Skip to Main content Skip to Navigation

Une formule de Riemann-Roch équivariante pour les courbes

Abstract : The framework of this thesis is the equivariant theory of curves, i.e. the study of curves provided with an action of a group G, which is always supposed to be finite. The main result is an equivariant Riemann-Roch theorem with values in the character ring of the fixed group, and which lifts the usual theorem. It is obtained for G-sheaves of any rank thanks to the introduction of a group of divisors with equivariant coefficients which makes it possible in particular to define the determinant and the degree of such a sheaf. One applies this theorem to the computation of geometric Galois structures.
Document type :
Complete list of metadatas

Cited literature [40 references]  Display  Hide  Download
Contributor : Niels Borne <>
Submitted on : Tuesday, March 26, 2002 - 3:03:55 PM
Last modification on : Sunday, July 26, 2020 - 5:08:01 PM
Long-term archiving on: : Friday, April 2, 2010 - 6:02:43 PM


  • HAL Id : tel-00001272, version 1



Niels Borne. Une formule de Riemann-Roch équivariante pour les courbes. Mathématiques [math]. Université Sciences et Technologies - Bordeaux I, 2000. Français. ⟨tel-00001272⟩



Record views


Files downloads