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1
Controlling nuclear fusion for

cleaner energy

1.1 The global energetic context

Over the past two centuries, human kind managed to improve his standard of living like
never before in his history in such a short time [Lucas, 2004]. This was made possible
by the unfolding of modern science which led – among other things – to the development
of modern medicine and the industrial revolution. But this has a cost in term a human
footprint especially from the energetic point of view.

Figure 1.1: Evolution of the global energy consumption between 1870 and 2010 and forecast up to
2030. Adapted from [BP, 2013a]
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As shown on Figure 1.1 from BP’s Statistical Review of World Energy [BP, 2013a], the
global energy consumption went from ∼ 3.1018 J (∼ 0.1 billion tonnes equivalent oil (TOE))
in 1870 to more than 500.1018 J (more than 10 billion TOE) in 2010. Energy consumption
has been stabilized in the past few years in most of the so-called developed countries. On the
contrary, developing countries are increasing their demand in energy, supporting the growth
of the energy consumption worldwide. In recent studies [Brown et al., 2011], it has been
shown that raising the global average standard of living to that of the current US one would
imply to multiple the global energy use 5 times, without taking into account any foreseeable
population growth. Indeed, a strong correlation between gross domestic product (GDP) per
capita and energy consumption per capita with a 0.76 exponent is shown in Brown et al.
[2011]. Based on this observation, an analogy with animal metabolism is drawn in this
paper: for animals, the metabolic rate increases with the body mass with a 3/4 exponent
factor. This means that considerable amount of energy have to be found to sustain a global
improvement of the standard of living.

Up to now, the energy humankind consumes has been extracted mostly from oil,
coal and natural gas. But using this kind of resources raises two major issues. First, the
available quantities are limited. Conventional oil resources are estimated to last 50 years,
gas resources 60 years and coal approximately 150 years with the current energy mix [BP,
2013b]. Secondly, burning these resources produces a significant amount of greenhouse gases.
The symbolic milestone of 400 ppm of CO2 was surpassed at the Mauna Loa Observatory
in Hawaii in early May 2013. As displayed on Figure 1.2, this value is twice above the mean
value of CO2 atmospheric concentration over 800,000 years. Moreover, Earth experienced
an over 100 ppm increase of its CO2 atmospheric concentration over the last two centuries.
Such a rapid and large rise was not seen for at least 800,000 years and is likely caused by
human activities [Monastersky, 2013]. The concentration values reached in 2013 are widely
acknowledged to be responsible for a substantial climate deregulation [Ahmed et al., 2013].

Figure 1.2: CO2 atmospheric concentration over the last 800,000 year. In box, the last 2000 years.
Adapted from [National Oceanic & Atmospheric Administration, Global Monitoring Division, 2013]
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Facing these issues, one can look for alternative ways of extracting energy from the
environment. For domestic use a combination of wind, solar and geothermal power can be
adequate, but for industries they are not concentrated nor robust enough at present status to
be the main source of energy. In contrast, nuclear energy is both reliable and concentrated.
For example, one kilogram of 235U can theoretically produce ∼ 2000 TOE. The issue of
limited available reserves of uranium could be tackled by the construction of fast breeders.
Super Phoenix, the industrial demonstrator in activity from 1986 to 1997, demonstrated
the industrial relevance of this technology. As robust as fission is for energy production, the
chain reaction mechanism constitutes at the same time its greatest strength and its largest
weakness. Producing energy is facilitated by the self-amplification of the reaction but this
means that the process is unstable in the eventuality of a problem in the moderation loop
as dramatically illustrated by the major nuclear accident in Chernobyl in 1986. Due to
the intrinsic activity of the fuel mix, heat exhaust is equally important and a failure of
the system represents a serious threat to nuclear safety as reminded by Fukushima Daiichi
nuclear accident. Safer-and-safer fission reactors are built (EPR being built in Normandy
and Finland); however associated with ever-increasing costs.

There is another way for nuclear energy, as illustrated by the binding energy curve (see
Figure 1.3). The binding energy corresponds to the potential energy that can be collected
either by splitting heavy nuclei such as Uranium (this is nuclear fission) or by merging light
nuclei such as Hydrogen: this is nuclear fusion. From Figure 1.3, the per nucleon energy
liberated by the fusion of light elements is larger than that of the fission of heavy elements
such as 235U, making it a more concentrated source of energy. For example, one kilogram
of deuterium-tritium mix can theoretically produce ∼ 8000 TOE. Thus, why nuclear fusion
is not used today to produce energy? What are the issues faced on the way towards its
industrial reality?

1.2 Controlling nuclear fusion

1.2.1 The possible fusion reactions

Before going any further, a fusion reaction must be chosen along the various available options.
In an industrial view, the best option will be a trade off between the most probable, the
most energetic reaction and the one taking place at most standard conditions. Table 1.1
summarizes the most likely reactions, associating the energy carried by the products for
each reaction, the temperature which must be reached for fusion to occur and the associated
cross section, measuring the probability of the reaction to happen. Given the high energy
concentration of all the reaction presented, the liberated energy will not impact the choice of
the reaction. The deuterium-tritium (D-T) reaction is thought to be the best candidate for
nuclear fusion due to its highest probability and happening at most standard conditions. In
theory, it would be a net improvement to have no neutrons as reaction products, minimising
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Figure 1.3: Binding energy per nucleon characterizing the stability of nuclei. The most stable is
56Fe. Energy can be gained by merging very light nuclei or splitting heavy ones

Reactions T[keV] 〈σv〉/T 2[m3s−1keV−2]
2H + 3H → 4He (3.5 MeV) + n (14.1 MeV) 13.6 1.24e−24
2H + 2H → 3He (0.82 MeV) + n (2.45 MeV) 15 1.28e−26

→ 3H (1.01 MeV) + p+ (3.02 MeV)
2H + 3He → 4He (3.6 MeV) + p+ (14.7 MeV) 58 2.24e−26
3He + 6Li → 2 4He + p+ (16.9 MeV) 66 1.46e−27

p+ + 11B → 3 4He (2.7 MeV) 123 3.01e−27

Table 1.1: Most likely fusion reactions for energy production

damages and activation of the machine walls. Moreover, in reactions such as D-T where
most of the energy is carried away by neutrons, a thermal cycle is needed to extract their
energy by boiling water, decreasing the global efficiency of the plant. For aneutronic fusion,
reactions implying 3He are not considered due to its very weak presence on Earth and its
cost to produce. The last reaction involving boron, in contrast, is thought as the best option
for aneutronic fusion [Nevins, 1998]. But, the temperature needed to reach fusion conditions
and the weak likelihood of the reaction make this source of energy unreachable for current
technology. Indeed, the amplification factor Q of a reaction i.e. the ratio between the input
power needed to sustain fusion conditions and the power that can be produced from fusion,
depends on the density, the temperature and the energy losses from the medium. This
energy loss is measured by the confinement time τE defined by the ratio of thermal stored
energy over the power losses: τE = Wth/Ploss. The power balance of a reaction is known as
the Lawson criterion:

nTτe = f(Q) (1.1)
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Figure 1.4: Most abundant elements in Earth upper crust[Haxel et al., 2002]

An economically viable reactor would have to satisfy Q > 40 requiring that nTτE >

3.1021m−3.keV.s for D-T reaction while it seems impossible to achieve such an amplification
factor for Hydrogen-Boron reaction at present knowledge[Rider, 1997, Son and Fisch, 2004].

For now, neutronic fusion and Deuterium-Tritium reactions is therefore the only viable
path. Why is there no industrial demonstrator of a Deuterium-Tritium fusion plant? Is it
a resource issue? The known available resources of Deuterium are almost unlimited at
mankind scale representing 0.015% of the total Hydrogen (75% of the baryonic matter in
the Universe). Tritium needs to be produced because it is not stable. The best candidate for
its production is lithium, present in Earth crust at concentration varying from 20 to 70 ppm
by weight. Figure 1.4 compares its abundance in the Earth crust against other elements. It
is found to be the 25th most abundant element. Its concentration is, for example, two orders
of magnitude higher than that of Uranium. The reaction to produce Tritium from Lithium
is exothermic:

6Li + n → 4He + 3H (1.2)

and used in current atomic weapons. Thus, natural resources are not the issue preventing
Deuterium-Tritium fusion to be an economic reality. The issue is getting the Q = 40
amplification factor.
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1.2.2 The possible technologies for fusion

According to Lawson criterion, 3 parameters can be varied to obtain the desired amplification
factor Q: the density n, the temperature T and the confinement time τE . In fact, the
temperature is fixed by the D-T reaction, its maximum efficiency being at T ∼ 10 keV as
indicated in Table 1.1. In addition, increasing the reaction temperature has a technological
cost since accessing this range of temperatures is not an easy task (see Sec.1.3). 2 degrees
of freedom remains in the parameter space: the density and the energy confinement time.

A first solution called inertial confinement consists in operating at high density n ∼
1031 m−3 and short confinement time τE ∼ 10−11 s. This principle is applied in thermonu-
clear weapons where the density and temperature characteristics are obtained through the
explosion of a nuclear fission bomb and the resulting X-ray flux. In current experiments
of inertial confinement, either powerful lasers e.g. at the National Ignition Facility or the
future Laser Méga Joule, or massive electrical current – for Sandia National Laboratories
Z-pinch machine – replace nuclear fission explosives. Although this concept has shown that
nuclear fusion could be realized by mankind in weapons, its control to produce usable energy
from this intrinsically transient source has not been achieved yet [see Glenzer et al., 2012,
Figure 11].

The other solution, called magnetic confinement, is to use magnetic fields to confine
the matter at high temperature and protect the machine walls from the interaction with
energetic particles. Confinement times are of the order of the second and the density is
limited to n ∼ 1020 m−3 [Wesson, J., 1997]. This solution uses the property that matter is
progressively ionized with increasing temperature to form a plasma state globally neutral
but where every particle is electrically charged (except the neutrons resulting from fusion)
thus sensitive to electromagnetic fields. If high Z impurities penetrate the plasma, they can
exhaust a lot of energy from the plasma due to electron relaxation/recombination radiation.
Thus, it is contained inside vacuum vessels which materials are optimized to handle large
heat flux and limit the plasma contamination simultaneously.

There are various configurations able to confine the plasma with comparable perfor-
mances. Among them, the stellarator has the specificity to produce the helical magnetic field
only with external coils. The drawbacks of this configuration are the necessity of complex
3D coils for optimised performances, the existence of unconfined regions and higher radial
heat flux due to geometrical effects than in other configurations limiting its performances.
Nevertheless, this configuration has regained interest in the scientific community [IPP, 2013]
due to its intrinsic ability to operate continuously and the absence of large current-induced
instabilities known as disruptions [Reux, 2010]. The other major configuration is the toka-
mak. All the studies in this thesis are made in this framework since this is the current
magnetic configuration closest to produce energy from controlled nuclear fusion. This is the
configuration used for Iter, the international experiment being built in the South of France
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with the aim to demonstrate that usable energy can be produced by controlled nuclear fusion
[IO, 2013].

1.3 The tokamak configuration

We said in the previous section that a particularity of the stellarator is to produce its helical
magnetic field with only external coils. Before seeing how and why it is not the case in
tokamaks, let us explain quickly why an helical magnetic field is needed.

1.3.1 Confinement of charged particles in magnetic fields

Applying Newton’s second law in the terrestrial frame of reference, supposedly inertial, to a
charge particle in a rectilinear magnetic field of strength B, one finds that the charge particle
will describe a helix of radius ρc = mv⊥

eB with a uniform motion in the direction parallel to
the magnetic field. mv⊥ is the particle momentum in the direction perpendicular to the
magnetic field and e is its charge. This corresponds to the situation in a solenoid. In the
early days of the research on fusion, various geometries were tested [Teller, E., 1958]. Since
then, it has been acknowledged that a linear device cannot magnetically confine particles
sufficiently well to achieve a significant fusion rate [Wesson, J., 1997]. In contrast, a torus
enables the particles to have a free toroidal movement thus solving the issue of closing the
magnetic bottle. The curvature of the torus changes the dynamic of the charged particles.
Ampere’s law directly expresses that the magnetic field strength is inversely proportional to
the major radius R due to the volume expansion with R. The particle cyclotron motion will
be altered, the particle Larmor radius ρc being larger at outer radii and shorter at inner radii.
This and its secular effects are illustrated on a cartoon Figure 1.5, the secular effect being
a vertical drift of the particles. As explained in more details in the next chapter, another
drift comes from the curvature of the magnetic field itself. Moreover, in fusion devices, both
ions and electrons coexist. The vertical drift is responsible for a charge separation. An
electric field is then created to counterbalance the charge separation. It is responsible for an
additional drift [Sarazin, 2008]. Overall, because of these drifts and without the introduction
of another magnetic field, the energy confinement time is limited to τE ∼ 10−3 s which is
well shorter than the estimated τE ∼ 1 s necessary to reach fusion conditions [Hennequin,
2007].

1.3.2 Inducing a poloidal magnetic field

In order to correctly confine the plasma, a poloidal magnetic field is needed. Contrary to the
stellarator case, it is not created by the tokamak coils. Instead, a toroidal current is induced
in the plasma through transformer effect by a stack of coils placed in the torus centre called
central solenoid. As a reaction to this imposed circular current, a poloidal magnetic field



8 Controlling nuclear fusion for cleaner energy
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Figure 1.5: Cartoon of the vertical drift due to the curvature of the magnetic configuration
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Figure 1.6: Cartoon of the magnetic field in a tokamak. The toroidal magnetic field is created by
the external coils (in red). The poloidal magnetic field is created by the plasma in reaction to an
electric current forcing (yellow arrow).
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is created. As illustrated by Figure 1.6, the resulting magnetic field lines are spirals rolled
around a torus. This has the effect to transform the radial drifts just exposed into parallel
drifts sorting this issue. The transformer effect needs a variation of current in the central
solenoid to work. As a continuous poloidal magnetic field is required to confine the plasma,
a linear current ramp has to be applied. This implies that, in the absence of any other
current source, the tokamak cannot work continuously. What explains the success of the
tokamak configuration is the good confinement obtained with coils somewhat simpler than
those needed in stellarators for example and the possibility for ohmic heating.

1.3.3 Heating methods and additional current drive

Inducing an electric current in the plasma to confine it has the side benefit to heat it due
to its electric resistance, this is called ohmic heating. Moving along the torus, electrons
collide with ions transferring part of their momentum to the later. However, with higher
energy, the particles acquire larger momentum, the cross section of the collisions decreases.
Macroscopically, this translates into a decrease of the electric resistance. Thus, ohmic heat-
ing brings the plasma up to ∼ 1 keV. To access higher temperatures, non-inductive heating
systems are required. [Wesson, J., 1997]

• Neutral Beam Injection (NBI) consists in injecting energetic deuterium atoms in the
plasma. The neutral particles then thermalise (in most cases) onto ions by collisions.

• The other heating systems use the different plasma resonance frequencies. Two fre-
quencies correspond to the ion and electron fast motion around the field line: the
cyclotron motion. They are called Ion Cyclotron Radio-frequency Heating (ICRH)
and Electron Cyclotron Radio-frequency Heating (ECRH). ICRH are the low fre-
quency waves ranging from 10 to 50 MHz whereas ECRH are high frequency wave
at ∼ 100 GHz. In between them, 3 to 5 GHz, another resonance frequency is used,
the Lower Hybrid (LH).

As electric current induction heats the plasma, non-inductive heating systems can drive
electric current. Due to the interaction between energetic particles and ions, Neutral Beam
Injection can drive a fast ion current [Wesson, J., 1997, § 3.13]. This is done by rotating
the NBI away from the perpendicular to the torus giving a preferred direction to the beam.
For current drive by ECRF, the same technique is employed, producing a finite parallel
wave number. The waves then exchange energy with the electrons via Landau damping,
accelerating them in the parallel direction. For current drive by ICRF and LH, the straps
are asymmetrically phased such that a finite parallel wave number is produced by the wave-
interaction in front of the antennas, before propagation and absorption by Landau damping.
Due their reduced efficiency with increasing trapped particle fraction, ECRF and ICRF
are used for on-axis current drive [ITER and Editors, 1999]. In contrast, LH is mainly
used for off-axis current generation due to penetration issues up to the plasma centre. Its
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larger parallel electric field (E‖) makes LH the most efficient way to drive current with RF
ηLHCD ∼ 0.31020A.W−1.m−2 versus η < 0.11020A.W−1.m−2 in current experiments for
ECRF-ICRF induced current-drive. However the efficiency of ECCD is expected to be close
to 0.31020A.W−1.m−2 in Iter [ITER and Editors, 1999]. The combined low efficiency of
LH heating and good efficiency of LHCD compared to other RF systems leads to the fact
that the Lower Hybrid is essentially used for current drive in current experiments [Saoutic
et al., 2011].

With all these current sources, it is possible to extend the operation of the tokamak
way beyond the solenoid current ramp limitations. For example in Tore Supra, the toka-
mak operated at CEA Cadarache since 1988, the longest shot is 6 min long [van Houtte
et al., 2004] whereas the average duration of a shot without additional current drive (ohmic
discharge) is of the order of tens of seconds depending on the density.

1.4 Context of this work and outline

Fusion of light nuclei appears to be an attractive way to produce energy. Among the possible
reactions, the deuterium-tritium reaction is the only realistic option with today’s technology.
The major issue faced when attempting to fuse nuclei is the required high energies. The
reactants are in a specific state called plasma. The plasma and the wall need to interact as
little as possible, in order to protect the wall and limit the contamination of the plasma. In
tokamaks, this is ensured by a toroidal magnetic nest induced by coils and the generation
of an electric current in the plasma.

To date, with this technology, an amplification factor of Q ∼ 0.7 was reached in the
Joint European Torus (JET) in Culham, Oxfordshire [JET Team, 1999] with 16 MW of
fusion power. Extrapolations from D-D experiments in JT-60U in Japan indicate that an
equivalent amplification factor Qeq = 1.25 would have been achieved if it had been operated
with D-T [Fujita et al., 1999]. Shots longer than 6 minutes were achieved in Tore Supra and
recently in EAST [Wan and Collaborators, 2009] thanks to superconducting coils. However
these long discharges exhibit a very low amplification factor.

A larger tokamak with superconducting coils, Iter, is under construction in south-
ern France with the goal to achieve Q = 10 during 1000 s which would demonstrate the
experimental practicability of producing energy in steady state (at a plasma level) with
thermonuclear fusion. A larger machine is indeed needed in order to achieve amplification
factors significantly larger than unity because of the turbulence developing in the tokamak
plasmas due to the injection of large amounts of energy. Taking turbulence into account in
the design of Iter led to the conclusion that an 800 m3 vacuum vessel is needed whereas
the largest one at present day is 80 m3 in JET.

Nevertheless, even if long discharges with significant amplification factor are managed
in Iter, major issues remain to be solved before the industrial viability of fusion as an energy
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source. How the plasma will self-organise in the presence of alpha particles is largely un-
known. What damages will be induced in the tokamak coils and structure by the production
of highly energetics neutrons remain an open question as well. The production of tritium
in-situ remains to be tackled and remote handling operations are technological challenges.
Therefore, fusion is still a long-term solution of the Energy challenge: the technology for a
fusion power plant is thought to be mature enough by the 2050’s [Romanelli et al., 2012].
In the meantime, other alternatives to oil, coal and gas must be explored: solar energy
(both thermal and photovoltaic), wind and marine current power, geothermal energy, Gen
IV fission reactors.

Reaching the D-T fusion conditions in the centre of the plasma involves the injection of
a large amount of power into it. This brings the matter out of thermodynamic equilibrium.
This implies relaxation mechanisms. Relaxation can occur by means of large intermittent
events. Among them, the so-called sawteeth can be present in the centre of the plasma.
The so-called Edge Localized Modes (ELMs) are present at the outermost confined region
of the plasma in case of strong pressure gradients. These processes are out of the scope of
this work. They occur on a much longer time scale than the micro-turbulence studied in
this thesis. Moreover these events transport a significant amount of the energy stored in the
plasma. Therefore, the perturbative methods developed in this work for micro-turbulence
cannot be applied to study them.

Micro-turbulence limits the performances of the tokamaks by inducing a radial heat
transport, thus limiting the energy confinement time and responsible for the inability of
current fusion experiments to achieve large amplification factors. It is therefore essential to
understand its principle with the aim of reducing it. Micro-turbulence corresponds to small
scale events compared to the size of the machine that individually bear a small quantity
of energy compared to the total stored energy on time scale much shorter than the energy
confinement time. From a macroscopic point of view, the mechanisms at hand thus appear
more continuous than the macro-turbulence mentioned above.

The radial heat transport — exhibiting a typical diffusivity of 1m2.s−1 in current
machines — can be reduced by the creation of mean flows which pump out the energy
from the turbulence thus reducing the induced radial heat flux. This mechanism is studied
in detail in Chapters 3 and 4 with a quasi-linear gyro-kinetic approach. If mastered, the
turbulence suppression could significantly reduce the required size of a fusion power plant,
reducing the associated cost.

Moreover, with larger machines, the experimental cost is larger. Therefore, the pre-
dictive capabilities of numerical simulations need to be perfected to improve the success rate
of experiments. Integrated simulations modelling (heat, particle and momentum) sources
and transport together with the magnetic equilibrium are needed. The code extended in
this work, QuaLiKiz is part of this framework as detailed in Chapter 3: the transport due
to the electro-static micro-turbulence is calculated in QuaLiKiz.
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In Chapter 2, the main physical mechanisms causing the development of the micro-
turbulence are discussed. Only the mechanisms involving the fluctuations of the electrostatic
potential are studied since they are the largest contributors to the micro-turbulence-induced
transport. The theoretical base of this work is reviewed later on. The particle trajectories
are studied in details. Resulting from this analysis, a necessary simplification of the problem
complexity appears possible. This is the gyro-kinetic approximation presented in § 2.2.2.
The electro-neutrality condition used as the corner stone of the work presented in this thesis
is derived in the gyro-kinetic framework.

In Chapter 3, the equations behind the numerical model developed for this work are
derived. The choice of the equilibrium distribution function function is first explained. The
eigenvalue/eigenfunction equation deriving from the electro-neutrality condition is presented
later on, illustrating the influence of the equilibrium distribution function. The eigenfunc-
tions used in QuaLiKiz are derived next. The influence of the mean flows on the linear
modes is then studied.

In Chapter 4, the quasi-linear model, as used in QuaLiKiz is presented and its va-
lidity studied after a brief review on the achievements of such models. In particular, the
construction of the saturated potential is explained in details. The gyro-kinetic quasi-linear
momentum flux is derived later on. The mean flow impact on the heat, particle and momen-
tum fluxes is reviewed in details. QuaLiKiz’s predictions for the fluxes in presence of E×B
shear and sheared parallel velocity are compared to non-linear gyro-kinetic simulations.

Finally, in Chapter 5, the experimental point of view of the topic is given and torque
modulation experiments allowing to experimentally evaluate the diffusive and convective
terms of the momentum flux are compared to QuaLiKiz’s predictions.



2
Micro instabilities in tokamak

plasmas

Describing all the instabilities that can develop inside a tokamak plasma is a task far
beyond the scope of this thesis. Nonetheless in this chapter some flavour of the main mech-
anisms are given. We recall that a tokamak plasma is basically a system out of equilibrium
that tends to relax to a more stable state. However it is forced to stay out of equilibrium
by the injection of great amounts of energy through NBI or RF heating. This can lead to
the development of macro instabilities that modify strongly the confinement properties of
the magnetic nest and cause a strong intermittent transport of energy towards the cooler
regions i.e. outer regions. If not controlled, they can cause a confinement collapse. Here,
we do not address this issue.

Once the main macro-instabilities are avoided, the confinement time is determined
mostly by the micro-instability activity hence the need to understand them in order to
optimize the tokamak performance. As for macro-scale events, two main classes of micro-
instabilities can be identified: pressure-driven instabilities and current-driven instabilities.
Although the latter class of instabilities has important consequences in tokamak plasmas,
setting for example limits on the plasma current and pressure, it will be not be treated in
this thesis. Indeed, in the work presented hereafter, the magnetic equilibrium is supposed
fixed and the pressure-driven instabilities decoupled from the evolution of the macroscopic
magnetic field. For that matter, no fluctuations of the magnetic field will be considered
since only pressure-driven instabilities are studied. This is called the electrostatic (or low-β)
limit.

First, the main electrostatic instabilities are explained, then the gyro-kinetic approxi-
mation is presented and derived in the action-variable framework.



14 Micro instabilities in tokamak plasmas

2.1 Physics of the micro-instabilities

In this first section, a general overview of the main electrostatic instabilities driving turbu-
lent transport in magnetically confined plasmas is given. This is intended as a qualitative
description of the main physical mechanisms at play which are modelled and quantitatively
examined later on the course of this thesis. We isolate three different electrostatic mecha-
nisms that can drive turbulent transport:

• The interchange instability induced by the co-linearity of pressure and magnetic field
gradients analogous to the hydrodynamic Rayleigh-Bénard instability;

• The drift-wave instability which arises from a phase shift between electrostatic and
density fluctuations;

• The parallel velocity gradient instability caused by a strong gradient of the parallel
velocity like Kelvin-Helmholtz instability in fluid dynamics.

The later is rarely unstable linearly in tokamaks actual conditions. It is mostly expected as
a secondary instability i.e. linearly stable but non-linearly destabilized by another one.

2.1.1 The interchange instability

Tokamak plasmas being successfully forced out of equilibrium, large gradients of density
and temperature develop inside the confined region. Combined with the toroidal geometry
of tokamaks, this induces an interchange instability, that is: interchanging flux tubes is
energetically favourable. Figure 2.1 details the conditions of (in)stability and illustrates
how this instability operates.

Assuming that some fluctuation of the electrostatic potential φ exists is a preliminary
condition to the study of any electrostatic instability. We suppose the existence of small
convection cells i.e.closed contour lines of constant φ at the equatorial mid-plane on the low
field side of the tokamak as indicated by Figure 2.1. As indicated in the previous chapter,
the particles undergo velocity drift perpendicular to the magnetic field direction in their
motion around the torus. In the configuration of Figure 2.1, the electric drift vE is inward
in-between the two cells and is outward on top and at the bottom of the cartoon. The
curvature and ∇B drifts — responsible for the charge separation — are vertical: upward for
the electrons (blue array arrow) and downward for the ion (red array arrow). For a formal
derivation of the drift frequencies, please report to the next section: § 2.2.1.2.

The condition of instability of the interchange mechanism is that the temperature
gradient and the magnetic field gradient point in the same direction which is the case in the
low field side of tokamaks. This is reminiscent of the condition of instability of Rayleigh-
Bénard convection cells with the magnetic field gradient playing the role of gravity. In fact, a
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Figure 2.1: Cartoon of a tokamak plasma illustrating the physical mechanisms of the interchange
instability after Sarazin [2008]

formal analogy between interchange and Rayleigh-Bénard instabilities can be demonstrated
[Sarazin, 2008].

In the interchange case, the particles present at the mid-plane move inward (in Fig-
ure 2.1 simple cartoon) due the electric drift. The ions then drift downward, alimenting
the negatively charged cell, whereas the electrons drift up, toward the positively charged
cell. However, the situation is opposite at the top of the positive cell and at the bottom
of the negative one: the electrons drift toward the negative cell and the ions drift towards
the positive cell. This reversed situation is due to an inversion of the poloidal electric field
inducing an inversion of the electric drift; whereas the vertical drift caused by the curvature
and the magnetic field inhomogeneity stays unchanged.

On the low field side, the latter situation brings more particles into the convective cells
due to a higher mobility of the particle (because the temperature is higher at the centre)
since the phenomenon studied here is instrically transitory. This amplifies the inhomogene-
ity of the electrostatic potential making the interchange unstable. On the high field side,
the temperature gradient is reversed so the former scenario brings less particles. The elec-
trostatic potential inhomogeneities are then resorbed naturally stabilizing the interchange
mechanism. Since the particles travel around the torus essentially following the twisted field
lines illustrated in Figure 1.6, they experience both stable and unstable regions1. Nonethe-
less, the rapidity of the unstable processes entails an interchange instability on the low field

1Some particles do not have enough energy to complete a torus revolution due to the inhomogeneities of
the magnetic field (see § 2.2.1.3 for a clarification)
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Figure 2.2: Schematic representation of the drift wave instability after [Horton, 1999]

side. Beside, there are also particles trapped on the low field side, which enhance the overall
instability. The interchange instability induces a radial transport as illustrated in chapter 4.
The effect of the parallel resistivity will not be discussed in the following since the parallel
current j‖ is not taken into account. The parallel resistivity increases the efficiency of the in-
terchange instability since it tends to decouple stable and unstable regions but is significant
only at the very edge where the collisionality is significant enough.

2.1.2 The drift-wave instability

The drift wave corresponds to the drift of a perturbation of electrostatic potential as il-
lustrated in Figure 2.2. The perturbation of the electrostatic potential (in red) creates an
electric field in the θ-direction. Due to their low inertia, the electrons may be considered
to respond instantly to any change of the electric potential. The fluctuations of electron
density (in green) and electric potential are then in phase (which is obviously not the case
in Figure 2.2). The electrons are then pulled out of the high density, low potential regions
toward the low density, high potential regions. This causes an oscillation of the electric
potential perturbation but no instability.

A phase shift between the electron density and the electric potential is now considered.
If the phase between the electron density and the electric potential is negative (which is the
case presented on Figure 2.2), more electrons come in the super-density region than come
out due to the strong density gradient. This causes the electron perturbation to build up
as illustrated by Figure 2.2. In case of a positive phase, the situation is reversed and the
density inhomogeneity is resorbed by the E×B advection.
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Figure 2.3: Cartoon of the parallel velocity gradient instability after [Catto et al., 1973]

We talked about density gradients and density fluctuations to explain the interchange
and drift wave mechanisms. In fact, the quantity to consider is the pressure. Thus the
mechanisms previously presented are still at play in the absence of a density gradient as
long as there is a temperature gradient. This precision is worth noticing since in tokamaks
plasmas the normalized density gradients are much smaller than the temperature gradients.

2.1.3 The parallel velocity gradient instability

In tokamak plasmas, large parallel flows can develop since the direction of the magnetic
field is mostly unconstrained2. Moreover, the additional heating systems — predominantly
neutral beam injection — produce very energetic particles that acquire large velocities. The
parallel velocity gradient instability redistributes this reservoir of free energy by increasing
the vorticity in the parallel direction. The mechanisms operating this redistribution are
illustrated by Figure 2.3.

Considering again a fluctuation of the electric potential, let us focus on its parallel
dynamics. Ions from the region of increased potential will by accelerated by the parallel
electric field. At the same time they experience an outward E × B drift in the radial
direction. Due to the radial gradient of the parallel velocity, the initial ions are replaced

2The direction of motion of the electrons is actually forced by the electric current. In the presence of a
significant toroidal variation of the toroidal magnetic field (ripple), the toroidal rotation is fixed by the force
balance equation but remains substantial.
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by other ions with larger velocities. This situation is stable due an acceleration of the fluid
velocity by both effects.

Considering now the ions from the region of decreased potential, they are slowed down
by a parallel electric field in the opposite direction inducing an inward E × B drift. The
interaction of both mechanisms creates a region of increased vorticity where the ions are
slowed down and a region of low vorticity where the ions are accelerated. The structure
created is then similar to the hydrodynamic Kelvin-Helmholtz pattern observed sometimes
in the clouds.

For the mechanism to be unstable, the parallel velocity gradient must be larger than the
parallel wave number of the potential fluctuation. This mechanism is enhanced by previous
instabilities which develop electric potential fluctuations towards larger scales (lower wave
numbers). This simple picture is confirmed by quantitative discussion in chapter 3 where
the linear coupling between interchange instability and parallel velocity gradient is studied.
This linear interplay is however different from the secondary instability paradigm which is
described here in a simplistic way. Indeed only the linear growth rate of the pressure driven
instabilities are studied in chapter 3 without any assumption on the turbulent state.

2.2 Simplifying the complexity of the particle motion equa-
tion

Now that the main physical mechanisms studied in the course of this thesis have been
qualitatively presented, let us introduce the general background of this work with a more
formal description starting with the particle trajectories and the scale separation that is
possible to performed in strongly magnetized tokamak plasmas. Then the so-called gyro-
kinetic theory is introduced and its associated invariants. Within this framework a linearised
(gyro-kinetic) electro-neutrality equation is derived using a variable system making use of
the symmetries of the system i.e.the invariants of motion.

2.2.1 Geometry and particle trajectories

2.2.1.1 Magnetic geometry in tokamak plasmas

As outlined in the previous chapter, the magnetic geometry of tokamaks consists in a series
of closed nested surfaces. The toroidal magnetic field is created by external coils while the
poloidal magnetic field results from the plasma self-organised response to the induction of a
toroidal current. The resulting magnetic field can be expressed by the relation:

B = I(ψ)∇ϕ+∇ψ ×∇ϕ (2.1)
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Figure 2.4: Parametrization of the tokamak geometry. The example given is the simplified circular
geometry used in this work where ψ can be identified to r

In (2.1) ψ is the magnetic poloidal flux normalised to 2π.ϕ stands for the toroidal angle as
indicated in Figure 2.4 and I is a flux function related to the poloidal current circulating
inside a magnetic surface in the plasma. The quantity that measures the winding rate of
the magnetic field lines or equivalently the rotational transforms that enables an efficient
confinement of particles is q defined by

q(ψ) = 1
2π

∫ 2π

0

B · ∇ϕ
B · ∇θ dθ (2.2)

q can be understood as the number of toroidal (ϕ) revolutions performed by a field line for one
poloidal (θ) revolution. An adequate system of coordinates can then be defined by (ψ,θ,ϕ).
In the simplified geometry presented in Figure 2.4, the field lines label ψ can be identified to
the small radius r. However, the centre of the nested radii labelling the field lines is evolving
with R due to a change in the ratio between the magnetic pressure (Pmag = B2/2µ0) and the
plasma pressure (P = nT ) represented by the α parameter: α = q2βR∇P/P . β is the ratio
of the plasma pressure to the magnetic pressure. A field-aligned coordinate system (ψ,θ,ζ)
can also be defined by using the new variable ξ = ϕ − q(ψ)θ [Beer, 1995]. In this system,
the θ variable corresponds both to the poloidal angle at fixed ϕ and a parametrization of
the distance along the field line at fixed ζ. This systems reveals powerful for numerical
simulations since it embeds the natural tendency of the plasma structures to follow the field
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𝜑𝑐 B 

B 

Figure 2.5: Top: Particle motion along a field line (neglecting the drifts) Bottom: Representation
of the same motion within the adiabatic theory. The fast motion is embedded in the circles. The
slow motion corresponds to the shift of the circles along B

lines. More comments on this are given when studying the structure of the electrostatic
fluctuations in § 3.2.

2.2.1.2 Guiding centre motion and particle drifts

As explained in the previous chapter, the charged particles move helically along the magnetic
field lines in an homogeneous magnetic field. In strong magnetic fields such as tokamaks
environment, the temporal evolution of the electromagnetic fields E and B can be considered
slow compared to the cyclotron frequency ωc = |esB/ms|. A complete scale separation is
possible in the framework of the adiabatic theory which describes cases where the spatial
scale of the magnetic field evolution is larger than the Larmor radius ρc = msv⊥/esB:

ρc

∣∣∣∣∇B
B

∣∣∣∣� 1 (2.3)

In a typical tokamak magnetic field (∼ 3T), the cyclotron frequency is about 100GHz for the
electrons and 50MHz for the ions. If one recalls the frequencies at hand for RF heating of
the plasma — of the order of the ion cyclotron frequency or larger — one easily deduces that
RF heating cannot be treated within the adiabatic theory. But for the turbulence study,
the frequencies involved are much smaller than the cyclotron frequencies, hence the scale
separation can be carried out.
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The scale separation allowed by the adiabatic theory is a very powerful tool to char-
acterize the particle motion in tokamaks. A cartoon illustrating the simplification brought
by this scale separation is given in Figure 2.5. The characterisation of the particle motion
is much simplified, as derived in the following. Two scales are considered:

• the fast dynamics ṽ (of gyro-phase ϕc, typical frequency ωc and typical spatial scale
ρc) corresponds to the smallest scales;

• the slow evolution of the quantities averaged over the cyclotron motion 〈v〉 =
∮

vdϕc/(2π)
corresponds the largest scales.

When assuming a strongly magnetized plasma, the Coulomb force can be considered much
weaker than the Lorentz force. Moreover, the amplitude of the fast variations of the magnetic
field B̃ is much smaller than B according to (2.3). In that case, the fast motion comes down
to the fast cyclotron motion:

ṽ = ρc × ωc (2.4)

Let us focus now on the centre-guide motion i.e. the particle motion averaged over
the gyro-motion, described by:

msdt〈v〉 = es
(
〈E〉+ 〈v〉 ×BG + 〈ṽ× B̃〉

)
(2.5)

In (2.5), B̃ remains to be characterized. At lowest order, B̃ is approximated by the first term
of its Taylor expansion B̃ = (ρc · ∇) BG, BG being the magnetic field at the centre-guide
position. Using (2.4) to explicit the cross-product 〈ṽ× B̃〉 involves a little tensorial algebra:

〈ṽ× B̃〉 = ωcρ
2
c

2 (B(∇⊥ ·B⊥)/B −∇⊥B) (2.6)

(2.6) can be simplified by recalling that B is divergence-free such that ∇⊥ ·B⊥ = −∇‖ ·B.
In the end [see Sarazin, 2008, for details], (2.5) can be written as

msdt〈v〉 = es (〈E〉+ 〈v〉 ×BG)− µs∇BG (2.7)

where the adiabatic invariant is defined as µs = esωcρ
2
c/2.

Let us recall that presenting the expression of the velocity drifts motivated the deriva-
tion of (2.7). The drifts correspond to vG = 〈v〉⊥ − v‖B/B. The expression of vG is
accessible by multiplying (2.7) by ×B/B2

G. The perpendicular direction is constrained by
the magnetic field, whereas the parallel direction is essentially free. Under such conditions,
the derivative of the drift term 〈v〉⊥ = vG⊥ is treated as a perturbation and neglected at
leading order. This simplifies greatly the treatment of (2.7). The parallel velocity expe-
riences a centrifugal force due to the curvature of the magnetic field resulting in a drift:
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dtv‖
∣∣∣
⊥

= v2
‖∇‖B/B = v2

‖
N
R

(2.8)

according to the definition of the normal N of a curve (since B is obviously tangent to the
field line). R is the curvature radius. It also corresponds to the major radius of the tokamak.

The other drifts come from the inhomogeneity of the magnetic field ∇B and from the
mean electric field 〈E〉:

vG⊥ = vE + vds = 〈E〉 ×B
B2 + B

esB2 ×
(
µs∇B +msv

2
‖
N
R

)
(2.9)

The three drifts mechanisms briefly described in the first chapter are recovered in (2.9). The
curvature and ∇B drifts are responsible for a charge separation as indicated by “es” in the
second term in the RHS of (2.9) and illustrated by Figure 1.5. This charge separation is
then responsible for the emergence of mean electric field which causes a species independent
drift.

We shall verify that neglecting the term “dtvG⊥” in (2.7) is consistent with the ex-
pression for vG⊥. The dominant term in vG⊥ being the electric drift velocity, the ratio

dtvG⊥
es/msvG⊥ ×BG

≈ ω

ωc
(2.10)

is much smaller than unity according to the adiabatic theory, validating the consistence of
(2.9) with the approximations performed for its derivation.

Additionally, in the adiabatic limit and when the electromagnetic field is constant in
time, the particle motion is characterized by three invariants:

• the total energy h0 = msv
2/2 + esφ or equivalently E = msv

2
G‖ + µsB + esφ;

• the magnetic moment µs = msv
2
⊥/(2BG) already presented as the adiabatic invariant;

• the toroidal kinetic momentum pϕ = esφ+msRvϕ.

The total energy and the toroidal momentum are exact invariants whereas the magnetic
moment is conserved only in the adiabatic limit. It is worth noticing that the toroidal mo-
mentum pϕ is only an exact invariant under the assumption that a tokamak is axisymmetric
in the ϕ direction. In reality, this is not the case due to the finite number of coils. This
causes additional drifts and constrains the radial electric field, hence the toroidal velocity.
However important, this symmetry breaking will not be treated in this work due to its cost
in time for numerical simulations (essential in this work as explained in Chapter 3). For
now, this effect is foreseen to be implemented as a source of angular momentum in integrated
simulations.
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2.2.1.3 Trapped particles and banana orbits

In tokamaks, all particles do not complete the revolution around the torus. The particles
which possess a smaller parallel velocity compared to their perpendicular velocity are trapped
on the low field side of the machine as illustrated in Figure 2.6. Their trajectory is called
bananas. This trapping occurs because of the combination of a gradient of the toroidal
magnetic field with the magnetic field lines winding. At a given flux surface label (the
minor radius in circular geometry), the magnetic field lines describe a spiral around the
torus, covering alternatively larger major radius regions and smaller major radius regions.
Due to the torus curvature and spatial expansion, the magnetic field is larger at smaller
major radius. In the circular geometry illustrated in Figure 2.4, the expression of the
toroidal magnetic field as a function of r is: B = B0/(1 + ε cos θ) where ε = r/R is the
inverse aspect ratio3.

The total energy E = mv2/2 + eφ of a particle being conserved4 and the magnetic
moment being an adiabatic invariant, the trapping condition is v2

‖ ≤ 0. Expressing the
parallel and perpendicular components of v: v2 = v2

‖ + v2
⊥ = v2

‖ + 2µB/m leads to the
following trapping condition:

v2
‖max(r) ≤ 2

m
(E − eφ(r, π)− µB0

1 + ε
) (2.11)

Since tokamak plasmas are strongly magnetized (µB � eφ) one can assume as a first
estimate that the variation of φ is negligible. Then the trapping condition reduces to:

v2
‖max(r) = v2

‖(r, 0) ≤ 2µB0

m

2ε
(1 + ε)(1− ε) = v2

⊥(r, 0) 2ε
1− ε (2.12)

This defines the trapping cone. The variation of φ is in fact negligible because φ does not
vary over a flux surface in the absence of strong parallel flow. In the case of a strong parallel
flow, the density is not a flux function due to centrifugal force effects as explained in Casson
et al. [2010]. The variations of the potential φ follow the density variations as ne = eφ/Te.
In that case, the variations of φ are substantial and widen the trapping cone[see Casson
et al., 2010, Figure 3].

2.2.2 Introduction to gyro-kinetic theory

As explained in the previous paragraph, the particle motion can be simplified under the
adiabatic theory assumptions. However, when dealing with the entire plasma, the number
of coupled equations — the Klimontovitch equations – to track all particles is completely
intractable.

3Applying Ampere’s law over circle in the equatorial plane of the tokamak gives B(R) = B0R0/R =
B0/(1 + r/R0 cos θ in the circular geometry where θ is the poloidal angle

4The conservation of the total energy of a particle derives from the fundamental law of dynamics applied
to a charged particle. Taking the scalar product with v leads to: dt(msv2) = −esv · ∇φ. For static fields
dt = v · ∇φ
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Figure 2.6: Poloidal cut of a tokamak plasma. In green, a sketch of a passing particle trajectory;
in red, of a trapped particle

To overcome this issue, the kinetic theory enables the reduction of the problem dimen-
sion to 6 dimensions by considering a phase space composed of the positions q (3 dimensions)
and the momenta p (3 other dimensions). The statistical information over the spatial locali-
sation of all the particles and their momentum is then represented by a single six-dimensional
function: the probability distribution function (PDF). The PDF corresponds to the proba-
bility to find a particle at a given position q with a given momentum p. However complete
and somewhat more tractable than the Klimontovitch equation, a kinetic description of
tokamak plasmas is still too costly in terms of computational time. Indeed, due to the
strong magnetisation of the plasma, the time scales to treat range from a fraction of the
electron cyclotron time (∼ 10−11s) to the energy confinement time (∼ 1s) and the spatial
scales range from a fraction of the electron Larmor radius (∼ 10−5m) to the small radius of
the machine (∼ 1m).

For micro-turbulence studies in tokamak plasmas, the interest is on frequencies larger
than the cyclotron frequencies since the frequency of the drifts previously introduced are
well above the cyclotron frequency, as explained in the following. The reduction of scales is
done in the same manner as for the simplification of the particle motion study of § 2.2.1.2
by averaging over the cyclotron motion. Only the “slow” gyro-centre motion is then studied.
Thereby the 6D model can be reduced to a 5D model provided that certain orderings are
respected. These orderings are based on experimental observations of tokamaks micro-
turbulence.
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2.2.2.1 Gyro-kinetics orderings

The key dimensionless parameter of the gyro-kinetic ordering is: ρ∗s = ρc/a the thermal Lar-
mor radius normalized to the tokamak minor radius. In tokamaks, the normalized Larmor
radius is a small quantity: for electrons ρ∗e < 10−4 and for ions ρ∗i < 10−2 for T = 1 keV
and a = 1 m. ρ∗i defines the parameter ε� 1. The gyro-kinetic approximation is based on
the assumption of three frequency scales:

• the fast cyclotron motion of typical frequency ωc;

• an intermediate frequency typical of the turbulent fluctuation dynamics ω ∼ vTs
L ∼ εωc

;

• a long time scale characteristic of the macroscopic transport ωtr ∼ εω.

In practice L stands for the shortest gradient length: T/ |∇rT | since it is a spatial scale of
greater importance than the tokamak minor radius for transport processes.

The intrinsic anisotropy of the tokamak geometry is also taken into account. Since
the direction parallel to the magnetic field is essentially a free direction of motion whereas
the perpendicular direction is much constrained by the magnetic nest, the structures that
develop in tokamak plasmas are much more elongated in the parallel direction. In math-
ematical terms this translates to: k‖ � k⊥ where k‖ is the component of the wave vector
parallel to the field lines and k⊥ is the perpendicular component of the wave vector of the
structures at hand.

Assumptions on the fluctuation amplitudes are also made. Namely:

• the fluctuations of the potential energy esφ̃ is much smaller than the kinetic energy:
esφ̃ ∼ εT ;

• the density perturbations are much smaller than the equilibrium density ñs ∼ εns;

• the magnetic field fluctuations are much smaller than the equilibrium field δB ∼ εB0.

In the following additional approximations will be made. Among them, the ratio β of the ki-
netic pressure to the magnetic pressure is supposed much smaller than unity: in conventional
tokamak plasmas it is of the order of a few percent. The magnetic fluctuations are therefore
neglected even if this simplification can be subject to debates for core plasma simulations
(in particular for high-β conditions and is inappropriate for edge plasma simulations[Snyder
and Hammett, 2001, Pueschel, 2009, Citrin et al., 2013].

2.2.2.2 The gyro-kinetic approximation

With the orderings of § 2.2.2.1, the low frequency perturbations affect only the guiding
centre dynamics while the magnetic moment is an adiabatic invariant. A scale separation is
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therefore possible between the fast gyro-motion and the slower dynamics of guiding centre.
The position of the guiding centre is however a function of the particle velocity. Thus, there
is no direct coordinate transform that connects the particle position with the guiding centre
position nor their velocities.

In these new coordinates, the perturbed Hamiltonian corresponds to the energy of the
gyro-centres [Brizard and Hahm, 2007, Garbet et al., 2010]:

hs = 1
2msv

2
G‖ + µsB + esφ+O(ρ2

∗s) (2.13)

At this point the Hamiltonian still depends on the gyro-angle ϕc. An average over ϕc is
then performed corresponding to the sketch presented in Figure 2.5. The magnetic moment
is considered as an exact invariant rather than an adiabatic invariant. At lowest order in ρ∗,
the expression of the gyro-kinetic magnetic moment µ̄ is the same as µs but corrections at
higher orders can be added to verify more accurately that dtµ̄ = 0 . For reasons explained
in the next chapter this is not done here. The gyro-kinetic Hamiltonian then reads:

h̄s = 1
2msv

2
G‖ + µsB + esJ0 · φ (2.14)

where the gyro-average operator J0 is defined by J0 · φ =
∮
φdϕc/2π. We stress that the

gyro-average operator does not suppress the information about the variation of the fields at
the Larmor radius scale. The gyro-centre is therefore to be understood as a current ring of
the size of the Larmor radius rather than a pseudo-particle travelling at the guiding centre
position [Abiteboul, 2012].

The equation governing the evolution of gyro-centre distribution function (f̄s) is there-
fore a 5D equation which can be expressed in the Hamiltonian formalism:

dtf̄s = ∂tf̄s +
[
f̄s, h̄s

]
= C

(
f̄s
)

(2.15)

where [·, ·] is the Poisson bracket in the gyro-centre coordinates which is expressed in § 2.2.3
with action-angle variables. The RHS of (2.15) represents the gyro-averaged collision opera-
tor. Electron-ion collisions are especially important for the correct treatment of the trapped
electrons dynamics. The ion-ion collisions have a smaller effect due to their lower frequency.
The details of the collision operator implementation in QuaLiKiz are given in the next chap-
ter § 3.3. For now, this term is neglected for simplicity since it does not change the discussion
to come on invariants.

2.2.2.3 Electro-neutrality in gyro-kinetics

In (2.15), the system must be closed by an additional equation for the electric potential. In
the general case, in the low-β limit, φ is obtained by Poisson equation:

∇2φ = − 1
ε0

∑
s

esns (2.16)
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where ε0 is the vacuum permittivity. Using the electron Debye length: λDe =
√
ε0Te/(e2n0),

(2.16) reads:

λ2
De∇2

(
eφ

Te

)
= − 1

n0

∑
s

esns (2.17)

In fusion plasmas, the electron Debye length is orders of magnitude lower the ion Larmor
radius. Considering the orderings previously presented and the gyro-average performed to
obtain (2.15), the left hand side of (2.17) is negligible. As a result, the plasma can be con-
sidered quasi-neutral at the scales considered by the gyro-kinetic model. This is consistent
with the usual interpretation of the Debye length corresponding to the characteristic scale
at which the charges of the particles are shielded. Poisson equation is therefore replaced by
the quasi-neutrality condition:∑

s

esns = 0 (2.18)

2.2.3 Linearised gyro-kinetics in action-angle variables

In the previous sections the general form of the gyro-kinetic equation was introduced. For
the sake of clarity and concision no more details will be given on the general case and
the curious reader is referred to reviews[Brizard and Hahm, 2007, Garbet et al., 2010] and
PhD thesis [Abiteboul, 2012] on the subject. Instead, the simplified case of the linearised
gyro-kinetic equation used in the following is derived here.

2.2.3.1 The linearised gyro-kinetic equation in angle-action variable

Let us start by reminding the expression for the guiding-centre Hamiltonian in the low-β
(or equivalently the electrostatic) limit:

hs = 1
2msv

2
g‖ + µsB + esφ (2.19)

Hamilton’s equations
Since there are three motion invariants (µs,E,pϕ), a system of variables can be constructed

such that Hamilton’s equations are expressed as:

dtJ = −∂αh = 0

dtα = ∂Jh = ΩJ
(2.20)
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where (α,J) is the angle-action system. The three actions Ji correspond to the normalized
invariants:

J1 = −msµs
es

= m2
sv

2
⊥

2esBG
(2.21a)

J2 ≡ E = 1
2msv

2
G‖ + µsB + esφ (2.21b)

J3 = M = esψ +msRvGϕ (2.21c)

Derivation of the resonant frequencies
Three frequencies are associated to the three invariants defined in (2.21). Ω1 is the

cyclotron frequency. The second frequency corresponds to the motion of particles around
the torus: the transit frequency for passing particles and the bounce frequency for trapped
ones. As indicated earlier, the poloidal angle measures a distance in the parallel direction
for a given field aligned toroidal angle ζ. Ω2 therefore corresponds to

∮
dtθ where

∮
means∫ π

−π for passing particles and (approximatively) 2
∫ θ0
−θ0

for trapped particles. Without taking
the guiding centre drifts into account and using the expression (2.19) for the energy, one
gets:

dtθ = J(ψ, θ)v‖ = ±vTsJ(ψ, θ)
√
ξ(1− λb(ψ, θ)) (2.22)

where ξ = (h0 − esφ)/Ts is the normalized kinetic energy, λ = µsB(ψ, 0)/(h0 − esφ) is
the pitch-angle and b(ψ, θ) = B(ψ, θ)/B(ψ, 0) corresponds to the poloidal variation of the
magnetic field. J(ψ, θ) = B · ∇θ/B is the Jacobian of the rotational transform. In the
circular geometry used in QuaLiKiz, J = 1/(qR). Ω2 finally reads:

Ω2 = ε‖vTs
√
ξω̄2(ψ, λ) (2.23)

where ω̄2 is defined by

ω̄−1
2 =

∮ dθ
2π

1
J
√

1− λb(ψ, θ)
(2.24)

The third frequency corresponds to the guiding-centre drifts across the field lines. Therefore
we make use of the field aligned coordinate ζ = ϕ − q(ψ)θ. The derivation in the general
geometry case, somewhat tedious, does not bring many insight and is not performed here [see
Garbet et al., 1990, for a general expression]. In the simplified circular geometry presented
in Figure 2.4, ψ = rBR/q and dtζ can be expressed as:

dtζ = −qvds
r

(cos θ + (ŝθ − α sin θ) sin θ)− qvEθ
r

(2.25)

where vds is the norm of vds expressed in (2.9) projected on the radial and poloidal directions
and vEθ is the projection of vE on the poloidal direction.
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Hence Ω3 =
∮

dθdtζ can be expressed as:

Ω3 = qEr
rB
− qTs
esBRr

ω̄2

∮ dθ
2π

(2− λb) (cos θ − (ŝθ − α sin θ) sin θ)√
1− λb(r, θ)

(2.26)

Note that in the large aspect ratio i.e. r/R = ε � 1, the normalized magnetic field is
expressed as b(ψ, θ) = 1 + ε(1− cos θ). With this approximation, the frequencies Ω2 and Ω3

can be expressed analytically.

Linearised Vlasov equation
Now that the three frequencies have been derived, the Poisson bracket from (2.15) can be

expressed as:

[f, h] = ∂αf∂Jh− ∂Jf∂αh (2.27)

Having three invariants J is equivalent to having periodicity over their associated angle α.
Thus, the Hamiltonian and the distribution function are developed in Fourier series:

h (α,J, t) = h0 (J, t) +
∑
n,ω

h̃n,ω (J) eı(n·α−ωt) (2.28a)

f (α,J, t) = f0(J, t) +
∑
n,ω

f̃n,ω (J) eı(n·α−ωt) (2.28b)

The equilibrium distribution function f0 and the unperturbed Hamiltonian h0 are indepen-
dent of α by construction of the angle-action system.

Linearising the Vlasov equation dtf = 0 gives:

∂tf + ∂Jh0∂αf̃ − ∂Jf0∂αh̃ = 0 (2.29)

Using the Fourier representation of (2.28) to express the derivatives with respect to α leads
to:

f̃nω = −n · ∂Jf0

ω − n · ∂Jh0 + ıo+ h̃nω (2.30)

where n are the wave number associated to Ω = ∂Jh0.

n1 is the wave number associated to the gyro-motion. Since Ω2 corresponds to a
poloidal frequency following a field line, n2 can be identified with m the poloidal wave
number and n2Ω2 can also be seen as the transit frequency k‖v‖. We will see that depending
on the nature of the particle trajectory around the torus, either notation can be preferred.
Ω3 is the frequency associated with the drifts of the guiding centre with respect to the field
lines. Thanks to the rotational transformed created by the induction of a toroidal electrical
current in the plasma (represented by q), the drifts are pushed in the toroidal direction.
Therefore Ω3 is a toroidal precession frequency and n3 can be identified to the toroidal wave
number n.
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In (2.30), o+ is a small positive quantity. Indeed, a small imaginary quantity is needed
for the analytical continuation of (2.30) when ω crosses the real axis. From the mathemat-
ical point of view either a positive or negative value is acceptable. However the physical
consequences of this choice impose a positive value. Choosing a positive value leads to ex-
ponentially growing waves whereas a negative value means exponentially decaying waves.
The later solution is in contradiction with the causality principle which states that any
physical phenomenon originates from a cause and therefore any wave should be vanishing
at t → −∞. This is known as the Landau prescription as it was first formulated by Lev
Landau in [Landau, 1946].

We stress that (2.30) is a kinetic equation rather than gyro-kinetic. Applying the gyro-
average operator makes the gyro-frequency vanish in (2.30) and introduces Bessel functions
as explained in the next chapter.

2.2.3.2 The linearised gyro-kinetic electro-neutrality

The electro-neutrality equation is now used to close the linear system of equations defined by
(2.30). To take the action of the perturbed electromagnetic field into account, a variational
form of the electro-neutrality is used in the spirit of what is done in quantum mechanics
when dealing with particle ensembles[Mermin, 1965]. The functional Ls(ω) =

∑
nω ρ̄sdJ is

minimised with respect to the perturbed electromagnetic potential5, ρ̄s = esn̄s being the
gyro-averaged charge density. In the low-β limit, the fluctuations of the magnetic field are
assumed negligible compared to the fluctuations of the electrostatic potential. Therefore,
the functional Ls is minimised with respect to the Hermitian transpose of the electrostatic
potential φ̄∗ only:

∂φ̄∗
∑
s

Ls = 0 (2.31)

The condition (2.31) is assured by its weak form:∑
s

Lsφ̄∗ = 0 (2.32)

Since n̄s is given by (2.30) and φ̄∗ = φ̃∗ · J0, the gyro-kinetic electro-neutrality is expressed
as follows in the variational form:∑

s,ω

e2
s

∫
J0 ·

−n · ∂Jf0s

ω − n · ∂Jh0 + ıo+ J0 ·
∣∣φ̃nω

∣∣2 dJ dα
(2π)3 = 0 (2.33)

Applying the gyro-averaged operator J0 on the linear plasma response — −n·∂Jf0s
ω−n·∂Jh0+ıo+

— is equivalent to consider only the term n1 = 0. Therefore, only mΩ2 and nΩ3 remain as
possible resonances for the system described by (2.33). For the perturbed potential, taking

5This approach is somewhat more profound than a simple electro-neutrality condition since it describes
the plasma self-organisation and can be linked to the principle of least action
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only the term n1 = 0 is equivalent to perform the integral over α1: it can be described
intuitively by an average in real space over the gyro-angle6:

J0 · φ̃nω(J) =
∮ dϕc

2π φ̃n2,n3,ω(J) exp (−ın1 ·α1) (2.34)

n1 is the wave vector associated to the gyro-motion for any position of the guiding-centre.
Therefore, n1 ≡ k⊥ρc. α1 corresponds to the gyro-angle ϕc. Defining the gyro-averaged
potential φ̄nω = φ̃n2,n3,ω(J), (2.34) is expressed as:

J0 · φ̃nω(J) = φ̄nω

∮ dϕc
2π exp (ı (krρc cosϕc + kθρc sinϕc)) (2.35)

The result is projected on the circular geometry for simplicity but is valid on any magnetic
geometry when using flux coordinates. The integral

∮ dϕc
2π exp (ı (krρc cosϕc + kθρc sinϕc))

is the zero order Bessel function of the first kind J0(k⊥ρc).

The equilibrium distribution function f0 in (2.33) is still not determined. The equi-
librium Valsov equation ∂tf0 + [f0, h0] = 0 is used for its determination. The determination
of the equilibrium distribution used for this work is performed in chapter 3 because the
equilibrium plasma density is assumed to be a flux function in this work which represents a
loss of generality for this chapter. The reasons for this approximation and its consequences
are also discussed in the next chapter.

Equation (2.33) is an eigenvalue/eigenfunction equation that should be solved consis-
tently. In the next chapter, we will see that it is not carried out in QuaLiKiz to gain two
orders of magnitude in CPU time, making the code compatible with an integrated modelling
framework. Instead, the eigenfunctions are solved analytically in the so-called hydrodynamic
limit [Sarazin, 2008]. Their expression is derived and they are compared to self-consistent
gyro-kinetic eigenfunctions in § 3.2. The resulting eigenvalues ω — in particular the growth
rates =(ω) — are studied in § 3.3.2 and compared to the results of self-consistent gyro-kinetic
simulation performed with gkw [Peeters et al., 2009b].

6Averaging over the gyro-angle corresponds to the historic views of gyro-kinetic theory. In modern gyro-
kinetic theory, the removal of gyro-angle dependences is performed through Lie transforms as derived by
Littlejohn [1981] [see Brizard and Hahm, 2007, for a review]
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3
QuaLiKiz framework for micro

turbulence study

The goal of this chapter is to present in details the linear solver at the heart of the
quasi-linear gyro-kinetic code QuaLiKiz[Bourdelle et al., 2002, 2007] used and expanded in
this work, the saturated potential being presented in the next chapter.

The objectives of the code are first presented, explaining the various approximations
performed in the following and used in QuaLiKiz. Then the electro-neutrality equation used
in QuaLiKiz is based on the relation (2.33) derived in the previous chapter. The choice of
the equilibrium distribution function is presented and justified. The consequences of this
choice are also discussed briefly in § 3.1.2 (and illustrated in § 3.3.2.2).

The analytical model employed to determine the fluctuating potential φ̄ is latter de-
rived. The hydrodynamic limit — ω � Ω2,3 — is used to develop the resonant terms in
power series of Ω2,3/ω and the short wavelength limit is taken allowing for a linearisation
of the Bessel functions. The eigenfunctions are shown to be shifted Gaussian in this limit.
The width of the Gaussian is linked to the balance between the instability drive and the
parallel motion connecting more stable (HFS) and more unstable regions (LFS). The shift is
proportional to the quantities breaking the parallel symmetry (α, v‖)→ (−α,−v‖) of (2.33).
Given the assumptions on the equilibrium distribution function (see § 3.1.2) and the circular
geometry used in QuaLiKiz, the following quantities act as symmetry breakers:

• The parallel velocity u‖;

• The parallel velocity gradient ∇u‖;

• The E×B velocity shear rate γE .

In QuaLiKiz, the magnetic equilibrium is the circular ŝ− α equilibrium, w.r.t. the poloidal
mid-plane. Therefore, the mechanisms driving momentum transport via an up-down asym-
metry [Camenen et al., 2009b] cannot be studied here. The tokamak is also considered
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axisymmetric. The variation of the toroidal magnetic field (or ripple) is not treated by the
present work although it can be important is certain tokamaks such as Tore Supra (the
tokamak in operation for 25 years in Cadarache, Southern France).

The eigenfunctions are compared to the self-consistent eigenfunctions of the gyro-
kinetic code gkw[Peeters et al., 2009b] run in its linear version both without and with
symmetry breakers.

Finally, the linear growth rates are also compared to linear gyro-kinetic simulations
with gkw.

3.1 From linearised gyro-kinetic theory to a fast solver: QuaLiKiz

3.1.1 The time constraint of integrated modelling

The goal of QuaLiKiz is to predict the turbulent fluxes of particles, heat (of ions and
electrons) and angular momentum with sufficient accuracy for an analysis of the various
experimental parameter effects on the confinement. Another goal is to be integrated into
modelling platforms to performed predictive simulations of current and future experiments.
This kind of modelling uses the scale separation between the equilibrium quantities and
the fluctuations to evolve the profiles consistently with the sources (of particles, energy,
momentum) and the fluxes (neoclassical and turbulent) calculated by separated codes. This
implies numerous iterations for the codes calculating the fluxes — i.e. QuaLiKiz for the
turbulent fluxes — which depend on the equilibrium profiles.

Being compatible with integrated modelling implies that QuaLiKiz must be run quickly
for acceptable simulation times. In order to compute the turbulent thresholds more precisely
and better reproduce parametric dependences close to the threshold, a gyro-kinetic approach
is chosen as opposed to a fluid one. The increased accuracy of this framework is at the cost of
CPU time, making it incompatible with the code objectives without further simplifications.
As an illustration, a non-linear electrostatic gyro-kinetic simulation requires ∼ 5, 000 CPU
hours for a radius. For integrated simulation ∼ 20 radii and 10,000 calls to the code are
needed to model one second of plasma because of non-linearities. This means ∼ 4, 000 days
on 1,000 processors. With QuaLiKiz, the cost is reduced to ∼ 4 days on 100 processors. Two
orders of magnitude in CPU time are spared employed a quasi-linear approach rather than
solving the full non-linear problem. Other two orders of magnitudes are gained by using the
ballooning representation at lowest order to decrease the dimensionality of the problem and
calculating the fluctuating potential φ̄ (i.e. the eigenfunctions) in the so-called hydrodynamic
limit [Sarazin, 2008] allowing for analytic solutions of the fluctuating potential.
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3.1.2 The choice of the equilibrium distribution function

As indicated in the previous chapter, the distribution function is split into an equilibrium
distribution function evolving on the transport time scale (much slower than the phenom-
ena studied) and a perturbed distribution function evolving on the studied time scales as
indicated by (2.30). The equilibrium distribution function f0 cannot be determined un-
equivocally by the framework presented in the previous chapter. f0 chosen in agreement
with the neoclassical theory which foresees that a Maxwellian distribution is reached at long
time scales. f0 must also verify the Vlasov equation to be compatible with the angle-action
framework described in § 2.2.3:

∂tf0 + [f0, h0] = 0 (3.1)

A solution that ensures this property is for f0 to be a function of the invariants of motion
(µ,E,pϕ). A practical solution is to write f0 = ns/(2πTs/ms)3/2 exp(−E/Ts) where E =
h0 − esφ is the kinetic energy. However, such an equilibrium distribution function does not
reproduce the equilibrium statistics of tokamak plasmas. Indeed, such f0 does not allow for
the equilibrium flows encountered in experiments. To take this possibility into consideration,
the following probability distribution function is chosen for the species s of mass ms, density
ns temperature Ts and thermal velocity vTs =

√
2Ts/ms:

f0s = ns

(2πTs/ms)3/2 exp
(
−
(
v‖ − u‖

)2
v2
Ts

+ µsB

Ts

)
(3.2)

which ensures that a non-vanishing equilibrium velocity u‖ is possible since the equilib-
rium velocity is defined by

∫
f0v‖dv‖dµ = u‖. (3.2) is then written as a function of the

Hamiltonian h0.

f0s = ns

(2πTs/ms)3/2 exp
(
−h0 − esφ

Ts
+
(
2v‖ − u‖

)
u‖

v2
Ts

)
(3.3)

For the condition (3.1) to be respected, the densities ns, temperatures Ts and velocity
u‖ must be functions of the invariants. In non-rotating plasmas, this is respected because
the densities and temperatures are flux functions: ns = ns(ψ) and Ts = Ts(ψ). In this case
ψ = J3/es since esψ � msRvϕ. However, for u‖/vTi close to unity, a poloidal asymmetry
of density develops due to centrifugal effects[Casson et al., 2010]. Therefore, the chosen
equilibrium function is not adapted to highly rotating plasmas encountered in small aspect
ratio — spherical — tokamaks[Roach et al., 2009]. The consequences of this choice on
the linear growth rates are studied in § 3.3.2. In conventional tokamaks however, the
rotation remains under u‖ = 0.5vTi and under u‖ = 0.2vTi in most cases. Within this range
of parallel equilibrium flows, the assumption ns = ns(ψ) is valid. Other approximations
performed in QuaLiKiz such as the low-β approximation fail in the conditions encountered in
spherical tokamaks where β is typically of several percent and, most importantly, QuaLiKiz
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uses ε = r/R expansions based on large aspect ratio assumptions to keep most integrals
analytical.

The ŝ−α equilibrium used in QuaLiKiz is also not well suited to model shaped plasma
encountered in many tokamaks. In order to circumvent this issue, a more flexible equilibrium
is planned on being implemented in QuaLiKiz.

The derivative of this distribution function with respect to the invariants is therefore:

∂J ln(f0) =∂J3 ln(ns) +
(
ξ − 3

2 −
u‖(2v‖ − u‖)

v2
Ts

)
∂J3 ln(Ts) + 2

v‖ − u‖
v2
Ts

∂J3u‖+

u‖

v2
Ts

∂pϕv‖ −
1
Ts
∂Jh0 + es

Ts
∂J3φ = 1

Ts
(ωE + Ω∗ − ∂Jh0)

(3.4)

since ns, Ts and u‖ are functions of J3 only. ξ = (h0 − esφ)/Ts is the normalized kinetic
energy.

For the derivative with respect to J3, a simplification is possible since esψ � msRvϕ

in the large aspect ratio tokamak conditions. Indeed, in the ŝ − α equilibrium used in
QuaLiKiz, the ratio of the quantities reads:

mRvϕ
esψ

= q

r/a
ρ∗sε‖

√
ξ(1− λb) (3.5)

where the normalized Larmor radius ρ∗s is a small quantity according to the gyro-kinetic
ordering (see § 2.2.2.1) and ε‖ = ±1 to account for both directions of circulation around the
torus. Therefore, ∂pϕ ≈ 1/es∂ψ for quantities primarily dependent on ψ such as ns, Ts, u‖
and φ. In contrast, v‖ is essentially a function of vϕ. In this case, v‖ is expressed at first
order in ρ∗s as a function of J3 using (3.5):

∂pϕv‖ ≈ ∂pϕ
qρ∗s

msRr/a
pϕ = qρ∗s

msRr/a
(3.6)

Let us now introduce the generalized diamagnetic frequency n·Ω∗ = Ts (n · dJ ln(f0) + n · dJξ)
in (2.33) which becomes:

∑
s,ω

e2
sf0s

Ts

∫
1− J0 ·

ω − nωE − n ·Ω∗

ω − n · ∂Jh0 + ıo+ J0 ·
∣∣φ̃nω

∣∣2 dJ dα
(2π)3 = 0 (3.7)

where ωE = ∂ψφ = q/(rB)∂rφ in ŝ − α geometry since ψ = rRBθ. The diamagnetic
frequency Ω∗ can be expressed as a function of the normalised gradients of density R/Lns =
−R∂r lnns, temperature R/LTs = −R∂r lnTs and velocity R/Lu = −R/vTs∂ru‖:

n ·Ω∗ = nω̄ds

[
R

Lns
+
(
ξ − 3

2 −
u‖(2v‖ − u‖)

v2
Ts

)
R

LTs
+

2
(
v‖ − u‖

)
vTs

R

Lu

]
(3.8)

where the reference drift frequency ω̄ds = qTs/(esrBR) is defined.
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As discussed in the previous chapter, applying the gyro-average operator J0 is equiva-
lent to consider only the term n1 = 0 in (3.7). As a result, the gyro-kinetic electro-neutrality
equation is multiplied by the Bessel J0(k⊥ρs):

∑
s,ω

e2
sns
Ts

∫
exp

(
−ξ +

u‖(2v‖ − u‖)
v2
Ts

)(
1− ω − nωE − n ·Ω∗

ω − n2Ω2 − n3Ω3 + ıo+

) ∣∣φ̄nω
∣∣2 J2

0 (k⊥ρcs)dλdξdθdζ = 0

(3.9)

where ζ is the parallel (field aligned) coordinate and θ is the poloidal angle (along the field
lines). Let us recall that n3Ω3 = nωds+ nωE (see relation (2.26) in the previous chapter).
Therefore, the previous can be written as a function of $ = ω − nωE keeping in mind that
$ has a radial electric field velocity:

∑
s,ω

e2
sns
Ts

∫
exp

(
−ξ +

u‖(2v‖ − u‖)
v2
Ts

)(
1− $ − n ·Ω∗

$ − n2Ω2 − nωds + ıo+

) ∣∣φ̄nω
∣∣2 J2

0 (k⊥ρcs)dλdξdθdζ = 0

(3.10)

At this point, (3.10) is a two-dimensional eigenfunction/eigenvalue equation involving (r, θ)
in real space due to the curvature of the magnetic field which prevents from a standard
Fourier decomposition in φ̄mn(r) as it is possible in cylinders. The dimensionality of the
problem is reduced via the so-called ballooning representation taken at lowest order. This is
the subject of the next section.

Since the toroidal velocity is usually smaller than 0.4vTi in conventional tokamaks,
the exponential in u‖ in (3.10) is developed in power series up to the second order. Using
the expansion has the benefit to allow for an analytic integration over ξ in (3.10) by using
the plasma dispersion function. Another solution in order to have an analytic integration
over ξ in (3.10) is to perform the variable transform ξ = E + 2u‖v‖/v2

Ts. The reformulation
of (3.10) with this coordinate is however left for future work.

To keep an analytic integration over ξ in (3.10), the Bessel function J0(k⊥ρs) is av-
eraged over ξ. The ξ-dependence of the Bessel functions comes from ρcs = ρs

√
ξλb where

ρs =
√

2msTsesBR is the thermal Larmor radius of the species s. The average of J0 over ξ
is expressed by means of the modified Bessel function of the first kind I0:∫

dξJ2
0k⊥ρcs = exp(−k2

⊥ρ
2
s)I0(k2

⊥ρ
2
s) = B0(k⊥ρs) (3.11)

Once the equilibrium distribution function linearised in u‖ and the Bessel function averaged
in ξ, the linearised gyro-kinetic electro-neutrality equation used in QuaLiKiz can be written
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as:

∑
s,ω

e2
sns
Ts

∫ (
1 +

u‖(2v‖ − u‖)
v2
Ts

+
u2
‖

v2
Ts

(
2v2
‖

v2
Ts

− 1
))

e−ξ(
1− $ − n ·Ω∗

ω − n2Ω2 − nωds + ıo+

) ∣∣φ̄nω
∣∣2 dλ

2ω̄2
dξB0(k⊥ρs)dζdθ = 0

(3.12)

The importance of the choice of the equilibrium distribution function is illustrated by (3.12).
n · Ω∗, representing its sources terms, is directly linked to this choice. In a more physical
view, the fluctuating distribution function f̄ amplitude is considered much smaller than the
equilibrium distribution function f0. The choice of f0 fixes therefore the thermodynamic
state of the system and the fast event dynamics via the linear relation between the fluctua-
tions and the equilibrium. Contrary to the implications of the choice made here, global full-f
gyro-kinetic simulations find an excess of large energy events compared to Gaussian statistics
[Abiteboul, 2012], suggesting that part of the turbulent transport processes is intermittent
in core plasmas.

3.1.3 The ballooning representation

Aside from the considerations on turbulent transport dynamics and intermittency, the
present section investigates the dimension reduction possible thanks to the symmetry prop-
erties of tokamaks.

In tokamaks, the Fourier modes of the electrostatic potential φ̄mn are strongly localised
around resonant surfaces r0 characterised by n = mq(r0). The radial extension of these
modes allows for a coupling through the shearing of the magnetic field lines wielding ŝ called
magnetic shear. Using the anisotropy k‖ � k⊥ induced by the strong toroidal magnetic field,
the ballooning representation decouples the slow variation along the field lines from the fast
variation in the perpendicular direction. The variation of the Fourier modes around the
resonant surfaces at a typical scale of the distance between modes d = 1/(kθ ŝ) and the
variation of the Fourier modes amplitude at a larger scale, typically of the order of the
gradients length Lx [Connor et al., 1978, Pegoraro and Schep, 1981, Dewar and Glasser,
1983] is also separated using an eikonal representation:

Φn(r, θ, ϕ) = φ̄n(r, θ) exp(−ın[ϕ− q(r)θ]) (3.13)

Assuming that q varies smoothly around the resonant surfaces r0 where q(r0) ∈ Q, q is
expanded in Taylor series at first order: q(r) = q(r0)+(r−r0)/d where d = 1/(nq′) = 1/(kθ ŝ)
represents the distance between resonant modes. The ballooning representation consists in
performing the following Fourier transform [Candy et al., 2004]:

φ̄n(r, θ) =
∑
p

cp(θ, θ0) exp(ı(θ0 + 2πp)r − r0

d
) (3.14)
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The ballooning potential is introduced as

φ̂n(θp, θ0) = cp(θ, θ0) exp(−ınq(r0)(θ0 + 2πp)) (3.15)

where θp = θ + 2πp. The fluctuating potential φ̄n can therefore be written as

φ̄n(r, θ) =
∑
p

∫ dθ0

2π φ̂nω(θp, θ0) exp (ı(nq −m)(θp − θ0)) (3.16)

The ballooning angle θ0 represents the direction of the largest wave vector of the modes in
the poloidal plane. This angle varies in principle with the E×B velocity shear rate[Cooper,
1988, Miller and Waltz, 1994, Waltz et al., 1998]. According to global linear simulations
finding that θ0 is close to zero[Brunner et al., 1998], this angle is considered null allowing
for a reduction of the dimension. It should be noticed that this constraint is greater in the
presence of E×B shearing. In those simulations, the potential structures are shown to be
sufficiently ballooned around the low field side mid-plane such that their poloidal extension
is smaller than 2π. As the sum in p in (3.16) is there only to ensure the periodicity in
θ, the expression of φ̄ can be limited to the term p = 0. Consequently, the p subscript is
dropped in the following. The θ angle is therefore to be understood as an extended poloidal
angle. This corresponds to the ballooning representation at the lowest order. In that case,
no global envelope is considered. It is considered for each radius that the potential can be
put under the form of a suite of identical modes.

In the general case of Equation (3.16), the only conclusion possible to draw is that
x = r − r0 = ı dx

ndq∂θ0 . Following the additional assumptions performed in the previous
paragraph, the perpendicular and parallel wave vectors can be redefined. Since φ̄(r, θ, ϕ, t) =∑
nω φ̂nω(θ) exp(ın(ϕ− q(θ − θ0))− ıωt):

∂rφ̄ ≡ −ıkrφ̄→ −ın
dq
dr (θ − θ0)φ̂ (3.17a)

∂θφ̄ ≡ −ıkθrφ̄→ −ınqφ̂ (3.17b)

There is therefore a relation between θ and kr: θ− θ0 = krd, with θ0 = 0 in QuaLiKiz. The
poloidal wave number is also defined as kθ = nq/r.

The parallel wave number k‖ is also defined. ∇‖φ̄ ≡ 1/(qR)∂θφ̂ and ∂θ is replaced
by 1/d∂kr in the ballooning representation. Now ∂kr → −ıx. Therefore, the parallel wave
number is defined as:

k‖ = x

qRd
= kθ ŝ

qR
x (3.18)

The scale separation on which is based the scale separation behind the eikonal trans-
formation (3.13) is valid as long as the shortest gradient length Lx — typically LT — is
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large enough compared to the distance between resonant modes:

Lx � d (3.19)

The condition (3.19) has proven to be correct for a wide range of parameters but fails at low
magnetic shear (ŝ < 0.1) and low wave number conditions (kθρs < 0.1) due to the (kθ ŝ)−1

dependence of d, as shown in Citrin et al. [2012], Appendix C. The validity of (3.19) has
to be proven for parallel and E ×B velocity gradients since the equilibrium function used
in this work allows them. If the velocity gradient scale length is defined as Lu = vTs

∇u‖
, it

can reach values as small as R/5 for highly rotating core tokamak plasmas. The condition
(3.19) then becomes ε � nqs/5 where ε is the inverse aspect ratio. The latter condition
specifies that (3.19) is valid down to ŝ ≥ 0.2 and n ≥ 10. For the E × B velocity shear,
the condition of validity is satisfied for lower magnetic shear and toroidal wave numbers
since LγE = vTs/γE = vTsB/

dEr
dr > R. The limitation is in fact essentially due to the loss

of the locality condition (3.19) because of the divergence of the distance between modes
d as the magnetic shear goes to zero. Therefore the limitations of this method are not
different than the ones presented in Citrin et al. [2012]. The other limitation is the toroidal
wave number condition n ≥ 10 which is usually respected for micro-turbulence in tokamak
plasmas developing at kθ > 0.05/ρci. Incompatibilities are only found inside r/a = 0.25 for
very low magnetic shear conditions ŝ ≥ 0.2 for which large scale electromagnetic events such
as sawteeth are possibly more important in term of plasma stability and transport.

The 1-D fluctuating potential φ̂ is now calculated using the reduced framework of
the ballooning representation at lowest order. An analytic expression is derived in the so-
called hydrodynamic limit. The resulting potential is later compared to the self-consistent
gyro-kinetic eigenfunction of gkw [Peeters et al., 2009b] which uses Hamada’s field align
coordinates [Hamada, 1959] instead of the ballooning representation.

3.2 Trial eigenfunctions

To gain CPU time — 2 orders of magnitude together with the dimension reduction per-
formed via the ballooning approximation formerly detailed — the fluctuating potential φ̄
is calculated in the hydrodynamic limit in which (3.10) can be solved analytically. The
hydrodynamic limit consists in assuming that the frequency ω in (3.10) is much larger than
the resonant frequencies n2Ω2 and nωds corresponding to the transit motion frequency and
the curvature drift frequency respectively. This is a strong assumption since ω is essentially
set by the resonant frequencies and collisions processes. Its validity will be discussed in the
course of this chapter.

The eigenvalue/eigenfunction equation (3.10) is the starting point of the derivation. All
previous approximations therefore apply, in particular the low Mach number approximation
and the ballooning representation at lowest order.
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3.2.1 Description of the reduced model for the eigenfunctions

Since the most relevant wave numbers for the transport phenomena linked to micro-turbulence
are lower than kθρi ≈ 1 [Dannert and Jenko, 2005], the model uses the short wavelength
approximation where the Bessel functions coming from the gyro-average operator can be
developed in power series:

B0(k⊥ρi) ≈ 1− k2
⊥ρ

2
i

2 (3.20)

In that range, the passing electrons can be considered adiabatic i.e. they follow the
fluctuations of the electrostatic potential without delay. Therefore, the resonant contribution
from the passing electrons (ω − n · Ω∗)/(ω − k‖v‖,e) can be neglected. This is performed
by separating the contributions from passing and trapped particles. This separation allows
also for an average of the bounce motion of trapped particles. In the same spirit of the
gyro-average, this leads to zero order Bessel functions of the first kind B0(krδs) as detailed
in § 3.3. δs = q2/(2ε)ρs is the so-called banana width characterising the radial extent of
the trapped particle motion. Both trapped ions and electrons are taken into account since
they both contribute to the instabilities in the spectral range treated. The short wavelength
approximation is also employed to develop the Bessel functions associated to the bounce
motion.

All the simplifications done in (3.12) can be rewritten as a polynomial equation in $:[
ne
Te

(〈
1−

(
1− nω∗e

$

)(
1 + nωde

$

)〉
t

+ fp

)
+

∑
i

niZ
2
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Ti

〈(
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(
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$
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1 + nωdi
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))(
1− k2

rδ
2
i
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+

∑
i

niZ
2
i

Ti
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(
1− nω∗i
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)(
1 + nωdi

$
+
k‖v‖i

$
+
k2
‖v

2
‖i

$2

))(
1− k2

⊥ρ
2
i

2

)〉
p

]
φ̄ = 0

(3.21)

The electro-neutrality condition
∑
s esns = 0 is used to reformulate (3.21). This enables for

a species independent normalisation nω̄d = nω̄de = −Te/Tinω̄di.

In agreement with the assumption of ballooned turbulence around θ = 0 made for
the ballooning representation truncation, the curvature frequency of the passing particles is
linearised in θ [see Romanelli et al., 2007, App. A]:

nωdi = −nω̄d
√
ξ(2− λb) (cos θ − (ŝθ − α sin θ) sin θ)→ nω̄d

√
ξ(2− λb)

(
1−

(
ŝ− α− 1

2

)
θ2
)

(3.22)
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The thin banana approximation is used for trapped particles such that nωde = nω̄d
√
ξ(2− λb).

This is equivalent to consider that trapped particles are deeply trapped, the variation over
the poloidal motion of the trapping parameter κ =

√
(1− λ)/(2ε) being neglected.

The relation θ = krd is used to express the passing particle curvature drift and an
inverse Fourier transform kr → −ı∂x is performed leading to a second order differential
equation.

It is important to recall here that $ includes the radial electric field velocity nωE×B.
In order to make the role of the radial electric field shearing explicit, Er is linearised:
Er → Er0 + E′rx + O(x2), assuming its radial dependence is smooth enough to neglect
higher order derivatives. $ is changed into ω − kθγEx where γE = E′r/B is the radial
electric field shearing rate. The higher order in the expansion of Er have been neglected,
therefore, only the linear terms in γEx will be taken into account in the eigenmode equation.
The “new” ω is defined as ω − nωE0 since nωE0 is a Doppler shift and does not change the
stability of the mode.

As a first step, (3.21) is multiplied by $2 and expressed in function of x:[(
ω

(
d2
eff
2

d2

dx2 −
k2
θρ

2
eff

2

)
− 2nω̄d +

k′2‖ c
2
eff

2ω x2

)(
ω − kθγEx− nω∗pi

)
− ft
fp
nω∗penω̄d

− (ω − kθγEx) (ω − kθγEx− nω∗ne) + k′‖xceff

(
nω∗u +

u‖

ceff

(
Zeff

τ
ω + nω∗ne − 8nω̄d

))]
φ̄ = 0

(3.23)

deff is defined as d2
eff = δ2

eff + 4nω̄dω (ŝ − α − 0.5)d2, containing all terms proportional to k2
r

with δeff = q2/(2ε)ρeff and ceff =
√
Te/mp. k′‖ is the first term of the Taylor expansion of

k‖ i.e.k′‖ = kθ ŝ
qR .

(3.23) is not linear due to the interaction between the E × B shear and kr. This
is therefore a second order (non-linear) differential equation for which there is no generic
analytic expression. But, the ballooning representation used to derive the gyro-kinetic dis-
persion relation (3.43) assumes a ballooned turbulence around θ = 0. This is not correct
if γE � ω. Therefore, the quadratic terms in γEx and the non-linear terms k⊥γEx are
neglected, x being small. Any term in x3 or superior is also neglected. This results in a
second order linear differential equation:[(

ω

(
d2
eff
2

d2

dx2 −
k2
θρ

2
eff

2

)
+
k′2‖ c

2
eff

2ω x2

)(
ω − nω∗pi

)
− 2nω̄d(ω − kθγEx)− ω2 + 2kθγEx+

(ω − kθγE)nω∗ne −
ft
fp
nω∗penω̄d + k′‖xceff

(
nω∗u +

u‖

ceff

(
Zeff

τ
ω + nω∗ne − 8nω̄d

))]
φ̄ = 0

(3.24)
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The solution of (3.24) is a shifted Gaussian:

φ̄ = φ0

(π< (w2))1/4 exp− (x− x0)2

2w2 (3.25)

defined by its mode width w and its shift x0.

The mode width is defined by the quadratic terms in x in (3.24) considering that:

d2

dx2 φ̄ =
(

(x− x0)2

w4 − 1
w2

)
φ̄ (3.26)

due to the expression of φ̄. The mode width corresponds the balance between the drive of
the turbulence and the parallel dynamics of the passing particles connecting more stable
(HFS) and more unstable (LFS) regions:

w2 = −ıωdeff
|k′‖|ceff

(3.27)

It follows the same definition as before [Bourdelle et al., 2007, Romanelli et al., 2007] but ω
used here is the self consistent solution of (3.24), thus the mode width depends on γE , ∇u‖
and u‖.

The mode shift, i.e. the parallel asymmetrisation of the mode, is calculated with the
linear terms in x in (3.24):

x0 = 2nω̄d
ω − ω∗ne

q
sγ

N
E (2ω + 2nω̄d − nω∗ne) + nω∗u + u‖

ceff

(
Zeff
τ ω + nω∗ne − 8nω̄d

)
k′‖ceff

(3.28)

where γNE = γE
ceff/R

corresponds to usual normalisations of the E × B shear. The ITG
dispersion relation ω

ω−ω∗
pi

= − 2nω̄d
ω−ω∗ne

is used in (3.28) to ensure that the shift stays small
according to the assumption that the turbulence is ballooned around θ = 0 in the same
spirit as what is done in Garbet et al. [2002]. As x0 is complex, an imaginary shift in x

corresponds to a real shift in kr which means a linear stabilization of large radial structures.
Its dependence with respect to the parallel symmetry breakers is studied in the next section.

ω is defined by the x-free terms of (3.24). Once the mode width and the mode shift
are expressed according to (3.27) and (3.28), the former relation reduces to a third order
polynomial equation:
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)2 = 0

(3.29)
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The solution retained is the one of maximum growth rate γ = =(ω). The real part of
ω is typically of the order of a few nω̄d satisfying ω ≥ k‖v‖. The hydrodynamic limit
conditions appear therefore barely respected. As for the solution of the kinetic equation
(3.10), nωd < <(ω) < k‖v‖, confirming that the hydrodynamic limit is not valid in most
conditions. Therefore, the predicted ω is overestimated, in particular its real part and the
validity of the resulting eigenfunctions must be checked against self-consistent gyro-kinetic
simulations.

3.2.2 Eigenfunctions validation

Now that the model employed to predict the linear eigenfunctions has been described, it
remains to be compared to self-consistent gyro-kinetic eigenfunctions. This comparison is
realized with the gkw code [Peeters et al., 2009b] which is δf code like QuaLiKiz. Field
aligned coordinates [Hamada, 1959] are employed rather than the ballooning representation.
There are no approximation in the integration over the pitch-angle and the energy and
various magnetic equilibria are available in gkw. For consistency with QuaLiKiz, all direct
comparisons are realized with the ŝ−α equilibrium in gkw using α = 0. In this equilibrium,
gkw parallel coordinate s is equivalent to QuaLiKiz θ

2π [Peeters et al., 2009b]. The effects of
the parallel velocity and its gradient are shown to be correctly accounted for in QuaLiKiz.
The effect of γE is studied as well.

First, it is verified in Figure 3.1 that the new model previously presented gives a
satisfactory agreement with gyro-kinetic eigenfunctions in the absence of rotation as in
[Citrin et al., 2012, Romanelli et al., 2007]. Both gkw (in light green) and QuaLiKiz
eigenfunctions (in darker blue) are plotted as a function of the parallel label θ/(2π). GA-
std parameters are used. Unless stated otherwise ε = 1/6, R/Ln = 3, R/LT = 9, q = 2,
ŝ = 1, Zeff = 1. The poloidal wave number for the study is kθρs = 0.3 as it roughly
corresponds to the spectral peak of non-linear fluxes. Figure 3.1 shows a good agreement
between QuaLiKiz trial eigenfunction and gkw. QuaLiKiz eigenfunction is more peaked
around θ = 0, indicating a slight overestimation of the mode width. This is consistent with
Figure 16 from Citrin et al. [2012].

The influence of the parallel rotation on the parallel structure of the eigenmodes is
now studied in Figure 3.2. In the left panel, QuaLiKiz and gkw eigenfunctions are plotted
against the field aligned poloidal angle θ/2π with GA-std parameters except for the parallel
velocity gradient (PVG) set to −4vTi/R. This corresponds to maximum experimental values
of PVG in core tokamak plasmas[de Vries et al., 2008, Peeters and Angioni, 2005]. In the
right panel, the PVG is null and the parallel velocity is set to 0.2vTi. It corresponds to the
standard rotation of core plasmas. In both panels, the eigenfunctions appear ballooned in
the region where θ ∼ 0 confirming previous approximations. But, contrary to the case where
there is no rotation [Citrin et al., 2012] (see Figure 3.1), the eigenfunctions are no longer
θ-symmetric. As expected from the expression (3.28) for the mode shift, x0 is proportional
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Figure 3.1: Parallel structure of the eigenfunctions showing the expected symmetry θ → −θ i.e.
k‖ = 0 at zero rotation. GA-std parameters, kθρs = 0.3
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Figure 3.2: Parallel structure of the eigenfunctions showing finite 〈k‖〉 in presence of finite ∇u‖
(left) and u‖ (right)

to u‖, ∇u‖ and γE . The agreement with gyro-kinetic eigenfunctions is very good in these
conditions for both the real and the imaginary parts.

Closer to the turbulence threshold (R/LT = 6), the agreement with gyro-kinetic eigen-
functions stays satisfactory as illustrated by Figure 3.3 both in the case without rotation
and with rotation gradient. The behaviour of the model presented in 3.2.1 was also vali-
dated against gyro-kinetic simulations for various safety factor and magnetic shear values
as illustrated in Figures 3.4 and 3.5 respectively.

The existence of an imaginary part is a novelty. It was previously neglected since, in
the absence of sheared flows, the imaginary part of the mode width is small compared its
real part and there is no shift in this case (see Figure 3.1). It was included here because it
becomes of the order of the real part in case of strong E × B flow shear. An example of
the eigenfunctions found in presence of E × B shearing is plotted in Figure 3.6 where the
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Figure 3.3: Parallel structure of the eigenfunctions in presence of lower temperature gradients:
R/LT = 6
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Figure 3.6: Parallel structure of the eigenfunctions showing finite 〈k‖〉 in presence of finite E ×B
shear

imaginary part =(φ) (dashed curve) is found to be comparable to the real part <(φ) of the
eigenfunction. The θ-shift of the real part of φ̃ is especially important because it represents a
k‖-shift contributing to the momentum flux as illustrated in the following chapter § 4.3.1. For
E×B shear, there is no direct comparison possible with gkw since the general solutions of
the linearised gyro-kinetic equation in such conditions are oscillating Floquet modes[Cooper,
1988, Waltz et al., 1998]. In the reduced model presented here, eigenfunctions are found
thanks to the truncation at lowest order of the ballooning representation and the linearisation
of the eigenmode equation performed in (3.24). The validity of the eigenfunction found here
is discussed in the next chapter when validating QuaLiKiz momentum flux versus non-linear
gkw (see § 4.4).

With the GA-std case set of parameters, chosen for the cases presented above, Ion
Temperature Gradient (ITG) modes are dominant. They are known to be ballooned around
θ = 0 in ballooning space [Candy et al., 2004] so the approximations taken in the previous
chapter are correct. Under such approximations, the hydrodynamic-limit eigenfunctions
are shown to agree reasonably well with self-consistent gyro-kinetic eigenfunctions even in
presence of finite rotation and/or gradient of rotation.

The Trapped Electron eigenmodes (TEM) encountered in dominantly electron heated
plasmas are more extended in θ than ITG modes[Brunner et al., 1998]. Taking only the
lowest term of the ballooning representation as is done in QuaLiKiz, fails to reproduce their
extension outside θ ∈ [−π;π] in ballooning space. This extension is especially important
for strongly dominant TEM at kθρs ∼ 1 as illustrated in Figure 3.7 where QuaLiKiz and
gkw eigenfunctions are plotted for GA-std case parameters except for the ion temperature
gradient: R/LTi = 0 while R/LTe = 9. Inside [−π;π], the agreement between QuaLiKiz
and gkw is good at lower kθρs and decline at finer scales as expected due to the linearisation
of the Bessel functions in the hydrodynamic model.
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Figure 3.7: Parallel structure of the eigenfunctions showing the increased θ spreading with kθρs
in the case of TEM. R/LTi = 0, other parameters from GA-std test case. kθρs = 0.2 left panel.
kθρs = 1.0 right panel.

Due to the limits at larger θ of the approximation used for QuaLiKiz eigenfunctions,
an underestimation of TEM growth rate can therefore be foreseen for kθρs ∼ 1. This is
confirmed by QuaLiKiz underestimation of the growth rates compared to gkw in Figure 3.9
for 0.7 < kθρs ≤ 1. For transport studies however, the low kθρs matter most. Moreover,
the quasi-linear approximation is only correct at large scales (see § 4.2 next chapter). Since
θ ∈ [−π;π] contains most of the physics, QuaLiKiz is able to model correctly heat and
particle fluxes in TEM dominated regimes as illustrated by Figure 9 of Casati et al. [2009].

To summarize, the effects of u‖, ∇u‖ and E × B shear are included in the model
presented in Sec. 3.2.1. They result in a complex shift of the Gaussian eigenfunction and
an increase of the relative amplitude of its imaginary part. The influence of u‖ and ∇u‖ on
the eigenfunctions is successfully benchmarked against gkw. QuaLiKiz model represents
correctly ITG dominated eigenmodes but it cannot capture the extension outside |θ| = π

of TEM. This is a necessary trade off to gain two orders of magnitude in CPU time with
respect to self-consistent gyro-kinetic eigenfunctions calculation making QuaLiKiz suitable
for integrated modelling.

The validity of QuaLiKiz model is further investigated in the next section where
QuaLiKiz linear growth-rates are compared to gkw linear simulations.

3.3 Eigenvalues of QuaLiKiz dispersion relation

The linear growth rates calculated with the fluctuating potential defined in the previous
section and the linearised gyro-kinetic electro-neutrality equation (3.10) is now compared
to gkw linear simulations in presence of u‖, ∇u‖ and E × B shear. First the dispersion
relation of QuaLiKiz will be derived in details.



3.3 Eigenvalues of QuaLiKiz dispersion relation 49

3.3.1 Separating passing and trapped particles

As mentioned in the previous section, passing and trapped particles are treated separately
in QuaLiKiz to take advantage of their different dynamics and to reduce the numerical cost
of the model. (3.10) will be formally expressed as 1− Ls,tr − Ls,pass = 0.

Different expressions for n2Ω2 are used for the two types of particles. For passing
particles, its expression is given by:

n2Ω2 = k‖v‖ = ±vTsx
qRd

√
ξ(1− λb) (3.30)

where d = 1
kθ ŝ

is the distance between resonant surfaces and x, the distance to the closest
resonant surface. For trapped particles, the ratio x

d is replaced bym, a poloidal wave number
expressing the existence of a well defined bounce frequency ωb so that n2Ω2 = mωb.

As previously indicated, an average over the bounce motion is performed for trapped
particles, reducing further the numerical cost of the model. It enables to remove the θ depen-
dence of the drift frequencies. In the same spirit as the gyro-motion average, bounce motion
average — i.e. average over α2 ≈ θ — results in the multiplication of the trapped particles
response by Bessel functions Jm(krδs). The wave number n2 ≡ m corresponds to krδs this
time where δs = q2/(2ε)ρs is the so-called banana width of the species s characterising the
radial width of the bounce motion. The integration in energy of the Bessel functions is again
done separately giving Bm(a) = exp(−a2)Im(a2) ([see Bourdelle et al., 2002, App. A.4] for
the m = 0 case). In a condensed form, (3.10) reads:

∑
s

e2
sns
Ts

1−
∫ dkr

2π

(
〈Is,pass〉p B0(k⊥ρs)−

∑
m

〈Is,m,tr〉t B0(k⊥ρs)Bm(krδs)
)

= 0 (3.31)

where the integration over the passing domain is

〈· · · 〉p =
∫ ∞

0

2
√
ξ√
π

exp(−ξ)dξ
∫ λc

0

dλ
4ω̄b

λc = 1−ε
1+ε is the minimum value of the pitch angle for which particles can be trapped and

ω̄b is the normalization of λ over the parallel (or bounce) motion ω̄−1
b =

∮ dθ
2π

1√
1−λb with∮

=
∫ π
π

for passing particles and
∮
≈ 2

∫ θb
−θb for trapped particles, θb being the bouncing

point of the trapped particles. The integration over the trapped domain then reads:

〈· · · 〉t =
∫ ∞

0

2
√
ξ√
π

exp(−ξ)dξ
∫ 1

λc

dλ
4ω̄b

= ft

∫ ∞
0

2
√
ξ√
π

exp(−ξ)dξ
∫ 1

0
K(κ)κdκ

where ft is the fraction of trapped particles, κ is related to the pitch-angle via λ = 1− 2εκ2

and K is the complete elliptic integral of the first kind. Now, Is,pass and Is,tr remain to be
expressed.
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3.3.1.1 Passing particle functional

Before integration the passing particle functional reads:

Is,pass =
∑
ε‖=±1

(
1 +

2u‖
vTs

ε‖
√
ξ(1− λb) +

u2
‖

v2
Ts

(2ξ(1− λb)− 1)
)

A∗Tsξ + 2(Au −ATs)
u‖
vTs

ε‖
√
ξ(1− λb) +Ans − 3

2ATs + u2
‖

v2
Ts

(ATs − 2Au)− $
nω̄ds

(2− λb)fθξ + ε‖
x
d

ωb
nω̄ds

− $
nω̄ds

+ ıo+

(3.32)

The integration over λ and ξ is then performed. In QuaLiKiz, the integration over λ, not
tractable analytically, is simplified. It is considered that the passing particle pitch-angle
variation does not influence the drift frequencies so that they can be averaged over λ. This
assumption is correct for the curvature and ∇B drift for which the pitch angle variation
represents no more than 50% of its value. For k‖v‖ expression however, this means that
its value will be overestimated for barely passing particles. The result is given in Eq. 3.33

using the Fried-Conte function Z(z) = 1√
π

∫ +∞

−∞

e−v
2

v − z
dv.

〈Is,pass〉p = 3fp
2fθ

[
ATs

Z2(V+)− Z2(V−)
V+ − V−

+
(
Ans −

3
2ATs −

$

nω̄ds

)
Z1(V+)− Z1(V−)

V+ − V−

]
+3fp
fθ

[
u‖

vTs
ATs

V+Z2(V+)− V−Z2(V−)
V+ − V−

+
(
Au +

u‖

vTs

(
Ans −

5
2ATs −

$

nω̄ds

))
V+Z1(V+)− V−Z1(V−)

V+ − V−

]
+fp
fθ

u‖

vTs

[
AT

u‖

vTs

Z3(V+)− Z3(V−)
V+ − V−

+
(

2Au
u‖

vTs

(
Ans −

7
2ATs −

$

nω̄ds

))
Z2(V+)− Z2(V−)

V+ − V−

]
−3fp
fθ

u‖

vTs

[
ATs

u‖

vTs

Z2(V+)− Z2(V−)
V+ − V−

+
(

2Au
u‖

vTs

(
Ans −

5
2ATs −

$

nω̄ds

))
Z1(V+)− Z1(V−)

V+ − V−

]
(3.33)

where fp is the passing particle fraction. Z1, Z2 and Z3 are based on the Fried-Conte
function Z: Z1(z) = z + z2Z(z), Z2(z) = 1

2z + z2Z1(z) and Z3(z) = 3
4z + z2Z2(z). The

variables V+ and V− correspond to the poles of Eq. 3.32. They are defined by:

V± = 1
2
vTsx

qRd

ω̄b
fθnω̄ds

±
√

∆

∆ =
(

1
2
vTsx

qRd

ω̄b
fθnω̄ds

)2
+ $

fθnω̄ds

(3.34)

The integration over kr remains to be performed. As expressed in (3.30), there remains
some x dependences in the passing particle functional. Moreover, it is reminded that $ =
ω−nωE×B contains an x dependence too. To take these aspects into account an integration
over kr and x = r − r0, where x � r0, is performed as derived by Garbet et al. [1990] and
presented first in Bourdelle et al. [2002, App. A.4.2] in QuaLiKiz framework. The expression
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of Ls,pas. =
∫ +∞
−∞

dkr
2π 〈Is,pass〉p B0(kθρs) is then transformed into:

Ls,pas. =
∫ ∞
−∞

dk+

2π

∫∫ ∞
−∞

dx+dx−φ̃(x+−
x−
2 )φ̃∗(x++x−

2 )eık+x− 〈Is,pass〉p B0(kθρs) (3.35)

As shown in section 3.2.1, φ̃(x) = φ0 exp(− (x−x0)2

2w2 ) when enabling the treatment for non-
zero values of u‖, ∇u‖ and E×B shear. The product φφ∗ can then be written as:

φ̃φ̃∗ = φ2
0 exp

(
− (x+ −<(x0)− k+=(w2))2

<(w2) −<(w2)
(
k+ −

=(x0)
<(w2)

)2
)

(3.36)

Dimensionless quantities ρ∗ and k∗ are defined for the integration over x+ and k+:

ρ∗2 = (x+ −<(x0)− k+=(w2))2

<(w2)

k∗2 = <(w2)
(
k+ −

=(x0)
<(w2)

)2 (3.37)

The x quantity used in (3.34) is replaced by ρ∗
√
<(w2) + <(x0) + k+=(w2) and

k+ = k∗√
<(w2)

+ =(w2)
<(w2) , <(w2) being defined positive which ensures

∣∣φ̃∣∣2 to be finite. The

passing particle functional then becomes:

Ls,pass =
∫ ∞
−∞

dk∗√
π
e−k

∗2
∫ ∞
−∞

dρ∗√
π
e−ρ

∗2
〈Is,pass〉p (k∗, ρ∗)B0(kθρs) (3.38)

3.3.1.2 Trapped particle functional

For trapped particles, there are no θ dependence in the drifts, since it is already removed
by the bounce average. So, the picture is somewhat simpler. It is reminded that k‖v‖ has
no x dependence and x

d in Eq. 3.32 is replaced by m.

Ii,m,tr =
∑
ε‖=±1

(
1 +

2u‖
vTs

ε‖
√
ξ(1− λb) +

u2
‖

v2
Ts

(2ξ(1− λb)− 1)
)

A∗Tsξ + 2(Au −ATs)
u‖
vTs

ε‖
√
ξ(1− λb) +Ans − 3

2ATs + u2
‖

v2
Ts

(ATs − 2Au)− $
nω̄ds

(2− λb)fθξ + ε‖m
ωb
nω̄ds

− $
nω̄ds

+ ıo+

(3.39)

The attentive reader noticed that the relation (3.39) is expressed for trapped ions. Its
expression is different for trapped electrons because electron-ion collisions are taken into
account in QuaLiKiz. Since the effect of collisionality on TEM is most important and
not much predictable otherwise [Connor, 2006], collisions are only implemented on trapped
electrons. For Ie,m,tr, νie is included in Eq. 3.39 in place of the Landau prescription for
causality, the small quantity ıo+, through a Krook operator presented in Romanelli et al.
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[2007]. The expression of Ie,m,tr is

Ie,m,tr =
∑
ε‖=±1

(
1 +

2u‖
vTs

ε‖
√
ξ(1− λb) +

u2
‖

v2
Ts

(2ξ(1− λb)− 1)
)

A∗Tsξ + 2(Au −ATs)
u‖
vTs

ε‖
√
ξ(1− λb) +Ans − 3

2ATs + u2
‖

v2
Ts

(ATs − 2Au)− $
nω̄ds

(2− λb)fθξ + ε‖m
ωb
nω̄ds

− $
nω̄ds

+ ı
νfe(ξ,λ)
nω̄ds

(3.40)

where νfe = νei

(
vTe√
ξ

)3
Zeff

(
ε

|1− ε− λ|2
0.111δ + 1.31

11.79δ + 1

)
with δ =

(
|ω|

37.2/εZeffνei

)1/3
[Ro-

manelli et al., 2007].

Now, before performing the integral over (ξ, λ) it is worth noting that B1 is odd in
kr. When integrating over kr, it will only give a non-zero value for 〈Is,1,tr〉 in presence of
an asymmetric eigenfunction in kr which happens only in the presence of a parallel velocity
symmetry breaker: u‖, ∇u‖ or E ×B shear in QuaLiKiz framework [Peeters and Angioni,
2005]. Given the fact that the Krook operator does not conserve momentum, it appears
inadequate to keep this higher order term in the equation. Since B2 represents 5% of B0

when integrated over kr, higher order are not treated neither. This is why the only term
actually used in QuaLiKiz is m = 0. Integrating (3.40) over (ξ, λ) gives the relation (3.41).

〈I0,i,tr〉t = 2ft
∫ 1

0

K(κ)κ
f(κ) dκ

[(
1−

u2
‖

v2
Ti

)(
ATi

Z2(z)
z

+
(
Ani −

3
2ATi − z

2
)
Z1(z)
z

)

−
u‖

vTi

(
2Au −

u‖

vTi
ATi

)]
(3.41)

where z is the square root of $
nω̄ds

which has a positive imaginary part and fκ = 2E(κ)
K(κ) −

1 + 4s
(
κ2 − 1 + E(κ)

K(κ)

)
=
∮ dθ

2π
fθ

4
√

1−λb with λ = 1 − 2εκ2. Comparing (3.41) to (3.33), the
reader might have noticed that the second and third terms (lines) of (3.33) are absent in
(3.41). Indeed, the integration over λ gives 1 − 2ε for passing particles and 2ε for trapped
ions for the second term and 1

3 for passing and 2
3ftε for trapped ions for the third term. At

lowest order in ε, the expression for the functional of trapped ions 〈I0,tr〉 therefore reduces
to (3.41). For trapped electrons, the expression (3.40) is numerically integrated over (ξ, κ).

The integration over kr is simplified by bounce averaging. Integration over θ being
already performed for I0,tr by bounce averaging, the only kr dependence in Ls,tr lies in
B0(krδs)|φ̃nω|2 which is integrated in kr numerically. The Bessel function B0(krρs) is not
included in the integration above. Indeed, the structures are much more elongated radially
than poloidally: kθ � kr and δs � ρs making the kr variation of φ̄ over the Larmor radius
negligible compared to its variation over the banana width. The expression for the trapped
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Figure 3.8: Maximum linear growth rates from QuaLiKiz and gkw for GA-std parameters

particle functionals L0,s,tr can then be written:

L0,s,tr =
∫ 1

0
K(κ)κI0,trdκB0(kθρs)

∫ dkr
2π B0(krδs)|φ̃nω(kr)|2 (3.42)

In conclusion the expression (3.31) can be written as

∑
s

nse
2
s

Ts
(1− Ls,pas(ω)− L0,s,tr(ω)) = 0 (3.43)

with the definitions of the passing and trapped particle functionals given in the two previous
sections.

3.3.2 Growth rates validation

A way to validate the model developed in this chapter is to compare the linear growth
rates γ = =(ω) found with QuaLiKiz against the results from a gyro-kinetic code which
does not use the simplifications previously detailed. An important benchmark effort has
already been done, comparing QuaLiKiz growth rates against GS2 [Bourdelle et al., 2002,
Romanelli et al., 2007] and gene[Citrin et al., 2012]. A verification has been performed that
new additions do not invalidate the results previously obtained. The comparison is limited
here to the sheared flows impact by varying u‖, ∇u‖ and γE using gkw linear simulations
and GA-standard based test cases. Unless stated otherwise ε = 1/6, R/LT = 9, R/Ln = 3,
q = 2, ŝ = 1, α = 0, ν∗ = 0 in this section. The parallel velocity gradient destabilisation and
the stabilizing effect of E×B shear are successfully benchmarked. The effects of the parallel
velocity are recovered within the range of validity of the low Mach number approximation.
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Figure 3.9: Linear growth rates from QuaLiKiz (plain curves) and gkw (dashed) for GA-std based
cases with various u = u‖

vTi
values. (a) gkw run without centrifugal effects (b) gkw run with

centrifugal effects

3.3.2.1 The parallel velocity gradient instability

First, let us concentrate on ∇u‖. It has been extensively reported in the literature that
parallel velocity gradients (PVG) destabilize a Kelvin-Helmholtz like instability[D’Angelo,
1965, Garbet et al., 2002, Peeters and Angioni, 2005]. PVG instabilities are destabilized by
velocity gradients at rather high values: −R∇u‖vTi

≈ 5 compared to the experiments[Peeters
and Angioni, 2005]. But its threshold is reduced with increasing temperature gradient so
that it can destabilize otherwise marginally stable conditions for ITG turbulence. Finally,
PVG is known for enhancing the growth rates of already unstable ITG modes. All these
effects are presented in Figure 3.8 where a scan in ∇u‖ is performed up to ∇u‖ = −5vTi/R
for 3 values of temperature gradients R/LT = {3, 6, 9}. For the flattest temperature profile
conditions (R/LT = 3), which is linearly stable without rotation, the PVG destabilization
threshold is recovered. For the peaked temperature profile condition (R/LT = {6, 9}),
which are ITG unstable without rotation, the growth rate inflation with ∇u‖ is captured by
QuaLiKiz. The values of the growth rates are nevertheless slightly underestimated.

3.3.2.2 The impact of the parallel velocity

The parallel velocity is known to have opposite effects on ion and electron modes. It stabilizes
ITG modes and destabilizes trapped electron modes (TEM) via the expansion of the trapped
domain in velocity space with increasing u‖[Casson et al., 2010, 2012]. These effects are
studied in Figure 3.9. Simulations from QuaLiKiz (in plain curve) and gkw (in dashed curve)
based on GA-std parameters are represented. The parallel velocity is varied from 0 to 0.6vTi,
a larger value than usually observed in high aspect ratio tokamak core plasmas[de Vries et al.,
2008]. The effect of the low Mach number approximation – used in QuaLiKiz, not in gkw
– is analysed.
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When comparing gkw (with centrifugal effects) and QuaLiKiz, Figure 3.9(b), it is clear
that ITGs are stabilized with increasing u‖ in both codes but TEMs are not destabilized
in QuaLiKiz. This discrepancy is due to the low Mach number approximation which does
not retain centrifugal effects. They were removed in gkw in Figure 3.9(a) to illustrate this.
Indeed, without centrifugal effects, gkw electron modes are not destabilized. Moreover, at
higher u‖

vTi
values, ITGs are over stabilized in QuaLiKiz and TEMs become dominant for

lower kθρs values as u‖ increases due to the stabilization of ITGs. This is a consequence
of the development up to second order in u‖ of the equilibrium distribution function (see
(3.12)) which underestimates the values of the exponential in u‖ contained in f0 definition at
larger values of v‖. The underestimation of TEM growth rates by QuaLiKiz at higher kθρs
for any values of u‖ is related to a discrepancy between QuaLiKiz and gkw eigenfunctions
as detailed in 3.2.2.

Overall, larger u‖ stabilize ITG dominated regimes in QuaLiKiz as observed in gkw.
Trapped Electron Modes behaviour at larger poloidal wave numbers is however not properly
modelled due to the low Mach number approximation and the reduced model used for the
eigenfunctions.

3.3.2.3 The stabilization by E×B shear

The extensively studied stabilisation of the turbulence by E ×B shear [Biglari et al., 1990,
Dong and Horton, 1993, Waltz et al., 1994, Hahm and Burrell, 1995, Waltz et al., 1998,
Roach et al., 2009, Barnes et al., 2011] is addressed in this section. To be able to perform
the comparison with gkw, we highlight that a new method to calculate effective growth
rates for initial value codes such as gkw with E × B shear is developed. This method is
close to that of [Citrin, 2012] and results in a better qualitative agreement with non-linear
observations. Indeed, with finite E×B shear, Floquet modes are solutions of the linearised
gyro-kinetic equation, composed of an exponentially growing part and an oscillating part.
Consequently, when averaging over the entire temporal window of the simulation, a strong
drop in the effective growth rate is observed for the first non-zero value of γE and then
a weak dependence with γE is seen as explained in [Waltz et al., 1998] and represented
in Figure 3.11 dashed curve. In contrast, non-linear simulations show a smooth reduction
of the fluxes with increasing E × B shear[Casson et al., 2009], fitted at times by a linear
quench rule[Waltz et al., 1998]. An explanation for this discrepancy is that the non-linear
decorrelation time is shorter than the time over which one averages the growth rates. The
method proposed here to resolve this issue can be decomposed in two steps illustrated by
Figure 3.10.

• First, an effective growth rate: γeff(t) is calculated on 3 decorrelation times: τ , consid-
ering that τ = γ−1

eff . It means that γeff = (ln(φ(t+ ∆t))− ln(φ(t))) /∆t is calculated
with ∆t = 3/γeff. Equivalently φ(t + ∆t) = exp(3)φ(t). The corresponding ∆t is
symbolized by the shaded area in Figure 3.10;
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Figure 3.10: Example of the time evolution of a Floquet mode from a GKW simulation at R/LT =
15, γE = 0.6 and other parameters from GA-std. The shaded region corresponds to 3γ−1 ≈ 3τNL.
The black arrow represents the displacement of the shaded region along t.

• The time window corresponding to 3τNL is then moved along the simulation as in-
dicated by the black arrow in Figure 3.10. The effective growth rate of the entire
simulation is taken to be the 3rd quartile of the ensemble of γeff[0; tend] to remove all
negative γeff(t) from the statistics.

This method is compared to the standard one – see for example [Roach et al., 2009] – in
Figure 3.11. The so-called “GKW mean value” dotted curve represents the usual method
and the “GKW” plain curve with error bars represents the method described above. The
error bars extent corresponds to one standard deviation around the 3rd quartile value. The
usual “jump” in γ from 0 to finite value of γE is reduced, resulting in better qualitative
agreement with the results from non-linear simulations. The growth rates from the eigen-
value code QuaLiKiz are plotted on the same figure in plain curve for comparison. They
are in agreement with γeff within the error bars of the method presented above. This result
shows that the E × B stabilisation mechanism is captured by QuaLiKiz approach using
hydrodynamic shifted Gaussian eigenfunctions.

Through the three examples presented above, QuaLiKiz linear growth rates evolution
with the three relevant quantities for sheared flows in a tokamak plasmas – u‖, ∇u‖ and
γE – have been validated. It should however be noted that more extensive benchmarks
with different parameter sets have been left for future works. Along with the correct linear
eigenfunctions, this gives the possibility to make a quasi linear estimate of the turbulent heat,
particle and momentum fluxes accounting properly for PVG and E×B shear stabilisation
at lower CPU cost.

*
* *
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Figure 3.11: QuaLiKiz growth rates and gkw effective growth rates calculated with the standard
averaging method and a new statistical method

In this chapter, the linearised gyro-kinetic dispersion relation (3.43) at the heart of the
linear solver of QuaLiKiz was derived including the effect of the non-zero values for u‖, ∇u‖
and E×B shift in the low Mach number approximation and other standard approximations
for QuaLiKiz, namely low β (electrostatic), large aspect ratio and lowest order ballooning
representation. To solve this eigenfunction/eigenvalue equation, the eigenfunction φ̄ is cal-
culated in the analytic hydrodynamic limit including the effect of sheared flows. φ̄ is a
shifted Gaussian eigenfunction with a width illustrating the balance between the turbulence
drive and the homogenisation by passing particles. The shift is proportional to the parallel
symmetry breakers u‖, ∇u‖ and the E×B shear. The resulting eigenfunctions and growth
rates recover self-consistent gyro-kinetic results with a slight underestimation of the growth
rates at larger scales and a more significant underestimation at finer scales. As illustrated in
the next chapter, the validity of the quasi-linear approximation also falls off at finer scales.
Due to the relative importance of large scales versus finer scales for transport processes,
the quasi-linear model presented here show good agreement with non-linear gyro-kinetic
simulations in spite of this loss of accuracy as exposed in the next chapter.
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4
Quasi-linear modelling of the

turbulent fluxes

The goal of this chapter is to present the quasi-linear model employed for the fluxes
calculation in QuaLiKiz and compare its results to non-linear gyro-kinetic simulations. The
momentum flux is thoroughly studied since it is the main motivation of this work.

Attention is first focused on the quasi-linear approximation, its derivation and its va-
lidity for core tokamak plasma turbulence. The momentum flux is then derived using the
formalism presented in chapters 2 and 3. As shown later on, quasi-linear fluxes are the
product of two parts: a quasi-linear response and a saturated potential. We will see that
the quasi-linear response corresponds essentially to the functionals derived in § 3.3. The
saturated potential is typically a non-linear quantity which results from the interactions
between the turbulence and zonal flows as well as mean flows. The part played by the inter-
action between linearly stable and unstable modes in the saturation process is also currently
explored [Hatch et al., 2011]. Therefore, the saturated state cannot be inferred from the
linearised equation. The construction of the saturated potential, based on both experimen-
tal observations and non-linear simulations is presented. In a second time, the modification
of the quasi-linear fluxes by a sheared rotation is studied. The predicted stabilising effect
of the E × B velocity shearing is studied in particular. The diffusivity of the momentum
flux and the momentum pinch are analysed in a second time. As part of the study on the
momentum flux contributions, the role of the eigenfunction asymmetrisation in both parts
of the momentum flux will be discussed.

4.1 Achievements of quasi-linear models

Before diving into quasi-linear theory, a brief review of the existing models is presented with
the aim to put QuaLiKiz framework and abilities into context, completeness being way out
of the scope of this introduction.
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4.1.1 Quasi-linear models for integrated simulation

Quasi-linear models have first been developed to be used as part of the integrated modelling
framework. Indeed, the computational time saved not solving the non-linearities of the
problem (see § 4.2) enables iterating the quasi-linear models a large number of times with a
contained computational cost. The Weiland model [Weiland et al., 1989] was a noticeable
step towards more theory-based quasi-linear model although the very basic assumptions
carried out for its development can be questionned (in particular using the dominant mode
at a unique wave number). A widely used series of quasi-linear models is the GLF (for
gyro-Landau-fluid) series of codes [Waltz et al., 1997]. The novelty of the approach was
to tune the model to fit linear gyro-kinetic and non-linear gyro-fluid simulations. Building
on the GLF family, TGLF (for Trapped gyro-Landau-fluid) is based on a larger number
of moment equations (15 instead of 8), uses an Hermite polynomial decomposition of the
eigenfunctions instead of trial Gaussian and does not use the Padé approximation, enabling
for higher k validity. Building on the progress of computational resources, all fitting of
TGLF is based on gyro-kinetic simulations, either linear or non-linear. The model for the
saturation has been recently revisited to improve TGLF ability for angular momentum
transport predictions, in particular for the residual stress modelling [Staebler et al., 2013].
All the models presented above are fluid codes, necessitating closures and some tuning to
match the linear gyro-kinetic response. The fact that QuaLiKiz is based on a gyro-kinetic
solver [Bourdelle et al., 2002] and can still be run within an integrated framework represents
most of its originality. Nonetheless, for the time being, it is much slower than TGLF and
requires parallel computing when used in the integrated framework. Compared to TGLF,
QuaLiKiz also lacks a more complete magnetic equilibrium and electro-magnetic effects.

4.1.2 Uses of quasi-linear model in integrated simulations

Most of integrated simulations focused on reconstructing the temperature profiles and mod-
elling the turbulent heat transport since temperature and energy confinement are key ele-
ments of the tokamaks overall performance. Numerous simulations showed good agreement
with experimental data especially in the case of standard H-modes (baseline for Iter) [Kin-
sey et al., 2008] but also for hybrid scenarii [Imbeaux et al., 2005] and experiments with
internal transport barriers (ITBs) [Tala et al., 2006] with larger variation of the error between
simulations predictions and experimental measurements [Imbeaux, 2009, Table 1].

Despite the success of these simulations, some open issues remain standing. First of
all, the pedestal is not simulated in H-mode scenarii whereas it represents a significant part
of the total stored energy of the plasma and mostly determined the pressure conditions in
the core plasma as illustrated in Imbeaux [2009], Figure 24. Moreover, consistent transport
under-predictions for ρ ≥ 0.8 in low current L-modes were reported [Holland et al., 2013].
However, non-linear local gyro-kinetic simulations did not exhibits a closer agreement to the
experiment in that case. The role of magnetic fluctuations, i.e. finite β effects, and the fast
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particles should be more deeply studied given recent advances performed with non-linear
gyro-kinetic simulations [Citrin, 2012]. Finally, given the recent advances in quasi-linear
model for integrated modelling, a study of the synergy between all transport channels should
be carried out on broader experimental range as started by Staebler et al. [2013].

4.1.3 Stand-alone quasi-linear modelling

Increasing computational resources enabled these recent years the use of linear gyro-kinetic
simulations as a new standard for turbulence simulations. Therefore, using a quasi-linear
model based on a parallelised linear gyro-kinetic solver such as gene, gkw or GS2 became
possible. From this ability, new results in the simulations of particle and impurity transport
emerged for example on the particle flux reversal with collisionality [Angioni, 2010] or with
changing dominant instability regime [Merz and Jenko, 2010]. For impurity transport, the
importance of electron modes [Villegas et al., 2010] or of the roto-diffusion are now acknowl-
edged [Camenen et al., 2009a, Angioni et al., 2011]. A lot of efforts were also devoted to
angular momentum transport resulting in a better knowledge of its dependencies [Camenen
et al., 2009b, Angioni et al., 2012]. However the quantitative predicting abilities of the
stand alone approach is linked to the stiffness of the turbulent fluxes. Indeed, changing
the gradients of temperature only by a few percent is sufficient to modify significantly the
resulting heat flux. Since the gradients are imposed as an input of the codes in stand alone
simulations, the experimental data pre-processing affects considerably the predicted fluxes
as it will be illustrated in Chapter 5.

As a result, if not perfect, quasi-linear theory allows to gain some insight into tur-
bulent transport mechanisms. Integrated simulations reproduces a wide range of experi-
mental situations with correct orders of the turbulent fluxes. However, the region outside
ρ = /0.85is not consistently modelled by these simulations seemingly due to global effects
[Dif-Pradalier, 2013]. Given all the successes of quasi-linear models coupled to integrated
framework, QuaLiKiz model has been extended to capture the effects of rotation on the
turbulent fluxes and to model the angular momentum flux. Before going into the details
of QuaLiKiz new abilities in sections 4.3 and 4.4, a detailed description of the quasi-linear
fluxes construction is given in § 4.2.

4.2 Main principles for the derivation of quasi-linear fluxes

Since the pioneering papers [Drummond and Pines, 1962, Vedenov et al., 1962], quasi-linear
theory has been developed to infer significant knowledge of the saturated turbulent state
from the linear stability picture. Its validity remains an open field of research [Escande
and Elskens, 2003, Besse et al., 2011]. This section aims to analyse its validity in the
context of tokamak plasmas and to illustrate the construction of the saturated potential
based on turbulence measurements and non-linear simulations. But first, the derivation of
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the quasi-linear flux expression is given in the formalism used to derive the gyro-kinetic
quasi-neutrality equation and the linear growth rates in Chapter 3.

4.2.1 Derivation of the quasi-linear diffusion equation

The quasi-linear theory is a mean field theory that studies the evolution of the distribution
function at an intermediate time scale τ [Casati, 2010]:

• sufficiently large such that τ � γ−1 where γ is the growth rate of the linearly dominant
unstable mode. Equivalently, the typical time scale of study is much larger than the
time scale of the fluctuations;

• sufficiently small such that τ < t0, where t0 is the macroscopic equilibrium evolution
time.

This scale separation is crucial for the decomposition of the distribution function f = f0 + f̄

into an equilibrium and a fluctuating parts with 〈f〉τ = f0. Vlasov equation (3.1) is therefore
averaged over τ leading to:

∂tf0 +
〈
[f̃ , h̃]

〉
= 0 (4.1)

The averaged Poisson brackets can be expressed with the action-angle variables presented
in chapter 2:

〈
[f̃ , h̃]

〉
=
∫ t0+τ

t0

dt
τ

∫ 2π

0

dα
(2π)3 ∂αf̃∂Jh̃− ∂Jf̃∂αh̃ (4.2)

A simple integration by parts on α enables the identification of the Poisson bracket with a
divergence thanks to the periodicity of f̄ and h̄ in α (see § 2.2.3):

〈
[f̃ , h̃]

〉
= ∂J

∫ t0+τ

t0

dt
τ

∫ 2π

0

dα
(2π)3 f̃∂αh̃ (4.3)

By replacing f̄ by its expression derived in (2.30), the Vlasov equation can be written as a
diffusive equation[Bourdelle et al., 2007, Appendix A]

∂tf0 = ∇J ·
∑
n,ω

n=
(

n · ∂Jf0

ω − n ·ΩJ + ıo+

) ∣∣h̃nω
∣∣2 = DQL∆f0 (4.4)

where the Laplacian ∆ is taken in the Action coordinates {Ji}i={1,3}. The property that
〈exp(ı(nα + n′α′) − ı(ωt + ω′t′)) = δ(n + n′)δ(ω + ω′) was used in the previous equation
along with h̃−n,−ω = h̃∗nω. The integral over α embedded in 〈·〉 gives the Dirac function in
n and the integral in time gives the Dirac function in ω. The latter identification is only
possible if the intermediate time scale τ is much longer than the time scale of the fluctuation
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2π/ω (or 1/γ). From (4.4), the quasi-linear fluxes expression:

ΓQL =
〈∑

n,ω
n=
(

n · ∂Jf0

ω − n ·ΩJ + ıo+

)
|h̃nω|2

〉
ξ,λ

(4.5)

is very close from the expression of the linearised gyro-kinetic equation (2.30). |h̃nω|2 cor-
responds here to the saturated potential. Within the quasi-linear framework, this potential
cannot be self-consistently determined since there is no saturation mechanism embedded in
the theory. Therefore, it is constructed based on turbulence measurements and non-linear
simulations [McKee et al., 2001, Hennequin et al., 2004, Casati et al., 2009]. Its construc-
tion is detailed in the next two sections. First, the problem of the frequency broadening of
the resonance is issued with its implications on the turbulent transport. The characteris-
tics of the non-linear k-spectrum of the saturated potential are reviewed later on. On the
other hand, the remaining terms in the expression of ΓQL, correspond to the linear response
described in § 3.3.

4.2.2 Resonances and frequency broadening

Since the saturated state is reached, the frequency ω appearing in (4.4) is real and does not
necessarily corresponds to the linear frequency determined in the previous chapter. In that
case, the quasi-linear diffusion remains localised in phase-space at the resonant surfaces and
there is no large scale transport. But the resonance is broadened by fluctuations forming
islands of iso-perturbed Hamiltonian in phase-space, the KAM tori. According to the KAM
theory [Kolmogorov, 1954, Arnold, 1963, Moser, 1962], when the islands overlap, KAM tori
are reduced and stochasticity appears. If the overlap is large enough, a stochastic sea is
created, enabling the exploration a large fraction of the phase space and creating a large
scale transport. An intuitive criterion for the transition towards chaotic behaviour is the
Chirikov parameter σ: the ratio of the island mean width to the distance between islands.
If σ � 1, KAM tori are not destroyed, the resonating trajectories remain localised within
the islands separatrix. If σ > 1, the system is chaotic, a large scale transport is possible
[Chirikov, 1979].

In our problem, the distance between islands corresponds to the distance between
resonant surfaces d = 1/(kθ ŝ). If the island mean width is in theory a non-linear quantity, a
first estimate is the mode width defined in § 3.2.1. As illustrated in Romanelli et al. [2007,
Appendix A], the ratio w/d is larger than unity for most cases. This means that a large scale
transport via turbulence does happen in standard tokamak conditions. Therefore, taking
into account the frequency broadening of the resonance by the Hamiltonian fluctuations is
crucial for the correct prediction of the turbulent transport by quasi-linear models.

According to turbulent measurements, the frequency spectrum of the turbulent state
is somewhere between Gaussian and Lorentzian [Hennequin et al., 2004, Casati et al., 2009].
Taking a finite imaginary part in ω in the expression of the quasi-linear flux (4.4), is equiva-
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lent to taking a Lorentzian frequency spectrum for the saturated potential, the width of the
Lorentzian being determined by the value of this imaginary part [Casati, 2010, Chapter 3].
This is called renormalised quasi-linear theory[Dupree, 1966, 1968, Orszag and Kraichna,
1967] and it is used in various quasi-linear models for tokamak turbulence [Weiland et al.,
1989, Waltz et al., 1997, Staebler et al., 2005].

In physical terms, taking a Lorentzian shape for the frequency spectrum means that
the transport is diffusive, the spectral width of the turbulence being proportional to k2

[Krommes, 2002], [Casati, 2010, Chapter 4]. The validity of this physical assumption can
be checked by investigating the values of the so-called Kubo number K [Kubo, 1963]. K
quantifies the ratio of the typical time on which particles and waves interact τwp to a
characteristic time τNL of the the non-linear evolution of the advecting field (the fluctuating
electric potential in the case of electrostatic turbulence):

K = τwp
τNL

(4.6)

When the ratio (4.6) is small the particles trajectories do not have the time to be strongly
affected by the field patterns. Therefore, random walk processes accurately describe the
transport phenomena. In the opposite scenario, the particle are trapped into the field patterns
and the transport cannot be represented by a random walks. In tokamak conditions, the
Kubo-like number was found to be lower than unity for a wide range of parameters[Casati
et al., 2009, Citrin et al., 2012], indicating that quasi-linear theory can be used since an
intermediate time scale exists between 1 : γ and t0. A small Kubo-like number also advocates
for a Lorentzian shape of the frequency spectrum.

A study of the cross-phases relations between particles, ions and electrons energy, and
the fluctuating potential [see Dannert and Jenko, 2005, Casati et al., 2009, Figures 4-5] leads
to the conclusion that taking the linear frequency found in the previous chapter for ω in (4.4)
is correct for larger spatial scales (kθρi < 0.5). For smaller scales, the information about
the linear state is lost in the saturated state and ω departs from the linear frequency since
at smaller scales the Kubo number becomes larger, the particles are more easily trapped in
the smaller patterns of the fluctuating potential.

Regarding the width of the frequency spectrum, comparisons between linear and non-
linear gyro-kinetic simulations indicate that the frequency broadening is comparable to the
linear growth rates, determined in the previous chapter, for larger spatial scales [Citrin
et al., 2012]. It is also confirmed by turbulence frequency spectrum measurements [see
Casati, 2010, Chapter 4]. As shown in the next section, larger spatial scales (kθρi < 0.5)
mostly determine the turbulent transport. ω is therefore taken as the complex eigenvalue
found by the linear solver presented in the previous chapter. Only positive growth rates are
calculated thus the causality condition is respected.
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4.2.3 Wave number spectrum and saturated potential amplitude

The perpendicular wave number spectrum of the saturated potential was found to peak
around k⊥ρi = 0.2 by turbulence measurements and non-linear gyro-kinetic simulations
with a k−3

⊥ slope for the cascade towards smaller scales found in non-linear simulations and
experimentally measured [Hennequin et al., 2004, Gürcan et al., 2008, Casati et al., 2009].
This ensures that most of the turbulent transport, induced by the fluctuations of the electric
potential, takes place at larger spatial scales where the hypothesis taken for the frequency:
ω ≡ ωlin is verified.

For the inverse cascade at larger scales, it was found that a linear dependence repro-
duces best non-linear simulations (see Figure 4.1) although earlier turbulence measurements
found a more symmetric shape for the wave number spectrum [McKee et al., 2001].

Building on the diffusive character of the turbulent processes at larger scales, a mixing
length rule is employed to fix the wave number at which the saturated potential is maximum
and its amplitude such that [Krommes, 2002]:

max
(
〈k2
⊥〉Deff(k⊥)

)
≈ max (γ) (4.7)

The relation (4.7) also uses the correspondence between the linear growth rate and the
wave-particle interaction time τwp ≈ γ−1 verified for larger scales.

In QuaLiKiz, the expression for 〈k2
⊥〉, based on the idea proposed by Dannert and Jenko

[2005], has been recently revisited in Citrin et al. [2012] to improve the fluxes estimation at
low magnetic shear. It reads:

〈k2
⊥〉 = k2

θ +k2
r = k2

θ +
(√

k2
θ ŝ

2〈θ2〉+ 0.4 exp(−2ŝ)
√
q

+ 1.5(kθ − 0.2/ρs)H(kθ − 0.2/ρs)
)2

(4.8)

The expression of kr in QuaLiKiz mixing length rule was modified because it was found
that, at low magnetic shear, k2

r = k2
θ ŝ

2〈θ2〉 resulting from the magnetic field lines shearing is
underestimated with respect to non-linear kr [see Citrin et al., 2012, Sec. IV C.]. The factor
0.4 exp(−2ŝ)√

q was found to represent best the non-linear isotropisation at low magnetic shear.
Finally, the term 1.5(kθ − 0.2/ρs)H(kθ − 0.2/ρs))2 (H is the Heaviside function) is present
to ensure a better agreement with non-linear gyro-kinetic simulations at higher kθ values.
This last part is of small impact on the resulting fluxes since most of the transport results
from larger scales structures. This fit performed to match non-linear simulations at lower
values of magnetic shear illustrates a limitation of the mixing length rule model. Indeed,
the saturated potential amplitude is weakened possibly due to a stronger effect of damped
modes and zonal flows at low magnetic shear which cannot be accounted for in the mixing
length model as presented in (4.7).
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Finally, the saturated potential amplitude is renormalised by a fixed parameter in order
to have a correct value of the predicted fluxes [Peeters et al., 2006]. In QuaLiKiz, this renor-
malisation is performed such that the ion heat flux agrees with non-linear gyrosimulation
for the GA-std case [Casati et al., 2009]. This renormalisation parameter is another limita-
tion of the mixing length rule since there is no physical explanation for its value. Building
a reduced model that quantitatively predicts the saturated potential amplitude without
renormalisation appears as real challenge left for future work.

As a conclusion, the quasi-linear models have shown their abilities to predict heat, par-
ticle and momentum fluxes in various experimental conditions validating the choice to model
the transport phenomena by diffusive processes. However, turbulence measurements and
non-linear simulations indicate that the physical picture is not complete with this approach.
Indeed, the frequency spectrum of the density fluctuations departs from a Lorentzian shape
[Casati et al., 2009] and non-linear heat fluxes departs from a Gaussian statistics [Abiteboul
et al., 2013]. Building on the successes of the quasi-linear approach, one can think that non-
diffusive processes take place at smaller spatial scales than those crucial for the evaluation
of the turbulent transport. This is supported by the fact that, at smaller spatial scales, the
non-linear characteristic times should be smaller due to a smaller characteristic size for the
field patterns. Therefore, the Kubo-like numbers should be higher.

4.3 Quasi-linear fluxes in presence of rotation in QuaLiKiz
formalism

Including the effects of a sheared rotation of the plasma on the turbulent fluxes was the
main objective of this work. They will be illustrated in this section and the next. In this
section attention is focused on the derivation of the momentum flux, and the modification
of the saturated potential by a sheared rotation.

The expression of the particle and heat fluxes such as used in QuaLiKiz and extensively
studied in previous works by Bourdelle et al. [2007], Casati et al. [2009], Citrin et al. [2012]
is reminded:

Γs =<
〈
nsf̄s

ıkθφ̄

B

〉
(4.9a)

Qs =<
〈
Tsf̄s

ıkθφ̄

B

〉
(4.9b)

The factor kθ/B appearing in the relations above and not in (4.4) comes from the expression
of the flux ψ in the circular equilibrium used in QuaLiKiz. Multiplied by the fluctuating
potential φ̄, the ratio gives the fluctuating electric velocity nωE . Therefore, the quasi-linear
fluxes can be interpreted as the advection of the quantity of interest (density, energy, angular
momentum) by the fluctuating electric velocity thanks to this reformulation.
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4.3.1 The momentum flux derivation

Calculating the angular momentum flux, Π‖, is the main objective of the present work,
explaining all the modifications to the QuaLiKiz code presented in this work. The equal
importance of the eigenfunction and linear growth rate modifications by the plasma rotation
will be illustrated. As shown in Peeters et al. [2011], the momentum flux is finite only if the
parallel symmetry is lost. In QuaLiKiz framework, this is possible only in presence of a finite
(sheared or not) parallel rotation and/or E×B shear. In these cases, the eigenfunctions are
shown to loose their symmetry in θ (see § 3.2.2). The impact of the eigenfunction asym-
metrisation will be illustrated in the next section, but let us concentrate on the expression
of the angular momentum for now.

Rigorously, the toroidal momentum flux Πϕ is the quantity to calculate since the total
toroidal momentum is a conserved quantity [Abiteboul et al., 2011]. In large aspect ratio
tokamaks, the flow is mostly parallel [Newton et al., 2010]. Therefore, the parallel component
of the toroidal momentum flux is much larger than its perpendicular one; making the parallel
momentum flux Π‖ a good proxy of Πϕ:

Π‖ =
∑
s

<
〈
msRv‖f̄s

ıkθφ̄

B

〉
(4.10)

f̄s =
∑

n esJ0 · n∂Jf
s
0

ω−nn·ΩJ+ıo+ φ̄ is the perturbed distribution function determined by the
linearised gyro-kinetic electro-neutrality equation. R is the tokamak major radius averaged
over a flux surface. In the large aspect ratio approximation, the radius of the magnetic axis
R0 is used instead of R disregarding the corrections in ε brought by the latter term.

Using the formalism developed in § 3.3, the complete expression of Π‖ is:

Π‖ =−
∑

ε‖=±1,s,n
nsms

( nq
rB

)2
〈
ε‖
√

1− λbξe−ξ
(

1 + 2
u‖

vTs
ε‖
√
ξ(1− λb) +

u‖

vTs

2
(2ξ(1− λb)− 1)

)
[
R∇ns
ns

+
(
ξ −

u‖

vTs

(
2ε‖
√
ξ(1− λb)−

u‖

vTs

)
− 3

2

)
R∇Ts
Ts

+

2
(
ε‖
√
ξ(1− λb)−

u‖

vTs

)
R∇u‖
vTs

+ $

nωds

]
=
(

1
ω − nΩJ(ξ, λ) + ı0+

) ∣∣φ̄nω∣∣2〉
ξ,λ,kr

(4.11)

Compared to (3.32) and (3.39), the expression of the momentum flux has the opposite parity
in ξ and λ due to the multiplication by v‖ =

√
ξ(1− λb). Otherwise, the expression is

similar. The same techniques as before are then employed. The contributions from trapped



68 Quasi-linear modelling of the turbulent fluxes

and passing particles to the momentum flux are treated separately:

Π‖ = −
∑

ε‖=±1,s,n
ns
√

2msTs

( nq
rB

)2 {
Js,tr

∫ dkr
2π B0(kθρs)B0(krδs)|φ̃n(kr)|2

+
∫ ∞
−∞

dk∗√
π
e−k

∗2
∫ ∞
−∞

dρ∗√
π
e−ρ

∗2
<(Js,pass(k∗, ρ∗))B0(kθρs)

∣∣φ̃n∣∣2
(4.12)

The expression for Js,pass is detailed in (4.13). Due to the multiplication of the functionals
by v, the even functions of (3.32) — Z1(v), Z2(v), Z3(v) — become odd functions —
vZ1(v), vZ2(v), vZ3(v) — in the momentum flux expression. Combined with the fact the
even functions are multiplied by u‖ or ∇u‖, the momentum flux is zero in the absence of
rotation as expected [Peeters et al., 2011].

Js,pass = 2
fθ

[
ATs

V+Z2(V+)− V−Z2(V−)
V+ − V−

+
(
Ans −

3
2ATs −

$

nω̄ds

)
V+Z1(V+)− V−Z1(V−)

V+ − V−

]
+ 4

3fθ

[
u‖

vTs
ATs

Z3(V+)− Z3(V−)
V+ − V−

+
(
Au +

u‖

vTs

(
Ans −

5
2ATs −

$

nω̄ds

))
Z2(V+)− Z2(V−)

V+ − V−

]
+

u‖

fθvTs

[
u‖

vTs
ATs

V+Z3(V+)− V−Z3(V−)
V+ − V−

+
(

2Au +
u‖

vTs

(
Ans −

7
2ATs −

$

nω̄ds

))
V+Z2(V+)− V−Z2(V−)

V+ − V−

]
−

2u‖
fθvTs)

[
u‖

vTs
ATs

V+Z2(V+)− V−Z2(V−)
V+ − V−

+
(

2Au +
u‖

vTs

(
Ans −

5
2ATs −

$

nω̄ds

))
V+Z1(V+)− V−Z1(V−)

V+ − V−

]
(4.13)

For trapped particles, the multiplication by v‖ =
√
ξ(1− λb) implies there is no contribution

to the momentum flux at lowest order in ε because the corresponding terms are odd in ξ.
However, the term in

√
ε is even in ξ. Therefore the trapped particles bear a small net

contribution:

Js,tr = 2ω̄b

[(
Au +

u‖

vTs

(
Ans −

5
2ATs −

$

nω̄ds

))
Z2(z)
z

+
u‖

vTs
ATs

Z3(z)
z

]
(4.14)

Given the expressions of the passing and trapped particle contributions to the momentum
flux, (4.11) can formally be written in the form:

Π‖ =
∑
s

msnsR(−χ‖∇u‖ + V‖u‖) + ΠRS (4.15)

χ‖ represents the momentum diffusivity, V‖, the momentum pinch and ΠRS being the resid-
ual stress.

However, the identification of χ‖, V‖ and ΠRS with (4.11) is not as straightforward as it
may appear. From (4.13) and (4.14), it is clear that Π‖ contains terms directly proportional
to u‖ and ∇u‖. They are called Πu and Π∇u. They do not contain all contributions from u‖

and ∇u‖. Indeed, the remaining terms are proportional to the linear eigenfunction shift x0

which, itself, is proportional to ∇u‖, u‖ and γE as expressed by (3.28) from § 3.2.1[Gürcan
et al., 2007]. These terms, proportional to the eigenfunction shift, are called Πx0. They
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correspond to the only terms which are not multiplied by u‖ or ∇u‖ in (4.13). If the E×B
shear is the only symmetry breaker, Πx0 ≡ ΠRS . Otherwise, Πx0 ∝ u‖,∇u‖, γE cannot be
identify with ΠRS as Π∇u (resp. Πu) does not contain all conductive (resp. convective)
contributions to the momentum flux. Comparing the results given by this direct separation
with the actual conductive and convective contributions to the momentum flux gives an
estimate of the importance of the eigenfunction contribution as evaluated in § 4.4. As for
the residual stress, it would be strictly zero in the absence of a shift of the eigenfunctions.

4.3.2 Modification of the saturated potential in presence of rotation

The saturated potential is also modified by the introduction of a finite rotation of the plasma
on two points: the frequency spectrum and the mixing length rule.

As explained in the previous section, the frequency spectrum is a Lorentzian of width
γ modified at low magnetic shear values. In the case of simulations with large E×B shear,
the width is modified. Indeed, if γE > γ, the shear rate defines a shorter time scale than
the linear growth rate. The width of the Lorentzian is therefore taken as max(γ(k), γE).
This rule would need to be validated against non-linear gyro-kinetic simulations. It implies
a high resolution diagnostic for the frequency that deals correctly with the implementation
of the E ×B shear. To our knowledge, such a diagnostic does not exist yet but should be
developed to address more quantitatively the evolution of the saturated potential frequency
spectrum with the E×B shearing.

The mixing length rule is linearly modified by the modification of the linear growth
rate. The definition for the mixing length rule is also modified by the linear eigenfunction
shift x0 proportional to the symmetry breakers (3.28). Indeed, the linear eigenfunction
enters the expression of 〈k2

⊥〉 in (4.8) through 〈θ2〉:

〈θ2〉 =
∫
θ2φ̃dθ∫
φ̃dθ

= 2d2

<(w2)
Γ(0.75)
Γ(0.25) + =(x0)2d2

<(w2)2 (4.16)

Therefore, the symmetry breakers influence 〈k2
⊥〉 through the imaginary part of the eigen-

function shift =(x0) and the real part of the mode width, the latter being proportional to the
growth rate found in the fluid model. Thus, both γ (see Sec. 3.3.2) and 〈k2

⊥〉 are modified
in the presence of finite sheared rotation.

The modification of φ̃sat induced by E × B shearing are plotted and compared to
non-linear gkw saturated potential [Casson et al., 2009] in Figure 4.1. In the simulations
presented here, GA-std case parameter set has been employed with u‖ = ∇u‖ = 0. Three
values of E ×B shear are chosen corresponding to an experimentally relevant range of γE
from 0 to 0.5R/vTi. The kθρs extent covered in Figure 4.1 corresponds to the transport
relevant spectral range.
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Figure 4.1: QuaLiKiz φ̃sat estimate (left panel) and gkw non linear saturated potential. Simulations
with E×B shear only. γE values in vTi/R units. gkw data: courtesy of F.J. Casson[Casson et al.,
2009]

For both QuaLiKiz and non-linear gkw, as E×B shear is increased, the amplitude of
the saturated potential is reduced at the largest scales (lowest wave numbers). In QuaLiKiz,
this is due to a shift of the maximum of the saturated potential towards smaller scales
corresponding to the usual picture of the non-linear effect of the E × B shear. In gkw,
a flattening of the saturated potential amplitude is rather observed around its maximum.
However, in the case of pure ITG, i.e. adiabatic electrons, a spectral shift of the maximum
towards smaller scales is observed in gkw [Casson et al., 2009]. Both codes exhibit a weak
dependence of their saturated potential with γE at kθρs > 0.2. Quantitatively, in QuaLiKiz,
the reduction of the saturated potential maximum amplitude is underestimated at lower
E×B and overestimated at higher E×B shear values.

Despite the quantitative differences, the non-linear quenching with E × B shear is
captured qualitatively with a shifted eigenfunction calculated in the fluid limit and a simple
mixing length rule estimate for the saturation level. In the next section, the quasi-linear
fluxes are compared to non-linear simulations and the influence of the saturated potential
of the fluxes is further discussed.

4.4 Validation of QuaLiKiz fluxes versus quasi-linear and
non-linear simulations

To finally evaluate the model presented above, the resulting heat, particle and momentum
fluxes are compared to non linear simulations. First, the impact of the E ×B shear alone
is studied in Figure 4.2, i.e. u‖ and ∇u‖ are set to 0. GA std case parameters are used to
compare QuaLiKiz predictions with published results from non-linear gyro [Staebler et al.,
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Figure 4.2: (a) Ion and electron heat fluxes, particle flux and (b) angular momentum flux for GA-
std parameters. Here Π‖ ≡ ΠRS since u‖ = ∇u‖ = 0. The solid lines are QuaLiKiz results, the
stars ∗ are gkw data from [Casson et al., 2009] and the crosses + are gyro data from [Staebler
et al., 2013]. a/cs units have to be multiplied by 3/

√
2 to have their R/vTi equivalent.

2013] and gkw[Casson et al., 2009]. The conductive and convective contributions to the
momentum fluxes are analysed later on and compared to non-linear gkw findings. The
influence of the eigenfunction shift on both contributions will also be discussed.

4.4.1 Evolution of the fluxes in presence of radial electric field shearing

For GA-std case parameters, QuaLiKiz ion and electron heat and particle fluxes are smoothly
reduced and quenched for γE > 0.4cs/a as illustrated in Figure 4.2(a). This quench value is
lower than what is found by gyro simulations (crosses in Figure 4.2(a)[Staebler et al., 2013,
Figure 1]) but is in agreement with the value obtained with gkw(stars in Figure 4.2(a)
[Casson et al., 2009, Table II]) using non-linear gkw. QuaLiKiz predictions should be
compared in priority against gkw since gyro was run with Miller’s equilibrium in Staebler
et al. [2013] whereas QuaLiKiz and gkw use an ŝ − α equilibrium. QuaLiKiz predictions
for the heat and particle fluxes is somewhat lower than both non-linear gkw and non-linear
gyro. Please notice that QuaLiKiz ion heat flux is fixed to gyro level for γE = 0 in the
presented GA-std case. In gyro, the fluxes reduction with increasing E×B shear is notably
slower than the reduction found with gkw and QuaLiKiz which are almost equivalent as
illustrated by Figure 4.2(a). This may be caused by the different equilibrium employed.

The angular momentum flux Π‖ is presented in Figure 4.2(b). As u‖ and ∇u‖ are
set to zero, Π‖ corresponds to the residual stress ΠRS in this case. In absolute value, the
momentum flux increases at first with γE due the E × B shear asymmetrisation of the
eigenfunction. Then, the momentum flux is slowly reduced due to the turbulence quenching
by the E × B shear. QuaLiKiz is in qualitative agreement with non-linear simulations.
Quantitatively, QuaLiKiz overestimates the momentum flux found with gkw by a factor 2
for γE ≥ 0.2R/vTi. The agreement with gyro simulations is better but is explained by the
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fact that fluxes are found higher using Miller’s equilibrium rather than ŝ − α [Lapillonne
et al., 2009]. For experimental interpretations and predictions, the fact that ŝ − α and
Miller’s equilibria give substantially different momentum fluxes calls for the implementation
of a more complete magnetic equilibrium in QuaLiKiz and more comparisons between the
momentum fluxes computed with each equilibrium. Indeed, the momentum flux has been
shown to be particularly sensitive to the magnetic equilibrium geometry [Camenen et al.,
2009b]. Nevertheless, gyro ion heat flux is surprisingly lower than gkw’s in the absence of
electric field shearing. The discrepancy between QuaLiKiz and gkw is thought to be related
to the overestimation of the saturated potential amplitude at lower kθρs and intermediate
values of γE in QuaLiKiz illustrated in the previous section (see Figure 4.1). All in all, the
E × B induced residual stress for γE < 0.05 provided by QuaLiKiz is in agreement with
non-linear models. At larger values, the prediction is overestimated by a factor ∼ 2. We
may stress that computing successfully the E × B induced residual stress with a reduced
model, compatible with integrated modelling, is a very recent breakthrough [Staebler et al.,
2013]. The mechanisms by which E×B shearing transports momentum can be understood
as a creation of a poloidal asymmetry. The idea that a shift in the ballooning angle θ0 due
the E×B shearing is responsible for both turbulence quenching and momentum driving has
also been successfully used in Staebler et al. [2013].

4.4.2 Conductive and convective contributions to the momentum flux

Now, the effect of ∇u‖ and u‖ on the momentum flux are analysed. To perform this analysis,
the following non dimensional quantities are employed: The Prandtl number χ‖

χi
and the

pinch number RV‖
χ‖

. The Prandtl number is the ratio of the viscosity to the diffusivity and
the pinch number the ratio of the momentum convection to the viscosity. Therefore, for
a given heat flux (mainly diffusive), the Prandtl gives the stiffness of the momentum flux
to the velocity gradient. The pinch number represents the balance between diffusive and
convective behaviour for the momentum flux. They facilitate the comparison with non-linear
simulations and with experimental analysis where they have been extensively investigated
as the saturated potential does not appear in these ratios.

Isolating the conductive and convective contributions to the momentum flux is not
straightforward due to the eigenfunction shift dependences presented in § 4.3.1 contributing
to the momentum flux (Equations (4.13) and (4.14)). To evaluate the total conductive part
of the momentum flux, a simulation with only ∇u‖ as a symmetry breaker (u‖ = γE = 0)
is performed. The ratio of the momentum flux to the ion heat flux then gives the Prandtl
number. To evaluate the total convective part, a simulation with only u‖ – ∇u‖ = γE = 0
– is carried out. The ratio between the resulting momentum flux to the previous ∇u‖-
only momentum flux gives the pinch number. Using this method, the contribution of the
eigenfunction shift to the conductive and convective parts of the momentum flux can be
quantified. In the following, this method is called the 2-point method since it is a regression
based on two points of the parameter space.



4.4 Validation of QuaLiKiz fluxes versus quasi-linear and non-linear simulations 73

0 1 2 3 4
0.6

0.7

0.8

0.9

1

1.1

−R∇ n
e
/n

e

 

 

χ
||
/χ

i
 2−point method

χ
||
/χ

i
 direct separation

(a)

0 1 2 3 4
−5

−4

−3

−2

−1

0

−R∇ n
e
/n

e

 

 

RV
||
/χ

||
 2−point method

RV
||
/χ

||
 direct separation

(b)

Figure 4.3: (a) Prandtl (red crosses) and (b) pinch number (green circles) calculated with the direct
separation method (dashed curves) and with the 2-point method[Peeters et al., 2011] (plain curves)

Two QuaLiKiz simulations based on GA-std case parameter set are performed for the
validation of the conductive and convective contributions to the momentum flux calculated
by the 2-point method:

• one with −R∇u‖vTi
= 1, u‖

vTi
= 0;

• one with −R∇u‖vTi
= 0, u‖

vTi
= 0.2.

As explained in Sec. 4.3.1, a direct extraction of a Π∇u and a Πu – corresponding to diffusive
and convective contributions to the momentum transport without taking the eigenfunction
shift effect into account – is possible in QuaLiKiz. This method called the direct separation
method is compared to the 2-point method in Figure 4.3 to give an idea of the impact of the
eigenfunction shift on χ‖ and V‖.

The normalised density gradient R/Ln was varied from 0 to 4. Indeed, results from
non-linear gyro-kinetic simulations indicate a strong correlation between R/Ln and the
pinch number [Peeters et al., 2007, 2011], the Prandtl number being weakly correlated. In
Figure 4.3, the Prandtl number is displayed with crosses and the pinch number with circles,
the results from the 2-point method being in plain curves and the estimations via direct
separation in dashed curves.

The Prandtl number deduced from the 2-point method is found to be close to 0.7
agreeing with quasi-linear [Peeters and Angioni, 2005] and non-linear simulations[Peeters
et al., 2011]. Due to the omission of the eigenfunction shift effect, the direct separation
in QuaLiKiz gives a higher Prandtl number, close to one, as predicted in early theoretical
calculations[Mattor and Diamond, 1988]. Using the 2-point method, the pinch number RV‖χ‖ is
found to vary from −2 to −5, with a strong correlation with R/Ln, as in [Peeters et al., 2011].
When neglecting the eigenfunction shift effects, i.e. with the direct separation technique, the
correlation with R/Ln is inverted. This behaviour is all the more surprising that simple fluid
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models considering k‖ = 0 recover the right R/Ln correlation Peeters et al. [2007, 2009a].
This inverted correlation may be caused spurious effects of the direct separation technique
(since part of the functionals are cut out for the fluxes computation in this case). Taking the
ratio of the momentum fluxes amplifies the error. The eigenfunction shift effect is therefore
important to have the correct dependencies and values of the different contributions to the
momentum flux. Hence, the fact that QuaLiKiz correctly models the R/Ln impact and
gives correct values for both the Prandtl and the pinch numbers, is a strong indication that
the model used in QuaLiKiz is appropriate to compute the momentum fluxes. Additional
comparisons with non-linear gyro-kinetic simulations could be performed for various safety
factor or magnetic shear values. However, due to the lack of other strong correlations in
non-linear results, such comparisons were not carried out in this work.

*
* *

In this chapter, the quasi-linear approximation was briefly presented. Thanks to nu-
merous theoretical works and comparisons with non-linear simulation, quasi-linear theory
has been validated in tokamak plasmas conditions, at least at larger spatial scales, most
relevant for turbulent transport. At smaller scales, the quasi-linear approximation starts
failing due to the loss of the time scale separation, particle being trapped in the field pat-
terns. Since the fluxes are mostly induced by the large scales structures, the quasi-linear
estimations are comparable to non-linear simulations. The momentum flux calculated with
QuaLiKiz successfully reproduces non-linear simulations, including the momentum diffu-
sivity, the momentum pinch and the residual stress. For the conductive and convective
parts of the momentum flux, two methods are compared to underline the importance of
the eigenfunction shift contribution. The influence of E ×B shearing on particle and heat
fluxes is also addressed. The resulting quenching values and the fluxes amplitudes are in
agreement with non-linear calculations given the variations between non-linear gyro-kinetic
simulations.



5
Comparing quasi-linear
momentum fluxes with

experimental results

This chapter is focused on comparing momentum flux modelled by QuaLiKiz with
experimental results. Such a comparison is performed through the analysis with QuaLiKiz
of NBI modulations experiments carried out at JET by Tala et al. [2009]. Before comparing
QuaLiKiz predictions against experimental measurements, it appears essential to introduce
the main diagnostics used to provide the velocity data.

5.1 What experiments to characterise the angular momen-
tum?

Before confronting QuaLiKiz results to the experiments, the diagnostics making the com-
parison possible are briefly presented to illustrate the issues linked to the analysis of the
experiments. The importance of the experiment studied later on the course of this chapter
is then put in context. At this point, a brief review of the evolution of the momentum
transport understanding is given.

5.1.1 What diagnostics to measure the plasma rotation?

Two major techniques employed to measure the plasma rotation are presented in this first
section. Both techniques are active diagnostics and use the Doppler frequency shift of the
signal to access the velocity. The techniques are otherwise quite different from one another:
Charge eXchange Recombination Spectroscopy (CXRS) analyses the spectroscopic signature
of the interaction of a highly energetic neutral beam with the plasma whereas Doppler
reflectometry (DR) analyses the back-scattering of a centimetric wave by the plasma. The
measured velocities are also different: CXRS captures the toroidal bulk velocity and in some
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Figure 5.1: Charge exchange recombination lines of sight (yellow) and neutral beam injector (blue)
in JET [JET EFDA, 2013]

cases also the poloidal [Viezzer et al., 2012] whereas DR gives access the fluctuations velocity
leading to the radial electric field as explained in the following.

5.1.1.1 Charge eXchange Recombination Spectroscopy

Charge exchange spectroscopy consists in launching a beam of highly energetic particles
in the plasma, typically at 55 keV in Tore Supra and up to 140 keV in JET [von Heller-
mann et al., 2005] and analysing the electron recombination emission of the plasma with a
spectrometer as illustrated in Figure 5.1. Various spectral lines of light impurities can be
measured. For signal over noise ratio quality reasons, they correspond to the main impurities
of the plasma: Carbon (C VI) for carbon-wall machines, Boron after boronisation [Angioni
et al., 2011], or the injected impurity: Helium (He II), Neon, Argon, in the case of impurity
seeding experiments. However, advances in the Dα emission modelling enabled for a direct
measurement of the deuterium velocity in DIII-D [Grierson et al., 2012, 2013]. CXRS mea-
sures the temperature of the considered ion via the broadening of the spectral lines, hence
not directly the main ion temperature. Since the recombination emission wavelengths are
documented with accuracy in the atomic database (ADAS), the Doppler shift of the consid-
ered spectral line can be precisely determined. The ion rotation is measured in the direction
of the spectrometer lines of sight which is typically tangential. As the radial component of
the particle velocity is much smaller than its toroidal component, the toroidal velocity of
the considered ion species can be extracted. Systems resolving the poloidal velocity are also
developed example [Viezzer et al., 2012, Bortolon et al., 2013].
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Using Helium plasmas, the equivalence between impurities and main ions velocities
was shown to fail in low plasma current discharges with high temperature gradients i.e.
significant only at the edge of H-mode plasma since they exhibit large pressure gradients
[Kim et al., 1994]. More recent experiments on DIII-D, where a direct measurement of
Deuterium velocity is possible, showed that deuterium and carbon velocities can be different
either in ECH H-modes or more significantly in the presence of ITBs [see Grierson et al.,
2012, Figures 8,14]. In contrast, the temperature of Carbon is shown to coincide with the
temperature of Deuterium in all cases.

In TCV, the diagnostic neutral beam injector was designed to access the plasma up
to the high field side of the machine since it has no intended contribution to the plasma
heating. Therefore, the in-out asymmetry of the toroidal rotation can be measured and be
linked to the poloidal rotation thanks to neoclassical theory [Kim et al., 1991]. This way the
poloidal rotation can be inferred from the toroidal rotation shunting the difficulties linked
to the measurement of the rather small poloidal velocities. Due to the good accuracy of
the method, an estimation of the radial electric field is possible via the radial force balance
equation [see Bortolon et al., 2013, Figure 6]. For radial electric field measurements, a new
high resolution poloidal charge exchange has been recently installed in ASDEX Upgrade
[Viezzer et al., 2012]. As the radial electric field is thought to play an important role in
the L-H transition and the active CX signal is attenuated with decreasing plasma radius,
the poloidal charge exchange gives access only to the plasma edge. Combining poloidal
and toroidal CX measurements enables for a precise reconstruction of the radial electric
field which can be compared to the Doppler Reflectometry measurements [see Viezzer et al.,
2013, Figure 5].

5.1.1.2 Doppler reflectometry

Reflectometry is an active technique developed to analyse the density fluctuations in the
tokamak plasmas [see Conway, 2006, for an overview]. A microwave is launched in the
plasma. Since the transmission coefficient of microwaves decreases with the plasma density,
a cut-off layer is defined inside the plasma and the wave is reflected. The cut-off density
depends also on the frequency of the wave. Therefore, the density profile is reconstructed
with a scan in frequency and a measure of the time of flight of the wave [Moreau et al.,
2000]. Reflectometry can also be used at fixed frequency to access information about density
fluctuations at the cut-off surface. Under the Born approximation, the phase variation of
the reflected wave is proportional to the density fluctuations δn/n[Sabot et al., 2006]. If
the equilibrium density is known, the density fluctuations can be followed in time with this
technique. However, accessing the rotation velocity of the fluctuations is not possible with
this technique due to the lack of wave number selection.

To have access to the fluctuations velocity, back-scattering techniques are combined
with reflectometry. Indeed, the fluctuations of density are known to induce back-scattering
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Figure 5.2: Schematic representation of the Doppler reflectometry technique [Vermare et al., 2011]

of the electro-magnetic waves [Truc et al., 1992]. Back-scattering is a also known for its wave
number selecting abilities since Bragg. By launching the microwave in an oblique direction
(with respect to the normal of the iso-index surfaces), the back-scattered signal is decoupled
from the reflected signal enabling its analysis. Back-scattering processes are amplified in
the vicinity of the cut-off layer by the amplification of the incident field and they remove
only a negligible amount of energy from the incident wave along its way to the cut-off layer.
Therefore, only the back-scattering of the cut-off vicinity is collected and the good spatial
resolution of reflectometry is conserved [Vermare et al., 2011]. As illustrated in Figure 5.2,
the back-scattered wave is selected following the Bragg relation: 2ki = −kf where ki is the
local wave-number of the probing wave and kf is the wave-number of the fluctuations. By
varying the angle of the incident wave the selected wave number is changed and a spectrum in
wave-number of the fluctuations can be constructed [see Conway et al., 2004, for a complete
review on DR]. The wave number spectrum of QuaLiKiz saturated potential was constructed
based on this kind of measurements [Casati et al., 2009] as discussed in § 4.2.3.

Information on the fluctuation velocity lies in the frequency spectrum of the back-
scattered signal. The incident wave frequency spectrum is indeed broadened by the fluctu-
ations and shifted by Doppler effect: ∆ω = kf · vf where vf is the group velocity of the
fluctuations. Measuring the Doppler shift gives access to the group velocity of the fluctu-
ations. As detailed in Chapter 2, the fluctuations velocity essentially corresponds to the
E×B velocity. Hence, Doppler reflectometry gives a measure of the radial electric field.

The accessible size of fluctuations ranges from k⊥ ∼ 2 cm−1 to 10 cm−1, in the range
of TEM turbulence. Radii from r/a ≈ 0.5 to the edge can be probed with this technique.
Thus, a combination with CXRS data is possible to access the poloidal velocity via the
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radial force balance equation as performed in Fenzi et al. [2011, Figure 8]. As previously
mentioned, a comparison between the radial electric field calculated from DR measurements
was recently compared to the radial electric field from CXRS measurements in the plasma
edge of ASDEX Upgrade giving a convincing validation on both techniques [Viezzer et al.,
2013, Figure 5].

5.1.2 A few words about experimental and numerical analysis of angular
momentum transport

Thanks to the progress of computing technology and the improvement of diagnostic tech-
niques over the past decade, simulations and experimental values of the momentum can be
obtain both with sufficient precision such that quantitative comparisons are possible. In-
terestingly, they have changed the understanding of the momentum transport in tokamak
plasmas.

A link between momentum and heat transport has been clearly established experimen-
tally on various machines [Suckewer et al., 1981, Burrell et al., 1988, Weisen et al., 1989,
Scott et al., 1990, Kallenbach et al., 1991, Nagashima et al., 1994, de Vries et al., 2008] and
explained theoretically [Mattor and Diamond, 1988]. Nevertheless, the experimental values
of the effective Prandtl number Preff = χϕ,eff/χi,eff = Πϕ∇Ti/Qi∇u‖ have been reported
ranging from 0.1 to 0.4 in the gradient region [de Vries et al., 2006], significantly below
Pr = χϕ/χi = 1 estimated in early theoretical works [Mattor and Diamond, 1988]. The
discrepancy between the effective Prandtl number and the theoretical one is a strong indi-
cation of the existence of an additional inward mechanism for the momentum transport. An
inward convective component i.e. a pinch of the angular momentum transport of significant
value was first evidenced experimentally by shifting the NBI torque from on-axis to off-axis
in JT-60U[Nagashima et al., 1994]. Thanks to the development of gyro-kinetic simulations
(see § 4.1), it is now well determined numerically [Peeters et al., 2007, 2011]. Dedicated
torque modulation experiments [Tala et al., 2007, Yoshida et al., 2007, Solomon et al., 2009]
and time evolution studies of the rotation profile after applying magnetic perturbations
[Kaye et al., 2009] enabled for an experimental characterisation of the momentum pinch.
In particular, its strong dependence with the density peaking predicted by theory [Peeters
et al., 2011] is confirmed [Kaye et al., 2009, de Vries et al., 2010, Tala et al., 2011, Weisen
et al., 2012], as its weak dependence with collisionality (see Kluy et al. [2009] for simulations
and Solomon et al. [2010], Tala et al. [2011] for experimental results).

However, contrary to particle transport, the picture of momentum transport is not
complete with only diffusive and convective components. Indeed, tokamak plasmas can spin
up without any significant external injection of angular momentum [Lee et al., 2003, Rice
et al., 2004, 2007]. Dedicated experiments [Solomon et al., 2007] shows that a finite torque
is needed to maintain zero rotation in a tokamak plasma proving de facto the existence of
the so-called residual stress. The explanation for the existence of the residual stress reflects
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the fact that angular momentum conservation is only guaranteed in an axisymmetric system
contrary to particle or energy conservation. Therefore, any breaking of the toroidal symme-
try will generate a momentum flux [Peeters and Angioni, 2005, Hahm et al., 2007, Diamond
et al., 2008]. Among the non-diffusive, non-convective sources of momentum transport, the
E × B velocity shearing is a strong parallel symmetry breaker as illustrated in Chapter 2
which is not necessary linked to the parallel velocity as illustrated by the radial force balance
equation:

Er = vϕBθ − vθBϕ + ∇pi
eini

(5.1)

Its contribution to the residual stress has been quantified numerically [Gürcan et al., 2007,
Casson et al., 2009] and experimentally [Yan et al., 2010] despite the difficulty to measure
a radial electric field shear.

Other symmetry breakers which are not included in this work contribute to the residual
stress. The up-down asymmetry of the equilibrium generates also a net angular momentum
as demonstrated by Camenen et al. [2010] by breaking the parallel symmetry. Going to
higher order in ρ∗, the profile shearing effect in global simulations is also an angular mo-
mentum source [Gürcan et al., 2010a], due to the induced tilt in the ballooning angles of
the eddies as illustrated in Camenen et al. [2011].

The toroidal field ripple breaks the toroidal invariance of tokamak geometry. There-
fore, angular momentum is exchanged between the coils and the plasma [see Abiteboul,
2012, Chapter 6] creating an opposite torque on the fixed coils than the one in the plasma
such that the total angular momentum is conserved. It was illustrated byde Vries et al.
[2010], Fenzi et al. [2011] experimentally where a scan in toroidal field ripple was performed
and resulted in the modification of the toroidal momentum up to the centre of the plasma.

The interaction of the plasma with the boundaries is also a significant source of angular
momentum as illustrated by the variation of the boundary conditions in a reduced model
Gürcan et al. [2010b] and confirmed by non-linear gyro-kinetic simulations [Abiteboul et al.,
2013] and turbulence and rotation measurements [LaBombard et al., 2004, Hennequin et al.,
2010]. Moreover, thermal orbit loss are also a momentum source worth mentioning [de-
Grassie, 2009]. Finally, the poloidal asymmetry of the turbulence intensity in tokamaks
creates a poloidal asymmetric flow in the scrape of layer [Bufferand et al., 2011]. The scrape
of layer back-reaction on the plasma core can be seen as an asymmetric boundary condition.
Due to the complexity and numerical cost of an accurate and consistent description of core,
edge and scrape of layer dynamics, such a mechanism remains yet to be modelled.

Therefore, there are numerous mechanisms responsible for a torque in addition to
the tangential NBI, which could explain the current discrepancy between simulations and
experiments in the evaluation of the momentum diffusivity and pinch.
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5.2 Experiments analysis with QuaLiKiz

5.2.1 NBI modulation experiments in JET

The NBI modulation experiment that demonstrated the existence of an angular momentum
pinch in JET [Tala et al., 2007] is analysed. In this JET shot, the amplitude of the NBI
was modulated to produce a modulated plasma rotation. Two quantities can be measured:
the amplitude and the phase of the modulated toroidal velocity. The phase and amplitude
are modelled assuming various combinations of χϕ and Vpinch and zero residual stress using
JETTO [Cenacchi and Taroni, 1988]:

• either with only momentum diffusivity i.e. χϕ/χi = χϕ,eff/χi ≈ 0.25

• or with both momentum diffusivity and pinch. χϕ/χi is chosen to be equal to unity
[Tala et al., 2007] as in early theoretical works [Mattor and Diamond, 1988] or is
adapted to match the predicted gyro-kinetic values [Tala et al., 2009]. In the later case,
a pinch velocity of 15 m/s is found by matching the experimental effective diffusivity
χϕ,eff or, equivalently, the modulated toroidal velocity amplitude.

As illustrated in Tala et al. [2007] and Tala et al. [2009], both the amplitude and the phase
of the experimental toroidal velocity are only correctly reproduced when a momentum pinch
is taken into account, the disagreement in the case of a diffusive momentum being clearer
on the phase signal. The residual stress was neglected in Tala et al. [2007, 2009] analysis
since it was considered that the amplitude of the velocity modulation is small enough not
to change the temperature and density profiles or the turbulent state.

Quasi-linear gyro-kinetic simulations are performed with QuaLiKiz. The global pa-
rameters are the ones used in gkw for the determination of χϕ presented in Tala et al.
[2009, Figure 3]. The main input parameters of the simulation are displayed in Figure 5.3.
All parameters are taken from JETTO interpretative run performed for gkw simulation
of [Tala et al., 2009] with the exception of Ti = Te as there is no evidence from the CX
and ECE signals for Ti 6= Te. Since QuaLiKiz has an ŝ − α equilibrium, the gradients are
averaged over the flux surface.

The E × B shear calculated with the radial force balance equation on the carbon
impurity is significant in this shot, as indicated in Figure 5.3. The 2-point method presented
in the former chapter is adapted to take the effect of the residual stress into account in
the estimation of the momentum diffusivity and pinch. Three simulations are performed
enabling to estimate the residual stress as well. The first one corresponds to the experimental
conditions described in Figure 5.3. The second one is performed with the parallel velocity
modified by ±20%. Both the parallel velocity gradient and the E×B shearing are affected by
this modification of the parallel velocity. The last simulation is performed with the parallel
velocity incremented by ±0.05vTi. The parallel velocity gradient is not perturbed by this
modification. Considering that such modifications have a linear effect on the momentum
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Figure 5.3: Input parameters for QuaLiKiz simulation of JET shot 66128. All parameters were
taken from JETTO fit realized for gkw simulations of [Tala et al., 2009] except Ti = Te. Zeff = 2

flux, a linear regression is possible to estimate the momentum diffusivity χ‖, the pinch V‖
and the residual stress ΠRS . If Π1 is the normalised parallel momentum flux from the 1st

simulation, Π2 from the 2nd and Π3 from the 3rd, they read, under a linear modification by
the changes presented above:

Π1 = −χ‖∇u‖ + V‖u‖ + ΠRS/
∑
s

msnsR (5.2a)

Π2 = −1.2χ‖∇u‖ + 1.2V‖u‖ + ΠRS/
∑
s

msnsR (5.2b)

Π3 = −χ‖∇u‖ + V‖(u‖ + 0.05vTi) + ΠRS/
∑
s

msnsR (5.2c)

The system (5.2) is a set a 3 independent equations of 3 variables. Therefore each of the
variables χ‖, V‖ and ΠRS are uniquely defined. Varying u‖ by ±20% and incrementing u‖
by ±0.05vTi defines 3 systems. If the momentum flux dependence with respect to u‖ and
∇u‖ is linear the 3 systems should give the same results. In the opposite case, the dispersion
between the results (inversely) measures the validity of the bilinear regression. The method
ensures that linear dependences of γE with ∇u‖ and u‖ are removed from the residual stress
and accounted for in χ‖ and V‖ respectively.
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Figure 5.4: Left: Prandtl number (red crossed) and pinch number(green circles) calculated by a
3-point method. Right: Detail of the different contributions to Π||.

The resulting Prandtl and pinch numbers are given in Figure 5.4(a) the coloured
regions being the dispersion of the values for both quantities due to the non-linear evolution
of the momentum flux with u‖, ∇u‖, γE [see Casson et al., 2009].

The estimated Prandtl number lies within 0.8 and 1.4, close to the value determined
in Tala et al. [2009]. The pinch number calculated with QuaLiKiz ranges from 3 to 7, in
good agreement with the experimental values ranging from 3 to 8. The large uncertainties
obtained with the 3-point method indicates that the momentum flux changes in a complex
way with u‖ and ∇u‖, the growth rates being modified by the modification of u‖, ∇u‖ and
γE . Thus, the linearisation employed to get Figure 5.4(a) is not entirely valid with such
an amplitude for the regression in u‖, ∇u‖. This amplitude is however necessary to have
a acceptable signal over noise ratio since the numerical integrals used in QuaLiKiz have a
finite precision.

The contributions to the momentum flux from u‖, ∇u‖ and the residual stress are
compared in Figure 5.4(b). The estimated residual stress seems not entirely negligible in
this shot. However a definitive conclusion would require smaller error bars.

Since QuaLiKiz provides absolute values for the fluxes, and their diffusive and con-
vective parts, they can be compared to the quantities inferred from the JETTO analysis in
physical units. The pinch velocity itself −V‖ (plain curve) is plotted along with the effective
ion heat flux χi,eff (dashed curve) in Figure 5.5 and compared to the experimental estimates
(right panel). To improve the robustness of the results and reproduce experimental uncer-
tainties, R/LT was varied by 20% with the associated modification of γE . It corresponds
to the coloured regions of Figure 5.5. When increasing the temperature gradients by 20%
χi,eff, QuaLiKiz predictions are much closer to the experiment. Since the pinch and the
Prandtl number are in good agreement with the experimental values, the values predicted
by QuaLiKiz for V‖ show the same agreement with experimental data than for χi,eff. This
advocates for including a more refined magnetic equilibrium in QuaLiKiz. Indeed, averaging
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work. Right panel experimental data compared to QuaLiKiz predictions

over the flux surface is a way to take the stabilizing effect of the elongation into account
[Angelino et al., 2009]. However, it appears that the stabilization is overestimated by this
method. Increasing the gradients by 20% gives values comparable to the gradients taken at
the mid-plane. The over-stabilisation due the flux surface average of the gradients could be
linked to the ballooned structure of the turbulence. The most unstable region, responsible
for most of the radial flux, experiences indeed a much steeper gradient than averaged on a
flux surface in the case of elongated plasmas such as JET ones. Around ρ = 0.7, the discrep-
ancy between QuaLiKiz and JETTO predictions enlarges. This may comes from the choice
of Te = Ti made in QuaLiKiz simulations based on CX and ECE signals in disagreement
with JETTO fit. However, the fact that JETTO runs fail to reproduce the experimental
phase of the modulated velocity at ρ ≈ 0.7 is worth noticing.

Comparing the data published in Tala et al. [2009] with the data from the same JETTO
sequence used for QuaLiKiz input (Figure 5.5, left panel) shows a significant discrepancy
between both experimental fluxes. Moreover, power balance are significantly different be-
tween the both JETTO sequences without any obvious reason. This is another indication
that driving the turbulent codes with the gradients is not experimentally relevant due to
the combined uncertainties on the gradients deduced from experimental profiles and high
stiffness of the turbulent fluxes.

To summarize, considering the experimental uncertainties on the various gradients
used as inputs, QuaLiKiz estimations of the Prandtl number and the momentum pinch are
close enough to the ones evaluated from the experiment. In particular, an inward convective
flux of momentum is found in the model and the experiment with a pinch number ranging
from 5 to 8. However, a quantitative analysis on the fluxes intensity remains difficult due to
the fluxes sensitivity to the temperature gradients combined with the difficulty to measure
them accurately in experiments. To overcome this issue, the present version of QuaLiKiz
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has to be coupled to an integrated platform such as CRONOS. This will enable driving
QuaLiKiz via the sources which is more relevant physically than to impose the gradients.

5.3 Perspectives: Implementation in CRONOS, QuaLiKiz
simulations driven by sources

As indicated at the beginning of Chapter 2, the goal of QuaLiKiz is to be part of an integrated
work-flow, which imposes for the code to be fast enough. To achieve this goal, QuaLiKiz
needs to be further optimised to keep the global simulation time of 1s of plasma under a
week on a few tens of processors [Baiocchi et al., 2013].

Nevertheless, the implementation of QuaLiKiz in an integrated code such as CRONOS
enables forcing the code by physical sources rather than by the gradients. This will consid-
erably improve the prediction capabilities of the code compared to the situation presented
in this work considering the error bars associated with the gradients determined experi-
mentally. Moreover this forcing enables a self-consistent treatment of the profiles which are
evolving according to the fluxes. However, the equilibrium distribution function remains
Gaussian and non-local effects cannot be modelled by this approach.
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6
Conclusion

On the path to controlling nuclear fusion as a source of energy, the machines grew up
in size from table experiments to Iter, the next generation fusion device, a 6 m major radius
and 2 m minor radius machine, requiring a total power of 50 MW for its operation. Along
with the size of the machine, increases the cost of its construction. Therefore, understanding
the turbulence and discovering scenarii with optimized confinement is of prime importance
to limit the size growth of future machines. To achieve this goal, predicting consistently
the profiles of temperature and density and rotation is an important challenge to manage.
The work presented in this manuscript is a step in this direction. The ability to predict the
angular momentum turbulent transport has been added in the quasi-linear gyro-kinetic code
QuaLiKiz previously developed. This represents the first step towards a coherent prediction
of temperature, density and rotation in the sense that QuaLiKiz operates a reduced model
of the complex non-linear self-organising plasma physics fast enough to be coupled to an
integrated code.

A trade off has to be found to retain most of the physics of turbulent transport at
a reduced numerical cost. A gyro-kinetic description is used in order to retain the kinetic
wave-particle resonance essential in the establishment of the turbulence threshold. Due to
the cost of this framework, several additional simplifications are performed. The intrinsically
non-linear problem is not solved self-consistently. Instead, an extensively validated quasi-
linear approach is taken, saving two orders of magnitude in CPU time. For the linear solver,
a specific method enables saving other two orders of magnitude in computing time using the
dimensional reduction associated with a low order ballooning approximation and analytic
eigenfunctions. With these four orders of magnitude gained over non-linear gyro-kinetic
simulations, a gyro-kinetic quasi-linear approach starts being doable within an integrated
modelling framework.
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For a coherent angular momentum transport modelling, the ability to consider rotating
equilibria has been added in QuaLiKiz. Integrating rotating equilibria involved accounting
for a potential sheared parallel rotation of the plasma and for E ×B shearing. Therefore,
the new system of equations is derived and presented as implemented in QuaLiKiz.

Consequently, a new analytic model for the eigenfunctions has been developed to
reproduce the effect of sheared parallel rotation and E × B shearing on the fluctuating
potential. The eigenfunction asymmetrisation resulting from the parallel symmetry breaking
by both parallel rotation and E × B shearing is observed in this hydrodynamic model.
Moreover, the eigenfunctions are shown to reproduce self-consistent gyro-kinetic calculations,
at least for the dominant transport spatial scales. The evolution of the resulting linear growth
rates have been compared to self-consistent gyro-kinetic calculations as well. They exhibit
a good agreement with respect to more complete linear gyro-kinetic calculations in a large
range of parameters within the experimental domain.

The derivation of the quasi-linear turbulent flux of angular momentum is presented
along with the modifications of the saturated potential induced by the presence of a sheared
rotation. Accounting for the modifications of the eigenfunctions in the mixing-length frame-
work is shown to access to the E×B stabilizing effect and to its impact on the shift towards
smaller spatial scales. The sensitivity of the momentum to the parallel rotation and its
gradient is studied and successfully compared to published non-linear gyro-kinetic simula-
tions. The effect of E ×B shearing on the heat, particle and angular momentum fluxes is
specifically studied due to its beneficial effect on the confinement properties in tokamak plas-
mas. QuaLiKiz predictions are shown to be in good agreement with non-linear gyro-kinetic
simulations for the heat and particle transport. For the angular momentum transport, the
flux amplitude is overestimated by a factor 2 at large values of E ×B shearing due to the
overestimation by the analytic model of the eigenfunction asymmetrisation.

Finally, an NBI modulation experiment performed at JET is simulated to illustrate
QuaLiKiz abilities for experimental analysis and prediction. The momentum flux depen-
dence on the parallel rotation and its gradient, i.e. the momentum diffusivity and the
momentum pinch, show good agreement with experimental values. The comparison also
brings to light the sensitivity of the predicted fluxes to the gradients used as an input and
the limitations of using an ŝ−α equilibrium to simulate shaped plasmas. The first issue will
however be solved by coupling QuaLiKiz to an integrated code such as CRONOS. Within
CRONOS framework, QuaLiKiz will be driven by the fluxes, enabling for the self-adjustment
of the profiles.

*
* *

On the path to predicting consistently the temperature, density and angular momen-
tum profiles, a number of challenges remain to be solved. Indeed, however fast QuaLiKiz
should be for a gyro-kinetic code, some additional optimisation is needed to bring down the
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required time for a 1 s plasma integrated simulation which is one week on a few tens of
processors for now. After coupling this new version to CRONOS, the ability of QuaLiKiz to
predict the plasma confinement properties should be assessed, especially in the case of strong
rotation and strong E×B shearing. Additionally, implementing a shaped analytic equilib-
rium such as Miller’s would improve QuaLiKiz predictions for the various shaped plasma
tokamaks (JET, ASDEX Upgrade, DIII-D, etc). A longer term and more theoretical ob-
jective would be to build a physical alternative to the parameter used to adapt QuaLiKiz
saturation rule at low magnetic shear. Replacing the fixed parameter setting the saturated
potential amplitude for the GA-std case by a physical model appears to be a challenging
objective.
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Résumé
Le confinement magnétique dans les tokamaks est à l’heure actuelle la voie

la plus avancée pour produire de l’énergie par fusion thermonucléaire. Des études
théoriques et expérimentales ont montré que la génération de rotation permet d’en
augmenter les performances par la réduction du transport turbulent à l’Ĳuvre dans
les plasmas de tokamaks. L’influence de la rotation sur les flux turbulents de chaleur
et de particules ainsi que le transport du moment angulaire sont étudiés par simula-
tion numérique dans le cadre du code gyro-cinétique, quasi-linéaire QuaLiKiz. A cette
occasion, le code QuaLiKiz est modifié pour prendre en compte la rotation du plasma
et calculer le flux de moment angulaire. Il est montré que le cadre de travail de QuaLi-
Kiz permet de calculer le flux de moment angulaire y compris le stress résiduel induit
par le cisaillement du champ électrique radial ainsi que l’effet de la rotation sur les
flux de chaleur et de particules. Les approximations majeures du formalisme utilisé,
en particulier la représentation de ballonnement à son ordre le plus bas et l’utilisa-
tion de fonctions propres analytiques calculées dans la limite hydrodynamiques, sont
analysées en détail et leur validité vérifiée. La construction des flux quasi-linéaires est
ensuite détaillée et le flux quasi-linéaire de moment angulaire dérivé. Les différentes
contributions au flux turbulent de moment angulaire sont étudiées et comparées avec
succès à la fois aux données de simulations gyro-cinétiques non-linéaires ainsi qu’aux
données expérimentales.

Summary
The magnetic confinement in tokamaks is for now the most advanced way to-

wards energy production by nuclear fusion. Both theoretical and experimental studies
showed that rotation generation can increase its performance by reducing the turbu-
lent transport in tokamak plasmas. The rotation influence on the heat and particle
fluxes is studied along with the angular momentum transport with the quasi-linear
gyro-kinetic eigenvalue code QuaLiKiz. For this purpose, the QuaLiKiz code is mod-
ified in order to take the plasma rotation into account and compute the angular
momentum flux. It is shown that QuaLiKiz framework is able to correctly predict the
angular momentum flux including the E×B shear induced residual stress as well as
the influence of rotation on the heat and particle fluxes. The major approximations
of QuaLiKiz formalisms are reviewed, in particular the ballooning representation at
its lowest order and the eigenfunctions calculated in the hydrodynamic limit. The
construction of the quasi-linear fluxes is also reviewed in details and the quasi-linear
angular momentum flux is derived. The different contributions to the turbulent mo-
mentum flux are studied and successfully compared both against non-linear gyro-
kinetic simulations and experimental data.
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