D. H. Adams, Phase and scaling properties of determinants arising in topological field theories, Physics Letters B, vol.353, issue.4, pp.495-500, 1995.
DOI : 10.1016/0370-2693(95)00590-H

D. V. Ahluwalia, Quantum measurement, gravitation, and locality, Physics Letters B, vol.339, issue.4, pp.301-303, 1994.
DOI : 10.1016/0370-2693(94)90622-X

URL : http://doi.org/10.1016/0370-2693(94)90622-x

S. Albeverio, Dirichlet forms and Markov semigroups onC*-algebras, Communications in Mathematical Physics, vol.15, issue.2, pp.173-187, 1977.
DOI : 10.1007/BF01611502

URL : https://www.duo.uio.no/bitstream/10852/43961/3/1977-2.pdf

A. Gaumé and L. «. , Supersymmetry and the Atiyah-Singer index theorem, Communications in Mathematical Physics, vol.88, issue.2, pp.161-173, 1983.
DOI : 10.1007/BF01205500

E. Alvarez, L. Alvarez-gaume, and Y. Lozano, An introduction to T-duality in string theory, Nuclear Physics B - Proceedings Supplements, vol.41, issue.1-3, pp.41-42, 1995.
DOI : 10.1016/0920-5632(95)00429-D

L. Alvarez-gaume and P. Ginsparg, The topological meaning of non-abelian anomalies, Nuclear Physics B, vol.243, issue.3, p.449, 1984.
DOI : 10.1016/0550-3213(84)90487-5

J. Ambjorn and J. «. Jurkiewicz, Scaling in four-Dimensional Quantum Gravity » Nuclear Physics B451, Amelino-Camelia G. « On local Observations in Quantum Gravity » gr-qc, pp.643-676, 1995.

G. Amelino-camelia, J. Lukierski, A. Nowicki, G. Amelino-camelia, and . Classicality, « k-Deformed Covariant Phase Space and Quantum Gravity Uncertainty Relations » hep-th, Matter-Antimatter asymmetry, and Quantum Gravity Deformed Uncertainty Relations Amelino-Camelia G. « Enlarged Bound on the Measurability of Distances and Quantum k -Poincaré Group, pp.97-123, 1997.

D. Anselmi and . Fre-'p, Topological twist in four dimensions, R-duality and hyperinstantons, Nuclear Physics B, vol.404, issue.1-2, pp.288-320, 1993.
DOI : 10.1016/0550-3213(93)90481-4

D. Anselmi and . «. Fre-'p, Twisted N = 2 supergravity as topological gravity in four dimensions, Twisted N =2 Supergravity as Topological Gravity in Four Dimensions, pp.401-427, 1993.
DOI : 10.1016/0550-3213(93)90679-J

D. Anselmi and . «. Fre-'p, Gauged hyperinstantons and monopole equations, Physics Letters B, vol.347, issue.3-4, pp.247-254, 1995.
DOI : 10.1016/0370-2693(95)00033-H

URL : http://doi.org/10.1016/0370-2693(95)00033-h

D. Anselmi and . Invariants, Gravitational Instantons and the Topological Embedding » hepth, p.9607206, 1996.

D. Anselmi, On Field Theory Quantization Around Instantons » Class. Quantum Grav, pp.1015-1036, 1997.
DOI : 10.1088/0264-9381/14/5/010

URL : http://arxiv.org/abs/hep-th/9507167

D. «. Anselmi, Topological Field Theory and Physics » Class. Quantum Grav, pp.1-20, 1997.
DOI : 10.1088/0264-9381/14/1/005

URL : http://arxiv.org/abs/hep-th/9504049

I. Antoniadis, P. O. Mazur, and E. Mottola, Scaling behavior of quantum four-geometries, Physics Letters B, vol.323, issue.3-4, pp.284-291, 1994.
DOI : 10.1016/0370-2693(94)91221-1

S. Aoyama and J. W. Van-holten, « Anomalies in Supersymmetric -Models » Nuclear Physics B310, pp.355-370, 1988.

H. Araki and E. J. Woods, A classification of factors, Publications of the Research Institute for Mathematical Sciences, vol.4, issue.1, pp.51-13069, 1968.
DOI : 10.2977/prims/1195195263

H. Araki and . Golden, Golden-Thompson and Peierls-Bogolubov inequalities for a general von Neumann algebra, Communications in Mathematical Physics, vol.26, issue.3, pp.167-178, 1973.
DOI : 10.1007/BF01645678

H. Araki and P. D. Ion, On the equivalence of KMS and Gibbs conditions for states of quantum lattice systems, Communications in Mathematical Physics, vol.6, issue.1, pp.1-12, 1974.
DOI : 10.1007/BF01646450

H. «. Araki, Relative Entropy of States of von Neuman Algebras I,II » RIMS, pp.3-803, 1977.

R. A. Bertlman, Anomalies in Quantum Field Theories, 1996.

J. D. Bekenstein, The quantum mass spectrum of the Kerr black hole, Lettere Al Nuovo Cimento Series 2, vol.7, issue.9, 1974.
DOI : 10.1007/BF02762768

R. A. Bertlmann, Anomalies in Quantum Field Theory, 1996.

B. Besson, G. Courtois, and S. «. Gallot, Minimal Entropy and Mostow's Rigidity Theorems » Ergod, Th.&Dynam. Sys, vol.16, pp.623-649, 1996.

M. Bianchi, F. Fucito, G. C. Rossi, and M. Martinelli, ALE instantons in string effective theory, Instantons in String Effective Theory, pp.129-170, 1995.
DOI : 10.1016/0550-3213(94)00552-P

F. Bidegain, ». J. Non-compact-topological-quantum-groups, and . Bertrand, Modern Group Theoretical Methods in Physics, pp.51-62, 1995.

M. Billo, M. D. Caselle, A. Adda, and S. «. Panzeri, Toward an analytic determination of the deconfinement temperature in SU(2) lattice gauge theory, Nuclear Physics B, vol.472, issue.1-2, pp.163-193, 1996.
DOI : 10.1016/0550-3213(96)00223-4

N. D. Birrell and P. C. Davies, « Quantum Fields in Curved Space, 1982.

J. M. Bismusth, « The Atiyah-Singer Theorems.A Probabilistic Approach. The Index Theorem, Journal of Functional Analysis, vol.57, pp.56-99, 1984.

K. M. Bitar and S. J. Chang, Vacuum tunneling of gauge theory in Minkowski space, Physical Review D, vol.17, issue.2, pp.2-486, 1978.
DOI : 10.1103/PhysRevD.17.486

M. Blatter, M. Burkhalter, and P. Hasenfratz, Niedmermayer F « Instantons and the Fixed Point Topological Charge in the two-dimensional O (3) Model, Phys.Review D, vol.53, pp.2-923, 1996.

E. B. Bogomolny, « Calculations of Instantons-Anti-Instantons Contributions in Quantum Mechanics, Physics Letters B vol, vol.914, issue.3, pp.431-435, 1980.

F. Bonechit, E. Celeghinit, R. Giachetti, C. M. Perena, E. Sorace et al., Exponential mapping for non-semisimple quantum groups, Journal of Physics A: Mathematical and General, vol.27, issue.4, pp.1307-1315, 1994.
DOI : 10.1088/0305-4470/27/4/023

P. Bonneau, M. Flato, and G. Pinczon, A natural and rigid model of quantum groups, Letters in Mathematical Physics, vol.312, issue.6, pp.75-84, 1992.
DOI : 10.1007/BF00402377

P. Bonneau, M. Flato, M. Gerstenhaber, and G. Pinczon, The hidden group structure of quantum groups: Strong duality, rigidity and preferred deformations, Communications in Mathematical Physics, vol.111, issue.1, pp.125-156, 1994.
DOI : 10.1007/BF02099415

URL : https://hal.archives-ouvertes.fr/hal-00441408

M. J. Bowick and E. Mariani, Chamseddine A.H. « Connection between Space-Time Supersymmetry and Non-Commutative Geometry » hep-th, p.9404138, 1994.

D. Christodoulou, Reversible and Irreversible Transformations in Black-Hole Physics, Physical Review Letters, vol.25, issue.22, pp.1596-1597, 1970.
DOI : 10.1103/PhysRevLett.25.1596

C. Chryssomalakos, B. Drabant, M. Shlieker, and W. Weich, Vector fields on complex quantum groups, Communications in Mathematical Physics, vol.122, issue.3, pp.635-646, 1992.
DOI : 10.1007/BF02097246

N. Ciccoli and R. «. Giachetti, The two-dimensional Euclidean quantum algebra at roots of unity, publication on Letters in Mathematical Physics 134. Coles P. Lucchin F. « Cosmology, 1995.
DOI : 10.1007/BF00739373

B. Coli and J. A. Morales, Symmetric frames on Lorentzian spaces, Journal of Mathematical Physics, vol.32, issue.9, p.9, 1991.
DOI : 10.1063/1.529173

B. Coli and J. A. Morales, Comments on space???time signature, Journal of Mathematical Physics, vol.34, issue.6, p.6, 1993.
DOI : 10.1063/1.530132

A. Connes, U. Haagerup, E. «. Stormer, and . Frôlich, Diameters of State Spaces of Type III Factors » Operators Algebras and their Connections with Topology and Ergodic Theory 143. Connes A. « The Action Functional in Noncommutative Geometry 145. Connes A. Lott J. « The Metric Aspect of Noncommutative Geometry » New Symmetry Principles in Quantum Field Theory, Connes A. « Géométrie non-Commutative » InterEditions Connes A. « Noncommutative Geometry and Physiscs » Les Houches. Preprint IHES M93, pp.91-116, 1983.

E. Corrigan and P. Goddard, Construction of instanton and monopole solutions and reciprocity, Constructions of Instantons and Monopoles Solutions and Reciprocity, pp.253-279, 1984.
DOI : 10.1016/0003-4916(84)90145-3

«. Clifford and A. , Notes on the Spinor metric and Lorentz, Poincaré and Conformal Groups, J. Math. Phys, vol.32, issue.3, pp.576-583, 1991.

E. Cremmer and J. Scherk, Spontaneous compactification of space in an Einstein-Yang-Mills-Higgs model, Nuclear Physics B, vol.108, issue.3, pp.135-142, 1976.
DOI : 10.1016/0550-3213(76)90286-8

E. Cremmer and J. Scherk, Spontaneous compactification of extra space dimensions, Nuclear Physics B, vol.118, issue.1-2, pp.61-75, 1977.
DOI : 10.1016/0550-3213(77)90363-7

E. Cremmer and J. Scherk, The supersymmetric non-linear ??-model in four dimensions and its coupling to supergravity, Physics Letters B, vol.74, issue.4-5, pp.341-343, 1978.
DOI : 10.1016/0370-2693(78)90672-X

J. Cuntz, « k-Theory for certain C* -Algebras II » Operator Theory, pp.101-108, 1981.
DOI : 10.2307/1971137

J. Cuntz, « k-Theory and C* -Algebras » k-Theory, Number Theory, Geometry and Analysis (Bielfeld), pp.55-79, 1982.

L. Dabrowski and J. Sobczyk, « Left Regular Representation and Contraction of sl q (2) to e q (2) Letters in, Mathematical Physics, vol.32, pp.249-258, 1994.

T. Damour, String theory and inflation, Physical Review D, vol.53, issue.6, pp.2981-2989, 1996.
DOI : 10.1103/PhysRevD.53.2981

URL : http://arxiv.org/abs/hep-th/9503149

T. Dereli and R. W. Tucker, Signature dynamics in general relativity, Classical and Quantum Gravity, vol.10, issue.2, pp.365-373, 1993.
DOI : 10.1088/0264-9381/10/2/018

T. Dereli, M. Onder, and R. W. Tucker, Signature transitions in quantum cosmology, Classical and Quantum Gravity, vol.10, issue.8, pp.1425-1434, 1993.
DOI : 10.1088/0264-9381/10/8/005

T. Dereli, M. Onder, and R. W. Tucker, A spinor model for quantum cosmology, Physics Letters B, vol.324, issue.2, pp.134-140, 1994.
DOI : 10.1016/0370-2693(94)90399-9

T. Dereli, M. Onder, and R. W. Tucker, « Solutions of Neutral Axi-dilaton Gravity in Four Dimensions » Class.Quantum Grav, pp.12-25, 1995.

S. Deser, R. Jackiw, and S. Templeton, Topologically massive gauge theories, Topologically Massive Gauge Theories, pp.372-411, 1982.
DOI : 10.1016/0003-4916(82)90164-6

D. Diakonov and Y. Petrov, Instanton-based vacuum from the Feynman variational principle, Nuclear Physics B, vol.245, pp.259-292, 1984.
DOI : 10.1016/0550-3213(84)90432-2

D. Diakonov and V. Petrov, Nonperturbative isotropic multiparticle production in Yang-Mills theory, Physical Review D, vol.50, issue.1, pp.1-266, 1994.
DOI : 10.1103/PhysRevD.50.266

R. «. Dijkgraaf, Lectures on four-manifolds and topological gauge theories, Proc. Suppl.) 45B, pp.29-45, 1996.
DOI : 10.1016/0920-5632(95)00627-3

H. D. Doebner and J. Tolar, Quantum mechanics on homogeneous spaces, Journal of Mathematical Physics, vol.16, issue.4, pp.975-984, 1975.
DOI : 10.1063/1.522604

S. K. Donaldson and . Connections, Connections, cohomology and the intersection forms of 4-manifolds, Journal of Differential Geometry, vol.24, issue.3, pp.275-341, 1986.
DOI : 10.4310/jdg/1214440551

S. K. Donaldson and D. «. Sullivan, Quasiconformal 4-manifold » Acta Math, pp.181-252, 1989.

S. K. Donaldson, Polynomial invariants for smooth four-manifolds, Topology, vol.29, issue.3, pp.257-315, 1990.
DOI : 10.1016/0040-9383(90)90001-Z

S. K. Donaldson and P. B. Kronheimer, « The Geometry of Four Manifolds, 1990.

S. Doplicher, K. Fredenhagen, and J. E. Roberts, The quantum structure of spacetime at the Planck scale and quantum fields, Communications in Mathematical Physics, vol.49, issue.1, pp.187-220, 1995.
DOI : 10.1007/BF02104515

B. Drabant, M. Schlieker, W. Weich, and B. Zumino, Complex quantum groups and their quantum enveloping algebras, Communications in Mathematical Physics, vol.122, issue.3, pp.625-633, 1992.
DOI : 10.1007/BF02097245

B. Drabant, B. Jurco, M. Schlieker, W. Weich, and B. Zumino, The hopf algebra of vector fields on complex quantum groups, Letters in Mathematical Physics, vol.122, issue.2, pp.91-96, 1992.
DOI : 10.1007/BF00398805

V. G. Drinfeld, « On Almost Cocommutative Hopf Algebras Dubois-Violette M. Launer G. « The Quantum Group of a non-Degenerate Bilinear Form, Leningrad Math.J. Physics Letters B, vol.1, issue.245, pp.321-342, 1990.

E. A. Dudas, Planck scale effects and axions in supersymmetry, Physics Letters B, vol.325, issue.1-2, pp.124-128, 1994.
DOI : 10.1016/0370-2693(94)90081-7

M. J. Duff and . Strong, Strong/weak coupling duality from the dual string, Nuclear Physics B, vol.442, issue.1-2, pp.47-63, 1995.
DOI : 10.1016/S0550-3213(95)00070-4

T. Eguchi and P. G. Freund, Quantum Gravity and World Topology, Physical Review Letters, vol.37, issue.19, p.1251, 1976.
DOI : 10.1103/PhysRevLett.37.1251

T. Eguchi and A. J. Hanson, Asymptotically Flat Solutions to Euclidean Gravity » Phys, Lett, pp.74-249, 1978.

S. Elitzur, A. Giveon, E. Rabinovici, A. Schwimmer, and G. Veneziano, Remarks on non-Abelian duality, Nuclear Physics B, vol.435, issue.1-2, pp.147-171, 1995.
DOI : 10.1016/0550-3213(94)00426-F

G. Ellis, Change of signature in classical relativity, Classical and Quantum Gravity, vol.9, issue.6, p.1535, 1992.
DOI : 10.1088/0264-9381/9/6/011

F. «. Embacher, The Trace Left by Signature Change Induced Compactification » Class. Quantum Grav, pp.1723-1731, 1995.

R. Engeldinger, A. Kempf, . Lorentz-algebra, ». Twists, and . Oziewick, Spinors, Twistors, Clifford Algebras and Quantum Deformations 281-284, 1993.

«. Sub-hopf, Algebra-Induced Twist of Quantum Enveloping Algebras, J.Math.Phys, vol.35, p.4, 1994.

M. R. Gaberdiel, M. B. Green, and S. An, Z) anomaly in IIB supergravity and its F-theory interpretation » Hepth -98101153 v3 (1999) 228. Galperin A. Sokatchev E. « Supersymmetric Sigma Models and 't Hooft Instantons » Class. Quantum Grav, pp.161-170, 1996.

O. J. Ganor and A. Hanany, Small E8 instantons and tensionless non-critical strings, Nuclear Physics B, vol.474, issue.1, pp.122-138, 1996.
DOI : 10.1016/0550-3213(96)00243-X

J. «. Gasqui, Formal Integrability of Systems of PartiaìDifferential Equations » Institut Fourier BP 74 38402 St Marti d'Heres 231, Gauntlett J.P

M. Gasperini and G. Veneziano, Dilaton production in string cosmology, Physical Review D, vol.50, issue.4, pp.2519-2523, 1994.
DOI : 10.1103/PhysRevD.50.2519

J. L. Gervais and J. F. Roussel, Solving the Strongly Coupled 2D Gravity. Fractional-Spin Operators and Topological Three-Point Functions » Nuclear Physics B426, pp.140-186, 1994.

M. Gerstenhaber and S. «. Schack, Algebraic Cohomology and Deformation Theory » Deformations Theory of Algebras and Structures and Applications, NATO Adv. Sci. Inst. Ser. C Math.Phys. 247 Kluwer Dordrecht, pp.11-264, 1988.

E. «. Getzler, Pseudodifferential operators on supermanifolds and the Atiyah-Singer index theorem, Communications in Mathematical Physics, vol.17, issue.2, pp.163-178, 1983.
DOI : 10.1007/BF01210843

G. W. Gibbons and C. N. Pope, The Positive Action conjecture and asymptotically Euclidean metrics in quantum gravity, Communications in Mathematical Physics, vol.80, issue.3, pp.267-290, 1979.
DOI : 10.1007/BF01197188

G. W. Gibbons and J. B. Hartle, Real tunneling geometries and the large-scale topology of the universe, Physical Review D, vol.42, issue.8, pp.2458-2465, 1990.
DOI : 10.1103/PhysRevD.42.2458

P. «. Gilkey, The Index Theorem and the Heat Equation » Math.Lecture Ser. 4 Publish or Perish, 1974.

R. «. Gilmore, Lie Groups, Lie Algebras, 1974.

L. Giradello, A. Giveon, M. Porrati, and A. Zaffaroni, S-duality in N = 4 Yang-Mills theories with general gauge groups, N=4 Yang-Mills Theories with General Gauge Groups, pp.127-165, 1995.
DOI : 10.1016/0550-3213(95)00177-T

J. Glimm and A. Jaffe, « Boson Quantum Field Models » National Science Foundation NSF-GP-24003

M. Gromov and H. B. Lawson, « Positive Scalar Curvature and the Dirac Operator on Complete Riemanian Manifold, Math. N°, vol.58, pp.83-196, 1984.

M. «. Gromov, Hyperbolic Groups » Essay in Group Theory, Math. Sci. Res. Inst.Pub, vol.8, 1987.

F. Guerra and P. Ruggiero, New Interpretation of the Euclidean-Markov Field in the Framework of Physical Minkowski Space-Time, Physical Review Letters, vol.31, issue.16, pp.16-1022, 1973.
DOI : 10.1103/PhysRevLett.31.1022

D. I. Gurevich, « Algebraic Aspects of the Quantum Yang-Baxter Equation » Leningrad Math, J, vol.2, pp.801-828, 1991.

D. I. Gurevich, « Braided Vector Fields over Quantum Orbits ANNEXES 1. Bibliographie Extensive ___________________________________________________________________________________________________________________ 123 258. Gurevich D.I. « Braided Groups of Hopf Algebras Obtained by Twisting, Centre de Mathématiques. Ecole Polytechnique N°1078, pp.162-163, 1994.

R. Haag, N. Hugenholz, and M. Winninck, On the equilibrium states in quantum statistical mechanics, Communications in Mathematical Physics, vol.70, issue.3, pp.215-236, 1967.
DOI : 10.1007/BF01646342

R. Haag and E. Trych-pohlmeyer, Stability properties of equilibrium states, Communications In Mathematical Physics, vol.53, issue.3, pp.213-224, 1977.
DOI : 10.1007/BF01614209

U. «. Haagerup, The standard form of von Neumann algebras., MATHEMATICA SCANDINAVICA, vol.37, pp.271-283, 1975.
DOI : 10.7146/math.scand.a-11606

U. Haagerup, « Operator-valued Weights in von Neuman Algebras I » J.Functional Anal, pp.175-206, 1979.

A. Hart and M. Teper, Instantons and monopoles in the maximally Abelian gauge, Instantons and Monopoles in the Maximally Abelian Gauge, pp.261-269, 1996.
DOI : 10.1016/0370-2693(96)00017-2

S. W. Hawking, The path-integral approach to quantum gravity, General Relativity, 1979.
DOI : 10.1142/9789812384935_0012

S. W. Hawking and G. F. Ellis, The Large Structure of Spacetime, 1973.

S. W. Hawking, « Particles Creation by Black Holes, Commun. Math Phys, vol.43, 1975.

S. Helgason, Lie Groups and Symmetric Spaces, 1978.
DOI : 10.1090/gsm/034

M. «. Hilsum, Signature Operator on Lipschitz Manifolds and Unbound Kasparov Bimodules

T. Horigushi, K. Maeda, and M. Sakamoto, Analysis of the Wheeler-DeWitt equation beyond planck scale and dimensional reduction, Physics Letters B, vol.344, issue.1-4, pp.105-109, 1977.
DOI : 10.1016/0370-2693(94)01501-3

K. Huang and S. «. Weinberg, Ultimate Temperature and the Early Universe, Physical Review Letters, vol.25, issue.13, pp.895-897, 1970.
DOI : 10.1103/PhysRevLett.25.895

J. «. Hucks, Hyperbolic complex structures in physics, Journal of Mathematical Physics, vol.34, issue.12, p.12, 1993.
DOI : 10.1063/1.530244

N. M. Hugenholz, On the factor type of equilibrium states in quantum Statistical Mechanics, Communications in Mathematical Physics, vol.32, issue.3, pp.189-193, 1967.
DOI : 10.1007/BF01659975

W. Israel, Event Horizons in Static Vacuum Space-Times, Physical Review, vol.164, issue.5, pp.1776-1779, 1996.
DOI : 10.1103/PhysRev.164.1776

R. «. Jackiw, Introduction to the Yang-Mills quantum theory, Reviews of Modern Physics, vol.52, issue.4, p.4, 1980.
DOI : 10.1103/RevModPhys.52.661

A. «. Jaffe, Noncommutative Geometry and Mathematical Physics » New Symmetry Principles in Quantum Fields Theory, 1992.

J. M. Quantum and R. , Related to Generalized Toda System : an Algebraic Approach » Lec. Notes in Phys, pp.335-361, 1986.

M. «. Kaku and . Strings, Conformal Fields and Topology, 1991.

W. Kalau, M. «. Walze, and . Gravity, Non-Commutative Geometry and the Wodzicki Residue Kalyana Rama S. Sasanka Gosh « Short-Distance Repulsive Gravity as a Consequence of the Non-Trivial PPN Parameters and, Journal of Geometry and Physics Physics Letters, B, vol.162, issue.383, pp.327-344, 1995.

S. Kaniel and M. Shinbrot, The Boltzmann equation, The Bolzman Equation, pp.65-84, 1978.
DOI : 10.1007/BF01624788

D. «. Kastler, The C*-algebras of a free Boson field, Communications in Mathematical Physics, vol.75, issue.1, pp.14-48, 1965.
DOI : 10.1007/BF01649588

D. «. Kastler, Equilibrium States of Matter and Operator Algebras, Istituto Nazionale di Alta Matematica. Symposia Mathematica, 1976.

D. «. Kastler, Does Ergocity Plus Locality Imply the Gibbs Structure?, Proceedings of Symposia in Pure Mathematics, 1982.

D. «. Kastler, Cyclic cocycles from graded KMS functionals, Communications in Mathematical Physics, vol.35, issue.2, pp.345-350, 1989.
DOI : 10.1007/BF01217811

D. «. Kastler, The dirac operator and gravitation, Communications in Mathematical Physics, vol.155, issue.3, pp.633-643, 1995.
DOI : 10.1007/BF02099890

A. Kempf and R. Multiparameters, Sub-Quantum-Groups and Generalized Twisting Method » A.LMU-TPW, pp.91-95

C. Klimcik and P. «. Severa, Poisson Lie T duality and Loup Groups of Drinfeld Doubles, Kempf A. Majid S. « Algebraic q-Integration and Fourier Theory on Quantum and Braided Spaces, pp.94-101, 1996.

C. Kounnas, 317. Kounnas C. Porrati M. « Spontaneous Supersymmetry Breaking in String Theory, Phys.Let. B Nuclear Physics, vol.321, issue.310, pp.355-370, 1988.

W. Krieger, On ergodic flows and the isomorphism of factors, Mathematische Annalen, vol.109, issue.1, pp.19-70, 1976.
DOI : 10.1007/BF01360278

R. «. Kubo, Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems, Journal of the Physical Society of Japan, vol.12, issue.6, pp.570-586, 1957.
DOI : 10.1143/JPSJ.12.570

J. H. Kung, gravity, Physical Review D, vol.53, issue.6, pp.3017-3021, 1996.
DOI : 10.1103/PhysRevD.53.3017

J. M. Labastida and M. Marino, A topological lagrangian for monopoles on four-manifolds, Physics Letters B, vol.351, issue.1-3, pp.146-152, 1995.
DOI : 10.1016/0370-2693(95)00411-D

E. C. Lance, An Explicit Description of he Fundamental Unitary for SU

C. Lanczos, . Undulatory-riemannian, and . Spaces, Lanczos C. « Signal Propagation in a Positive Definite Riemannian Space, Journal of Mathematical Physics Vol Physical Review D, vol.4, issue.134, pp.7-951, 1963.

T. Lê-dung, Complex Analytic Functions with Isolated Singularities, J.of Alg.Geom, vol.1, pp.93-99, 1994.

T. D. Lee and G. C. Wick, « Negative Metric and the Unitary of the S-Matrix » Nuclear Physics B9, pp.209-243, 1969.

J. Lewandowski, . Volume, ». Quantizations, and . Class, Quantum Grav, pp.71-76, 1997.

A. «. Linde, Monopoles as big as a universe, Physics Letters B, vol.327, issue.3-4, pp.208-213, 1994.
DOI : 10.1016/0370-2693(94)90719-6

A. Inst and . Fourier, Lichnerowicz A. « Quantum Mechanics and Deformations of Geometrical Dynamics » Quantum Theory, Groups, Fields and Particles 3-82 Reidel Publ, Lichnerowicz A. « Propagateurs et Commutateurs en Relaitivité Générale » Publication I.H.E.S, pp.157-209, 1961.

L. Cardoso, G. Lust, D. Mohaupt, and T. , « Perturbative et non-Perturbative Results of N=2 Heterotic Strings, Proc. Suppl.), pp.45-167, 1996.

M. «. Lücher and . So, Symmetric Solutions of Minkowskian Yang-Mills Field Equations, Physics Letters, vol.70, issue.3, pp.321-364, 1977.

J. Lukierski, Nowicki A « Euclidean Superconformal Symmetry and its Relation with Minkowski Supersymmetries » Phys, Letters, vol.127, pp.25-45, 1984.

J. Lukierski and A. Nowicki, On superfield formulation of Euclidean supersymmetry, Journal of Mathematical Physics, vol.25, issue.8, p.5, 1984.
DOI : 10.1063/1.526439

J. Lukierski and A. Nowicki, Quaternionic supergroups and D = 4 Euclidean extended supersymmetries, Annals of Physics, vol.166, issue.1, pp.164-188, 1986.
DOI : 10.1016/0003-4916(86)90054-0

J. «. Lukierski, Euclidean Superalgebras for 3 <D<10 » Reprinted from Supersymmetry and its Applications, 1986.

J. Lukierski and H. «. Ruegg, Quantum in any dimension, Macorra A.de la, Ross G.G. « Supersymmetry Breaking in 4D String Theory » Nuclear Physics, pp.189-194, 1994.
DOI : 10.1016/0370-2693(94)90759-5

J. «. Madore, An Introduction to Noncommutative Differential Geometry and its Physical Applications, 1995.
DOI : 10.1017/CBO9780511569357

J. Magnen and R. Sénéot, Phase space cell expansion and borel summability for the Euclidean ?? 3 4 theory, Communications In Mathematical Physics, vol.35, issue.3, pp.237-276, 1977.
DOI : 10.1007/BF01614211

«. Commutative and A. , Formulation of General Relativity, Major, Smolin « Q déformation of Quantum Gravity, pp.6-1015, 1992.

S. «. Majid, Equivalent Cross Products for a Hopf Algebra, Comm. Algebra, vol.17, pp.3053-3085, 1989.

S. Majid, Y. Quasitriangular-hopf-algebras, and . Equations, QUASITRIANGULAR HOPF ALGEBRAS AND YANG-BAXTER EQUATIONS, International Journal of Modern Physics A, vol.05, issue.01, pp.1-91, 1990.
DOI : 10.1142/S0217751X90000027

S. «. Majid, Physics for algebraists: Non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction, Journal of Algebra, vol.130, issue.1, pp.17-64, 1990.
DOI : 10.1016/0021-8693(90)90099-A

S. Majid and . Soibelman-ya, Rank of quantized universal enveloping algebras and modular functions, Communications in Mathematical Physics, vol.127, issue.1, pp.249-262, 1991.
DOI : 10.1007/BF02431880

S. «. Majid, Examples of braided groups and braided matrices, Journal of Mathematical Physics, vol.32, issue.12, p.12, 1991.
DOI : 10.1063/1.529485

S. «. Majid, Braided groups and algebraic quantum field theories, Letters in Mathematical Physics, vol.5, issue.1, pp.167-175, 1991.
DOI : 10.1007/BF00403542

S. «. Majid, The quantum double as quantum mechanics, Journal of Geometry and Physics, vol.13, issue.2, 1993.
DOI : 10.1016/0393-0440(94)90026-4

S. «. Majid, Cross Product Quantisation, Non Abelian Cohomology and Twisting of Hopf Algebras » damtp/93-63, Proc. Generalized Symmetries, Clausthal, 1993.

S. «. Majid, ???Poincar?? group, Journal of Mathematical Physics, vol.34, issue.5, p.5, 1993.
DOI : 10.1063/1.530154

S. Majid, Braided groups, Journal of Pure and Applied Algebra, vol.86, issue.2, pp.187-221, 1993.
DOI : 10.1016/0022-4049(93)90103-Z

URL : http://doi.org/10.1016/0022-4049(93)90103-z

S. «. Majid, Introduction to Braided Geometry and q-Minkowski Space, 1994.

S. Majid, Ruegg H « Bicrossproduct Structure of -Poincare Group and Non-Commutative Geometry, pp.94-118, 1994.

S. Majid and U. Meyer, Braided matrix structure ofq-Minkowski space andq-Poincar??? group, Zeitschrift f???r Physik C Particles and Fields, vol.157, issue.2, pp.357-362, 1994.
DOI : 10.1007/BF01411029

S. Majid, ???Euclidean space and quantum Wick rotation by twisting, Journal of Mathematical Physics, vol.35, issue.9, p.9, 1994.
DOI : 10.1063/1.530828

S. Majid, ???epsilon tensor for quantum and braided spaces, Journal of Mathematical Physics, vol.36, issue.4, pp.94-114, 1994.
DOI : 10.1063/1.531098

S. «. Majid, Some Remarks on the q-Poincare Algebra in R-Matrix Form, pp.95-103, 1995.

S. Majid and . Quasi-*, Structure on q -Poincare Algebras, 1995.

S. Majid, « Foundations of Quantum Group Theory, 1995.
DOI : 10.1017/CBO9780511613104

S. «. Majid, First Steps in Quantum and Braided Group Riemannian Geometry, pp.97-73, 1997.

Y. I. Manin, « Gauge Field Theory and Complex Geometry, 1988.
DOI : 10.1007/978-3-662-07386-5

N. «. Manton, Complex structure of monopoles, Nuclear Physics B, vol.135, issue.2, pp.319-332, 1978.
DOI : 10.1016/0550-3213(78)90135-9

N. «. Marcus, The Other Topological Twisting of N=4 Yang-Mills » Nuclear Physics B452, pp.331-345, 1995.

P. C. Martin and J. «. Schwinger, Theory of Many Particles Systems, Phys. Rev, vol.2, pp.115-1342, 1959.

P. O. Mazur, « A Relationship between the Electrovacuum Ernts Equations and Nonlinear Model, Acta Physica Polonica, vol.14, p.4, 1983.

P. O. Mazur, A global identity for nonlinear ??-models, Physics Letters A, vol.100, issue.7, 1984.
DOI : 10.1016/0375-9601(84)91084-3

P. O. Mazur, Are there topological black-hole solitons in string theory?, General Relativity and Gravitation, vol.92, issue.12, p.1173, 1987.
DOI : 10.1007/BF00759096

P. O. Mazur and E. «. Mottola, The Path Integral Measure, Conformal Factor Problem and Stability of the Ground State of Quantum Gravity » Nuclear Physics B341, pp.187-212, 1990.

P. O. Mazur, « On the Quantum Theory of Graviting Particles, Acta Physica Polonica, vol.26, 1995.

P. O. Mazur, « Reply to Comment on Spinning Cosmic Strings and Quantization of Energy » hep-th, p.9611206, 1996.

M. B. Mensky, Time in quantum cosmology from the self-measurement of the universe, General Relativity and Gravitation, vol.38, issue.2, 1991.
DOI : 10.1007/BF00772609

U. Meyer, « A new q -Lorentz Group and q -Minkowski Space with both Braided Coaddition and q -spinor decomposition, pp.93-138, 1993.

U. «. Meyer, Wave Equations on q -Minkowski Space, pp.94-104, 1994.

J. Milnor and J. C. Moore, On the Structure of Hopf Algebras, The Annals of Mathematics, vol.81, issue.2, pp.211-264, 1965.
DOI : 10.2307/1970615

C. W. Misner, The Flatter Regions of Newman, Unti, and Tamburino's Generalized Schwarzschild Space, Journal of Mathematical Physics, vol.4, issue.7, pp.7-951, 1963.
DOI : 10.1063/1.1704019

T. «. Nakano, Quantum Field Theory in Terms of Euclidean Parameters, Progress of Theoretical Physics, vol.21, issue.2, pp.7-924, 1963.
DOI : 10.1143/PTP.21.241

P. Nieuwenhuizen, «. Van, and . Supergravity, Supergravity, Physics Reports, vol.68, issue.4, pp.189-398, 1981.
DOI : 10.1016/0370-1573(81)90157-5

D. R. Noakes, The initial value formulation of higher derivative gravity, Journal of Mathematical Physics, vol.24, issue.7, p.7, 1983.
DOI : 10.1063/1.525906

D. Olive, . Exact-electromagnetic, and . Duality, Exact electromagnetic duality, Proc.Suppl.), pp.1-15, 1996.
DOI : 10.1016/0920-5632(96)00002-3

URL : http://arxiv.org/abs/hep-th/9508089

M. Onder and R. W. Tucker, On the relation between classical and quantum cosmology in a two-dimensional dilaton-gravity model, Classical and Quantum Gravity, vol.11, issue.5, pp.1243-1253, 1994.
DOI : 10.1088/0264-9381/11/5/011

T. A. Osborn and Y. Fujiwara, Time evolution kernels: uniform asymptotic expansions, Journal of Mathematical Physics, vol.24, issue.5, pp.1093-1103, 1983.
DOI : 10.1063/1.525835

S. Ouvry, R. Stora, and P. Van-baal, « On the Algebraic Characterization of Witten's Topological Yang-Mills Theory » cern-th 5224, p.88, 1988.

N. J. Papastamatiou and H. «. Umezawa, Comments on a Model of Spontaneously Broken Scale Invariance, Physical Review D, vol.7, issue.2, pp.571-574, 1973.
DOI : 10.1103/PhysRevD.7.571

S. «. Parmentier, On Coproducts of Quasi-Triangular Hopf Algebras » St, Petersbourg Math J, 1994.

R. Penrose and M. A. Maccallum, « A Twistor Approach to Spacetime Quantization, Physics ReportsPhys. Lett. Section C), vol.6, pp.241-316, 1972.

I. C. Percival, « Quantum Spacetime Fluctuations and Primary State Diffusion » to be printed 424, Podles P. Woronowicz S.L. « Quantum Deformation of Lorentz Group » Commun. Math.Phys, vol.130, pp.381-431, 1990.

R. «. Pisarski, The Density of Instantons at Finite Temperature » Nuclear Physics, pp.97110-112, 1980.

E. «. Prugovecki, On the general covariance and strong equivalence principles in quantum general relativity, Foundations of Physics, vol.209, issue.229, 1994.
DOI : 10.1007/BF02054648

W. Pusz and S. «. Woronowicz, Passive states and KMS states for general quantum systems, Communications in Mathematical Physics, vol.38, issue.3, pp.273-290, 1978.
DOI : 10.1007/BF01614224

H. «. Quevedo, Determination of the metric from the curvature, General Relativity and Gravitation, vol.18, issue.8, p.8, 1992.
DOI : 10.1007/BF00759087

C. «. Rebbi, Self-dual Yang-Mills fields in Minkowski space-time, Physical Review D, vol.17, issue.2, p.11973, 1977.
DOI : 10.1103/PhysRevD.17.483

S. Rey, Confining phase of superstrings and axionic strings, Confining Phase of Superstrings and Axionic Strings, pp.526-538, 1990.
DOI : 10.1103/PhysRevD.43.526

G. Roepstorff, « Path Integral Approach to Quantum Physics, 1994.
DOI : 10.1007/978-3-642-57886-1

P. «. Rossi, Propagation Functions in the Field of a Monopole » Nuclear Physics, pp.149170-188, 1979.

C. «. Rovelli, Statistical Mechanics of Gravity and the Thermodynamical Origin of Time » Class.Quantum Grav, pp.101549-1566, 1993.

C. «. Rovelli, The Statistical State of the Universe » Class.Quantum Grav, pp.1567-1578, 1993.

A. Sen and C. Vafa, « Dual Pairs of Type II String Compactification » hutp-95, p.28, 1995.

J. Scherk and J. M. Schwartz, Spontaneous breaking of supersymmetry through dimensional reduction, Aspects of Quantizing Lorentz Symmetry » New Symmetry Principles in Quantum Fields Theory, pp.60-64, 1979.
DOI : 10.1016/0370-2693(79)90425-8

M. Schlieker, W. Weich, and R. «. Weixler, Inhomogeneous quantum groups, Zeitschrift f???r Physik C Particles and Fields, vol.61, issue.1, pp.79-82, 1992.
DOI : 10.1007/BF01483874

M. Schlieker and B. «. Zumino, Braided Hopf Algebras and Differential Calculus » ucb-pth-94, The Structure of Uq (sl, pp.93-124, 1994.
DOI : 10.1007/bf00750809

URL : http://arxiv.org/abs/hep-th/9403093

J. M. Schwartz, « Relations entre « Ring Groups » et Algèbres de Kak, Bull. Sci. Math, vol.100, pp.289-300, 1976.

N. Seiberg and E. «. Witten, Gauge Dynamics and Compactification to Three Dimensions » hep-th, Int. J. of Mod. Phys, vol.9607163, p.9, 1994.

E. V. Shuryak, Toward the quantitative theory of the instanton liquid (I)., Toward the Quantitative Theory of the Instanton Liquid, pp.559-573, 1987.
DOI : 10.1016/0550-3213(88)90188-5

E. Shuryak and M. Velkovsky, Instanton density at finite temperatures, Physical Review D, vol.50, issue.5, pp.3323-3327, 1994.
DOI : 10.1103/PhysRevD.50.3323

E. V. Shuryak and J. J. Verbaarschot, 469. Singer I.M. « Some Remarks on Operator Theory and Index Theory » K-Theory and Operator Algebras Singer W. « Extension Theory for Connected Hopf Algebras, Sitarz A. « Metric and Quantum Spaces » Letters in Mathematical Physics, pp.1-295, 1972.

J. M. Souriau and . Quantification-géométrique, Colloque Géométrie et Physique de 1986 en l'honneur de André Lichnerowicz , Herman Editeur (1988) 474. Stasheff J. « Drinfel'd's Quasi-Hopf Algebras and beyond, Physique Quantique et Géométrie, 1992.

R. Stora, F. Thuillier, and J. C. Wallet, Algebraic Structure of Cohomological Field Theory Models and Equivariant Cohomology » enslapp-a 481, p.476, 1994.

E. «. Stormer, Types of von Neumann algebras associated with extremal invariant states, Communications in Mathematical Physics, vol.5, issue.3, pp.194-204, 1967.
DOI : 10.1007/BF01659976

P. «. Sutcliffe and . Bps-monopoles, To be published in the International Journal of Modern Physics A 481

E. «. Tomboulis, Exact Relation Between Einstein and Quadratic Quantum Gravity » hep-th / 9601082 (1996) 492. Teyssandier P « Linearised R + R2 gravity : a new gauge and new Solutions, Class. Quantum Grav, vol.6, 1989.
DOI : 10.1016/s0370-2693(96)01293-2

URL : http://doi.org/10.1016/s0370-2693(96)01293-2

E. «. Twietmeyer, Real Forms of U q ( ) » Letters in Mathematical Physics, pp.287-292, 1991.

S. H. Tye, The limiting temperature of the universe and superstrings, Physics Letters B, vol.158, issue.5, 1985.
DOI : 10.1016/0370-2693(85)90438-1

D. «. Uhlenbrock, Perturbation of Statistical Semigroups in Quantum Statistical Mechanics, Unruh W. Wald R.M. « Time and the Interpretation of Canonical Quantum Gravity, pp.2503-2507, 1971.
DOI : 10.1063/1.1665564

C. Vafa, E. «. Witten, . Strong-coupling, and . Test-of-s-duality, A strong coupling test of S-duality, Nuclear Physics B, vol.431, issue.1-2, pp.3-77, 1994.
DOI : 10.1016/0550-3213(94)90097-3

L. L. Vaksman and L. I. Korogodskii, « Spherical Functions on the Quantum Group SU (1, 1) and the q -Analogue of the Mehler-Fock Formula » Translated from Funktsional'nyi Analiz i Ego Prilozheniva, ANNEXES 1. Bibliographie Extensive ___________________________________________________________________________________________________________________ 136 500. Vandick M. Shanahan S. « On a Multipole Expansion for Instantons : I » Class.Quantum Grav, pp.60-62, 1990.

G. «. Veneziano, An Introduction to Dual Models of Strong Interactions and their Physical Motivations, Phys Rev C9, p.199, 1974.

R. M. Wald, On the Euclidean approach to quantum field theory in curved spacetime, Ward R.S. « A Yang-Mills-Higgs Monopole of Charge 2, pp.221-242, 1979.
DOI : 10.1007/BF01200053

C. «. Wetterich, Quantum dynamics in classical time evolution of correlation functions, Physics Letters B, vol.399, issue.1-2, pp.4-123, 1997.
DOI : 10.1016/S0370-2693(97)00267-0

S. «. Weinberg, Gauge and global symmetries at high temperature, Physical Review D, vol.9, issue.12, pp.12-3367, 1974.
DOI : 10.1103/PhysRevD.9.3357

H. «. Widom, Complete Symbolic Calculus for Pseudodifferential Operators » Bull. Sc.math. 2è série 104, pp.19-63, 1980.

M. «. Winnink, Some General Properties of Thermodynamics States in an Algebraic Approach » Statistical Mechanics and Field Theory, pp.311-338, 1971.

M. «. Winnink, Algebraic Aspects of the Kubo-Martin-Schwinger Boundary Condition » Cargèse Lectures in Physics 4 235-255 Gordon and Breach, 1989.

E. Witten and . Instantons, the Quark Model and the 1/N Expansion » Nuclear Physics B149, pp.285-320, 1979.

E. Witten, R. Search, . Kaluza-klein, and . Theory, Search for a realistic Kaluza-Klein theory, Nuclear Physics B, vol.186, issue.3, pp.412-428, 1981.
DOI : 10.1016/0550-3213(81)90021-3

E. Witten, . Instability-of-the-kaluza-klein, and . Vacuum, Instability of the Kaluza-Klein vacuum, Nuclear Physics B, vol.195, issue.3, pp.481-492, 1982.
DOI : 10.1016/0550-3213(82)90007-4

E. «. Witten, Constraints on supersymmetry breaking, Constraints on Supersymmetric Breaking, pp.253-316, 1982.
DOI : 10.1016/0550-3213(82)90071-2

URL : http://doi.org/10.1016/0550-3213(82)90071-2

E. «. Witten, Dimensional reduction of superstring models, Physics Letters B, vol.155, issue.3, pp.151-155, 1985.
DOI : 10.1016/0370-2693(85)90976-1

E. Witten, . Topological-quantum-field, and . Theory, Topological quantum field theory, Communications in Mathematical Physics, vol.57, issue.3, pp.353-386, 1988.
DOI : 10.1007/BF01223371

E. «. Witten, Quantum field theory and the Jones polynomial, Communications in Mathematical Physics, vol.80, issue.3, pp.351-399, 1989.
DOI : 10.1007/BF01217730

E. «. Witten, Supersymmetric Yang???Mills theory on a four???manifold, Journal of Mathematical Physics, vol.35, issue.10, p.10, 1994.
DOI : 10.1063/1.530745

E. Witten, « Small Instantons in String Theory » hep-th, p.9511030, 1995.

M. «. Wodzicki, Noncommutative Residue, Part I.Fundamentals » K-Theory, Arithmetic and Geometry, pp.320-399, 1984.

S. L. Woronowicz and S. Twisted, Twisted {${\rm SU}(2)$} group. An example of a noncommutative differential calculus, Publications of the Research Institute for Mathematical Sciences, vol.23, issue.1, pp.117-181, 1987.
DOI : 10.2977/prims/1195176848

S. L. Woronowicz, Compact matrix pseudogroups, Communications in Mathematical Physics, vol.28, issue.3, pp.613-665, 1987.
DOI : 10.1007/BF01219077

S. L. Woronowicz, Unbounded elements affiliated withC*-algebras and non-compact quantum groups, Communications in Mathematical Physics, vol.130, issue.2, pp.399-432, 1991.
DOI : 10.1007/BF02100032

URL : http://projecteuclid.org/download/pdf_1/euclid.cmp/1104202358

C. N. Yang and R. L. Mills, Conservation of Isotopic Spin and Isotopic Gauge Invariance, Physical Review, vol.96, issue.1, pp.191-195, 1954.
DOI : 10.1103/PhysRev.96.191

U. «. Yurtserver, On the origin of spacetime topology and some generalizations of quantum field theory, Classical and Quantum Gravity, vol.11, issue.4, pp.1013-1026, 1994.
DOI : 10.1088/0264-9381/11/4/017

S. «. Zakrzewski, Poisson structures on the Lorentz group, Letters in Mathematical Physics, vol.19, issue.1, pp.11-23, 1994.
DOI : 10.1007/BF00761120

S. «. Zakrzewski, Quantum Poincare group related to the kappa -Poincare algebra, Journal of Physics A: Mathematical and General, vol.27, issue.6, pp.2075-2082, 1994.
DOI : 10.1088/0305-4470/27/6/030