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RESUME FRANÇAIS 

CONTEXTE SCIENTIFIQUE 

Les réseaux et systèmes de télécommunications mondiaux fondent aujourd’hui leur 

confidentialité sur la cryptographie classique, afin de garantir le secret nécessaire aux 

gouvernements (défense, sécurité du territoire), aux sociétés civiles et aux citoyens, 

notamment dans le cadre des transactions par Internet. La sécurité proposée par le 

chiffrement symétrique moderne, basée sur la difficulté de rechercher exhaustivement la 

clef de déchiffrage, reste construite sur des hypothèses mathématiques fragiles. En effet, 

une percée brutale, mais possible, en mathématiques ou dans le domaine des calculateurs, 

peut effondrer cette confiance et rendre les messages actuellement échangés, et ceux qui 

le sont déjà, lisibles. Quand bien même ces crypto-systèmes devraient rester sûrs, il est 

difficile de distribuer confidentiellement des clefs aux utilisateurs. En conséquence, dans 

la plupart des systèmes actuels, les clefs utilisées pour une transaction reposent souvent 

sur une clef de « grande longévité », rarement changée, alors que la sécurité n’est garanti 

que pour des clefs à l’usage unique (One Time Pad). Par conséquent, le problème 

principal est devenu la génération et de la distribution de clefs. Sa solution permettrait de 

fournir une sécurité démontrée, augmentant considérablement la sécurité actuelle. 

La distribution quantique de clef (QKD) est aujourd’hui la seule manière connue de 

distribuer des clefs avec une sécurité inconditionnelle. La sécurité quantique résulte en 

premier lieu de l’impossibilité de dupliquer les signaux reçus, principe de non-clonage, 

ou d’en distraire une partie significative sans signer son intervention par une modification 

importante du taux d’erreur des signaux reçus. La sécurité repose en second lieu sur le 

caractère destructif ou perturbateur de toute observation et sur les erreurs résultant 

d’observations incompatibles d’un même objet quantique. Il s’agit par exemple de la 
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mesure de la polarisation ou de la phase d’un photon unique sur deux bases différentes, 

ou comme la mesure simultanée des deux quadratures d’un même état cohérent contenant 

plusieurs dizaines de photons. Un taux d’erreur contrôlé garantit alors, a posteriori, la 

confidentialité de la liaison. La sécurité peut également reposer, selon le type de 

protocole choisi, sur des super corrélations quantiques ou corrélation EPR, ou encore 

intrications. Une grande diversité d’implémentations de la « couche quantique » est donc 

possible. 

La distribution quantique de clef (QKD) utilise donc, sous des formes variables, les 

propriétés quantiques pour fournir des moyens de détecter une écoute indiscrète. Une 

telle écoute clandestine est discernable, par les parties souhaitant convenir d’une clef, 

parce que l’oreille indiscrète perturbe nécessairement, en le mesurant, l’état de la lumière 

transmise. Une fois la clef distribue, les parties peuvent obtenir le secret parfait sur des 

données en employant un bit de clef pour chaque bit de  données envoyées. D’autres 

méthodes de chiffrage sont possibles également. 

Bien que les travaux expérimentaux dans le domaine de la QKD aient effectué des 

progrès considérables, il subsiste de nombreux problèmes avec des systèmes actuels. Les 

plus rapides d’entre eux, fournissant un débit net de clef supérieure à 1 Mb/sec, ne sont ni 

fiables ni pratiques d’utilisation. Par ailleurs les premiers systèmes de QKD actuellement 

disponibles dans le commerce ne sont ni rapides ni souples. En vérité, il n’existe encore 

aucun système actuel pouvant vraiment satisfaire à la demande, aux conditions 

d’environnement et à la gestion de réseaux de télécommunications actuels. Ce travail de 

recherche exploratoire a pour ambition d’apporter une solution, sinon des éléments de 

solutions significatifs, à cette problématique en s’attaquant aux principales limitations 

actuelles : 

• Augmenter la fiabilité d’une intégration verticale, de la couche physique à la 

couche applicative sur IP. Le système sera assez robuste pour résister à des 
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modifications, changements ou progrès, de la couche quantique et pourra ainsi 

servir de plate-forme évolutive et polyvalente, adaptable aux différentes de 

réalisations de couche physique par un niveau réglable de sécurité. 

• Augmenter la flexibilité en permettant une « sécurité sur demande » autorisant à 

des clients de choisir dynamiquement le niveau de la sécurité adapté à leur 

besoins et en envisageant son implémentation dans un contexte WDM et multi 

utilisateur. 

• Augmenter la rapidité et l’efficacité en explorant les marges d’amélioration de 

vitesse d’horloge et de rendement de production de clef brute. 

• Augmenter la robustesse par l’utilisation de mécanismes de synchronisation et de 

contrôle avancés et des codes atteignant la sécurité maximale lors des processus 

de réconciliation, de correction d’erreur et d’amplification de secret et permettant 

d’économiser la liaison symétrique nécessaire à la distillation de la clef finale. 

Ce travail de thèse vise donc à combler de manière polyvalente le gap, en termes de 

vitesse, fiabilité et robustesse, entre les possibilités offertes par une implémentation 

possible de la couche quantique (Protocole BB84 avec codage temporel), et les exigences 

en matière de clef des systèmes et des applications actuelles. 

CONCEPTION ET REALISATION D’UN SYSTEME QKD 

Les communications, sur un canal non protégé, imposent l’échange d’une clef entre Alice 

et Bob qui sont, avec Eve, tentant d’obtenir cette clef à leur insu, les acteurs 

incontournables de tout scénario cryptographique. 

Si la physique quantique nous permet de construire des liens inconditionnellement sûrs, 

cette construction est, outre les difficulté technologiques, entravée par trois facteurs. Le 

premier, auquel nous nous proposons de répondre, est le problème de la sensibilité aux 
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attaques de type « l’homme au milieu (man in the middle) ». Le deuxième est une 

longueur de lien restreinte, typiquement quelques kilomètres à quelques dizaines de 

kilomètres. Le troisième, crucial, est l’incapacité technologique actuelle à fournir des 

répéteurs et des routeurs quantiques capable de réexpédier les objets quantiques sans les 

mesurer. 

Le protocole de cryptographie quantique sous la forme initialement proposée par Bennett 

et Brassard (BB84) utilise la polarisation (spin des photons) et l’impossibilité d’une 

mesure informative dans une base conjuguée. La nécessité de maintenir ou de contrôler la 

polarisation est un handicap à son implémentation sur des liaisons à fibre optique ne 

maintenant en général pas la polarisation. 

L’utilisation de la phase optique, réputée très vulnérable aux non linéarités est 

envisageable dès lors que des signaux très faible et/ou d’enveloppe constante sont 

transmis et qu’une réception sensible à la phase utilisée. Cette dernière peut être réalisée 

par interférométrie au prix de la réalisation et de la stabilisation d’un interféromètre pour 

une démodulation cohérente. Les contraintes de polarisation, qui n’est plus porteuse de 

l’information, sont alors relaxées. 

L’utilisation de modulateurs de phase optique et l’utilisation de la phase d’une 

modulation par sous porteuse ont donné lieu à une démonstration convaincante au prix de 

circuits et d’une synchronisation radio fréquence complexes. L’utilisation de ce type de 

modulateur permet une implémentation directe sur la phase optique. 

En absence actuelle de source performante générant des photons sous forme d’état de 

nombre à 1 photon, il est usuel d’employer les états cohérents. Un état cohérent  est 

représenté sur la Figure 1, ou le cercle grisée représente les incertitudes quantiques, il n’y 

a pas de distinction intrinsèque à l’une des deux quadratures, et leur incertitude est 

identique . 
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Figure 1 Vecteur de Fresnel d’un état cohérent  

 

Figure 2 La conversion de constellation QPSK en une constellation BPSK 

Nous proposons donc une implémentation du protocole BB84 utilisant les états de phase 

d’état cohérent dans deux bases orthogonales, soit deux symboles dans chaque base. Le 

récepteur homodyne pour les applications QKD doit être conçus de manière à compenser 
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les fluctuations de phase et de polarisation dans les interféromètres, ainsi que dans le 

reste du canal de propagation. 

Si l’état de polarisation du signal optique reçu ne joue aucun rôle dans des récepteurs de 

détection directe, simplement parce que le photo-courant généré en ces récepteurs ne 

dépend que du nombre de photons incidents, ce n’est pas le cas pour les récepteurs 

cohérents, dont le fonctionnement nécessite que l’état de la polarisation de l’oscillateur 

local corresponde bien à celui du signal reçu. L’exigence d’un accord de polarisation et 

sa réalisation supposée autorise une représentation scalaires des champs  et . Cet 

accord se réalise, pour les deux champs optiques, à l’aide des composants de maintien de 

polarisation, tels que les fibres dites PM, et les séparateurs/combinateurs de polarisation. 

L’interférence de  et  étant utilisée, et un circuit de décision permet de 

reconstituer le flux de bits transmis. Tout changement différentiel dans de l’état de 

polarisation réduit le signal utile et affecte les performances du récepteur. Dans le cas 

limite où les états de polarisation  et  sont orthogonaux, le signal d’interférence 

disparaît. 

Le retard relatif, entre l’impulsion du signal et l’impulsion de la référence, introduit dans 

l’interféromètre doit rester stable afin de permettre un fonctionnement correct d’un 

système QKD, sujet à des variations de température, et des vibrations mécaniques. Dans 

une de nos expériences, une variation de phase de 6π a été enregistrée sur une période de 

16 heures. 
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Figure 3 Séquence d’apprentissage et séquence de données 

La correction de erreur de phase en temps réel pourrait se réaliser sur l’interféromètre de 

Bob par l’insertion d’une fibre soumise à une contrainte contrôlée (fiber-stretcher), ou 

bien par l’ajustement de phase sur le modulateur Bob. En effet, notre méthode consiste à 

insérer périodiquement des séquences d’apprentissage entre les séquences des données, 

afin de calculer la variation de phase et de la compenser via le fiber-stretcher. 

DETECITON DE BITS QUANTIQUES 

Les compteurs de photon, exploitant le courant avalanche déclenché par un photon 

incident sur une jonction P-N inversement polarisée afin de détecter un rayonnement 

incident, sont spécifiquement conçus pour fonctionner avec une tension inverse bien au-

dessus de la tension de claquage. Dans la bande des télécommunications, les compteurs 

de photons fonctionnant en mode Geiger sous un contrôle très précis de basse 

température, présentent un faible rendement quantique, un taux de coup d’obscurité (dark 

count) élevé, ainsi qu’un effet d’échos après impulsion (afterpulse). Les systèmes 

utilisant les compteurs de photons ont, aujourd’hui, une limitation de la fréquence de 

répétition à 4 ou 8 MHz. 
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D’autre part, en cherchant un taux de génération de clé plus élevé, la détection homodyne 

équilibrée (BHD) utilisant les photodiodes PIN, et le gain de mélange d’un oscillateur 

local (LO), peut constituer une alternative intéressante. Dans BHD une seule quadrature 

étant mesurée, il n’y a pas de bruit intrinsèque supplémentaire aux fluctuations de point 

zéro du champ signal. Le bruit quantique du signal d’entrée est, dans ce cas, la seule 

limitation et le bruit du LO n’a qu’une influence négligeable. Un LO de grande puissance 

permet d’avoir un gain de mélange assez important. En outre, la BHD utilisant les 

photodiodes PIN conventionnelles présentent une efficacité quantique beaucoup plus 

importante et un temps de réponse beaucoup plus court que les compteurs de photons, de 

plus son utilisation est considérablement plus simple dès lorsque la génération et la 

stabilisation de l’oscillateur local sont acquises. 

Etant donné un champ signal faible  et un champ LO fort  ( ), la 

technique BHD peut affranchir certains effets non souhaitable des compteurs de photons. 

La post-détection, le filtrage, le seuil de décision et la synchronisation des symboles 

doivent tout être cependant conçus car le processus de décision est effectué a posteriori, 

contrairement aux produits commerciaux de comptage de photons qui incluent un circuit 

de décision intégrée, qui est un difficile compromis entre l’efficacité de détection et le 

taux de coup d’obscurité. En outre BHD conduit à un taux d’erreur binaire (BER) 

classique, tandis que le comptage de photons qui en théorie ne présentent que des 

effacements et des coups d’obscurité génèrent un taux d’erreur binaire quantique 

(QBER). 
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IMPLEMENTATION D’UN SYSTEME QKD EN MODULATION QPSK  

 

Figure 4 Schéma expérimental 

Nous avons mis en œuvre un dispositif expérimental de système QKD en modulation 

QPSK qui fonctionnant avec un trajet unique et un sens de parcours aller simple. Les 

deux techniques de détection, comptage de photons (PC) et détection homodyne 

équilibrée (BHD) ont été mis en place. Un arrangement souple a été conçu de telle sorte 
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que seuls de légers changements soient à faire pour passer de la technique de détection de 

PC à BHD. 

Nous utilisons une source laser ILM électro-absorbant (laser integrated modulateur, 

AVANEX) à 1550nm pour générer des impulsions de largeur 5ns avec un taux 

d’extinction en intensité à 18 dB. A la détection PC, la fréquence de fonctionnement est 

limitée à 4MHz, tandis qu’à la détection BHD, la fréquence de répétition peut monter 

jusqu’à dizaines de GHz avec les composants disponibles d’aujourd’hui. Pourtant la 

comparaison parallèle, nous avons choisi d’utiliser dans un premier temps, une fréquence 

d’opération de 4MHz afin de tester les performances du récepteur PC et du récepteur 

BHD. 

Une méthode de séparation de polarisation est utilisée dans notre arrangement en vue 

d’améliorer l’isolation entre l’impulsion signal et l’impulsion référence forte, car le taux 

d’extinction de 18 dB en intensité seul ne suffit pas pour le multiplexage temporel des 

impulsions de signaux et de LO. Chez Alice les impulsions laser sont séparées via un 

séparateur de polarisation (PBS) avec un taux d’extinction de 25 dB, la composante 

horizontalement polarisée passe par le bras LO et la composante verticalement polarisée 

passe par le bras Signal de l’interféromètre Mach-Zehnder, qui est construit avec les 

fibres de maintien polarisation (PM). 

Alice encode ses impulsions Signal (ΦA: π/4 et -3π/4 en base A1 : -π/4 et 3π/4 en base A2) 

avec un modulateur de phase, générant une modulation QPSK. L’impulsion Signal et 

l’impulsion LO non-modulée sont multiplexées en temps avec un combinateur de 

polarisation (PBC), ainsi que le décalage entre les deux impulsions sont bien ajustées à 

20ns, soit 4 mètres de fibre optique. Le fait que l’impulsion signal et l’impulsion LO 

soient polarisées orthogonalement permet d’avoir un taux d’isolation suffisamment élevé 

dans le canal de propagation. Un atténuateur optique est également utilisé pour réduire les 

impulsions signal au niveau quantique. 
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Les impulsions combinées Signal-LO passent ensuite dans une fibre SMF. Coté récepteur 

Bob utilise un autre PBS pour séparer les impulsions LO et les impulsions Signal. Une 

petite partie d’impulsion LO est prélevée par une autre photo-diode PIN D3 afin de 

fournir le signal de synchronisation. 

Le récepteur Bob consiste à une structure interférométrique similaire à celui de l’émetteur 

Alice. Il effectue la modulation de phase sur LO, en appliquant ses choix de base sur un 

modulateur de phase Niobate de Lithium (ΦB: π/4 in Base B1, -π/4 in Base B2). Le délai 

entre l’impulsion Signal et l’impulsion LO est soigneusement ajusté à 20ns afin 

d’optimiser leur recouvrement sur les deux ports d’entrée du coupleur PM, au même état 

de polarisation (POS). 

Nous utilisons un convertisseur A/D de 8bits pour l’acquisition des symboles. La mesure 

de quadrature est proportionnelle à cos(Φ) = cos(ΦA - ΦB) : la coïncidence de base (BC) 

se produit lorsque Φ = 0 or π; l’anti-coïncidence de base (AC) se produit lorsque Φ = 

±π/2. 

La variation de phase ΔΦ est compensée via un déphaseur (PS) optique. Nous utilisons 

des trames d’apprentissage périodiques qui entrelacent avec les trames des données, afin 

de calculer le changement de phase du système et de réagir sur le PS dont la tension de 

déphasage π vaut Vπ = 10V. Un driver externe de Vp-p = 160V permet d’avoir une 

dynamique de [-8π, 8π] et un temps de réponse de quelques millisecondes. Le système 

réinitialise automatiquement à zéro lors de l’atteinte des limites. Dans nos expériences, 

l’erreur de phase résiduelle s’est réduite à moins de 5 degrés même avec un signal de très 

faible niveau. 
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Figure 5 L’erreur de phase résiduelle de notre système QKD 

La détection homodyne permet que l’encodage du signal en phase soit plus adapté que 

l’encodage en polarisation pour les transmissions par fibre optique. Dans un tel système, 

la récupération de phase optique et celle de l’information portée doivent être résolues 



 

 XVIII 

simultanément par Bob et Eve qui ont l’accès au canal physique. Toutefois, un processus 

de décision est obligatoire côté récepteur, car les différents états cohérent transmis par 

des sources de lumière cohérente ne sont pas orthogonaux, et qu’une simple mesure de 

projection Von Neumann ne permet pas de distinguer les états avec une certitude, ce qui 

induit à un taux d’erreur intrinsèque, comme le montré dans la Figure 6 (a). Dans un 

système QKD l’effacement de bits dû à l’absorption du canal, ou bien plus généralement 

par la décision d’abandon, peut se gérer au cours du processus de réconciliation et se 

transforme en une réduction du taux de génération brut de clé. 

En résumé, nous donnons ici une comparaison récapitulative du récepteur 

interférométrique à annulation de champs utilisant les compteurs de photon (PC), et le 

récepteur homodyne équilibré (BHD) à fort niveau d’oscillateur local (LO) utilisant des 

photodiodes PIN : 

- La configuration PC présente une bande passante de 4MHz et une sensibilité quantique 

de l’ordre 10%. En effet, bien qu’en divisant l’amplitude du signal reçu sur chaque 

détecteur, contrairement à un séparateur de polarisation, le signal sur le détecteur actif y 

est plus élevé, grâce à l’abonnement produit par l’oscillateur local. Ce récepteur ne 

permet cependant pas d’atteindre la sensibilité du récepteur de Kennedy, bénéficiant du 

même abondement, à cause de la division de l’amplitude du signal par le coupleur 

symétrique. Il n’y a en théorie que des effacements équidistribués sur les deux symboles, 

mais en pratique les erreurs sont produites par les imperfections des compteurs de 

photons. 

- La configuration BHD permet une fréquence d’opération beaucoup plus élevée, et une 

sensibilité quantique de l’ordre de l’unité, ainsi que le gain de mélange du LO permet de 

s’affranchir du bruit et des effets thermiques. Un taux d’erreur intrinsèque résultant des 

fluctuations du vide qui entrent par le port signal approche assez facilement en pratique la 

limite quantique standard (SQL). 
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Figure 6 a) Histogrammes de signaux détectés avec nombre de photon moyen par bit NS = 
0,5 et 1,5; b) Décision BHD avec double seuil -X et X. 
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La détection homodyne BHD peut également se mettre en œuvre en utilisant des seuils de 

décision pour les signaux électroniques. Un tel système QKD en codage de phase a été 

proposé initialement par le groupe de Hirano. Nous avons ainsi choisi d’élaborer notre 

système en implémentant une décision à double seuil. Pour la discrimination du signal 

Bob met en place deux seuils -X et X, comme le montré la Figure 6 (b). Bob juges le bit 

comme le 1 lorsque x > X et le 0 lorsque x < -X, noté BCR (bit correct rate); sinon la 

décision sur ce bit est abandonnée, noté BAR (bit abandon rate). 

 

Figure 7 Post-détection BER de BHD et QBER de comptage de photons 
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Figure 8 Mesures expérimentales de l’efficacité de détection 

Comme nous montrons dans les Figures 7 et 8, la mise en œuvre d’un processus de 

décision à double seuil conduit à des mesures non-conclusives, et une perte d’efficacité 

de génération de clés, afin réduire le BER de post-détection. Son efficacité reste 

cependant en générale bien plus élevée que celle des compteurs de photon à la longueur 

d’onde 1550nm. En fait, l’attaque d’Eve entraîne plus souvent une dégradation du signal 

chez Bob que d’une substitution, ce qui suggère que l’effacement de bit soit plus efficace 

que la suppression simple des symboles de anti-coïncidence de base, qui est indépendante 

de l’intervention de Eve. 

SECURITE DE SYSTEME QKD 

Afin d’étudier la sécurité d’un système de cryptographie quantique, nous procédons à 

prendre en compte l’action d’Eve et analyser la quantité d’informations qui lui est 

accessible. Nous représentons les entropies d’information d’Alice, de Bob et d’Eve par 

H(A), H(B) et H(E), respectivement. L’entropie conditionnelle de Bob et Eve est définie 
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comme  et , respectivement, en supposant que l’information d’Alice est 

connue. 

Les informations mutuelles I(A,B), I(A,E) sont définies comme l’estimation de la quantité 

d’information partagée par Alice et Bob, et celle partagée par Alice et Eve, 

respectivement. Il faut noter qu’Eve est considérée seulement limitée par les lois de la 

physique. 

La clé est dite sécurisée si I(A,B) est supérieure à I(A,E). Cependant, sous certaines 

attaques comme le prélèvement de photon ou photon-number-splitting (PNS), l’espion 

Eve peut obtenir de larges connaissances sur la clé établie entre Alice et Bob, par 

conséquent, la détection d’Eve est particulièrement importante surtout pour les 

transmissions longue distance. Au cours du processus de génération de clés, Bob doit 

discerner en temps réel les variations de BERP de manière à percevoir les attaques d’Eve 

et de garantir la sécurité. 

La Figure 9 montre que le taux d’erreur de post-détection BERP est largement modifié 

dans le cas de l’attaque de type interception-renvoi, de l’attaque par base intermédiaire, 

ainsi que l’attaque de PNS. Comme nous soulignons que dans le cas de l’attaque 

interception-revoi, Bob peut sélectionner une valeur X élevée afin de maintenir le gain 

d’information sur Eve, alors aucun gain d’information ne peut être obtenu sous les 

attaques de base intermédiaire ou de PNS. Dans ces cas-là, Bob peut discerner les 

attaques d’Eve en comparant le BERP opérationnel et le BERP théorique. Dans le cas 

d’une attaque plus avancée PNS étendue (extended PNS attack), qui est proposée par 

Lütkenhaus, Eve est supposée capable de cacher sa présence en prélevant uniquement un 

photon dans les impulsions de multi-photons, un protocole de multi-états similaire à états 

de leurre (Decoy States) peut s’employer afin d’observer les variations d’efficacité de 

détection ρ en utilisant des impulsions de nombre de photon variables. 



 

 XXIII 

 

Figure 9  Post-détection BERP sous diverses attaques 
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CHAPTER 1 INTRODUCTION 

Moore’s Law describes an important trend in the history of computer hardware: the 

number of transistors that can be inexpensively placed on an integrated circuit is 

increasing exponentially, doubling approximately every 18 months [1]. The trend has 

continued for more than half a century and is not expected to stop for a decade at least 

and perhaps much longer. This has dramatically changed the usefulness of digital 

electronics in nearly every segment of the world economy. It is also a main driving force 

of technological and social changes in the late 20th and early 21st centuries thanks to the 

ongoing boom of information technology (IT) and telecommunications infrastructure. 

Meanwhile, the information security that protects information and information systems 

from unauthorized access, use, disclosure, disruption, modification, or destruction is 

much more than just a concern of privacy, confidentiality and integrity. 

Cryptography, etymologically derived from Greek κρυπτός kryptós “hidden”, and the 

verb γράφω gráfo “write” or λεγειν legein “speak”, is generally be defined as the art of 

enciphering (encryption) and deciphering (decryption) messages to hide the information 

carried by the message. A cipher is a pair of algorithms that perform this encryption and 

the reversing decryption. The detailed operation of a cipher is controlled both by the 

algorithm, and in each instance, by a key. This is a secret parameter, i.e. ideally known 

only to the communicators, for a specific message exchange context. Keys are important, 

as ciphers without variable keys are trivially breakable and therefore less than useful for 

most purposes. 

The security of the conventional public-key cryptosystems such as Data Encryption 

Standard (DES), Advanced Encryption Standard (AES) relies on the computational 

difficulty of certain mathematical functions, and cannot provide any indication of 

eavesdropping or guarantee of key security. It is threatened by the calculation capacity of 

the super computer, or eventually the quantum computer. On the other hand, information 



 

 

12 

theory shows that the traditional private-key (secret-key) cryptosystems cannot be totally 

secure unless the key is used once only, and is at least as long as the enciphered text. This 

algorithm is also called one-time pad (OTP) or Vernam code[2]. 

Based on the foundations of quantum mechanics, in contrast to traditional public key 

cryptography, the quantum cryptography’s (QC) important and unique property is the 

ability of the two communicating users to detect the presence of any third party trying to 

gain knowledge from the key [3-6]. A third party trying to eavesdrop on the key must in 

some way measure it, thus introducing detectable anomalies. By using quantum 

superposition or quantum entanglement, transmitting information in quantum states, a 

communication system can be implemented that detects eavesdropping. If the level of 

eavesdropping is below a given threshold a key can be produced and guaranteed as 

secure, otherwise no secure key is possible and communication is aborted. 

Another important point is that QC is only used to produce and distribute a key, not to 

directly transmit any message data. This key can then be used with any chosen encryption 

algorithm to encrypt (and decrypt) a message, which can then be transmitted over a 

standard communication channel. The algorithm most commonly associated with 

quantum key distribution (QKD) is OTP, as it is provably unbreakable when used with a 

secret, random key. 

Optical QKD system may be ideally based on the use of single-photon Fock states in 

which any state of the Fock space is with a well-defined number of particles. 

Unfortunately, these states are difficult to realize experimentally. While waiting for a 

reliable single photon source, a more practical choice of our days is faint laser pulses [7-

9] or entangled photon pairs [10,11], in which both the photon and the photon-pair 

number distribution, obey the Poisson statistics [4]. 

The implementation of a QKD system depends essentially on the detection of single 

photon, the carrier of the key elements. Today, the single photon avalanche diode 
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(SPAD) are widely used. SPAD works in Geiger gated-mode under precise temperature 

control, i.e. around -30ºC, and exhibits inherent low quantum efficiency around 0.1, the 

inevitable dark count and residual after-pulse noise due to the macroscopic avalanche 

[12,13] at telecom wavelength (1550 nm). Furthermore its operational frequency is 

limited to 4-8MHz due to the necessary quenching process. 

Coherent optical communication is one of the most promising ways to achieve highest 

receiver sensitivity, excellent spectral efficiency and longest transmission span for the 

next generations of optical communication systems. Already in the late 1980s and early 

1990s coherent systems attracted a lot of attention [15-27] as it was a promising way to 

improve the receiver sensitivity. In the race for speed and distance, balanced homodyne 

detection (BHD) scheme using positive-intrinsic-negative diode (PIN) constitutes an 

efficient receiver scheme for the QKD system. 

BHD, when used with a local oscillator (LO) of suitable power for the operation near 

the quantum noise limit, provides the mixing gain to overcome the thermal noise [9]. The 

conventional PIN photodiodes operating at room temperature present much higher 

quantum efficiency and response speed, and lower noise as compared to the gated photon 

counters. As well its cost is much lower and the supply requirements are much simpler. 

Post-detection, filtering, threshold and symbol synchronization stages must be 

properly designed as in BHD the decision process is carried out a posteriori and the 

threshold can be carefully adjusted for a tradeoff between the key generation efficiency 

and the dark count rate, which is opposed to photon counting scheme that inherently 

performs built-in decision. Additionally BHD leads to classical bit error rate (BER) while 

only quantum bit error rate (QBER) is considered in photo counting. 

In chapter 2 we first review the principles of the QKD system, including the BB84 

protocol, key-encoding schemes, and in chapter 3 we discuss the fundamental physical 

challenges in QKD system implementations. 
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In chapter 4 we recall the principles of the coherent detection system, as well as its 

major noise sources, and the other technical impairments in a balanced homodyne 

receiver. In chapter 5 we describe the nature of weak coherent states (WCS) and the 

QPSK phase encoding for QKD applications based on quantum mechanics. 

In chapter 6 we introduce the optical and electronic components that are used in our 

experimental QKD setups and we demonstrate the technical methods to overcome the 

system impairments, followed by the first QKD system validation. 

In chapters 7 and 8 we introduce the two receiver structures for the QKD system. We 

present the experimental arrangements of the one-way BB84 QKD system using WCS 

pulses, i.e. QPSK format encoding at the sender Alice’s end and BPSK down-conversion 

at the receiver Bob’s end. Photon counting and BHD [16, 17, 18] schemes are 

implemented with system impairments compensation using training frames, for both the 

phase synchronization and polarization mismatch. Next we compare the system 

performances of the two detection schemes in terms of detection efficiency and BER. We 

also analyze the security issues of the BHD QKD system under the “intercept-resend” 

attack and the “intermediate base” attack. 

Finally in chapter 9, we demonstrate a synchronized feedback homodyne detection 

system for WCS by minimizing the real-time phase error, using sequential in-phase and 

in-quadrature (I-Q) measurements as the inputs of a synthetic digital Costas phase-

locked-loop (PLL). We report the experimental results of I-Q uncertainty measurements 

and we also demonstrate a method for the reconstruction of Wigner function from 128 

equidistant phase states histogram measurements by applying the inverse Radon back-

projection function. 
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CHAPTER 2 QUANTUM CRYPTOGRAPHY 

2.1 HISTORY OF THE CRYPTOGRAPHY AND CRYPTANALYSIS 

Back to the ancient Greece and Rome time for at least two thousand years there have 

been people who wanted to send messages that could only be read by the people for 

whom they were intended. When a message is sent from the sender to the recipient, 

whether by the slave or by the post office today, or by means of telegraph, radio, 

telephone, fax or e-mail, there is a risk of it going astray. If the message is written in 

clear, that is, in a natural language without any attempt at concealment, anyone getting 

hold of it will be able to read it and, if they know the language, understand it. 

Before the modern era, cryptography was concerned solely with message 

confidentiality, i.e., encryption — conversion of messages from a comprehensible form 

into an incomprehensible one, and back again at the other end, rendering it unreadable by 

interceptors or eavesdroppers without secret knowledge. Namely, the key is needed for 

decryption of that message. 

The two world wars of the 20th century had accelerated the development of the new 

cryptographic techniques. In 1917, Gilbert S. Vernam proposed an unbreakable 

cryptosystem, hence called Vernam Cipher or One-time Pad (OTP) [1]. In the recent 30 

to 40 years, with the explosive developing speed of the information technology the field 

has expanded beyond confidentiality concern to include techniques for message integrity 

checking, sender/receiver identity authentication, digital signatures, interactive proofs, 

and secure computation, amongst others.  

We first define some of the key notions in the modern cryptography system. 
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A cipher system, or cryptographic system, or crypto-system, is any system that can be 

used to change the text of a message with the aim of making it unintelligible to anyone 

other than intended recipients. 

The process of applying a cipher system to a message is called encipherment or 

encryption. The reverse process to encipherment, recovering the original text of a 

message from its enciphered version, is called decipherment or decryption. 

Cryptography is the study of the design and use of cipher systems including their 

strengths, weaknesses and vulnerability to various methods of attack. A cryptographer is 

anyone who is involved in cryptography. 

Cryptanalysis is the study of methods of solving cipher systems. A cryptanalyst, often 

popularly referred to as a code breaker, is anyone who is involved in cryptanalysis. 

2.2 PUBLIC-KEY (ASYMMETRIC) CRYPTOGRAPHY 

As we have discussed in 1.1, in the real world secure communications have to be 

established between two or more users who have never met before to share the secret 

cryptographic key. The question now is how to distribute the key to those users. In 1976 

Whitfield Diffie and Martin E. Hellman have invented the public-key cryptography [2]. 

Public-key cryptography, also known as asymmetric cryptography, is a form of 

cryptography in which a user has a pair of cryptographic keys - a public key and a private 

key. The private key is kept secret, while the public key may be widely distributed. The 

keys are related mathematically, but the private key cannot be practically derived from 

the public key. A message encrypted with the public key can be decrypted only with the 

corresponding private key. 

The security of public-key cryptography rests on the computational complexity like 

factoring the product of two large primes or computing discrete logarithms. However, no 

public-key encryption scheme can be secure against eavesdroppers with nearly unlimited 
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computational power, except from quantum computer. Proofs of security therefore hold 

with respect to computationally limited adversaries, and give guarantees, i.e. relative to a 

particular mathematical assumption, of the form “the scheme cannot be broken using a 

desktop computer in 1000 years”. 

Public-key cryptosystems are convenient and have thus become very popular over the 

last 25 years. The security of the Internet is partially based on such systems. For example, 

anyone can send an email to a mailbox, but only the legitimate one who holds thee 

password (as a private key) can read it. 

2.3 PRIVATE-KEY (SYMMETRIC) CRYPTOGRAPHY 

Private key cryptosystems require the use of a signal key for both encryption and 

decryption. These systems are believed to be safe as long as the OTP is used. 

Alice encrypts her message, a string of binary bits denoted by M, by using a randomly 

generated key K of the same length. Each bit of M is added to the corresponding bit of K 

to obtained the scrambled text S: . The text S is then sent to Bob who 

then decrypts the message by subtracting the key and obtain . 

Since the key is a random series of bits, the scrambled message contains no information 

according the security proof of Shannon [3]. And this is the only provable secure 

cryptosystem known today. 

 

Figure 2.1 Message encryption and decryption using the same key 
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Nevertheless, in a practical communications system, the key K can be only be used 

once, since the eavesdropper can store up all the messages and figure out the key and the 

messages, given the advances in technology and mathematical algorithms. Furthermore 

another fundamental problem of the private-key cryptosystems is that we cannot store an 

infinite number of different keys, therefore a constant key regeneration procedure is 

mandatory. 

2.4 QUANTUM CRYPTOGRAPHY 

As a matter of fact, within the framework of classical physics, it is impossible to 

reveal potential eavesdropping, because information encoded into any property of a 

classical object can be acquired without affecting the state of the object. All classical 

signals can be monitored passively since one bit of information is encoded on two 

distinguishable states of hundreds of photons, electrons or other carriers. 

2.4.1 QUANTUM MEASUREMENTS 

However in quantum measurements it is possible to distinguish with certainty only 

among specific orthogonal state vectors. Here are some basic quantum mechanics 

theorems: 

• It is impossible to measure the states of a quantum system without perturbation; 

• It is impossible to determine simultaneously two different physical characteristics with 

an arbitrary precision; 

• It is impossible to measure simultaneously a photon in two orthogonal bases without 

destruction; 

• It is impossible to copy a photon without destroying it, the non-cloning theorem. 
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2.4.2 BB84 PROTOCOL 

Charles H. Bennett of IBM and Gilles Brassard of the University of Montreal 

proposed the first protocol for quantum cryptography (QC) in 1984, hence the name 

BB84 [3]. Generally, the quantum cryptography protocol concerns the term quantum key 

distribution (QKD), and it is the only subject of discussion here. 

In these protocols [4], the two protagonists Alice and Bob use two channels of 

communications: one quantum channel of course, and another classical channel [5,6]. 

The quantum channel allows the transmission of quantum objects. The quantum objects 

have to be very weak so that quantum effects are measurable. The precise nature of the 

these objects depends on the concerned protocols, nevertheless in practice attenuated 

laser pulses are widely used, transit in optical fibers or in open space. The eavesdropper, 

namely Eve, is supposed to have access to this quantum channels even the quantum 

channel nature limits its actions. 

In the other hand, the classical channel that permits Alice and Bob to communicate 

could be a telephone line, an Ethernet cable or even radio frequency. This channel is also 

supposed spied by Eve who listens to the conversation between Alice and Bob, but she 

would modifier the information in the channel. In other terms, this channel should be 

authenticated, which is possible by the classical cryptography algorithm, since Alice and 

Bob share a priori some secret key. 

First of all Alice and Bob exchange the quantum objects through the quantum channel. 

These objects are prepared in such a way that Eve’s tentative of acquiring the information 

will induce, in accordance with the quantum mechanics, by a perturbation of the signals 

that Alice and Bob could measure by comparing the communications through the 

classical channel. 
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Figure 2.2 BB84 in quantum channel 

1 - Alice chooses a random series of bits; 

2 - Alice sends each bit with a random base choice (base 1 or base 2); 

3 - Bob detects each bit using another random choice of the base (base 1 or base 2). 

 

Figure 2.3 BB84 in classical channel 

4 - Bob publicly announces his series of base choices (not the measurement results!); 

5 - Alice publicly announces the base coincidences i.e. the bits correctly detected by 

Bob; 

6 - Bob and Alice use this bit sequence as the key, a raw key is thus generated. 
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When there is base coincidence, i.e., Bob and Alice chose the same base, the bit is 

correctly detected and when there is base anti-coincidence, the measurement result is 

random. The sequence obtained when there are base coincidences is kept, and then some 

of these bits are chosen to perform the eavesdropping test, i.e. privacy amplification. 

Alice and Bob compare these symbols of raw keys to obtain a sifted key, which is then 

used for the encryption of the message.  

As a matter of fact, in the quantum channel, Bob’s raw bit error rate (BER) is 0.25 

since the base coincidence and base anti-coincidence are equal-probable, and half of the 

anti-coincidence bits will be wrongly detected. After the communications in the classical 

channel and the “reconciliation” process, the theoretical post-detection BER should be 0 

since bits of anti-coincidence are abandoned. 

As a matter of fact, the raw BER and post-detection BER will change under Eve’s 

attack, but these BER variations can also be induced by the channel imperfections that 

add noise to the signal. Consequently any virtual noise should be considered as Eve’s 

intervention as Eve is assumed capable of hiding her presence under such a noise level, 

even though some of the noise is, in fact, induced by experimental imperfections or 

system impairments. Alice and Bob can effectively measure the perturbations and thus 

evaluate the quantity of information gained by Eve. If Eve’s information gain is lower 

than that of Bob’s, the procedure of “Privacy Amplification” can be used to extract a 

secret key, rending Eve’s intervention (attacks) irrelevant [7,8]. On the other hand, if 

Alice and Bob acknowledge that Eve has gained more information than Bob from her 

intervention, then they will simply abandon the generated keys, or eventually counter-

attack by giving false information. 

2.4.3 POLARIZATION ENCODING 

Thanks to the commercially available polarization beam splitter, polarization encoding 

on photons appeared to be the first natural solution for QKD system. Bennett and his co-

workers (Bennett, Bessette, et al. 1992) had done the first experimental demonstration of 
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a QKD system [9]. They have implemented a system in which Alice and Bob exchanged 

faint light pulses produced by a light diode and containing less than 1 photon on average 

over a distance of 30 cm in air. This small-scale experiment has since invoked great 

research interests since it showed that it was not unreasonable to use single photons as 

information carrier, instead of classical pulses for encoding bits. 

In a typical QKD system using the BB84 four-state protocol, Alice emits short 

classical photon pulses polarized at -45º, 0º, 45º, and 90º by four laser diodes. For one 

given qubit, one single diode is triggered. The pulses are then attenuated by a set of 

attenuators to reduce the average number of photons to well below 1, and sent along the 

quantum channel to Bob. At Bob’s side, the transmitted photons are analyzed in the 

vertical-horizontal bases with a polarizing beam splitter and two photon-counting 

detectors. 

It is essential to maintain the polarization states of the emitted pulses so that Bob 

would be able to extract the information encoded by Alice. As the polarization state is 

arbitrarily transformed in the standard optical fiber, it is necessary for a real fiber-based 

QKD system to actively align the polarizations to compensation for this evolution. 

Although this procedure is not impossible, the tasks are very difficult, especially for 

practical long distance applications. One possible solution has been considered by using 

polarization-maintaining fibers. Although the birefringence of the so called polarization-

maintaining (PM) fiber is large enough to effectively uncouple the two polarization 

eigen-modes, only these two orthogonal polarization modes are maintained, consequently 

these fibers cannot maintain all the required polarization states. All the other modes, in 

contrast, evolve very quickly, making this kind of fiber completely unsuitable for 

polarization based QKD system. As we will mention later, PM fibers can be used in 

phase-based QKD system, since only one of the two orthogonal polarizations states are 

needed. 
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2.4.4 PHASE ENCODING AND FREQUENCY ENCODING 

Bennett first proposed phase encoding method for QKD system in 1992, for the two-

state protocol, namely BB92 [10], it is indeed a natural choice for optics scientists and 

researchers. Phase encoding protocol can be realized with interferometers in single mode 

fiber components. A typical system consists of a double Mach-Zehnder (MZ) 

implementation, as shown in Figure 2.4: a MZ interferometer at Alice’s end and another 

MZ interferometer at Bob’s end. The interferometers are made of symmetric couplers or 

beam splitters. 

At Alice’s side the lightwave pulses are generated by a pulsed laser and then separated 

by an optical coupler. The lower arm signal is phase-modulated to generate a four-state 

QPSK constellation, and the phase shift for a given qubit is . The signal is then time-

multiplexed with the local oscillator (LO), i.e., the upper arm component before entering 

in the propagation channel that is consisted of single mode optical fiber. At the receiver 

Bob’s end, the LO pulse goes through a phase shift  before beating with the signal 

pulse that carries a phase shift . 

 

Figure 2.4 Double Mach-Zehnder QKD system implementation 

Provided that the coherence length of the light used is larger than the path mismatch in 

the interferometers, interference fringes can be recorded. When single photon counters 
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are used as D1 and D2, we will detect one click at D1 when , or one click at 

D2 when , actually these two cases correspond to the base coincidence 

situation. When , the photon arrives at D1 or D2 in a random way, and 

these two cases correspond to the base anti-coincidences. 

It is mandatory with this scheme to keep the path difference stable during a key 

exchange session, since a drift of the length of one arm would indeed change the phase 

relation between Alice and Bob and induce errors in their bit sequence. A “plug-and 

play” scheme has been proposed by Muller and Zbinden’s research group in 1997 [11,12] 

to compensate the phase fluctuations of the QKD system automatically. Two Faraday 

mirrors – a mirror with a λ/4 Faraday rotator in front, are used in the system to 

compensate automatically the polarization variations in the propagation, as well as to 

compensate the path difference since the signal pulse and the LO pulse propagate in the 

same physical optical path. However this scheme requires that the laser source to be 

placed at Bob’s end and double the transmission distance. Also in this scheme, the pulses 

are more than a thousand times brighter before than after reflection from Alice. 

Backscattered photons can accompany a quantum pulse propagating back to Bob and 

induce false counts. One will have to make sure that the pulses traveling to and from Bob 

are not present in the lime simultaneously, however this requires reducing the effective 

repetition frequency. Moreover, the main disadvantage is with respect to the security 

issues, since they are more sensitive to Trojan house attacks. 

Goedgebuer and Merolla’s team from University of Besancon in France have 

introduced a “frequency encoding” scheme [13], using radio-frequency side band 

modulation at both Alice’s and Bob’s sides, and Bob can record the interference pattern 

in these sidebands after removals of the central frequency and the higher-order sidebands 

with a spectral filter. The advantage of this scheme is that the interference is controlled 

by the phase of the radio-frequency oscillators. However the detector noise is relatively 

high due to the long pulse durations, also the polarization transformation in an optical 
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fiber depends on the wavelength that contributes to the imperfect interference visibility, 

also the error rate is higher than that measured with plug-and-play system. Moreover the 

phase modulator needs to be polarization independent and the stability of the frequency 

filter can be a practical difficulty. 

Takesue, Diamanti and Yamamoto’s groups from NTT and Stanford university 

[14,15] have implemented a differential phase shift quantum key distribution (DPS-

QKD) protocol, which uses a Poisson light source and a detector for the 1.5 µm band 

frequency up-conversion in a periodically poled Lithium Niobate waveguide followed by 

an Si avalanche photodiode. This detector design takes advantages of good properties of 

near-infrared band single-photon detection and the DPS-QKD protocol has simplified the 

receiver structure, however the 10GHz PLC Mach-Zehnder interferometer still requires 

very precise thermal control. 

Xiao-Fan Mo et al. [16] has implemented a unidirectional intrinsically stable QKD 

scheme that is based on Michelson–Faraday interferometers, in which ordinary mirrors 

are replaced with 90° Faraday mirrors to compensate automatically the phase and 

polarization variation. With the scheme, a demonstration setup was built and good 

stability of interference fringe visibility was achieved over a fiber length of 175 km. 

Hirano [17] has implemented an experimental 1.5 µm QKD system that utilizes pulsed 

homodyne detection, instead of photon counting, to detect weak pulses of coherent light. 

Although the scheme inherently has a finite error rate, homodyne detection allows high-

efficiency detection and quantum state measurement of the transmitted light using only 

conventional devices at room temperature. The quantum channel is a 1-km standard 

optical fiber and the probability distribution of the measured electric-field amplitude has 

a Gaussian shape. The effect of experimental imperfections such as optical loss and 

detector noise limit the system performance, as well the long-term phase drift should be 

compensated for a practical operation. 
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CHAPTER 3 CHALLENGES IN EXPERIMENTAL QUANTUM KEY 

DISTRIBUTION SYSTEMS 

The inventors of the protocol BB84 Charles H. Bennett and Gilles Brassard originally 

proposed using photon polarization states to transmit the information. The very first 

experimental demonstration was performed in IBM laboratory as an open space link over 

a distance of 32 cm at the wavelength of 550 nm [1]. In order to have a practical interest, 

a QKD system should be designed to establish a secured link of at least several 

kilometers and compatible with the current infrastructures. Over the latest years, most 

research groups are seeking for a reliable high speed and long distance fiber-optic QKD 

systems. 

3.1 SINGLE PHOTON SOURCES 

As mentioned in the chapter 2, the quantum cryptography is based on the quantum 

mechanics theorems and, basically by the use of single-photon Fock states , i.e. any 

state having a well-defined number of particles, since Eve can easily steal one photon in a 

state of multi-photon. 

The only idea of single photon source is that the source should emit exactly one 

photon in response to a trigger pulse, which can be either electrical or optical. The 

operating principle is shown in Figure 3.1. The source consists of a single emissive 

element, i.e. an atom, and the trigger pulse excites the atom to an upper excited state. The 

atom then emits a cascade of photons as it relaxes to the ground state. Since the photons 

have different wavelengths, it is possible to select the photon from a particular transition 

by filtering the fluorescence. There will only be one photon emitted from a specific 

transition in each cascade. 
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Figure 3.1 Excitation-emission cycles from a single atom in response to trigger pulses. 

(a) The atom emits a cascade of photons of different wavelengths as it relaxes, but by 
using a suitable filter, only one of them is selected. (b) Schematic representation of the 
photon emission sequence. 

As intense trigger pulse rapidly promotes an electron to the excited state, the atom will 

emit exactly one photon after a time roughly equal to the radiative lifetime tR, as show in 

Figure 3.1 (b). No more photons can be emitted until the next trigger pulse arrives, when 

the process repeats itself. The time separation of the trigger pulses is determined by the 

frequency ƒtrig at which the trigger source operates. If the time separation ttrig = 1/ ƒtrig 

between the pulses is significantly longer than tR, then the trigger pulses control the 

separation of the photons in the fluorescence. We thus have a source that emits exactly 

one photon of a particular wavelength whenever a trigger pulse is applied. 

Experiments describing a molecular single-photon source are reported by Lounis and 

Moerner [2], an equivalent experiments for color centers in diamond are described by 

Kurtsiefer [3]. The first two results on quantum dot single-photon sources have also been 

described by Michler [4] and Santori [5], as well all of these experiments are optical 

trigger pulses. Z. Yuan has reported an electrically driven single-photon source [6]. 

3.2 ATTENUATED POISSONIAN LASER SOURCE 

Up to today the technologies of single photon sources are not mature enough to be 

commercialized, thus most research groups rely on fainted laser pulses to generate weak 

coherent states [7] or entangled photon pairs, in which the photon-number distribution 

follows Poisson statistics. 
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Poisson statistics generally apply to random processes that can only return integer 

values. The average count value  is determined by the half-life of the laser source, the 

amount of material present, and the time interval set by the user. The actual count values 

fluctuate above and below the mean value due to the random nature of the radioactive 

decay. Given the average photon number of a coherent state , the probability of 

obtaining n photon in a fainted pulse is: 

 

€ 

P n,n( ) =
nn

n!
e−n   (3.1) 

Poisson distributions are only characterized by their mean value  since the 

fluctuations of a statistical distribution about its mean value are usually quantified in 

terms of the variance. The variance is equal to the square of the standard deviation ∆n 

that is defined as: 

 

€ 

Var n( ) ≡ Δn( )2 = n − n( )
2

n= 0

∞

∑ P n( ) = n  (3.2) 

 

Figure 3.2 Poisson distribution for mean photon number values of 0.1, 0.5, 1.0, and 10 
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It is to be noted that in Figure 3.2 the vertical axis scale changes in each figure. The 

standard deviation for the fluctuations of the photon number above and below the mean 

value is therefore given by: 

 

€ 

Δn( ) = n  (3.3) 

Those coherent states that contain more than one photon are considered non-secure: 

 

€ 

P n >1 | n > 0,n( ) =
1− P 0,n( ) − P 1,n( )

1− P 0,n( )
 (3.4) 

 

Figure 3.3 Probability of multi-photons pulse and zero-photon pulses 

We can make the multi-photon pulse probability arbitrarily small by chosing a very 

small . However, the drawback is that in this case most pulses are of zero-photon, the 

trade-off for the security is a reduction in the quantum key generation rate. Most 

experiments have adapted to use in the range around 0.1, meaning that 5% of the 

nonempty pulses contain more than one photon. Nevertheless, the optimal value depends 

on the transmission losses, e.g. at 1550 nm the fiber loss is around 0.2 dB/km and the 

dispersion parameter is about 17 ps/km nm. 
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3.3 QUANTUM CHANNEL IMPAIRMENTS 

The quantum channel is the link between the sender Alice and the receiver Bob that 

transmit the quantum objects. Physically speaking, the quantum channel is not different 

from the classical channel, they can be either free-space link or optical fiber; the main 

difference lies in the fact that in quantum channel the information is encoded on single 

photon while in a classical channel many photons carry the same information. From this 

point of view, all the classical channel impairments will be inherited by the quantum 

channel, such as optical fiber attenuation due to material absorption, Rayleigh scattering, 

chromatic dispersion and polarization mode dispersion (PMD), as well as other non-

linear effects in silica fibers. 

Free-space quantum channel offers some advantages for establishing a quantum 

channel. The atmosphere has a high transmission window at wavelength around 700 nm 

where commercial high quantum efficiency photon detection modules are available. 

Moreover, this media is weakly dispersive and the non-birefringent. The first 

experimental demonstration of a QKD system was performed in a free space link [8,9]. 

However, there are also some drawbacks that limit it from being a more practical 

technical choice: it suffers from a high and variable transmission loss; the beam 

divergence that caused by diffraction at the transmitter aperture increases with the 

transmission distance. Furthermore an open link offers an easy access to the eavesdropper 

Eve. 

Nowadays most research groups are using telecom wavelength single mode fibers [10-

15] as the quantum channel, for its low losses in a “protected” propagation, e.g. optical 

fibers, and the compatibility with the installed infrastructure. On the other hand, the 

polarization effects due to the birefringence – the two different phase velocities for two 

orthogonal polarization states that are caused by the asymmetric fiber internal structure, 

become a main impairment. This phenomenon can be counteracted by polarization-

maintaining optical fiber because the birefringence is large enough to effectively 
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uncouple the two polarization eigenmodes. But only the two orthogonal polarization 

states are maintained, all other modes evolve very quickly, thus making it an unsuitable 

choice for polarization encoding QKD system. 

Phase encoding is thus a better choice in an optical fiber based system [12,13]. Using 

two similar Mach-Zehnder interferometers, Alice encodes the information on the weak 

light pulse at her end, and Bob performs his base choice before the signal detection. 

Unfortunately due the nature of Mach-Zehnder interferometer, even slightly mechanical 

vibrations and slow temperature variations can induce the mismatch between the optical 

paths in the two arms, thus leading to an inevitable phase drift even if the interferometers 

are well placed in styrofoam boxes or under precise temperature control. Therefore an 

active feedback to track and compensate the phase-errors is necessary for a practical 

communications system. A “plug and play” two-way system has also been proposed and 

investigated to combat with the polarization and phase drift issues [14-17]. 

3.4 SINGLE PHOTON DETECTION 

Photodiodes are semiconductor devices designed to transform light into an electric 

current and are used as detectors in numerous applications. The simplest photodiode is 

the so-called PIN junction diode, which operates at zero or low reverse bias and provides 

no internal current gain. Although PIN. diodes can be used for sensitive detection when 

followed by a low-noise electrical amplifier, they feature too much noise for detecting 

single photons. An avalanche photodiode (APD) is basically a PIN diode specifically 

designed for providing an internal current gain mechanism. When reverse biased, the 

APD is able to sustain a large electric field across the junction. An incoming photon is 

absorbed to create an electron-hole pair. The charge carriers are then swept through the 

junction and accelerated by the strong electric field. They can gain enough energy to 

generate secondary electron hole pairs by impact ionization. These pairs are in turn 

accelerated and can generate new electron-hole pairs. This multiplication phenomenon is 

known as an avalanche. 
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As the most critical part of the success of a quantum cryptography system is the single 

photon detection, the single photon detection module (SPDM) should not only detect the 

photon and record the information that it carries, but also operates under an almost noise-

free condition to minimize the false detection events. One of the choices today is the 

APDs that operate in the Geiger-mode. We also call it single photon avalanche diode 

(SPAD). 

SPAD, exploiting the photon-triggered avalanche current of a reverse biased p-n 

junction to detect an incident radiation, is specifically designed to operate with a reverse 

bias voltage well above the breakdown voltage [18,19]. An incoming photon will 

generate an electron avalanche consisting of thousands of carriers. Te reset the diode, a 

quenching process is a must to stop the emissions and recharge the diode. Gated-mode 

operation is often used to keep the bias voltage below the breakdown voltage and raise it 

above only for several nanoseconds when a photon is expected to arrive. SPAD is thus 

commonly used in the quantum cryptography based on fainted laser pulses with 

synchronized clock signals. 

Figure 3.4 represents the I-V characteristics of an APD and illustrates how single-

photon sensitivity can be achieved. This mode is also known as Geiger mode. The APD 

is biased, with an excess bias voltage, above the breakdown value and is in a metastable 

state (point A). It remains in this state until a primary charge carrier is created. In this 

case, the amplification effectively becomes infinite, and even a single-photon absorption 

causes an avalanche resulting in a macroscopic current pulse (point A to B), which can 

readily be detected by appropriate electronic circuitry. This circuitry must also limit the 

value of the current flowing through the device to prevent its destruction and quench the 

avalanche to reset the device (point B to C). After a certain recovery time, the excess bias 

voltage is restored (point C to A) and the APD is again ready to detect a photon. 
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Figure 3.4 I-V characteristics of single photon detection 

Some operating effects of SPAD are that the “counting events” can not only be 

generated by the information carrier, but also by the unwanted impinging photons or 

without any photon at all, i.e. the dark counts. Dark counts are induced by thermal or 

band-to-band tunneling process, etc. The afterpluses are spurious counts caused by 

carriers trapped in deep levels introduced by impurities of crystal defects, and those that 

are released within a subsequent gate also add to the “false counts”. In fact, the number of 

trapped charges decreases exponentially with time. So the tradeoff of having less 

afterpluses induced “false counts” is to apply a longer “dead time”, i.e. the interval 

between two consecutive gate operations. The exponential time constant decrease of 

afterpulses could shorten the “quenching process” when operating under a higher 

temperature, however at the same time it will generate more thermal noise too. 

Effectively the tradeoff is to be found in the operation parameters: bias voltage, 

temperature, and the dead time that limits the operational frequency. For example, at the 

telecom wavelength 1550 nm, InGaAs APD operates at 173 K and has a dark count rate 

of 10-4 counts/s, with quantum efficiency in the range of 10%. 

The detection efficiency 

€ 

η can be obtained using the following formula: 
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€ 

η =
1
n
ln pdc −1
pdc + psig −1

 (3.5) 

where 

€ 

η is the quantum detection efficiency, n is average photon number per pulse, pdc is 

the dark count probability per gate, and psig is the signal count probability per gate. With a 

higher average photon number n, we will evidently have a higher psig. However, the 

probability of receiving multi-photon pulse at a gate operation increases when the 

average photon number n is higher, as we have already shown in Figure 3.2 and Figure 

3.3, since the cooled APD cannot distinguish the single and multiple photons pulses. 

Therefore when using weak Poissonian light pulses, the detection efficiency will be 

closer to the real quantum efficiency of the gated APD, and will decrease when n 

increases. 

Recently Toshiba Research Europe has proposed a photon-number-resolving APD 

detector configuration [20] to measure the very weak avalanches at the early stage of 

their development. They split the output signal from the APD into two paths – one of 

which introduces a delay of one period of the alternating bias voltage relative to the other 

path. The periodic capacitive response signal from the APD is thus virtually eliminated 

by taking the difference between the signals in the two paths. They reported an 

operational frequency at 622 MHz with negligible dark count (< 2×10-6 per gate) and 

claimed that this receiver configuration is capable of discriminating the impinging mean 

photon number by observing the peak output signal statistics, which is proportional to the 

incident flux. 

REFERENCES 

1.  C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental 

quantum cryptography”, Journal of Cryptology 5, 3--28 (1992). Preliminary version 



 

 

42 

in Advances in Cryptology - Eurocrypt '90 Proceedings, 253--265 (Springer - Verlag 

1990). 

2. B. Lounis, and W. E. Moerner, “Single photons on demand from a single molecule at 

room temperature”, Nature 407, 491-493 (2000). 

3. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of 

single photons”, Physical Review Letters 85, 290--293 (2000). 

4. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, 

and A. Imamoglu, “A quantum dot single-photon turnstile device”, Science 290, 

2282--2285 (2000) 

5. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single 

photons from a quantum Dot”, Physical Review Letters 86, 1502--1505 (2001). 

6. Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. 

Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source”, 

Science 295, 102--105 (2002). 

7. R. J. Glauber, “Coherent and incoherent states of the radiation field”, Physical Review 

131, 2766--2788 (1963). 

8. B. Jacobs, and J. D. Franson, “Quantum cryptography in free space”, Optics Letters 

21, 1854--1856 (1996). 

9. J. D. Franson, and H. Ives, “Quantum cryptography using optical fibers”, Applied 

Optics 33, 2949--2954 (1994) 



 

 

43 

10. P. Townsend, “Experimental investigation of the performance limits for first 

telecommunications window quantum cryptography systems”, IEEE Photonics 

Technology Letters 10, 1048--1050 (1998). 

11. R. J. Hughes, G. L. Morgan, and C. Glen “Quantum key distribution over a 48 km 

optical fibre network”, Journal of Modern Optics 47, 533--547 (2000). 

12. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography”, Reviews 

of Modern Physics 74, 145--195 (2002). 

13. M. Martinelli, “A universal compensator for polarization changes induced by 

birefringence on a retracing beam”, Optical Communications 72, 341--344 (1989). 

14. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “‘Plug and 

play’ systems for quantum cryptography”, Applied Physics Letters 70, 793--795 

(1997). 

15. G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated ‘plug 

& play’ quantum key distribution”, Electronic Letters 34, 2116--2117 (1998). 

16. M. Bourennane, F. Gibson, A. Karlsson, A. Hening, P. Jonsson, T. Tsegaye, D. 

Ljunggren, and E. Sundberg, “Experiments on long-wavelength (1550 nm) ‘plug and 

play’ quantum cryptography systems”, Optics Express 4, 383--387 (1999). 

17. H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, and W. Tittel, 

“Interferometry with Faraday mirrors for quantum cryptography”, Electronics Letters 

33, 586--588 (1998). 

18. Id Quantique, “Single-photon detection with InGaAs/InP avalanche photodetectors”, 

http://www.idquantique.com, (2005). 



 

 

44 

19.  MagiQ Technologies, Inc., “MagiQ quantum cryptography test bed: uncompromising 

research results”, http://www.magiqtech.com, (2005). 

20. B. E. Kardynal, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based 

photon-number-resolving detector”, Nature Photonics 2, 425--428 (2008). 

 



 

 

 
CHAPTER 4 COHERENT OPTICAL DETECTION AND QUANTUM NOISE 

4.1 HISTORICAL REVIEW OF OPTICAL FIBER COMMUNICATIONS 

The optical fiber has been first proposed by Kao and Hockham (1966) [1] to guide light 

for information transmission, today it is the preferred medium for high-throughput point-

to-point digital communication, due to its large bandwidth, low attenuation, immunity to 

interference, and high security. There has been historically four generations of fiber-optic 

transmission system [2,3]. 

The first generation, deployed in the 1970’s, use multimode fibers at wavelength near 

850 nm, suffered from three main limitations: attenuation, chromatic dispersion, and 

modal dispersion. The attenuation that limits the transmission between the transmitter 

and the receiver was about 2 dB/km. The dispersion of fiber limits the speed at which 

date can be transmitted since it cause short rectangle pulses to spread temporally into 

wider and smoother pulses as they propagate in the optical fiber. Chromatic dispersion 

occurs when light of different wavelength travels with different speeds since the phase 

velocity, v, of a wave in a given uniform medium is given by , where c is the 

speed of light in a vacuum and n(ƒ) is the refractive index of the medium that is a 

function of the frequency ƒ of the light. Similarly, multimode dispersion occurs when 

different propagation modes of light with different speed exist in a multimode fiber. 

The second generation of optic-fiber system was introduced in the 1980’s, operated at 

1300 nm to avoid chromatic dispersion, the wavelength of minimum chromatic 

dispersion in fiber. However it still used multimode fiber that suffers from multimode 

dispersion. 

The third generation system was introduced in mid-1980’s, using single mode fiber 

(SMF) at 1300 nm. The core radius of SMF is made much smaller so that only the single 
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mode can propagate, thus the mode dispersion has been avoided, and however the 

attenuation of 0.5 dB/km was still not satisfactory. 

In the search for long distance transmission, and to exploit the minimum attenuation 

optical fiber band between 1450 nm to 1650 nm, the fourth generation systems has been 

proposed in late-1980’s. Most of today’s commercially available optical fiber has a loss 

about 0.2 dB/km at the low-loss window around 1550 nm in which optical signal can be 

transmitted without regeneration. The limitation for such a system is the significant 

amount of chromatic dispersion, so only spectrally pure lasers with narrow linewidth 

single longitudinal mode can be used. 

Erbium-doped fiber amplifiers (EDFA) that provide gain at the low-loss window 

around 1550 nm is often used to periodically amplify an optical signal to compensate for 

fiber loss over long distance. This low-loss window of optical fiber can accommodate 

many channels for dense wavelength-division-multiplexed (WDM) systems. EDFA can 

amplify many WDM channels together without crosstalk and distortion while adding 

some noise to the signal. 

 

Figure 4.1 Typical configuration of an intensity-modulated/direct-detection system 

In all commercialized optical communication systems, only the intensity of the optical 

signal is used to carry information, constituting a so-called on-off keying (OOK) or 

intensity-modulation/direct-detection (IM/DD) system. Intensity modulation refers the 

information is encoded only by the intensity of the transmitted light-wave, not on its 
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frequency or phase. Direct detection means to the receiver configuration, in which the 

received signal is applied directly to a photo-detector. A practical optical receiver’s 

sensitivity is measured by number of detected photon per bit to achieve a bit-error-rate 

(BER) of 10-9. IM/DD systems, although easy to implement owning to its simple 

configuration, require 400 to 5000 photons per bit for such sensibility. 

4.2 QUANTUM LIMIT FOR ON-OFF-KEYING 

Light is a form of electromagnetic radiation, and can be represented by its electric or 

magnetic field. If the optical power is PS, during a bit interval T, the average received 

photon per bit is: 

 

€ 

n =
PST
hv

 (4.1) 

where v is the frequency (for wavelength , ), h is the 

Planck’s constant (

€ 

6.626 ×10−34  J ⋅ s). 

Now we consider an ideal OOK transmission system over ideal channel in which the 

transmitter sends a pulse of light for bit “one” and no light for bit “zero”. If a “zero” is 

transmitted, the probability of receiving any photon is 0. If a “one” is transmitted, as we 

have mentioned in the precedent chapter, the probability of obtaining n photon when the 

average photon number per bit is  follows Poisson statistics. And the BER can be 

induced only by receiving 0 photon when “one” is transmitted. 

 

€ 

Pr n > 0 | zero[ ] = 0

Pr n = 0 |one[ ] =
n−n

n!
e−n = e−n

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 (4.2) 

If we assume that “one” and “zero” are equally probable, then 

 

€ 

BER =
1
2
Pr n > 0 | zero[ ] +

1
2
Pr n = 0 |one[ ] =

1
2
e−n  (4.3) 
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This leads to the lower bound on the BER called quantum limit [2-4]. The equation 

(4.3) gives a minimum signal power required to achieve a given BER. For example, to 

reach a BER = 10-9, it sets a lower bound at .  

4.3 NOISE IN PHOTODETECTION 

There are two main categories of noise: shot noise and thermal noise. 

4.3.1 SHOT NOISE 

The standard method used to detect light-wave is to employ photodiode detectors. 

Photodiode detectors are semiconductor devices that generate electrons in an external 

circuit when photons excite electrons from the valence band to the conduction band. A 

key parameter of the photodiode is quantum efficiency , which is defined as the ratio of 

then number of photoelectrons generated in the external circuit to the number of photons 

incident. Given an optical power equal to PS, the generated photocurrent is: . 

The ratio of  is also defined as responsivity of the photodiode and has the unity 

A/W. 

Shot noise is actually induced by Poisson process of the light-wave source, since the 

photocurrent generated by the beam fluctuates as a consequence of the underlying 

fluctuations in the impinging photon number. These photon number fluctuations will be 

reflected in the electron number fluctuations with a fidelity determined by . If the 

average photocurrent number per bit  is generated by average impinging photon 

number per bit , then we have 

 

€ 

N =ηn  (4.4) 

Then the variance of electron number  and the variance of photon number  

have the relationship [5]: 
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€ 

ΔN( )2 =η2 Δn( )2 +η 1−η( )n  (4.5) 

We can draw several very important conclusions from equation (4.5) 

1. If , we have  and electron number fluctuations reproduce the 

fluctuations of the incident photon stream. 

2. As the incident photon stream has Poissonian statistics with , then 

 for any value , thus the electron number also has a Poisson 

statistics. 

3. If , the electron number fluctuations tend to has a Poisson statistics, but 

irrespective of the impinging photon statistics. 

Therefore a high quantum efficiency photo-detector is necessary to reproduce faithful 

statistics of the impinging photocurrent. 

Dark current Idark has also to be taken into account when the impinging lightwave is 

weak, it is the constant response exhibited by a receiver of radiation regardless of the 

presence or the absence of incident photons. As a result, the current fluctuations have a 

standard deviation of 

 

€ 

σ shot
2 = 2qIΔf

σ dark
2 = 2qIdarkΔf

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 (4.6) 

where q is the elementary charge of an electron,  is the bandwidth in Hz over which 

the noise is measured. 

4.3.2 THERMAL NOISE 

Thermal noise, also called Johnson–Nyquist noise, is the electronic noise generated by 

the thermal agitation of the charge carriers (usually the electrons) inside an electrical 

conductor at equilibrium, which happens regardless of any applied voltage. Thermal 
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noise is approximately white, meaning that the power spectral density is equal throughout 

the frequency spectrum. Additionally, the amplitude of the noise has very nearly a 

Gaussian probability density function. The noise source can also be modeled by a current 

source in parallel with the resistor by taking the Norton equivalent that corresponds 

simply to a division by the impedance. This gives the root mean square value of the 

current source as: 

 

€ 

σ thermal
2 =

4kBT
Rthermal

Δf  (4.7) 

where  is Boltzmann’s constant (  Joules/Kelvin), T is the resistor absolute 

temperature in Kelvins, and Rthermal is the load resistor value in ohms,  is the bandwidth 

in Hertz over which the noise is measured. 

Consequently, the photo-detector performance is dependent on the detection noise, 

i.e., shot noise and thermal noise: 

 

€ 

σ 2 =σ shot
2 +σ dark

2 +σ thermal
2 = 2q I + Idark( )Δf +

4kBT
Rthermal

Δf  (4.8) 

4.4 COHERENT RECEIVERS 

Coherent optical transmission in telecommunications wavelength has been studied for 

more than three decades [6-10], due to its unique features concerning the use of complex 

amplitude modulations that allows lower optical signal-to-noise rate (OSNR) for a given 

post-detection BER. Coherent detection of optical signal is first used for its superior 

receiver sensitivity compared to OOK. The mixing of received signal field with the local 

oscillator (LO) laser functions as an optical amplifier without noise enhancement. 

Coherent detection can provide better receiver sensitivity even if EDFA is used in OOK. 

Furthermore, the use of the constant envelope formats, in opposition to the traditional 

intensity modulation with direct detection (IM/DD), is more tolerant to the non-linear 

effects in the fiber. 
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4.4.1 SINGLE BRANCH COHERENT RECEIVER 

Coupler is defined physically as a passive optical device to two optical inputs and two 

outputs, whose role is to transmit signals input to output following a theoretical 

relationship called transfer function. 

 

Figure 4.2 2×2 optical coupler 

The basic principle is that the coupling between two evanescent wave fibers whose 

cores are very close. The electromagnetic field extending beyond the core, the light in 

one fiber core propagates gradually into the other through the transfer zone. These optical 

systems can be achieved by using the technique of polishing-assembly or fusion-

stretching. 

For a standard 50/50 optical 2×2 coupler in Figure 4.2, we can represent the 

electromagnetic fields transfer matrix of the inputs and outputs by: 

 

€ 

C =
1
2
1 − j
− j 1
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (4.9) 

 

Figure 4.3 Single branch coherent receiver 

Figure 4.3 shows a typical structure of single branch coherent receiver. To make an 

ideal and effective mixing, we make an assumption that the light can be represented by 
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waves, and the polarizations of the two beams are perfectly matched. The signal field and 

the LO field can be represented by 

 

€ 

Esignal = ESe
j ωC t+θ( ) = PSe

jω 0te j ωC t+θ( )  (4.10) 

 

€ 

ELO = EL = PLOe
jω0t  (4.11) 

where  is the angular frequency of the lightwave,  is the carrier angular frequency, 

and  is the relative phase of the signal beam. 

The optical power at the output of the coupler can be obtained: 

 

€ 

P(t) =
1
2
Esignal + ELO

2

=
1
2
PS + PLO + 2 PSPLO cos(ωC t + θ)( )

 (4.12) 

Therefore the photocurrent can be represented by 

 

€ 

I t( ) = RP t( ) + nshot t( ) + nthermal t( ) + nx t( )

=
1
2
R PS + PLO + 2 PSPLO cos(ωC t + θ)( ) + nshot t( ) + nthermal t( ) + nx t( )

 (4.13) 

In equation (4.13), R is the responsivity of the photodiode and  is the shot noise 

that is a zero mean process with power spectral density (PSD): 

 

€ 

Sn ω( ) = qRP t( )  (4.14) 

The thermal noise  is as mentioned in equation (4.7) with PSD: 

 

€ 

Sthermal ω( ) =
4kBT
Rthermal

 (4.15) 

And  represents the extraneous noises such as dark current, intensity noise, etc. 

 and  are both arbitrary zero-mean random process, which may be non-

white and non-Gaussian. 

As, when , we can see from equation (4.13) that 
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€ 

Sn ω( ) ≈ 1
2
qRPLO  (4.16) 

From equation (4.13) if we eliminate DC part by a high pass filter, we can obtain 

 

€ 

I t( ) = R PSPLO cos(ωC t + θ) + nshot t( ) + nthermal t( ) + nx t( )  (4.17) 

From equation (4.16) and (4.17) we can see that both the power of desired signal and 

the main noise are proportional to , therefore increasing  will increase bother the 

signal and the noise. However other noises that we have neglected from equation (4.16) 

are irrelevant to , thus a higher LO power can reduce the effects of the extraneous 

noises, and equation (4.17) can be reduced to  

 

€ 

I t( ) ≈ R PSPLO cos(ωC t + θ) + nshot t( )  (4.18)) 

This is a so-called shot-noise-limited case. 

4.4.2 BALANCED COHERENT RECEIVER 

 

Figure 4.4 Balanced coherent receiver 

Figure 4.4 shows a typical structure of single branch coherent receiver that exploits 

both two outputs of the coupler. Assuming that , we can have  

 

€ 

I1 t( ) ≈ 1
2
R PS + PLO + 2 PSPLO cos(ωC t + θ)( ) + nshot1 t( )

I2 t( ) ≈ 1
2
R PS + PLO − 2 PSPLO cos(ωC t + θ)( ) + nshot 2 t( )

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 (4.19) 
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where  and  are photocurrents generated by Photodiode 1 and Photodiode 2 and 

 is the difference between  and  

 

€ 

I t( ) = I1 t( ) − I2 t( ) = 2R PSPLO cos ωC t + θ( ) + n t( ) (4.20) 

where  is also approximately a zero-mean white Gaussian noise. 

When optimal detectors are used [2,11], the noise PSD is 

 

€ 

Sn ω( ) ≈ qR PLO + PS( ) ≈ qRPLO  (4.21) 

As a matter of fact, the PSDs of the two noise processes add up because the signal 

field and the LO field have unequal and uncorrelated fluctuations; therefore the 

photocurrents generated by different photodiodes are thus independent. Another reason is 

that the coupler does not split photons but randomly distributes them into the two outputs. 

As a result there is a residual noise on power difference, which can be shown to be equal 

to the shot noise of a beam of power sum [12,13]. 

However, the subtraction of the two currents provides the heterodyne or the homodyne 

signal. The DC term is eliminated completely during the subtraction process when the 

two branches are balanced in such a way that each branch receives equal signal and LO 

powers. More importantly, the intensity noise associated with the DC term is also 

eliminated during the subtraction process. The reason is related to the fact that the same 

LO provides power to each branch. As a result, intensity fluctuations in the two branches 

are perfectly correlated and cancel out during subtraction of the two photocurrents. It 

should be noted that intensity fluctuations associated with the AC term, i.e. the product of 

the signal of the LO, are not canceled even in a balanced receiver. We also note that the 

thermal noise, even much smaller than shot noise, cannot be eliminated by balanced 

configuration since it is related to the characteristics of individual photodiode currents. 

Nevertheless, their impact is less severe on the system performance because of the 

square-root dependence of the AC term power on the LO power. Moreover, balanced 
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configuration can allow to double the photocurrent outputs and eliminate the common 

mode noise, such as imperfect modulation, electrical circuit induced noises, etc. 

Balanced receivers are commonly used while designing a coherent lightwave system 

because of the two advantages offered by them. First, the intensity-noise problem is 

nearly eliminated. Second, all of the signal and local-oscillator power is used effectively, 

making it easier to operate in the shot-noise limit. 

4.4.3 PERFORMANCE OF BALANCED HETERODYNE AND BALANCED HOMODYNE 

DETECTION 

In a coherent optical communication system, we can use either frequency modulation 

or angular modulation. 

For a heterodyne system, we can rewrite the equation (4.20) as: 

 

€ 

I t( ) = I1 t( ) − I2 t( ) = 2R PSPLO cos ωC t( )t + θ[ ] + n t( ) (4.22) 

where the carrier angular frequency  is the intermediate frequency (IF) as frequency 

modulation, and  is a constant value. From the equation (4.21), (4.22), with the receiver 

band width is 

€ 

Δf , the electrical signal-to-noise rate (ESNR) can be given by: 

 

€ 

ESNRHetero =
I2 t( )

Sn ω( ) + Sthermal ω( )
≈
2R2PSPLO
qRPLOΔf

⋅
1
2

=
RPS
qΔf

=
ηPS
hvΔf

 (4.23) 

For a homodyne system in which we apply angular modulation and 

€ 

ωC = 0, we can 

rewrite the equation (4.20) 

 

€ 

I t( ) = 2R PSPLO cos θ t( )[ ] + n t( )  (4.24) 

where  is the phase-shift-keying signal. For a binary phase-shift keying (BPSK) 

signal, we can deduce from the equations (4.21), (4.24), 
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€ 

ESNRHomo =
I2 t( )

Sn ω( ) + Sthermal ω( )
≈
4R2PSPLO
2qRPLOΔf

=
2RPS
qΔf

=
2ηPS
hvΔf

 (4.25) 

It is more useful to present the ESNR in terms of average photon number per bit 

€ 

NS. 

At the bit rate B, the signal power 

€ 

PS  is related to 

€ 

NS  as 

€ 

PS = NShυB , while typically 

€ 

Δf =B 2 . Therefore the equations (4.23), (4.25) can be rewritten as: 

 

€ 

ESNRHetero = 2ηNS  (4.26) 

 

€ 

ESNRHomo = 4ηNS  (4.27) 

Now lets consider the Q factor: for a symmetric modulation format, we consider the 

signal level and noise level of the two symbols 0, 1 as 

€ 

I0,  I1,  σ 0,  σ1. Then we have 

 

€ 

Q =
I1 − I0
σ1 +σ 0

≈
2I1
2σ1

= ESNR( )1 2  (4.28) 

when the condition 

€ 

I0 = −I1,  σ 0 =σ1 is used. 

Consequently we can obtain the BER performance of both two receivers [14] by using 

the equation: 

 

€ 

BER =
1
2
erfc Q

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (4.29) 

For a heterodyne receiver: 

 

€ 

BER =
1
2
erfc NS( )  (4.30) 

and for a homodyne receiver: 

 

€ 

BER =
1
2
erfc 2NS( )  (4.31) 

As a result of the complexity in receiver configurations, the ESNR of homodyne 

receiver has 3 dB gain compared to heterodyne configuration, leading to a better BER 

performance, which allows homodyne to reach the quantum limit and more adaptable to 

weak signal applications, such a phase-modulated QKD system. 
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4.5 TECHNICAL NOISE AND IMPAIRMENT IN HOMODYNE 

DETECTION 

4.5.1 CLASSIC PHASE FLUCTUATION 

In homodyne detection, the local oscillator usually acts as the phase reference for in-

phase and in-quadrature definitions. With a phase mismatch  of the local oscillator, 

the balanced output can be given by [15]: 

 

€ 

I t( ) = 2R PSPLO cos θ t( ) + Δθ[ ] + n t( ) (4.32) 

The phase noise is multiplied by the LO field which acts as a lever for classical phase 

noise effect. Since the obtained output is proportional to the received signal, the noise is 

no longer simple additive to the quadrature amplitude. 

Classical fluctuation appears therefore as a limitation for the signal level, which is an 

important limitation for strong signal level applications, for instance for QKD using 

continuous variables. 

4.5.2 PHASE DIFFUSION AND LINE-WIDTH  

Shawlow and Townes [16], and Lax [17,18] have first pointed out the role of 

fluctuations in the phase of the optical field on the laser line-width. When concerned by 

semi-conductor laser (SLC), Henry [19] starts with a corpuscular point of view, in which 

the instantaneous changes of the phase of the optical field is caused by discrete 

spontaneous emission events, which discontinuously alter the phase and intensity of the 

lasing field. Henry’s [19] approach points out the importance for SCL of the phase 

amplitude coupling resulting from deviation of the imaginary part of the refractive index 

from its steady-state value caused by the change of its real part associated to the gain 

change and includes an additional phase shift of the laser field. This effect has been 

previously pointed out by Lax, but was of negligible effect for the laser considered. As 

intensity fluctuations are smoothed out by gain saturation, the averaged optical phase 
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diffuses in a Brownian motion due to the lack of a restoring force, under the direct and 

the phase amplitude coupling induced phase changes. 

Furthermore, as a critical parameter in coherent detection, the field line-width is not 

only a property of the quantum noise, but is also the result of the phase diffusion. The 

electromagnetic wave packets are the classical counter part of the electromagnetic field 

quantum states. The coherence time is the inverse of the laser line-width that is 

determined by the laser source and corresponding population inversion, built-in losses, 

cavity Q factor and phase coupling factor. The laser line-width has also been discussed 

by Nilsson [20] in terms of quantum noise filtering by the lasing cavity. A continuous-

wave (CW) laser, far above threshold, generates a sequence of consecutive nearly 

coherent states with individual finite time occupancy corresponding to the coherence 

time. Through the coherent states succession, the phase goes though a random walk, i.e. a 

Brownian motion, except when a restoring force for the phase is applied by using for 

instance injection-locking technique [21]. Indeed, phase can never be controlled within 

the photon number-phase Heisenberg uncertainty, as will be discussed in the next 

chapter. 

Phase diffusion is a natural limitation for interferometric arrangements, in the case of 

unbalanced recombination of the path acting as LO and the path acting as signal. As first 

shown by Armstrong [22] and discussed in detail by Gallion and Debarge [23] the 

homodyne photocurrent spectrum consists, in this case, of two terms, whose behavior 

relates closely to the normalized time delay, and phase mismatch values. A frequency 

Dirac function, corresponding to the DC component which stands for the incoherent 

addition of the two optical powers, and to the amount of remaining phase correlation 

between the two mixed beams. When the time-delay is large, as compared to the 

coherence time, we have completely uncorrelated mixed fields and the dependence on the 

phase matching vanishes out. When the time-delay is small as compared to the coherence 

time, it becomes very sensitive on phase mismatch values and it no longer depends on the 
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spectral spread, turning into a pure Dirac function, whatever the spectral width is. The 

second term takes the form of an approximately Lorentzian line shape. It vanishes out for 

a close to zero delay value. For large delay values, this term is then no longer dependent 

on the phase matching and stands for the optical mixing of two independent fields and it 

becomes rigorously Lorentzian with a full width at half maximum (FWHM) which is 

twice the original laser line width, because the detector acts as an optical product 

detector, whose output is the autocorrelation product of the laser field spectrum. 

4.5.3 UNBALANCED HOMODYNE DETECTION AND IMPERFECT QUANTUM 

EFFICIENCY 

Kennedy’s [24] binary coherent-state signals receiver uses a homodyne-like 

configuration with a weak LO whose amplitude is matched to the signal one to produce 

an unconditional cancellation of one of its antipodal values. Dolinar [25] extended 

Kennedy’s results by allowing the LO to depend on the observed output of the photo-

detector. This structure is an explicit realization of the optimum quantum receiver for 

phase-shift-keying (PSK) signals. For such a “one output port” single detector homodyne 

arrangement also has been discussed by Yuen et al. [26]: the amplitude splitting 

coefficients  and  are selected to be respectively equal to 1 and 0 and a 

theoretically infinite power of a local oscillator is required to surmount thermal noise. 

For the 2 port arrangement, proposed by Yuen [27] and also discussed by Shapiro 

[28], the exact intensity cancellation condition of a LO noise is ε = ½. Any attenuation in 

a balanced homodyne arrangement can be expressed, without loss of generality, by an 

intensity transmission coefficient T <1. Attenuation destroys the balance in the two arms 

and produces an amplitude attenuation of the measured quadrature by a factor , and 

meanwhile introducing an additional constant level noise, i.e. Gaussian attenuation noise 

with a spectral density . 
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A balanced mixer achieves the quantum-limited operation only when the two photo-

detectors’ quantum efficiencies are identical and equal to unity. For non-ideal photo-

detectors with quantum efficiencies η1  and η2  the corresponding signal penalties are 

introduced. However Machida [29] points out that an exact local oscillator intensity noise 

cancellation condition can be preserved, by using . 

4.6 QUANTUM THEORY OF HOMODYNE DETECTION 

Coherent detection is a well-known method using the non-linear mixing, via a square-

law detector, of the signal field and a reference field so-called the local field (LO). When 

the frequencies of the two mixed fields are different, it is usually referred as heterodyne 

detection; and as homodyne detection when the two frequencies are identical. Heterodyne 

detection allows a passband recovery of the signal information centered at the frequency 

difference between the two mixed fields, so-called the intermediate frequency (IF), which 

leads to an easy-to-implement post-detection information processing free of low-

frequency noise and fluctuations. In optical interferometry, homodyne corresponds to the 

generation of the LO field from the beam splitting of the same source where signal field 

is generated. Such an arrangement is insensitive to frequency fluctuations from the 

common field source, except those occurring on a time scale larger than the usually short 

delay due to unequal interferometer paths, resulting in decoherence. In coherent detection 

the signal field is usually weak, as compared to the local one, and a strong and noise free 

mixing gain can thus be obtained. 

Homodyne detection, as a process in which the signal benefits from a noise free 

mixing gain with LO, can be easily processed, i.e. amplified, filtered, and synchronized. 

Furthermore, homodyne receiver structures are flexible to be designed for phase 

diversity, polarization diversity, and polarization division multiplexing, either with 

separated LO or in self-homodyne configurations. Recently fast digital signal processing 

techniques for performing these operations have been reported experimentally, allowing 

to overcome several impairments in the optical channel, such as phase synchronization in 
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a feed-forward configuration and fiber linear and non linear phase dispersion 

compensation. 

For the quantum states discrimination in a binary channel, homodyne detection 

consists of a quantum mechanical Gaussian operation: mapping input quantum states into 

Gaussian states 

€ 

ρ = ξ1 α α + ξ2 −α −α . Takeoka [30] and Nha and Carmichael [31] 

have proved that homodyne measurement is the best strategy to discriminate among 

binary coherent states with Gaussian operations, and that any classical operation. In the 

case of more complex constellations with coherent states, i.e. M-ary modulations, further 

analysis is required. Indeed distinguishing among an ensemble of states can be 

conceptualized as a problem of realizing minimum overlap among states. 

The balanced homodyne detection (BHD) scheme detects the field superposition at the 

two output ports of the 50/50 coupler and the subsequent electronic subtraction cancels 

out the photon number sum at the input ports from the detected fields. Semi-classical 

analysis of the BHD have been made by Abbas, Chan and Yee [32], demonstrating the 

property of canceling the local oscillator excess noise, but still interpreting the quantum 

limit as the result of the LO shot noise. Yuen and Chan [27], Shumaker [33] and also 

Collett, Loudon and Gardiner [34] for fields of general quantum state, introduced a 

quantum mechanical treatment, interpreting the BHD as canceling both the LO excess 

and quantum noises, demonstrating that the quantum limit is the signal quantum 

fluctuation. Extended analysis on imperfect time/frequency overlap between signal and 

local oscillators has been conducted by Grosshans and Grangier [35]. 

Under the conditions of ideal coupler and detectors, with LO in a strong coherent state 

having a relative phase shift  to the received signal eigenstate , the quantum 

observable is the field quadrature [15]: 

 

€ 

ˆ x θ =
exp jθ( ) ˆ a + + exp − jθ( ) ˆ a 

2
 (4.33) 
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In fact, the ideal BHD is a quantum measurement of the field quadrature defined as the 

intrinsic homodyne quantum observable , consisting of the signal quadrature 

distribution rescaled by the amplitude of the LO. For imperfect BHD, lossy couplers and 

non-unit efficiency detectors add vacuum noise that would result in Gaussian spread of 

the quadrature measurement. 

Now let us consider the homodyne detection of a signal with a local oscillator fields 

respectively described by the quantum photon annihilation operators . The two 

fields are first assumed combined by using a lossless and a perfectly balanced coupler as 

depicted on Figure 4.5. 

 

Figure 4.5 Homodyne detection arrangement 

According to the coupler transfer matrix the resulting field on detector D1 and D2 are: 

 

€ 

ˆ a 1 =
1
2

ˆ s − jˆ l ( ),   ˆ a 2 =
1
2
− jˆ s + ˆ l ( )  (4.34) 

and the associated the photon number operators are respectively 

  (4.35) 

The coherent subtraction of the 2 photocurrents outputs allows us to take benefit of the 

signal and LO interaction spread on the 2 detectors by the combiner. Assuming perfect 

quantum efficiency for the two detectors D1 and D2, the photoelectron number operator 

is equal to the photon number operator for each detector; hence the electron number 

operator for the subtraction output current is given by 
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  (4.36) 

 
Using signal and LO field operator expansions in terms of in-phase and quadrature 

Hermitian components, we have: 

 

€ 

ˆ s = ˆ s I + jˆ s Q   and  ˆ l = ˆ l I + jˆ l Q   (4.37) 

therefore, 

 

€ 

ˆ N = 2 ˆ s I ˆ l Q − ˆ s Q ˆ l I( ) (4.38) 

Note that in this description,  refer to the fields at the input of the optical 

combiner and that, despite their different index,  refer to the 

same quadrature at the detector input, according to the phase shift property of the optical 

combiner. We can thus simplify the notation, by referring the phase of the local oscillator 

field on the detector 1, i.e. in the above equations we replace  by and then we obtain 

[26]:  

 

€ 

ˆ N = ˆ s + ˆ l − ˆ l +ˆ s = 2 ˆ s I ˆ l I + ˆ s Q ˆ l Q( ) (4.39) 

Note that  is twice the projection of the signal operator on the local field operator. 

Here we will restrict our analysis to the case where both the LO and signal fields are 

single coherent states. Assuming that the signal and the LO fields are coherent states, we 

can thus separate the classical and quantum contributions for the 2 quadratures of the 

signal and the local oscillator field: 

 

€ 

ˆ s I = SI + Δˆ s I  with SI = ˆ s I   and ˆ s Q = SQ + Δˆ s Q  with SQ = ˆ s Q
ˆ l I = LI + Δˆ l I  with LI = ˆ l I   and ˆ l Q = LQ + Δˆ l Q  with LQ = ˆ l Q

 (4.40) 

To detect SI (or SQ) we have to set LQ (or LI) to zero. Assuming that SI is to be detected, 

and the LO acts as the phase reference for the signal, we can obtain 
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€ 

ˆ N = 2 LI + Δˆ l I( ) SI + Δˆ s I( ) + Δˆ l Q SQ + Δˆ s Q( )( )  (4.41) 

For strong LO level , the dominating term is 

 

€ 

ˆ N = 2ˆ s I ˆ l I = 2 SI + Δˆ s I( )LI  (4.42) 

Here we have neglected quantum fluctuations of the LO since they are added to its 

deterministic part and have no cross product with it. 

The output signal of a balanced homodyne detection arrangement is proportional to 

the quadrature  and its additional quantum noise . Its input signal is amplified by 

the deterministic part of the LO in-phase quadrature on the detectors that provides a noise 

free mixing gain. Actually in homodyne detection only one quadrature is measured and 

no noise addition to the zero-point fluctuation of the signal field is introduced, therefore 

the input signal quantum noise is the only noise limitation. The LO noise has a negligible 

influence and the output noise is only governed by the vacuum fluctuation entering into 

the signal port. The limitation of the output noise of homodyne detector, has been 

experimentally confirmed at quantum level by Machida and Yamamoto [29]. They also 

point out the difficulty to verify if the quantum noise of a LO wave can be cancelled as 

well as its excessive noise, when the signal and the LO waves possessed the same amount 

of quantum noise. A squeezed state input signal is required in order to clarify this point 

and to completely refute the semi-classical description based on the local oscillator shot 

noise. 

Assuming a perfectly phase matched LO, free of relative phase fluctuations with 

respect to the signal, the overall photon number operator is 

 

€ 

ˆ N = ˆ N + Δ ˆ N  with ˆ N = 2LI SI   and Δ ˆ N = 2LIΔˆ s I  (4.43) 

The average photon number is equal to the average electron number assuming unit 

quantum efficiency. The square electron number is 
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€ 

ˆ N 2 = 4LI
2 SI

2 + Δˆ s I( )2   (4.44) 

Assuming that the signal and LO are coherent states, denoted by  

respectively, and a constant envelope modulation is used for the signal. The average 

signal and local photon number NS and NL are defined as 

 

€ 

NS = ˆ s +ˆ s = αS
2   and NL = ˆ l +ˆ l = αL

2  (4.45) 

We can thus obtain 

 

€ 

ˆ N 2 = ˆ N 
2

+ ˆ N ( )
2

= 4LI
2 SI

2 +
1
4

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 4NLNS + NL  (4.46) 

The first term of the left hand side of the equation (4.42) is the averaged square of the 

signal photon number, while the second term is the averaged square of the photon 

number fluctuations 

 

€ 

ˆ N 
2

= 4NLNS   and   Δ ˆ N L( )
2

= NL  (4.47) 

The second part of Equation (4.43) is the well-known Poisson fluctuation relationship, 

in agreement with the classical theory of homodyne detection, which will be discussed 

below and for which the fundamental noise limitation is interpreted as the LO shot noise. 

The signal to noise ratio (SNR) is given by 

 

€ 

SNR =
4NLNS

NL

= 4NS  (4.48) 

In digital communication systems it is common to express the SNR in term of the 

energy per bit EB divided by the single sided spectral density N0, i.e. the ratio EB /N0. It is 

a normalized signal-to-noise ratio measure, also known as the SNR per bit. Denoting the 

bit duration T, i.e. the observation time, and we assume that a matched electrical filter 

with equivalent bandwidth  is used. Since the homodyne beating signal is in the 

base-band, the optical bandwidth  is identical to the electrical one, hence the signal to 
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noise ratio can also be expressed as a function of the averaged optical signal power PS, in 

the form of [36]. 

 

€ 

SNR =
PS

hν
2
BO

= 2 EB

N0

 (4.49) 

The single sided spectral density of noise N0 is equal to the zero point fluctuation of 

the optical field 

€ 

SN 0 = hν 2. The signal to noise ratio per bit is especially useful when 

comparing the BER performance of different digital modulation schemes without taking 

the bandwidth consideration into account. It is equal to the SNR divided by the link 

spectral efficiency in bit/s/Hz, which is 

€ 

R B0 = 2 in our case, where the bit rate R =1/T is 

independent of error correction overhead or modulation symbols. 
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CHAPTER 5 PHASE ENCODING ON WEAK COHERENT STATES AND 

QUANTUM DETECTION 

5.1 CLASSICAL ELECTROMAGNETIC WAVE DESCRIPTION 

 

Figure 5.1 Electric field of an electromagnetic wave polarized in the x-direction enclosed 
in a cavity of dimension L 

A classical monochromatic wave that is plane-polarized in the x-axis and propagates in 

the direction z-axis within a cavity of mode area A and length L, we can write down the 

electric field in the following form: 

 

€ 

ex z,t( ) = e0 sinkzsin ωt + φ( )  (5.1) 

where  is the amplitude,  is the wave vector, and  is the angular frequency, 

and  is a phase factor. The electric field energy for the field given in the equation (5.1) 

is equal to: 
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€ 

Eelectric =
1
2
ε0A e0

2

0

L

∫ sin2 kzsin2 ωt + φ( )dz

=
1
4
ε0ALe0

2 sin2 ωt + φ( )

=
1
4
ε0Ve0

2 sin2 ωt + φ( )

 (5.2) 

where  is the vacuum permittivity and . And we can extend the equation (5.1) 

as: 

 

€ 

ex z,t( ) = e0 sinkz cosφ sinωt + sinφ cosωt( )
= e1 sinωt + e2 cosωt

 (5.3) 

The amplitudes of the two field quadratures corresponding to the two oscillating fields 

are , , respectively. 

 

Figure 5.2 Phasor diagram for a classical wave of amplitude  

In quantum optics, it is more convenient to work in unit in which the field is 

dimensionless. As the energy unit of photon is  where  is the wave frequency, 

the normalized in-phase (I) amplitude and quadrature (Q) amplitudes are: 
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€ 

XI t( ) =
ε0V
4hv
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1 2

e0 sin ωt + φ( )

XQ t( ) =
ε0V
4hv
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1 2

e0 cos ωt + φ( )

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

  (5.4) 

As the Heisenberg uncertainty principle [1,2] for the quantum uncertainty of the 

position and momentum, the field quadrature amplitudes are subject to quantum 

uncertainty in exact the same way for the I-Q amplitudes [3]: 

 

€ 

ΔXIΔXQ ≥
1
4

 (5.5) 

5.2 VACUUM STATE 

The well known quantized harmonic oscillator theory give corresponding energy 

level:  

 

€ 

En = n +
1
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ hv  (5.6) 

The energy is quantized and can only take discrete values, such as , ,  

and so forth since n is an integer [4,5]. 

Vacuum state is the quantum state with the lowest possible energy. The term “ground 

state energy” or “zero-point field” is sometimes used as a synonym for the vacuum state 

of an individual quantized field. The vacuum energy or the vacuum expectation value of 

the energy is the quantization of a simple harmonic oscillator states that the lowest 

possible energy or zero-point energy that such an oscillator may have is . In 

the vacuum state, according to quantum mechanics, an oscillator performs null 

oscillations and its average kinetic energy is positive. 
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Figure 5.3 Phase diagram for the vacuum state 

The zero-point energy originates from a randomly fluctuating electric field, and the 

classical field amplitude  is zero for the vacuum state. Therefore the vacuum state can 

be represented on a phasor diagram as uncertainty circle centered at the origin as shown 

in Figure 5.3. The shaded region indicates the random fluctuation of the field. The 

uncertainties in the two quadratures are identical, induced by zero-point half photon 

energy fluctuation; both are equal to the minimum value allowed by the equation (5.5): 

 

€ 

ΔXI = ΔXQ =
1
2

 (5.7) 

5.3 COHERENT STATE 

In quantum mechanics a coherent state  is a specific kind of quantum state of the 

quantum harmonic oscillator that is an equivalent of a classical monochromatic 

electromagnetic wave [5-7].  is a dimensionless complex number that can be 

understood by considering a linearly polarized mode of angular frequency  enclosed 

within a cavity of volume V.  can be defined as: 
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€ 

α =α I + iαQ  (5.8) 

with the vector length: 

 

€ 

α = α I
2 +αQ

2  (5.9) 

and 

 

€ 

α I = α cosφ
αQ = α sinφ

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 (5.10) 

According to these definitions, we can represent the coherent state  as shown in 

Figure 5.4. For classical state of light, there is no intrinsic preference to either of the two 

quadratures, and their uncertainty must be identical . 

 

Figure 5.4 Phasor diagram for the coherent state  

Hence, coherent states can be considered as vacuum states displaced from the origin 

zero-point to the field vector , with the uncertainty circle of vacuum states. If  is the 

average photon number excited in the cavity, and the classical energy definition is 
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, then the average length value of  will be  with equal uncertainty 

on the two quadratures, limited by zero-point energy fluctuation. 

The additive random noise of the coherent state  can be written as: 

€ 

Δα t( ) = Δα I t( ) + iΔαQ t( ).  is Gaussian as well as its independent in-phase  

and in-quadrature  components. These two components are uncorrelated base-

band noise process with bandwidth Bo/2 and have the same single-sided spectral power 

density SN as the total noise 

€ 

Δα(t)  [8]. The probability distributions for the independent 

in-phase and quadrature noise components are 

 

€ 

p(α I /Q ) =
1

σα I /Q 2π
exp−

XI /Q − XI /Q( )
2σα I /Q

2

2

 (5.11) 

with 

€ 

σα I
2 =σαQ

2 = SN
BO
2 . 

The total average noise power can be obtained as: 

 

€ 

PN =
hν
2
BO  (5.12) 

This additive noise, which accompanies any optical field, is usually referred in 

quantum electrodynamics, to the zero-point field fluctuations or the vacuum fluctuations. 

The addition of the zero-point field fluctuations to a classical deterministic field is an 

intrinsic property making the coherent state of the light a stochastic process whether the 

light is modulated or not. 

We can consider quantum fluctuations as produced by an additive white Gaussian 

noise (AWGN) noise with the single sided spectral density, in the considered signal 

polarization mode: 

 

€ 

SN 0 = hν /2  (5.13) 
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This noise is only observable through its cross term product with another signal and is 

not directly observable. By using , the energy  can be interpreted as the 

minimum detectable value of the energy for an observation time T. This value is also the 

minimum value  of the quantified energy  of a harmonic 

oscillator, which is always present but not available for exchange. For ν =193 Thz, 

corresponding to the minimum attenuation of silica fiber and to the center of 

amplification range of EDFA, corresponding to the so-called communication wavelength 

of 1550 nm, the zero-point field spectral density SN0 is 0.65×10-19 W/Hz. Vacuum 

fluctuations are additive for the field and are already present at any (evenly unused) 

signal input optical amplifier, an optical coupler etc. They include phase and amplitude 

(or intensity) noise as well. 

5.4 PHASE-NUMBER UNCERTAINTY AND SHOT NOISE 

From the equations (5.9) and (5.10) we can see that both the length and angle of the 

coherent stat are uncertain. 

 

Figure 5.5 The phase-number uncertainty circle of coherent states 
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We first consider the photon number uncertainty [9-11], as the circle diameter is , it 

is evident that the vector length is uncertain between  and . Hence we 

have: 

 

€ 

Δn = α +1 4( )2 − α −1 4( )2 = α = n  (5.14) 

This result also conforms to the Poisson photon statistics as mentioned in Chapter 4. 

We have mentioned that the shot noise is caused by the Poisson statistics of the laser 

source. The equation (5.14) points out that the in the optical detection, the observed shot 

noise is induced by the quantum uncertainty. 

As for the phase uncertainty , we can obtain easily from Figure 5.5 that 

, hence we have 

 

€ 

Δφ = 2sin−1 1
4 n

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (5.15) 

As we can see from Figure 5.6 when , i.e. for the vacuum states, the phase  

can’t be measured and has the maximum uncertainty value π; and uncertainty  

decreases with higher . Also in the Figure 5.7 we can see, when , the phase-

number uncertainty is lower bounded by . 
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Figure 5.6 The phase uncertainty evaluation with  

 

Figure 5.7 The phase-number uncertainty relation 

Thus the phase-number uncertainty relationship is: 

 

€ 

ΔφΔn ≥ 1
2

 (5.16) 

This relationship shows that it is impossible to obtain perfect precision on the phase 

and on the photon number of a lightwave at the same time [11]. 
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Furthermore, when only the quantum noise is considered, this rule permits a practical 

method for estimating the mean photon number NS of signals consisting of coherent states 

in the homodyne detection: with the vacuum state fluctuation 

€ 

ΔX  that corresponds to half 

photon energy, and the measured quadrature amplitude value 

€ 

X  that corresponds to 

€ 

NS , we can have: 

 

€ 

X
ΔX

=
NS

1 2
⇒ NS =

X
2ΔX
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

 (5.17) 

5.5 QUANTUM DETECTION 

The pioneering works on quantum detection and estimation theory by Helstrom [12], 

Yuen and Kennedy [13], Hirota and Tsushima [14], and Belavkin [15] for the digital 

channel, were based on quantum hypothesis testing: in this theory the detection process 

consists of a generalized quantum measurement which is mathematically described by a 

probability operator value measurement (POVM) in the following way: given an M-ary 

received signal, whose states have a priori probabilities  and density operators 

 consisting of a unit trace, non-negative Hermitian operators, i.e. 

 and , where tr stands for the trace of the operator matrix. The 

POVM is a detection operator  that possesses the following properties: 

- Positiveness: 

€ 

ˆ Π l ≥ 0∀l (5.18) 

- Completeness: 

€ 

ˆ Π l
l=1

M

∑ = ˆ I  (5.19) 

where  is the identity operator. Such as the conditional probability of inferring that a 

measurement output signal in the m state corresponds to a signal in the l state is: 

 

€ 

Pr(l /m) = tr( ˆ Π l ˆ ρ m )  (5.20) 
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This is the probability of choosing the hypothesis  when  is true; therefore the 

probability of error also called the bit error ratio (BER), is obtained in terms of the 

POVM: 

 

€ 

BER =1− ξmtr ˆ ρ m ˆ Π m
m=1

M

∑  (5.21) 

Helstrom [16] introduced the quantum statistical detection theory for optimal decision 

among several hypotheses: for the case of binary signals consisting of pure states  and 

, there are two density operators labeled  and , with prior 

probabilities  and , with ; the two hypothesis are labeled  and . 

In this approach a POVM operator  is applied, obtaining the following 

probabilities: 

 

€ 

Pr(H1 /H1) = tr(ρ1Π) (detection probability) (5.22) 

 

€ 

Pr(H1 /H0) = tr(ρ0Π)  (false alarm probability) (5.23) 

And the average probability of error is obtained from: 

 

€ 

BER = ξ0 Pr(H1 /H0) + ξ1 1−Pr(H1 /H1)[ ] (5.24) 

Based on the statistical Neyman Pearson criterion for the maximization of the 

detection probability, Helstrom [16] finds the minimum attainable error probability so-

called the Helstrom bound: 

 

€ 

BER =
1
2
1− 1− 4ξ0ξ1 ψ1 ψ0

2⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 (5.25) 

Thus depending on the inner product , this probability is obviously lower when 

the quantum states are more orthogonal to each other. 
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5.6 BSPK ENCODING AND PERFORMANCE 

Glauber’s coherent states model can be expressed as a sum of Fock’s number states 

. We can represent in use the form [6]: 

 

€ 

α = e− α
2 2 α n

n!( )1 2n= 0

∞

∑ n  (5.26) 

Two coherent quantum state vectors  and  are non-orthogonal, since the 

signal overlap is: 

 

€ 

α1 α2 = e
−
α1

2 + α2
2( )

2 α1
n

n!
α2
*m

m!
n m

m
∑

n
∑

= e
−
α1

2 + α2
2−2α1α 2

*( )
2

= e− α1−α2

  (5.27) 

Because of the non-commutativity of the non-orthogonal state projective 

measurement, a simple Von Neumann projective measurement cannot conclusively 

distinguish the different states. 

For the sake of concision, we will only consider here the case of binary phase-shift 

keying (BPSK) in which 2 equally probable modulated binary symbols (0, 1) are 

represented by 2 antipodal phase states (0, π). This corresponds to a simple constant 

envelope modulation, in which the antipodal signals maximize the signal distance, and 

therefore minimize the overlap. As well the average received power is the same when the 

symbol 1 or 0 is transmitted. 

In BPSK encoding, the two signal coherent states are devoted as  and 

; the average signal photon number is , and the signal square overlap 

is:  
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€ 

α1 α2
2

= e−2 α1−α2 = e−4NS  (5.28) 

Assuming equally probable prior states: , the probability of error is finally 

the binary coherent Helstrom bound, corresponding to an ideal Dolinar receiver structure 

 

€ 

BER =
1
2
1− 1− exp(−4Ns){ }   (5.29) 

Ban, Kurokawa, Momose and Hirota [17], based on the Bayes strategy, have also 

studied the problem of discrimination among symmetrical quantum states, arriving at the 

same bound for coherent states. They also consider the case of quantum estimation, 

which is important when the state includes unknown parameters, finding that the 

corresponding optimum estimation of POVM possesses a similar structure as those used 

for data detection. Furthermore, the asymptotical solutions for error probability and 

mutual information using higher order PSK and QAM constellation formats have been 

derived by Kato, Osaki, Sasaki and Omura [18]. 

The POVM is a generalization of a Von Neuman projection value measurement 

(PVM) of a signal observable, by projections onto orthogonal states, as discussed by 

Huttner, Muller, Gautier, Zbinden and Gisin [19], leading to conclusive results, but with 

finite error probability. The projection operators correspond to the standard (classical) 

receivers, e.g. heterodyne, homodyne, etc., for different signal observables: complex 

amplitude, signal quadrature, respectively; and even an optical Costas loop based on 

homodyne (Momose, Osaki, Ban, Sasaki and Hirota) [20]. Therefore their ultimate 

probability of error corresponds to the standard quantum limit (SQL). For homodyne 

detection of binary symmetric states we have [21]: 

 

€ 

BER =
1
2
erfc 2NS( )  (5.30) 

where  is the complementary error function, where we use 

the notation of Sasaki, Usuda, and Hirota [22]. 
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Figure 5.8 Homodyne detection BPSK bit error rate 

As we have mentioned in 5.5 and (5.29), (5.30), the POVM measurement can provide 

superior performance than the classical receivers; however not only their physical 

implementation faces considerable challenges, but even its physical interpretation is a 

subject of research: Osaki, Ban and Hirota [23] have derived and interpreted the optimum 

detection operators for binary, ternary and quaternary optical phase-shift-keying 

modulated fields, based on the minimum probability of error criterion: they interpret the 

beating of the SQL as a “quantum interference” phenomenon. 

While the POVM gives the probabilities of measurement of a quantum state, no 

indication about the structure of the physical device is in general suggested; Myers and 

Brandt [24], Banaszek [25] and Brandt [26] have investigated how to mechanize a 

photonic implementation of a POVM with applications to quantum information 

processing and quantum cryptography. As the optimal structures are difficult to 

mechanize, a practical detector must trade off the optimal performance and physical 

implementability. In the following sections we will only consider the SQL as in (5.30). 
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5.7 QPSK ENCODING FOR BB84 PROTOCOL 

Phase encoding systems using homodyne detection are a promising technique for 

BB84 protocol by allowing at the same time a good approach to the quantum noise 

limited sensitivity and excellent spectral efficiency. The price to pay is obviously the 

availability of a strong phase reference at the receiver. 

In BB84 protocol, from two orthogonal bases chosen randomly by Alice, four 

quantum eigen-states can be generated separately (the symbols 0 and 1 on two different 

bases  and ), constituting a QPSK type constellation. After the 

random base switching at the receiver Bob’s end, the states of base coincidence turn to a 

BPSK constellation whereas the states of base anti-coincidence are discarded and do not 

contribute to the shared information and therefore not to the BER. Alice’s choices of 

bases and symbols and Bob’s choices of bases, as well as the key coincidence/anti-

coincidence are shown in Table 5-1. 

Table 5-1 QPSK BB84 protocol 

Alice Bob 
Base Bit Ф1 Ф2 ΦA Base ΦB ΦA-ΦB Key 

B1 π/4 0 0 0 0 π/2 π/4 
B2 -π/4 π/2 ? 
B1 π/4 π 1 

A1 
1 π -π/2 -3π/4 

B2 -π/4 -π/2 ? 
B1 π/4 -π/2 ? 0 0 -π/2 -π/4 
B2 -π/4 0 0 
B1 π/4 π/2 ? 

A2 
1 π π/2 3π/4 

B2 -π/4 π 1 
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Figure 5.9 QPSK to BPSK conversion 
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CHAPTER 6 TWO FIBER FIST IMPLEMENTATION OF A QPSK QUANTUM KEY 

DISTRIBUTION SYSTEM 

In this chapter we first present a preliminary setup of a quantum key distribution system 

using QPSK modulations, then we introduce the main components in such a system and 

their characteristics. We also introduce the experimental techniques to overcome the 

system impairments such as polarization mismatch and phase drift. 

6.1 DESCRIPTION OF THE TWO FIBER OPTICAL QPSK SYSTEM 

Based on the BB84 protocol, in a phase encoding quantum key distribution system we 

use quadrature-phase-shift-keying modulation.  

 

Figure 6.1 General representations of an optical QPSK modulation system using balanced 
homodyne detection 

This is a general QKD arrangement using QPSK modulation. At the sender Alice’s 

end, an optical coupler first separates the lightwave generated by the coherent laser 

source, directing to two outputs. On the lower arm, a function generator (FG) helps 
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generate QPSK signal through an optical phase modulator according to Alice’s base and 

symbol choices. At the receiver Bob’s end, he introduces the base choice by applying π/4 

or –π/4 phase shift on the upper arm phase modulator. A balanced configuration is used 

for the detection part. The QPSK modulated signals are converted to a BPSK signals 

since only one quadrature of the signal field is measured. We will introduce in the follow 

sections the other components used in the arrangement. 

6.2 COMPONENTS IN A QPSK QKD SYSTEM 

In order to move from the promise of theoretical physical laws to the hard reality of 

the electrical engineering world and to handle the quantum nature of light, in this section 

we introduce the main components that we have used for a quantum key distribution 

system implementation using QPSK BB84 protocol. 

6.2.1 LASER SOURCE 

We use in our experiments an Integrated Laser electro-absorption Modulator (ILM) 

which combines a distributed feed back (DFB) laser diode with an integrated electro-

absorption modulator on a single InP based chip. This laser source has been provided by 

gratefully by Jean-René Buric from Avanex. 

 

Figure 6.2 Avanex ILM module in the metallic box 
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The laser has been encapsulated in a metallic box as protection and helps dissipate the 

heat of laser. Three pins (Thermistor, TEC, Laser) are connected to SMA connectors (on 

the bottom) that control the laser operating temperature through thermistor resistance, 

thermoelectric cooler (TEC). The injected current adds a DC bias on the DFB laser. 

The characteristics of the laser source are identical to those of Avanex PowerSource 

1915 LMM module that allows 10 Gb/s data transmission [1,2], except for the extinction 

ratio. We have obtained the best optical extinction ratio at the wavelength 1542.9 nm, i.e. 

the maximum optical intensity ratio of the main lobe to the secondary lobe, by setting the 

operating temperature at 18 ºC with injected current at 33 mA. 

The spectral line-width of the laser source as shown in Figure 6.3 a) is 0.05 nm, as the 

coherence time 

€ 

τ c ≈
1
Δω

 [3] is proportional to the range of angular frequencies, thus the 

coherent time is 

€ 

τ c ≈ 2.5 ×10−11  s , and the corresponding coherent length 

€ 

Lc = c ⋅ τ c ≈ 0.01 m . The coherence time gives the time duration over which the phase of 

the light-wave train maintains consistent interference. 
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Figure 6.3 AVANEX ILM laser a) wavelength spectrum; b) optical power VS RF bias 
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The integrated intensity modulator has an input impedance at 50 Ω and is transparent 

without external modulation. The highest extinction ratio is 18 dB and can be obtained by 

applying -4.5 V to 0 V RF reverse voltage, as we show in Figure 6.3 b). 

Table 6-1 Optimal operating parameters  

Parameter Value 

Injected current 33 mA 
 Intensity Extinction 

Ratio 

-18 dB 

External Modulation 

Tension 

-4.5 Volts – 0 Volt 
Temperature 18 ºC 

Wavelength 1542.9 nm 

6.2.2 OPTICAL COUPLER 

 

Figure 6.4 SMF 2×2 coupler and PM-NoTail 2×2 coupler 

We have already given the physical and functional descriptions in chapter 4.4.1. In the 

QKD system setup we use single mode fiber (SMF) coupler and SMF polarization-

maintaining (PM) coupler in our experiments, as illustrated in Figure 6.4. 

6.2.3 POLARIZATION BEAM SPLITTER/COMBINER 

Polarization beam splitter or combiner (PBS/PBC) is a special optical 1×2 or 2×1 

coupler that can be used either to combine light beams from two polarization-maintain 

input fibers into a single output fiber, or to split light from an input fiber into two output 

fibers of orthogonal polarization states. The PBS/PBC we use have a polarization 

extinction ratio at 25 dB, and the insertion loss around 0.5 dB. 
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We have used PBS and PBC in the Mach-Zender interferometers so as to reach a high 

polarization extinction ratio and to maintain the polarizations states since the modulators 

are also phase-sensitive. 

   

 

Figure 6.5 Polarization beam splitter/combiner 

6.2.4 POLARIZATION ROTATOR 

Polarization rotators are used to manipulate and control the state of polarization (SOP) 

of an input beam of light and couple the adjusted light into an output fiber. They typically 

consist of an input with fiber pigtail or connector receptacle, from 1 to 3 polarization 

optic components and an output coupler with fiber pigtail, or connector receptacle. We 

use polarization rotator (OZ optics, 50 dB back reflection level) to maintain a linear 

polarization states in a desired axis. 
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Figure 6.6 Polarization rotator 

6.2.5 POLARIZATION CONTROLLER 

The principle of optic-fiber polarization controller is to use birefrigent components 

that introduce optical path differences of 

€ 

λ 2  or 

€ 

λ 4  between two main polarization 

axes. The 

€ 

λ 4  plate allows to convert a linear polarization into a circular or elliptical 

polarization, or to convert a circular or elliptical polarization into a linear polarization. 

The 

€ 

λ 2 plate introduces the rotation of polarization. A polarization controller usually 

consists of, two 

€ 

λ 4  plates on each side, i.e. the input and output side, and a 

€ 

λ 2 in the 

middle to rotate the polarization. Thus an arbitrary polarization output is attainable 

regardless of the input polarization. We use polarization controller to transfer circular or 

elliptical polarization into linear polarization states. 

  

Figure 6.7 Pigtails connector and No-tail polarization controller 

We have used single mode fiber (SMF) polarization controller and SMF polarization 

maintain (PM) coupler in our experiments, as illustrated in Figure 6.7, to adjust the 

lightwave polarization states before entering into the Mach-Zehnder interferometers at 

both Alice’s and Bob’s ends. 
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6.2.6 OPTICAL ATTENUATOR 

Optical attenuator is used to generate “quantum level” signal in the quantum key 

distribution applications. As polarization mismatch is a main impairment in detection 

performance, we chose to use in-line variable attenuator using the “blocking technique” 

with polarization maintain optical fibers (polarization extinction ratio > 25dB). 

In the blocking type attenuator, light from the source fiber is collimated into a beam 

approximately 0.4mm – 0.6mm wide. An adjustable blocking device is then inserted into 

the beam of collimated light in varying degrees depending on the attenuation required. 

 

 

Figure 6.8 In-line variable optical attenuator using “blocking technique” 

6.2.6 MACH-ZENDER MODULATOR USING DOUBLE ELECTRODES 

The phase modulation is one of the key functions in implementing a quantum 

cryptography protocol. As we have mentioned in BB84 QPSK protocol we need to 

constitute a four phase-state constellation to represent four symbols in two orthogonal 

bases, with two symbols in each base. 

For the preliminary testing we have used LiNbO3 Mach-Zender (MZ) intensity 

modulator with double electrodes at the sender Alice’s end to generate QPSK signals as it 

allows independent symbol and base choice. As we show in Figure 6.9, the structure of a 



 

 

98 

MZ modulator consists of a 1×2 waveguide coupler at the input, a 2×1 coupler at the 

output, as well as two electrodes on which we can apply electrical signals. At the receiver 

Bob’s end we have used a same model LiNbO3 intensity modulator to generate the BPSK 

signal according to the base choice. 

 

Figure 6.9 Structure of a Mach-Zender intensity modulator with double electrodes  

The input optical signal enters the modulator via a polarization-maintaining optical 

fiber, and then a first Y-junction separates the input beam for transmission into two 

waveguides, called the upper arm and the lower arm. The distance between two arms is 

large enough so that the evanescent waves are negligible. 

The refractive index of the electro-optic material is changed by an external tension, 

resulting in a phase difference between the two optical beams. The second Y-junction 

combines the two beams that interfere. 

The phase difference between the two beams can be introduced in three ways: 

• Applying an electric field on the electrodes of a single arm (V1 = 0 or V2 = 0); 

• Applying an electric field on the arm of the two electrodes using the “push-pull” 

process (V1 = -V2); 

• Applying different electric fields on both two arms to generate an arbitrary phase. 
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Figure 6.10 Phase modulation of Mach-Zender modulator 

The relationships of the input and output are given by: 
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Thus the two outputs 

€ 

Eout1 t( )  and 

€ 

Eout2 t( ) can be represented by  

 

€ 
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⎪ ⎪ 
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⎪ 

 (6.8) 

Since the first terms of 

€ 

Eout1 t( )  and 

€ 

Eout2 t( ) are independent of the applied tensions, 

hence we can simplify the equations by replacing: 

 

€ 

φ1'= φ1 −
π
2

φ2 '= φ2 −
π
2

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 (6.9) 

Therefore the equation can be rewritten as: 
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As we can see from Figure 6.11, only one output 

€ 

Eout2 t( ) is used while the other is 

masked. If we maintain 

€ 

φ1 −φ2 = ±
π
2

, then we can obtain 

 

€ 

Eout t( ) =
2
2
Ein t( )exp j φ1 + φ2

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

2
2
Ein t( )exp j φAlice

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (6.11) 

In Figure 6.11 we show the double-electrode MZ modulator used in our experiments. 

The tension Vπ corresponds to the tension value that adds a phase variation π in the 

optical field. We have used two MZ modulators with high input resistance connector. The 

maximum input optical power is 10 mw and the maximum applied tension is ±15 V. The 

table below presents their characteristic values. 

 

 

Figure 6.11 Mach-Zehnder intensity modulator using double-electrode and styrofoam 
thermal protection 

The phase modulation on two electrodes can be obtained as: 

 

€ 

φ1 t( ) =
π ⋅ V1 t( ) +VR1( )

Vπ1

 (6.12) 
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€ 

φ2 t( ) =
π ⋅ V2 t( ) +VR 2( )

Vπ 2

 (6.13) 

where the 

€ 

V1 t( )  and 

€ 

V2 t( )  are the tensions applied on the electrode 1 and the electrode 2, 

€ 

Vπ1 and 

€ 

Vπ 2 are the half-wave voltage, 

€ 

VR1 and 

€ 

VR 2  are the residual tensions due to the 

dissymmetry between the two optical paths.  

Table 6-2 Characteristics of Sumitomo Osaka MZ modulators 

 MZ6-91-29-55-621 MZ6-91-29-55-622 
Insertion Loss (dB) 4.0 4.5 

 Electrode 1 Electrode 2 Electrode 1 Electrode 2 
Vπ (Volts) 3.6 3.6 3.6 3.6 

Extinction Ratio (dB) 31.6 31.8 32.2 32.3 
Bandwidth (GHz) 7.9 8.1 8.1 8.0 

In the protocol BB84, we chose to use 

€ 

φ1 −φ2 = ±
π
2

 so as to maintain a constant 

envelope and generate a QPSK constellation. 

Table 6-3 Alice’s QPSK constellation and Bob’s BPSK modulation 

Alice Bob 

Base Bit Ф1 FG 1 Ф2 FG 2 ΦA Base ΦB FG 3 ΦA-ΦB Key 

B1 π/4 1.8 V 0 0 
0 0 0 V π/2 1.8 V π/4 

B2 -π/4 -1.8 V π/2 ? 
B1 π/4 1.8 V π 1 

A1 
1 π 3.6 V 3π/2 5.4 V -3π/4 

B2 -π/4 -1.8 V -π/2 ? 
B1 π/4 1.8 V -π/2 ? 

0 0 0 V -π/2 -1.8 V -π/4 
B2 -π/4 -1.8 V 0 0 
B1 π/4 1.8 V π/2 ? 

A2 
1 π 3.6 V π/2 1.8 V 3π/4 

B2 -π/4 -1.8 V π 1 
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6.2.7 PHASE MODULATOR 

We have validated the preliminary system with the MZ modulators, however, the MZ 

modulators requires very precise voltage control since they are subject to both intensity 

and phase modulation, especially for QPSK modulations. Moreover, MZ modulators are 

usually not polarization-dependent, which induces additional difficulties for coherent 

homodyne receiver. 

We have then improved the system setup by using Photline LiNbO3 phase modulators 

MPZ-LN-10 and MPX-LN-0.1 to generate QPSK signals as well as for the base choice. 

LiNbO3 phase modulators are widely used for their high bandwidth performance that 

makes them favored devices for high data optical communications (up to 40 Gb/s) and 

high frequency (20 GHz) analog transmission. It can offer advantages of low optical 

losses, high extinction ratio. Z-cut LiNbO3 phase modulator can provide lower driving 

voltage than X-cut LiNbO3 phase modulator. The X-cut modulator MPX-LN-0.1 used in 

our setup is a specially designed phase modulator that limits the passband to 0.1 GHz and 

offers a much lower Vπ at 3.4 Volts with high input impedance. 

 

Figure 6.12 Physical structure of a phase modulator on a Z-cut LiNbO3 crystal 
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An optical phase modulator can be obtained by diffusing an optical channel 

waveguide at the surface of a Z-cut Lithium Niobate crystal. The main direction of 

propagation can be oriented parallel to the X- or Y-axis. Cr-Au traveling wave electrodes 

are deposited over a thick dielectric buffer layer in order to prevent undesirable optical 

absorption of the TM-mode, and also in order to get the microwave to optical phase 

matching condition. 

As a RF signal 

€ 

S t( )  is applied on the electrode, the phase variation 

€ 

φ t( )  can be 

obtained at the output of the modulator illuminated by an optical beam polarized along 

the Z-axis, i.e., the TM polarization, with the effective half-wave voltage 

€ 

Vπ λ,ωRF( ) that 

is related to wavelength 

€ 

λ  and RF frequency 

€ 

ωRF . 

€ 

φ t( )  can be given by: 

 

€ 

φ t( ) =
π
Vπ

S t( ) (6.14) 

If the insert loss is L, then the output field can be represented by  

 

€ 

Eout t( ) = L ⋅ Ein t( )exp jφ t( )( ) (6.15) 

 

 

Figure 6.13 LiNbO3 phase modulator and thermal protection 
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As the modulation is only operated on the TM polarization, polarization controller and 

polarization-maintaining fiber are required. As well, the input lightwave polarization 

must be aligned along Z-axis so as to maximize the polarization extinction ratio. 

The specification of this phase modulator is shown in Table: 

Table 6-4 Characteristics photline phase modulators 

Serial Number 2354-13 1561-07 
Product ID MPX-LN-0.1 MPZ-LN-10 
Insertion Loss (dB) 2.7 3.0 
Polarization dependent Loss (dB) 4.3 1.0 
Input resistance (Ω) 10000 50 
Bandwidth (GHz) -3dB 0.1 10 
Vπ at 10 MHz (Volts) 3.4 6.0 

6.2.8 BALANCED PHOTO-RECEIVER 

Balanced photo-detector subtracts two output signals from each other, resulting in the 

cancellation of common mode noise. This allows small changes on the signal to be 

extracted from the interfering noise floor. We chose InGaAs photodiodes with a 

switchable version (Thorlabs PDB150C-AC) with selectable transimpedance gain. 

 

Figure 6.14 Functional block diagram 
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Figure 6.15 Balanced photodetectors (Thorlabs PDB150C-AC) 

Table 6-5 Balanced photodetectors characteristics 

 PDB150C-AC 
Wavelength Range 800 nm-1700 nm 
Typical Max. Responsivity 1.0 A/W 
Detector Diameter 0.3 mm 
Bandwidth -3dB (MHz) 150 50 5 0.3 0.1 
Transimpedance Gain (V/A) 103 104 105 106 107 
Conversion Gain RF (V/W) 103 104 105 106 107 
Conversion Gain Monitor  10 V/mW @ 1550 nm 
CW Saturation Power 5 mW @ 1550 nm 
Max. Input Power 20 mW 
RF-Output Impedance 50 Ω 
Minimum NEP (DC-10 MHz) 0.3 pW/√Hz 
Power Supply ±12 V, 200 mA 

 

We have measured the noise level using bandwidth at 50 MHz using signal optical 

power of -50 dBm and LO optical power of -9 dBm. 
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Figure 6.16 Noise measure with vacuum field, noise level ≈ -95 dBm 

 

Figure 6.17 Single-port output, noise level ≈ -85 dBm, signal level ≈ -56 dBm 
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Figure 6.18 Balanced output, noise level ≈ -90 dBm, signal ≈ -51 dBm 

In classical approach, from the above experimental results, we can see that the 

subtraction of the two currents provides the homodyne signal in which the DC term is 

eliminated during the subtraction process when the two branches are balanced in such a 

way that each branch receives equal signal and local-oscillator powers. More importantly, 

the intensity noise associated with the DC term is also eliminated during the subtraction 

process, because the same local oscillator provides power to each branch. As a result, 

intensity fluctuations in the two branches are correlated and cancel out during subtraction 

of the photocurrents. It should be noted that intensity fluctuations associated with the 

homodyne term couldn’t be canceled even in a balanced receiver. As a result there is a 

residual noise on power difference, which can be shown to be equivalent to the shot noise 

of a beam of power sum, i.e. the LO and signal can be shot noise limited. However, their 

impact is less severe on the system performance because of the square-root dependence 

of the homodyne term on the LO power [4]. 
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Balanced receivers have two advantages: first, the noise floor problem is overcome by 

using a strong LO. Second, all of the signal and LO power is used effectively. A single-

port receiver such as that shown in Figure 6.17 would reject half of the signal power PS 

(and half of LO power PLO) during the mixing process. This power loss is equivalent to a 

3-dB optical power penalty, or a 6-dB electric power penalty. Balanced receivers use all 

of the signal power and avoid this power penalty. At the same time, all of the LO power 

is used by the balanced receiver, making it easier to operate in the shot-noise limit. 

6.3 SIGNAL DETECTION AND SYSTEM VALIDATION 

Our first experiment to validate this QPSK BB84 implementation consists of a 

standard optical fiber self-homodyne system with a strong carrier “reference” transmitted 

in a separate optical line. The modulated signal arm was constructed to have the 

Modulator-Alice (MOD-A) followed by an optical attenuator; Bob introduces his base 

choices on the Modulator-Bob (MOD-B) in the lower reference arm at the reception, the 

setup is shown in Figure 6.19. 

In this setup, we have used the two LiNbO3 phase modulators: MPX-LN-0.1 is used as 

MOD-A since its low Vπ facilitates the QPSK modulation and MPZ-LN-10 is used as 

MOD-B for the BPSK base switching. 

 

Figure 6.19 QPSK self-homodyne setup 
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In the Table 6-6 we show the modulation signals for the BB84 protocol. The curve in 

Figure 6.20 a) is the waveform of an oscilloscope screening of QPSK modulation signal 

generated by function generator 1 (FG 1); the curve in Figure 6.20 b) is the waveform 

BPSK modulation signal generated by FG 2. Actually we also apply a DC offset at the 

phase modulators so as to adjust the original phase state. The detected signals at Bob’s 

end are shown in Figure 6.20 c). We obtain positive-valued pulses for the key bit 0, and 

negative-valued pulses for the key bit 1. When there are base anti-coincidences, we 

receive undistinguishable value “zero”, and these bits will be discarded. 

Table 6-6 QPSK BB84 modulation using phase modulators 

Alice Bob 

Base Bit ΦA FG 1 Base ΦB FG 2 ΦA-ΦB Key 

B1 π/4 3.0 V 0 0 
0 π/4 0 V 

B2 -π/4 0 V π/2 ? 
B1 π/4 3.0 V π 1 

A1 
1 -3π/4 -3.4 V 

B2 -π/4 0 V -π/2 ? 
B1 π/4 3.0 V -π/2 ? 

0 -π/4 -1.7 V 
B2 -π/4 0 V 0 0 
B1 π/4 3.0 V π/2 ? 

A2 
1 3π/4 1.7 V 

B2 -π/4 0 V π 1 
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Figure 6.20 a) QPSK modulating signal of FG 1 with input load 10 kΩ; b) BPSK 
modulating signal of FG 2 with input load 50 Ω; c) Bob’s detected signals with all the 8 
possible combination as in Table 6.6 

6.4 SYSTEM IMPAIRMENTS ANALYSIS 

The homodyne receiver for QKD applications must be designed to compensate for the 

phase and polarization fluctuations in both interferometers and in the residual differential 

propagation channel characteristics. 

6.4.1 POLARIZATION MISMATCH IMPAIRMENTS 

The polarization state of the received optical signal plays no role in direct-detection 

receivers simply because the photocurrent generated in such receivers depends only on 

the number of incident photons. This is no more the case for the coherent receivers, 

whose operation requires matching the state of polarization of the local oscillator to that 

of the received signal. The polarization-matching requirement can be understood from the 

analysis of in Annex B, where the use of scalar fields 

€ 

ES  and 

€ 

ELO  implicitly assumed the 

same polarization state for the two optical fields by using polarization-maintain 

components, such as PM fiber, PBS/PBC, etc. The interference of 

€ 

ES  and 

€ 

ELO  is used by 
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the decision circuit to reconstruct the transmitted bit stream, any change in polarization 

match reduces the signal and affects the receiver performance. In particular, if the 

polarization states of 

€ 

ES  and 

€ 

ELO  are orthogonal to each other, the signal disappears. 

Therefore any change in polarization affects the BER through changes in the receiver 

current and SNR. 

6.4.2 PHASE DRIFT IN MACH-ZEHNDER INTERFEROMETERS 

The differential delay time between signal and reference pulses caused by the long and 

short arms of Alice’s and Bob’s interferometers should be kept stable so as to allow a 

continuous QKD operation [5,6]. Nevertheless the interferometers should be operative in 

different location; moreover they are subject to different temperature, pressure and 

mechanical stress conditions. As we have attested in the experiments, environmental 

variation could induce different phase variations in upper and lower arm of 

interferometers: a phase drift over 6π has been observed in our Mach-Zehnder 

interferometer setup over 16 hours, as show in Figure 6.21. 

 

Figure 6.21 Mach-Zehnder interferometer phase drift 
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We assume the total phase shift at Bob’s end is: 

 

€ 

Φ =Φ0 −ΔΦ (6.16) 

where 

€ 

Φ0 =ΦAlice −ΦBob  and 

€ 

ΔΦ  is the system phase drift, i.e. the extraneous phase shift. 

To keep the system usable, the threshold of Quantum Bit Error Rate (QBER) is in the 

range of 11%, with a reduced key generation. This QBERthreshold corresponds to phase 

error 

€ 

ΔΦ ≈ 27° [7-9]. 

6.5 TRAINING FRAME FOR PHASE DRIFT COMPENSATION 

The real-time phase error compensation could be realized on Bob’s interferometer by 

adding a fiber stretcher [7], or by phase adjustment on Bob’s modulator [8]. The phase 

compensation algorithm is based on the QBER measurements, thus we insert the training 

frames into the key frames periodically to calculate the phase error and compensate the 

phase drift. 

6.5.1 NUMERICAL RESULTS USING TRAINING FRAME 

As the phase shift is a random process that is determined by many external variations, 

in our experiments we first fixed 

€ 

Φ0 to measure the phase variation. Then post-detection 

phase tracking algorithm was carried out numerically by taking successively 20% and 5% 

of data transmission as training frames, as shown in Figure 6.22, Figure 6.23. We can see 

that the phase error 

€ 

ΔΦ  could both be well controlled within the range in the first two 

cases; however the trade-off is to be taken between QBER and training frames’ payload. 

In fact the percentage of training frames could be adjusted according to the QKD link 

characteristics, such as the temperature variations, the detector efficiency, the 

interferometer visibility; it depends also on the higher-level key generation protocols 

such as privacy amplification [10]. 
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Figure 6.22 Phase compensation using 20% training frames: in this simulation the 
corrected phase error (the lower curve) is very small, thus a low QBER is obtained. 

 

Figure 6.23 Phase compensation using 5% training frames: in this simulation the 
corrected phase error (the lower curve) is relatively higher, thus a higher QBER is 
obtained. 

 



 

 

114 

6.5.2 CRITERIA OF TRAINING FRAMES 

The training frames contain predetermined Qbits sequence: Alice and Bob agree on 

the symbols and base choices prior to the transmission. The portion of training frames is 

directly related to the phase error tolerance: the weaker the signal pulses, the longer the 

training frame interval should be due to the bits erasure. Another reason is that provided 

the density of probability of the measured WCP follows Gaussian distribution with mean 

photon number 

€ 

NS , the standard deviation is 

€ 

ΔNS = NS
1 2 . Additionally the Heisenberg 

energy-time uncertainty principle gives a lower bound on the product of the standard 

deviations 

€ 

ΔNS ≥1 2 [11]. Therefore the training frames should contain a large number 

of samples so as to reach to a good precision for phase error measurements, and we use 

four registers R0, Rπ/2, Rπ, R3π/2 to store and update the estimated values for the four 

possible phase states [12,13]. 

 

Figure 6.24 Training frames and data frames 

If we consider the mean value 

€ 

µ = A and standard deviation σ, the individual outputs 

of the balanced receiver follow the Gaussian statistics. According to the central limit 

theorem, with M independent samples, we will obtain the normal distribution 
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€ 

Ν µ,σ M( ). If we want to have the uncertainty of amplitude estimation less than E, then 

the condition in the equation (6.17) must be met: 

 

€ 

erfc 2M 2σ( ) ≈ exp −M 2σ 2( ) < E  (6.17) 

 

Figure 6.25 Minimum sample number M for corresponding mean photon number NS 

Now let us take a close look at the equation (6.17) and assume that the measurements 

are made for coherent states. For M samples with mean photon number 

€ 

NS , the total 

photon number to determine the state value is: 

 

€ 

Ntotal = NS ⋅ M  (6.18) 

therefore the equation (6.17) turns into: 

 

€ 

erfc 2M 2σ( ) = erfc 2Ntotal NS 2σ( ) < E  (6.19) 

From equation (6.19) we can also deduce the following fact: if we repeatedly measure 

a weak coherent state with mean photon number NS for M times in a classic bipolar BPSK 

coherent detection system and set “zero” as the threshold, and we take the mean value of 
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these M samples as the bit value, the bit error rate 

€ 

RE  will be 

€ 

E 2 since only those falling 

into one side are considered as bit errors. Furthermore since the standard deviation of 

signal with mean photon number 

€ 

NS =1 corresponds to 

€ 

1 2  photon energy, we can 

normalize the output standard deviation by replacing 

€ 

σ =
1

2 NS

, then we obtain: 

 

€ 

RE =
1
2
erfc 2Ntotal NS 2σ( ) =

1
2
erfc 2Ntotal( ) =

1
2
erfc 2M ⋅ NS( )  (6.20) 

Compared with the classical homodyne detection performance equation of BER: 

 

€ 

BER =
1
2
erfc 2NS( )  (6.21) 

Hence we can have a very interesting conclusion: using M samples of mean photon 

number 

€ 

NS  gives the same BER performance as using a single sample but with mean 

photon number of 

€ 

M ⋅ NS , as long as the laser source is perfectly coherent. High photon 

number involved during each observation time, i.e. the bit duration, in an optical 

communication system, or high sample number involved in weak coherent signal 

detection can both smooth out by ensemble averaging major aspects of the quantum 

nature of light. 

6.5.3 PIEZOELECTRIC PHASE SHIFTER AND EXTERNAL DRIVER 

The all fiber phase shifter (General photonics) provides convenient phase 

shift/modulation in a compact package. The insertion loss is less than 0.5 dB and permits 

a good precision of phase tuning. 

The optical phase shift is achieved using an electrical driving signal. As 

€ 

Vπ = 9.95 Volts , we have to use an external driver that delivers at a dynamic range from -

11 volts to 155 volts. The external driver allows a dynamic range [-8π, 8π] and a 

response time of few milliseconds. We use the phase shifter for the phase drift 

compensation based an opto-electric feedback loop. 
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Figure 6.26 Phase shifter and external driver 
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CHAPTER 7 QPSK QUANTUM KEY DISTRIBUTION USING PHOTON 

COUNTING 

Bennett first mentioned the phase encoding QKD system for the two-state protocol BB92 

[1]. Provided that the coherence length of the light used is larger than the path mismatch, 

interference fringes can be recorded, thus the interferometers become a very natural 

choice to implement a fiber-optic system for the facility of transmission. 

In this chapter we first review the principle of photon counters for QKD system, then 

we evaluate the interferometric system performances in free-running conditions. Finally 

we introduce a method to improve photon counting operationality with optical phase 

synchronization using training frames. 

7.1 PHOTON COUNTING PRINCIPLES 

As we have already mentioned in chapter 3.4, with the pseudo single photon source, 

the success of quantum crypto-system depends essentially on the ability to detect signal 

photons. The ideal photon detector should comply with the following requirements: 

1) The quantum detection efficiency should be high over a large spectral range; 

2) The probability of generating dark counts and after pulse counts should be 

small; 

3) The time between the detection of a photon and generation of an electrical 

signal should be as constant as possible, i.e., the jitter should be small, so as to 

ensure good time resolution; 

4) The quenching process after the gate operation should be short so as to allow 

high data rates. 
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The best figure of merit for quantum crypto-system is the ratio of dark-count rate  

to the detection efficiency , as defined noise equivalent power (NEP): 

 

€ 

NEP =
hν
η

2RDark  (7.1) 

Here  is the Planck’s constant and  is the frequency of the impinging photons. 

7.1.1 PHOTON COUNTING SILICON APD AT WAVELENGTH BELOW 1.1 µM 

Much work has been done since 1980s to improve the silicon APD for single-photon 

counting [2-6], and the performance has accordingly been continuously improved. Si 

APDs have replaced the precedent photon-multiplier tubes. High quantum efficiency up 

to 76% [7] and very low time jitter of 28 ps [8] has been reported. Today the 

commercialized Si APD can have typical quantum efficiency around 70% at 700 nm and 

dark count rates of 50 counts/s under precise temperature control of 253 K, and jitter time 

as low as 300 ps (e.g., EG&G SPCM-AQ-151) at operation frequency 5 MHz.  

These silicon APD single photon counters are ideal for quantum cryptography 

applications in free space and in optical fibers. However at these wavelengths the 

transmission loss is very high in the optical fiber, and the working distance is the 

bottleneck for the optic-fiber system. 

7.1.2 PHOTON COUNTING INGAAS/INP AT TELECOM WAVELENGTHS 

In the second (1300 nm) window, germanium or InGaAs/InP semiconductor materials 

are the best choices, and in the third (1550 nm) window the only option is InGaAs/InP. 

However, the quantum efficiency is much lower at telecommunications wavelength. To 

date, no industrial effort has been successfully to optimize APD’s operating at 

telecommunications wavelengths for photon counting, and their performance still lags far 

behind that one of silicon APD’s. The physical reasons for the lack of high-performance 

commercial products are, first, the common semiconductor material is not sensitive 

enough to this wavelength; and second, the market for photon counting is not yet mature. 
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Figure 7.1 Id Quantique id200 

In our experiments we use 2 Id Quantique id200 single photon detector modules 

(SPDM) [9] as shown in Figure 7.1. The instruments integrate the APD at 

telecommunications wavelength and the electronic parts, allowing flexible 

external/internal trigger input for “gating operation command”. When working at a stable 

temperature of 220 K, the quantum efficiency is around 10%, and the dark count rate 

increases with quantum efficiency when a larger gate width is selected. 

 

Figure 7.2 Block diagram of the id 200 SPDM 
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A variable dead time can be selected to suppress afterpulse occurrences. Dead time 

can be set to 0, 1µs, 2µs, 5µs, 10µs, so as to suppress the detrimental afterpulsing effects. 

A gate generator unit and a pulser unit produce a gate with the appropriate duration and 

amplitude. Five different values of the gate width can be generated: 2.5ns, 5ns, 20ns, 

50ns or 100ns. Gate widths of 2.5ns and 5ns result in an effective gate of typically 500ps 

and 1.5ns for arriving photons. These short gates provide a very low noise level for 

applications where the arrival time of the photon is known with high accuracy. 

The photon detection probability is around 10%, independent of gate width and trigger 

frequency. The maximum operational frequency is limited to 4 MHz due to the 

quenching process. 

7.2 TIME-MULTIPLEXING INTERFEROMETER 

Interferometric homodyne arrangements are usually used for the implementation of 

phase detection, in which the key issue is to obtain a phase reference at the receiver end. 

Using a separate fiber for reference transmission leads to difficult stabilization on an 

interferometer over the complete span of the transmission link, and a one-way and single 

path configuration is mandatory to avoid round trip penalty [10]. For that reason, Merolla 

has proposed [11] a self-phase referencing QKD system in the frequency domain that 

utilizes carrier and phase modulation of sidebands. A differential phase shift keying 

(DPSK) is also an effective way to provide phase reference by relaxing the phase 

stabilization over time duration of the same order of the bit period. DPSK demodulation 

by delay line has been extensively discussed during the early age of optical 

communications [12-14] and more recently [15,16]. 

7.2.1 DOUBLE MACH-ZEHNDER CONFIGURATION OF QPSK BB84 SYSTEM 

Figure 7.3 is our experimental setup for the photon counting system [17] based on the 

QPSK self-homodyne setup. Now that Alice and Bob are spatially separated, the setup 

will suffer from poor performance owning to environmental perturbations. In order to 
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stabilize the interference, the difference of the optical lengths of the interferometer’s arms 

must be kept constant within a fraction of the lightwave wavelength. Therefore using a 

single interferometer for Alice and Bob as shown in Figure 6.1 cannot remove the 

impairments. Temperature fluctuations and mechanical vibration from the environment in 

a two-fiber path optical interferometer can result in different phase and polarization 

changes and smearing out interference as well. For that reason, both paths of the 

interferometer are combined and launched into a time shared single mode fiber; the time-

multiplexing interferometer can thus eliminate a large part of the environmental 

fluctuations in the transmission common fiber, leaving the phase and polarization 

stabilization to small local interferometer that is independent of the transmission distance. 

 

Figure 7.3 QKD QPSK Setup: Photon Counting Detection (dot lines correspond to the 
gate time) 

As shown in Figure 7.3, the system is composed of two identical unbalanced 

interferometers. Thus no interference occurred in the small interferometers. Fiber 

couplers perform 50:50 splitting of lightwave beam, and the length differences at Alice’s 

side and at Bob’s side are equal to 3 meters of single mode fiber. 

In such a system, the pulsed laser is attenuated to a quantum level before entering the 

system. Since EOM-A and EOM-B have the same insertion loss, we apply Alice’s and 

Bob’s phase modulations both in the longer arm of the two unbalanced interferometers so 

that the pulses of the signal and those of reference have the same intensity. 
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The coherent receivers require accurate phase synchronization, which imposes severe 

requirements on the receiver structure. In our first configuration, we send a signal pulse 

that carries information on its phase, together with a time-multiplexed reference, thus to 

simplify the detection and to relax the polarization and phase stability requirements to 

very short interval duration. 

 If we apply plane wave approach for the photon counting detection scheme (Annex 

B) using Detectors D1 and D2, and assuming that  and , we can 

have: 

 

€ 

D1 = 2ES
2 1+ cosθ( )

D2 = 2ES
2 1− cosθ( )

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 (7.2) 

The photon arrives on the output D1 when  or arrives on the output D2 when 

. There is no intrinsic BER thanks for an ideal SPDM. However it is limited by the 

interferometer fringe visibility due to the residual polarization mismatch and also by the 

after-pulses induced by the precedent avalanche current. 

7.2.2 QUANTUM BIT ERROR RATE 

We assume the wrong bits number is  and right bits number is , and the 

quantum bit error (QBER) is defined as the ratio of the wrong bits number to the total 

number of bits received and is normally on the order of a few percent. We can express it 

as a function of rates: 

 

€ 

QBER =
Nwrong

Nright + Nwrong

=
Rerror

Rsift + Rerror

 (7.3) 

Here  is the error key rates and  is the sifted key rates. 

Since the sifted key rate corresponds to the case in which Alice and Bob made the 

choices of bases, according to the protocol BB84, it is ideally 50% of the repetition rate. 

The raw key rates depend on, naturally, the pulse repetition rate , the mean photon 
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number per pulse , the probability that the photons arriving on the detectors , e.g. 

photons can be absorbed in the propagation channel, leading to attenuation, as well as the 

probability  that the arriving photon being detected i.e. quantum efficiency of the 

detector): 

 

€ 

Rsift =
1
2
Rraw =

1
2
f repµtlinkη (7.4) 

We can also indentify that there are three main facts that contribute to the error key 

rate : 

1) The rate that photons arrive on the wrong detectors 

€ 

Ropt  due to the imperfect 

interference or the polarization contrast; 

2) The dark counts rate 

€ 

Rdark  of the photon detectors that is independent of the bit 

rate, but is related to the gate width and the “dead-time” in that a longer time 

window give rise to more dark counts errors; 

3) The additional system impairments 

€ 

Racc  

We can thus have , also 

 

€ 

QBER =
Ropt + Rdark + Racc

Rerror + Rsift

=
Ropt

Rerror + Rsift

+
Rdark

Rerror + Rsift

+
Racc

Rerror + Rsift

=QBERopt +QBERdark +QBERacc

 (7.5) 

In most experimental quantum crypto-system, the first term is the dominant effect that 

measures the optical quality of the setup since it depends only on the polarization and the 

interference fringe contrast. In a fiber-optic system, it is essential to obtain and maintain a 

constant low  in spite of the polarization fluctuations and depolarization in the 
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fiber link. If the signal and reference pulses have a phase mismatch , the interference 

visibility  will change accordingly. 

 

Table 7-1 Quantum bit error rate (When “1” is transmitted) 

 Ideal interferometer Non-ideal interferometer 

D1  
                          

D2  
 

 Fringe Visibility:  Fringe Visibility:  

 

As we show in Table 7.1, the QBER of photon counting is issued mainly from the 

phase fluctuation, and this condition is valid only when L = S. The received QBit is: 

 

€ 

QBit = cos φ /2( )1 + sin φ /2( ) 0  (7.6) 

As the received signal is no more on eigen state, 

 

€ 

p 1/0( ) = p(0 /1) = sin2 φ /2( ) (7.7) 

For a phase-encoding system, the  is directly related to the interference 

visibility  in that: 

 

€ 

QBEROPT = p 0( )p 1/0( ) + p 1( )p 0 /1( ) = sin2 φ /2( ) =
1−V
2

 (7.8) 

Good visibility implies very well aligned and stable interferometers. In single-mode 

fiber perfect mode overlap between signal and reference can be achieved automatically 

and polarization must be well controlled. Using polarization-maintain components in 

interferometers can be a good solution, by considering chromatic dispersion as a 

negligible problem for the detection part. 
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The second term  increases with the propagation distance since the dark-

count rate is constant while the raw bit rate decreases with  and fewer photons can 

arrive at the receiver’s end. It is the detector noise that limits the transmission distance. 

For example, id 200 SPDM has announced dark count probability at gate width 2.5 ns as 

, when working at repetition frequency , the dark-count rate per 

second is thus: . In our experiments, we 

obtained around 180-190 dark counts per second. 

The third term  is present when multi-photon pulses are processed in such a 

way that they do not necessarily encode the same bit value. In phase encoding system this 

error can happen when only the signal pulse or the reference pulse arrives on the 

combiner (optical coupler) and the other is lost, either in the propagation fiber that links 

the sender and the receiver or in the interferometers. Unequal signal pulse and reference 

pulse levels can also induce such errors. 

7.3 EXPERIMENTAL IMPLEMENTATION USING PHOTON COUNTING 

We have implemented an experimental one-way and one-path QKD system with 

QPSK modulation. Figure 7.4 and 7.5 present our experimental setup. 
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Figure 7.4 Alice’s experimental setup 

 

Figure 7.5 Bob’s experimental setup 
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7.3.1 PHOTON COUNTING UNDER FREE-RUN CONDITION 

In our first experiment the repetition frequency was set to 4 MHz and the gate width 

was set to 2.5 ns so as to minimize the dark count rate. We have tested the quality of the 

interferometer under free-run condition. 

We have measured the number of received photons by each detector (Detector 1 and 

Detector 2) during an interval of every 0.2 second. Figure 7.6 shows a measurement of 

the sum of received photon numbers by Detector 1 and Detector 2 over more than 5 

hours. Meanwhile, the slow polarization change degrades since the modulators are both 

polarization-sensitive. The arriving photons can go to either of the detectors but the sum 

of the counts remains almost constant except some short term fluctuations. 

 

 

Figure 7.6 Number of photons detected by two detectors under free-run condition  

This is also one method to measure the mean signal power since it is impossible to 

measure the optical power of the quantum level signal using optical power-meter. In the 

above experiment, the repetition frequency is  and the sum is around 

 photons per 0.2 second, corresponding to  photons per second. Since 
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the optical power is very weak, we consider the probability that multi-photons arriving on 

both detectors during the same time slot (gate operation) negligible. The detectors have 

received  photons during  “gate” operations, i.e., 3.12% of the bits have 

been received by one of the two detectors. As the quantum efficiency is around 0.1, and 

the reference pulse and the pulse have the same mean intensity, therefore the average 

impinging signal pulse has about 0.15 photon/bit. 

 

Figure 7.7 Free-run photon counts of the two detectors, the number of detected photon is 
measured every 0.2 second from each detector. 

The two detectors have slightly different intrinsic quantum efficiencies that also 

change over time due to the optical beam polarization variation and their internal circuit. 

As well the minimum count and the maximum count per 0.2 second are 800 and 26000, 

respectively; thus the finest achievable  is around 2% - 3%. As we have mentioned 

before the dominant term is  that is issued from the imperfect interference fringe 

contrast, the imperfect polarization extinction ratio of the reference pulses, and the 

polarization mismatch between the signal pulse and the reference pulse. The second 

contribution  is measured to be around 36-40 counts per 0.2 second. The third 



 

 

132 

term  due to the unequal signal and reference wave intensity mixing appears to 

be much smaller than the other two terms. 

7.3.2 PHOTON COUNTING FOR QPSK MODULATION 

At Alice’s end we modulate on the upper arm (Figure 7.3) of the Mach-Zehnder 

interferometer to generate signal pulses which carry phases (ΦA: π/4 and -3π/4 in base 

A1; -π/4 and 3π/4 in base A2); and at Bob’s end on the upper arm we modulate the 

reference pulses originating from Alice’s interferometer’s lower arm, thus generating 

reference pulses that carry (ΦB: π/4 in Base B1, -π/4 in Base B2) [18]. This setup has 

been designed also to help compensate for the insertion loss of the electro-optic 

modulator (EOM), which is around 4 dB. In other words, if we modulate at Bob’s end the 

signal pulse that carries ΦA, to generate a 

€ 

ΦA −ΦB  phase pulse before beating with the 

non-modulated reference pulse, we would lose additional 4 dB in the weak signal pulses. 

The histogram in Figure 7.8 shows the situation for the coincidence of Alice and 

Bob’s base choice. The histogram in Figure 7.9 shows the situation for the anti-

coincidence case. We have fixed the phase shift on both Alice’s and Bob’s modulators, so 

as to evaluate the system performance. In the case of base coincidence when 

€ 

ΦA −ΦB = π  or 0 , ideally no photon arrives at counter 1(2) (the first histogram of Figure 

7.8) and all photons would arrive at the counter 2(1) (the second histogram of Figure 7.8). 

In the case of base anti-coincidence where , all the arriving photons click 

randomly on counter 1 or counter 2, as shown in Figure 7.9. 
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Figure 7.8 Histogram of Base Coincidence (when Alice and Bob choose the same base 
for a certain bit,  = π or 0) 

 

Figure 7.9 Histogram of Base Anti-Coincidence (when Alice and Bob choose different 
bases for a certain bit,  = ±π/2) 
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Even though a finest visibility of 97%-98% is obtainable, the phase drift issues caused 

by the unavoidable thermo-mechanical variations must be handled for a practical system, 

as we have introduced in chapter 6 using phase compensation feedback loop and 

polarization splitting scheme is mandatory. Our main works focus on decreasing the  

contribution by improving the interference fringe contrast and polarization match, as well 

as constructing a feedback to compensate for the phase drift. 
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7.3.3 IMPROVED PHOTON COUNTING QPSK QUANTUM CRYPTO-SYSTEM 

 

Figure 7.10 Improved experimental setup for photon counting QKD system 

As shown in Figure 7.10, we have improved the experimental QKD system based on 

the same protocol as the setup shown in Figure 7.3. We use a 1550 nm ILM laser source 

to generate pulses of 5 ns width with 18 dB intensity extinction ratio, and the operational 

frequency is also limited to 4 MHz. 
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We use a General Photonics polarization stabilizer to actively maintain a stable output 

state of polarization (SOP) and to eliminate polarization fading. A polarization splitting 

method [19, 20] is used in our setup to improve the isolation of the signal and the strong 

reference field, since the 18 dB intensity extinction ratio alone is not enough for the time-

multiplexing of the weak signal and the strong LO field. Alice’s laser pulses are 

separated by a 50/50 polarization-maintain coupler, and propagate through the upper and 

lower arms of a Mach-Zehnder interferometer constructed with polarization maintaining 

(PM) fibers. 

Alice encodes her lower arm pulses (ΦA: π/4 and -3π/4 in base A1; -π/4 and 3π/4 in 

base A2) on a Lithium Niobate phase modulator (Photline MPX), constituting a QPSK 

modulation. The weaker signal and the un-modulated LO pulses are time-multiplexed by 

a polarization-beam-combiner (PBC), and the delay between the two components is set to 

be 20 ns, i.e. the inline attenuator and the phase modulator consist of 2 meters of optical 

fiber, respectively. Orthogonally polarized, the signal pulses and the LO pulses propagate 

with a high degree of isolation. Attenuator 1 is used to generate the weak coherent states 

(WCS) signal pulses and attenuator 2 is used in the photon-counting scheme to match the 

signal and LO powers. 

Then the combined signal-LO pulses pass through a QKD link in a standard telecom 

single mode fiber (SMF). Bob uses a polarization-beam-splitter (PBS) with a polarization 

extinction ratio of 25 dB to separate the horizontally polarized LO pulses and the 

vertically polarized signal pulses. A small portion of the LO component is picked up for 

the receiver synchronization, using a PIN diode D3. 

Bob’s receiver has a similar Mach-Zehnder interferometer structure. He performs the 

LO phase shift in the upper arm on a Lithium Niobate phase modulator to apply his base 

choice (ΦB: π/4 in Base B1, -π/4 in Base B2), constituting a BPSK conversion in which 

. The delay between the signal and the LO pulses is carefully adjusted to 20 
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ns to optimize the time overlap on the PM coupler’s input ports with the same state of 

polarization (SOP). 

To keep the system unconditionally secured, the QBER threshold must remain under 

11% with a reduced key generation rate, and the corresponding phase error is  

[20]. In our setup, the phase drift  is compensated by an optoelectronic feedback 

using a phase shifter (PS) in Bob’s lower arm. A periodical interval of M bits is used as 

“training frame header” so as to compute the phase drift in the system in order to 

feedback on the PS. The training frames contain predetermined sequences on which Alice 

and Bob agree on the symbols and bases. The piezo-driver fiber actuator allows a 

dynamic range [-8π, 8π] and a response time of few milliseconds. 

The mean value of M bits in the “training frame header” is close to the normal 

distribution , in which µ is the expected value and σ is the standard 

deviation of an individual sample. As mentioned in chapter 6.5.2 when an uncertainty in 

amplitude estimation less than error E (relative to µ) is required, the following condition 

must be met: 

 

€ 

erfc 2M 2σ( ) ≈ exp −M 2σ 2( ) < E  (7.9) 

For example, assuming the unity is the amplitude of one photon, then the standard 

variation . If the mean signal pulse power is , then the standard deviation 

is ; and we expect a good precision of measurement as 99.99%, hence 

. Consequently we can obtain:  

 

€ 

exp −M 2σ '2( ) = exp −M 5000( ) < E =10−4

⇒ M > 46052
 (7.10) 

We use two single photon detection modules (SPDM, id 200, id Quantique) as D1 and 

D2 (Single Photon Avalanche Diode: SPAD) in Figure 7.10. The output of the SPDM is a 

pulse TTL of 100 ns width when a detection event occurs. We have implemented an 8-bit 
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analog/digital converter (ADC) for the pulse detection and the recording of the photon 

arrival time. 

For a short gate operation of 2.5 ns, we consider that the dark count probability for D1 

and D2 are  and , respectively; the quantum efficiencies are  and  ( ); 

and the interferometer visibility is . Then, during this gating operation, the probabilities 

that D1 or D2 records a detection event are: 

 

€ 

PD1 Φ( ) = ε1 + ρ1
1+V cosΦ

2

PD2 Φ( ) = ε2 + ρ2
1−V cosΦ

2

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 (7.11) 

In the course of the “training frame header” interval, we use eight registers to record 

the incoming events, i.e., {RD1,0, RD1,π/2, RD1,π, R D1,3π/2} for D1 and {RD2,0, RD2,π/2, RD2,π, R 

D2,3π/2} for D2 to store the number of detection events for Φ = 0, π/2, π, 3π/2. 

For D1, 

 

€ 

PD1
3π
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − PD1

π
2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = ρ1V sinΔΦ

PD1 0( ) − PD1 π( ) = ρ1V cosΔΦ

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 (7.12) 

For D2, 

 

€ 

PD2
3π
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − PD2

π
2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −ρ2V sinΔΦ

PD2 0( ) − PD2 π( ) = −ρ2V cosΔΦ

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 (7.13) 

From (7.12) and (7.13), we can easily obtain an approximate value of the real-time 

phase error ΔΦ. A 12-bit digital/analog converter (DAC) outputs the voltage to be 

applied on the phase-shifter to compensate the phase error every 0.1 second. Figure 7.11 

shows our experimental results for a measured phase error and the residual QBER when 

the signal mean photon number per bit NS is 0.5 (the probability of detecting an arriving 

photon is 0.05 since the quantum efficiency is 0.1). 
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Figure 7.11 Photon counting system residual phase error and its QBER 

We have taken 10% of the all data for the training frame so as to guarantee a precise 

phase tracking, and we managed to stabilize the system phase over a long tern operation. 

The residual phase error appears as a simple attenuation of the incoming signal, leading 

to a higher error rate for a given signal photon number. It is also due to the DAC 

quantification error, the piezo-driver precision jitter, and the phase-shifter delay as we 

correct the phase error only every 0.1 later instead of real-time. 

We will discuss the system performance in terms of detection efficiency, and BER and 

the security issues more in detail in the next chapter as for the comparison with the 

balanced homodyne detection scheme. 
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CHAPTER 8 QPSK QUANTUM KEY DISTRIBUTION USING DUAL-

THRESHOLD BALANCED HOMODYNE DETECTION 

We have discussed in the chapter 7 the implementation of a one-way experimental QKD 

system. In the optical telecom band, photon counters using avalanche diodes that work in 

Geiger mode under low and precise temperature control, exhibit inherent low quantum 

efficiency, high dark count rate, and inevitable residual after-pulse phenomenon due to 

the macroscopic avalanche process. 

The key issue in a QKD system is the detection of quantum level signal, such as the 

reliable and inexpensive weak coherent states (WCP). Balanced homodyne detection 

(BHD), is sensitive to phase and polarization matching. Using high efficiency, high 

bandwidth and low cost positive-intrinsic-negative diode (PIN) operating at room 

temperature, facilitated by a strong local oscillator (LO), BHD scheme can constitute an 

interesting alternative to photon counting. In BHD only one quadrature is measured and 

there is no additional noise to the contribution of the zero-point fluctuation of the signal 

field. As reported by Yuen [1] the input signal quantum noise is, in this case, the only 

noise limitation and the LO noise has a negligible influence. Moreover, BHD has a 

frequency selection scheme that is useful for background radiation rejection as for the 

compatibility with the current WDM networks, and it can also use a LO of suitable power 

that provides noise free high mixing gain to overcome the thermal noise [2]. 

Furthermore the conventional PIN photodiodes operating at room temperature present 

much higher quantum efficiency and faster response speed as compared to the photon 

counters [3], also their cost is much lower and the supply requirements are much simpler. 

Operating near the quantum limit, it is free of the non-desirable effects such as 

afterpulses and “dark counts” characteristics of the single photon detection measurement 

(SPDM). 
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However, post-detection, threshold and symbol synchronization stages must be 

properly designed and based on received signal coincidence as in BHD as the decision 

process is carried out a posteriori [4,5], in opposite to photon counting for which the 

decision is a trade off between quantum efficiency and dark count [6,7]. 

In this chapter we first review the basics of BHD, before we introduce our QKD 

receiver structure. Next we present a one-way QPSK QKD system using dual-threshold 

BHD receiver with optical phase synchronization. Then we compare the performance of 

the QKD receivers using photon counting and BHD in terms of detection efficiency and 

BER (or QBER).  

The optical phase and information recoveries are to be solved both by the receiver Bob 

and the eavesdropper Eve. Provided that the guarantee of security lies either on the 

mutual information gain or on the perception of eavesdropper’s intervention, we will 

analyze the security issues of the BHD QKD system under the “intercept-resend” attack 

and the “intermediate base” attack, as well as the power modifying mixed attacks. 

8.1 BALANCED HOMODYNE DETECTION FOR QKD SYSTEM 

 

Figure 8.1 Preliminary QKD setup using balanced homodyne detection (dot lines are the 
observation window for the detected symbols)  

BHD consists of mixing the weak signal filed with the strong LO field before intensity 

detection, i.e. 

€ 

ELO >> ES . If we apply the plane wave approach for the super homodyne 

detection scheme (Annex II) using Detectors D1 and D2, we can have:  
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€ 

Ibalanced = Esignal + ELO − Esignal − ELO = 4ESEL cos ΦA −ΦB( )  (8.1) 

As we show in Figure 8.1, the modulated signal arm was constructed to have EOM-A 

followed by an optical attenuator, and Bob introduces his base choices in the reference 

arm at the reception. The configuration is similar to the photon counting detection 

scheme as we have shown in Figure 7.3, the main differences are in the detection part and 

the post-detection processing. 

The balanced photo-receiver consists of two matched InGaAs photodiodes and a low-

noise amplifier that generates an output voltage corresponding to the photocurrent 

difference between the two photodiodes, with a transimpedance gain of 40 V/mA. Figure 

8.2 shows an example of the combination of the weak modulated signal pulses and the 

strong reference pulses at Alice’s end. The weak modulated signal pulses are delayed as 

to constitute a time-multiplexing configuration. 

 

Figure 8.2 Alice’s Output 

The bits corresponding to the base coincidence (BC) have positive or negative levels, 

while those bits of base anti-coincidence (AC) are discarded (average level “zero”). In 
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Figure 8.3 we demonstrate Bob’s detected symbols: the positive pulses stand for bits “1” 

(ΦA - ΦB = 0) while negative ones stand for bits “0” (ΦA - ΦB = π), and AC cannot be 

discriminated (ΦA - ΦB = π/2 or -π/2). 

 

 

Figure 8.3 (a) Detection of Qubits without polarization splitting; (b) Detection of Qubits 
with polarization splitting scheme. 

Compared to photon counting detection scheme, BHD improves the output signal-to-

noise ratio (SNR) when a suitable reference power is employed. The “shot noise” is thus 

dominant since the strong reference pulse makes the thermal noise negletable (noisethermal 

= -174dBm/Hz, noiseshot = -152dBm/Hz as measured in our experiments).  

Furthermore BHD receiver is also very sensitive to polarization mismatching (Annex 

II), as we can see in the Figure 8.3 (a) and (b). In both two configurations using standard 

single mode fiber or using polarization-maintain components, the signal pulse power is 
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around 2 photons/bit on average, however the noise level can be alleviated using 

polarization-maintain components, as we have mentioned in chapter 7. The output levels 

of the two measurements are slightly different because the reference pulses are not of the 

exact same power due to the polarization mismatch. 

8.2 IMPROVED BHD QPSK QUANTUM CRYPTO-STYSTEM 

8.2.1 SYSTEM SETUP 

We have implemented the experimental one-way QPSK QKD system for the photon 

counting scheme and the BHD scheme as well, as mentioned in chapter 7.3.3. A flexible 

arrangement has been designed so that only slight changes have to be done to change the 

detection scheme from photon counting to BHD [8]. 

As shown in Figure 8.4, we use a 1550 nm ILM electro-absorption modulated light 

source to generate laser pulses of 5 ns width with 18 dB intensity extinction ratio. We 

also use a General Photonics polarization stabilizer followed by a polarizer to actively 

maintain a stable output state of polarization (SOP) and to eliminate polarization fading. 

For the sake of comparison with the photon counting detection scheme, the operational 

frequency is reduced down to 4 MHz. (In the BHD scheme, much higher repetition rates 

are attainable, however we chose to use 4 MHz as well for the ease of comparison.) Our 

balanced amplified photo-detector has a flat response passband from DC to 150 MHz 

(Thorlabs InGaAs switchable gain PDB150C-EC). 
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Figure 8.4 Experimental setup of QKD system using BHD 

A polarization splitting method is also used in our arrangement so as to improve the 

isolation of the signal and the strong LO field. The polarization stablizer allows us to 

increase the injecting current at 180 mA to generate very strong laser pulses and 

meanwhile maintain the input polarization fluctuation less than 0.1 dB. Alice’s laser 

pulses are separated by a 50/50 polarization-maintainng coupler, and propagate through 

the upper and lower arms of a Mach-Zehnder interferometer constructed with 
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polarization maintaining (PM) fiber. No additional polarization control is required at 

Alice’s end since the setup can constantly maintain the optimal SOP.  

Alice encodes her vertically polarized pulses with phase modulation QPSK (ΦA: π/4 

and -3π/4 in base A1; -π/4 and 3π/4 in base A2) on a Lithium Niobate phase modulator 

(Photline MPX), constituting a QPSK modulation. The weak signal and the un-modulated 

LO pulses are recombined and time-multiplexed by a polarization-beam-combiner (PBC), 

and the delay between the two components is set to be 20 ns, i.e. 4 meters optical fiber. 

Orthogonally polarized with a polarization extinction ratio of 25 dB and an intensity 

distinction ratio of 18 dB, the signal pulses and the strong LO pulses propagate with a 

high degree of isolation. The strong LO pulses contain more than 5×107 photon per pulse 

and the inline attenuator is used to generate the weak coherent states (WCS) signal pulses 

down to less than one photon per pulse on average. 

Then the combined signal-LO pulses pass through a QKD link with 64 km length in a 

standard telecom single mode fiber (SMF). Bob uses a polarization-beam-splitter (PBS) 

with a polarization extinction ratio of 25 dB to separate the horizontally polarized strong 

LO pulses and the vertically polarized weak signal pulses. A small portion of the strong 

LO component is picked up for the receiver synchronization, using a PIN diode D3. 

Bob’s receiver has a similar Mach-Zehnder interferometer structure. He performs the 

LO phase shift in the upper arm on a Lithium Niobate phase modulator to apply his base 

choice (ΦB: π/4 in Base B1, -π/4 in Base B2), constituting a BPSK conversion in which 

. The delay between the signal and the strong LO pulses is carefully adjusted 

to 20 ns to optimize the time overlap on the PM coupler’s input ports with the same state 

of polarization (SOP). 

In this BHD setup, the phase drift  is compensated by an optoelectronic feedback 

using a phase shifter (PS) in Bob’s lower arm using “training frame header” so as to 

compute the phase drift and feedback on the PS.  
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8.2.2 PHASE COMPENSATION WITH TRAINING FRAME 

In the BHD scheme, the LO level remains constant, and only the signal level is 

strongly attenuated with the attenuator 1. We use a balanced photo-detector (Thorlabs 

PDB150C-EC) in association with a passband voltage amplifier (Femto, Series DHPVA, 

200 MHz) to obtain an optimized resolution for the high-speed 8-bit ADC PCI transient 

recorder that works at a sample rate up to 200 Mbits/s (Spectrum M2i.2030). 

Four registers R0, Rπ/2, Rπ, R3π/2 store and update the estimated values for the four 

possible phase states. The detected values of the M bits are {a1, a2,…, aM}, in which {ai1, 

ai2,…, ai(M/4)}, {aj1, aj2,…, aj(M/4)}, {am1, am2,…, am(M/4)}, {an1,an2, …, an(M/4)} correspond to the 

bits that carry phase information 0, π/2, π and 3π/2, respectively. 

The normalized quadrature amplitude of the detected signal is proportional to 

. We also assume that the phase errors corresponding to each 

phase state are , , , , respectively. 

We can approximately obtain: 

 

€ 

R0 = aik = aikk=1

M 4
∑⎛ ⎝ ⎜ 

⎞ 
⎠ 
⎟ M 4( ) = A0 cos ΔΦ0( )

Rπ 2 = a jk = a jkk=1

M 4
∑⎛ ⎝ ⎜ 

⎞ 
⎠ 
⎟ M 4( ) = Aπ 2 cos ΔΦπ 2 + π 2( )

Rπ = amk = amkk=1

M 4
∑⎛ ⎝ ⎜ 

⎞ 
⎠ 
⎟ M 4( ) = Aπ cos ΔΦπ + π( )

R3π 2 = ank = ankk=1

M 4
∑⎛ ⎝ ⎜ 

⎞ 
⎠ 
⎟ M 4( ) = A3π 2 cos ΔΦ3π 2 + 3π 2( )

⎧ 

⎨ 

⎪ 
⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 
⎪ 

 (8.2) 

where A0, Aπ/2, Aπ and A3π/2 are the envelope amplitudes, and we have: 

 

€ 

A0 ≈ Aπ 2 ≈ Aπ ≈ A3π 2

ΔΦ0 ≈ ΔΦπ 2 ≈ ΔΦπ ≈ ΔΦ3π 2

⎧ 
⎨ 
⎩ 

 (8.3) 

We can thus obtain the estimated envelope amplitude and the phase error: 
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€ 

A ≅ R0
2 + Rπ / 2

2 + Rπ
2 + R3π / 2

2( ) /2[ ]
1 2

ΔΦ ≅ ΔΦ0 + ΔΦπ / 2 + ΔΦπ + ΔΦ3π / 2( ) 4

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 (8.4) 

 

 

Figure 8.5 BHD QKD system residual phase error 

We have taken 5% of the received bits as the “training frame header” and 95% as the 

“Data”. In Figure 8.5 we show the voltage applied on the phase shifter and the residual 
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phase error for received photon number NS = 0.8 with a minimum phase precision 1.25 

degrees. The residual phase error is well controlled under 10 degrees as shown in the 

inset histogram in the upper figure. 

8.2.3 DUAL-THRESHOLD BALANCED HOMODYNE DETECTION 

The output of a BHD receiver is proportional to the ES, a single quandrature of the 

signal corresponding to EL and its additional quantum noise . This input signal is 

found to be amplified by the deterministic part of the in-phase LO quadrature on the 

detectors that act as a noise free mixing gain. Since only one quadrature is measured, 

there is no additional noise to the zero-point fluctuation [9]. However, the different 

coherent states generated by conventional light sources are not orthogonal, leading to an 

inherently finite error rate and making a decision process mandatory [10-12]. 

 

Figure 8.6 Histogram of the detected signals a) NS = 0.5, a) NS = 1.5 
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In Figure 8.6, we depict the experimental histogram (the probability density function). 

It is only possible to differentiate the phase states  and , since the histograms 

of  and  overlap with each other. Given the signal average photon 

number per bit NS, the detected sum field using intensity detection in the absence of 

thermal noise results in the probability of error [10]: 

 

€ 

BER =1 2erfc 2NS( ) (8.5) 

where . 

 

Figure 8.7 Experimental BER compared with the theoretical values 

In digital communications the information loss due to the channel impairments must 

be processed by the forward error coding (FEC) techniques. However it differs 

significantly from the QKD situation in which the signal erasure (i.e. empty pulses) can 

be easily managed during the a posteriori reconciliation process [13] by a decision 

abandon disregarding the corresponding bits, and mainly be turned into reduction of the 

key generation rate. In this way BHD can also permit the accurate implementation of a 

dual-threshold decision process on the post-detection high-level electronic signals, 
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allowing the possibility of inconclusive measurements to lower the BER, with a trade-off 

in the reduced key generation efficiency. Therefore Eve’s attack turns more to a Bob’s 

signal degradation than a substitution since the corresponding information can be 

suppressed during the reconciliation. 

For the signal discrimination Bob sets up two symmetrical thresholds ±X (normalized 

to the root of the average photon number per bit 

€ 

NS ) for the detected value x, with the 

selection rule: 

 

Figure 8.8 Dual-threshold BHD decision 

 

€ 

Judgement =

1 if x > X( )
0 if x < −X( )
Abandon otherwise

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 (8.6) 
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Without loss of generality we assume equal symbol probability for each phase state, 

thus the incoming bit error rate (BER) and the incoming bit correct rate (BCR) are given 

by: 

 

€ 

BERi =1 2erfc 2NS( )1 2 X +1( )[ ]  (8.7) 

 

€ 

BCRi =1 2erfc 2NS( )1 2 X −1( )[ ]  (8.8) 

In order to dispose of a parameter to compare with photon counting, we introduce the 

post-detection efficiency 

€ 

ρ , which is defined as the probability of a conclusive judgment: 

 

€ 

ρ X,NS( ) = BERi + BCRi (8.9) 

Also the bit abandon rate (BAR) is defined as: 

 

€ 

BAR =1− ρ X,NS( )

=1−1 2erfc 2NS( )1 2 X +1( )[ ] −1 2erfc 2NS( )1 2 X −1( )[ ]
= erfc 2NS( )1 2X[ ]

 (8.10) 

In photon counting, the quantum efficiency is determined by the built-in decision 

circuit. For the comparison we have measured the BHD post-detection efficiency with 

different threshold parameters X, using the same experimental setup at the same 

repetition rate of 4 MHz. We have performed the measurements of the signal level NS = 

0.02-3.0 photons/bit with strong LO level of 2.8×105 photons/bit so that the quantum 

noise is at least 10 dB above the thermal noise. 
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Figure 8.9 Experimental measurements of the detection efficiency 

The experimental results in Figure 8.9 show that the post-detection efficiency 

€ 

ρ  can 

be higher than the photon counting detection efficiency with appropriate parameters 

selection. As a matter of fact, even if the selection of a high threshold X decreases the 

detection efficiency, a high key generation rate is attainable since BHD can potentially 

operate at much higher speed than photon counters. 

In order to compare with the QBER of photon counting, we introduce the BHD post-

detection BERP as: 

 

€ 

BERp = BERi ρ = 1 2ρ( )erfc 2NS( )1 2 X +1( )[ ]  (8.11) 

We measured the BERP for different values of the threshold parameter X. The obtained 

values as shown in Figure 8.10 is slightly higher than the theoretical BER value due to 

the system quantification errors and other impairments such as residual polarization 

mismatch and modulation imprecision. (Note that when X=0, it is the standard single-

threshold decision as depicted in Figure 8.7). 
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Figure 8.10 BHD post-detection BER and photon-counting QBER 

The observed QBER in the PC scheme (also shown in Figure 8.10) in our phase 

encoding system appears higher than 0.1 due to the residual phase errors since the phase 

correction, calculated by counts of detected photon, is less precise than the BHD scheme 

as a consequence of the limited counting events, unequal PC detection efficiency, as well 

as the dark counts. It appears constant over a wide range of signal level since errors are 

mainly produced by the phase errors and the limited extinction ratio that are in principal 

independent of the signal level. QBER can only be improved by a more accurate phase 

and polarization control, such as polarization stabilizer, special pulsed laser source with 

narrower spectral line-width and wider coherent time, as well as higher extinction ratio 

optical devices. Meanwhile BHD scheme can also take advantage of these improvements, 

still making it a more efficient detection scheme. 

 

 

 



 

 

158 

Table 8-1 Photon Counting VS Dual-threshold BHD 

 

Photon Counting Dual-threshold BHD 

Low speed Geiger mode APD High speed PIN photodiodes 

Low quantum efficiency< 10% High quantum efficiency > 90 % 

Equal amplitude reference Strong reference LO 

Signal independent threshold Signal dependent threshold 

Dark count limited QBER Shot noise limited BERP 

Delicate phase synchronization Efficient phase synchronization 

ssssynsynchronization  

In Table 8-1 we have already mentioned the different characteristics of the two 

receiver configurations. As a matter of fact, in PC the inherent threshold parameter is 

adjusted as a trade-off between quantum efficiency and dark count rate, and is 

independent of the received signal so as to offer a wide operation range for single photon 

measurements; while in BHD the dual-threshold can be more flexibly adjusted as a trade-

off between BERP and key exchange rate. Furthermore, the dual-threshold BHD scheme 

has three main advantages over photon counting scheme: a) the quantum efficiency of 

PIN photodiodes is near unity; b) ultra-high speed QKD system is achievable since no 

quenching process is required; c) the cost of telecom wavelength PIN photodiodes is 

much lower and the supply requirements are much simpler. 

Recently a decoy-state protocol has been proposed [14] and extensively studied by 

some research groups [15-18]. The signal state intensity can be chosen to be up to one 

photon on average thanks to a more sophisticated reconciliation process. The BHD 

system is readily adaptable for such a protocol since it allows distinguishing the multi-

photon coherent states. 
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8.3 SECURITY OF THE DUAL-THRESHOLD BHD QKD SYSTEM 

In this section, we analyze the security issues of the BHD QKD system under the 

“intercept-resend” attack and the “intermediate base” attack, provided that the guarantee 

of security lies either on the mutual information gain or the perception of the 

eavesdroppers’ intervention [8]. 

In order to investigate the security of a quantum cryptosystem, we have to take into 

account the action of Eve, and we analyze the amount of information accessible to her. 

We represent the information entropy of Alice by H(A). The conditional entropies of Bob 

and Eve are defined as  and  given that Alice’s information is known. 

The mutual information I(A,B), I(A,E) are defined as the estimation of the information 

shared by Alice and Bob, and that shared by Alice and Eve, respectively. Note that Eve is 

supposed to be limited only by the physical laws. 

 

€ 

I A,B( ) = H(A) −H AB( )
I A,E( ) = H(A) −H A E( )

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 (8.12) 

The key is said to be secure if the I(A,B) is higher than I(A,E) [19]. Therefore we 

define the amount of the obtainable security S: 

 

€ 

S = I A,B( ) − I A,E( ) = H(A E) −H(AB) (8.13) 

According to information theory, if S is positive, it is theoretically possible to decrease 

the amount of information gained by Eve through the process of “privacy amplification”, 

i.e. Alice and Bob abandon randomly a portion of the obtained key sequence to decrease 

Eve’s useful information [20,21]. Otherwise, i.e. when S is negative, the key must be 

dropped as long as no algorithm could guarantee the unconditional security. In this case, 

Bob should be able to detect Eve’s intervention. [22]. 

We have analyzed the security issues in view of two potential individual attacks, along 

with a mixed power attack strategy. 
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8.3.1 INTERCEPT-RESEND ATTACK 

In order to evaluate the differential mutual information S, we calculate Bob’s BER 

under Eve’s intercept-resend attack in which she performs five main steps: 

1) Eve listens to the quantum channel and steals all the Q-bits. 

2) She splits the signal in two equal parts. 

3) She performs a measurement of the two equal parts on the two bases (as Bob’s 

bases); accordingly she obtains two measured values 

€ 

x1 and 

€ 

x2 . 

4) As she makes the decision, she chooses the most likely value from the two 

measures and resends it to Bob. For example, if 

€ 

x1 > x2 , then Eve resends to 

Bob the bit “1” on the base A1. Nevertheless she stores the two measured 

values until the reconciliation process. 

5) During the reconciliation process, Eve listens carefully to the divulgation of 

the bases used by Alice and Bob. To improve her information, she switches 

those wrong decisions made in step 3. 

Namiki and Hirano [23] have given some specific contributions with respect to Eve’s 

intervention analysis. We define 

€ 

Ρ+ as the probability that Eve resends the correct bit 

state on the correct base: 

 

€ 

Ρ+ =
1
4
erfc − NS 2( )1 2( )( )

2
 (8.14) 

 as the probability that Eve resends the wrong bit state on the correct base: 

 

€ 

Ρ− =
1
4
erfc NS 2( )1 2( )( )

2
 (8.15) 

and  as the probability that Eve resends the bit state on the wrong base:  
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€ 

Ρ⊥ =
1
4
erfc NS 2( )1 2( )erfc − NS 2( )1 2( ) (8.16) 

Hence the modified post-detection efficiency and the modified BER at Bob’s end: 

 

€ 

ρ' X,Ns( ) = Ρ+(Ns) + Ρ−(Ns)( )ρ(X,Ns) + 2Ρ⊥ erfc 2NS( )1 2X( )  (8.17) 

 

€ 

BERBob ' X,Ns( ) =
Ρ+(Ns)BERi + Ρ−(Ns)BCRi + Ρ⊥ (Ns)erfc 2NS( )1 2X( )

ρ' X,Ns( )
 (8.18) 

Eve’s BER can simply be obtained as if she performs the measures on half the signal 

power, hence . 

As we have mentioned in equation (8.13), we can obtain the differential mutual 

information by calculating Alice-Bob, and Alice-Eve mutual information: 

 

€ 

H(AB)'= − BERBob ' log2 BERBob '( ) + 1− BERBob '( ) log2 1− BERBob '( )( )
H(A E)'= − BEREve ' log2 BEREve '( ) + 1− BEREve '( ) log2 1− BEREve '( )( )

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 (8.19) 

And we can obtain the differential mutual information . 
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Figure 8.11 The differential mutual information under intercept resend 

 

Figure 8.12 The security zone under intercept-resend attacks 

As a higher threshold X could allow Bob to obtain a lower BER, we conclude that with 

appropriate parameters (X, NS) Alice and Bob can guarantee the unconditional security 

wherever the differential mutual information S is above 0 as shown in Figure 8.12. 
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8.3.2 INTERMEDIATE BASE ATTACK 

In the intermediate base attack Eve performs the four main steps: 

1) Eve steals all the Q-bits. 

2) She performs the measurements of all the Q-bits with the intermediate base 

. 

3) She resends to Bob the bits she has obtained on the intermediate base, and 

stores the bit values until the reconciliation process. 

4) During the reconciliation process, she uses the base revelation to discriminate 

the bit states (0 or 1) that Alice has sent. 

The loss of Eve in the step 2 is 3 dB due to the intermediate base projection. Thus 

Eve’s BER is the same as under the intercept-resend attack. Furthermore we can deduce 

from equations (8.7), (8.8) that  

 

€ 

BEREve ' '= BERi(0,Ns 2) =1 2erfc NS( )1 2[ ] (8.20) 

and Eve’s BCR is: 

 

€ 

BCREve ' '= BCRi(0,Ns 2)=1 2erfc − NS( )1 2[ ]  (8.21) 

Consequently Bob’s incoming BER and BCR are modified: 

 

€ 

BERi ' '= BERi X,NS 2( ) =1 2erfc NS( )1 2 X +1( )[ ]  (8.22) 

and Bob’s BCR is: 

 

€ 

BCRi ' '= BCRi X,NS 2( ) =1 2erfc NS( )1 2 X −1( )[ ]  (8.23) 

And Bob’s modified efficiency is given by  

 

€ 

ρ' '(X,Ns) = BERi ' '+BCRi ' '= ρ(X,Ns 2) (8.24) 



 

 

164 

Thus the modified Bob’s BER is given by: 

 

€ 

BERBob ' ' X,Ns( ) =
BEREve ' 'BCRi ' '+BCREve ' 'BERi ' '

ρ' ' X,Ns( )
 (8.25) 

We can obtain in the very same way, the differential mutual information by 

calculating Alice-Bob, and Alice-Eve mutual information: 

 

€ 

H(AB)' '= − BERBob ' ' log2 BERBob ' '( ) + 1− BERBob ' '( ) log2 1− BERBob ' '( )( )
H(A E)' '= − BEREve ' ' log2 BEREve ' '( ) + 1− BEREve ' '( ) log2 1− BEREve ' '( )( )

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 (8.26) 

Therefore the differential mutual information by calculating Alice-Bob, Alice-Eve 

mutual information, and . 

 

Figure 8.13 The differential mutual information under intermediate base attack 

Figure 8.13 shows that Eve could always obtain more information than Bob, thus this 

quantum link is not unconditionally secure under the intermediate base attack. Therefore, 

Bob must be capable of detecting the Eve’s intervention and tell Alice. 
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In Figure 8.14 we give the theoretical comparison of the post-detection BER 

evaluation when  are used: the BER is largely modified under the two 

attacks. When we chose to use a higher threshold X, it will be more evident to discern 

Eve’s attacks by comparing the operating post-detection BER with the original post-

detection BER. 

 

Figure 8.14 The post-detection BER evaluations with different X = 0, X = 1, X = 2 

8.3.3 ATTACKS AND POWER ANALYSIS 

It has been proven in the precedent chapters that Eve could not obtain useful 

information by using the two types of attack, in that when she gains more mutual 

information than Bob, the key will be discarded. Now we investigate on Eve’s mixed 

attack strategy: using power modification to hide her intervention. 

As Eve makes the decisions and resends the key sequence to Bob, she can actually 

modify the signal power so as to circumvent Bob’s vigilance. She will seek to lower 

I(A,B) and maintain Bob’s post-detection BER to conceal her attacks. In this regard, we 

replaced the signal level NS by βNS (β is a power factor to account for Eve’s intention). If 
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Eve resends the signal at the same power level as she has received, β = 1. If β > 1 she 

amplifies the signal power and if β < 1 she resends the signal bit with attenuation. 

 

Figure 8.15 The security zone under intercept resend attacks with different β 

We illustrate the security zone under the intercept-resend attack in Figure 8.15 for 

. Secure zone stands for positive differential mutual information S. First 

we can see that amplifying the signal will not be a wise choice for Eve, since doing so 

she lowers Bob’s post-detection BER but increases I(A,B), as well as a larger security 

zone. In the other hand, if she attenuates the signal, Bob will be aware of her presence 

since the incoming BERi will increase and the detection efficiency will drop in 

consequence. 

Under the intermediate base attack, if Eve amplifies the signal power, Bob will also 

have a lower post-detection BER, however this β has to be very high to hide her 

presence. In this case, by comparing the incoming BERi, the detection efficiency and the 

post-detection BER, Bob can still find out that Eve has been attacking the quantum 

channel. And if she attenuates the signal, the increasing post-detection BER and 
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incoming BERi, together with the decreasing detection efficiency will reveal her 

presence. 

In conclusion, Eve’s mixed strategies can be diversified, i.e., independent attacks 

including individual and collective attacks, or joint attacks in which multiple attacks 

coexist in the quantum channel. However, if she doesn’t manage to gain the mutual 

information and maintain Bob’s incoming BERi and post-detection BER to cover up her 

action at the same time, the attack will be discerned. 

At Bob’s side, in order to guarantee the security he needs to set a high threshold so as 

to lower the incoming BERi and the post-detection BER to make Eve’s intervention 

detectable. This is consistent with the parameters choice of a higher performance system 

thanks to BHD’s high potential operation rates. 

8.3.4 LONG DISTANCE STANDARD TRANSMISSION 

  

Figure 8.16 QKD long distance transmission a) Alice’s side; b) Bob’s side 
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Long distance transmission in optical fiber is subject to impairments such as fiber loss 

of 0.2 dB/km and dispersion of 17 ps/km•nm at 1550 nm wavelength, which are the 

issues that a QKD system has to overcome in a practical and constant field operation. 

We have performed the experiments [24] with strong LO pulses containing more than 

5×107 photons, and the inline attenuator is used to adjust the weak signal pulses to mean 

energy below 1 photon, with a repetition rate of 16 MHz. We have successfully evaluated 

the system performance with SMF links of 0 km, 25 km, 50 km and 64 km with different 

threshold parameters X: 0, 0.5, 1 and 2. 

In Figure 8.17 we show the experimental post-detection BERP as compared to the 

theoretical values. The measured BERP is slightly higher than the theoretical values due 

to the connection loss, residual phase fluctuations, and the quantification errors issued 

from the 8-bit A/D converter. Indeed the LO pulses attenuate meanwhile with the weak 

signal pulses in the SMF link, e.g. at 64 km we have measured a transmission loss of 16.5 

dB, i.e. the signal mean photon number NS = 0.0224, and in principle the quantum noise 

is lower than the thermal noise from 90 km. Hence setting a higher dual-threshold is 

necessary and beneficial to obtain its optimal throughput as a tradeoff in the effective key 

generation rates, which is still much higher than that of SPDM since BHD can operate at 

very high frequency thanks to the PIN photodiodes. However the effective transmission 

limit is bounded by the QBER security limit 11% [25], e.g. at around 50 km when X = 2. 
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Figure 8.17 Bob’s Post-detection BER over different distances of transmission 

In Figure 8.17 we also give the theoretical evaluation of the post-detection BERP using 

different threshold values X: the BERP is largely modified under the intercept-resend, 

intermediate base and PNS attacks [26]. As we have already discussed before, under 

intercept-resend attack Bob can select a higher X value to maintain the information gain 

over Eve, while no information gain can be obtained under intermediate base and PNS 

attacks. In this case Bob can discern Eve’s attacks by comparing the operating BERP with 

the theoretical BERP at the receiver’s Bob end. Under the more advanced extended PNS 

(Ex-PNS) attack proposed by Lütkenhaus [27] in which Eve hides her presence by 

stealing only multi-photon pulses, a multi-states protocol similar to decoy states can be 

used to observe the detection efficiency ρ variations using higher photon number pulses 

and single photon pulses. 

As the coherent laser pulses follow the Poisson distribution, we can easily observe the 

statistics variations under Eve’s Ex-PNS attack, as shown in the Fig 8.18. Bob can 

identify Eve’s attack by implementing a multi-states protocol containing pulses of 
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varying average power. The weak pulses containing less than 1.0 photon/bit, i.e. the 

signal states, should be used for the key generation; while the stronger pulses, i.e., the 

decoy states, should be used for the statistics evaluation of the received signal. The 

positions of decoy states and signal states are predetermined between Alice and Bob, thus 

unknown to Eve. Therefore Eve can only apply her attack strategy to every bit by stealing 

one photon from multi-photon pulses. 

 

Figure 8.18 Bob’s Post-detection photon number statistics under the Ex-PNS attack 

By using the BHD receiver, Bob can also measure the mean values of the base-

coincidence phase states for both the signal pulses and the decoy pulses, separately, to 

identify Eve’s attacks. Furthermore, to conceal the usage of decoys states, Alice and Bob 

can envisage two or more different decoy states levels. As a matter of fact, the decoy 

states can be implemented in the intervals of training frames, since the relatively higher-

level signal can not only facilitate the phase compensation loop, but also make the 

statistics evaluation easier. 
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CHAPTER 9 WEAK COHERENT STATES HOMODYNE COMMUNICATIONS 

WITH OPTICAL PHASE SYNCHRONIZATION 

Coherent detection technique [1-6] is also appearing in various new telecommunication 

applications working with photon numbers per bit substantially lower than those used in 

direct detection communications [7-10], due to its unique advantage of the noise free 

mixing gain, provided by the local oscillator allowing to overcome the high level thermal 

noise. In a quantum channel, information symbols are a set of states at quantum level 

encoded into complex amplitude [11] that must be discriminated at the receiver end, in 

the presence of channel impairments [12-14]. In this chapter we introduce the 

implementation of a synchronized feedback homodyne detection system for weak 

coherent states by minimizing the real-time phase error, using a digitalized Costas loop 

conducting sequential in-phase and quadrature measurements. This receiver configuration 

leads to a new effective method of high-speed homodyne communications by 

overcoming the 3 dB penalty compared to simultaneous measurements, especially for 

suppressed carrier communications in both the synchronization and the demodulation 

stages, at the price of a reduction on effective bit rate. We also introduce a new method 

for the Wigner function reconstruction from quadrature measurements using 128 

equidistant phase states from 0 to 2π. 

9.1 WEAK COHERENT STATES HOMODYNE COMMUNICATIONS 

Coherent optical fiber communications have raised increasing interests [1-4] due to the 

possible use of complex amplitude modulations that allows lower optical signal-to-noise 

ratio (OSNR) for a given post-detection bit-error-rate (BER), as well as a better spectral 

efficiency and more efficient modulation schemes. Balanced receiver configuration using 

PIN photodiodes, facilitated by a strong local oscillator (LO) whose noise has only 

negligible influence [5], measures only one quadrature and there is no additional noise to 
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the zero-point fluctuation of the signal field. Therefore the output noise is dominated only 

by vacuum fluctuation entering in the signal port and a standard quantum limited  (SQL) 

reception is attainable. Furthermore, the use of constant envelope formats, in opposition 

to the traditional intensity modulation with direct detection, is more tolerant to the non-

linear impairments in the fiber [6]. 

Weak coherent states (WCS) are widely used in the new coherent optical applications, 

such as quantum cryptography [7-8], long distance free space communications [9], and 

highly sensitive homodyne tomography [10]. Optimal quantum receivers have been 

studied for digital signal detection [15-17] to discriminate the different states, and the 

generally used criterion is to minimize the bit error rate (BER) at a give signal level.  

Coherent optical systems have to tackle the unavoidable impairments caused by the 

phase and polarization drift, as the dynamic fluctuations can drastically affect the 

performance of the demodulation process. Since homodyne detection only provides a 

measurement of the single signal quadrature corresponding to the LO field [19], the 

receiver must previously perform accurate synchronization of the optical carrier [20,21] 

to combat the optical signal phase fluctuations. 

 

Figure 9.1 Homodyne I-Q Measurements where ∆θ is the phase mismatch 
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In the classical optical coherent communication systems, the phase estimation is done 

in synchronizing structures such as the phase-locked-loop (PLL), using the mixing of the 

optical information signal with a strong optical LO [22-24]. For efficient transmission, 

suppressed carrier modulation such as symmetrical PSK format and Costas loop are 

required [25]. This loop is based on the simultaneous measurements of the received I-Q 

fields, as well as subsequent processing of these two results and a feedback on the LO to 

correct its phase, i.e. to force its phase mismatch ∆θ to 0, as we show in Figure 9.1. 

However, in the quantum optical channel the simultaneous in-phase and quadrature (I-Q) 

measurements cannot be performed without additional 3 dB signal power penalty since it 

has to be divided into two parts, and the stabilization of the 90° hybrids devices is a 

difficult task [26,27], we thus propose a technique that performs sequential I-Q 

measurements of WCS using a single BHD receiver by alternatively switching [28] the 

phase of the LO field. 

9.2 PHASE SYNCHRONIZATION WITH I-Q MEASUREMENTS 

9.2.1 SYSTEM SETUP FOR SEQUENTIAL I-Q MEASUREMENTS 

We implement an experimental setup [29,30] that generates and detects WCS pulses 

with antipodal BPSK modulation, as shown in Figure 9.1. We use a 1550 nm wavelength 

pulsed laser as the optical source. The beam is divided by a polarization splitting coupler 

(PSC) to generate in the upper arm a BPSK-modulated WCS signal using an optical 

phase modulator; and in the lower arm, a LO to be used for the detection and 

demodulation process. 

In this setup, each BPSK signal is repeated to generate two identical pulses I, Q, so as 

to beat with the LO pulses with 0, π/2 phase switching, respectively. The WCS signal and 

phase-switched LO are then mixed and detected using a BHD receiver. Only the I 

measurements are retained and stored as data, while both the I and Q measurements are 

applied for the digital synthetic Costas loop processing. 
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Figure 9.2 Experimental setup of the WCS sequential I-Q measurements.  

The subsequent elements of the phase detection process are implemented in a discrete 

time mode, using an A/D converter and through a PC-based algorithm to process the raw 

data. This optical Costas loop is a simplified version of the maximum-a-posteriori 

probability (MAP) BPSK signals phase estimator [21] suggested in [22-24] for the 

classical channel with suppressed carrier. 

9.2.2 DIGITAL COSTAS LOOP 

In a conventional Costas loop, an error signal is generated to control the phase of an 

optical voltage-controlled oscillator (VCO), in our self-homodyne configuration we use 

an optical phase shifter (PS) to continuously synchronize the phase of the LO arm. It is 

important to note that the I and Q optical components are not available at the same time 

but that they are sent sequentially in an alternate way, and a time delay is required in 

order to perform the multiplication of both components before the digital Costas loop 

processing. In this synthetic loop, we incorporate an equivalent phase integration function 

of the optical VCO using an additional discrete time integrator. The resultant phase error 

variable is fed back via a piezo-driver on the PS to compensate for the LO relative phase 

drift. 

The dynamics of the digital Costas loop is essentially governed by the response time 

of the low-pass filters used in the loop. When operating with optical signals, we design 
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the feedback by taking into account the stochastic perturbations due to the photo-

detection noise and the optical phase fluctuations. We use the following system 

parameters: the BPSK signal and the LO optical powers PS, PLO respectively, the raw 

symbol interval TS, the signal bit interval TR = TS/2, the laser pulse width TP, the RF 

amplifier gain A after the BHD receiver, the laser linewidth 

€ 

Δν , and a gain factor G after 

the integrator. For the implementation of the digital Costas loop, we work with the 

discrete-time equations as shown below: 

a) The low-pass filters z-domain transfer function:

€ 

FLPF z( ) =
B + Cz−1

1− z−1
, where the 

constants B and C are defined as: 

€ 

B =
TS + 2δ2
2δ1

, 

€ 

C =
TS − 2δ2
2δ1

, with the parameters 

€ 

δ1, 

€ 

δ2 , and 

€ 

NS  defined as: 

€ 

δ1 =
3
8
TRPSPLOA

2G
πNRΔν

, 

€ 

δ2 =
4π
3
⋅
Δν ⋅ NS

TR

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1 2

, and 

€ 

NS =
PSTP
hν

. 

b) The integrator z-domain transfer function: 

€ 

FINT z( ) =
TS
2
1+ z−1

1− z−1
. 

9.2.3 EXPERIMENTAL RESULTS 

We use a 1550 nm ILM light source to generate laser pulses of 5 ns at 8 MHz 

repetition rate. The WCS signal pulses and the strong LO pulses are polarization-aligned 

in a Mach-Zehnder interferometer constructed by polarization maintaining fibers. BPSK 

modulation on the WCS signal pulses with average signal photon number NS is produced 

by an electro-optical modulator and an inline attenuator. 

The I and Q components of the pseudo-random sequence are alternatively detected 

and the A/D and the D/A converters are used to interface the optical and the electronic 

subsystems. The piezo-driver delivers a wide voltage range [-10V, 150V] required for the 

optical PS whose half wavelength voltage Vπ is 9.95 V, to obtain an operational range of 

[-8π, 8π] without reset, and a response time of several milliseconds. However in practice, 
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the frequency response is limited to 1 kHz by the piezo-driver. As the system phase drift 

is a slow phenomenon, we update the voltage output to be applied on the PS once every 

0.1 second, and the applied voltage values correspond to the mean phase error during the 

latest 0.1 second interval, therefore the feedback should have negligible impact on the 

quantum states dynamics.  

 

Figure 9.3 Detected signal with phase synchronization 

 

Figure 9.4 Interferometer phase tracking using digital Costas loop 
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We show in Figure 9.3 the detected weak signal and in Figure 9.4 the voltage applied 

on the PS for duration of one hour. When the phase drift reaches to the limits of the 

piezo-driver, our software reset the PS “zero” point so as to permit a continuous 

operation. 

9.3 UNCERTAINTY WITH I-Q MEASUREMENTS 

We have measured the BPSK signals of average photon number per pulse from 0.1 to 

3 beating with the strong LO pulses of more than 4 × 106 photons. The normalized 

standard deviations for the I and Q fields measurements are bounded by the Heisenberg 

uncertainty principle  (Cf. Appendix D), where 

€ 

ΔXI  and 

€ 

ΔXQ  are the 

normalized standard deviations of the I and Q fields. 

 

Figure 9.5 Standard deviations of the measured I, Q fields 

The normalized standard deviations increase with NS due to the excess noise compared 

to the vacuum fluctuations, as we show in Figure 9.5. The values have been normalized 

to the amplitude of the signal power NS = 1.0. These impairments are caused by the 
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imperfect laser source used in our experiments that does not generate perfect coherent 

states, the residual polarization mismatch, the imperfect BHD receiver, the circuits and 

amplifier noise, the internal filter response time delay, as well as the quantification errors 

of the A/D converter.  

Indeed in the Q field our measurements are very close to the zero-point fluctuations 

and in the I field there is more additional noise, especially at higher NS. For a pair of 

phase 

€ 

φ  and amplitude 

€ 

A  the standard deviation evaluates specifically with the phase 

parameter 

€ 

φ . Note that the detected signal is 

€ 

Output A,φ( )'= Acos φ( ) , and at π/2 and –

π/2, the derivative of 

€ 

cos φ( )  is 0, while at phase 0 and π the derivative of 

€ 

cos φ( )  is 1, 

which makes the receiver more sensitive to phase fluctuation. As a matter of fact, the 

attenuation of optical signal power smoothes out the excess noise as compared to the 

vacuum fluctuation and the results appear to be closer to the quantum measurements. 

In WCS communications, the additional power penalty in the simultaneous I-Q 

measurements increases the BER. Since the I-Q measurements are only necessary for the 

LO synchronization stage, the sequential I-Q measurements configuration using a digital 

synthetic Costas loop can operate at very low photon numbers and track the system phase 

drifts without the need of a pilot carrier modulation. Due to the technical limitations of 

the present experimental prototype, there is still a considerable margin of improvement, 

such as pulsed laser source with better spectral line-width, PIN photodiodes with faster 

response time, and RF amplifier with lower noise factor. Furthermore, the slow 

polarization drift can add additional impairments since the digital Costas loop adjusts the 

parameters of the low-pass filter according to power levels of the BPSK signal and the 

LO. In conclusion, thanks to its simple and flexible configuration, this technique can be 

used in diverse coherent optical applications for WCS signal detection. Although this 

scheme reduces half of the signal bit rate to beat with the LO in the I and the Q fields 

sequentially, high bit rate is attainable since the phase correction does not need heavy 

recursive algorithm for signal processing. 
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9.4 EXPERIMENTAL CHARACTERIZATION OF SQUEEZED 

COHERENT STATES 

Experimental shot-noise reduction from squeezed light has been demonstrated in 

table-top interferometers [31-33], and it has been found and proven in different ways [34-

36] that the quantum correlated light, e.g. can reduce quantum noise below the standard 

quantum limit (SQL). Harms et al. [37] have pointed out that signal-recycled 

interferometers can benefit from squeezed light similarly to conventional interferometers. 

In this section we present a method for the phase-dependent squeezed level 

characterization of light using Mach-Zehnder based system as we have mentioned before. 

We synchronize the receiver using training frame, and reconstruct the “amplitude-phase” 

Wigner function by using inverse Radon function and standard back-projection 

algorithm. 

9.4.1 QUADRATURE MEASUREMENTS OF 128 EQUIDISTANT PHASE STATES 

In our experiments we successfully applied 128 equally spaced phase states 

modulation from 0 to 2π, i.e. 

€ 

φi = 2iπ /128, with i = 0,1,2,...,127 , and the measurements 

are conducted according to the phase mismatch between the signal and the strong LO. 

For each phase state with mean photon number NS, we make 12288 measurements. The 

photon numbers are calculated based on the measured vacuum state fluctuation as half 

photon energy. We adjust carefully the receiver as to allow an imbalance rate lower than 

0.5% between the two input ports.  

We apply a “ramp” signal from the function generator as to cover the different phase 

states from 0 to 360 degrees, at a repetition frequency of 250 kHz. The homodyne 

detector turns the laser beams into electric currant, and we sample the signal output of the 

balanced receiver by the PCI A/D converter, at a frequency of 32 MHz. Consequently the 

received data are stored into 128 files from which we measure the mean value and the 

standard deviation for each phase state. 
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Figure 9.6 Measured amplitude standard deviation and mean value. 

As shown in Figure 9.6, we have measured with six different mean photon number 

signals (as indicated by the inset legend), and we have observed that the standard 

deviations of the measurements reach at their minimum values at phase π/2 and –π/2, and 

at their maximum value at phase 0 and π. The measurements with 

€ 

NS = 0 correspond to 

the vacuum state. It appears in our calculation that the measured standard deviation of the 

amplitude quadrature is phase-dependent, just as we have mentioned in section 9.3. 

9.4.2 WIGNER FUNCTION RECONSTRUCTION 

In order to reconstruct the Wigner function, we build up a set of histograms for each 

phase state, from which we use the back projection algorithm to reconstruct the 

probability densities at different quadrature angles, as first mentioned in [38,39]. The 

transformation used is the inverse Radon-Transform in Matlab. For the signal processing, 

we select to use a linear transform without using any filter that could distort the original 

Wigner function. 
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Figure 9.7 Reconstructed Wigner function for 

€ 

NS = 2.78 

For the Wigner function reconstruction altogether 12288×128=1572864 quadrature 

values have been measured, upon the 128 equidistant quadrature phase states. We have 

measured 6 Wigner functions at various signal power, defined by the mean photon 

number NS. All these measurements are performed with very good phase modulation 

precision, i.e., phase drift are controlled less than 1º. As well the receiver has been well 

stabilized thanks to the phase error feedback loop using 50% received symbols as 

“training bits” so as to guarantee the reliable measurements especially for very low NS. 
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Figure 9.8 Reconstructed Wigner function for 6 signal photon numbers 

In Figure 9.8, the Wigner functions reveal increasingly squeezing-ellipses with higher 

NS, i.e. slightly squeezed amplitude quadrature and extended phase quadrature, as 

compared to the Wigner function of the vacuum states where 

€ 

NS = 0. Therefore the 

lightwave does not operate as absolute coherent states, since the phase quadrature 

fluctuation 

€ 

Δφ  is observed slightly greater than the amplitude quadrature fluctuation 

€ 

ΔA . 

Nevertheless, the light source Avanex ILM module that we have measured 

demonstrates insignificant squeezing-ellipses, especially for weak signal level. In 

quantum cryptography applications where only 

€ 

NS <1 is required, we can approximately 

consider it as a source of coherent states. Due to the limited timeline and the inadequate 

laser sources, the system and security analysis of using the squeezed coherent states in 

the phase-modulation quantum key distribution have not been performed, however these 

aspects can also be very high research interests, just as the Heisenberg uncertainty itself. 



 

 

186 

REFERENCES 

1. , L. G. Kazovsky, “Optical heterodyning versus optical homodyning: a comparison”, 

Journal of Optical Communications 6, 18-24 (1985). 

2. T. Okoshi, “Recent advances in coherent optical fiber communication systems”, 

Journal of Lightwave Technology 5, 44-52 (1987). 

3. A. H. Gnauck, and P. J. Winzer, “Optical phase-shift-keyed transmission”, Journal of 

Lightwave Technology 23, 115-130 (2005). 

4. L. G. Kazovsky, G. Kalogerakis, and W.-T. Shaw, “Homodyne phase-shift-keying 

systems: past challenges and future opportunities”, Journal of Lightwave Technology 

24, 4876-4884 (2006). 

5. H. P. Yuen, and V. W. S. Chan, “Noise in homodyne and heterodyne detection”, 

Optics Letters 8, 177-179 (1983). 

6. K.-P. Ho, Phase-modulated optical communication systems Ch. 4, (Springer 1st 

edition, 2005). 

7. F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, P. Grangier, 

“Quantum key distribution using gaussian-modulated coherent states”, Nature 421, 

238-241 (2003). 

8. T. Hirano, H. Yamanaka, M. Ashikaga, T. Konishi, R. Namiki, “Quantum 

cryptography using pulsed homodyne detection”, Physical Review A 68, 042331 

(2003). 

9. V. W. S. Chan, “Free-space optical communications”, Journal of Lightwave 

Technology 24, 4750-4762 (2006). 



 

 

187 

10. G. M. D’Ariano, M. G. A. Paris, M. F. Sacchi, “Quantum tomography”, Advance in 

Imaging & Electron Physics 128, 205-308 (2003). 

11. R. J. Glauber, “Coherent and incoherent states of the radiation field”, Physical Review 

131, 2766-2788 (1963). 

12. C. W. Helstrom, Quantum detection and estimation theory, Mathematics in Science 

and Engineering 123, (Academic Press, New York, 1976). 

13. J. H. Shapiro, S. R. Shepard, N. C. Wong, “Ultimate quantum limits on phase 

measurement”, Physical Review Letters 62, 2377-2380 (1989). 

14. G. M. D’Arianno, M. G. A. Paris, R. Seno, “Homodyne detection of the phase 

through independent measurements”, 301-306, in Quantum Interferometry, De 

Martini, F., Denardo, G., Shih, Y., (Edition Weinheim, New York, 1996). 

15. H. P. Yuen, R. S. Kennedy, M. Lax, “On optimal quantum receivers for digital signal 

detection”, Proceeding IEEE 58, 1170-1173 (1970).  

16. J. H. Shapiro, “On the near-optimum binary coherent-state receiver”, IEEE 

Transaction of Information Theory 26, 490-491 (1980). 

17. J. M. Geremia, “Distinguishing between coherent states with imperfect detection”, 

Physical Review A 70, 062303 (2004). 

18. G. P. Agrawal, Fiber-optic Communication Systems Ch. 10, (3rd edition, Wiley-

Interscience, 2002). 

19. H. P. Yuen, J. H. Shapiro, “Optical communication with 2-photon coherent states. 

Part III Quantum measurements realizable with photo-emissive detectors”, IEEE 

Transaction of Information Theory 6, 78-82 (1980). 



 

 

188 

20. R. L. Cook, P. J. Martin, J. M. Geremia, “Optical coherent state discrimination using 

a real-time closed-loop quantum measurement”, Nature 446, 774-777 (2007). 

21. H. L. Van Trees, Detection, Estimation, and Modulation Theory, (Wiley-Interscience, 

Publication 1968). 

22. H. M. Wiseman, R. B. Killip, “Adaptive single-shot phase measurements: The full 

quantum theory”, Physical Review A 57, 2169-2185 (1998). 

23. A. S. Holevo, “Optimal receiver of a binary coherent signal based on the principle of 

optical feedback”, Laser Physics 13, 1558-1561 (2003). 

24. J. M. Fabrega, J. Prat, “Homodyne receiver prototype with time-switching phase 

diversity and feedforward analog processing”, Optics Letters 32, 463-465 (2007). 

25. I. B. Djordjevic, “Optical homodyne PSK receivers with a Costas loop for long-haul 

communications”, Journal of  Optical Communications 23, 154-158 (2002). 

26. M. Seimetz, C. M. Weisert, “Options, feasability and availability of 2x4 90° hybrids 

for coherent optical systems”, Journal of Lightwave Technology 24, 1317-1322 

(2006). 

27. I. B. Djordjevic, M. C. Stefanovic, S. S. Ilic, G. T. Djordjevic, “An example of a 

hybrid system:  coherent optical system with Costas loop in receiver-system for 

transmission in baseband”, Journal of Lightwave Technology 16, 177-183 (1998). 

28. L. M. I. Habbab, J. M. Kahn, J. I. Greenstein, “Phase insensitive zero I.F. coherent 

optical system using phase switching”, Electronics Letters 24, 974--976 (1988). 

29. Q. Xu, M. B. Costa e Silva, A. Arvizu, P. Gallion, and F. J. Mendieta - “Weak 

coherent state homodyne detection with sequential I-Q measurements”, Conference 



 

 

189 

on Lasers and Electro-optics, Quantum Electronics and Laser Science Conference, 

CLEO/QELS and PhAST JTuA114 (May 2008), San Jose, California, USA. 

30. Q. Xu, A. Arvizu, P. Gallion, and F. J. Mendieta, “Homodyne in-phase and 

quadrature detection of weak coherent states with carrier phase tracking”, submitted 

to Journal of selected topics in Quantum Electronics. 

31. M. Xiao, L.-A. Wu and H. J. Kimble, “Precision measurement beyond the shot-noise 

limit”, Physical Review Letters 59, 278-281 (1987). 

32. P. Grangier, R. E. Slusher, B. Yurke and A. LaPorta, “Squeezed-light–enhanced 

polarization interferometer”, Physical Review Letters 59, 2153--2156 (1987). 

33. F. Jérémie, J. L. Vey, and P. Gallion, “Optical corpuscular theory of semiconductor 

laser intensity noise and intensity squeezed-light generation”, Journal of Optical 

Society of American B 14, 250--257 (1997). 

34. W. G. Unruh, Quantum Optics, Experimental Gravitation, and Measurement Theory, 

647, edited by P. Meystre and M. O. Scully (Plenum, New York, 1982). 

35. J. Gea-Banacloche and G. Leuchs, “Squeezed states for interferometric gravitational-

wave detectors”, Journal of Modern Optics 34, 793--811 (1986). 

36. A. F. Pace, M. J. Collett and D. F. Walls, “Quantum limits in interferometric 

detection of gravitational radiation”, Physical Review A 47, 3173--3189 (1993). 

37. J. Harms, Y. Chen, S. Chelkowski, A. Franzen, H. Vahlbruch, K. Danzmann, and R. 

Schnabel, “Squeezed-input, optical-spring, signal-recycled gravitational-wave 

detectors”, Physical Review D 68, 042001 (2003). 



 

 

190 

38. M. Beck, D. T. Smithey, J. Cooper, and M. G. Raymer, “Experimental determination 

of number - phase uncertainty relations”, Optical Letters 18, 1259-1261 (1993). 

39. S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, N. Lastzka, K. Danzmann, and R. 

Schnabel, “Experimental characterization of frequency-dependent squeezed light”, 

Physical Review A 71, 013806 (2005). 

 



 

 

 
CONCLUSION 

In our research at ENST ParisTech, we have studied and analyzed the interdisciplinary 

aspects of a quantum cryptography system towards a practical optical fiber QKD system 

implementation. Preliminary system tests have been validated using a Mach-Zehnder 

interferometer based QPSK modulation scheme. 

We have chosen to integrate a QKD link by applying a signal–reference time-

multiplexing scheme to minimize the system impairments. We have implemented an all 

fiber one-way QPSK quantum key distribution system at 1550nm using both photon 

counting and BHD configurations. An automatic optoelectronic feedback loop is 

implemented for the interferometric phase drift compensation. 

We have developed a dual-threshold decision scheme for the BHD signal post-detection, 

and compared experimentally the performance of photon counting and BHD in terms of 

detection efficiency ρ and BER (or QBER). We point out that BHD is potentially more 

effective in terms of quantum key generation rate and system flexibility. 

We have also investigated the security issues of the BHD QKD system under two main 

individual attacks: intercept-resend attack and intermediate-base attacks. A mixed attack 

strategy of signal power modification has also been analyzed. We have also measured the 

post-detection efficiency ρ, post-detection error rate BERp, and conducted the security 

analysis under divers attacks for different threshold parameters X at 0 km, 25 km, 50 km, 

and 64 km. The trade-off is between the system security tolerance and the key generation 

rate: use a higher threshold when the transmission distance is longer or when the WCP is 

weaker. Accordingly, we have proposed the strategies to detect Eve’s attacks by BERp 

evaluations. 
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Alongside the development of our QKD system, we have also investigated into the weak 

coherent states homodyne communications with the researchers from CICESE in Mexico. 

The system setup is based on an interferometric self–homodyne configuration, which 

substantially relaxes the speed in the signal processor block, since the strong cross-

correlation between the signal and the local oscillator fields yields a very narrowband 

post-detection process at baseband. Furthermore, the present advances in processor speed 

will surely allow the implementation of this kind of receivers for uncorrelated fields, 

providing additional capabilities for the mitigation of the optical channel impairments. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

PERSPECTIVES 

The information security systems of the 21st century require significant improvements 

due to the hardware and software advancements that meanwhile enhance the intruder’s 

capacity. Quantum cryptography, as the only physically unbreakable security system, 

though still on its nascent phase, will see its full utility and integration to the current 

telecom infrastructure in the coming future. 

The possible future directions of the research at ENST ParisTech can be extended as the 

followings. 

• Continuing the security analysis of the photon counting and the dual-threshold 

balanced homodyne detection schemes. A comprehensive analysis of the most 

appropriate signal pulse power, always less than 1 photon/bit, is to be found for a 

given transmission distance, under the maximum acceptable post detection BER. 

Especially for the BHD scheme, since the post detection BER and the detection 

efficiency are directly related to the threshold parameter value and the transmission 

distance. 

• Decoy states protocol or other eavesdropper-detection protocols can be integrated to 

the BHD scheme to enhance the system security. Such a multi-state protocol could 

possibly sacrifice the efficient key generation rate to make the system more robust to 

the potential attacks, i.e. the mixed or joint attacks. 

• We are also envisaging the lateral integration of the physical layer with the 

application layer that has been developed in the department of INFRES in ENST. 

Under the French government funding for the research project ANR high bit-rate and 

versatile quantum-secured networks (HQNET), a system demonstration platform is to 

be developed on collaboration with SMART Quantum and the Femto group in the 

Université de Franche-Comté. 
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• Besides, the studies of the quantum nature of the light and the experimental 

characterization of the laser source using Wigner function reconstruction algorithm 

can be extended from what we have described on chapter 9.4.2. 

 



 

 

PUBLICATIONS 

JOURNAL PUBLICATIONS 

 
1. Q. XU, A. ARVIZU, P. GALLION, and F. J. MENDIETA - “Homodyne In-Phase 

and Quadrature Detection of Weak Coherent States with Carrier Phase Tracking”, to 

be published in Journal of selected topics in Quantum Electronics, November 2009. 

2. Q. XU, M. SABBAN, and P. GALLION - “Homodyne Detection of Weak Coherent 

Optical Pulse with Selection on Decision Opportunity- Applications to Quantum 

Cryptography”, Vol. 51, Issue 8, 1934-1939, Microwave and Optical Technology 

Letters, 13 May 2009. 

3. Q. XU, M. SABBAN, M.B. COSTA e SILVA, P. GALLION, and F.J. MENDIETA - 

“Dual-Threshold Balanced Homodyne Detection in 1550 nm Optical Fiber Quantum 

Cryptography System”, Vol. 27, No. 12, IEEE Journal of Lightwave Technology, 

2009. 

4. M.B. COSTA e SILVA, Q. XU, S. AGNOLINI, P. GALLION, and F.J. MENDIETA 

- “Homodyne Detection for Quantum Key Distribution: an Alternative to Photon 

Counting in BB84 protocol”, Proceedings of SPIE -Volume 6343: Photonics North 

2006, Pierre Mathieu, Editor, SPIE Bellingham, WA, September 2006. 

 
 
 
 
 
 



 

 

196 

INTERNATIONAL CONFERENCE PUBLICATIONS 

 
5. Q. XU, M. SABBAN, P. GALLION, and F.J. MENDIETA - “Quantum Key 

Distribution System using Dual-threshold Homodyne Detection”, 6th IEEE 

International Conference on Information and Communication Technologies RIVF 

2008, Ho Chi Minh City (Vietnam), July 13-17, 2008. 

6. Q. XU, M. SABBAN, P. GALLION, and F.J. MENDIETA - “Dual-threshold 

Receiver for 1550nm Homodyne QPSK Quantum Key Distribution System”, 

Coherent Optical Technologies and Applications (COTA) Topical Meeting of the 

OSA, Paper CWC4, Boston (Massachusetts, USA), July 13-16, 2008.  

7. M. SABBAN, Q. XU, P. GALLION, and F.J.MENDIETA - “Security Evaluation of 

Dual-Threshold Homodyne Quantum Cryptographic Systems”, 2008 Quantum 

Entanglement and Decoherence: 3rd International Conference on Quantum 

Information (ICQI) Topical Meeting. ICQI, Paper JMB77, Boston (Massachusetts, 

USA), July 13-16, 2008. 

8. Q. XU, M.B. COSTA e SILVA, A. ARVIZU, P. GALLION, and F.J. MENDIETA - 

“Weak Coherent State Homodyne Detection with Sequential I-Q Measurements”, 

Conference on Lasers and Electro-optics, Quantum Electronics and Laser Science 

Conference, CLEO/QELS and PhAST 2008, Paper JTuA114, San Jose (California, 

USA), May 2008. 

9. Q. XU, M.B. COSTA e SILVA, P. GALLION, and F.J. MENDIETA - “Auto-

Compensating Quantum Cryptosystem Using Homodyne Detection”, Conference on 



 

 

197 

optical fiber communication OFC’2008, Paper JWA49, San Diego (California, USA), 

February 2008. 

10. Q. XU, M. B. COSTA e SILVA, P. GALLION, and F. J. MENDIETA - 

“Experimental Super Homodyne Quantum Key Distribution System”, Summer School 

e-Photon/One+ 2007, Brest (France), July 2007. 

11. Q. XU, M.B. COSTA e SILVA, P. GALLION, and F.J. MENDIETA - “One Way 

Differential QPSK Quantum Key with Channel Impairment Compensation”, 

Conference on Lasers and Electro-optics CLEO Europe, JOINT CLEO/Europe-IQEC 

2007 SYMPOSIA, Paper JSI 3, München (Germany), June 2007. 

12. Q. XU, M.B. COSTA e SILVA, S. GUILLEY, J-L. DANGER, P. BELLOT, P. 

GALLION, and F. J. MENDIETA , “Towards Quantum Key Distribution System 

using Homodyne Detection with Differential Time-Multiplexed Reference”, 5th IEEE 

International Conference on Information and Communication Technologies RIVF 

2007, Hanoi (Vietnam), March 2007. 

13. Q. XU, M.B. COSTA e SILVA, S. AGNOLINI, P. GALLION, and F.J. MENDIETA 

- “Photon Counting and Super Homodyne Detection of Weak QPSK Signals for 

Quantum Key Distribution Applications”, EOS Annual Meeting 2006, Topical 

Meeting on Extreme Optics (QEOD/EPS and EOS), TOM2 Page 110-111, Paris 

(France), October 2006. 

14. M.B. COSTA e SILVA, Q. XU, S. AGNOLINI, S. GUILLEY, J-L. DANGER, P. 

GALLION, and F. J. MENDIETA - “Integrating a QPSK Quantum Key Distribution 

Link”, European Conference on Optical Communication ECOC 2006, CLEO Focus 



 

 

198 

Meeting on Nonlinear, Quantum and Chaotic Optics: New Directions in Photonics 

and Optical Communications, Paper Tu4.1.2, Cannes (France), September 2006. 

15. M.B. COSTA e SILVA, Q. XU, S. AGNOLINI, P. GALLION, and F.J. MENDIETA 

- “Homodyne QPSK Detection for Quantum Key Distribution”, Coherent Optical 

Technologies and Applications (COTA) Topical Meeting of the OSA, Paper CFA2, 

Whistler (British Columbia, Canada), June 2006.  

16. M.B. COSTA e SILVA, Q. XU, S. AGNOLINI, P. GALLION, and F.J. MENDIETA 

- “Homodyne Detection for Quantum Key Distribution: an Alternative to Photon 

Counting”, International Conference On Applications of Photonic Technology, 

Photonics North 2006, Quebec City (Canada), June 2006. 

 



 

 

APPENDIX A: BRA AND KET VECTORS 

“Bra” and “ket” spaces are two equivalent vector spaces that describe the same state 

space. A ket vector is 

€ 

a =
ax
ay

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , a bra vector 

€ 

a = ax
* ay

*( ) . For every ket vector 

€ 

a , 

bra vector is the adjoint vector, or complex conjugate transpose, of the corresponding ket 

vector. For complex-valued bra-ket vectors, the inner product is used to find length of a 

vector and is determined by multiplying its bra representation 

€ 

a  with its ket 

representation 

€ 

a : 

€ 

a 2
= a a , where 

€ 

⋅  is the norm of the vector. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
APPENDIX B: POLARIZATION MISMATCH IN HOMODYNE 

DETECTION 

Let’s first see a classical description of polarization. Consider a time-harmonic 

monochromatic plane wave that travels in the 

€ 

ˆ z  direction (

€ 

k • r = kz), since 

€ 

k • E = 0 in 

vacuum, so there is no 

€ 

ˆ z  component to the electric field. Thus without loss of generality, 

the form of electric field vector is 

 

€ 

E z,t( ) =
Exe

jφx

Eye
jφy

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ e j ωt−kz( )   (B.1) 

In an elliptical equation, the field amplitudes as projected along the 

€ 

ˆ x  and 

€ 

ˆ y  direction 

are 

 

€ 

x = Ex cos ωt( )
y = Ey cos ωt + φ( )

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 (B.2) 

where 

€ 

φ = φy −φx  and 

€ 

x 2

Ex
2 +

y 2

Ey
2 −

2xy
ExEy

cosφ = sin2 φ . And there are three independent 

variables that govern the shape of the ellipse: 

€ 

Ex , 

€ 

Eyand 

€ 

φ . 

If we define 

€ 

tanχ = Ey Ex  and 

€ 

E0 = Ex
2 + Ey

2e jφx e j ωt−kz( ), then the Jones vector of 

the wave field can be rewritten in the normalized form: 

 

€ 

E = EO

cosχ
sinχ ⋅ e jφ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (B.3) 

In the coherent homodyne detection, the signal wave and reference wave mix after the 

Mach-Zehnder interferometer. We represent the signal field by 
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€ 

Esignal = ESe
jθ cosχ1
sinχ1 ⋅ e

jφ1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (B.4) 

and the reference field by  

 

€ 

Ereference = EL

cosχ2
sinχ2 ⋅ e

jφ2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (B.5) 

thus the length property of 

€ 

Esignal + Ereference  is 

 

€ 

Esignal + Ereference

= Esignal Ereference
* + Esignal

*Ereference

= ES
2 +EL

2+ESEL cosχ1 cosχ2 ⋅ 2cosθ + ESEL sinχ1 sinχ2 ⋅ 2cos φ1 −φ2 + θ( )

 (B.6) 

If we assume , i.e. , and we obtain: 

€ 

Esignal + Ereference

= ES
2 +EL

2+ESEL cos Δχ( ) ⋅ 2cosθ + ESEL sinχ1 sinχ2 ⋅ cos Δφ( ) −1( ) − sinΔφ sinθ[ ]
 (B.7) 

In an ideal case, 

€ 

Esignal  and 

€ 

Ereference  have the same polarization i.e. 

€ 

φ1 = φ2, 

€ 

χ1 = χ2, 

we can obtain: 

 

€ 

Esignal + Ereference = ES
2 +EL

2+ESEL ⋅ 2cosθ  (B.8) 

The output of Detector 2 is 

€ 

Esignal − Ereference , the length property can be obtained: 

 

€ 

Esignal − Ereference = ES
2 +EL

2−ESEL ⋅ 2cosθ  (B.9) 

Therefore when 

€ 

Δφ = 0, we can obtain the balanced output: 

 

€ 

Esignal + Ereference − Esignal − Ereference = ESEL ⋅ 4cosθ  (B.8) 

 
 
 
 



 

 

 
APPENDIX C: BB84 PROTOCOL USING DUAL-THRESHOLD 

BALANCED HOMODYNE 

C.1 PROTOCOL 

Alice randomly chooses one of the four coherent states 

€ 

α , iα , −α , −iα{ }  with 

€ 

α > 0. 

Then Bob randomly measures one of the two quadratures 

€ 

ˆ x 1, ˆ x 2{ } , in which 

€ 

x1, 

€ 

x2  do not 

commute with each other and 

€ 

ˆ x 1, ˆ x 2[ ] =
i
2

. If Alice uses a pulsed light source, the 

coherent state is the eigenstate of the annihilation operator 

€ 

ˆ a = x1 + ix2 of the pulse mode. 

We say a measure is of base coincidence when Bob measures 

€ 

ˆ x 1 when Alice sends 

€ 

±α  

or measures with 

€ 

ˆ x 2  when Alice sends 

€ 

±iα  (correct base). Otherwise we say a measure 

of base anti-coincidence (wrong base). 

For the pulse of base coincidence Bob sets the threshold X (

€ 

X ≥ 0) and constructs his 

bit sequence by the following decision: 

 

€ 

bit value =

1 if x > X( )
0 if x < −X( )
inconclusive otherwise

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 (C.1) 

where 

€ 

x  is the result of Bob’s measurement 

Alice’s bit values are determined by the different symbols: Alice regards 

€ 

α , iα{ } as 

bit “1” and 

€ 

−α , −iα{ } as bit “0”. Also the density operator of the signal sent by Alice is 

described by: 

 

€ 

ˆ ρ =
1
4
α α + −α −α + iα iα + −iα −iα( ) (C.2) 
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Here the factor 

€ 

1 4  assumes that each of the four states appears with equal probability. 

Bob or Eve’s work is to distinguish the four states. Since the four states are not 

orthogonal with each other, complete differentiation is impossible. After Alice announces 

the base choice, i.e., the quadrature on which she encoded the bit information, then the 

density operator is reduced to  

 

€ 

ˆ ρ 1 =
1
2
α α + −α −α( ) (C.4) 

 or 

€ 

ˆ ρ 2 =
1
2
iα iα + −iα −iα( )  (C.5) 

for the announced quadrature 

€ 

ˆ x 1 and 

€ 

ˆ x 2 , respectively. 

C.2 QUADRATURE MEASUREMENTS 

We introduce the probability density that the outcome 

€ 

xφ  is obtained by measuring 

€ 

ˆ x φ = ˆ x 1 cosφ + ˆ x 2 sinφ  of a coherent state 

€ 

α : 

 

€ 

xφ α
2

=
2
π
exp −2 xφ −α cosφ( )

2( )  (C.6) 

Then the probability distribution of quadrature measured by Bob is written as: 

 

€ 

xi ˆ ρ j xi =

1
2π

exp −2 xi −α( )2( ) + exp −2 xi +α( )2( )( )  if i = j

2
π

exp −2xi
2( )                                              if i ≠ j 

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

 (C.7) 

with 

€ 

i, j =1,2 (see Fig. 1). Here 

€ 

i = j  stands for base coincidence pulses and 

€ 

i ≠ j  is for 

base anticoincidence ones. When Alice announces the states (both base and bit value) she 

sent, Bob observes the quadrature distributions for the coherent states. The quadrature 

distributions represent the conditional probability that characterizes the signal detection 

and thus any detectable disturbance should appear on the statistic distributions. 
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C.3 SINGLE THRESHOLD BIT ERROR RATE 

In classical coherent detection, the threshold is 

€ 

X = 0. As the bit values “0” and “1” 

appear with the same probability, to calculate the bit error rate (BER) we can consider the 

bit value as “1”. With the average photon number per signal pulse 

€ 

α = NS  we can obtain 

bit error rate: 

 

€ 

BER = xφ α
2

−∞

0

∫ dx

=
2
π

exp −2 x1 −α( )2( )
−∞

0

∫ dx1

=1 2erfc 2NS( )

 (C.8) 

C.4 DUAL THRESHOLD POST-DETECTION EFFICIENCY 

With the normalized threshold 

€ 

X , the post-detection efficienc 

€ 

ρ , which is defined as 

the probability of a conclusive judgment: 

 

€ 

ρ X,NS( ) =
2
π

exp −2 x1 −α( )2( )
−∞

−X

∫ dx1 +
2
π

exp −2 x1 −α( )2( )
X

∞

∫ dx1

=1 2erfc 2NS( )1 2 X +1( )[ ] +1 2erfc 2NS( )1 2 X −1( )[ ]
 (C.9) 

C.5 DUAL THRESHOLD BIT ERROR RATE 

The post-detection BER is defined as the erroneous bit rate in the retained bit, 

therefore those bit values between 

€ 

−X,X( )  are discarded. 

 

€ 

BERp =1 ρ X,NS( ) ⋅ 2
π

exp −2 x1 −α( )2( )
−∞

−X

∫ dx1

= 1 2ρ X,NS( )( ) ⋅ erfc 2NS( )1 2 X +1( )[ ]
 (C.10) 
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C.6 EVE’S INTERCEPT RESEND ATTACK 

In this attack, Eve splits the intercepted signal into two parts She splits the signal into 

two pulses of half intensity by using a 50:50 beam splitter (BS) and measures the 

quadrature 

€ 

ˆ x 1 of one pulse and the quadrature 

€ 

ˆ x 2of the other pulse, as on the two bases; 

accordingly she obtains a pair measured values  and . 

Eve then record the symbol value by choosing a more probable value: 

 

€ 

signalEve =

α if x1 > x2( )
iα if x2 > x1( )
−α if −x1 > x2( )
−iα if −x2 > x1( )

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

 (C.11) 

Without loss of generality, we consider the case that Alice sent 

€ 

α . The probability 

that Eve gets an outcome 

€ 

x1,x2( )  is given by the product of the two quadrature 

distributions for the split coherent states. We can thus have the probability density 

function: 

 

€ 

Qn x1,x2( ) = x1
α
2

2

x2
α
2

2

=
2
π
exp −2 x1 −

NS

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

− 2x2
2

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

 (C.12) 

We define 

€ 

Ρ+ as the probability that Eve resends the correct bit state on the correct 

base: 

 

€ 

Ρ+ = Qn x1,x2( )dx1dx2x1> x2
∫∫

=
2
π
exp −2 x1 −

NS

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

− 2x2
2

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ dx1dx2x1> x2

∫∫
 (C.13) 

If we represent 

€ 

x1,x2( )  by 

€ 

u,v( )  with 

€ 

u > 0,v > 0  
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€ 

x1 =
1
2
u + v( )

x2 =
1
2
u − v( )

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

 (C.14) 

The Jacobian matrix (the matrix of all first-order partial derivatives of a vector-valued 

function) is given by: 

 

€ 

J =

∂x1
∂u

∂x1
∂v

∂x2
∂u

∂x2
∂v

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=

1
2

1
2

−
1
2

1
2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 (C.15) 

And the Jacobian determinant is given by: 

 

€ 

J =

1
2

1
2

−
1
2

1
2

=1 (C.16) 

Then we replace 

€ 

x1,x2( )  by 

€ 

u,v( )  in 

€ 

Ρ+, and we have: 

 

€ 

Ρ+ =
2
π
exp −2 1

2
u + v( ) − NS

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

− 2 1
2
u − v( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ dudvu>0,v>0∫∫

=
2
π
exp −2u2 − 2v 2 − NS + 2u NS + 2v NS( )dudvu>0,v>0∫∫

=
2
π
exp −2 u −

NS

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

− 2 v −
NS

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
dudv

u>0,v>0∫∫

=
2
π

exp− 2 u −
NS

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

du
0

∞

∫
⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

2

=
1
π

expNS

2

∞

∫ −u2( )du
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

=
1
4
erfc − NS

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

 (C.17) 
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Then we define 

€ 

Ρ−  as the probability that Eve resends the wrong bit state on the 

correct base: 

 

€ 

Ρ− = Qn x1,x2( )dx1dx2−x1> x2
∫∫

=
2
π
exp −2 x1 −

NS

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

− 2x2
2

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ dx1dx2−x1> x2

∫∫

=
2
π
exp −2 x1 +

NS

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

− 2x2
2

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ dx1dx2x1> x2

∫∫

=
1
4
erfc NS

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

 (C.18) 

and  as the probability that Eve resends the bit state on the wrong base:  

 

€ 

Ρ⊥ = Qn x1,x2( )dx1dx2x2 > x1
∫∫

=
2
π
exp −2 x1 −

NS

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

− 2x2
2

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ dx1dx2x2 > x1

∫∫

=
1
4
erfc NS

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ erfc −

NS

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

 (C.19) 

 

 
 
 
 
 
 
 
 
 
 
 



 

 

APPENDIX D: HEISENBERG UNCERTAINTY RELATION FOR 

COHERENT STATES 

For Glauber’s [1] coherent states, the probability density functions (PDF) of the 

outcomes of the independent measurements on the in-phase and quadrature components 

are both Gaussian functions with variance 

€ 

σ 2 =1/4 , hence the standard deviation 

€ 

σ =1/2. 

The PDF of the independent measurements XI, XQ of the in-phase component with 

average value 

€ 

α I , or the quadrature component with average value 

€ 

αQ  of a coherent state 

is: 

 

€ 

P XI /Q( ) =
2
π
exp −2 XI /Q −α I /Q( )

2[ ] (D.1) 

Furthermore the variances 

€ 

ΔXI
2 = ˆ X I − ˆ X I( )

2
, 

€ 

ΔXQ
2 = ˆ X Q − ˆ X Q( )

2
 on the 

two non-commutating observables are subject to the Heisenberg uncertainty relation: 

 

€ 

ΔXI
2 ΔXQ

2 ≥
1
16

 (D.2) 

A coherent state is a minimum uncertainty state in which the uncertainty  and 

 is bounded by the zero-point fluctuation energy, so called the vacuum 

fluctuations. 
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