Skip to Main content Skip to Navigation
Theses

Quasi-isométries, groupes de surfaces et orbifolds fibrés de Seifert

Abstract : The main result is a homotopy characterization of Seifert-fibered 3-orbifolds: if O is a closed, orientable, small 3-orbifold whose fundamental group has an infinite cyclic normal subgroup, then O is Seifert-fibered. This theorem generalizes a result of Scott, Mess, Tukia, Gabai and Casson-Jungreis for 3-manifolds. It uses a characterization of virtual surface groups as groups quasi-isometric to complete Riemannian planes. Other results on quasi-isometries between groups and surfaces are obtained.
Document type :
Theses
Complete list of metadata

https://tel.archives-ouvertes.fr/tel-00001342
Contributor : Sylvain Maillot <>
Submitted on : Thursday, May 9, 2002 - 6:57:32 PM
Last modification on : Friday, January 10, 2020 - 9:08:06 PM
Long-term archiving on: : Tuesday, September 11, 2012 - 5:20:50 PM

Identifiers

  • HAL Id : tel-00001342, version 1

Collections

Citation

Sylvain Maillot. Quasi-isométries, groupes de surfaces et orbifolds fibrés de Seifert. Mathématiques [math]. Université Paul Sabatier - Toulouse III, 2000. Français. ⟨tel-00001342⟩

Share

Metrics

Record views

264

Files downloads

491