Analysis of Backward SDEs with Jumps and Risk Management Issues

Résumé : Cette thèse traite d'une part, de questions de gestion, de mesure et de transfert du risque et d'autre part, de problèmes d'analyse stochastique à sauts avec incertitude de modèle. Le premier chapitre est consacré à l'analyse des intégrales de Choquet, comme mesures de risque monétaires non nécessairement invariantes en loi. Nous établissons d'abord un nouveau résultat de représentation des mesures de risque comonotones, puis un résultat de représentation des intégrales de Choquet en introduisant la notion de distorsion locale. Ceci nous permet de donner ensuite une forme explicite à l'inf-convolution de deux intégrales de Choquet, avec des exemples illustrant l'impact de l'absence de la propriété d'invariance en loi. Nous nous intéressons ensuite à un problème de tarification d'un contrat de réassurance non proportionnelle, contenant des clauses de reconstitution. Après avoir défini le prix d'indifférence relatif à la fois à une fonction d'utilité et à une mesure de risque, nous l'encadrons par des valeurs facilement implémentables. Nous passons alors à un cadre dynamique en temps. Pour cela, nous montrons, en adoptant une approche par point fixe, un théorème d'existence de solutions bornées pour une classe d'équations différentielles stochastiques rétrogrades (EDSRs dans la suite) avec sauts et à croissance quadratique. Sous une hypothèse additionnelle classique dans le cadre à sauts, ou sous une hypothèse de convexité du générateur, nous établissons un résultat d'unicité grâce à un principe de comparaison. Nous analysons les propriétés des espérances non linéaires correspondantes. En particulier, nous obtenons une décomposition de Doob-Meyer des surmartingales non-linéaires ainsi que leur régularité en temps. En conséquence, nous en déduisons facilement un principe de comparaison inverse. Nous appliquons ces résultats à l'étude des mesures de risque dynamiques associées, sur une filtration engendrée à la fois par un mouvement brownien et par une mesure aléatoire à valeurs entières, à leur repésentation duale, ainsi qu'à leur inf-convolution, avec des exemples explicites. La seconde partie de cette thèse concerne l'analyse de l'incertitude de modèle, dans le cas particulier des EDSRs du second ordre avec sauts. Nous imposons que ces équations aient lieu au sens presque-sûr, pour toute une famille non dominée de mesures de probabilités qui sont solution d'un problème de martingales sur l'espace de Skorohod. Nous étendons d'abord la définition des EDSRs du second ordre, telles que définies par Soner, Touzi et Zhang, au cas avec sauts. Pour ce faire, nous démontrons un résultat d'agrégation au sens de Soner, Touzi et Zhang sur l'espace des trajectoires càdlàg. Ceci nous permet, entre autres, d'utiliser une version quasi-sûre du compensateur de la mesure des sauts du processus canonique. Nous montrons alors un résultat d'existence et d'unicité pour notre classe d'EDSRs du second ordre. Ces équations sont affectées par l'incertitude portant à la fois sur la volatilité et sur les sauts du processus qui les dirige.
Liste complète des métadonnées

Littérature citée [121 références]  Voir  Masquer  Télécharger

https://pastel.archives-ouvertes.fr/pastel-00782154
Contributeur : Nabil Kazi-Tani <>
Soumis le : mardi 29 janvier 2013 - 11:30:43
Dernière modification le : jeudi 10 mai 2018 - 02:05:14
Document(s) archivé(s) le : mardi 30 avril 2013 - 04:00:06

Fichier

Identifiants

  • HAL Id : pastel-00782154, version 1

Collections

Citation

Mohamed Nabil Kazi-Tani. Analysis of Backward SDEs with Jumps and Risk Management Issues. Probability [math.PR]. Ecole Polytechnique X, 2012. English. 〈pastel-00782154〉

Partager

Métriques

Consultations de la notice

748

Téléchargements de fichiers

1318