (où l’indice x peut éventuellement être omis.
- Pour une sous-variété lagrangienne conique Λ, on dira que $f(x) \theta$ est une fonction phase définissant Λ si $Df_x \neq 0$ lorsque $f(x) = 0$, et si Λ est une des composantes de la sous-variété conormale à $f(x) = 0$, plus précisément :

$$\Lambda = \{ (x, \xi) \mid f(x) = 0, \xi = \theta Df_x, \theta > 0 \}.$$
On notera $N^*_\tau(S(p,q))$ la variété lagrangienne définie par la fonction phase $[d_M(-p,q) - r_0] \theta$.

- La manière dont un opérateur A de $\mathcal{D}'(Y)$ dans $\mathcal{D}'(X)$ transporte les singularités est liée à une partie de $T^*(X \times Y)$ notée WF$^\tau(A)$ (cf [24]). Un opérateur intégral de Fourier A agissant de $\mathcal{C}_c^\infty(Y)$ dans $\mathcal{D}'(X)$ est associé à une sous-variété lagrangienne conique Λ_A de $T^*(X \times Y)$. Par ailleurs, pour une partie Λ de $T^*(X \times Y)$ on définit

$$\Lambda' = \{(x,y,\xi,\eta) \mid (x,y,\xi,\eta) \in \Lambda\},$$

de sorte que pour un OIF A, on a l'égalité $WF^\tau(A) = \Lambda'_A$. On appelle relation canonique de Y dans X, une sous-variété Λ de $T^*(X \times Y)$ telle que Λ' soit une sous variété lagrangienne conique.

Remarque : on peut éviter le recours à Λ' en disant qu'une relation canonique est une sous variété lagrangienne conique de $T^*(X \times Y)$ muni de la structure $\omega_X \ominus \omega_Y$.

Avant d'essayer d'exprimer des résultats de propagations des singularités, il faut définir ce qu'on entend par T^*M et par $WF(u)$ quand u appartient à $H_\Delta^{-\infty}$. On note $T^*(M)$ l'ensemble T^*M_0 prolongé par continuité au dessus des points coniques d'angle de la forme $\frac{2\pi}{r}$, et complété par toutes les directions possibles en un point conique autre.

Pour une distribution u de $H_\Delta^{-\infty}$, on note $WF_0(u)$ son front d'onde en tant que distribution sur M_0, et on note

$$WF(u) = WF_0(u) \cup_{p \notin L(u)} T^*_p(M),$$

où $L(u)$ est l'ensemble des points coniques au voisinage desquels u est lisse.

Remarque : cette manière d'étendre la notion de front d'onde au dessus des points coniques est adaptée à la propagation des ondes car une onde frappant un point conique est réémise dans toutes les directions possibles. Si ce n'était pas le cas, il faudrait être plus précis au voisinage des points coniques.

Avec cette définition,

$$\Lambda_T \circ T^*(B_M(p,\varepsilon))$$

designe l'extrémité de toutes les géodésiques de longueur T issues de $B_M(p,\varepsilon)$ (dans toutes les directions possibles). Si T et ε sont assez petits, tout se passe sur le cône de sommet p.

Dans l'étude de l'équation des ondes sur une variété riemannienne X, un fait important est que le flot géodésique fournit une relation canonique. Plus précisément, notant C_T^0, le flot géodésique (dans T^*X),

$$\Lambda_T^0 = \{(x,y,\xi,\eta) \mid (x,\xi) = C_T^0(T), g(0) = m_0 \mu_0 = \pm |\mu_0| g(0), \mu_0, g(T) = m_1, \mu_1 = \pm |\mu_1| (g(T), \mu_1_0) \}.$$

est une relation canonique de X dans X. Le but de cette partie est de montrer que, de manière analogue, les Γ_T fournissent aussi des relations canoniques. On définit donc

$$\Lambda_{\pm T} = \{(m_1, m_0, \mu_1, \mu_0) \in T^*(M \times M) \mid \exists g \in \Gamma_T, \mid \mu_0 \mid = \mid \mu_1 \mid, g(0) = m_0, \mu_0 = \pm |\mu_0| (g(0), \mu_0), g(T) = m_1, \mu_1 = \pm |\mu_1| (g(T), \mu_1) \}.$$

Remarques :

- Un des objectifs de cette première partie va être de montrer qu'au dessus de $M_0 \times M_0$, Λ_T s'obtient à l'aide de relations canoniques.
- Avec cette définition, pour toute partie L_0 incluse dans T^*M_0, $\Lambda_T \circ L_0$, est formé de l'extrémité des géodésiques de longueur T dont l'origine est dans L_0. Ainsi, Λ_T est un bon candidat pour l'énoncé :

Soit $u_+(T)$ la solution du problème de Cauchy (3.2+) associée à la donnée initiale u_0 alors :

$$WF(u_0) \subset L_0 \Rightarrow WF(u_+(T)) \subset \Lambda_T \circ L_0.$$

- Une condition nécessaire pour que l'énoncé précédent puisse être vrai est que Λ_T vérifie une propriété de composition correspondant à la propriété de groupe de l'exponentielle. On montre donc le lemme.

Lemme 25

Soit L_0 et T_1 et T_2,

$$\Lambda_{T_1} \circ [\Lambda_{T_1} \circ L_0] = \Lambda_{T_1+T_2} \circ L_0.$$

Preuve : l'ensemble $\Lambda_{T_1+T_2}$ correspond aux géodésiques de longueur $T_1 + T_2$. De plus, $\Lambda_{T_1} \circ \Lambda_{T_1}$ revient à mettre bout à bout une géodésique de longueur T_1 avec une de longueur T_2, sans restriction si la jonction se fait en un point conique diffractif, mais sans faire d'angle si la jonction se fait au-dessus de M_0 (ou au dessus d'un point conique non-diffractif). Ces deux manières de juxtaposer deux géodésiques donnent bien une géodésique de longueur $T_1 + T_2$.

- Etant donné une partie \mathcal{V} de Γ_T, on notera $\Lambda^\mathcal{V}_T$ la partie de Λ_T correspondant aux géodésiques de \mathcal{V}. Pour ne pas surcharger les notations, on notera simplement Λ^0_T la partie de Λ_T correspondant à Γ^0_T .

Considérons un point (m_1, m_0, μ_0, μ_1) de Λ_T, il existe une géodésique g joignant m_0 à m_1 et ayant pour direction initiale et finale μ_0 et μ_1 respectivement. D'après le lemme 12, on peut mettre autour de $g([0,T])$ des voisinages réguliers (dans M). Étant donné \bar{V}_g un voisinage régulier de $g([0,T])$ (cf. p. 60), on notera \tilde{V}_g un voisinage de g dans Γ_T tel que toutes les géodésiques de \mathcal{V}_g aient leur image dans \tilde{V}_g.

On peut alors montrer la proposition suivante.

Proposition 32

Dans la situation précédente, on pose $[p]_N$ la suite des points diffractants de g. Il existe \mathcal{V}_g tel que

$$\Lambda^\mathcal{V}_g \cap \Lambda^{[p]_N}_T$$

est une relation canonique de M_0 dans lui-même.

Remarque : on ne suppose rien quant au caractère régulier ou exceptionnel de g, mais, dans cette proposition, ne sont concernées que les géodésiques qui ont les mêmes points diffractant que g.

Preuve : on va construire une fonction phase définissant $\left[\Lambda^\mathcal{V}_g \cap \Lambda^{[p]_N}_T\right]'$.

- Commençons par le cas $[p]_N = \emptyset$.

On a construit au lemme 12 une isométrie locale j d’un voisinage du segment $[0,T] \times \{0\} \subset \mathbb{R}^2$ dans M, telle que $j(t,0) = g(t)$. Notons \hat{V} l’image de j et \mathcal{V}_g le voisinage de g associé. On peut alors définir sur un voisinage de (m_0, m_1) dans $M_0 \times M_0$ la fonction $d_g(\cdot, \cdot)$ par

$$d_g(m,m') = d_{\mathbb{R}^2}([j^{-1}(m), j^{-1}(m')])$$.

Les géodésiques de \mathcal{V}_g correspondent via j à des segments. La fonction phase $[d_g(m,m') - T] \theta$ définit alors $\left[\Lambda^\mathcal{V}_g \cap \Lambda^{[p]_N}_T\right]'$ comme on le vérifie en se plaçant dans \tilde{V}_g.

- Soit maintenant $[p]_N \neq \emptyset$.
Le premier point conique rencontré est $p_{g,1}$, au temps $t_{g,1}$. Pour ε arbitraire, autour de $g_{[0, t_{g,1} - \varepsilon]}$, on peut définir comme précédemment une isométrie locale j entre un rectangle de \mathbb{R}^2 et un voisinage de la géodésique. Pour ε suffisamment petit, $g_{[t_{g,1} - \varepsilon, t_{g,1}]}$ s'identifie à une géodésique du cône $C_{\alpha_{g,1}}$. Cette identification se recycle avec l'isométrie locale j pour donner une isométrie locale j_1 entre un voisinage d'un rayon de $C_{\alpha_{g,1}}$, de longueur $t_{g,1}$ et un voisinage de $g_{[0, t_{g,1}]}$. Cette isométrie locale vérifie de plus

$$\forall t \leq t_{g,1}, \; j_1(t_{g,1} - t, 0) = g(t).$$

Grâce à cette isométrie locale, on peut définir, au voisinage de m_0 la fonction $d_g(m, p_{g,1})$ par :

$$d_g(m, p_{g,1}) = R \circ j_1^{-1}(m).$$

De même définissons une isométrie locale j_N d'un voisinage d'un rayon de longueur $T - t_{g,N} (dans C_{\alpha_p,N})$, et une fonction $d_g(p_{g,N}, m)$ au voisinage de m_1. Dans un voisinage V_g, associé à un voisinage \tilde{V}_g de g, toute géodésique est dans l'image de j_1 sur $[0, t_{g,1}]$ et dans l'image de j_N dans $[t_{g,N}, T]$. Une géodésique de $V_g \cap \Lambda_T^{[p,N]}$ a les mêmes points diffractants que g, elle correspond donc par j_1 à un rayon de $C_{\alpha_{g,1}}$ au début ; et par j_N à un rayon de $C_{\alpha_{p,N}}$ à la fin. La fonction phase

$$[d_g(m, p_{g,1}) + t_{g,N} - t_{g,1} + d_g(p_{g,N}, m')] - T] \theta,$$

definit alors $\Lambda_T^{V_g} \cap \Lambda_T^{[p,N]}$.

Cette proposition a un corollaire permettant de décrire la géométrie de Λ_T au voisinage de certains points (m, m_0, m_1, m_0).

Corollaire 16

Soit (m_1, m_0, m_1, m_0) un point de Λ_T tel que toutes les géodésiques de longueur T reliant (m_0, m_0) à (m_1, m_1) soient régulières. Au voisinage de ce point, Λ_T est une union finie de relations canoniques.

Preuve : il y a un nombre fini de géodésiques reliant (m_0, m_0) à (m_1, m_1). Chacune de celles-ci est régulière par hypothèse. L'union des morceaux construits dans la proposition précédente (en prenant à chaque fois V_g assez petit) forme ainsi Λ_T au voisinage du point considéré. □

Remarque : il peut arriver que deux géodésiques différentes donnent finalement le même morceau de Λ_T (lorsqu'elles ont les mêmes couples $(p_{g,1}, t_{g,1})$ et $(p_{g,N}, t_{g,N})$).

La situation est plus compliquée au voisinage d'une géodésique g exceptionnelle. On commence par rappeler la notion d'intersection transverse au sens de Bott (cf [25]). La définition est restreinte à des sous-variétés lagrangiennes d'un cotangent.

Définition 10 Dans T^*X, deux sous-variétés lagrangiennes coniques Λ_0, Λ_1 se couperont transversalement au sens de Bott si, en notant $\Sigma = \Lambda_0 \cap \Lambda_1$, on a les deux propriétés suivantes :

- Σ est une sous variété
- $T\Sigma = T_0\Lambda_0 \cap T_0\Lambda_1$.

Les articles [59, 41] étudient ce type d'intersection lagrangienne et construisent notamment une classe d'opérateurs qui leur sont associés.

Exemple :
plaçons-nous dans $T^*(\mathbb{R}^2 \times \mathbb{R}^2)$. On prend quatre points A,B,C,D, dans \mathbb{R}^2, alignés dans cet ordre sur l’axe des abscisses et leurs abscisses respectives a, b, c, d. On choisit $T > d - a$ et on définit les variétés lagrangiennes suivantes (par leur fonction phase) :

\[
\begin{align*}
\text{fonction phase} & \quad \text{lagrangienne} \\
\left(\left[(x_1 - x_0)^2 + (y_1 - y_0)^2\right]^{\frac{k}{2}} - T\right) \theta & \quad \Lambda_0 \\
(dM_{1,D}) + d - a + d(M_0,A) - T) \theta & \quad \Lambda_{AD} \\
(dM_{1,C}) + c - a + d(M_0,A) - T) \theta & \quad \Lambda_{AC} \\
(dM_1,C) + c - b + d(M_0,B) - T) \theta & \quad \Lambda_{AD}
\end{align*}
\]

On montre alors le lemme suivant.

Lemme 26 Les couples de variétés lagrangiennes suivantes se coupent transversalement au sens de Bott (tant qu'on ne s’approche pas des points A,B,C,D) :

- $(\Lambda_0, \Lambda_{AD})$
- $(\Lambda_{AC}, \Lambda_{AD})$
- $(\Lambda_{BC}, \Lambda_{AD})$

Preuve : cette propriété s'explique car en un point de l'intersection les courbures des sous-variétés de \mathbb{R}^2 intervenant (dont les Λ_\pm sont les conormaux) sont différentes. On le voit toutefois de façon plus directe en utilisant des paramétrisations.

- Premier cas :
 On va paramétrer Λ_0, Λ_{AD} et leur intersection. L'espace $T^*(\mathbb{R}^2 \times \mathbb{R}^2)$ est muni des coordonnées $((x_1,y_1),(x_0,y_0),(\xi_1,\eta_1),(\xi_0,\eta_0))$.
 Pour Λ_0 :
 \[
 \begin{align*}
 [0,\infty[\times [0,\infty[\times S^1 \times S^1 & \rightarrow \quad T^*(\mathbb{R}^2 \times \mathbb{R}^2) \\
 (t,\delta,\theta,\alpha) & \mapsto \left\{ (t \cos \theta + d, t \sin \theta), \\
 (t \cos \theta + d - T \cos \alpha, t \sin \theta - T \sin \alpha), \\
 (-s \sin \alpha, s \cos \alpha), \\
 (g \sin \alpha, -g \cos \alpha) \right\}.
 \end{align*}
 \]

Pour Λ_{AD} (en notant $T_{AD} = T - a + d$, et en utilisant des coordonnées polaires autour de A et de D) :

\[
\begin{align*}
[0,T_{AD}[\times [0,\infty[\times S^1 \times S^1 & \rightarrow \quad T^*(\mathbb{R}^2 \times \mathbb{R}^2) \\
(t,\delta,\theta_0,\theta_1) & \mapsto \left\{ (t \cos \theta_0 + d, t \sin \theta_0), \\
((T_{AD} - l) \cos \theta_0 + a, (T_{AD} - l) \sin \theta_0 + a), \\
(-s \sin \theta_1, s \cos \theta_1), \\
(-g \sin \theta_0, -g \cos \theta_0) \right\}.
\end{align*}
\]

L’intersection de ces deux variétés lagrangiennes correspond alors à $\theta = 0$, $\alpha = 0$ dans la première paramétrisation, et à $\theta_1 = 0$, $\theta_0 = 0$ dans la deuxième, ce qui donne bien une sous-variété. En écrivant les bases des espaces tangents que ces paramétrisations fournissent, on vérifie la condition d’intersection transverse au sens de Bott.
- Deuxième cas : on a déjà la paramétrisation de Λ_{AD}, celle de Λ_{AC} s’obtient en y remplaçant D, (resp. d) par C, (resp e). L’intersection est obtenue dans ces deux paramétrisations en faisant $\theta_0 = \theta_1 = 0$, et on conclut comme précédemment.

- Troisième cas : on obtient la paramétrisation de Λ_{BC} en remplaçant dans celle de Λ_{AD}, d par c et a par b. Là aussi l’intersection s’obtient en faisant dans les deux paramétrisations $\theta_0 = \theta_1 = 0$ et la condition sur les espaces tangents se voit en exprimant les bases.

On se place maintenant dans Λ_T au voisinage d’un point $(m_1,...,m_0,\mu_1,\mu_0)$ correspondant à une géodésique exceptionnelle g. La suite des points diffractants de g est notée $[p]_N$ et $[p]^{q'}_N$, désigne une suite de points diffractants telle que

$$g \in Adh(\{p\}^{q'}_N).$$

On a alors la proposition.

Proposition 33

*Dans la situation précédente, il existe une relation canonique $\Lambda^{[p]^{q'}_N}_T$, prolongeant $\Lambda^{[p]^{q'}_N}_T$, et un voisinage \mathcal{V}_g tel que les relations canoniques $\Lambda^{\mathcal{V}_g}_T \cap \Lambda^{[p]^{q'}_N}_T$, $\Lambda^{\mathcal{V}_g}_T \cap \Lambda^{[p]^{q'}_N}_T$, se coupent transversalement au sens de Bott.***

Preuve : d’après l’étude sur les géodésiques exceptionnelles, on peut mettre autour de g un voisinage de type \mathcal{R}^k autour des premières diffractions, et un autre autour des dernières diffractions. On peut voir ces deux rectangles fendus autour de chacune des extrémités du segment $[0,T] \times \{0\}$ de \mathcal{R}^2. On a alors une isométrie locale j définie de ces deux rectangles dans un voisinage de g. La suite $[p]^{q'}_N$ est soit vide, soit une sous-suite de $[p]_N$ de la forme

$$[p]^{q'}_N = (p_{g,i}, \ldots, p_{g,i+k}).$$

Dans le premier cas, l’image par j des deux rectangles fendus fournit un voisinage de g et on prend le voisinage \mathcal{V}_g associé, dans le deuxième cas, on prend comme \mathcal{V}_g l’ensemble des géodésiques telles que l’image de $[0,t_{g,i}] \cup [t_{g,i},N]'T$ soit dans l’image de j. En utilisant l’isométrie locale j, on peut définir les applications suivantes.

- Dans le cas $[p]^{q'}_N = 0$, en transportant la distance induite par \mathcal{E}^2 sur l’union des deux rectangles fendus, on obtient une fonction $d_g(m,m')$ définie pour (m,m') au voisinage de (m_0,m_1). La relation canonique associée à $[d_g(m,m') - T] \theta$ prolonge bien Λ_T. On note $\Lambda^{[p]^{q'}_N}_T$ la relation canonique ainsi obtenue. Celle-ci revient à considérer les segments de longueur T de \mathcal{R}^k, sans tenir compte des coupures.

- Dans l’autre cas, on peut définir $d_g(\cdot,p_{g,i})$ et $d_g(p_{g,i+k},\cdot)$ respectivement au voisinage de m_0 et m_1 en transportant les coordonnées polaires dans \mathcal{E}^2 de centre $(t_{g,i},0)$ et $(t_{g,i+k},0)$ respectivement. On définit alors $\Lambda^{[p]^{q'}_N}_T$ la relation canonique associée à la fonction phase

$$[d_g(m,p_{g,i}) + t_{g,i+k} - t_{g,i} + d_g(p_{g,i+k},m') - T] \theta.$$

Cette dernière prolonge bien $\Lambda^{[p]^{q'}_N}_T$, car elle contient les points correspondant aux géodésiques de $\Gamma^{[p]^{q'}_N}_T$ suffisamment proches de g, mais elle ne tient pas compte des coupures.
On remarque qu’on est toujours dans le cas de l’exemple traité et du lemme 26, ce qui assure que ces relations canoniques se coupent transversalement au sens de Bott.

Remarque : dans la proposition précédente, l’intersection Σ des deux relations canoniques ne dépend pas de la sous-séquence $[p]_{N}$. La géodésique g peut être prolongée sur $]-\varepsilon_0, T+\varepsilon_0[$, et on a

$$\Sigma = \{(g(T + \varepsilon), g(\varepsilon), \mu(g'(T + \varepsilon), r), -\mu(g'(\varepsilon), r)), |\varepsilon| \leq \varepsilon_0, \mu \in \mathbb{R}^+ \}.$$

Un des objectifs des parties suivantes va être de montrer que le propagateur des ondes à l’instant T est associé à Λ_T. Dans le cas où Λ_T est constitué d’une union de sous-variétés lagrangiennes conique, on pourra essayer de montrer que le propagateur est dans la classe des opérateurs intégraux de Fourier, mais cette classe sera sûrement trop petite pour étudier les intersections lagrangiennes.

La partie suivante est consacrée à rappeler les résultats principaux de [15]

3.3 Temps petits

3.3.1 Résultats sur le cône

Les articles [15] étudient en détail l’équation des ondes sur un cône (non-nécessairement euclidien). On va restreindre leur champ d’application à \mathcal{C}_α. On étudie donc le problème de Cauchy (3.1) sur \mathcal{C}_α. Le deuxième article de [15] donne une expression explicite du noyau de $\frac{\sin r \sqrt{\Delta_\alpha}}{\sqrt{\Delta_\alpha}}$. On rappelle que, pour une donnée initiale u_0, on note $u(t) = \frac{\sin r \sqrt{\Delta_\alpha}}{\sqrt{\Delta_\alpha}} u_0$, et $u_+(T) = e^{i r \sqrt{\Delta_\alpha}} u_0$.

La première propriété est la propagation à vitesse finie.

Proposition 34 (Vitesse finie)

Soit u_0 une donnée initiale à support dans un compact K de \mathcal{C}_α

$$\forall T, \text{supp}(u(T)) \subset \{m, d_{\mathcal{C}_\alpha}(m, K) \leq T\}.$$

La deuxième proposition concerne plus précisément la propagation des singularités.

Proposition 35 (Propagation des singularités)

*Soit $u_0 \in H^{\infty}_{\Delta_\alpha}$ et $WF(u_0) = L_0$. Pour tout temps T, on a alors :

$$WF(u(T)) \subset [\Lambda_T \circ L_0] \cup [\Lambda_{-T} \circ L_0] \quad \text{et} \quad WF(u_+(T)) \subset [\Lambda_T \circ L_0].$$ (3.3)

Remarque : sur le cône Λ_T n’est formé que de deux composantes Λ_T^0 et $\Lambda_T^{[p]}$. On appelle “front primaire” la partie correspondant aux géodésiques non-diffactives Λ_T^0 et front diffacté la partie correspondant aux géodésiques diffactives.

Dans cette proposition, on a utilisé la notion de front d’onde définie page 89. C’est le théorème 3.10 de [15] qui justifie cette définition et qui prouve cette proposition. En examinant la preuve de ce théorème, on peut être un peu plus précis sur le comportement au sommet du cône.

Proposition 36 (Près du sommet)

Soit u_0 une donnée initiale L^2 telle que supp.(u_0) $\subset B_\alpha(r)$ alors $\forall T > r$, $u(T)$ et $u_+(T)$ sont lisses dans $B_\alpha(T - r)$. De plus, pour toute fonction de troncature p_1 et p_2 respectivement dans $B_\alpha(r)$ et $B_\alpha(T - r)$, l’opérateur $p_2 e^{i r \sqrt{\Delta_\alpha}} p_1$ est régularisant.
Il nous faut maintenant revenir sur M. On va tout d’abord étudier les temps petits, ainsi que les différences entre sinus et exponentielle.

3.3.2 Retour sur M

La propagation à vitesse finie est essentielle pour permettre le passage à M. En effet, l’extension autoadjointe Δ choisie est telle que les différents points coniques “s’ignorent” et qu’au voisinage de chacun la dynamique est donnée par C_α. La propagation à vitesse finie permet donc de donner directement une expression du propagateur pour les temps petits.

Soit $u_0 \in L^2(M)$ telle que $\text{supp.}(u_0) \subset B_M(p_0, r_0)$, u_0 s’identifie à une fonction de C_α. Notons $u_{\alpha_i}(T)$, la solution du problème de Cauchy sur C_α, de donnée initiale u_0. D’après la propagation à vitesse finie, tant que $T < r_0'$, u_{α_i} est à support dans $B_{\alpha_i}(r_0 + r_0')$ et s’identifie donc à une fonction sur M. Cette dernière vérifiant le problème de Cauchy sur M associé à la donnée initiale u_0 on a :

$$\forall T < r_0', \quad \frac{\sin(T\sqrt{\Delta})}{\sqrt{\Delta}} u_0 = u_{\alpha_i}(T).$$

De même, au voisinage d’un point $m \in M_{p_0}$, on peut trouver un r et un ε tels que $B_M(m_0, r + \varepsilon)$ soit isométrique à la boule de \mathbb{R}^2 de même rayon. Grâce à la propagation à vitesse finie dans \mathbb{R}^2, pour toute donnée initiale dans $L^2(B_M(m_0, r))$, on a :

$$u(T) = \frac{\sin(T\sqrt{\Delta_0})}{\sqrt{\Delta_0}} u_0,$$

où $\frac{\sin(T\sqrt{\Delta_0})}{\sqrt{\Delta_0}}$ désigne le propagateur dans \mathbb{R}^2 et l’égalité précédente est vraie pour $T < \varepsilon$.

On peut extraire du recouvrement

$$M = \bigcup_i B(p_i, r_0) \bigcup_{m_0 \in M_{p_0}} B(m_0, r)$$

un sous recouvrement fini. Notons $(\chi_i)_{i \leq N_0}$ une partition de l’unité associée à ce sous-recouvrement fini, telle que χ_i soit à support dans $B(p_i, r_0)$ pour les premiers indices i. On a alors la proposition :

Proposition 37

Il existe un temps ε_0 tel que, pour toute donnée initiale u_0, et tout temps inférieur à ε_0 :

$$\frac{\sin(T\sqrt{\Delta})}{\sqrt{\Delta}} u_0 = \sum_{p \in P} \frac{\sin(T\sqrt{\Delta_{\alpha_i}})}{\sqrt{\Delta_{\alpha_i}}} \chi_i u_0 + \sum_j \frac{\sin(T\sqrt{\Delta_0})}{\sqrt{\Delta_0}} \chi_j u_0. \quad (3.4)$$

On obtient alors le corollaire immédiat.

Corollaire 17 (Propagation des singularités (temps petits))

Soit u_0 lisse près des points coniques et L_0 son front d’onde, et

$$u(T) = \frac{\sin(T\sqrt{\Delta})}{\sqrt{\Delta}} u_0,$$

alors :

$$\forall T < \varepsilon_0, \ WF(u(T)) \subset [\Lambda_T \circ L_0] \cup [\Lambda_{-T} \circ L_0].$$
En dérivant l’égalité (3.4), on obtient l’égalité correspondante pour le \(\cos \):

\[
\cos(T \sqrt{\Delta}) u_0 = \sum_{p_i \in P} \cos(T \sqrt{\Delta_{\alpha_i}}) \chi_i u_0 + \sum_j \cos(T \sqrt{\Delta_0}) \chi_j u_0.
\] (3.5)

Par la suite, on préfère travailler avec l’exponentielle plutôt qu’avec le sinus (ou le cosinus), car on pourra alors utiliser la propriété de groupe. On voudrait donc écrire une égalité identique à (3.4) et (3.5), mais pour \(u_+ \). Pour l’obtenir, il suffit d’appliquer \(i \sqrt{\Delta} \) à (3.4) et de l’ajouter à (3.5). Pour avoir l’égalité recherchée, il faut alors être capable de comparer \(\sqrt{\Delta} \) sur \(M \) avec les \(\sqrt{\Delta_{\alpha}} \) sur \(C_{\alpha} \), et \(\sqrt{\Delta_0} \) sur \(\mathbb{R}^2 \). Mais aucun de ces opérateurs n’est différentiel, notamment, même si \(u \) est à support très près du sommet de \(C_\alpha \), il n’y a aucune raison pour que \(\sqrt{\Delta_\alpha} u \) s’identifie à une fonction sur \(M \). Le lemme suivant sert à montrer que, modulo régularisant, c’est quand même vrai.

Lemme 27

1. Près d’un point conique.

 Soit \(r \) et \(\varepsilon \) tels que \(B_M(p; r + \varepsilon) \) soit isométrique à la boule \(B_\alpha(r + \varepsilon) \). Soit \(\chi \), une fonction \(\mathcal{C}^{\infty} \) sur \(C_\alpha \), valant 1 sur un voisinage de \(B_\alpha(r) \) et 0 hors de \(B_\alpha(r + \varepsilon) \). Soit \(u \), une fonction sur \(M \) à support dans \(B_M(p; r_0) \), et telle que:

 \[
u \in H^1_{\Delta_\alpha}(C_\alpha),
\]

alors \(u \) est dans \(H^1_{\Delta}(M) \) et il existe un opérateur régularisant \(R \) tel que

\[
\sqrt{\Delta} u = \chi \sqrt{\Delta_\alpha} u + R u,
\]

2. Loin des points coniques.

 Soit \(u \) une fonction sur \(M \), à support compact dans une boule \(B(m_0, r) \) telle qu’il existe \(\varepsilon \) et \(B(m_0, r + \varepsilon) \) soit isométrique à la boule de \(\mathbb{R}^2 \) correspondante. Si \(u \) (vue comme fonction sur \(\mathbb{R}^2 \)) est dans \(H^1 \), alors \(u \) (vue sur \(M \)) est dans \(H^1_{\Delta}(M) \),

\[
\sqrt{\Delta} u = \chi_{m_0} \sqrt{\Delta_0} u + R u \in H^\infty_{\Delta}(M),
\]

où \(\chi_{m_0} \) est une fonction \(\mathcal{C}^{\infty} \) valant 1 sur un voisinage de \(B_M(m_0, r) \) et 0 hors de \(B_M(m_0, r + \varepsilon_0) \), \(\Delta_0 \) est le laplacien dans \(\mathbb{R}^2 \), et \(R \) est régularisant.

Preuve : il suffit d’adapter l’argument de [15] Lemme 3.9 On part de l’égalité :

\[
\lambda^{-\frac{1}{2}} = \int_0^\infty \frac{\cos(s \sqrt{\lambda})}{s^\frac{1}{2}} ds.
\]

On choisit ensuite une fonction de troncature \(\rho_{s_0}(s) \) nulle hors de \([0, s_0]\) et valant 1 sur \([0, \frac{s_0}{2}]\) (on ajustera le \(s_0 \) plus tard). On définira alors sur \(\mathbb{R} \) les fonctions continues :

\[
A_{s_0}(\lambda) = \sqrt{\lambda} \int_0^\infty \rho_{s_0}(s) \frac{\cos(s \sqrt{\lambda})}{s^\frac{1}{2}} ds,
\]

\[
B_{s_0}(\lambda) = \sqrt{\lambda} \int_0^\infty [1 - \rho_{s_0}(s)] \frac{\cos(s \sqrt{\lambda})}{s^\frac{1}{2}} ds,
\]

de sorte que \((A_{s_0}(\lambda) + B_{s_0}(\lambda))^2 = \sqrt{\lambda}\). Par le calcul fonctionnel continu, on peut définir \(A_{s_0}(\Delta) \) et \(B_{s_0}(\Delta) \). Pour \(B_{s_0} \), la fonction \(1 - \rho_{s_0} \) dans l’intégrale tronque loin de 0. Des
intégrations par parties montrent alors que $B_{s_0}(\Delta)$ est régularisant. On peut de même définir sur \mathcal{C}_α (resp. \mathbb{R}^2) les opérateurs $A_{s_0}(\Delta)$ et $B_0(\Delta)$ (resp. id. avec Δ_0). Pour montrer le point 1 du lemme, on prend alors u_0 dans $H^1_{\Delta_0}$ à support dans $B_\alpha(r)$. Dans l’égalité,

$$
\Delta_0^{\frac{1}{2}} = A_{s_0}(\Delta_0)^2 + 2A_{s_0}(\Delta_0)B_0(\Delta_0) + B_0(\Delta_0)^2,
$$

les deux derniers termes sont régularisants, donc :

$$
\Delta_0^{\frac{1}{2}} = A_{s_0}(\Delta_0)^2 + R_0,
$$

où R_0 est régularisant.

Dans la définition de A_{s_0}, n’intervient $\cos(s\Delta_0)$ que pour des temps inférieurs à s_0. Par ailleurs, il existe un $s_1 < \varepsilon$ tel que χ soit identiquement 1 sur $B_M(p_0, r_0 + s_1)$. En choisisant $s_0 < \frac{\varepsilon}{2}$, les singularités de $A_{s_0}(\Delta_0)^2u_0$,

sont dans $B_\alpha(p_0, r + s_1)$ d’où :

$$
\chi A_{s_0}(\Delta_0)^2 = A_k(\Delta_0)^2 + R_1,
$$

où R_1 est régularisant. Grâce à la troncature, cette égalité peut être vue sur M. En utilisant les mêmes arguments, on peut écrire exactement la même égalité en remplaçant Δ_0 par Δ. Il reste alors à voir que grâce à l’égalité (3.5), avec s_0 choisi comme ci-dessus,

$$
A_k(\Delta_0)^2 = A_k(\Delta)^2,
$$

comme opérateurs de $H^1_1(B(p_0, r_0))$ dans $L^2(M)$ ce qui finit de montrer le point 1. Le point 2 se fait de manière analogue.

Remarque: ce lemme permet de montrer que le lemme 23 est valable pour $s = 1$, et on peut l’adapter pour montrer le cas général.

Ce lemme, couplé aux égalités (3.4), (3.5) permet de montrer qu’au voisinage de tout point, et pour un temps assez petit, $e^{iT\sqrt{\Delta_0}}$ est décrit (modulo régularisant) par $e^{iT\sqrt{\Delta}}$ ou $e^{iT\sqrt{\Delta_0}}$. Les troncatures pallient le fait que $e^{iT\sqrt{\Delta}}$ ne propage pas les singularités à vitesse finie et font que les égalités ne sont vraies que modulo un opérateur régularisant.

Proposition 38

- **Loin des points coniques.**

Soit m_0, r, et ε tels que $B_M(m_0, r + 2\varepsilon)$ est isométrique à la boule de \mathbb{R}^2 de même rayon. Soit χ une fonction de troncature valant 1 sur un voisinage de $B_M(m_0, r + \varepsilon)$, et 0 en dehors de $B_M(m_0, r + 2\varepsilon)$. Il existe alors une famille d’opérateurs R_T, régularisants de $L^2(B_M(m_0, r))$ dans $H^\infty_\Delta(M)$ telle que :

$$
\forall T < \varepsilon, \forall u_0 \in L^2(B(m_0, r)),
\chi e^{iT\sqrt{\Delta}}u_0 = e^{iT\sqrt{\Delta_0}}u_0 + R_Tu_0.
$$

(3.6)

- **Près d’un point conique.**

On choisit $\varepsilon < r_0$ et χ_i une fonction de troncature C^∞ valant 1 sur un voisinage de $B_M(p_0, r_0 + \varepsilon)$, et 0 hors de $B_M(p_0, r_0 + r_0')$. Il existe alors une famille d’opérateurs régularisant R_T de $L^2(B_M(p_0, \varepsilon))$ dans $H^\infty_\Delta(M)$ telle que :

$$
\forall T \leq r_0, \forall u_0 \in L^2(B(p_0, \varepsilon)),
\chi_i e^{iT\sqrt{\Delta}}u_0 = \chi_i e^{iT\sqrt{\Delta_0}}u_0 + R_Tu_0.
$$

(3.7)
Preuve : la démonstration est la même dans les deux cas. Montrons le premier résultat. D’après la propagation à vitesse finie, on a :
\[
\forall T < \varepsilon, \forall u_0 \in L^2(\mathcal{B}(m_0, r)),
\]
\[
\cos(T \sqrt{\Delta})u_0 = \cos(T \sqrt{\Delta_0})u_0, \quad \text{et}
\]
\[
\frac{\sin(T \sqrt{\Delta})}{\sqrt{\Delta}}u_0 = \frac{\sin(T \sqrt{\Delta_0})}{\sqrt{\Delta_0}}u_0,
\]
où cette dernière équation a en fait lieu dans \(\mathcal{B}(m_0, r + \varepsilon) \). D’après le lemme 27, on peut alors écrire :
\[
i \sin(T \sqrt{\Delta})u_0 = i \chi \sin(T \sqrt{\Delta_0})u_0 + R_T u_0.
\]
On obtient alors l’égalité cherchée en additionant (3.8) et (3.9) (on remarque aussi que multiplier (3.8) par la fonction de troncature \(\chi \) ne change rien du fait de la propagation à vitesse finie). \(\square \)

Grâce à une partition de l’unité, cette proposition admet le corollaire suivant, qui exprime la propagation des singularités pour les temps petits.

Corollaire 18 Il existe \(\varepsilon_0 \) tel que : pour toute donnée initiale \(u_0 \) dans \(H^{\infty}_{\Delta_0} \) telle que \(WF(u_0) = L_0 \), pour tout temps \(T < \varepsilon_0 \), on a alors :
\[
WF(u(T)) \subset [\Lambda_T \circ L_0] \cup [\Lambda_{-T} \circ L_0]
\]
\[
WF(u_+) (T) \subset [\Lambda_T \circ L_0].
\]

La partie suivante va être consacrée à décrire \(e^{i T \sqrt{\Delta}} \) pour des temps arbitrairement grands, de façon à pouvoir étudier la propagation des singularités.

3.4 Temps grands

Montrer la propagation des singularités sur \(M \), c’est montrer que l’inclusion (3.3) est valable sur \(M \) et pour un temps arbitrairement grand. Comme dans le cadre sans points coniques, celle-ci résulte de la propagation des singularités pour des temps petits, et de la propriété de groupe de l’exponentielle. On peut ainsi énoncer le théorème :

Théorème 13 Pour toute donnée initiale \(u_0 \) et tout temps \(T_0 \), on a l’inclusion suivante :
\[
WF(e^{i T_0 \sqrt{\Delta}} u_0) \subset \Lambda_{T_0} \circ WF(u_0).
\]

Preuve : elle se fait par induction sur le temps. Pour \(T \leq \varepsilon_0 \), c’est le corollaire 18, et si le lemme est vrai pour \(t \leq T_0 \), la propriété de groupe, le corollaire 18, et le lemme de composition géométrique des fronts d’onde 25 assure que c’est vrai jusqu’au temps \(T_0 + \varepsilon_0 \). \(\square \)

Pour pouvoir utiliser ce théorème de façon efficace, il est intéressant d’avoir une description de \(\Lambda_T \) pour des temps grands. De cette description classique résultera un développement de \(e^{i T \sqrt{\Delta}} \). Pour cela, on introduit la notion de propagateur microlocalisé au voisinage d’une géodésique. On note \(K_g(T) \) un tel opérateur, et on renvoie à la définition 4.10 pour plus de précision. Ces opérateurs vérifieront la propriété suivante :
\[
\exists \mathcal{V}_g \ \forall u_0 \text{ lisse près de } P
\]
\[
WF(K_g(T) u_0) \subset \Lambda_{T_0} \circ WF(u_0),
\]
(3.11)
(cf. page 90 pour la définition $\Lambda_{T_0}^{\mathcal{V}}$). Un des intérêts de ces propagateurs microlocalisés sera de pouvoir montrer, pour le propagateur de l’équation des ondes, le développement suivant :

$$e^{it\sqrt{-\Delta}} = \sum_{\text{fini}} K_g(T) + R \quad (R \text{ régularisant}).$$

(3.12)

Un tel développement sera appelé développement en diffractions multiples car dans la définition des K_g n’interviennent que les diffractions successives aux points coniques rencontrés.

La construction des propagateurs microlocalisés revient essentiellement à effectuer les compositions évoquées dans la preuve du théorème 13, en regroupant tous les opérateurs régularisants ainsi créés. Dans le cadre sans points coniques, un tel développement, en fonction de propagateurs microlocalisés le long des géodésiques, s’obtient à l’aide d’une partition de l’unité microlocale recouvrant l’ensemble des géodésiques de longueur T. Cela suffit car le point de départ, la direction et la longueur déterminent alors uniquement la géodésique. Ceci n’est plus vrai sur M, et le développement en diffractions multiples dépendra d’une construction purement classique décrivant de façon précise la sphère de rayon T centrée en un point m_0.

3.4.1 Au voisinage microlocal d’une géodésique

Pour être exploitable par la suite, un propagateur microlocalisé au voisinage d’une géodésique doit présenter les caractéristiques suivantes :
- ressembler autant que possible au propagateur de l’équation des ondes,
- vérifier la propriété (3.11),
- s’exprimer “simplement” à l’aide des propagateurs libres ou sur un cône.

Avant de détailler la construction générale examinons ce qui se passe au voisinage d’une géodésique non-diff racksive.

Cas d’une géodésique ayant au plus une diffraction

Soit donc g une géodésique non diffractive de longueur T_0. On notera (m_0, μ_0) (resp. (m_1, μ_1)) l’origine (resp. l’extrémité) de g (dans $T^*(M_0)$). On peut alors montrer le lemme suivant.

Lemme 28 Pour tous voisinages microlocaux $\mathcal{V}_1, \mathcal{W}_1$ de (m_1, μ_1) vérifiant :

$$\mathcal{V}_1 \cap S^*(M_0) \subseteq \mathcal{W}_1 \cap S^*(M_0),$$

(3.13)

et tout opérateur de troncature microlocal Π_1 valant 1 sur \mathcal{V}_1 et 0 en dehors de \mathcal{W}_1 il existe $\mathcal{V}_0, \mathcal{W}_0$, et Π_0 vérifiant la même chose au voisinage de (m_0, μ_0) tels qu’on ait les deux propriétés suivantes :

$$\Lambda_{T_0} \circ \mathcal{W}_0 \subset \mathcal{V}_1, \quad (3.14)$$

$$e^{it\sqrt{-\Delta}} \Pi_0 = \Pi_1 e^{it\sqrt{-\Delta}} \Pi_0 + R(T_0), \quad (3.15)$$

où $R(T_0)$ est régularisant.

Remarque : pour exprimer la condition donnée par l’équation (3.13), on dira que “\mathcal{V}_1 est relativement compact dans \mathcal{W}_1”.

Preuve : en utilisant l’isométrie avec \mathbb{R}^2 (pour (3.14)) et le lemme 38 (pour (3.15)), ce lemme est vrai si T_0 est suffisamment petit pour que $B_{\mathcal{V}_1}(m_0, T_0 + \varepsilon)$ soit isométrique à la boule correspondante de \mathbb{R}^2.

Pour T_0 grand, d’après la construction d’un voisinage régulier, on peut trouver $\varepsilon = T_0/j_0$ tel que,

$$\forall j \leq j_0, B_M(g(j\varepsilon),2\varepsilon) \text{ estom. à } B_{\mathbb{R}^2}((0,j\varepsilon),2\varepsilon).$$

Renommant momentanément V_i, \mathcal{W}_i et Π_i en V_{j_0}, \mathcal{W}_{j_0} et Π_{j_0}, on construit par récurrence descendante, en se plaçant dans $B_M(g(j\varepsilon),2\varepsilon)$, V_j, \mathcal{W}_j, et Π_j tels que

$$\Lambda_\varepsilon \circ \mathcal{W}_j \subset V_{j+1},$$

$$e^{i\varepsilon \nabla \Pi_j} = \Pi_{j+1} e^{i\varepsilon \nabla \Pi_j} + R_j(\varepsilon).$$

Ce qui donne par composition la propriété (3.14). Pour avoir (3.15), il faut encore remarquer que dans \mathbb{R}^2,

$$\Pi_{j_0} e^{i\varepsilon \Pi_{j_0} - 1} \Pi_1 e^{i\varepsilon \Pi_j} \Pi_0 \sim \Pi_{j_0} e^{i\delta \nabla \Pi_0},$$

en examinant les fronts d’ondes. \hfill \square

Le lemme précédent reste encore vrai si g se termine en un point conique diffractif. De façon plus précise, on a

Lemme 29 Soit g une géodésique de longueur T_0, d’origine (m_0,μ_0) non diffractive sur $[0,T_0]$ et telle que $g(T_0) = p_i$. Pour tout $\varepsilon \leq r_0$, il existe V_0, \mathcal{W}_0, Π_0 comme dans le lemme précédent tel que

$$\Lambda_{T_0} \circ \mathcal{W}_0 \subset T^*(B_M(\rho_i,\varepsilon)),$$

$$e^{i\rho_i \sqrt{\Delta_\omega} \Pi_0} = \rho_i e^{i\rho_i \sqrt{\Delta_\omega} \Pi_0} + R(T_0),$$

où ρ_i vaut 1 sur un voisinage de $B(p_i,\varepsilon)$ et 0 hors de $B(p_i,r_0 + r_0')$.

Preuve : choisissons ε' arbitrairement petit, et notons (m_1,μ_1) l’extrémité de $g([0,T_0-\varepsilon'])$. Sur $[T_0 - \varepsilon',T_0]$, tout se passe sur le cône C_{α}, on peut donc trouver V_1, \mathcal{W}_1 et Π_1 au voisinage microlocal de (m_1,μ_1) tels que d’après le lemme 38 :

$$\Lambda_{\varepsilon'} \circ \mathcal{W}_1 \subset T^*(B_M(\rho_i,\varepsilon')),$$

$$e^{i\varepsilon' \sqrt{\Delta_\omega} \Pi_1} = \rho_i e^{i\varepsilon' \sqrt{\Delta_\omega} \Pi_1} + R(\varepsilon').$$

Aucune correcteur de $g([0,T_0-\varepsilon'])$, on utilise le lemme précédent, ce qui fournit V_0, \mathcal{W}_0, Π_0 tel qu’on a la propriété du lemme avec (3.17) remplacée par

$$e^{i\rho_i \sqrt{\Delta_\omega} \Pi_0} = \rho_i e^{i\varepsilon' \sqrt{\Delta_\omega} \Pi_1} e^{i(T_0-\varepsilon') \sqrt{\Delta_\omega} \Pi_0} + R.$$

En se plaçant sur le cône, dans un voisinage du rayon de longueur T_0, on voit alors que

$$\rho_i e^{i\varepsilon' \sqrt{\Delta_\omega} \Pi_1} e^{i(T_0-\varepsilon') \sqrt{\Delta_\omega} \Pi_0} \sim \rho_i e^{i\varepsilon \sqrt{\Delta_\omega} \Pi_0},$$

ce qui termine la preuve. \hfill \square

En choisissant ε assez petit dans la lemme précédent, et en utilisant le lemme 38 près du point conique, on a alors le corollaire suivant :

Corollaire 19 Dans la situation du lemme précédent, pour tout temps $0 < T \leq r_0$, pour tous voisinages microlocaux V_1, \mathcal{W}_1 de $N^1_+(S(p_i,T))$ et Π_1 comme dans les lemmes précédents, il existe ε, V_0, \mathcal{W}_0, Π_0 tels que le lemme précédent soit vrai, et on a de plus :

$$\Lambda_{T+\varepsilon} \circ \mathcal{W}_0 \subset V_1,$$

$$e^{i(T+\varepsilon) \sqrt{\Delta_\omega} \Pi_0} = \Pi_1 e^{i(T+\varepsilon) \sqrt{\Delta_\omega} \Pi_0} + R.$$
Preuve : l’application du lemme 38 donne directement :
\[e^{i[T+T_0] \sqrt{\Delta}} \Pi_1 = \rho e^{iT \sqrt{\Delta_{\alpha}}} \rho_I e^{iT_0 \sqrt{\Delta_{\alpha}}} \Pi_0 + R, \]
où \(\rho \) tronque dans \(B_M(p_t, r_0 + r'_0) \) en valant 1 sur un voisinage de \(B_M(p_t, r_0 + \varepsilon) \). L’examen des fronts d’ondes sur \(C_\alpha \), ainsi que la propagation des singularités sur le cône permet alors pour tout couple \(\mathcal{V}_1, \mathcal{V}_1 \) de choisir \(\varepsilon \) de telle sorte que :
\[A_{T+T_0} \circ \mathcal{W}_0 \subset \mathcal{V}_1, \]
et que modulo régularisant, on ait :
\[\rho e^{iT \sqrt{\Delta_{\alpha}}} \rho_I e^{iT_0 \sqrt{\Delta_{\alpha}}} \Pi_0 = \Pi_j e^{i[T+T_0] \sqrt{\Delta_{\alpha}}} \Pi_0. \]
Ce qui termine la preuve du corollaire.

\[\square \]

Définition 11 (Propagateur microlocalisé)

Soit \(g \) une géodésique de longueur \(T_0 \), issue de \((m_0, \mu_0)\). Pour tous nombres \(\varepsilon_i < r_0 \), toute collection de voisinages microlocaux de \((m_j, \mu_j) : \mathcal{V}_j \) et \(\mathcal{W}_j \), et tous opérateurs de troncatures microlocaux \(\Pi_j \) vérifiant :
- \(\mathcal{V}_j \) est relativement compact dans \(\mathcal{W}_j \),
- \(A_{t_j+1-t_j} \circ \mathcal{W}_j \subset T^*(B_M(p_{g,j+1}, \varepsilon_{j+1})) \),
- \(\Pi_j \) vaut 1 sur \(\mathcal{V}_j \) et 0 en dehors de \(\mathcal{W}_j \),
on appelera propagateur microlocalisé au voisinage de \(g \) l’opérateur \(K_g(T_0) \) défini par :
\[K_g(T_0) = \Pi_n U_{\alpha, \varepsilon, n}(T_0 - t_{n-1}) \Pi_{n-1} U_{\alpha, \varepsilon, n-1}(t_{n-1} - t_{n-2}) \cdots \Pi_2 U_{\alpha, \varepsilon, 2}(t_2 - t_1) \Pi_1 U_{\alpha, \varepsilon, 1}(t_1) \Pi_0. \]

Remarques :
- La définition n’est valable que si l’extrémité de \(g \) n’est pas un point conique. Dans le cas contraire, il faut considérer que \(\Pi_n \) est juste la multiplication par une fonction \(\rho \) valant 1 au voisinage de ce point conique et 0 en dehors de \(B_M(p, r_0 + r'_0) \).
- Pour \(0 < j < n-1 \), le morceau de géodésique compris entre \(m_j \) et \(m_{j+1} \) s’identifie à une géodésique de \(C_{\alpha, j+1} \). De plus, on peut utiliser le lemme 29 et son corollaire qui assurent alors qu’avec les choix faits :
\[\Pi_{j+1} e^{i[T_{j+1} - t_j] \sqrt{\Delta}} \Pi_j = \Pi_{j+1} U_{\alpha, \varepsilon, j+1}(t_{j+1} - t_j) \Pi_j + R, \]
où \(R \) est régularisant.

Pour \(j = 0 \), on a le même résultat en remplaçant \(t_{j+1} - t_j \) par \(t_1 \), et pour \(j = n-1 \), la même démonstration fonctionne si \(T_0 - t_{g,n} \leq r_0 \) en utilisant le temps adéquat à la place de \(t_{j+1} - t_j \). Si \(g(T_0) \) est trop loin de \(p_{g,n} \), il faut adapter la démonstration.
du corollaire du lemme 29 en passant par une troncature intermédiaire en \(g(t_{g,n} + r_0)\), mais on montre encore:

\[
\Pi_n e^{i[t_0 - t_{n-1}]\sqrt{X}} \Pi_{n-1} = \Pi_n U_{\alpha_{g,n}}(T_0 - t_{n-1}) \Pi_{n-1} + R.
\]

Finalement, on a montré l’équivalence suivante:

\[
K_g(T_0) = \Pi_n U(T_0 - t_{n-1}) \Pi_{n-1} U(t_{n-1} - t_{n-2}) \cdots \Pi_2 U(t_2 - t_1) \Pi_1 U(t_1) \Pi_0 + R.
\]

(3.18)

Ce qui justifie l’emploi du terme “propagateur” dans l’expression propagateur microlocalisé.

- L’ensemble des géodésiques telles que pour tout \(j \in J\), \(g(t_j) \) est dans \(\mathcal{V}_j\) forme un voisinage \(\mathcal{V}_g\) de \(g\). D’après l’expression de \(K_g\) et la propagation des singularités, on a bien l’inclusion:

\[
WF(K_g(T_0)u_0) \subset \Lambda^V_{T_0} \circ WF(u_0).
\]

Ces propagateurs microlocalisés répondent donc aux exigences demandées. Il reste à prouver que cette définition permet de montrer le développement en diffractions multiples. Par construction, les propagateurs microlocalisés s’obtiennent en alternant des phases de propagation et des troncatures microlocales intervenant après chaque diffraction. L’utilisation de l’égalité (3.18) va ramener la preuve du développement en diffractions multiples à une question purement classique : il s’agit de savoir si on peut choisir a priori les opérateurs de troncature de façon à être sûr de décrire toutes les géodésiques de longueur \(T_0\) issues d’un point \(m_0\).

Construction classique

Dans ce qui suit, on va fixer un point de départ \(m_0\) et un temps arbitrairement grand \(T_0\). L’ensemble des géodésiques issues de \(m_0\) a naturellement une structure d’arbre, que l’on définit maintenant.

Définition 12 Soit \(m_0 \in M_0\) et \(T_0\) fixé on définit un arbre orienté \(T_{m_0, T_0}\) de la façon suivante :

- Un sommet (noté \(s_0\)) correspond à \(m_0\), les autres correspondent aux géodésiques dont la longueur est inférieure ou égale à \(T_0\), don l’origine est \(m_0\), et dont l’extrémité est un point conique ;

- Le sommet \(s_0\) est relié aux sommets \(s\) correspondant à des géodésiques n’ayant qu’une diffraction. Pour les autres sommets, il y a une arête joignant \(s\) à \(s’\) si la géodésique correspondant à \(s’\) prolonge celle correspondant à \(s\).

Remarque : \(T_{m_0, T_0}\) est un arbre fini d’après le corollaire 5.

Comme \(m_0\) et \(T_0\) sont fixés, on ne parlera que de l’arbre \(T\). On a besoin d’un certain nombre d’éléments attachés à \(T\).

- Pour tout sommet \(s\) de \(T\) différent de \(s_0\), on notera \(g_s\) la géodésique correspondante, \(p_s\) l’extrémité de \(g_s\), et \(n_s\) le nombre tel que \(p_s = p_{g_s, n_s}\) (de sorte que \(p_s\) est le \(n_s\)-ième point diffraquant de \(g_s\)). Si \(t_s \neq T_0\), on choisit un rayon \(r_s < \min(r_0, T_0 - t_s)\), et on pose \(T_s = T_0 - t_s - r_s\). Pour \(s_0\), on pose \(t_{s_0} = 0, n_{s_0} = 0\).
- On notera [s, s'] l’arête allant de s à s’. Pour s \(\neq s_0\) et chaque a = [s, s'], on notera \(m_a\) le point situé à distance \(r_a\) de \(p_a\), le long du segment géodésique correspondant à a, et t_a = t_s' - t_s - r_a.
- On notera \(A_s\) l’ensemble des arêtes issues du sommet s.
- Chaque arête a de \(A_s\) correspond à un sommet s tel que \(g_s\) est non-diffractive sur \([0, t_s]\).
Pour cette arête, on posera \(m_a = m_0, \mu_a\) la direction correspondante, et t_a = t_s + r_a.
Rappelons que l’on cherche à construire des propagateurs microlocalisés, et que pour cela, on a besoin de voisinages microlocaux recouvrant l’ensemble des directions possibles après chaque diffraction. Considérons une géodésique \(g\) de longueur \(T_0\) issue de \(m_0\).
- Si \(g(T_0)\) est un point conique, \(g = g_s\) pour un certain sommet de \(T\). On choisit alors \(\varepsilon_s\) et \(\varepsilon'_s > \varepsilon\) et on pose :
\[
\mathcal{V}_g = T^*(B(p_s \varepsilon_s)) \quad \mathcal{W}_g = T^*(B(p_s \varepsilon'_s)).
\]
Dans ce cas-là, on posera aussi \(\mathcal{V}_s = \mathcal{V}_g\).
- Dans le cas contraire, on choisit \(\mathcal{V}_g\) et \(\mathcal{W}_g\) deux voisinages de l’extrémité de \(g\) (dans \(T^* M_0\)) tels que \(\mathcal{V}_g\) est relativement compact dans \(\mathcal{W}_g\).
On va être amené à choisir un nombre fini de \(g\) tel que les \(\mathcal{V}_g\) ainsi construits recouvrent \(\mathcal{S}(m_0, T_0)\). Chacune des géodésiques ainsi sélectionnée prolongera une géodésique \(g_{s, j}\), on notera \(g_{s, j}\) les géodésiques ainsi regroupées (pour chaque s il y a alors un nombre fini de \(g_{s, j}\)).
Le long de \(g_{s, j}\), on notera \((m_{s, j}, \mu_{s, j})\) le point correspondant au temps \(t_s + r_s\).
On a alors la proposition suivante.

Proposition 39
Il existe un recouvrement fini de \(\mathcal{S}(m_0, T_0)\), par les \(\mathcal{V}_{s, j}\) et on peut construire :
- sur chaque arête a, deux voisinages conique \(\mathcal{V}_a, \mathcal{W}_a\) de \((m_a, \mu_a)\), tels que \(\mathcal{V}_a\) est relativement compact dans \(\mathcal{W}_a\),
- associé à chaque sommet s un nombre \(\varepsilon_s > 0\),
- associés à chaque géodésique \(g_{s, j}\) deux voisinages microlocaux \(\mathcal{V}_{s, j}\) et \(\mathcal{W}_{s, j}\) de \((m_{s, j}, \mu_{s, j})\) de telle manière que les propriétés suivantes soient respectées, en posant
\[
\mathcal{V}_s = \bigcup_{a \in A_s} \mathcal{V}_a \bigcup_{j} \mathcal{V}_{s, j}
\]
(pour les s pour lesquels \(\mathcal{V}_s\) n’a pas déjà été défini).

\[
N^+_{T_0}(S(p_s r_s)) \subset \mathcal{V}_s,
\]
\[
\Lambda_{t_a} \circ \mathcal{W}_a \subset T^*(B(p_{s'}, r_{s'})) \quad a = [s, s'],
\]
\[
\Lambda_{T_s} \circ \mathcal{W}_{s, j} \subset \mathcal{V}_{g_{s, j}}.
\]

Preuve : on commence par traiter les sommets s tels que \(A_s = \emptyset\), puis on raisonne par récurrence descendant sur \(n_s\), c’est-à-dire qu’on commence par traiter les n-ièmes diffractions puis les \(n - 1\)-ièmes et ainsi de suite jusqu’aux premières diffractions.
Lorsque \(A_s = \emptyset\), ou bien \(T_s = 0\), dans ce cas on pose \(g_{s, 0} = g_s\) et \(\mathcal{V}_{s, 0} = \mathcal{V}_s\) sont déjà construits, ou bien \(T_s > 0\). Dans ce cas, toutes les géodésiques \(g\) prolongeant \(g_s\) pendant un temps \(T_0 - t_s\) ne sont plus diffractives. On peut donc trouver, d’après le lemme 28, \(\mathcal{W}_g\) voisinage microlocal de \(g(t_s + r_s)\) et de sa direction, tel que \(\Lambda_{T_s} \circ \mathcal{W}_g \subset \mathcal{V}_g\). Il suffit alors de prendre \(\mathcal{V}_g\) relativement compact dans \(\mathcal{W}_g\) et d’extraire du recouvrement de \(N^+_{T_0}(S(p_s r_s))\) par les \(\mathcal{V}_g\).
un sous recouvrement fini pour trouver les $g_{s,j}$, $\mathcal{V}_{g,j}$ et $\mathcal{W}_{g,j}$. De plus, il existe alors ε_s tel que
\[\Lambda_s \circ T^*(B(p_s \varepsilon_s)) \subset \mathcal{V}_s. \quad (3.22) \]

Considérons maintenant a se terminant en un tel s, la construction de \mathcal{V}_a et \mathcal{W}_a résulte alors du lemme 29.

On fait l'hypothèse de récurrence suivante:
\textit{Tous les éléments indiqués sont construits pour les sommets s tels que $n_s > n$, et les arêtes a telles que $n_s \geq n$. De plus, ε_s vérifie la condition 3.22.}

On montre que l'hypothèse de récurrence est vraie pour
\[n_0 = \max\{n_s, s \text{ sommet de } T\}. \]
En effet, prenons un s tel que n_s est maximal, nécessairement \mathcal{A}_s est vide.

Supposons maintenant que l'hypothèse de récurrence est satisfaite pour n_s et considérons les sommets s tels que $n_s = n$. Il y a deux cas, si \mathcal{A}_s est vide, la construction est déjà faite. Si \mathcal{A}_s n'est pas vide, toutes les directions $(m_a \mu_a)$ correspondantes ont déjà été considérées par l'hypothèse de récurrence. Toutes les géodésiques prolongeant g_s et ne coïncidant pas avec un g_s' ne sont donc plus diffractionnelles. Comme dans le cas $\mathcal{A}_s = \emptyset$, pour chacune des ces géodésiques, on construit \mathcal{V}_s'. Il suffit alors de remarquer que les \mathcal{V}_a et les \mathcal{V}_s' ainsi construits recouvrent $\mathcal{V}_s^* B(p_s r_s)$. On en extrait un recouvrement fini et la fin de la construction est la même que dans le cas $\mathcal{A}_s = \emptyset$. Ce qui fournit les géodésiques $g_{s,j}$, les voisinages microlocaux associés, le rayon ε_s et les voisinages \mathcal{V}_a et \mathcal{W}_a pour l'arête se terminant en s.

On répète cette opération pour tous les sommets tels que $n_s = n$. Ce qui termine la récurrence.

On peut maintenant passer à la démonstration du le développement en diffractions multiples.

Diffractions multiples

Comme précédemment, m_0 et T_0 sont fixés. On construit l'arbre T de la partie précédente ainsi que tous les voisinages microlocaux construits dans la proposition 39. Commençons par donner les troncatures permettant de définir les propagateurs microlocalisés

Pour chaque couple \mathcal{V}, \mathcal{W}, on peut construire un opérateur de troncature microlocale Π valant 1 sur \mathcal{V} et 0 hors de \mathcal{W}. De plus, à l'aide d'une partition de l'unité, la condition (3.19) assure:
\[\Pi_s = \sum_{a \in \mathcal{A}_s} \Pi_a + \sum_{\text{fini}} \Pi_{s,j}. \quad (3.23) \]

Dans le cas où $t_a = T_0$, on choisit une fonction de troncature valant 1 sur un voisinage $B(p_s r_0)$ et 0 hors de $B(p_s r_0 + r'_s)$, et on appelle Π_s l'opérateur de multiplication par cette fonction.

Remarque : chaque $\mathcal{V}_{s,j}$ est associé à un voisinage \mathcal{V}_g de l'extrémité de la géodésique $g_{s,j}$; on notera $\Pi_{s,j}$ un opérateur de troncature microlocale dans ce voisinage.

Ces opérateurs de troncature le long de $g_{s,j}$ permet de définir $K_{g_{s,j}}(T_0)$.

On peut maintenant énoncer le théorème décrivant le propagateur de l'équation des ondes en fonction des différentes diffractions.

Théorème 14 (Développement en diffractions multiples)

Soit $m_0 \in M_0$, et T_0 un temps arbitrairement grand, il existe alors un rayon r, et un opérateur régularisant R_{T_0} de $L^2(B(m_0, r))$ dans $H^\infty(M)$ tels que l'égalité suivante soit vérifiée:
\[\forall u_0 \in L^2(B(m_0, r)) \quad e^{i T_0 \Delta} u_0 = \sum_{\text{fini}} K_{g_{s,j}}(T_0) u_0 + R_{T_0} u_0, \quad (3.24) \]
où les géodésiques $g_{x,j}$ sont données par la proposition 39.

Preuve : on définit $s \in \mathcal{T}$ l’opérateur $\tilde{K}_s(T_0) = e^{i T_e \sqrt{\Delta}} K_s(T_0 - T_s)$, où le propagateur microlocalisé $K_s(T_0 - T_s)$ est défini avec les troncatures Π rencontrées le long de g_s. On montre alors par récurrence sur n l’égalité :

$$e^{i T_e \sqrt{\Delta}} u_0 = \sum_{s \in \mathcal{T}_{m_0, T_0} \mid n_s < n} K_{g_s,j}(T_0) u_0 + \sum_{s \in \mathcal{T}_{m_0, T_0} \mid n_s = n} \tilde{K}_s u_0 + R_n u_0,$$

(3.25)

où R_n est régularisant. Au rang 1. On choisit r de sorte que l’on puisse écrire

$$u_0 = \sum_{a \in \mathcal{A}_{n_0}} \Pi_a u_0 + \sum_{a \neq g_{x_0,j}} \Pi_{g_{x_0,j}} u_0.$$

Appliquant $e^{i T_e \sqrt{\Delta}}$ aux deux membres, on obtient :

$$e^{i T_e \sqrt{\Delta}} u_0 = \sum_{a \in \mathcal{A}_{n_0}} e^{i T_e \sqrt{\Delta}} \Pi_a u_0 + \sum_{a \neq g_{x_0,j}} e^{i T_e \sqrt{\Delta}} \Pi_{g_{x_0,j}} u_0.$$

Par définition de $K_{g_{x_0,j}}(T_0)$ et d’après l’égalité 3.18,

$$e^{i T_e \sqrt{\Delta}} \Pi_{g_{x_0,j}} = K_{g_{x_0,j}}(T_0).$$

En utilisant la propriété 3.20 et le corollaire du lemme 29,

$$\text{pour } a = [s_0, s], e^{i T_e \sqrt{\Delta}} \Pi_a = \tilde{K}_s(T_0) + R.$$

Ce qui prouve que l’égalité (3.25) est vraie au rang 1.

Supposons que (3.25) soit vraie au rang n.

D’après la décomposition 3.23 et l’inclusion 3.20 :

$$\tilde{K}_s(T_0) = \sum_{a \in \mathcal{A}_s} e^{i T_e \sqrt{\Delta}} \Pi_a K_{s,j}(T_0 - T_s) + \sum_{a \neq g_{s,j}} e^{i T_e \sqrt{\Delta}} \Pi_{s,j} K_{s,j}(T_0 - T_s).$$

D’après la propriété (3.21), chaque terme de la deuxième somme donne $K_{g_{s,j}}$ modulo régularisant. D’après l’inclusion (3.20) et le corollaire du lemme 29, chaque terme de la première somme donne $\tilde{K}_{s,j}$, où s' est l’extrémité de a. Ce qui prouve l’égalité (3.25) au cran suivant et termine donc la récurrence.

Ce théorème est essentiel pour la suite dans la mesure où il ramène l’étude du propagateur de l’équation des ondes sur M à des compositions d’opérateurs connus. Il faut noter que grâce au propagateurs de troncature, toutes ces compositions peuvent être considérées dans \mathbb{H}. Notamment, on peut utiliser le calcul des front d’ondes au dessus de M_0.

Quelques remarques a posteriori sur cette construction.

- La construction reflète bien les caractéristiques annoncées notamment le fait de tronquer microlocalément le voisinage d’une direction pointant vers un point conique et de choisir ensuite un temps permettant de se décaler du sommet du cône.

- Chaque propagateur microlocalisé $K_{g_{s,j}}$ vérifie l’alternative suivante :

 - ou bien $g_{s,j}(T_0) \in P$ et dans ce cas $WF(K_{g_{s,j}}(T_0)) \subset T^*(B(p_0))$,
 - ou bien $K_{g_{s,j}}(T_0)$ est régularisant près des points coniques.
Notamment comme la somme est finie, on peut trouver un petit \(\varepsilon \) tel que sur \(|T_0 - \varepsilon, T_0 + \varepsilon| \), le développement en diffractions multiples est valable pour le temps \(T \) avec les troncatures associées à l’arbre \(T_{m_0, m_0} \). Pour le voir, il suffit d’appliquer à l’égalité (3.24) le lemme 38. Comme la somme 3.24 est finie, ceci permet aussi montrer que le front d’onde de \(U(T) \) considéré comme une distribution de \(|T_0 - \varepsilon, T_0 + \varepsilon| \) \(\times M_0 \times M_0 \) vérifie:

\[
\text{WF}(U) \subset \{ (T; m_1, m_0, \tau, \tau \mu_1, \tau \mu_0) \mid 1 = |\mu_0| = |\mu_1|, \\
\exists g \in \Gamma_T \mid g(0) = m_0, g(T) = m_1 \} ,
\]

(3.26)

- La même démonstration permet de montrer le développement en diffractions multiples pour \(\chi(\Delta)\Delta^{-N} e^{iT\sqrt{\Delta}} \). Dans ce cas, il faut changer la définition des propagateurs microlocalisés, en écrivant \(N = \sum N_i \) et en remplaçant \(U_{\alpha_0}(t_i) \) par \(\chi(\Delta_{\alpha_0})\Delta_{\alpha_0}^{-N_i} U_{\alpha_0}(t_i) \). Il faut ensuite sur l’arbre \(T \) choisir un entier \(N_s \) par sommet et utiliser la dernière propagation libre pour assurer que chaque propagateur microlocalisé est associé à \(\chi(\Delta)\Delta^{-N} e^{iT\sqrt{\Delta}} \) avec le même \(N \) pour tous. Ceci nous permettra de travailler avec des opérateurs continus de \(L^2 \) dans \(H^N \) avec \(N \) aussi grand que l’on veut.

- La restriction \(m_0 \in M_0 \) n’en est pas vraiment une, on peut adapter la démonstration pour autoriser le départ d’un point conique. Cela complique un petit peu les arguments en rajoutant à chaque fois une discussion.
Chapitre 4

Formule de trace sur une s.e.s.c

Introduction

L’étude générale des opérateurs à trace sur une s.e.s.c. implique que $e^{iT\sqrt{\Delta}}$ est à trace au sens des distributions (cf partie 2.2.2). On note $\sigma(T)$ la distribution $\text{Tr}(e^{iT\sqrt{\Delta}})$. Un des objectifs de cette partie est de montrer la relation de Poisson qui s’écrit de la façon suivante :

$$WF(\sigma) \subset \{(T_0,\tau), \quad \tau > 0, \quad T_0 \in L\},$$ \hspace{1cm} (4.1)

où L est formé des T_0 tels qu’il existe une géodésique périodique de longueur T_0.

On a montré que, pour des opérateurs régularisants près des points coniques, la trace se calculait par les opérations de restriction à la diagonale puis d’intégration sur M. Ceci nous permettra d’établir une version faible de la relation de Poisson dans laquelle $e^{iT\sqrt{\Delta}}$ a été préalablement tronqué près des points coniques. Cette version faible se démontre de la même manière que dans le cadre non singulier (cf. [25, 12]). Pour obtenir la version forte de cette relation, telle qu’elle est écrite ci-dessus, il faut alors examiner en détail ce qui se passe près des points coniques. On montrera en fait que l’on peut toujours se ramener à des calculs de fronts d’ondes au-dessus de M_0. Ceci est une conséquence de la propriété assurant qu’une singularité frappant un point conique est intégralement et instantanément réémise. Une fois la relation de Poisson établie, il deviendra nécessaire d’étudier l’ensemble des géodésiques périodiques d’une s.e.s.c. On donnera notamment une classification de ces dernières reliant la suite des angles de diffraction et la propriété d’être isolée ou non.

Remarque: comme pour la propagation des singularités prouvée dans le chapitre précédent, le fait que la relation de Poisson soit vraie sur une s.e.s.c. ou sur un billard polygonal n’est pas surprenant. On peut trouver une démonstration dans [27] et le résultat énoncé dans l’introduction de [33] correspond à ce que l’on a appelé ici version faible. L’originalité de la démarche ici présentée est de montrer qu’on peut se ramener à des calculs de fronts d’ondes loin des points coniques (cf théorème 4.1.2).

Le terme générique “formule de trace” recouvre non seulement l’établissement de la relation de Poisson ci-dessus, mais aussi l’étude de la singularité créée en un point T_0 par les géodésiques périodiques de cette longueur. La première information attendue de ce type de calcul est l’inclusion inverse de la formule (4.1). Dans les cas où on peut l’établir, la formule de trace prouve alors que les longueurs des géodésiques périodiques sont déterminées par le spectre du laplacien, ce qui donne une information importante dans l’étude du problème spectral inverse. Plus généralement, le type de singularité en T_0 est déterminé...
par le spectre du laplacien, et si on arrive à écrire un développement de cette singularité, on obtient autant d'invariants spectraux (cf [73]). Les orbites diffractives nous intéresseront plus particulièrement, et on cherchera avant tout la partie principale de la singularité.

Un des intérêts du développement en diffractions multiples 3.24 est que le propagateur sur M est décrit de façon explicite à partir du propagateur sur le cône. Pour avoir la propagation des singularités “au premier ordre”, il faudra donc commencer par étudier le cas du cône. L’outil de base utilisé ici est la construction du propagateur proposée par Friedlander (cf [30, 31]). En effet, cette construction permet non seulement de traiter simplement le front diffracté loin de l’intersection avec le front primaire (cf 3.3.1) mais donne aussi, près de cette dernière une expression avec laquelle on peut travailler. Suivant la terminologie physique (cf [7]), on appelle “frontière optique” l’endroit où au moins deux variétés lagrangiennes Λ^V_s se coupent (cf p. 90 pour la notation). On se ramènera ainsi à un certain nombre d’intégrales oscillantes modèles qui permettent d’estimer la contribution principale d’une orbite périodique. La fin de la partie est alors dévolue au calcul de ces intégrales oscillantes modèles, et à l’écriture de la singularité principale ainsi trouvée.

Signalons ici, au delà de la technique proprement dite, les quelques idées générales qu’il faut garder en tête tout au long des calculs. La théorie des opérateurs intégraux de Fourier fournit un cadre idéal pour menner ce type de calculs ; chaque fois que cela sera possible, on essaiera de s’y ramener. Par exemple, sur le cône, on montre que, loin de la frontière optique, l’onde diffractée s’obtient en faisant agir un OIF sur l’onde incidente. Tant que l’on reste dans ce cadre général, les différentes opérations (composition, trace ...) sont bien définies et donnent lieu à des applications directes du principe de phase stationnaire. La contribution des orbites périodiques dont aucun des angles de diffraction ne vaut $\pm \pi$ peut ainsi se calculer sans sortir de cette théorie. On montrera notamment que, pour une telle géodésique, $K_p (T_0)$ est encore un opérateur intégral de Fourier, dont on précisera la variété lagrangienne, l’ordre et le symbole principal (cf th. 20).

Au voisinage de la frontière optique, l’utilisation des OIF donne une description de la singularité, suffisamment simple pour permettre un calcul direct de la contribution d’une orbite périodique présentant un angle de $\pm \pi$. Cependant, pour ce calcul on ne dispose pas des justifications directes avec les OIF. On se ramènera donc à des intégrales oscillantes absolument convergentes. De plus, même si la méthode proposée se généralise vraisemblablement sans difficultés majeures à un nombre arbitraire d’angles de diffractions de $\pm \pi$, on ne mènera intégralement les calculs que pour une orbite ne présentant qu’un seul angle de cette sorte. On calculera ainsi la contribution principale d’une famille de géodésiques non-diffractives pour laquelle les orbites qui la bordent n’ont qu’un point diffractant. Par souci de lisibilité, certains calculs seront rejétés en appendice.

Avant de passer à la contribution des orbites périodiques, commençons par établir la relation de Poisson.

4.1 Relation de Poisson

4.1.1 Relation de Poisson faible

La version faible de la relation de Poisson consiste à chercher la trace non pas de $e^{iT\sqrt{\Delta}}$ mais de $e^{iT\sqrt{\Delta}} \chi$, où χ est une fonction C^∞, nulle au voisinage des points coniques.

Notation: pour une fonction χ, C^∞ sur M_0 et constante près des points coniques, on note

$$\sigma_{\chi}(T) = \text{Tr}(e^{iT\sqrt{\Delta}} \chi).$$
Cette définition peut être étendue à des fonctions χ beaucoup moins régulières que celles considérées ici, mais dans la pratique, cette définition ne sera utilisée que pour des fonctions χ valant 0 ou 1 près des points coniques et lisses sur M_0.

On a alors la proposition suivante :

Proposition 40 (Relation de Poisson faible)

*Soit χ une fonction nulle près des points coniques, et C^∞ sur M_0, alors

$$WF(\sigma_\chi) \subset \{(T_0, \tau) \mid T_0 \in \mathbb{L}, \tau > 0\}.$$*

Preuve : d’après l’étude générale sur la trace, on sait que

$$\sigma_\chi(T) = \text{Tr}(\tilde{\chi} e^{iT\sqrt{\Delta}} \chi),$$

où $\tilde{\chi}$ est une fonction $C^\infty(M_0)$, nulle près des points coniques et valant 1 sur le support de χ. Maintenant qu’on a tronqué loin des points coniques, la trace est donnée par

$$\text{Tr}(\tilde{\chi} e^{iT\sqrt{\Delta}} \chi) = \pi_* \Delta^* \tilde{\chi}(m_1) U(T, m_1, m_0) \chi(m_0),$$

où U est le noyau de $e^{iT\sqrt{\Delta}}$, π_* est l’image directe de la projection de $\mathbb{R} \times M_0 \times M_0$ sur \mathbb{R}, et Δ est la restriction à la diagonale de $\mathbb{R} \times M_0 \times M_0$. Comme on a prouvé (cf (3.26)) que

$$WF(U) \subset \left\{ (T, m_1, m_0, \tau, \mu_1, \tau \mu_0) \mid 1 = |\mu_0| = |\mu_1|, \exists g \in \Gamma_T \mid g(0) = m_0, g(T) = m_1 \right\},$$

il reste alors à faire les calculs de fronts d’ondes associés à l’opération $\pi_* \Delta^*$ pour montrer la proposition. Ce calcul est exactement le même que dans le cas non-singulier, cf [12].

Comme dans l’établissement du développement en diffractions multiples, l’utilisation du calcul des fronts d’ondes habituel est rendu possible par le fait qu’on reste à distance des points coniques. Ceci n’est plus vrai si on veut avoir la version forte de la formule de trace. La partie suivante montre une façon de passer les points coniques qui permet de se ramener aux calculs de fronts d’ondes au dessus de M_0, justifiant aussi a posteriori notre choix de ne pas étendre précisément le front d’ondes au dessus des points coniques.

4.1.2 Passage des points coniques

Le passage des singularités coniques repose sur trois points essentiels :

- la cyclicité de la trace,
- la propriété de groupe de l’exponentielle,
- le fait qu’une singularité frappant un point conique est instantanément et intégralement réémmise.

Remarquons ici que ce dernier point a déjà été largement utilisé dans la construction du développement en diffractions multiples, notamment pour assurer que chaque fois qu’on tronque dans une couronne autour d’un point conique, le reste est un opérateur régularisant. Le principe que l’on propose ici est relativement général et pourra être adapté à d’autres situations, par exemple pour évaluer, sur une variété à bord, la contribution à la formule de trace d’une orbite périodique transversale au bord en chacune de ses réflexions.
Principe

Fixons un point conique p, un petit temps t_0, et $0 < \varepsilon < t_0$. Soient χ et ρ deux fonctions vérifiant les hypothèses suivantes.

Hypothèses

- La fonction χ est lisse sur M_0, et vaut 1 sur un voisinage de
 \[\overline{B_M(p,t_0 + \varepsilon)} \setminus B_M(p,t_0 - \varepsilon), \]
 et est nulle au voisinage des points coniques.
- La fonction ρ est lisse sur M_0, vaut 1 sur un voisinage de p et 0 hors de $B(p,\varepsilon)$.

La figure suivante représente les graphes de ρ et χ le long d’un rayon issu de p.

![Graphes de ρ et χ](image)

D’après l’étude sur le cône :

\[(1 - \chi)e^{it_0 \sqrt{\kappa} \rho} \text{ est régularisant,} \quad (4.2) \]
\[\rho e^{it_0 \sqrt{\kappa} (1 - \chi)} \text{ est régularisant.} \quad (4.3) \]

Remarque : la deuxième propriété est équivalente à la première en passant à l’adjoint et en changeant t_0 en $-t_0$.

D’un point de vue pratique, on fixe d’abord t_0 et χ, puis on choisit ensuite ε et ρ.

On veut évaluer la trace suivante :

\[\sigma_\rho(T) = \text{Tr}(e^{iT\sqrt{\kappa} \rho}). \]

En utilisant la propriété de groupe de l’exponentielle, ceci se réécrit

\[\sigma_\rho(T) = \text{Tr}(U(t_0)U(T - 2t_0)U(t_0)\rho U(t_0)), \]

puis en utilisant la cycllicité de la trace :

\[\sigma_\rho(T) = \text{Tr}(U(T - 2t_0)U(t_0)\rho U(t_0)). \]

Mais, d’après les propriétés (4.2), et (4.3), l’égalité suivante est vraie, modulo un opérateur régularisant :

\[U(t_0)\rho U(t_0) = \chi U(t_0)\rho U(t_0)\chi. \]

En prenant la trace, on obtient donc, modulo une fonction C^∞ d’après la proposition 31,

\[\sigma_\rho(T) = \text{Tr}(U(T - 2t_0)\chi U(t_0)\rho U(t_0)\chi). \]
Il suffit alors d'écrire \(\rho = 1 - (1 - \rho) \), et d'utiliser une dernière fois la propriété de groupe de l'exponentielle pour obtenir le théorème :

Théorème 15 Pour toutes fonction \(\rho \) et \(\chi \) vérifiant les hypothèses précisées ci-dessus, la trace \(\sigma_\rho \) est donnée, modulo une fonction \(C^\infty \) par

\[
\sigma_\rho(T) = \frac{\text{Tr}(U(T - 2t_0)\chi U(2t_0)\chi)}{\text{Tr}(U(T - 2t_0)\chi U(t_0)(1 - \rho)U(t_0)\chi)}.
\]

Dans cette dernière égalité, toutes les fonctions de troncature valent 0 près des points coniques, et on est donc ramené à des calculs de fronts d'ondes au dessus de \(M_0 \), identiques à ceux de la version faible. On obtient ainsi le lemme.

Lemme 30 Pour tout \(p \), il existe une fonction \(\rho, C^\infty \), à support au voisinage de \(p \), et valant 1 au voisinage de \(p \) telle que :

\[
WF(\sigma_\rho) \subset \{(T_0,\tau) \mid T_0 \in \mathbb{L}, \tau > 0\}.
\]

On en déduit alors le théorème :

Théorème 16 (Relation de Poisson) Sur une s.e.s.c. compacte :

\[
WF(\sigma) \subset \{(T_0,\tau) \mid T_0 \in \mathbb{L}, \tau > 0\}.
\]

Preuve : le lemme précédent fournit \(\rho_p \) au voisinage de chaque point conique \(p \). La fonction \(\chi = 1 - \sum \rho_p \) vérifie les hypothèses de la formule de trace faible. Comme

\[
\sigma = \sum \sigma_{\rho_p} + \sigma_\chi,
\]

Le résultat est ainsi prouvé.

Cette façon de passer les points coniques permet non seulement de prouver la version forte de la formule de trace mais donne aussi une expression (cf (4.4)) utile pour le calcul de la contribution d'une orbite diffractive en \(p \). L'avantage de cette expression est qu'elle ne fait pas intervenir le voisinage des points coniques et qu'elle se ramènera donc à des calculs d'intégrales oscillantes sur \(\mathbb{R}^2 \). Ce sera l'objet du chapitre suivant. Avant de passer à ce calcul, il est intéressant d'essayer d'abord de classer les géodésiques périodiques de \(M \) en fonction de leurs angles de diffractions.

4.2 Classification des géodésiques périodiques

Dans le cadre non-singulier (cf [25]) la contribution d'une orbite périodique \(g \) est différente selon que \(g \) est isolée ou qu'elle fait partie d'une famille de géodésiques périodiques dépendant d'un ou plusieurs paramètres. Notre objectif, ici est de relier cette propriété, d'appartenir ou non à une famille à la suite des angles de diffraction le long de la géodésique.

Remarque : par définition, une géodésique périodique est une application de \(\mathbb{R} \) dans \(M \). La convergence d'une suite de géodésiques périodiques signifie la convergence dans \(\Gamma_T \) sur tout intervalle de longueur \(T \), ce qui revient à pouvoir fixer \(T \) et un point de départ quelconque sur la géodésique.
Géodésiques périodiques non diffractives

Considérons une géodésique périodique g non diffractive. Il existe alors ε tel que, pour tout temps t, la boule de centre $g(t)$ et de rayon ε est isométrique à la boule de \mathbb{R}^2 correspondante. Il est toujours possible de définir une application continue de \mathbb{R} dans TM qui à t associe $\tilde{n}(t)$ un des vecteurs orthogonaux unitaires à $g(t)$. L’application \tilde{n} ainsi définie est périodique et, comme la variété est orientée, elle a la même période que g (cf. remarque 2 ci-dessous). En utilisant l’isométrie locale en $g(t)$ l’expression $g(t) + s\tilde{n}(t)$ a un sens pour $|s|$ plus petit que ε.

On a alors le lemme :

Lemme 31 Soit g une géodésique périodique non-diffractive de période T_0, il existe alors $\varepsilon > 0$, et, avec les éléments définis ci-dessus, l’application g^s qui à t associe $g(t) + s\tilde{n}(t)$ est une géodésique périodique de période T_0 pour $|s| < \varepsilon$.

Preuve : le fait que ces applications soient périodiques de période T_0 résulte de la périodicité de \tilde{n}. Quant au fait que l’on définit bien une géodésique, cela se voit localement dans $B_M(g(t),\varepsilon)$. La géodésique correspondant à s revient à suivre g parallèlement à une distance $|s|$.

Remarques :
1. La définition de g^s est une construction classique en géométrie riemannienne. Le fait qu’on obtienne ainsi une famille de géodésiques dépend de la métrique considérée, et le fait d’être périodique dépend de l’orientabilité d’un voisinage de la géodésique.
2. Sur une s.e.s.c. non orientable, il peut arriver qu’une géodésique non diffractive soit isolée (lorsqu’elle est désorientante), dans ce cas, son double appartient à une famille.
3. Pour un billard polygonal, l’analogue du résultat ci-dessus assure qu’une trajectoire périodique (qui évince les sommets) est isolée si elle fait un nombre impair de rebonds, et appartient à une famille de trajectoires périodiques de même longueur dans le cas contraire (cf [68]).

Géodésiques diffractives

Rappelons la notion de point diffractif régulier déjà introduite : un point diffractif p de g est régulier si toute suite de géodésiques tendant vers g est diffractive en p (cf. définition 1.5 p. 69). Le résultat principal concernant les géodésiques périodiques diffractives est le lemme suivant.

Lemme 32 Soit g une géodésique périodique diffractive. Si g a un point diffractif régulier, alors pour tout temps T, g est isolée dans l’ensemble des géodésiques périodiques de période primitive inférieure à T.

Avant de démontrer ce lemme, l’énoncé appelle deux remarques.

- Il n’est pas exclu qu’on puisse trouver une suite de géodésiques périodiques dont la période tend vers l’infini et tendant vers g.
- La notion de point régulier dépend du point de départ choisi sur g, comme on peut s’en convaincre en considérant une géodésique périodique avec trois angles de diffractions égaux à β_1, π, β_2 ; si le point de départ de la géodésique est tel que l’angle π intervient en premier ou en dernier, le point diffractif correspondant sera exceptionnel, il sera régulier sinon. Dans le lemme précédent, il faut comprendre que si, pour un point de départ, g a un point diffractif régulier, alors g est isolée.
Géodésiques périodiques

Preuve : considérons g une géodésique de période T_0, et fixons T arbitraire. Supposons qu'il existe une suite (g_n) de géodésiques périodiques, dont la période est inférieure à T tendant vers g. On note T_n la période de g_n, et, quitte à extraire une sous-suite, on peut supposer que T_n tend vers une limite (par continuité, il existe m tel que $\lim T_n = m T_0$). Comme p est régulier, chaque g_n passe par p. D'après le lemme 18, la direction déterminée par g en p est localement la seule qui aboutit sur un point conique avant le temps T. Comme g_n est périodique, g_n repasse par p avant le temps T, et comme g_n tend vers g, la direction de g_n sortant de p tend vers celle de g_0. À partir d'un certain rang, g_n suit donc le morceau de g sortant de p et passe ainsi par le point conique suivant. En itérant l'argument, à partir de ce point conique, on voit qu'à partir d'un certain rang, g_n coïncide avec g. □

Ce lemme recouvre le cas des géodésiques dont un des angles de diffraction est différent de $\pm \pi$. Il recouvre aussi le cas des géodésiques qui ont à la fois des angles de diffractions de $+ \pi$ et $- \pi$. En effet, il suffit d'étudier le cas de la suite $(\pm \pi, \ldots, \pm \pi)$ si on considère un des points coniques est régulier). Dans ce cas, on peut changer de point de départ de façon à créer un point régulier (c'est-à-dire une fois que l'on y a au moins trois diffractions), ou bien, on peut considérer la géodésique parcourue deux fois, qui possède au moins un point régulier. La géodésique doublet étant alors régulière, celle de départ l'est aussi.

Les seules géodésiques qui n'ont donc pas encore été étudiées sont celles pour lesquelles tous les angles de diffraction sont π (ou $-\pi$). Considérons donc une orbite périodique g de longueur T_0 telle que tous ses angles de diffraction soient égaux à π. Partant d'un point de départ arbitraire, on peut mettre autour de g un rectangle fendu de type \mathcal{R}^+. Un peut considérer dans ce rectangle les segments de longueur T_0 parallèles à segment représentant g. Ces segments, s'ils sont "du bon côté" ne rencontrent pas les coupures et s'identifient donc à des géodésiques de M. En considérant l'isométrie locale avec \mathbb{R}^2 près du point de départ, on montre que ces géodésiques sont périodiques de période T_0.

Ce qui prouve le lemme suivant.

Lemme 33 Soit g une géodésique périodique de période T_0, qui, en chacun de ses points diffractants fait un angle de diffraction égal π alors g est le bord d'une famille de géodésiques périodiques de période T_0, non-diffraction (telle qu'elle est décrite dans le lemme 31).

Il est maintenant naturel de se demander si toute famille de géodésiques périodiques non diffraction dégénère sur une géodésique diffractive. Dans ce cas, la géodésique diffractive limite aura nécessairement tous ses angles égaux à π (ou $-\pi$). Le lemme suivant répond à cette question.

Lemme 34 Soit g une géodésique non diffractive périodique de période T_0, et $(g^s)_{s \in I}$ la famille de géodésique périodique correspondante $g = g^0$, alors I est un intervalle $[s_0, s_1]$. Dans ce cas, g^{-s} et g^s sont des géodésiques périodiques diffractives dont tous les angles valent π.

Preuve : prenons un point m_0 de g, l'ensemble des directions dans laquelle une géodésique issue de m_0 va aboutir sur un point conique est dense (cf lemme 17). Il existe donc g_1 et g_2 de part et d'autre de g, reliant m_0 à un point conique. Quitte à échanger g_1 et g_2, on peut supposer que pour s suffisamment petit, g^s coupe g_1 si $s > 0$ et g_2 si $s < 0$. La longueur de g_1 fournit alors un majorant de I. La borne supérieure s_1 de I est donc bien définie et le statut g^s résulte alors de la convergence des $(g^s)_{s \leq s_1}$. Le même argument avec g_2 fournit s_0. □

Cette discussion permet donc de classer les géodésiques périodiques g (éventuellement diffractives) de la façon suivante.

Théorème 17 (classification des géodésiques périodiques)
Soit g une géodésique périodique de M (orientable), elle entre alors dans une des catégories
suites:
1. g est non-diffactif, elle est alors à l'intérieur d'une famille de géodésiques non-diffactives de même longueur;
2. les angles de diffraction de g valent tous π (ou tous $-\pi$), g est le bord d'une famille décrite dans le premier cas;
3. dans tous les autres cas g est isolée.

Notre objectif est maintenant de calculer la contribution principale apportée à la formule de trace par certains types de géodésiques diffactives. On étudiera plus particulièrement celles du troisième type qui, de plus, ne présentent aucun angle de diffusion égal à $\pm\pi$, et les familles pour lesquelles chacune des géodésiques bordantes n'a qu'un point diffactant.

Remarque : il nous semble raisonnable de conjecturer que ces deux types sont "génériquement" les seuls.

L'outil principal pour établir la contribution principale d'une géodésique périodique va être les propagateurs microlocaлизés déjà construits (cf définition 11 p. 101). Pour étudier leur action au premier ordre, il est donc nécessaire de commencer par ce qui se passe sur le cône.

4.3 Propagation sur le cône : premier ordre

Notation : dans toute la suite on utilisera la symbole \sim_p pour exprimer la partie principale d'une quantité. On l'emploiera notamment pour donner le symbole principal de certains OIF, et pour donner la contribution principale des géodésiques périodiques. En général l'emploi de ce symbole sous-entend l'échelle employée par rapport à laquelle la partie précisée est principale.

4.3.1 Expression générale

On s'est déjà intéressé aux résultats concernant la propagation des singularités sur un cône, et aux conséquences qu'on a pu en déduire pour une s.e.s.c. Pour pouvoir mener les calculs jusqu'à la singularité principale d'une géodésique périodique, il nous faut d'abord examiner de façon quantitative l'évolution des singularités sur le cône. Dans cette optique, la construction du propagateur proposé par [30] est plus simple à utiliser que la construction, plus générale, de [15].

Notations: suivant [36], on note θ^λ_+ et θ^λ_- pour $\text{Re}(\lambda) > -1$ les distributions définies par les fonctions F^1_{loc} :

\[
\begin{align*}
\theta^\lambda_+ &= \begin{cases}
\theta^\lambda & \text{si } \theta > 0, \\
0 & \text{sinon.}
\end{cases} \\
\theta^\lambda_- &= \begin{cases}
|\theta|^\lambda & \text{si } \theta < 0, \\
0 & \text{sinon.}
\end{cases}
\end{align*}
\]

Cette famille peut être étendue méromorphiquement avec des pôles aux entiers négatifs.
Rappelons la construction de [30]. On part de la distribution $G(y,z)$ de $\mathcal{D}'(\mathbb{R}^2)$, définie par la fonction L^1_{loc} suivante:

$$G(y,z) = \begin{cases} H(y + \cos z)H(\pi - |z|) & \text{si } y < 1 \\ \frac{1}{\pi} [\arctan\left(\frac{\pi - z}{\cosh y}\right) + \arctan\left(\frac{\pi + z}{\cosh y}\right)] & \text{si } y > 1. \end{cases}$$

Utilisant l’égalité $\arctan a + \arctan \frac{1}{a} = \frac{\pi}{2} \text{sign}(a)$, G peut s’écrire alternativement :

$$G(y,z) = H(y + \cos z)H(\pi - |z|) - \frac{H(y - 1)}{\pi} [\arctan\left(\frac{\cosh y}{\pi - z}\right) + \arctan\left(\frac{\cosh y}{\pi + z}\right)]. \quad (4.5)$$

La figure suivante représente le support singulier de G:

![Diagramme de support singulier de G]

Les singularités de cette distribution peuvent être contrôlées en utilisant le fait que G est solution de l’équation au dérivées partielles (cf égalité (19) de [30]):

$$(1 - y^2) \frac{\partial^2}{\partial y^2} G - \frac{\partial^2}{\partial z^2} G + y \frac{\partial}{\partial y} G = 0. \quad (4.6)$$

Lemme 35 Les singularités de G sont données par l’inclusion :

$$\text{WF}(G) \subset [N^*\{y + \cos z = 0\} \cap \{|z| \leq \pi\}] \cup N^*\{y = 1\}.$$

On a aussi l’inclusion

$$\text{WF}(G) \subset \{(y,z,\eta,\zeta) \mid |\zeta| \leq |\eta|\}.$$

Preuve: D’après l’expression de G, G est C^∞ en dehors de $\{y = 1\}$ et $\{y + \cos z = 0\} \cap \{|z| \leq \pi\}$. Il reste donc à voir qu’en un de ces points, seuls les vecteurs conormaux peuvent être dans le front d’onde. Ceci est assuré par le fait que G satisfait l’équation (4.6) et le théorème de Hörmander sur les singularités de la solution d’une équation aux dérivées partielles (cf. th. 8.3.1 de [46]). Ceci donne la première inclusion du lemme. La deuxième en découle par un examen direct.

\square
Remarque : Les deux conormaux définissant le front d’onde de G s’intersectent transversalement au sens de Bott aux points $(y = 1, z = \pm \pi, \zeta = 0)$.
Le noyau du propagateur de l’équation des ondes sur le cône C_α est alors obtenu en faisant subir à G la suite d’opérations suivante.
- Demi-dérivation par rapport à y ; on entend par là l’opérateur qui à u associe :
\[
(D^\frac{1}{2} u) = \partial_y \int (y - y')^{-\frac{1}{2}} u(y',z) dy'.
\]
La raison pour laquelle cet opérateur est appelé demi-dérivation est la propriété :
\[
D^\frac{1}{2} y^\alpha = c_\alpha y_{+}^{\alpha + \frac{1}{2}}, \alpha > -1,
\]
avec $c_\alpha = (\alpha + \frac{1}{2}) \int (1 - z)^{-\frac{1}{2}} z^{\alpha + 1} |dz|$. Cette propriété restera vraie si on multiplie $D^\frac{1}{2}$ par une constante.
- Image réciproque par l’application :
\[
F : (t,R_1,x_1,R_0,x_0) \rightarrow (y = f(t,R_1,R_0), z = x_1 - x_0),
\]
avec $f(t,R_1,R_0) = \frac{t^2 - R_1^2 - R_0^2}{2R_1 R_0}$.
L’image réciproque est bien définie car F est une submersion dès que $t \neq 0$, ce qui sera toujours le cas.
- Multiplication par $C(R_1 R_0)^{-\frac{1}{2}}$, où C est une constante. On aurait pu intégrer cette constante à la définition de la demi-dérivation, on préfère cependant garder ici cette latitude et ajuster cette constante ultérieurement. Notons que ceci n’est possible que parce qu’on sait a priori que cette suite d’opérations donnera bien le propagateur sur le cône.
- Périodisation par rapport à $(y,z) \rightarrow (y,z + \alpha)$.
Le résultat principal de [30] est qu’on obtient alors le noyau de l’opérateur $\frac{\sin(t \zeta \sqrt{\Delta_\alpha})}{\sqrt{\Delta_\alpha}}$ agissant sur $L^2(C_\alpha)$. Cette construction est résumée par la proposition suivante :

Proposition 41
Le noyau distribution E_α de $\frac{\sin(t \zeta \sqrt{\Delta_\alpha})}{\sqrt{\Delta_\alpha}}$ est donné par l’égalité :
\[
E_\alpha = AG_\alpha,
\]
ou G_α est une distribution de $\mathcal{D}'(\mathbb{R} \times \mathbb{R}/\alpha \mathbb{Z})$, et A est un opérateur intégral de Fourier agissant de $C_\alpha^\infty(\mathbb{R} \times \mathbb{R}/\alpha \mathbb{Z})$ dans $\mathcal{D}'(\mathbb{R} \times \mathbb{R}/\alpha \alpha \times \mathbb{C}_\alpha)$ tels que la composition AG_α est bien définie. On a de plus les descriptions suivantes.
1. La distribution G_α s’obtient en périodisant la distribution G donnée par (4.5) :
\[
G_\alpha(y,z) = \sum_{k \in \mathbb{Z}} G(y,z + k\alpha).
\]
2. L’opérateur A est associée à la variété lagrangienne
\[
A_A = N^* \{ (y,z) = F(t,R_1,x_1,R_0,x_0) \},
\]
et on a la représentation suivante du noyau de A comme intégrale oscillante :

$$A(t,m_1,m_0, y,z) = \int e^{i\delta(f(t,R_1,R_0) - y_1)e^{\alpha[(x_1-x_0)]-z}}a(t,m_0, m_1, y, \theta)|d\theta d\sigma|,$$

dans laquelle le symbole complet a est donné par :

$$a = \frac{e^{i\frac{\gamma}{2}}}{4\pi \sqrt{2\pi}} \times \frac{\theta^\frac{1}{2} - i\theta^\frac{1}{2}}{(R_0 R_1)^\frac{1}{2}}.$$

Remarque : le fait que la distribution AG_α soit bien définie consiste à remarquer que les fronts d’ondes se composent bien. Cela résulte notamment du fait que F est une sousmersion et que

$$WF(G) \subset \{(\zeta \leq |\eta||\}}.$$

Preuve : il faut montrer deux choses sur la suite des opérations que l’on fait subir à G.

1. On peut intervertir la périodisation et les autres opérations et donc commencer par celle-ci.

2. La succession de la demi-dérivation, de l’image réciproque, puis de la multiplication par $C(R_0 R_1)^\frac{1}{2}$ donne l’OIF A.

Pour l’interversion de la périodisation et des autres opérations, l’appendice 4.5.2 fournit toutes les estimations nécessaires. On s’intéresse donc à l’opérateur A qui, à une distribution $u(y,z)$ associe :

$$Au(t,m_1,m_0) = C(R_0 R_1)^{-\frac{1}{2}}F^*D^\frac{1}{2}u,$$

dans laquelle C est une constante et $D^\frac{1}{2}$ est défini par l’inégalité (4.7) Localement, on note (y,z,y,ζ) les coordonnées de $T^*(\mathbb{R} \times \mathbb{R}/\alpha\mathbb{Z})$. L’action de la demi-dérivation sur les distributions dont le front d’onde vérifie $|\zeta| \leq c|\eta|$ est un opérateur pseudo-différentiel. Ce qui suffit pour avoir le comportement près du front diffracté d’après la remarque suivant le lemme 35. L’expression en intégrale oscillante de $D^\frac{1}{2}$ dépend des transformées de Fourier des distributions y^α_γ (cf [36]). L’image réciproque par F est aussi un opérateur intégral de Fourier (cf [24]). La composition des deux se passe alors bien. Comme $(R_0 R_1)^{-\frac{1}{2}}$ est C^∞ là où on se place, le fait de multiplier par cette fonction ne change rien, et on obtient le résultat annoncé. □

Remarques :

- Cette proposition est un peu moins forte que le résultat de [30] qui assure que l’expression ainsi obtenue est valable aussi près du sommet du cône. Cependant, on n’a pas défini ce qui équivaudrait la notion d’OIF près du sommet du cône, la formulation de la proposition précédente ne peut donc s’appliquer près du sommet du cône. Cette proposition nous suffira dans la mesure où on a vu que l’on pouvait toujours se “décaler” du sommet du cône (cf 110). Elle est par ailleurs intéressante car elle ne fait intervenir qu’un OIF explicite, et une “fonction spéciale” relativement simple.

- La description précédente permet de fixer la constante C en regardant le front primaire. On obtient la formule suivante près du front primaire (en appliquant A à $H(y+\cos(z))$) :

$$\frac{C}{(R_0 R_1)^\frac{1}{2}}[f(t,R_1,R_0) + \cos(x_1 - x_0)]^{-\frac{1}{2}},$$

que l’on compare avec le propagateur libre dans \mathbb{R}^2. Cela fournit alors $C = (2\pi \sqrt{2})^{-1}$, ce qui est compatible avec l’article [30].
Avoir choisi de travailler avec $e^{it\sqrt{\Delta\alpha}}$ plutôt qu'avec $\frac{\sin(t\sqrt{\Delta\alpha})}{t\sqrt{\Delta\alpha}}$, il nous faut établir l'équivalent de la proposition précédente pour le noyau de $e^{it\sqrt{\Delta\alpha}}$. De plus, pour traiter les orbites périodiques dont certains angles valent $\pm \pi$, on sera obligé de sortir de la théorie des OIF, il sera alors agréable de pouvoir travailler avec des intégrales oscillantes absolument convergentes. Cela sera possible en utilisant $u(\Delta)\Delta^{-\frac{N}{2}}e^{it\sqrt{\Delta\alpha}}$, où χ tronque loin de 0, et N est suffisamment grand. On montre donc le théorème suivant qui découle de la proposition précédente.

Théorème 18 Le noyau $K_{0,\alpha}$ de $e^{T\sqrt{\Delta\alpha}}$ est donné, au voisinage du front diffracté par l'expression:

$$K_{0,\alpha} = A_0G_\alpha,$$
dans laquelle A_0 est un opérateur intégral de Fourier, agissant de $C_c^\infty(\mathbb{R} \times \mathbb{R}/\alpha\mathbb{Z})$ dans $D'(\mathbb{R} \times \hat{C}_\alpha \times \hat{C}_\alpha)$ et tel que la composition A_0G_α est bien définie. De plus l'expression en intégrale oscillante de A_0 est donnée par

$$A_0(t,m_1,m_0,y,z) = \int_{\theta > 0} e^{i\theta f(t,R_1,R_2) - \frac{i\theta}{2} \alpha} e^{i\alpha(z_2 - z_1)} a_0(t,m_0,m_1,y,\theta)|d\theta d\sigma|,$$

(4.8)
dans laquelle on a, au premier ordre:

$$a_0(t,m_1,m_0,y,\theta) \sim e^{i\frac{\theta}{2}(2\pi)^\frac{1}{2}} \left(\frac{i}{R_0 R_1} \right)^{\frac{1}{2}} \left(\frac{t}{R_0 R_1} \right)^{\frac{1}{2}} \theta^b.$$

Soit $u(\lambda)$ une fonction $C^\infty(\mathbb{R})$ valant 0 près de 0 et 1 pour λ grand, pour $N \geq 0$, il existe un opérateur intégral de Fourier A_N, vérifiant la même chose que A_0 et tel que la composition A_NG_α est bien définie et donne le noyau distribution $K_{N,\alpha}$ de $u(\Delta)\Delta^{-\frac{N}{2}}e^{it\sqrt{\Delta\alpha}}$ au voisinage du front diffracté. De plus, le noyau de A_N est donné par l'intégrale oscillante suivante:

$$A_N(t,m_1,m_0,y,z) = \int_{\theta > 0} e^{i\theta f(t,R_1,R_2) - \frac{i\theta}{2} \alpha} e^{i\alpha(z_2 - z_1)} a_N(t,m_0,m_1,y,\theta)|d\theta d\sigma|,$$

(4.9)
dans laquelle a_N est un symbole d'ordre $\frac{1}{2} - N$.

La preuve consiste d'abord à utiliser un argument de front d'ondes pour obtenir le résultat pour $e^{it\sqrt{\Delta\alpha}}$ à partir de la proposition 41. La proposition pour A_N découlera alors simplement du calcul des opérateurs pseudo-différentiels car $u(\Delta)\Delta^{-\frac{N}{2}}$ en sera un là où on regardera.

Preuve : partant de la proposition 41, on obtient le noyau de $\cos(t\sqrt{\Delta\alpha})$ en dérivant par rapport à t, ce qui revient à appliquer un opérateur A_0 à G_α. Le noyau de cet opérateur apparaît comme une intégrale oscillante que l'on peut découper en séparant les θ positifs et négatifs. Ce découpage revient à séparer dans le front d'ondes du noyau de $\cos(t\sqrt{\Delta\alpha})$ les parties correspondant à $\tau > 0$ et $\tau < 0$. Comme l'écriture $\cos(t\sqrt{\Delta\alpha}) = \frac{1}{2}[e^{it\sqrt{\Delta\alpha}} + e^{-it\sqrt{\Delta\alpha}}]$ correspond à la même décomposition du front d'ondes (cf [15]), on trouve ainsi A_0, qui, par construction, est donné par l'intégrale oscillante (4.8). (Remarquons ici que la différence entre $e^{it\sqrt{\Delta\alpha}}$ et $u(\Delta)\Delta^{-\frac{N}{2}}e^{it\sqrt{\Delta\alpha}}$ est régularisante.)

Le reste résulte alors du calcul pseudo-différentiel. En effet, on ne s'approche pas du sommet du cône, donc $u(\Delta)\Delta^{-\frac{N}{2}}$ est un opérateur pseudo-différentiel. de plus, on ne fait agir A_0 que sur une distribution vérifiant $|c| \leq \sigma|\eta|$, et avec cette condition, A_0 est un opérateur intégral de Fourier. L'ordre de A_N s'obtient en considérant les ordres respectifs de $u(\Delta)\Delta^{-\frac{N}{2}}$ et de A_0.

\square
L’interêt du théorème précédent est qu’il découpe l’étude des singularités de $K_{0,\alpha}$ en deux problèmes distincts : d’abord l’étude des singularités de G_α et ensuite l’action de A_0. On commence donc par étudier les singularités de G_α.

4.3.2 Singularités de G_α

Le seul endroit où il est nécessaire d’étudier G_α est près de la droite $\{y = 1\}$, qui correspond, via F au front diffracté. D’après l’expression de G (cf (4.5)), il est naturel d’attendre que G_α soit plus singulière près de $z = \pm \pi$.

Commencons par nous placer au voisinage de $(1, z)$, où $z \neq \pm \pi$. Dans l’expression (4.5), comme $z \neq \pm \pi$, la fonction $H(y + \cos z)H(\pi - |z|)$ périodisée est C^∞ au voisinage du point considéré ; on notera $H_\alpha(y, x)$ cette fonction périodisée. Il reste à périodiser G_1 définie par :

$$G_1(y, z) = -\frac{1}{\pi} \left[\arctan \left(\frac{\sin^{-1} y}{\pi - z} \right) + \arctan \left(\frac{\sin^{-1} y}{\pi + z} \right) \right].$$

On notera par x la variable sur $\mathbb{R}/\alpha \mathbb{Z}$, un énoncé tel que $x \neq \pi$ signifiera donc $x \neq \pi \bmod \alpha$.

On peut alors montrer le lemme suivant :

Lemme 36 Soit G_1 définie ci-dessus, on peut alors définir la fonction $G_{1, \alpha}$ sur $\mathbb{R} \times \mathbb{R}/\alpha \mathbb{Z}$ par

$$G_{1, \alpha}(y, x) = \sum_{k \in \mathbb{Z}} G_1(y, x + k\alpha).$$

De plus au voisinage de $(1, x_0)$ où $x_0 \neq \pm \pi$, on a le développement suivant

$$G_{1, \alpha}(y, x) \sim (y - 1)^{\frac{1}{4}} \tilde{G}(y, x),$$

où \tilde{G} est $C^\infty(\mathbb{R} \times [\mathbb{R}/\alpha \mathbb{Z} \setminus \{\pm \pi\}])$, et $\tilde{G}(1, x) = 2\sqrt{2} d_\alpha(x)$, avec

$$d_\alpha(x) = -\sum_{k} \frac{1}{\pi^2 - (x + k\alpha)^2}.$$

Ce lemme admet alors le corollaire suivant (qui est simplement une autre façon de l’exprimer).

Corollaire 20 La distribution $G_{1, \alpha}$ est une distribution oscillante de Fourier associée à la sous-variété lagrangienne $N^* \{y = 1\}$. Son terme principal est donné par :

$$G_{1, \alpha}(y, x) \sim p 2\sqrt{2} d_\alpha(x)(y - 1)^{\frac{1}{4}}.$$

La formule sommatoire de Poisson (cf [28] p. 111, et ex. 2 page suivante) donne une expression alternative pour d_α :

$$d_\alpha(z) = -\frac{\sin \left(\frac{2\pi^2}{\alpha} \right)}{\alpha \sin \left[\frac{2\pi}{\alpha}(\pi - z) \right] \sin \left[\frac{2\pi}{\alpha}(\pi + z) \right]}.$$

Cette expression correspond à $L(0, x)$ dans le papier de Durso ([27]). Les deux propriétés suivantes découlent aussi clairement de cette expression :

- si α est de la forme $\frac{2\pi}{N}$, d_α est constamment nulle (ce qu’il est aussi facile à voir sur le développement),
- sinon, $d_\alpha(x)$ ne s’annule pas.
On ne va donner ici qu’une idée de la preuve du lemme précédent, dans laquelle aucune des affirmations n’est vraiment justifiée. Toutes les estimations rendant rigoureux le raisonnement suivant sont l’objet de l’appendice 4.5.2. On développe arctan au voisinage de 0, ce qui donne

\[G_1(y, x) = \sum_k a_k \left[\frac{1}{(\pi - x)^k} + \frac{1}{(\pi + x)^k} \right] (\text{ch}^{-1}(y))^k, \]

que l’on périodise en suite terme à terme :

\[G_{1, k}(y, x) = \sum_k a_{k, \alpha}(x) (\text{ch}^{-1}(y))^k. \]

Il reste à utiliser le développement asymptotique :

\[\text{ch}^{-1}(y) = \sum c_k (y - 1)^{k + \frac{1}{2}}, \]

et à regrouper les termes. La difficulté principale (levée par les estimations de l’appendice 4.5.2) est la périodisation.

L’écriture en intégrale oscillante de \(G_{1, \alpha} \) donne alors le corollaire suivant :

Corollaire 21 Il existe un symbole \(g_{1, \alpha}(x, \theta) \) tel qu’on peut écrire :

\[G_{1, \alpha} = \int \exp \left[i(y - 1)\theta \right] g_{1, \alpha}(x, \theta) |d\theta|. \]

De plus le terme principal de \(g_{1, \alpha} \) est :

\[g_{1, \alpha}(x, \theta) \sim_p \frac{1}{\sqrt{2\pi}} d_{\alpha}(x) \left[e^{i \frac{\pi}{4} \theta} e^{-\frac{\pi}{4} \theta} + e^{i \frac{3\pi}{4} \theta} e^{-\frac{3\pi}{4} \theta} \right]. \]

Le corollaire est juste une réécriture du fait que \(G_{1, \alpha} \) est une distribution oscillante associée à \(N^\ast \{ y = 1 \} \). Quant au symbole principal, il vient de l’écriture de \((y - 1)^{\frac{1}{2}} \) sous forme d’intégrale oscillante (cf [36]).

La preuve du lemme précédent donne aussi les estimations suivantes au voisinage de \(z = \pm \pi \)

Lemme 37 Il existe des distributions oscillantes \(R_{\pm, \alpha} \) de \(\mathcal{D}'(\mathbb{R} \times \mathbb{R}/\alpha \mathbb{Z}) \) associées à \(N^\ast \{ y = 1 \} \) telles qu’au voisinage de \((y = 1, x = \pi) \) (resp. \((y = 1, x = -\pi) \)), on ait les décompositions suivantes :

\[G_{1, \alpha}(y, x) = H_{\alpha}(y, x) - \frac{1}{\pi} \arctan \left(\frac{\text{ch}^{-1} y}{\pi - x} \right) + R_{+, \alpha}(y, x), \]

(resp. \(G_{1, \alpha}(y, x) = H_{\alpha}(y, x) - \frac{1}{\pi} \arctan \left(\frac{\text{ch}^{-1} y}{\pi + x} \right) + R_{-, \alpha}(y, x) \)).

De plus, les restes \(R_{\pm, \alpha} \) peuvent s’écrit sous la forme :

\[R_{\pm, \alpha} = \int \exp \left[i(y - 1)\theta \right] r_{\pm, \alpha}(x, \theta) |d\theta|, \]

où \(r_{\pm} \) est un symbole dont le terme principal est \(O(|\theta|^{-\frac{1}{2}}) \).

Preuve : elle consiste à prendre une fonction \(\rho \) tronquant au voisinage de \((y = 1, z = \pi) \) et à remarquer que \(G_{1, \alpha} \) est la somme de \(G_{1, \rho} \) et de \((1 - \rho)G_1 \) périodisé. Cette dernière distribution s’obtient exactement de la même manière que \(G_{1, \alpha} \) loin de \(z = \pm \pi \). \(\square \)

Ces deux lemmes vont nous permettre, à l’aide, soit du calcul des QIF, soit d’un calcul direct, d’estimer le noyau de \(e^{i\sqrt{\pi \alpha}} \) au voisinage du front diffracté.

On commence par se placer loin de l’intersection \(\Sigma = \Lambda_d \cap \Lambda_0 \).
4.3.3 Loin de Σ

Montrons la proposition suivante qui nous permettra ensuite d'examiner le cas des opérateurs K_β lorsque tous les angles de diffraction de g sont différents de $\pm\pi$. Une telle géodésique sera dite \textit{localement} régulière.

\textbf{Théorème 19 (Au voisinage de $\Lambda_d \setminus \Sigma$)}

Au voisinage de $\Lambda_d \setminus \Sigma$, le noyau K_α de $e^{\frac{it}{\sqrt{2}}}$ est un opérateur intégral de Fourier associé à $N^*_+(t = R_0 + R_1)$. On peut le représenter comme intégrale oscillante de la façon suivante:

$$K_\alpha(t,R_1,x_1,R_0,x_0) = \int_{\theta > 0} \exp\left[i\theta(t - R_1 - R_0)\right] k_\alpha(t,R_1,x_1,R_0,x_0,\theta)|d\theta|,$$

Dans cette écriture, la partie principale de k_α est donnée par:

$$k_\alpha \sim_p \frac{1}{2\pi} \frac{d\alpha(x_1 - x_0)}{(R_1R_0)^{\frac{1}{2}}}.$$

\textbf{Preuve :} elle consiste à appliquer l'OIF A_0 à la distribution oscillante $G_{1,\alpha}$, et à regarder dans un voisinage d'un point de $\Lambda_d \cap \Sigma$. Celui-ci peut être choisi ne rencontrant pas Λ_0.

Il faut donc estimer l'intégrale oscillante suivante (on a déjà fait l'intégration sur z):

$$\int_{\theta > 0, \sigma, y} e^{\theta[f(t,R_1,y,R_0)-y]}a_0(t,R_0,R_1,y,x_1-x_0,\theta)G_{1,\alpha}(y,x_1-x_0)\rho(y,x_1-x_0)|d\theta d\sigma dy|,$$

où la fonction de troncature est choisie de telle manière que:

1. des considérations de fronts d'ondes assurent que $A_0G_{1,\alpha}(1 - \rho)$ est lisse dans le voisinage de $\Lambda_d \cap \Sigma$ choisi,
2. sur le support de ρ, l'écriture de $G_{1,\alpha}$ donnée par le corollaire 21 est valable.

Cette dernière condition nous permet de remplacer $G_{1,\alpha}$ par son expression en intégrale oscillante, de plus la composition des fronts d'ondes nous permet de ne conserver que les $\sigma > 0$. Finalement, l'intégrale oscillante à traiter est:

$$K_\alpha(t,R_1,x_1,R_0,x_0) = \int_{\theta > 0, \sigma, y} e^{\theta[f(t,R_1,y,R_0)-y]}a_0(t,R_0,R_1,y,x_1-x_0,\theta)G_{1,\alpha}(y,x_1-x_0)\rho(y,x_1-x_0)|d\theta d\sigma dy|.$$

Reprenant la démonstration du théorème de composition des OIF (cf [24] pp par exemple), on met θ en facteur dans la phase, et on cherche à faire une phase stationnaire par rapport aux variables $(y,\sigma/\theta)$. La non dégénérécence de cette phase stationnaire est alors équivalente à la transversalité des lagrangiennes intervenant, hypothèse sous laquelle le théorème de composition s'appliquera. De plus cette phase stationnaire donnera le symbole principal de l'opérateur résultant de cette composition.

Dans le cas qui nous intéresse, la phase s'écrit (en notant $\sigma' = \sigma/\theta$):

$$\theta[[f(t,R_0,R_1) - y] + (y - 1)\sigma'].$$

Les points critiques et la hessienne sont alors:

$$\left\{\begin{array}{l}
-1 + \sigma' = 0 \\
\sigma' = 0
\end{array}\right.; \quad |H| = \left|\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right| = 1.$$
On peut donc appliquer le théorème de composition, ce qui assure que \(K \) est un OIF associé à la variété lagrangienne prédite par le calcul direct des fronts d’ondes, soit :

\[
K_\alpha(t, R_1, x_1, R_0, x_0) \sim_p \int_{\theta > 0} e^{i\theta (t, R_1, r_1)^{-1}} k_\alpha(t, R_1, x_1, R_0, x_0, \theta) |d\theta|,
\]

de plus, le symbole \(k \) est donné, à l’ordre principal par :

\[
k_\alpha \sim_p \frac{2\pi}{\theta} \frac{d_\alpha(x_1 - x_0 t)}{(R_0 R_1)^{\frac{3}{2}}}.
\]

La phase peut se simplifier en écrivant

\[
\frac{\theta^2 - R_0^2 - R_1^2}{2 R_0 R_1} - 1 = \frac{\theta(t + R_0 + R_1)}{2 R_0 R_1} [t - (R_0 + R_1)],
\]

et en faisant le changement de variable ainsi suggéré (\(\theta = \frac{\theta(t + R_0 + R_1)}{2 R_0 R_1} \)). On obtient alors l’écriture :

\[
K_\alpha(t, R_1, x_1, R_0, x_0) \sim_p \int_{\theta > 0} e^{i\theta [t - (R_0 + R_1)]} k_\alpha(t, R_1, x_1, R_0, x_0, \theta) |d\theta|.
\]

Le symbole principal de \(k \) se déduit alors de celui de \(k \). Au premier ordre, le changement de variable revient à multiplier \(k \) par \(\frac{2 R_0 R_1}{t + R_0 + R_1} \). En utilisant l’égalité

\[
\frac{t}{t + R_0 + R_1} = \frac{1}{2} + \frac{[t - R_0 - R_1]}{2(t + R_0 + R_1)} \frac{1}{2(t + R_0 + R_1)},
\]

on obtient le symbole principal de \(k \) annoncé ; en effet, dans cette dernière expression, le deuxième terme va contribuer au symbole sous-principal.

Remarques :
- Cette approximation correspond à ce qui est appelé “diffraction géométrique” dans la littérature physique (cf [7]). Outre le fait de retrouver ce résultat, l’intérêt de la démarche proposée réside aussi dans l’emploi systématique des OIF qui rend les développements asymptotiques simples à obtenir, tout en gérant de manière assez précise le reste.
- Comme on peut s’y attendre, le coefficient de diffraction \(d_\alpha \) explique quand on se rapproche de la frontière optique.
- En regardant précisément l’ordre de grandeur de \(K_\alpha \) ainsi obtenu, on retrouve le fait que l’onde diffractée est \(\frac{1}{2} \) – fois plus régulière que l’onde primaire (cf [51, 7]).

En suivant la même démarche, en utilisant cette fois l’expression de \(G_{1,\alpha} \) au voisinage de \(x = \pi \), on obtient un développement de \(K_{\alpha,N} \) près de \(\Sigma \).

4.3.4 Au voisinage de \(\Sigma \)

Comme on l'a déjà remarqué, pour faire les calculs près de l'intersection \(\Sigma \), on sort du cadre habituel des OIF. On préférera donc travailler avec \(K_{\alpha,N} \) le noyau de \(u(\Delta_\alpha) \Delta^{-N}e^{it \sqrt{\Delta \pi}} \) avec \(N \) suffisamment grand, de façon à ne manipuler que des intégrales convergentes.
On montre alors le résultat suivant.

Proposition 42 (Au voisinage de Σ)

Au voisinage de Σ, le noyau de $K_{α,N}$ se décompose en une somme de trois termes :

$$K_{α,N} = K_{α,N}^{tl} + K_{α,N}^{ds} + K_{α,N}^{dr}.$$

On a de plus la description suivante pour chacun de ces termes :

1. l'opérateur $K_{α,N}^{tl}$ correspond à la propagation libre “tronquée” :

$$K_{α,N}^{tl}(t,m_1,m_0) = K_{0,N}(t,m_0,m_1)H(\pi - (x_1 - x_0)),$$

2. l'opérateur $K_{α,N}^{ds}$ correspond à la partie diffractive singulière, et est représentée par l'intégrale suivante :

$$K_{α,N}^{ds}(t,R_1,x_1,R_0,x_0) = \int_{θ > 0, w > 0} e^{iθ[f(t,R_1,R_0) - \text{ch } w]} a_N(t,R_1,R_0,θ) \theta^{-1} \frac{\rho_1(\pi - (x_1 - x_0))}{\text{d}u dθ},$$

3. l'opérateur $K_{α,N}^{dr}$ correspond à la partie diffractée régulière. C'est un opérateur intégral de Fourier, associé à la variété lagrangienne $N^*\{t - R_0 - R_1 = 0\}$. Dans une représentation en intégrale oscillante avec $σ(t - R_0 - R_1)$ comme fonction phase, son symbole principal est $0(|σ|^{-N}).$

Preuve : elle consiste à injecter dans la formule de $K_{α,N}$ donnée au théorème 18, la décomposition donnée par le lemme 37. On obtient ainsi trois termes.

1. Le premier est donné par

$$A_{N,α}[H_α(y,x)].$$

On le note $K_{α,N}^{tl}$. Par définition de $A_{N,α}$, l'égalité suivante est vérifiée :

$$K_{N,α} = u(Δ)Δ^{-\frac{N}{2}} A_0 H_α(y,x),$$

Comparant avec l'expression obtenue pour la propagation libre, cet opérateur se met bien sous la forme annoncée.

2. Le deuxième terme est donné par l'application de $A_{N,α}$ à $\text{arctan}\left(\frac{\text{ch}^{-1}(y)}{π - x}\right) \rho(y,x)$. On doit donc estimer :

$$K_{α,N}^{ds}(t,m_1,m_0) = \int_{θ > 0, y} e^{iθ[f(t,R_1,R_0) - y]} a_N(t,R_1,R_0,θ) \text{arctan}\left(\frac{\text{ch}^{-1}(y)}{π - (x_1 - x_0)}\right) \rho(y,x_1 - x_0) \text{d}y \text{d}θ,$$

On fait le changement de variable $y = \text{ch } w$ suivi d'une intégration par parties en w. On obtient d'une part l'opérateur noté $K_{α,N}^{ds}$ dans la proposition, d'autre part une intégrale dans laquelle intervient la dérivée de $ρ$ par rapport à y. Cette dernière s'annulant identiquement au voisinage de $y = 1$, par des considérations de fronts d'onde, ce terme donne une contribution régularisante que l'on omet donc.

3. Le troisième morceau s'obtient en appliquant $A_{N,α}$ à $R_{+1,α}$. Ce dernier opérateur étant un OIF, on est ramené exactement au même calcul que pour l'estimation de $K_α$ loin de Σ. Ce qui donne le résultat, en remarquant que $A_{N,α}$ décale de N ordres par rapport à A_0 et que $A_{0,α}$ appliqué à un symbole $O(|σ|^{-\frac{N}{2}})$ donne un symbole d'ordre 0.
Remarques :
- Quand on s'éloigne de $x = \pi$, les singularités de $G_{1, \alpha}$ se séparent entre celles correspondant à $y + \cos x = 0$ et celles correspondant à $y = 1$. Transportant tout sur le cône, on obtient la partie correspondant au front primaire, (qui vient se recoller sur K_{α}^{it}), et la partie correspondant au front diffracté, (qui vient se recoller sur la somme des deux autres termes).
- Examinons le front d'ondes des opérateurs en présence. Celui de $K_{d,r}^{a,N}$ est contenu dans le front diffracté. Celui de $K_{d,e}^{a,N}$ est inclus dans $\Lambda_0 \cup \Lambda_t$ où $\Lambda_t = N \{ x_1 - x_0 = \pi \}$ correspond à la troncature. De même, celui de $K_{d,e}^{a,N}$ est inclus dans $\Lambda_0 \cup \Lambda_t$. Une des particularités du développement proposé est d'avoir apparemment créé artificiellement des singularités sur Λ_1. À cet endroit, on est sûr que $K_{d,e}^{a,N}$ et $K_{d,r}^{a,N}$ ont le même ordre de grandeur, puisqu'ils doivent se compenser exactement. Cependant, cette singularité artificielle n'est pas très gênante dans la mesure où la trace la fera de toutes façons disparaître.
- Sur Σ, l'opérateur $K_{d,e}^{a,N}$ est un OIF : c'est celui qu'on obtient dans la partie "loin de Σ^r_θ", à la fonction de troncature près.
L'expression donnée dans la proposition précédente nous sera utile pour estimer la contribution d'une orbite périodique située au bord d'une famille. Mais on va d'abord calculer la contribution à la formule de trace d'une orbite localement régulière.

4.4 Au voisinage d'une géodésique localement régulière

Dans cette partie, on peut mener tous les calculs dans la classe des OIF. On veut calculer la contribution à la formule de trace d'une orbite localement régulière. On rappelle que cela signifie que tous les angles de diffractions sont différents de $\pm \pi$. On peut en fait montrer un résultat plus fort, dans la mesure où on est capable d'estimer le propagateur K_g avant de prendre la trace, lorsqu'aucun des angles de g ne vaut $\pm \pi$. C'est l'objet du début de cette partie, et la fin de cette partie consistera alors à prendre la trace.

4.4.1 Propagateur microlocalisé

On veut montrer que l'opérateur K_g est alors un opérateur intégral de Fourier, dont on calcule le symbole principal. L'opérateur K_g s'exprime à partir des opérateurs K_{α} correspondant aux points coniques rencontrés :

$$K_g(t) = \Pi_n e^{it - L_{-1}^{\sqrt{\Delta_{-1}}} \cdots \Pi_1 e^{it - L_{-1}^{\sqrt{\Delta_{-1}}}} \Pi_0}.$$ \hspace{1cm} (4.10)

Dans cette expression, comme tous les angles de diffractions sont différents de $\pm \pi$, les opérateurs de troncatures ont pu être choisis de sorte que les opérateurs $\Pi_i K_{\alpha_i} \Pi_{i-1}$ n'aient du front d'ondes que sur le front diffracté. D'après la proposition 19, cet opérateur est alors un OIF. Le résultat cherché sur K_g découlera alors du calcul général des OIF. Les compositions successives des opérateurs K_{α_i} correspondront toujours à une application du lemme général suivant.

Lemme 38

Soient deux points O_0, O_1 distincts de \mathbb{R}^2 et (R_i, x_i) les coordonnées polaires autour de
chacun de ces points. Soient \(B_0 \) et \(B_1 \) deux opérateurs intégraux de Fourier agissant respectivement d'une variété \(Z_0 \) dans \(\mathbb{R}^2 \) et de \(\mathbb{R}^2 \) dans une variété \(Z_1 \), et s'écrivant :

\[
B_0(m,z_0) = \int e^{i\theta [\phi_0(z_0)-R_0]} |\tilde{b}_0(z_0,R_0,x_0,\theta_0)| d\theta_0,
\]

\[
B_1(z_1,m) = \int e^{i\theta [\phi_1(z_1)-R_1]} |\tilde{b}_1(z_1,R_1,x_1,\theta_1)| d\theta_1.
\]

Notant \(l \) la distance entre \(O_1 \) et \(O_2 \), \(C = B_1 B_0 \) est alors encore un opérateur intégral de Fourier qui s'écrit :

\[
C(z_1,z_0) = \int e^{i\theta [\phi_1(z_0)+\phi_0(z_1)]-l|\tilde{c}(z_0,z_1,\theta)|} d\theta.
\]

De plus, si les symboles principaux de \(B_0 \) et \(B_1 \) sont respectivement \(b_i(z_i,R_i,x_i)\theta^{\alpha_i} \), le symbole \(c \) est donné à l'ordre principal par :

\[
c(z_0,z_1,\theta) \sim_p (2\pi)^\frac{d}{2} e^{-\frac{i\pi}{2} \left[\frac{b_0 b_1 (R_0 R_1)^{\frac{d}{2}}}{l^d} \right]} \left| \begin{array}{c}
R_1 = \phi_1 (z_1) \\
R_0 = \phi_0 (z_0) \\
x_0 = \text{poids} \\
x_1 = \text{poids}.
\end{array} \right|
\]

La situation géométrique est représentée par la figure suivante :

La preuve de ce lemme ne pose pas de difficultés majeures, et consiste en une application de la phase stationnaire. On la reporte en appendice.

Ce lemme va nous permettre d'énoncer le théorème relatif aux opérateurs \(K_g \). Simplifions d'abord un certain nombre de notations déjà introduites au cours de l'étude des géodésiques de \(M \). La géodésique \(g \) étant rappelée dans la notation \(K_g \), on oublie de le reniker dans l'indexation des points coniques, des angles de diffractions etc... Ainsi, le long de \(g \), on rencontre \(n \) points coniques \(p_1 \cdots p_n \) d'angle respectif \(\alpha_j \), en lesquels la géodésique fait un angle de diffraction \(\beta_j \) (tous les \(\beta_j \) sont différents de \(\pm \pi \)). La longueur \(l_j \) correspond au segment joignant \(p_j \) à \(p_{j+1} \). On peut noter \((R_0,x_0) \) des coordonnées polaires autour de \(p_1 \) au voisinage de \(m_0 \), et \((R_1,x_1) \) des coordonnées polaires autour de \(p_n \) au voisinage de \(m_1 \). Dans ces coordonnées on peut de plus choisir l'origine des angles de telle sorte que \(x_0 = 0 \) et \(x_1 = 0 \) correspondent aux rayons incidents de \(g \) au point conique considéré. Le symbole principal de \(K_g \) va être obtenu en utilisant de manière répétée le lemme précédent, on définit donc au voisinage des extrémités de \(g \) les deux fonctions :

\[
d_g(m_0,m_1) = d_{\alpha_1} (\beta_1 - x_0) d_{\alpha_2} (\beta_2) \cdots d_{\alpha_n} (x_1),
\]

\[
l_g(m_0,m_1) = R_0 \times l_1 \times l_2 \cdots \times l_{n-1} \times R_1.
\]
On peut maintenant énoncer le théorème donnant l’expression de \(K_g \).

Théorème 20 (Diffractions multiples)

Soit \(g \) une géodésique localement régulière avec \(n \) diffractions. Avec les notations précédentes et au voisinage de \((T_0 , m_0 , m_1)\), l’opérateur \(K_g \) défini en (4.10) est un opérateur intégral de Fourier, associé à la variété lagrangienne \(\Lambda_g \). Il admet, microlocalement, la représentation en intégrale oscillante suivante

\[
K_g (t,m_0 ,m_1) = \int_{\theta > 0} e^{i\theta \left[-t R_0 + \sum_{j=1}^{n-1} l_j + R_{1j} \right]} k_g (t,m_0 ,m_1 ,\theta) d\theta ,
\]

le symbole \(k_g \) est donné, à l’ordre principal par :

\[
k_g (t,m_0 ,m_1) \sim_p (2\pi)^{-\frac{3}{2}} e^{-\frac{(z-1) i\pi}{4}} \frac{d_g (m_0 ,m_1)}{\left(l_g (m_0 ,m_1) \right)^{\frac{1}{2}}} \theta^{-\frac{z-1}{2}}.
\]

Preuve : par récurrence sur \(n \).

Pour \(n = 2 \), on applique le lemme 38 avec \(B_1 (t,m_1 ,m) = K_{a_2} (t-t_0) \Pi \) et \(B_0 (m,m_0) = K_{a_1} (t_0) \). D’après la proposition 19, on a alors

\[
b_0 (m,m_0 ,\theta_0) \sim_p \frac{1}{2\pi} \frac{d_{a_1} (x_0 (m) - x_0)}{(R_0 (m) R_0)^{\frac{1}{2}}} p_0 (m,m_0 ,\theta_0),
\]

et

\[
b_1 (t,m_1 ,m,\theta_1) \sim_p \frac{1}{2\pi} \frac{d_{a_2} (x_1 - x_1 (m))}{(R_1 (m) R_1)^{\frac{1}{2}}} p_1 (m_1 ,m,\theta_1),
\]

et la composition se fait dans \(\mathbb{R}^2 \) autour d’un segment de longueur \(l_1 \). Les fonctions \(p_0 \) et \(p_1 \) sont homogènes de degré 0 en \(\theta_0 \) et rendent compte au premier ordre des opérateurs de troncature \(\Pi \). D’après le lemme 38, on trouve que \(K_g \) s’exprime avec la phase \([t-R_0 - l_1 - R_1] \theta \), et avec un symbole \(k_g \) qui à l’ordre principal est :

\[
k_g \sim_p (2\pi)^{\frac{1}{2}} \frac{1}{4\pi^2} e^{-\frac{i\pi}{4}} \frac{d_{a_1} (\beta_1 - x_0) d_{a_2} (x_1)}{(R_0 (m) R_0 R_1 (m) R_1)^{\frac{1}{2}}} \frac{1}{l_1^{\frac{3}{2}}} \theta^{-\frac{3}{2}} p(m_1 ,m_0 ,\theta),
\]

ce qui se simplifie pour donner le résultat annoncé, car la fonction de troncature \(p \) vaut identiquement 1 au voisinage microlocal de \((m_1 ,m_0 ,\theta) \). Pour passer de \(n \) diffractions à \(n+1 \), il suffit d’écrire \(K_g = K_{a_2} (t-t_0) K_{\tilde{g}} (t_0) \), où \(\tilde{g} \) prend en compte les \(n \) premières diffractions. On utilise l’hypothèse de récurrence pour décrire \(K_{\tilde{g}} \), puis le lemme 38 pour faire la nouvelle composition. On obtient alors l’expression annoncée. \(\square \)

Donnons quelques caractéristiques du développement en diffractions multiples.

- Chaque diffraction fait gagner \(\frac{1}{4} \) en régularité.
- Chaque diffraction décale la phase de \(\frac{3\pi}{4} \) ou de \(-\frac{\pi}{4} \) suivant le signe de \(d_{a}(\beta) \).

Le fait que l’opérateur \(K_g \) appartienne à la classe des OIF, permet de calculer la contribution principale d’une orbite périodique localement régulière de façon analogue à ce qui se passe sur une surface lisse.
4.4.2 Calcul de la contribution

Loin des points coniques

Dans cette partie, on considère une géodésique g périodique, de longueur totale L, et comportant n diffractions. Il faut prendre la trace d’opérateurs de la forme $K_g \rho$. Remarquons que la notation $K_g \rho$ est légèrement ambiguë, il faut considérer que ρ est associée à un point m de la géodésique, et que cette dernière est alors paramétrée de telle sorte que $g(0) = m$. Le cas le plus simple est quand ρ_0 localise au voisinage d’un point de M_0 ; la fonction ρ_0 tronque alors loin des points coniques. Il faut alors estimer la singularité de $\text{Tr}(K_g \rho)$ au voisinage de $t = L$. Pour cela on évalue le comportement quand s tend vers l’infini de l’expression :

$$I(s) \equiv \text{Tr}(K_g \rho) e^{-ist} f(t),$$

où f tronque près de $t = L$. Cette contribution est reliée à l’expression du symbole principal de K_g donnée dans le théorème 20. Pour l’exprimer on introduit deux nouvelles notations attachées à une géodésique périodique.

Définition 13 Pour une géodésique périodique g localement régulière, on note :

$$\tilde{d}_g = \prod d_{\alpha_i}(\beta_i), \text{ et}$$

$$\tilde{l}_g = \prod l_i.$$

Remarquons que ces deux grandeurs sont vraiment attachées à la géodésique, et non à sa paramétrisation. On a alors le lemme suivant.

Lemme 39 Le terme principal de $I(s)$ est donné par :

$$I(s) \sim_{s} s^{-\frac{\pi}{2}} (2\pi)^{\frac{n}{2}} e^{-\frac{\pi i s}{2 \tilde{d}_g}} f(L) e^{-i\tilde{l}_g s} \int \rho(u) |du|.$$

On notera c_g la constante $(2\pi)^{\frac{n}{2}} e^{-\frac{\pi i s}{2 \tilde{d}_g}}$.

Preuve : la fonction de troncature ρ tronque loin des points coniques. La trace s’obtient alors en appliquant l’opérateur $\pi_\ast \Delta_\ast$ à $K_g \rho$. Mais K_g est un opérateur intégral de Fourier dont on connait l’expression en terme d’intégrale oscillante. L’application de $\pi_\ast \Delta_\ast$, puis l’évaluation sur la fonction test donne alors lieu à l’intégrale oscillante suivante :

$$I(s) = \int e^{-ist} e^{\theta(t-R_0(m)-R_1(m)-\sum_{i} l_{ij})} k_g(t,m,m,\theta)f(t) \rho(m) |dt dm d\theta|.$$

Les distances $R_0(m)$ et $R_1(m)$ représentent alors les rayons de m dans les coordonnées polaires autour de p_1 et p_n respectivement. On met s en facteur dans la phase, et on prend comme coordonnées de m, (R_0, x_0). Ce qui nous amène à évaluer :

$$I(s) = s \int e^{is[t+(t-R-R_0(R,\xi)\sum_{i} l_{ij})]} k_g(t,R,x,\theta) \rho(R,x) R |dt Rd\theta|.$$

Cette intégrale s’évalue en faisant une phase stationnaire par rapport à (t,x,θ), uniforme en R.

Géodésique localement régulière 127
On calcule les points critiques et la hessienne:

\[
\begin{cases}
-1 + \theta &= 0 \\
-\theta d_1 &= 0 \\
t - R - d_1 - \sum j &= 0
\end{cases}
\]

\[|H| = \begin{vmatrix} 0 & 0 & 1 \\ 0 & -d_1^2 & 0 \\ 1 & 0 & 0 \end{vmatrix} = d_1^{-1} R_{n^*}.
\]

On obtient donc l'équivalent suivant :

\[
I(s) - s(\frac{2\pi}{s})^{\frac{3}{2}} e^{-is} e^{-isL} f(L) \int k_g(L,R,0,s) \frac{d_1^{\frac{3}{2}}}{(R_{n^*})^{\frac{3}{2}}} \rho(R) RdR.
\]

Il reste alors à remplacer la partie principale de \(k_g \) par son expression (cf. théorème 20) pour trouver le résultat.

Il reste à examiner le passage des points conique.

Près des points coniques

D'après l'utilisation de la cyclicité (cf. p.110), il faut évaluer la trace d'un opérateur s'écrivant :

\[K_g(T - 2t_0) \chi K_\rho(2t_0) \chi, \]

où l'opérateur \(K_\rho(2t_0) \) est défini sur le cône d'angle \(\alpha \) par :

\[K_\rho(2t_0) = K_\alpha(t_0) \rho K_\alpha(t_0), \]

et \(\rho \) tronque près du sommet. On a déjà remarqué que la propriété de groupe de l'exponentielle permettait de ramener la définition de \(K_\rho \) à des composantes d'opérateurs loin du sommet du cône :

\[K_\rho(2t_0) = K_\alpha(t_0) = K_\alpha(t_0) [1 - \rho] K_\alpha(t_0). \]

Dans la définition de \(K_g(T - 2t_0) \) se trouvent des opérateurs de troncature microlocalisant près des points de \(g \) situés à distance \(t_0 \) de \(p \). On peut simplifier la composition

\[K_\alpha(t_0) [1 - \rho] K_\alpha(t_0) \]

en ne gardant que la partie correspondant aux troncatures dans \(K_g(T - 2t_0) \).

Utilisant des fonctions de troncature, on peut découper chaque morceau \(K_\alpha(t_0) \) en trois parties :

\ - la première correspond au front primaire et est notée \(K_0 \),
\ - la deuxième correspond au front diffracté loin de \(\Sigma \) et est notée \(K_{\alpha, d} \),
\ - la dernière correspond à un voisinage de \(\Sigma \) et est notée \(K_{\alpha, d} \).

Utilisant cette décomposition et des considérations de fronts d’ondes, on peut écrire

\[K_\alpha(t_0) [1 - \rho] K_\alpha(t_0) = \]

\[K_0(t_0) [1 - \rho] K_{\alpha, d}(t_0) + K_{\alpha, d}(t_0) [1 - \rho] K_0(t_0) + R(2t_0),\]

dans laquelle \(R(2t_0) \) est tel que la contribution à la trace de \(K_g(T - 2t_0) R(2t_0) \) sera \(C^\infty \). Finalement, toutes les compositions se font dans la classe des OIF, et on obtient le lemme suivant.

Lemme 40 L’opérateur \(K_g(T - 2t_0) \chi K_\rho(2t_0) \chi \) est un opérateur intégral de Fourier associé à la même variété lagrangienne que \(\chi K_g(T) \chi \). De plus, son symbole principal est simplement multiplié par \(\rho([t_0 - R_0]) \).
Preuve : d’après la préparation précédent le lemme, il faut calculer les opérateurs de l’égality (4.12). Comme précisé alors, ce calcul se fait dans le cadre général des OIF. Les opérateurs de troncature n’influencent pas sur la composition des variétés lagrangiennes et interviennent de façon multiplicative sur le symbole principal. Ce qui implique alors que loin de Σ

\[K_\alpha(t_0) [1 - \rho] K_\alpha(t_0), \]

a la même expression que \(K_\alpha(2t_0) \) mais dont le symbole principal est multiplié par \([1 - \rho(\|t_0 - R_0\|)). \) Ce qui donne le résultat pour \(K_\rho(2t_0) \). On effectue alors la composition

\[K_\beta(t - 2t_0) \chi K_\rho(2t_0) \chi \]

qui ne fait intervenir que des OIF. On obtient donc la même expression que

\[K_\beta(t) \chi, \]

excepté que le symbole principal est multiplié par \(\rho(\|t_0 - R_0\|)). \]

En notant \(I_\rho(s) = \langle \text{Tr} K_\beta(t - 2t_0) \chi K_\rho(2t_0) \chi, e^{-itL}f(t) \rangle \), on montre alors le lemme suivant :

Lemme 41 La quantité \(I_\rho(s) \) a pour terme principal quand \(s \) tend vers l’infini :

\[I_\rho(s) \sim_p c_g s^{-\frac{d}{2}} f(L)e^{-isL} \int \rho(\|R\|)dR, \]

où le coefficient \(c_g \) est le même que celui du lemme 39.

Preuve : en utilisant la propriété de multiplicativité du symbole et la preuve du lemme 39 on trouve comme contribution principale :

\[I_\rho(s) \sim_p c_g \int_{\rho_0 > 0} \chi(g(R_0 + t_0)) \rho(\|t_0 - R_0\|)dR_0. \]

Il suffit alors de poser \(R = t_0 - R_0 \) et de remarquer que par construction le facteur avec \(\chi \) vaudra identiquement 1 lorsque \(\rho(\|R\|) \) sera non-nul. □

Pour obtenir la contribution de la géodésique périodique \(g \) il faut maintenant ajouter les contributions locales que l’on vient de calculer.

Théorème 21 La contribution d’une orbite périodique \(g \) de période \(L \), et de longueur primitive \(L_0 \) est donnée au premier ordre par

\[I(s) \sim_p s^{-\frac{d}{2}} c_g f(L)e^{-isL}L_0, \]

avec \(c_g = (2\pi)^{\frac{d}{2}} \frac{1}{\sqrt{i\pi}} \frac{\hat{a}_g}{\hat{\theta}_g}, \) où \(n \) est le nombre de diffractions, et \(\hat{a}_g \) et \(\hat{\theta}_g \) sont donnés par la définition 13.

Preuve : la contribution de \(g \) est donnée par la somme

\[I(s) = \sum \langle \text{Tr}(K_{\rho(t)}) e^{-ist}f(t) \rangle, \]
où les m_i sont des points de g et $\sum \rho_{m_i}$ vaut identiquement 1 au voisinage de $[0, L_0]$. Dans cette somme, chacune des contributions a été calculée précédemment ; en les regroupant, on trouve finalement :

$$I_g(s) \sim \rho s^{-\frac{s}{2}} e^L \sum \int \rho_{m_i}(g(t)) |dt|,$$

ce qui donne la contribution annoncée. □

L’expression de cette contribution appelle quelques remarques.

1. Cette contribution est valable aussi bien pour une géodésique périodique primitive ou pour ses itérées.

2. L’ordre de grandeur de cette contribution ainsi que sa phase dépendent du nombre de diffractions (et des signes des d_{m_i} pour la phase). En ce qui concerne l’ordre, plus il y a de diffractions, plus la contribution est régulière. Les phénomènes de compensation entre deux géodésiques de même longueur n’ont lieu à l’ordre principal que si les deux géodésiques ont le même nombre de diffractions. Dans le cas contraire, la contribution de la géodésique qui a le plus petit nombre de diffractions domine celle de l’autre.

3. Chaque diffraction fait gagner une demi unité à l’ordre de grandeur de cette contribution. La contribution la plus importante est donc obtenue par des orbites diffractives n’ayant qu’une diffraction, et elle est déjà $\frac{1}{2}$ fois plus régulière que la contribution fournie, sur une variété lisse, par une orbite périodique isolée (cf [25]).

4. Cette formule permet de calculer la contribution de la hauteur d’un triangle. Plus précisément, on considère M la surface obtenue en doublant un triangle. Chaque hau- teur (intérieure au triangle) correspond à une géodésique de M (de longueur double). On choisit une hauteur, issue d’un sommet d’angle α et formant un angle β avec un coté du triangle. On suppose que α n’est pas de la forme $\frac{\pi}{2}$. Dans ce cas, la géodésique correspondante sur M est uniquement diffractive et localement régulière, l’angle de diffusion est 2β et l’angle du cône correspondant à la diffusion est 2α. La contribution apportée par cette géodésique est donc :

$$I(s) \sim \rho \sqrt{\pi} e^{-\frac{i2\alpha}{h^\frac{2}{2}}} f(2h) e^{-ish} s^{-\frac{1}{2}},$$

où h est la longueur de la hauteur considérée. Si on a choisi la plus petite hauteur, comme il ne peut y avoir de compensations avec une autre géodésique ou famille de géodésiques, la formule précédente montre que la longueur de la plus petite hauteur est uniquement déterminée par la réunion des spectres de Dirichlet et de Neumann du triangle (cf [29]). Pour avoir le même résultat avec le spectre de Dirichlet uniquement (ou Neumann), il faut quotienter encore par l’involution (ce qui donnera la contribution de [27]).

Passons maintenant à l’étude d’une famille de géodésiques dont les orbites limites ne présentent qu’une seule diffraction.

4.5 Famille de géodésiques

Pour obtenir la contribution d’une famille de géodésiques périodiques (g), il faut savoir estimer la trace de trois types d’opérateurs $K_g \rho$: premièrement lorsque g est une géodésique à l’intérieur de la famille, et ρ tronque donc dans M_0, ensuite lorsque g est une géodésique du bord de la famille, mais ρ tronque dans M_0, et enfin lorsque g est une géodésique limite, et ρ tronque près d’un point conique. Commençons par le premier cas, qui est le plus simple.
4.5.1 À l’intérieur de la famille

On doit calculer la trace de $K_g \rho$, lorsque g est une géodésique intérieure à la famille. Dans ce cas, l’opérateur K_g est donné par la propagation libre dans \mathbb{R}^2, c’est un OIF, et la trace ne pose pas de problème particulier. Plus précisément, le calcul est exactement le même que celui obtenu sur une variété lisse pour une famille à un paramètre de géodésiques périodiques (cf [25]). La calcul est ici encore plus simple que le cadre général expliqué dans [25], dans la mesure où la métrique sous-jacente est euclidienne.

Rappelons qu’on a posé :

$$I_g(s) = \langle \text{Tr}(K_g(t)\rho), f(t)e^{-ist} \rangle.$$

Lemme 42 Lorsque g est à l’intérieur de la famille (g), la contribution I_g est donnée au premier ordre par :

$$I(s) \sim_p \frac{e^{i\frac{\pi}{2}}}{2\pi} s^\frac{1}{2} \int \rho(m_0) dm_0.$$

Preuve : comme la propagation est donnée par la propagation libre, on est ramené à évaluer l’intégrale oscillante :

$$I_g(s) = \int e^{-ist} \rho(t) \left[\int e^{i\theta [t^2 - D^2(m_0, m_0)]} k_0(t, m_0, m_1, \theta) \rho(m_0) dt dm_0 d\theta \right],$$

où

$$k_0(t, m_0, m_1) = \int e^{i\theta [t^2 - D^2(m_0, m_0)]} k_0(t, m_0, m_1, \theta) d\theta$$

de signifie le propagateur $e^{it\sqrt{\Delta}}$ dans le plan. Notamment, on a

$$k_0(t, m_0, m_1, \theta) \sim_p \frac{e^{i\frac{\pi}{2}}}{\pi^{1/2} t^{1/2}}.$$

Ici, $D(m_0, m_0) = L$, et le lemme résulte d’une application du principe de phase stationnaire. L’intégrale oscillante présente une sous-variété de points critiques, plus précisément, elle est exactement du même type que les intégrales évaluées dans l’article [25]. Techniquement, cela signifie qu’on applique alors la phase stationnaire par rapport à (t, θ) uniformément en m_0. Ce qui donne la contribution avancée. \(\square\)

Il reste alors à étudier la contribution des orbites bordantes g_\pm. On se contente d’étudier g_+, le calcul donnant g_- est exactement le même.

4.5.2 Au bord de la famille

Pour le calcul de $I_g \rho$ quand g est l’orbite limite, la diffraction se fait près de l’angle π, l’opérateur ainsi intervenant n’est donc plus un OIF. Il faut donc justifier que la trace est obtenue en restreignant à la diagonale puis en intégrant sur M. On a vu que cette procédure était valable dès que l’opérateur était continu de L^2 dans H^N avec N suffisamment grand. En intégrant par parties un nombre suffisant de fois, on peut remplacer K_g par $K_{g, N}$ (qui est continu de L^2 dans H^N), et donc écrire :

$$I_g(s) = \langle \text{Tr}(K_{g, N}(t)\rho), \frac{d^N}{dt^N} \left[e^{-ist} f(t) \right] \rangle.$$
Quand \(\rho \) tronque loin des points coniques, cette expression est donnée par l'intégrale:

\[
\int K_{\beta,N}(t,m,m)\,d^N(\rho(m)) \frac{d^N}{dt^N}(e^{-ist} f(t)|dtm|)dt.
\]

Quand, \(\rho \) tronque près des points coniques, on utilise de nouveau cyclécité de la trace (cf. p.110). On peut alors suivre le calcul de front d'onde sur le cône, similaire à celui pour les géodésiques localement régulières (cf. p.128). Ce calcul donne alors exactement le même genre d'opérateurs excepté que maintenant, il faut utiliser la partie du front d'onde correspondant à \(K_{\alpha,i} \). L'évaluation de \(I_g \) se ramène alors à la trace de trois opérateurs (on utilise de nouveau la cyclécité pour le dernier)

\[
\begin{align*}
&K_{\beta,N_1}(t - 2t_0)\chi K_{\alpha,N_0 + N_1}(2t_0)\chi, \\
&K_{\beta,N_1}(t - 2t_0)\chi K_{0,N_0}(t_0)[1 - \rho]K_{\alpha,i,N_0}(t_0)\chi, \\
&\text{et } K_{0,N_2}(t_0)\chi K_{\beta,N_1}(t - 2t_0)\chi K_{\alpha,i,N_0}(t_0)[1 - \rho].
\end{align*}
\]

Dans le cas qui nous intéresse ici, la géodésique limite \(g \) n'a qu'une seule diffraction ; dans l'écriture précédente \(K_{\beta,N} \) peut donc être remplacé par \(K_{0,N} \). De plus, grâce au calcul des OIF, chaque fois que deux opérateurs de type \(K_0 \) se suivent on peut faire la composition. On obtient alors de nouveau un opérateur correspondant à la propagation libre, la seule différence vient des fonctions de troncature qui interviennent alors multiplicativement au niveau du symbole principal. Finalement, on obtient le principe suivant : pour obtenir la contribution de la géodésique périodique limite \(g \), il suffit de savoir prendre la trace d'opérateurs s'écrivant sous la forme :

\[
\tilde{K}_{0,N}(t - t_0)K_{\alpha,i,N_0}(t_0)\rho,
\]

où l'on observe les propriétés suivantes :
- \(\rho \) tronque loin des points coniques,
- \(\tilde{K} \) est un OIF, associé à la même variété lagrangienne de \(K_0 \), dont le symbole principal est celui de \(K_0 \) multiplié par une fonction de troncature \(\rho \),
- \(K_{\alpha,i,N} \) est l'opérateur \(K_{\alpha,N} \) tronqué près de l'angle de diffraction \(|x_1 - x_0| = \pi \).

Finalement, en notant \(\tilde{I}(s) \) la trace d'un tel opérateur évalué sur une fonction test \(\frac{d^N}{dt^N}[e^{-ist} f(t)] \), on a l'égalité :

\[
\tilde{I}_s = \int \tilde{K}_{0,N_1}(t - t_0,m_0,m_1)K_{\alpha,i,N_0}(t_0,m_1,m_0)\rho(m_0)\,d^N[e^{-ist} f(t)]\,dtm_1dm_0.
\]

Développant la dérivation, \(\tilde{I}(s) \) a comme partie principale \((is)^N I(s) \), où \(I(s) \) est donné par l'expression :

\[
I(s) = \int \tilde{K}_{0,N_1}(t - t_0,m_0,m_1)K_{\alpha,i,N_0}(t_0,m_1,m_0)\rho(m_0)e^{-ist} f(t)|dtm_1dm_0|.
\]

On utilise maintenant le lemme 42 pour remplacer \(K_{\alpha,i,N_0} \) par la somme

\[
K_{\alpha,N_0}^{tt} + K_{\alpha,N_0}^{ds} + K_{\alpha,N_0}^{dr},
\]

ce qui donne trois contributions à calculer \(I^{tt}, I^{ds}, I^{dr} \) respectivement.
Contribution de I^t

L’intégrale donnant I^t s’écrit de la façon suivante :

$$I^t(s) = \int K_{0,N_1}(t-t_0,m_0,m_1)K_{0,N_0}(t_0,m_1,m_0)H(\pi - (x_1 - x_0))\rho(m_0)f(t)e^{-it\rho} |dt dm_0 dm_1|.$$

Cette intégrale s’obtient en évaluant une phase stationnaire à bord. On est ici dans le cas le plus simple, où la variété critique intersecte le bord transversalement. En effet, s’il n’y avait pas la fonction de troncature $H(\pi - (x_1 - x_0))$, on aurait une intégrale oscillante correspondant à prendre la trace de l’opérateur obtenu en composant deux propagateurs libres aux temps $t - t_0$ et t_0. A R_0 fixé, les points critiques correspondant à cette opération consistent alors à choisir un point de départ sur une géodésique de la famille (paramétré par (R_0,x_0)) et à faire la composition au point situé à la distance t_0 sur la géodésique de la famille. La famille de points critiques ainsi obtenue est bien transversale au bord introduit par la fonction de troncature. De plus, tout est uniforme par rapport à R_0 ; on obtient ainsi le lemme.

Lemme 43 Au premier ordre, l’intégrale $I^t(s)$ admet l’équivalent suivant :

$$I^t \sim_p (is)^{-N} \frac{e^{it\rho}}{\sqrt{2\pi}} s^{-\frac{1}{2}} \int_{A_0} \rho(m_0) dm_0.$$

Dans cette expression A_0 correspond au domaine balayé par la famille de géodésique, compté avec multiplicité. De plus le terme suivant est en $s^{-N-\frac{1}{2}}$.

Remarquons que cette contribution est du même ordre que celle apportée par une géodésique intérieure à la famille. On montrera que ces deux types de contribution se recollent pour donner la contribution principale de la famille.

Contribution de I^{dr}

Cette contribution est la plus simple des trois à calculer. En effet, on a vu que K^{dr}_{α,N_1} était un OIF qui au niveau des variété lagrangienne et du symbole prolonge K_{α} loin de Σ. La contribution obtenue est donc du même ordre de grandeur que celle d’une orbite isolée ayant un point de diffraction (cela revient à faire la même phase stationnaire!).

Lemme 44 La contribution de $I^{dr}(s)$ est d’ordre $s^{-N-\frac{1}{2}}$.

On ne cherche pas à avoir un résultat plus précis étant donné que cette contribution est déjà 1 ordre plus régulière que celle apportée par I^t.

Remarque : on a déjà noté que la contribution d’une orbite isolé avec une seule diffraction régulière était $\frac{1}{2}$ fois plus régulière que la contribution typique d’une orbite périodique isolée. Comme la contribution d’une famille à un paramètre typique est $\frac{1}{2}$ fois plus singulière que celle d’une orbite isolée, on retrouve ainsi le décalage de 1.

Il faut maintenant passer au calcul de la contribution de I^{ds}.

Contribution de I^{ds}

Ce calcul est finalement le seul qui ne se ramène pas de façon évidente au calcul des OIF. On va tout de même s’y ramener, mais par une voie plus détournée.
Esquissions la démarche avant d’énoncer puis de prouver le résultat. L’intégrale que l’on doit calculer s’écrit :

\[
I^{ds}(s) = \int e^{i \theta [\int (t, t_{0}, o, o_{1}) - D_{\xi}^{2}(m_{0}, m_{1})]} \rho_{1} \rho_{k_{0}, N_{1}}(t - t_{0}, m_{0}, m_{1}, \theta_{1}) \left[e^{i \sigma [f(t, R_{1}, R_{0}) - \text{ch} w]} a_{N_{1}}(t, R_{1}, R_{0}, \sigma) \sigma^{-1} \rho_{1} \left(\pi - (x_{1} - x_{0}) \right) \rho_{2} \text{ch} w \rho_{0} \rho_{0} \right] \frac{dwdm_{0}dm_{1}d\theta \sigma}{|dwdm_{0}dm_{1}d\theta \sigma|}.
\]

On dilate les variables \(\theta \) et \(\sigma \) par \(s \) et on fait le changement de variable \(z = \pi - (x_{1} - x_{0}) \) (en gardant \(x_{1} \)). On fait ensuite une phase stationnaire par rapport à \((t, R_{1}, x_{1}, \theta, \sigma)\) uniforme en \((R, w, z)\). L’application de cette phase stationnaire donne comme résultat le lemme :

Lemme 45 Le terme principal de \(I^{ds} \) est donné par :

\[
I^{ds}(s) \sim N_{s} \int_{w > 0, R, x} e^{i[-\psi(R, w, x)]} \tilde{H}(R, w, x) \rho(R, w, x) \frac{x}{w^{2} + x^{2}} |dRdwdx|,
\]

avec les fonctions \(\psi, \tilde{H}, \) et \(\rho \) définies en appendice. Le terme suivant est en \(s^{-N - \frac{1}{2}} \).

Expliquons un peu d’où viennent les éléments caractéristiques de cette égalité (la preuve complète est faite en appendice) :

- \(\psi(R, w, x) \) est obtenu en écrivant les points critiques de la phase, et correspond à \(t \) au point critique, vue comme fonction des paramètres.
- La fonction \(\tilde{H} \) est obtenu en évaluant le symbole principal au point critique, et \(\rho \) regroupe ce que deviennent les termes centraux en \((R, w, x)\).
- L’ordre principal vient de la suite d’opérations suivante, la dilatation par \(s \) fait sortir la puissance \(\frac{1}{2} - N_{0} + \frac{3}{2} - N_{0} - 1 + 2 \) soit \(- N - 3\). La phase stationnaire se fait ensuite par rapport à 5 variables oscillant ce qui donne la puissance : \(- N + 3 - \frac{3}{2} = - N + \frac{5}{2} \).

Plus précisément, on obtient en fait un développement complet

\[
I^{ds}(s) = s^{-N + \frac{5}{2}} \sum_{k} s^{-k} I_{k},
\]

dans lequel chaque \(I^{k} \) a l’expression suivante :

\[
I_{k}(s) = \int e^{i[-\psi(R, w, z)]} a_{k}(R, w, z) \frac{z}{w^{2} + w^{2}} |dRdwdx|.
\]

Les coefficients \(a_{k} \) étant \(C^{\infty} \) à support compact en \((R, w, z)\).

De plus, l’application de la phase stationnaire mentionnée ci-dessus prescrit \(a_{0}(R, 0, 0) = r_{0}^{-1} \). La fonction \(\psi(R, w, z) \) vérifie

\[
\psi(R, w, z) = \psi_{0}(R) + Q(R, w, z) + \psi_{2}(R, w, z),
\]

où \(Q(R, w, z) \) est la forme quadratique (en \(w, z) \) :

\[
Q(t) = \begin{pmatrix}
\frac{R_{1}(t_{0} - R_{0})}{t_{0}} & 0 \\
0 & \frac{R_{2}(t_{0} - R_{0})}{t_{0}}
\end{pmatrix}.
\]

On a alors besoin du lemme suivant permettant de conclure le calcul.

Lemme 46 Si la phase \(\psi(R, w, z) \) vérifie l’hypothèse suivante :

Au voisinage de \((w = 0, z = 0), \psi \) admet le développement suivant uniformément en \(R \) :

\[
\psi(R, w, z) = \psi_{0}(R) + Q(R, w, z) + \psi_{2}(R, w, z),
\]

où toutes les fonctions sont C^∞, $Q(R,w,z)$ est une forme quadratique en (w,z) définie (positive ou négative) et $\psi_2(R,w,z)$ vérifie:

$$\psi_2(R,r\cos\theta,r\sin\theta) = r^3 g(R,r,\theta), \ g \in C^\infty.$$

L’intégrale I_3 admet alors un développement complet en puissance de s et le premier terme est donné par:

$$I_3(s) \sim_p s^{-\frac{1}{2}} \int_{R,\theta} e^{i\bar{a}(R,R,\cos\theta,\sin\theta)} Q(R,\cos\theta,\sin\theta) \frac{1}{2} dRd\theta.$$

Preuve du lemme 46: elle consiste à faire un passage en polaire en (w,z). On obtient alors l’intégrale:

$$I(s) = \int e^{i\bar{a}(R,r,\cos\theta,\sin\theta)} \tilde{a}(R,r,\theta) d\theta,$$

avec $\tilde{a}(R,r,\theta) = a(R,r \cos\theta, r \sin\theta) \sin\theta$. L’hypothèse faite sur ψ assure qu’on peut faire une phase stationnaire en r, uniformément non dégénérée par rapport à R,θ. Le fait que l’on n’intègre que sur $r > 0$ n’empêche pas l’application de la phase stationnaire. On obtient alors le développement annoncé avec le premier terme donné.

Revenant à I_3, le terme principal est alors d’ordre s^{-N} et s’obtient alors en examinant le terme principal de I_3 donné par le lemme 46. Celui-ci est donné par l’intégrale:

$$\int e^{i\bar{a}(R,R,\cos\theta,\sin\theta)} R_0(t_0 - R_0) \frac{1}{2} \sin(\theta) d\theta dR_0,$$

qui donne 0. finalement, on obtient alors le principe suivant:

La contribution du bord de la famille est négligeable devant celle apportée par l’intérieur de la famille.

Plus précisément, la contribution de I_3 est au mieux comparable au premier terme correctif de I_3.

Finalement, la contribution d’une famille d’orbites périodiques dont les orbites bordante n’ont qu’une diffraction est résumé par le théorème suivant:

Théorème 22 La contribution principale d’une famille d’orbites périodiques, dont chaque orbite bordante présente une unique diffraction, est donné par l’expression:

$$\frac{e^{i\bar{a}(R,R,\cos\theta,\sin\theta)}}{2\pi} \frac{1}{\sqrt{L}} f(L)e^{-iL}\left|A_{\theta}\right|,$$

où $\left|A_{\theta}\right|$ représente l’aire balayée par la famille (comptée avec multiplicité), et L est la longueur (nécessairement primitive) de chaque géodésique de la famille.

La preuve s’obtient en recollant les contributions obtenues pour les géodésiques intérieures à la famille et les contributions de type I_3. Ce recollement, comme dans le cadre des orbites localement régulières est opéré par les fonctions de troncature ρ_m.

Remarquons que cette contribution correspond à celle du cas lisse excepté qu’ici la surface balayée est à bord. Il est naturel d’attendre cette contribution. Le résultat principal exprimé par ce théorème est que la contribution du bord est négligeable devant celle ici exprimée. Enfin, ce résultat ne peut être valable que pour la géodésique primitive car les itérées auront toujours plusieurs points diffractants sur le bord.
Appendice A : Périodisation de G

Cet appendice doit finalement nous permettre de donner le comportement du propagateur de l’équation des ondes au voisinage du front diffracté, et loin de la frontière optique $x_1 - x_0 = \pm \pi$. Par des calculs de front d’onde, ce comportement ne dépend que du comportement de G près de $\{y = 1\}$ Il nous faut donc donner les estimations justifiant la proposition 41, et le lemme 36. Plus précisément, on veut montrer les deux points suivants :

- G est une distribution oscillante de Fourier associée à $N^\ast \{y = 1\}$, loin des points $z = \pm \pi$,
- on peut périodiser G avant d’appliquer l’opérateur A_N.

On note I_ε l’intervalle $1 - \varepsilon, 1 + \varepsilon$, et J_ε, l’ensemble $\mathbb{R}\less \{\mid z \pm \pi \mid < \varepsilon\}$. Par des calculs de front d’onde, le comportement du propagateur au voisinage d’un point du front diffracté dépend unique ment du comportement de G dans $I_\varepsilon \times J_\varepsilon$, une fois qu’on a choisi ε et ε' assez petits. Toutes les constantes dans les estimations suivantes dépendront de ces deux nombre ε et ε', mais pour ne pas surcharger les notations, on oublia de les mentionner, et on notera simplement $I \times J$ un ensemble de la forme précédente.

Rappelons la définition de G (cf page 115)

$$G(y,z) = H(y + \cos z)H(\pi - \mid z\mid) - \frac{H(y - 1)}{\pi} [\arctan (\frac{1}{\pi - z}) + \arctan (\frac{1}{\pi + z})].$$

Sur $I \times J$, $H(y + \cos z)H(\pi - \mid z\mid)$ est C^∞ car elle vaut constamment 1 ou 0 suivant les composantes connexes de $I \times J$. Pour cette même raison, on peut la périodiser ce qui donne une fonction C^∞ sur $I \times (\mathbb{R}/\alpha\mathbb{Z} \less \mathcal{U}_\pm)$ où \mathcal{U}_\pm sont des voisinages de $\pm \pi$ respectivement.

Il est plus simple d’étudier la dérivée de G par rapport à y, on note donc :

$$G_\pm (y,z) = \frac{\pi \pm z}{(\text{ch}^{-1}(y))^2 + (\pi \pm z)^2},$$

de sorte que (modulo une fonction C^∞), on a :

$$G(y,z) \sim - \frac{1}{\pi} \int_1^y [G_+(y',z) + G_-(y',z)] (y'^2 - 1)^{-\frac{1}{2}} |dy'|.$$ (4.13)

Le facteur $(y'^2 - 1)^{-\frac{1}{2}}$ est une distribution oscillante indépendante de z et on va montrer que

$$\frac{\pi \pm z}{(\text{ch}^{-1}(y))^2 + (\pi \pm z)^2}$$

est une fonction C^∞ sur $I \times J$ qui se périodise en une fonction C^∞ de $I \times (\mathbb{R}/\alpha\mathbb{Z} \less \mathcal{U}_\pm)$.

On commence par donner une expression alternative pour $\text{ch}^{-1}(y)$:

Lemme 47 (Singularités de ch^{-1}) Il existe une fonction $c \in C^\infty([0,2[$ telle que que :

$$\text{ch}^{-1}(y) = \sqrt{2}c(y)(y - 1)^{\frac{1}{2}}.$$

La preuve est élémentaire et découle du fait qu’au voisinage de 0

$$\text{ch}(t) \sim 1 + \frac{t^2}{2}.$$

Ce lemme assure que la fonction $(\text{ch}^{-1}(y))^2$ se prolonge en une fonction $h(y)$, C^∞ sur $[0,2[$ et positive. Les fonctions G_\pm s’écritent alors

$$G_\pm (y,z) = \frac{\pi \pm z}{(h(y) + (\pi \pm z)^2),}$$
et se prolongent donc en des fonctions C^∞ de $I \times J$ (on ne change pas de notation pour ces prolongements). Ceci assure le premier point :

Proposition 43 Au voisinage de $y = 1, z \neq \pm \pi$ la distribution G s'écrit

$$G(y,z) = (y-1)^{\frac{1}{2}} \hat{G}(y,z),$$

avec

$$\hat{G}(1,z) = -2\sqrt{2} \frac{1}{\pi^2 - z^2}.$$

Notamment, G est une distribution oscillante associée à $N^\{y = 1\}$.*

Preuve : il suffit d'effectuer l'intégration (4.13).

Le développement asymptotique de la distribution oscillante G s'obtient en écrivant le développement de Taylor de la fonction C^∞

$$[G_+(y,z) + G_-(y,z)] (y+1)^{-\frac{1}{2}},$$

et en intégrant terme à terme :

$$G(y,z) \sim \sum_k g_k(z)(y-1)^{\frac{1}{2}+k}.$$

(4.14)

Chaque g_k est une combinaison linéaire des dérivées partielles de G_\pm par rapport à y d'ordre inférieur ou égal à k (évaluée en $y = 1$). Pour pouvoir périodiser G et inverser l'ordre de la périodisation et l'application de l'OIF A_N, il suffit de montrer que l'on peut périodiser terme à terme le développement précédent. Ce travail passe par une estimation des dérivées partielles de G_\pm pour les grandes valeurs de z.

Lemme 48 Pour tous $k,l \in \mathbb{N}$ tels que $k + l \geq 1$, il existe deux fonctions $P_{\pm,k,l}(y,z)$ polynomials par rapport à z, de degré $2(k-1) + l + 1$ si $k \geq 1$ (resp. $l + 1$ si $k = 0$) telles que :

$$\partial_y^k \partial_z^l G_\pm(y,z) = \frac{P_{\pm,k,l}(y,z)}{[h(y) + (\pi \pm z)^2]^{1+k+l}}.$$

Preuve : elle se fait par récurrence sur k et l.

Initialisation

On dérive une fois par rapport à y, puis une fois par rapport à z la fonction G_\pm :

$$\partial_y G_\pm(y,z) = \frac{-h'(y)(\pi \pm z)}{[h(y) + (\pi \pm z)^2]^2}$$

$$\partial_z G_\pm(y,z) = \frac{-2z(\pi \pm z) \pm [h(y) + (\pi \pm z)^2]}{[h(y) + (\pi \pm z)^2]^2}$$

qui ont bien la forme et les degrés annoncés.
Récurrence

On dérive l’expression donnée dans le lemme par rapport à y et à z :

$$
\partial_y^{k+1} \partial_z G_{\pm}(y,z) = \frac{-(k + l + 1)h'(y)P_{\pm,k,l} + [h(y) + (\pi \pm z)^2] \partial_y P_{\pm,k,l}}{[h(y) + (\pi \pm z)^2]^{k+l+2}},
$$

$$
\partial_z^k \partial_y^{l+1} G_{\pm}(y,z) = \frac{-2(k + l + 1)P_{\pm,k,l} + [(\pi \pm z)^2] \partial_z P_{\pm,k,l}}{[h(y) + (\pi \pm z)^2]^{k+l+2}},
$$

qui ont bien les formes et les degrés annoncés. \(\square\)

Ce lemme admet le corollaire suivant, en examinant les degrés respectifs du numérateur et du dénominateur :

Corollaire 22 *Pour tous k,l vérifiant $k + l \geq 1$, on a la majoration suivante uniforme sur $I \times J$:

$$
|\partial_y^k \partial_z^l G_{\pm}(y,z)| \leq C(|z| + 1)^{-2}.
$$

Il reste à examiner le cas $k = l = 0$. Dans ce cas, on ne peut étudier séparément G_{\pm} mais leur somme donne :

$$
G_{+}(y,z) + G_{-}(y,z) = \frac{2\pi h(y) + 2\pi (\pi^2 - z^2)}{(h(y) + (\pi - z)^2)(h(y) + (\pi + z)^2)},
$$

notamment :

$$
|G_{+}(y,z) + G_{-}(y,z)| \leq C(|z| + 1)^2,
$$

uniformément sur $I \times J$.

Ces estimations permettent alors de périodiser terme à terme le développement (4.14). Ce qui assure le résultat cherché, ainsi que le terme principal indiqué.
Appendice B: Phases stationnaires

L’objectif de cet appendice est de détailler les méthodes de phase stationnaire dont on a utilisé les résultats au cours du texte. On renvoie par exemple à [25] pp ?? pour le théorème général de phase stationnaire utilisé. Commençons par la preuve du lemme 38

Preuve du lemme 38

L’énoncé de ce lemme se trouve page 124, ainsi que la situation géométrique associée. On doit effectuer la composition $B_1 B_0$ dont le noyau est représenté par l’intégrale oscillante:

$$
\int e^{i \theta_2 [\phi_0(z_0) - R_0]} b_0(z_0, R_0, x_0, \theta_0) e^{i \theta_1 [\phi_1(z_1) - R_1]} b_1(z_1, R_1, x_1, \theta_1) |dzd\theta_1d\theta_0|.
$$

On veut appliquer le théorème de composition des OIF ; on met donc θ_0 en facteur dans la phase, et on essaie de faire une phase stationnaire par rapport aux variables restantes. On peut de plus raisonner uniquement avec les symboles principaux. On note $\theta_1 = \sigma \theta_0$, et on prend comme coordonnées pour z les coordonnées polaires R_1, x_1. L’intégrale à evaluer s’écrit donc:

$$
\int e^{i \theta_2 [\phi_0] b_0 \theta_0^{\alpha_0 + \alpha_1 + 1} \sigma^{\alpha_1} R_1 |dR_1 dx_1 d\sigma d\theta_0|.
$$

La phase Φ a pour expression :

$$
\Phi = \phi_0(z_0) - d_0(R_1, x_1) + \sigma [\phi_1(z_1) - R_1],
$$

avec

$$
d_0^2 = R_1^2 + l^2 - 2R_1 l \cos x_1.
$$

Les points critiques sont donnés par le système :

$$
\begin{align*}
\partial_\Phi \Phi &= \phi_1(z_1) - R_1 \quad = 0 \\
\partial_{R_1} \Phi &= -\frac{R_1 \sigma \cos x_1}{d_0} - \sigma \quad = 0 \\
\partial_{x_1} \Phi &= -\frac{R_1 \sigma \cos x_1}{d_0} \quad = 0.
\end{align*}
$$

il existe donc un unique point critique, paramétré par $(z_0, z_1, \theta_0) : (R_1 = \phi_1(z_1), x_1 = 0, \sigma = 1)$. En ce point critique, on peut calculer les dérivées secondes de d_0 :

$$
\begin{align*}
\partial_{R_1}^2 R_1 &\mid \{ R_1, 0 \} = 1 \\
\partial_{x_1}^2 R_1 &\mid \{ R_1, 0 \} = 0 \\
\partial_{x_1}^2 x_1 &\mid \{ R_1, 0 \} = \frac{R_1 l}{l - R_1}
\end{align*}
$$

Ce qui permet de calculer simplement la hessienne de la phase par rapport à (σ, R_1, x_1) :

$$
H = \begin{pmatrix}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & \frac{R_1 l}{l - R_1}
\end{pmatrix}.
$$
La signature est donc -1 et $|H| = \frac{R_1}{1-R_0}$. Notamment, la hessienne est n°-dégénéré, ce qui assure que le théorème de composition s’applique et que l’on obtient pour B_1B_0 l’écriture sous forme d’intégrale oscillante suivante :

$$\int e^{i\theta_0}[\phi_1(z_1)+\phi_2(z_0)-i]b\,d\theta_0,$$

dans laquelle la partie principale de b est donnée par :

$$b \sim_p (2\pi)^{\frac{3}{2}}e^{-i\frac{\pi}{4}(b_0b_1)_{\text{p.c.}}\frac{R_1^2}{R_0^2}\epsilon^{\alpha_0+\alpha_1-\frac{i}{2}}}$$

$$\sim_p (2\pi)^{\frac{3}{2}}e^{-i\frac{\pi}{4}(b_0b_1 R_0^2 R_1^2)_{\text{p.c.}}\frac{1}{2}\epsilon^{\alpha_0+\alpha_1-\frac{i}{2}}}$$

qui était le résultat cherché.

Evaluation de I^d_s

Il s’agit de détailler l’application de la phase stationnaire à I^d_s avant l’intégration en x,w. Pour l’application qui nous intéresse, les constantes éventuelles en facteur de la contribution principale importent peu. Ce qui est crucial est l’ordre du terme principal, et la dépendance vis à vis des paramètres. On part donc de l’expression :

$$I^d_s(s) = \int e^{i\theta_1[(t-t_0)^2-\delta^2(m_0,m_1)]}\rho_1(\theta_1) \rho_1(\theta_0) \rho_2(chw) \rho_0 |dw\sigma dm_0 dm_1 d\theta d\sigma|.$$

Comme précédemment, on note $\rho(m_0,m_1)$ le produit des fonctions de troncatures concernant m_0,m_1. On prend la partie principale de I^d_s en remplaçant k_0,N_1 et a_{N_0} par leur partie principale; la partie principale de a_{N_0} de déduit simplement de celle de α_0 grâce au calcul symbolique pseudo-différentiel.

On fait les changements de variables suivants : dilatation des variables θ et σ,

$$x = \pi - x_1 + x_0,$$

on obtient donc au premier ordre :

$$I^d_s(s) \sim_p Cs\exp(3iN)\int_{t>0} e^{i\frac{\pi}{4}(2i(t-t_0)^2-\delta^2(m_0,m_1))} \rho_1(\theta_1) \rho_1(\theta_0) \rho_2(chw) \rho_0 |dw\sigma dm_0 dm_1 d\theta d\sigma|.$$

Pour simplifier les calculs, on peut encore poser $\sigma = \frac{\pi}{2\alpha_0 N_1}$, ce qui nous ramène à devoir évaluer l’intégrale :

$$J(s) = \int \frac{e^{i\pi}\sqrt{2}}{\delta^2} \delta^2 \rho(t) \rho_0 |dw\sigma dm_0 dm_1 d\theta d\sigma dt,$$

dans laquelle la phase est :

$$\Phi(R_0,x,w,t_1,x_1,\theta,\sigma) = -t + \theta[(t-t_0)^2 - D_1^2] + \sigma[t_0^2 - R_0^2 - R_1^2 - 2R_0R_1 chw],$$

où D_1^2 est donné par :

$$D_1^2 = (R_1 \cos x_1 + R_0 \cos(x+x_1) - L)^2 + (R_1 \sin x_1 + R_0 \sin(x+x_1))^2.$$
Les points critiques de la phase (par rapport à t,R_1,x_1,θ,σ sont donnés par le système:

$$
\begin{align*}
\partial_t \Phi &= -1 + 2(t - t_0)\theta = 0 \\
\partial_\theta \Phi &= (t - t_0)^2 - D_1^2 = 0 \\
\partial_\theta \Phi &= t_0^2 - R_0^2 - R_1^2 - 2R_0R_1\text{ch}w = 0 \\
\partial_{R_1} \Phi &= -\frac{\partial R_1}{\partial x_1}(D_1^2) - 2\sigma(R_1 + R_0\text{ch}w) = 0 \\
\partial_{x_1} \Phi &= -\frac{\partial x_1}{\partial x_1}(D_1^2) = 0.
\end{align*}
$$

Cet ensemble de points critiques peut être défini de façon équivalente en remarquant que la dernière ligne implique que le segment joignant m_0 à m_1 est parallèle à la géodésique limite dont on cherche la contribution. Notamment, (t,R_1,x_1) est défini par le système:

$$(\Sigma) \begin{cases}
 t_0^2 - R_0^2 - R_1^2 - 2R_0R_1\text{ch}w = 0 \\
 R_1 \sin(x_1) + R_0 \sin(x + x_1) = 0 \\
 L(L + t_0 - t) \sin(x_1) - R_0 \sin(x) = 0
\end{cases}$$

On notera ψ la fonction qui à (R_0,w,x) associe la composante t des solutions du système précédent.

La hessienne en un point critique est :

$$
H = \begin{vmatrix}
2\theta & 2(t - t_0) & 0 & 0 & 0 \\
2(t - t_0) & 0 & 0 & 0 & -\partial_{R_1}(D_1^2) \\
0 & 0 & 0 & 0 & -2(R_1 + R_0\text{ch}(w)) \\
0 & 0 & 0 & -\partial_{R_1}^2(D_1^2) & 0 \\
0 & -\partial_{x_1}(D_1^2) & -2(R_1 + R_0\text{ch}(w)) & -\partial_{x_1} \sin(x_1) & -\partial_{x_1}^2(D_1^2)
\end{vmatrix}.
$$

Au point critique $t = L, x_1 = \pi, R_1 = t_0 - R_0, \theta = \frac{1}{2(L-t_0)}, \sigma = \frac{1}{t_0}$, correspondant à la valeur $(R_0,x = 0,w = 0)$ des paramètres, la hessienne se réécrit :

$$
H = \begin{vmatrix}
\frac{1}{2(L-t_0)} & 2(L - t_0) & 0 & 0 & 0 \\
2(L - t_0) & 0 & 0 & 0 & -L - t_0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & -2(t_0 - \frac{L-t_0}{t_0}) & -\frac{L-t_0}{(L-t_0)} & 0 \\
0 & -(L - t_0) & 0 & 0 & -(L-t_0)
\end{vmatrix} = 16(t_0^3)(L - t_0),
$$

de plus, la signature de cette forme quadratique est -1. On peut donc appliquer la phase stationnaire avec paramètre, et l’uniformité permet d’assurer que :

$$
J(s) \sim_p \frac{2\pi}{s} e^{-i\pi} \int_{\sqrt{L}} \int_{w > 0, R_0, x} e^{i[s]\text{H}(R_0,w,x)\rho(R_0,w,x)} \frac{x}{w^2 + x^2} \|dRwdx|,
$$

Dans laquelle H est une fonction C^∞ de (R_0,w,x) telle que

$$
\text{H}(R_0,0,0) = t_0^{-1}
$$

En effet, cette dernière est donnée par l’évaluation de l’amplitude de J au point critique, divisé par $H^\frac{1}{2}$, comme on a tout calculé pour $(w,x) = (0,0)$, on a le résultat.

Finalement, on a donc montré le lemme suivant :

Lemme 49 Le terme principal de I^s est donné par :

$$
I^s(s) \sim_p C(is)^{-N} s^\frac{1}{2} \int_{w > 0, R_0, x} e^{i[s]\text{H}(R_0,w,x)\rho(R_0,w,x)} \frac{x}{w^2 + x^2} \|dRwdx|,
$$
avec les fonctions ψ, H, et p définies ci-dessus. Le terme suivant est en $s^{-N-\frac{1}{2}}$.

Il reste à voir que $\psi(R_0,w,x)$ vérifie bien les hypothèses du lemme 46. Pour cela, on calcule les dérivées secondes de t à l’aide du système (Σ). On trouve que $(\partial_t^2 \psi)|_{(0,0)} = 0$, $(\partial_x \psi)|_{(0,0)} = 0$ et

$$Q(t)|_{(0,0)} = \begin{pmatrix}
\frac{R_0(t_0-R_0)}{t_0} & 0 \\
0 & \frac{R_0(t_0-R_0)}{t_0}
\end{pmatrix}$$

qui est bien définie positive.

Remarque : on peut voir géométriquement que $\psi(R,0,0)$ est un minimum absolu.
Bibliographie

