Théorie classique et legendrienne des points d'aplatissement évanescents des courbes planes et spatiales

Résumé : Un point d'aplatissement d'une courbe (réelle $C^\infty$ ou complexe holomorphe) de l'espace projectif (réel ou complexe) de dimension $n$ est un point de la courbe pour lequel l'hyperplan osculateur à un contact plus élevé qu'en un point ordinaire. Pour $n=2$, les points d'aplatissement sont communément appelés les points d'inflexions.\\ Dans la première partie de la thèse étudie les familles de courbes par rapport aux points d'aplatissement.\\ On introduit une notion de forme normale par rapport aux aplatissements des fibres d'une application $f:(\KM^n,0) \to (\KM^{n-1},0)$, avec $\KM=\RM$ ou $\KM=\CM$,\\ Ensuite, on commence la classification des germes d'applications (réels $C^\infty$ ou complexes holomorphes) $f:(\KM^n,0) \to (\KM^{n-1},0)$, avec $\KM=\RM$ ou $\KM=\CM$, par rapport aux points d'aplatissement des fibres de l'application. On introduit la notion de déformation verselle par rapport aux aplatissements, et on calcule ces déformations pour les fonctions de Morse de deux variables. Enfin, on définit ``les invariants fondamentaux de topologie projective'' d'un germe $f:(\KM^n,0) \to (\KM^{n-1},0)$ et on calcule ces invariants pour les éléments de la classification.\\ Dans une deuxième partie, on tente d'inclure la théorie des aplatissements des courbes en développant la théorie de propagation des fronts d'onde. par le biais d'un théorème de déformations verselles pour les applications legendriennes. On généralise des résultats de Kazarian sur les courbes spatiales au cas variétés de dimension quelconque. Notamment, on démontre un théorème sur la bifurcation des courbes paraboliques de certaines familles de surfaces dans l'espace projectif.
Type de document :
Thèse
Mathématiques [math]. Université Paris-Diderot - Paris VII, 2001. Français


https://tel.archives-ouvertes.fr/tel-00001243
Contributeur : Mauricio Garay <>
Soumis le : jeudi 21 mars 2002 - 18:19:16
Dernière modification le : jeudi 21 mars 2002 - 18:19:16
Document(s) archivé(s) le : mardi 11 septembre 2012 - 17:10:27

Identifiants

  • HAL Id : tel-00001243, version 1

Collections

Citation

Mauricio Garay. Théorie classique et legendrienne des points d'aplatissement évanescents des courbes planes et spatiales. Mathématiques [math]. Université Paris-Diderot - Paris VII, 2001. Français. <tel-00001243>

Exporter

Partager

Métriques

Consultations de
la notice

181

Téléchargements du document

88