Instrumentation immergée des matériaux cimentaires par des micro-transducteurs ultrasoniques à nanotubes de carbone : perspectives pour le contrôle non destructif in-situ de durabilité

Abstract : In-situ non-destructive testing of durability in cementitious materials is essential to the early prediction and prevention of structural failures. Whereas degradations in cementitious materials, and henceforth durability loss, are brought about and controlled by the characteristics and evolutions of microporosity, there isn't to our knowledge any method for the in-situ non-destructive testing of microporosity itself. To evaluate in-situ the durability of cementitious materials, we put forward an innovative concept based on in-situ instrumentation of their microstructure. Individual micropores are to be probed by high-frequency ultrasonic waves generated and detected by capacitive ultrasonic microtransducers (μ-cMUT) embedded in large number within the material. The vibrating plate of the μ-cMUT devices is to be made of a thin layer of densely aligned single-walled carbon nanotubes, in order for the devices to satisfy the applicative and technological requirements. Relevance of this instrumentation method has been studied : we have used an elasto-acoustical model to describe the interaction between the vibrating plate of a μ-cMUT device and the fluid (water or air) filling a pore of micrometric size. The specificity of this model lies in the integration of fluid viscosity. It has required us to develop ad-hoc solving techniques. We have found out numerically that in this problem dissipation leads to a decrease in resonance frequency compared to non-visquous acoustics. The boundary layer is large compared to the domain size. The vibration amplitudes of the plate are very sensitive to pore content and to water-filled pore geometry. We have deduced from these results that the μ-cMUT devices we envision may be relevant to study hydration and to monitor degradations in cementitious materials. Feasibility of a high-frequency, nanotubes-based μ-cMUT device operating in water or air has also be evaluated : using first a dielectrophoretic deposition technique, we have made thin, dense membranes of well-aligned nanotubes. One of our deposition reaches mono-layer thickness, which is remarkable for dielectrophoretic depositions. We have suspended the nanotubes, thus obtaining long and rigid membranes. They are very thin and have a high form factor compared to state-of-the-art cMUT devices. Finally, we have used laser vibrometry to observe membrane vibrations. Membrane vibration amplitudes reach 5 nm at low frequency. As far as we know, it is the first time vibrations of carbon nanotubes have been successfully observed with laser vibrometry. These results prove that we have overcome one of the most significant technological bottle-neck of the whole feasibility study. Moreover, they indicate short-term feasibility of air microdetectors that could be valuably employed to monitor gaseous microporosity in cementitious materials. By associating a numerical study on relevance and a technological study on feasibility, this work contributes significantly to the development of a new durability monitoring method for cementitious materials. Central to this method is the use of a large number of embedded microsensors integrating nanotechnologies
Document type :
Micro and nanotechnologies/Microelectronics. Université Paris-Est, 2010. French. <NNT : 2010PEST1071>
Contributor : ABES STAR <>
Submitted on : Tuesday, October 25, 2011 - 3:41:08 PM
Last modification on : Saturday, July 5, 2014 - 12:39:42 AM




  • HAL Id : pastel-00574780, version 2



Bérengère Lebental. Instrumentation immergée des matériaux cimentaires par des micro-transducteurs ultrasoniques à nanotubes de carbone : perspectives pour le contrôle non destructif in-situ de durabilité. Micro and nanotechnologies/Microelectronics. Université Paris-Est, 2010. French. <NNT : 2010PEST1071>. <pastel-00574780v2>




Consultation de
la notice


Téléchargement du document