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Abstract

Usually, human beings are able to quickly distinguish between different
places, solely from their visual appearance. This is due to the fact that
they can organize their space as composed of discrete units. These units,
called “semantic places”, are characterized by their spatial extend and their
functional unity. Such a semantic category can thus be used as contextual
information which fosters object detection and recognition. Recent works
in semantic place recognition seek to endow the robot with similar capabil-
ities. Contrary to classical localization and mapping works, this problem
is usually addressed as a supervised learning problem.

The guestion of semantic places recognition in robotics - the ability to
recognize the semantic category of a place to which scene belongs to - is
therefore a major requirement for the future of autonomous robotics. It is
indeed required for an autonomous service robot to be able to recognize
the environment in which it lives and to easily learn the organization of this
environment in order to operate and interact successfully. To achieve that
goal, different methods have been already proposed, some based on the
identi cation of objects as a prerequisite to the recognition of the scenes,
and some based on a direct description of the scene characteristics. If
we make the hypothesis that objects are more easily recognized when the
scene in which they appear is identi ed, the second approach seems more
suitable. It is however strongly dependent on the nature of the image de-
scriptors used, usually empirically derived from general considerations on
image coding.

Compared to these many proposals, another approach of image coding,
based on a more theoretical point of view, has emerged the last few years.



Energy-based models of feature extraction based on the principle of min-
imizing the energy of some function according to the quality of the re-
construction of the image has lead to the Restricted Boltzmann Machines
(RBMs) able to code an image as the superposition of a limited number of
features taken from a larger alphabet. It has also been shown that this pro-
cess can be repeated in a deep architecture, leading to a sparse and ef cient
representation of the initial data in the feature space. A complex problem
of classi cation in the input space is thus transformed into an easier one
in the feature space. This approach has been successfully applied to the
identi cation of tiny images from the 80 millions image database of the
MIT.

In the present work, we demonstrate that semantic place recognition can be
achieved on the basis of tiny images instead of conventional Bag-of-Word
(BoW) methods and on the use of Deep Belief Networks (DBNSs) for im-
age coding. We show that after appropriate coding a softmax regression
in the projection space is suf cient to achieve promising classi cation re-
sults. To our knowledge, this approach has not yet been investigated for
scene recognition in autonomous robotics.

We compare our methods with the state-of-the-art algorithms using a stan-
dard database of robot localization. We study the in uence of system pa-
rameters and compare different conditions on the same dataset. These ex-
periments show that our proposed model, while being very simple, leads
to state-of-the-art results on a semantic place recognition task.

Keywords: Semantic Places Recognition, Energy-based models, Restrict-
ed Boltzmann Machines, Deep Belief Networks, Bag-of-Words, Softmax
Regression.



Réesune

Il est gereralement facile pour les humains de distinguer rapidemegtdiff
rents lieux en se basant uniquement sur leur aspect visuel. Cela est, en
effet, du fait qu'ils peuvent organiser leur espace de telle sorte qu'il soit
compog d'unites discetes. Ces urifs, appdes lieux émantiques, se
caracérisent par leurs limites spatiales et leur arfionctionnelle. Cette
cagégorie €mantique peut dongtre utili€e comme information contex-
tuelle favorisant la étection et la reconnaissance d'objets. Des travaux
récents en reconnaissance des lieemantiques viserd doter les robots

de capacis similaires. Contrairement aux travaux classiques, portant sur
la localisation et la cartographie, cetéehe est gréralement consitée
comme un protdme d'apprentissage supewis

En robotique, la reconnaissance de lie@mantique - la capaéta re-
connatre la caégorie @mantiquea laquelle un endroitwune sene appar-
tient - peutétre consiérée comme une condition essentielle pour I'avenir
de la robotiqgue autonome. Il est en effécessaire pour un robot au-
tonome de reconfiae I'environnement dans lequel il vit et d'apprendre
facilement I'organisation de cet environnement pour pouvoir fonctionner
et interagir avec sues. Pour atteindre cet objectif, dfentes rathodes
ont céjaéte propoges. Certaines sont kises sur l'identi cation des objets
comme une condition palablea la reconnaissance de&gses, et d'autres
fondées sur une description directe des canastiques de la sne. Si
nous faisons I'nypotbse que les objets sont plus faci@seconndre
guand la sene dans laquelle ils apparaissent est bien idéatila deuwame
approche semble plus appragei Elle est cependant fortemeégpéndante
de la nature des descripteurs d'images @#és qui sont gréralement



derivés empiriquement a partir des observatiogegales sur le codage
d'images.

En opposition avec ces propositions, une autre approche de codage des
images, base sur un point de vue plusébrique, é&mer@ ces derrdres
anrees. Les moeles d'extraction de caraatistiques fonds sur le principe

de la minimisation d'une fonction @hergie en relation avec un neld
statistique @reratif expliquant au mieux les doees, ont about I'appari-

tion des Machines de Boltzmann Restreintes (RBMs) capables de coder
une image comme la superposition d'un nombre kntié cara@ristiques
extraitesa partir d'un plus grand alphabet. Il&& monté que ce pro-
cessus peuktre epete dans une architecture plus profonde, conduisant
a une repesentation parcimonieuse et ef cace des dm®initiales dans
I'espace des cara@tistiques. Le proleime complexe de la classi cation
dans l'espace dedtut est ainsi remplécplus un prol@me plus simple
dans I'espace des carédstiques. Cette approcheéte appliqiee avec
suce@sa l'identi cation de mini-imagesa partir d'une base de doaas du

MIT contenant 80 millions d'images.

Dans ce travail, nousé&montrons que la reconnaissanéenantique des
lieux peutétre Bali€e en consigrant des mini-images au lieu deétimodes
classiques exploitant lesathodes de type “sacs-de-mots” (bag-of-words,
BoW) et par l'utilisation des Deep Belief Networks (DBNSs) pour le codage
des images. Nous montrons que, egprvoir realié un codage appro-
prié, une egression softmax dans l'espace de projection est suf sante pour
obtenir des @sultats de classi cation prometteurs. A notre connaissance,

cette approche n'a pas enca@t étudiée pour la reconnaissance derse
en robotique autonome.

Nous avons compéarnos niéthodes avec les algorithmes detét-de-l'art
en utilisant une base de dares standard de localisation de robot. Nous
avonsetude I'in uence des pararetres du sysgime et comparles diferen-
tes conditions sur la @éme base de doBmrs. Les ex@riences @ali®es
montrent que le magle que nous proposons, tout etant tes simple,



conduita des esultats comparables|'état-de-I'art sur unediche de re-
connaissance de lieuemantique.

Mots-clés: reconnaissance de lieugmantiques, mddes baés sur [eéner-
gie, machine de Boltzmann restreinte, architecture profonde, sac-de-mots,
régression Softmax.

Introduction

Un robot autonome doiétre en mesure de recorima I'environnement
dans lequel ievolue. Cette caragtistique lui permet d'apprendre I'organi-
sation de son environnement pour un fonctionnement et une interaction op-
timaux. Pour atteindre cet objectif, ddffentes solutions ogté propoges.
Certaines approches sont bas sur la localisation @trique (ca.d. la ca-
paci€é d'un robot mobilea determiner sa position dans un egp commun),
d'autres exploitent la localisation topologiquedl. la capac# de pro-
duire une carte de son environnement). Toutefois, dans ces approches,
I'information concernant I'emplacement est difeénte de l'information
utilisée pour éterminer la cagorie €mantique du lieu. Ainsi, au-del
d'une localisation ratrique pecise utili€e dans les gthodes de localisa-

tion et de cartographie simultées (Simultaneous Localization and Map-
ping: SLAM), la capac# pour un robot mobile deéderminer la nature de

son environnement (cuisine gue, couloiretc) reste unedche dif cile.

La connaissance des coordé@es nétriques ou rame l'information de
voisinage qui peuétre encode dans des cartes topologiques n'est, en ef-
fet, pas suf sante. L'approche par reconnaissance de liémxasitiques
(Semantic Place Recognition: SPR) est cependzscgssaire pour un grand
nombre deaches. Elle peut par exemp¢re utilig€e comme une infor-
mation contextuelle qui favorise l&tection et la reconnaissance d'objets
(donnant a priori l'identié, I'emplacement et &chelle de I'objet). Ceci
peutétre utile lorsque la&mantique est obtenue sans aucléferencea

des objets frsents dans la ene. De plus, la cagorisation 8mantique
offre une Eference absolue pour I'emplacement du robot, fournissant une
solution simple pour des praihes o la localisation ne peut patre
déduitea partir des emplacements voisins. C'est le cas, par exemple, pour



résoudre des probimes tels que celui du robot kidnappu de la fermeture
de boucle.

Etat de l'art

Les recherchesécentes ont propésd'exploiter les descripteurs visuels
pour la reconnaissanc&rmantique. Les approches les plusduentes
utilisent les descripteurs bas sur des caraatistiques utilisant desatiec-
teurs globaux, tels que les descripteurs GiST et CENTRIST [Pronobis
et all, 2006{ Torralba et al., 2003a; Wu et al., 2009], ou les signatures
locales calcu#es autour des points d'&et en utilisant desé&tecteurs lo-
caux, comme par exemple les signaux SIFT et SURF [Filliat, 2008; Ullah
et al|,[2008]. Cependant, ces repentations ont recoussdes nethodes

de type sac-de-mots (Bag-of-Words : BoWs), a n éduire la taille des
repiesentations. Une quanti cation vectorielle est ensuite appkgde
telle sorte que a n de repsenter l'image par un histogramme. Les ap-
proches discriminantes peuvegtte utilies pour calculer la probabéit
d'étre dans un lieu do@nen fonction de l'observation courante. Les ap-
proches @rératives peuveréigalemenétre utilies pour calculer la prob-
abilité d'une observation do@e dans un certain lieu en utilisant le Itrage
bayésien. Parmi ces approches, certains travaux [Torralbal ét al., 2008]
omettent l'utilisation de Etape de quanti cation et métisent la densé

de probabilié a I'aide d'un nelange de gaussiennes (Gaussian Mixture
Model : GMM). Les approchestcentes proposegalement d'utiliser
des classi cateurs bd@giens nés et l'intégration temporelle qui permet-
tent de combiner les observations successives [Dubois et all, 2011].

La SPR 1&ecessite donc l'utilisation d'un espace de cagastiques ap-
proprié qui permet une classi cation gcise et rapide. Contrairemeat
ces neéthodes empiriques, de nouvellegtilodes d'apprentissage automa-
tique ont Ecemmenémerg. La structure auto-similaire des images na-
turelles a permis la éation de codes optimaux. Ces codes sonépasar
des caradristiques statistiquement iagendantes. A cet effet, diffentes
méthodes on&te propoges pour construire ces codagartir de bases
de donmes des images. Imposer des contraintes de lecatlitle faible



densié a ces caraéristiques est &s important. Ceci est probablement
di au fait que les algorithmes simples éasur ces contraintes peuvent
obtenir des signatures Baires analoguesla notion de champecepteur
dans les sysimes naturels. Ces deenés anaes, diferent travaux se
sont inéresg aux algorithmes de vision par ordinateur reposant sur des
repiesentations locales clairsémen particulier pour les pradrnes de
classi cation d'images et de reconnaissance d'objets [Boureau et al., 2010;
Ranzato et al!, 2007b; Wright etlal., 2010; Yang et/ al., 2009]. En outre,
d'un point de vue @grératif, I'ef cacité de codage local clairs&mense,

par exemple pour la reconstruction d'image [Labusch and Martinetz], est
justi €e par le fait qu'une image naturelle pétite reconstruite par un plus
petit nombre de caragtistiques. Il &te demonté que I'analyse par com-
posantes ingpendantes (Independent Component Analysis: |Gk

des caradristiques localises. De plus, cette analyse est ef cace pour
les distributions gesentant un niveau de kurtogewe qui repesentent
des statistiques d'images naturelles doeeis par des composants rares
comme les contours. Cependant, cetéghode est ligaire et non&cursive.

Ces deux limitations n'existent pas dans le cas des approches/DBN [Hin-
ton et al., 2006] qui introduisent des nonéariés dans le syste de
codage et qui f@sentent de multiples couches. Chague couche est con-
stituee d'une RBM, une version simpke d'une machine de Boltzmann
propo£ par Smolensky [Smolensky, 1986] et Hinton [Hinton, 2002]. Cha-
gue RBM est capable de construire un raeledgrératif statistique pour ses
entéesa l'aide d'un algorithme d'apprentissage relativement rapide (Con-
trastive Divergence: CD), qui @ introduit la prenere fois par Hinton
[Hinton, [2002]. Une autre caraaistique importante des codes ugs
dans les sysimes naturels, la densitde repesentation|[Olshausen and
Field,[2004], estgalement@ali®e avec I'approche DBN. En outre, it
montié que ces approches sont robustes pour extraire deséristigties
locales clairsei® dans de mini-images [Torralba et al., 2008].

Cependant, dans ces recherches, nous supposons que é&sentations
clairseng conduisenti des prol@mes lircairement gparables. Ce type



de repésentations devrait simpli er le probine de classi cation. Par
ailleurs, nous avonstude l'extraction de caraétistiquesa partir de don-
nées blanchies et normadiss. Nous avonggalemengtude I'effet de
cette normalisation sur le prashe SPR.

Description du modele

Notre nouvelle approche SPR comporte trois principatapes: le gatrai-
tement des images,élaboration non-supené@s des caraetistiques de
I'em-placement, et I'apprentissage supegvike I'emplacement. Pluséei-
sement, la pren@reétape consista convertir la couleur en niveaux de gris,
en les éduisant de petits patches d'images, puis en normaliseérdaltat.
La deuxemeétape consista coder les images d'ete en utilisant les car-
ackristiques extraites. Elle consisteextrairea travers plusieurs couches
RBM formant un DBN un alphabet de caradstiques. La rathode DBN
est capable de coder de fagon optimale les images d'unecneaailaie

a leur classi cation. La phase nale est la classi cation qui consigte
discriminer entre les diffrents localisations possibles pour le robot.

Traitement des images
Utilisation des mini-images

La dimension d'ent&e typique pour un DBN est d'environ 1000 wast
(par exemple 30 30 pixels). L'utilisation de plus petits patches pourraient
rendre le modle incapable d'extraire des caragstiques inkressantes.
L'utilisation de plus grands patches peut condaiides temps d'écution
importants durant I'apprentissage des caastiques. En outre, la multi-
plication des poids de connexion agégativement sur la convergence de
I'algorithme CD. La question est donc de savoir comment redimension-
ner la taille des image<alistes (par exemple 300300 pixels) pour les
rendre appropées pour I'DBN.

Trois solutions peuveridtre envisages. La pren@re consista €lectionner
les patches ahtoirementa partir de chaque image comn&ali€ dans
les travaux de| [Ranzato et|al., 2010]. La seconde approche coasiste
utiliser une architecture convolutive, telle que propmslans|[Lee et al.,



2009]. En n, la dernere approche consisteredimensionner la taille de
chague image pour obtenir une image de plus petite taille comme @opos
dans [Torralba et all, 2008]. La preené solution reviena extraire les
caracéristiques locales. La car&etsation d'une image l'aide de ces
caracéristiques peuétre €aliea l'aide de I'approche BoW que nous
souhaitonstviter. La deuxéme solution gEsente les @mes limites et
augmente le nombre de calculs qui doivétre trai€s par le processeur
graphique. L'extraction de cardgtstiques utilisant les patchesatoires

est incdependante des structures spatiales de chaque image [Norouzi et al.,
2009]. Dans le cas de mges structies comme celles utibes avec les
SPR, ces structures portent une informatiogressante.

En outre, des mini-images o®té utilisees avec sues dans|[Torralba
et all,| 2008] pour classer et extraire des imaggsartir de la base de
donrées de 80 millions d'imagesedelop@e au MIT. Torralba et al. ont
monte que I'utilisation des mini-images comi@es avec une approche
DBN conduita coder chague image par un petit vecteur binaire. Ce vecteur
de nit les elements d'un alphabet caracistique qui peuétre utili pour

dé nir de facon optimale I'image originale. Le vecteur binaire agit comme
un code-barres tandis que l'alphabet de c@&ndstiques est calcalune
seule foisa partir d'un ensemble repsentatif de I'image. Lirgrét de
cette approche esédhonte par le fait que le petit vecteur binaire (comme
ceux que nous utilisons comme sortie de notre structure de DBpgsse
largement le nombre d'images qui doivegite co@es néme dans le cas
d'uneénorme base de doaes (2°® 107°). Pour toutes ces raisons nous
avons choisi I'approche déduction de I'image.

Blanchiment des dof@es et normalisation locale

Géréralement, les images naturelles someststructues et contiennent
d'importantes redondances statistiques, cedire que leurs pixels psen-
tent de fortes coalations [Attneavie, 1954; Barlow, 2001]. Par exemple,
il est bien connu que les images naturelles incluent égslaries im-
portantes dans leurs statistiques de premier et second ordréel#tions



spatiales). Ces statistiques peuvétre mesugesa l'aide d'une fonc-
tion d'autocorelation ou de la dengtspectrale de Fourier [Field, 1987].
Ces corelations sont duea la nature redondante des images naturelles
(les pixels adjacents onggeralement de fortes ca@lations, sauf autour
des bords). La gsence de ces céfations permet, la reconstruction
de l'image, par exemple, en utilisant les champs de Markov. Il a ainsi
ett monté par [Bell and Sejnowski, 1997; Field, 1987; Olshausen and
Field,[1996] que les &tes sont les principales caradstiques des images
naturelles et qu'elles sont plutt cees par desapendances statistiques
d'ordre sugrieur. On peut éduire de cette observation que les statis-
tigues des images naturelles ne sont pas gaussiennes coamoaté
precedemment (puisque les moments &tgursa I'ordre deux sont nuls
pour les distributions gaussiennes). Ces statistiques sont desyrar des
évenements rares comme les contours, condusaes kurtosiglees.

Les petraitements visara éliminer ces coglations d'ordre deux sont
connus sous le nom de blanchiment. &t monté que le blanchiment
est une strégie de petraitement utile pour I'lCA|[[Hy@rinen and Oja,
2000; Soman et al., 2009]. Il eégalement uné&tape obligatoire pour
l'utilisation de methodes de classi cation dans la reconnaissance d'objets
[Coates etall, 2011]. Le blanchiment est un processaailia. Par ailleurs,

il ne supprime pas les statistiques d'ordreé&tigur ou encore leggulari-

tés pesentes dans les dares. Tleoriquement, le blanchiment est une
tache simple. Ams centrage, les vecteurs de dees sont projés sur

les axes principaux (caloes comme des vecteurs propres de la matrice
de variance-covariance) et ensuite daagar la variance le long de ces
axes. De cette facon, le nuage de degspesente une forme sphique,
laissant appartie uniquement les axes correspondagméggalement ses
ordres suprieurs de dpendances statistiques.

Une autre approche pour legtraitement des do@es consista effectuer
une normalisation locale. Dans ce cas, chaque corpéBtiést normalig
en soustrayant la moyenne et en divisaneksuttat par Ecart-type de ses
élements. Pour les dogées visuelles, cela correspoada normalisation



locale de la luminosé et du contraste. On peut trouver dans [Coates|et al.,
2011] uneétude sur la normalisation locale et ses effets sur acket de
classi cation. Cependant, on peut noter que céttele &t effectiee en
utilisant deux bases de doges, NORB et CIFAR, qui o#é sgecialement
congues pour la reconnaissance d'objets.

Nous pouvonggalement noter que dans [Ranzato ét al., 2010], les auteurs
af rment que le blanchiment aétere le convergence de I'algorithme. Ce-
pendant, ceésultat n'a pagte justi é.

Elaboration de caracteristiques spatiales non supervise
Machine de Boltzmann Restreinte (RBM avec Gaussienne-Bernoulli)

A la difféerence de la machine de Boltzmann, une RBM est unateod
graphique non oriegtbipartiteq = fw;j; bi;cjg, qui apprend un maale
géeréré a partir de donees obse®es. Elle consiste en deux couches.
La couche cadke, contenant des variables latenbtesest utilie pour
gérérer la couche visible, contenant les variables olessw. Des que la
gérerationP(vjh) a appris, les connexions non orieas peuvent&termi-
ner P(hjv). Les deux couches sont ezriement conneees par le biais
d'un ensemble de poids;; et les biaisf bj;cjg et il n'y a pas de con-
nexion entre les uréis d'une néme couche. Dans un RBM classique, la
con guration des connexions entre les @sitinaires visibles et les uag
binaires cacées a une fonction éhergieE(v; h;q) donree par :

E(vihig)= & @vihyw; abvi 4 ch, (1)
i i2v j2h

La probabilie de I'état d'une unié en une seule couche est&asur létat
de l'autre couche et peut doBtre ai€ment calcide. Selon la distribution
de Gibbs:

P(V; h; q) = i exp E(v;h;g) (2)



ou Z(q) est une constante de normalisation. Ainsi,eggda marginalisa-
tion, la probabilié d'une con guration cacke de |etath peutétre cerivée
comme suit :

E(v;h;q)

A = 2 e ) — éve
P(h,q)_ av. P(V1h1Q)— évéhe E(v;h;q)

3)
Cependant, selon [Krizhevsky, 2009], la probabitibnditionnelle ci-des-
sus peugtre calcude en utilisant la fonction logistique sigide comme
suit :
P(hj = 1jv;q) = s(cj+ @ wijvi) @)
i

ou s(x) = 1=(1+ e *) est la fonction logistique. Une fois que létats
binaires cacbs songechantillon®@s, nous produisons une “reconstruction”
de la mini-image d'origine en mettan€tat de chaque umtvisiblea la
valeur 1 avec une probabéit

P(vi = 1jh;g) = s(bi+ & wijh)): )
J

Cependant, des uls visibles logistiqgues ou binaires ne sont pas appro-
prieées pour coder des valeurs multiples en &grcomme les niveaux

de gris des pixels, parce que les @ésitlogistiques repsentent mal des
donrees telles que les sous-images d'images naturelles. Pour surmonter
ce probéme, comme l'a suggé [Hinton,|2010], dans le psent travail,

nous remplacons les uag binaires visibles par un sgste d'activation
gaussienne avec moyenne nulle comme suit :

P(vi= 1jh;g)  N(bi+ & wijhj;s?) (6)
J

ou s2 désigne la variance du bruit. Dans ce cas, la foncti@metgie de
RBM avec Gaussienne-Bernoulli est dé@empar:
bi)?

o Vi o o o Vi
E(v;h;a)= a ('—2 ach aa -hw (7)
v 2S] i2h i j S



Apprentissage RBM avec une contrainte de parcimonie

Pour conndre les pararatres RBM, il est possible de maximiser la log-
vraisemblance dans une paslure de descente de gradient. Ainsi, la
derivée du modle du logarithme @périen de la vraisemblance sur un en-
semble d'apprentissad® est donge par:

TE(v;q) TE(v;q)
9 9

fL@= ®)
ou le premier terme corresporadla moyenne par rapport au medd de
distribution et le second correspond'esperance sur les doges. Bien
que le second terme soit simpecalculer, le premier est souvent insol-
uble. Cela est @ au fait que le calcul de la vraisemblance a besoin du
calcul de la fonction de partitiorZ(q), qui est habituellement impossi-
ble a calculer. Une rathode de type Markov-Chain Monte Carlo, comme
I'échantillonnage de Gibbs, peétre utilisee pour calculer I'esgrance.
Ces nethodes, cependant, sordgientes et souffrent d'une forte variance
dans leurs estimations.

En 2002, Hinton a prop@sune proédure d'apprentissage rapide afipel
Divergence Contrastive (Contrastive Divergence : CD) [Hinton, 2002].
Cet algorithme d'apprentissage estbasr le fait que minimiseré&nergie

du réseau reviend minimiser la distance entre les d@as originales et

les doniees statistiquestgérees. La comparaison est faite entre les statis-
tiques des dorées et des statistiqueérgrees par urechantillonnage de
Gibbs. Par corequent, dans l'apprentissage des CD, nous essayons de
minimiser la distance de Kullback-Leibler entre la distribution des desn

QY et le mocle de distributionQ¥, comme suit:

CDn = KL(QY%iQ¥) KL(QYiQ¥) 9)

Le principal avantage de cet algorithme, est que les termaduictibles,
Q¥, dans lequation ci-dessus s'annulent les uns les autres, comme il est
expligue dans [[Andrzejewsk|, 2009; Hinton, 2002]. Cela signi e que,



dans la pratique, nous utilisons habituellement seulement quelques pas de
I'échantillonnage de Gibbs (la plupart du tem@sluita un) pour assurer

la convergence. Pour une RBM, les poids éseau peuvent dométre mis

a joura l'aide de l'equation suivante:

% QPhQ" QKQT hvihlig hvitlie  (10)

Cetteéquation peuétre €écrite comme suit :

Wij - Wwij + h(I“Viol“(j)idata h Vinh?irecon) (11)

ou h est le taux d'apprentissagé,correspond la distribution de dorges
initiales, h? est calcud en utilisant lequation 4,V" estéchantilloné a
I'aide de la distribution Gaussienne dédjiuation 6 et avecpas déchanti-
llonnage de Gibbsh" est de nouveau calc&ga partir de lequation 4. En
outre, les egles de misa jour des biais des neurones visibles et éach
sont similairesa la regle de mise jour pour les poids:

bi b+ h[h/?idata h Vini recon) (12)

et
Ci ¢+ h[m?idata h h?i recon] (13)

ou Vi, hj, bj, etcj désignent lé-ieme neurone visible, Ig-ieme neurone
cactle, lei-ieme biais visible, et I¢-ieme biais cadhrespectivement.

En ce qui concerne la contrainte de parcimonie dans les RBMs, nous
suivons l'approche &velopge dans|[Lee et al., 2008]. Cettecthode
introduit un terme deégularisation quié&duit les activations moyennes
des variables caées sur I'ensemble des exemples de formation. Ainsi,
I'activation des neurones du mel& devientegalement clairsege. En

fait, cette néthode est similaira celle utili€e dans d'autres metes Ol-
shausen and Field [1996]. Ainsi, comme illéstians|[Lee et al., 2008],



exemples, nous posons le preble d'optimisation suivant:

m 2
1.

a Em’iv0]

m n

L o o o 1
MiNiMizgy, g A 109 a PV () + 4 p =
! ' I=1

=1 h =1
(14)

ou E[] est lI'esggrance conditionnelle en fonction des déas,p est la
cible contrlant de la parcimonie des wstcackesh;, etl est le cait de
parcimonie. Ainsi, a@s avoir emplo§ cette egularisation dans l'algorith-
me d'apprentissage de CD, le gradient du termeedelarisation de parci-
monie sur les paraetres (poidsv;; et les biais cadksc;) peutétreécrite
comme suit:

wij W wj+h (hWhYi h vl T (p

Cj Cj+ h[m?idata h h?i recod | (P

ou mdans ce cas est la taille du mini-batcfpéa'} : s(éivi(')wij + Cj).

Il a étte monté que l'algorithme d'apprentissage clairseRBM peut cap-
turer d'interessantes cara&eistiques d'ordre sigrieura partir d'images
naturelles|[Lee et al., 2008]. Nous @spns qu'un tel algorithme d'appren-
tissage reste capable de capturer des canatijues d'ordre sugrieur

a partir de diverses bases de dees, comme par exemple une base de
donrees ceée a n de localiser d'un robot.

Apprentissage par couche pour les DBNs

Les RBM peuventetre empiées pour produire une architecture DBN,
ou les paramtres du modle g;, a la couche, sont appris en gardant
les pararetres du moele dans la partie igfieure des couches constants.
Autrement dit, I'algorithme d'apprentissage DBN forme les couches RBM
d'une facon gloutonne par couche. Les pagtmes du modlea la couche

i 1 sont gés et les probabikts conditionnelles des valeurs unitaires
cactees sont utiliées a n de @rérer les donees @cessaires pour en-
tra'ner les paramatres du modlea la couché. Ce pro€ce peutetre epete



a travers les couches pour obtenir des&spntations creuses des dees
initiales qui seront utilises comme des vecteurs d'é&dpour effectuer le
processus de classi cation.

Description des bases de dorees
La base de dorges d'images naturelles de Van Hateren

A nd' étudier I'impact de la normalisation des d@as sur la étection de
caracéristiques, nous utilisons une base de dmmpopulaire contenant
des images naturelles, la base de dm®de Van Hateren. |l s'agit d'une
base de dores d'images de hautégolution, calibees et monochromes
prises dans des conditionsédlairage @ nies, congcues pour diffrentes
taches de traitement d'images. Cette base contient environ 4000 images
de esolution 15381024 pixels.

Pour cettedche, nous avons extrait aleatoiremenéahantillon de 100000
de parcelles dimages 1616. Ces parcelles sont ensuite blanchies en
utilisant un algorithme de blanchiment et normédisa I'aide d'une nor-
malisation locale dans deuxgiraitement distincts, tel qu'indigudans la

gure f]

Figure 1:Premiere colonne:256 patchs choisis au hasa@artir de la base de dodes de van
Hateren.Deuxieme colonne:Les éléments correspondants normasisTroisieme colonne:
Lesélements correspondants blanchis.

La base de dorées COLD

Cette base de doaes (base de doéas de localisation COSY)é&é orig-
inellement @velopgee par|[Ullah et all, 2007] pour la localisation en robo-
tique. Cette base contient une collection d'imagégqueées de resolu-
tion 640 480 acquises cing images par seconde lors de I'exploration



d'un robot de trois laboratoires differents: Freiburg, Ljubljana, et Saar-
bruecken. Deux ensembles de chemins (Type A et Betnacquis dans

des conditions @&clairage diférentes (ensoledl nuageux et nuit), et pour
chaque condition, un chemin consisteisiter differentes gces (couloirs,
zones d'impressiorgtc). Ces promenadestravers les laboratoires sont
repetees plusieurs fois. Bien que les images en couleurétinenreg-
istrées au cours de I'exploration, seules les images en niveaux de gris sont
utilisées puisque des travaux aneurs ont @monté que dans les couleurs

de la base de dokes COLD sont faiblement informatives et rendent le
systme plus é@pendant de &clairage|[Ullah et all, 2007].

Tel que propos par [Torralba et al., 2008], la taille de I'image estiuite

a 32 24 (voir, par exemple, la gur¢]2). La deere €rie des mini-
images (une nouvelle base de déas appée tiny-COLD) est cenée et
blanchie/normaliée a n d'éliminer les statistiques de second ordre. Par
congquent, la variance dangtjuation 6 est@&nie a 1. Contrairement

a Torralba, les 32 24= 768 pixels des images blanchies ou nornéis
sont utili€s directement en tant que vecteur d'éstdu eseau.

Zone d'impression  Corridor ~ Chambre Terminal

Lab de robotique Zone d'impression

Figure 2: De<schantillons de la base de da@®s initiale COLD. les mini-images correspon-
dantes sont af cbes en ba& droite. On peut voir que, malgia ©duction de la taille, ces
mini-images restent pleinement reconnaissables.

Les résultats exg@rimentaux
Effet de la normalisation sur les card@sistiques spatiales

Pour cettedche, nous avons meueux expgriences en utilisant un ensem-
ble de dongées de patchs @htoiremenéchantilloni@sa partir de la base



de don®es de van Hateren. Ags avoir @corglé (algorithme de blanchi-
ment) et normalig des patchs en deuxgpprocessusepaés comme mon-
tré precedemment, une structure plus-coetpl (256 512) de la prendre
couche RBM &té utilisee.

La gure3.20 (@ gauche) montre des car@dstiques extraites en utilisant
les doni@es localement normadiss, tandis que la gure 3.R@ (droite)
montre des caragtistiques extraites en utilisant les dées blanchies. I
estévident que les caraatistiques extraitea partir des donges blanchies
sont plus localises. Les dorges blanchies modi ent clairement les car-
aceristiques apprises. Le lien entre les étations du second ordre et la
présence de bassegéfluences dans les images pourrait expliquer I'effet de
blanchiment. Si I'algorithme de blanchiment emé ces colations dans
I'ensemble des dorées d'origine, cela produit des da®s ne couvrant
que les fequences spatialédevees. Dans ce cas Lalgorithme de RBM
ne trouve que des carécistiques de hautedguence.

Toutefois, les caraétistiques apprises partir des donees de normalisa-
tion sont totalement diffrentes de celles apprises avec les éesrblan-
chies. Ces caragtistiques restent clairsé&ms, mais couvrent un large
spectre de fquences spatiales. |l est@n¢ssant de noter que ces car-
acgristiques ont l'air plus proches de celles obtenues aveE&k=auxa
convolution/ Lee et &l [2009] pour lesquels aucun blanchiment n'est ap-
pliqué aux donges initiales. Nous pouvons remarquer que ceédiffces
entre les donees normalises et blanchies ontefh éte obserees dans
Krizhevsky [2009]. Il a obtenu de meilleures performances en utilisant
des caradristiques tiees des dorges normalige sur CIFAR-10 dans une
tache de reconnaissance d'objets.

Pour essayer de comprendre plus profamént pourquoi les caratsti-
ques obtenuea partir de patchs blanchis ou normaBssont diférentes,
nous avons calcélla densi spectrale moyenne de Fourier des patchs dans
les deux conditions, et nous I'avons comgeat la néme fonction pour les
patchs originaux. Nous avons téata moyenne du logarithme de la den-
site de puissance spectrale de la transterde Fourier de tous les patchs



Figure 3: Bases sur-congik extraites d'images naturellesgauche : 512 les caraéristiques
appris par l'apprentissage de la couche RBM pemmien utilisant de patchs norméiés
(16 16)échantillonigesa partir de van Hateren base de dees.A droite: Caracéristiques
correspondantes acquises par l'apprentissage de la gnermouche RBM en utilisant des
patchs blanchis (16 16) échantilloniesa partir de la rdme base de doérs. Pour les deux
experiences. Le protocole d'apprentissage est simikaicelui propose dans Lee et al. [2008]
(300époques, taille de mini-batch 200, taux d'apprentissafgg,dnoment initial 05, moment
nal 0;9, decroissance des poidsdD02, un paraetre de parcimonie de;02 et un cdt de
parcimonie de (02).

selon les fequences comme indigudans la gurg 4. La loi déchelle en
1=f2 caracéristique des images naturelles est approximativenmntae
comme pevu pour les patchs initiaux. Pour la normalisation locale, la
loi d'échelle est aussi conséer (le &calage entre les deux courbes est
uniquement dwa une diference de multiplication de I'amplitude du sig-
nal entre l'original et les patchs localement normigis Cela signi e que

la composition de frquence des images localement nornaalise difere

de la premére que par un facteur constant. La composition dguence
relative est la rame que dans les images initiales.

Au contraire, le blanchiment supprime comi@ment la dpendance en-
tre I'énergie du signal et laéguence. Cela signi e que le blanchiment
égalise le rle de chaqueefjuence dans la composition des images. Ceci



Figure 4: La repesentation Log-Log du spectre de Fourier puissance moyenne pour les patchs
d'image avec et sans normalisation. 256 de 1B5 patchs ongte extraites de la base de
donrées van Hateren et puis normaks. Le Log de la transfoim de Fourier de chacun de

ces patchs été calcué et traé selon le Log de la &quence spatiale.

sugeere une relation entre la loi@thelle des images naturelles et les deux
premiers moments de la statistique de ces images. |l&stssaire de
souligner que nous avons une manifestation du lien entre les p&xpri
statistiques d'une image et ses pré@firs structurelles (en termes deduen-
ces spatiales). Ce lien est bien illisa travers le thoreme de Wiener-
Khintchine et la relation entre la fonction d'auto-oglation de I'image et
sa densi# spectrale de puissance. En ce qui concerne les edsdicfues
extraites, les remarques®is ci-dessus permettent daldire que la regr
sentation similaire (en termes d'amplitude) de toutes leguiences dans
le signal initial donne liew une sur-ref@sentation des hautegfjuences
dans les caraetistiques obtenues. Cela pé&ute di au fait que, dans les
donrees blanchies, &nergie contenue dans chaque bande éguignce
augmente avec ladguence pendant qu'elle est constante dans les images
initiales ou normaliges.

Toutefois, le ésultat @pend de la base de dares utili€e et par corexjuent

des féquences spatiales contenues dans les patchs initiaux. Le fait que la
normalisation locale conserva (ine constante es) la néme composi-

tion de flequence que dans daes initiales. Cela prouve que la nor-
malisation ne supprime pas eéement les coélations du second or-



dre. Olshausen [Olshausen and Field, 1997] a neogtre, en utilisant

le blanchiment, L'analyse en composanteséipendantes (Independent
Component Analysis : ICA) conserve principalement des ltres dans une
gammeétroite de fequences spatiales. Les basség|diences spatiales
sont sous-ref@sengées dans leésultat obtenu. Ces remarques concernent
les resultats obtenus en utilisant les dées de blanchiment. Cependant,
dans le cas des doees de normalisation, les ca@tstiques enregistrent
une plus large gamme deefjuences spatiales.

Les cependances entre les bass&xjfiences sontdesa la corglation
statistique entre les pixels voisins. Ainsi, la suppression de ceslatons

du second ordre supprimerait ces basseguences dans les patchs blan-
chis. Nous observons que les cagistiques, qui sont moins locadiss,
ont plus de chances de contenir un plus grand nombre de ba&sgasrices.

Dans la section suivante nousepentons comment nous avons udilla
base de dorees COLD pour tester notre meld SPR selon ces deux
méthodes de normalisation. Nousépentonsgalement comment ces
changements dans la composition d&gfrence spatiale affectent les per-
formances de classi cation.

Extraction des caracéristiques: I'alphabet

Des essais ptiminaires ont moné& que la structure optimale du DBN
en termes de score nal de classi cation est 76256 128. Les car-
acéristiques indigaes sur la guré b4 gauche) oréte extraites par appren-
tissage de la couche RBM sur 1889 patchs blanchis (324 pixels)
échantillonsa partir de la base de doaes COLD. Certains d'entre eux
repiesentent des parties du couloir, qui est suragspné dans la base
de donmees. Il correspond de longueséquences d'imagesds simi-
laires lors de l'exploration du robot. D'autres sont locaéis et corre-
spondenta de petites parties des vues initiales, comme les bords et les
coins, qui peuvenétre identi @s commeelements de gice, c'esta-dire
qu'ils ne sont pas €Ti ques a piece donbe). Les caraéristiques in-
diquées sur la guré b4 droite) ontete obtenues en utilisant les ddres
normali€es. Comme nous l'avons obsemécdemment pour la base de



donrees de van Hateren, les caiadtiques obtenues songtrdifferentes.

Les parties de pices sont beaucoup plus repenés que dans la base de
donrees blanchie. Nous remarquons que la gammeadgiémnces spatiales
couverte par les caraaistiques est beaucoup plus large. Dans les deux
cas, les combinaisons de ces cagdstiques initiales dans les couches
superieures correspondent aux structures les plus @rsiiques des diff-
rentes peces.

Figure 5: A gauche: Les 256 ltres obtenus par l'apprentissage d'une premicouche de
RBM 32 24 avec des patchs blanci@shantillon@sa partir de la base de doaes COLDA
droite: les 256 Itres obtenus par I'apprentissage d'une premicouche de RBM 324 avec
des patchs normake échantillon@sa partir de la base de doees COLD. Le protocole de
I'apprentissage est similaiie celles propda=e dans Krizhevsky [2010]; Lee et|al. [2008] (300
époques, taille de mini-batch 100, taux d'apprentissaQ@2), ecroissance des poidsdD02,
moment initial 05, moment nal de 09, paranetre de parcimonie;02, cait de parcimonie
0;02).

Apprentissage supendgies lieux

Apres la Ealisation de la repisentation approf@e en fonction des DBNs,
une classi cation &te effectiee dans l'espace des cagistigues comme
le montre le tableau 1 (la dewtne ligne). En supposant que la transfor-
mation non lirgaire exploiée par les DBN a#liore la £parabili€ linéaire
des donges, une rathode de&gression simple&té utilisee pour effectuer
le processus de classi cation dans le cas initial. Pour exprimeydeltat
nal comme une probabil& qu'une vue donee appartienna une seule
piece, nous normalisons lésultat en utilisant la Bthode de &gression



softmax. Nous avonggalemengtudé la phase de classi cation en util-
isant un classi eur non-liaaire, comme Support Vector Machine (SVM).
Nous avons utilig ce classi eur non-lieaire pour @montrer que le DBN

calcule une signatureeparable li@airement et donc il ne devrait pas af-
fecter les esultats de la classi cation nale.

Saarbruecken

Freiburg

Ljubljana

. Laboratory name
) - .Condition
Training RN

Cloudy

Night

Sunny

Cloudy

Night

Sunny

Cloudy

Night

Sunny

Ullah

84.20%

86.52%

87.53%

79.57%

75.58%

77.85%

84.45%

87.54%

85.77%

No thr.

70.21%

70.80%

70.59%

70.43%

70.26%

67.89%

72.64%

72.70%

74.69%

SVM

69.92%

71.21%

70.70%

70.88%

70.46%

67.40%

72.20%

72.57%

74.93%

0.55 thr.

84.73%

87.44%

87.32%

85.85%

83.49%

86.96%

84.99%

89.64%

85.26%

Table 1: Resultats de la classi cation moyenne pour les trois laboratoiregrdifits et les trois
conditions de I'apprentissag@remiere ligne: le travail de Ullah;deuxieme ligne: résultats
bruts sans seuitroisieme ligne:taux de classi cation en utilisant SVM classi euguatrieme
ligne: taux de classi cation avec seuil, comme ind&gdans le texte. Nossultats onéte
obtenus sur la base des cagistiques apprises partir des donees blanchies.

Leséchantillons peleves dans chaque laboratoire et chagat déclairage
ont subi un apprentissagémaement, comme dans [Lee et|al., 2008].

Pour chaque image, I&sultat du eseau softmax a doarla probabilié

d'étre dans chacune degpe visi€es. Selon les principes du maximum de
vraisemblance, la plus grande valeur de prob@&détermine la écision

du syseme. Lorsque nous utilisons les cagatdtiques extraites des don-
nées blanchies, on obtient une moyenne de borepsses allant de 65%

a 80% selon les diffrentes conditions et les laboratoires comme le montre

le tableau 1 (la deurime ligne). Plus f@cisement, on obtient 73%,

69;5% et 71% pour les laboratoires COLD-Ljubljana, COLD-Fribourg
et COLD-Sarrebruck respectivement, et avec une moyenne globale de
reponses correctes de;B%. En revanche, lorsque nous utilisons les car-
ackristiques extraites des daes normaligses, on obtient une moyenne

de bonneséaponses allant de 71%90% selon les diffrentes conditions

et les laboratoires comme le montre le tableau 2 (la @¢gogiligne). Plus
précigement, on obtient 833%, 80515% et 815% pour les laboratoires



présenés ci-dessus, et avec une moyenne global@pernrses correctes de
81;375%. Les derniersgsultats sont comparables aux meille@sultats
donrés dans [Lee et al., 2008]. Lessultats restent robustes aux variations
d'illumination comme dans [Lee et al., 2008].

. Laboratory name Saarbruecken Freiburg Ljubljana
Training ) ‘C\on\dlflo‘n Cloudy | Night Sunny | Cloudy | Night Sunny | Cloudy | Night Sunny
Ullah 84.20% | 86.52% | 87.53% | 79.57% | 75.58% | 77.85% | 84.45% | 87.54% | 85.77%
No thr. 80.41% | 81.29% | 83.66% | 81.65% | 80.08% | 79.64% | 83.14% | 82.38% | 83.87%
0.55 thr. 86.00% | 88.35% | 87.36% | 88.15% | 85.00% | 87.98% | 85.95% | 90.63% | 86.86%

Table 2: Resultats de la classi cation moyenne pour les trois laboratoiregrdiiits et les trois
conditions de I'apprentissag@remiere ligne: le travail de Ullah;deuxieme ligne: résultats
bruts sans seuiltroisieme ligne: taux de classi cation avec un seuil, comme indégdans
le texte. Nos @sultats onéte obtenus sur la base des cagaistiques tiees des doraes nor-

maliste.

Ces Esultats @montrent qu'un RBM calcél a partir de donees nor-
malisees est plus performant qu'un RBM provenant de émsblanchis.
Ceciillustre le fait que le processus de normalisation conserve plus d'infor-
mations ou de structures provenant des images initiales. En effet, ces struc-
tures sont &s importantes pour le processus de classi cation. D'autre
part, le blanchiment eale compttement les statistiques d'ordre un et
deuxa partir de la donge initiale. Cette @-corélation permet au DBN
d'extraire des caraétistiques d'ordre sugrieur. Cela @montre que les
donrées de blanchiment pourraiegtre utiles pour le codage d'images.
Cependant, ce n'est pas l&thode de f@-traitement optimale dans le cas

de la classi cation d'images.

Toutefois, il existe deux stragies diferentes pour agliorer ces esultats.
La premere est d'utiliser l'inégration temporelle tel que progoslans
[Guillaume et al.| 2011]. La seconde ségie s'appuie sur la #orie de
la décision. Le taux de @ection pesengé dans le tableau 1 (de@xne
ligne) aété calcué a partir des classes ayant les plus grandes prol&hilit
quelles que soient les valeurs relatives de ces prokhiliCertaines de



ces probabiliégs sont proches de la chance (dans notre 28 6u (25,
selon le nombre de dagoriesa reconndre) et il estévident que dans

de tels cas, la con ance dans l&dasion rendue est faible. Ainsi, en
dessous d'un seuil doén lorsque la distribution de la probakdlitend

a devenir uniforme, on pourrait consigr que la@ponse donee par le
syseme n'a pas de signi cation. Cela pourrétre di au fait que l'image
donrée contient des caragtstigues communes ou des structures qui peu-
vent étre troues dans deux ou plusieurs classes. L'effet du seuil est
alors deliminer les esultats les plus incertains. Le tableau 1 (teoise
ligne) montre les@&sultats de la classi cation moyenne pour un seuil de
0;55 (seuls lesasultats a max p(X = ¢jl) 0:55, au p(X = ¢, est la
probabilie que le point de vue actuklappartienta ¢k, sont conser@s).

Ces Esultats onéte obtenus en utilisant les caradstiqgues extraitea
partir des donees blanchies. Dans ce cas, le taux d'acceptation moyen
(le pourcentage d'exemples pris en compte) varie de a5856%, selon

le laboratoire. Lesésultats obtenus ici sont meilleurs que ceux psli
dans [Ullah et al/, 2008]. Lorsque I'on consi@ I'ensemble de$sultats
obtenus par apprentissage et par tests avec des conditions de lueninosit
semblables, nous avons obtenu un taux de classi cation moyen 68%0
pour COLD-Saarbrucken laboratoire,;88% pour COLD-Freiburg labo-
ratoire et 9066% pour COLD-Ljubljana laboratoire.

Comme les &ésultats pesenés dans/[Ullah et al., 2008] la performance a
diminué pour les expriences meees dans des conditions de luminesit
differentes. Dans ce cas, nous avons obtenu des taux de classi cation
de 83683% pour COLD-Saarbrucken laboratoire; B8 pour COLD-
Freiburg laboratoire et 8862% pour COLD-Ljubljana laboratoire.

Nous avonggalement applicgila methode du seuil sur leésultats obtenus
avec les donees normaliges localement. Le tableau 2 (deemie ligne)
montre les esultats de la classi cation moyenne en utilisant un seuil simi-
laire (0;55). On remarque que le taux moyen des images aeesgt aug-
mene pour se situer entre 86%690%, selon le laboratoire. cessultat



demontrent qu'un nombre pludee d'images @&t utilise dans la classi-
cation que dans l'exgrience pecedente. En outre, le@sultats moyens
sont largement meilleurs que ceux péBlidans|[Ullah et al., 2008]. Ceci
indique que la sparabilie lineaire des dorees aété signi cativement
aneliorée dans le cas de I'utilisation des dé@as normaliges pour l'extrac-
tion de caradristiques.

En ce qui concerne la sensib@ia la luminosié. Dans les deux cas, nos
résultats semblerittre moins sensibles aux conditions d'illumination par
rapport aux esultats obtenus dans [Ullah et al., 2008]. Comme dans les
experiences pEcdentes, nous avons constaine faible performance sur
les doniees COLD-Freiburg dor@es, ce qui con rme que cette collection
est la plus dif cile de toute la base COLD comme indégdans [Ullah

et all,| 2008]. Toutefois, dans le cas de I'utilisation des fonctions apprises
a partir des donges non blanchies, avec et sans seuillage, égmsdtats de
classi cation pour le laboratoire Freiburg@dassent les meilleurs obtenus
par [Ullah et al.; 2008].

En regle ¢gerérale, les tableaux 1 et 2 montrent une comparaison globale
de nos esultats avec ceux de [Ullah et al., 2008] pour les trois conditions
d'apprentissage. lls montreagalement lesasultats obtenus en utilisant
une classi cation SVM au lieu d'uneégression softmax. Legsultats
obtenus sont tow fait comparablea softmax montrant que le DBN cal-
cule une signature leairement gparable. lls soulignent le fait que les
elements appris par I'approche DBNs sont plus robustes pouraahe t

de reconnaissance de lieensantique que I'extraction des camgstiques
ad-hocbase sur les descripteurs (GiST, CENTRIST, SURF, et SIFT).

Conclusion et perspectives

Le but de cette thseétait detudier I'utilisation de DBNs dans unache de
reconnaissance d'image dif cile, la reconnaissanemantique de lieux.
Nos resultats montrent qu'une approche féedsur des images minia-
ture suivie d'une projection sur un espace de ca&ratiques appropei
peut obtenir desasultats inkressants dans la classi cation d'ugehe de
reconnaissance de lieuermantiques. lls ont&pasé les performances



des meilleures publications [Ullah et|al., 2008] éssur des techniques
plus complexes (utilisation dettecteurs SIFT suivie d'une classi cation
SVM). Comme attendu, le€sultats de classi cation o@&té signi cative-

ment meilleurs quand nous avons uélies caradristiques tiees d'un
ensemble de domes normaliges localement. On peut dire que les car-
ackristiques extraites par les statistiques de premier et second ordre sont
nettement meilleures que les ca@tiques extraites par les statistiques
d'ordre sug@rieur en termes de classi cation comm@alindiqle par Agt
garwal and Agrawal [2012]. Toutefois, a n de recofina un lieu, il ne
semble pas @écessaire de classer correctement chaque image du lieu. En
ce qui concerne la reconnaissance de lieu, toutes les images ne sont pas
instructives: certaines d'entre elles sont oues quand le robot tourne ou
se ceplace trop rapidement d'un endraitun autre, d'autres ne montrent
pas de @étails informatifs (par exemple lorsque le robot est face mur).
Comme le systme propos calcule la probabilé de la pece la plus prob-

able parmi toutes les @tes possibles, il offre la possibditle ponérer
chaqgue conclusion d'un facteur de con ance ass@cla distribution de
probabilie sur toutes les classes. On peut akdisiiner les images les

plus incertaines, augmentant ainsi le score de reconnaissance. |l offre une
alternative plus simpla la méthode propa=e dans [Pronobis et &l., 2006]
base sur l'inegration d'indices et le calcul d'un cete de con ance dans

une approche de classi cation SVM.

L'apport fondamental de cette ébe est donc la&monstration que les
DBNs coupés avec des mini-images peuvétte utilies avec sues
dans le cadre de la SPR. Ces coasidions ont grandement contrébu

a la simpli cation de l'algorithme de classi cation global. En effet, ils
apportent des vecteurs de codage qui peuetra utili€s directement
dans une rethode discriminanteA notre connaissance, c'est la prare
demonstration que I'extraction de caraxstiquesa partir de mini-images
normaliges en utilisant les DBNs est une approche discriminante alterna-
tive pour la SPR qui r@rite d'@tre pris en consgfation.



Ainsi, la presente approche obtient des scores comparables aux approches
bages sur des signatures obtenues manuellement (commeétéesealirs

de GIST ou SIFT) et des techniques de classi cation plus sophéesgiqu
comme SVM. Comme I'ont soulign[Hinton et al., 201/1], les caragisti-

gues extraites par les DBNs sont plus prometteuses pour la classi cation
d'images que les caramtstiques obtenues manuellement.

Diff erentes voies peuvestre utilies dans des prochainetides pour
étendre cette recherche. Une dereétape d'ajustement n pedétre in-
troduitea l'aide de Etro-propagation au lieu d'utiliser des caiistiques
grosseres, comme illusér dans [[Krizhevsky and Hinton]. Cependant,
l'utilisation de caradtristiques grossres rend l'algorithme ergrement
incrementieléevitant I'adaptatiora un domaine i que. La £paration
stricte entre la construction de l'espace des céaratiques et la clas-

si cation permet détudier les proldmes de classi cation qui partagent
les mémes caraéristiques d'espace. Lirgpendance de la construction
des caradristiques d'espace a un autre avantage dans le contexte de la
robotiqgue autonome: cela pegéire consiére comme une maturation de
developpement acquise en ligne par le robot, une seule fois, au cours
d'une phase d'exploration de son environnement. Une autre question n'a
paséte étudiée dans ce travail et reste ouverte malguelques tentatives
interessantes [Guillaume et|al., 2011; Ullah et|al., 2008] il s'agit de la
cakégorisation de lieux b&e sur la vision. La cégorisation est la fagcon

de reconndre le caraare fonctionnel d'une jgice, par exemple avec la
base de dorges COLD la reconnaissance d'un bureau ou d'un couloir
dans diferents laboratoires. Ainsi, il pourrditre ineressant de voir si une
approche ba=® sur les DBNs est capable d'aliorer les performances de
caggorisation. En outre, il pourragtreegalement irédressant dvaluer la
performance de DBN sur leathes de reconnaissance d'objets.
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Chapter 1

Introduction

1.1 Introduction

Today, mobile robotic systems are widely used in the industry to perform different
tasks such as packaging, painting, weldiet; However, robotics research devel-

ops more sophisticated applications that need the robot to be autonomous. Autonomy
means that the robot will be able to decide by itself what behavior to adopt in unknown
and uncertain environments. One type of tasks that require autonomy are the one in-
volving people since people behavior is often unpredictable. Situations in which robots
work in interaction with people are numerous. However, they often require the knowl-
edge of the human environments. Personal assistance for example needs that the robots
has a knowledge of the organization of the environment. In order to achieve that, the
robot needs to locate itself. The answer of questions like “Where am 1?7, “How do |
get there?”, and “Where am | going to?” will allow the robot to behave and interact
successfully and freely. Localization, mapping, and semantic place recognition seem
to be required to solve these questions. Most of works have focused on the rst two
tracks. On the contrary, the last point has been addressed only recently and is currently
always under investigations.

Whenever and wherever the robots are designed to behave and interact with the
users, semantic information concerning places can be interesting and important. If
the robot location is correctly recognized, its behavior will be improved for a lot of
different applications and tasks. This is one of the main reasons why, in this research,
we address the problem of robot localization based on semantic cues.



In this introduction, we start by identifying the research problem statement and the
substantial motivations to propose a new approach to this problem. We then describe
the main objectives and advantages to develop this work. We end this chapter by
presenting an outline of the remaining chapters of this thesis.

1.2 Problem de nition and overview

Robot localization is one of the major problems for the future of autonomous systems.
If the robot does not know where it is, it will be very dif cult to do further processes

or tasks. The robot will indeed need to have at least some information about where it
is to be able to operate and interact successfully|[Kor, 11998; Borenstein|et al., 1997].
The guestion of semantic place recognition poses immediately one important problem

: what are the categories a robot should be able to recognize and what are the mecha-
nisms by which human and animals recognize the categories of their environments. It
seems obvious that the categories that divide the world of a y, a dog or a human are
deeply different. This seems to be due to the fact that at least some of these categories
involve speci c functionalities that each of these animals must use for recognition.
The vy is attracted by soft meals, the dog recognizes its kennel to speci c smells, the
human forms categories with chairs since it can use them to sit. This ecological way to
consider categories is surely the most adapted to future autonomous robotics. It would
involve reinforcement and unsupervised learning but it seems for the moment largely
out of reach. This is why the large majority of researches on place recognition have
focused on recognition categories that humans make in their environment. Note that if
the problem is less ecological than the recognition of genuine categories, it is helpful
for interaction with humans. Besides, the problem is simpler than the previous one and
can be solved using supervised learning methods.

Probabilistic approaches [Thrun et al., 2005] have given rise to Simultaneous Lo-
cation and Mapping (SLAM) techniques. However, the place information in this case
is different from the information used for the determination of the semantic categories
of places. Beyond the precise metric localization given by SLAM, the ability for a
mobile robot to determine the nature of its environment (kitchen, room, corgtior,
remains a challenging task. The knowledge of its metric coordinates or even the neigh-
borhood information that can be encoded into topological maps is indeed not suf cient.



The semantic place recognition (SPR) is however required for a large set of tasks. It
can for example be used as contextual information which fosters object detection and
recognition (giving priors on object identity, location and scale) when it is achieved
without any reference to the objects present in the scene. Moreover, it is able to build
an absolute reference to the robot location, providing a simple solution for problems
where the localization cannot be deduced from neighboring locations, such as in the
kidnapped robot or the loop closure problems.

Most of the proposed approaches for place recognition or place categorization have
used vision alone or combined with several types of telemeters such as laser or sonar

see [Pronobis et al., 2010] Only few approaches have addressed this problem by
integrating semantic informatiorsee [Guillaume et al., 2011] It is well known that
vision provides richer information than telemeters which is an important advantage for
ne discrimination. Vision also offers more portable and cost effective solutions. It
also can provide information unavailable for other sensors, for instance, it can provide
semantic information on a scene through the understanding of its visual appearance,
not just the geometric aspect of it. This is why we are interested in visual semantic
place recognition. This would improve the performance in terms of exibility and
complexity for the classi cation process.

In spite of recent works, current approaches to vision-based semantic place recog-
nition are still facing several challenges. The complexity and adaptability are probably
the most important ones. In this thesis, we focus on developing a system that should
overcome some of these challenges. We tried an alternative approach than the ones
proposed recently in the literature. All of the approaches require a description of the
scene in terms of a signature. Two different approaches are possible, the one more
traditional based on hand-crafted methods based on empirical descriptors (like SURF
(Speeded Up Robust Features) or SIFT (Scale Invariant Feature transform) detectors),
the second based on the use of an alphabet of features designed from theoretical consid-
erations and able to create an appropriate representation of the initial images. Recently
the use of Restricted Boltzmann Machines (RBMs) has been shown able to derive such
an alphabet. The method we propose in this work is based on such approaches.



1.3 Research objectives

This thesis thus presents a novel approach for SPR based on RBMs and a direct use of
tiny images. We will see that the major advantage of this model is that it provides a
simple alternative to the existing approaches of SPR [like [Pronobis and Caputb, 2007;
Ullah et all, 2008]. In particular, the objectives of this thesis are itemized in the fol-
lowing points:

The model must provide mobile robotic systems an ability to determine the cur-
rent location based on semantic information.

Ideally, the performance of the system should be directly proportional to the
recognition accuracy,e. this system must be able to provide an accurate classi-
cation process.

Since most of the current approaches are very complex, the designed system
should simplify the overall classi cation process.

The system should also demonstrate that Deep Belief Networks (DBNs) coupled
with tiny images followed by a simple classi er, can be used as an alternative
approach to achieve vision-based place recognition for autonomous agents.

The main objective of this work is thus to de ne a feasible simple algorithm for
scalable semantic place recognition. The rst two goals have already been achieved in
most of the current approaches such as [Pronobis and Caputo! 2007; Ullah et al., 2008;
Wu and Rehd, 2011] but irrespective to the complexity of the whole process. We want
to show here that these goals can be achieved using DBNs coupled with tiny images,
that would facilitate the classi cation process.

1.4 Thesis organization

The rest of the thesis is organized as follows. In chapter 2, we rst introduce the
problem of SPR in detail and then present background information about the existing
SPR approaches. Energy-based models, such as Boltzmann Machines (BMs), RBMs,
and DBNSs, are also described in this chapter. The chapter also presents the Contrastive



Divergence (CD) learning algorithm for training RBM models. Then, it presents a
theoretical background for SVM and softmax classi ers. Finally, it concludes towards
the choices of the proposed model for a SPR task.

In chapter 3, using two standard databases of natural images, we experimentally in-
vestigate several parameters and factors that play important roles in having an optimal
generative model. We also study the role of normalization on the selection of spatial
ferquencies in the initial image set. The chapter concludes that DBNs can capture a
set of high-level interesting features, and thus their use in image coding could simplify
the problem of SPR.

In chapter 4, we describe the different phases of the model including, image pre-
processing, image coding, and image classi cation, are explained. Then, we study
what kind of features are extracted from datasets that are directly used as the input of
the network. To do that we reduce the images to very small images (“tiny” images).
We show that the loss of information is limited and that such tiny images can be used
for SPR. We also study the effect of the normalization of the images on the extracted
features to conclude that normalization extracts higher semantic level features than
whitening.

In chapter 5, we use the COLD database of robot localization to present the nal
performances of the proposed model. Features extracted by training two RBM layers
are then used to create a new representation of the initial data that is used as input to
the classi cation. Several classi cation results using a linear and a nonlinear classi ers
are presented.

In chapter 6, we present our conclusions and suggestions for future research. A
number of directions for future development of a SPR using DBNSs are given. Finally,
several proofs are presented in the appendices.



Chapter 2

Background and related work

2.1 Introduction to semantic place recognition

The rst part of the present chapter introduces the problem of semantic place recogni-
tion (SPR) for autonomous robotic systems in more details and the tracks followed to
solve it. The SPR problem refers to distinguishing differences between different envi-
ronmental locationseg(g. distinguishing a kitchen from an of ce). Usually, coding is

the rst step before recognizing the robot place. Thus, this chapter provides a detailed
discussion of coding and learning methods that have been used to achieve SPR. The
coding methods can be classi ed into object-based and view-based methods [Torralba
et al|| 2003a]. Object-based recognition methods are used to identify a large number of
objects as an information to recognize the robot place, while view-based recognition
approaches are used to compute directly a set of signatures or features, that exploit vi-
sual context, without having to identify speci ¢ regions or objects. These features can
be used to generate a new representation of the initial data and then allow performing
classi cation in the feature space. According to [Hsu and Grifiths, 2010], learning
methods can also be categorized into generative and discriminative approaches. Gen-
erative approaches are used within the framework of naive Bayes classi er (NBC) and
Bayesian Itering [Torralba et &ll, 2003b; Wu and Rehg, 2011] to learn a model tting
the original data. While discriminative approaches are used to directly discriminate
data within the framework of Neural Networks (NNs) and support vector machines
(SVMs) |Ullah et al.| 2008]. A detailed description of these methods will be presented
later in this chapter.



The second part of the chapter presents deep architecture models as alternative
techniques to SVMs for the construction of the feature space. In this context, we rst
illustrate the main mathematical concepts of Energy-Based Models (EBMs), general
Boltzmann Machines (BM), and Restricted Boltzmann Machines (RBMs). We then
explain how to stack RBM models to generate Deep Belief Networks (DBNs). The
chapter ends by introducing the different learning techniques such as maximizing the
log-likelihood, Markov-Chain Monte-Carlo (MCMC) sampling methods like Gibbs
sampling, and Contrastive Divergence (CD) that can be used to train Product of Experts
(PoEs) models.

In general, knowing “where am 1?” is a challenging question for mobile robotic
platforms. Different researches have answered this question either by the use of metric
localization or by the use of topological localization (mapping). Metric localization is
the ability of a mobile robot to determine its position in a common coordinate frame,
while topological localization is the ability for a mobile robot to produce a map of its
environment.

For simple environments, it is possible to provide a map to the robot, for instance
from building plans. However, these plans are not always accurate and do not consider
the various objects inside each building which can impede the progress of the robot.
Moreover, these plans are not always available (consider for example robots that must
operate after a natural disaster). It is therefore necessary for the robot to map its envi-
ronment while it explores. This problem is known as Simultaneous Localization and
Mapping (SLAM). In fact, this problem is dif cult because the construction of a map
requires locating the different objects. However, the authors in [Thrun, 2001; | Thrun
et al|/ 2005] have proposed several probabilistic approaches for this problem. They are
based on statistical models of sensors. Thus, in a navigation task, instead of giving a
single estimation of the robot location, they proposed to use probabilistic algorithms
which are based on the probability distribution of all locations. However, the ability
for a mobile robot to determine the nature of its environment (the ability to distinguish
different rooms using semantic cues) remains a challenging task in these approaches.
This task is known as semantic place recognition.

The semantic category of a place gives priors on objects and de nes what to do;
for instance, the probability to nd a television is higher in the living room than in
the bathroom. So, if we rst predict the robot place, then it will be easier to use this



place to recognize local objects. Besides, SPR build an absolute reference to the robot
location, providing a simple solution for problems in which the localization cannot
be deduced from neighboring locations, such as in the kidnapped robot or the loop
closure problems. Furthermore, semantic place recognition will facilitate the human-
robot interaction (with a topological mapg,g. the human can give the following
command to the robot “go to the bedroom”.

However, as mentioned earlier, performing semantic place recognition seems to be
a challenging task for the following reasons:

Firstly, the appearance of a room is not always stable due to the dynamical vari-
ations in time, like illumination condition changes (day or night), presence or
absence of people, or even changing furnitures. For example, see the changes in
gure 2.1]. All these samples are selected from the COLD database [Ullah et al.,
20071 .

Cloudy Day Sunny Day Night Day

@

Presence of People Furniture Added

(b)

Figure 2.1: Dynamical variations due to the: (a) In uence of illumination or (b) In uence of
human activity.

Secondly, some classes share common visual featargsthe of ces in the

COLD database as shown in gufe .2 or even when the robot turns from one
room to another one. It means that the variance between these classes is very
small.

1The COLD database (COsy Localization database) is a collection of labeled images created for the
purpose of robot localization. See Chapter 4 for a more in depth description.



1-person of ce 2-person of ce 1-person of ce 2-person of ce 2-person of ce

Figure 2.2: Two different classes of 1-person and 2-person of ces, but they have strong com-
mon visual features. All these samples are also selected from the COLD database [Ullah et al.,
2007].

Finally, the image annotation is usually based on the position of the robot during
acquisition rather than the contents of the images. As a result, the labels might
not be consistent with the visual information when the robot was positioned in a
transition region between two rooms. This dif culty is illustrated in gyre]2.3,
which shows sample images of the interior of each room, captured with both
perspective and omni-directional cameFﬂa[slIIah et al|, 2007]..

Corridor Corridor Robotics lab Conference room Corridor

Figure 2.3: Exemplary images selected from the COLD-Saarbruecken dataset illustrating the
limitations of the labeling technique. The gure shows images acquired with perspective cam-
era with labels assigned on the basis of the location of the robot. The labels do not correspond
to the visual information in the images due to the relatively narrow eld of view of the cameras.
The corresponding images are acquired using the omni-directional camera [Ullah et &l., 2007].

In this work, we need to design an approach to perform the classi cation process
taking into account illumination variations. We want to design a supervised machine

lomnidirectional camera shows the interior of each room by a set of images rather than an image
by itself as in the perspective camera.



learning approach by letting the closed-world assumption hold true, that is, the robot
does not have to decide what are the places or even the extent of these different places.
The robot indeed needs to recognize its current location based on semantic categories
which are de ned by the human. A detailed description of this novel approach will be
drawn in Chapter 4 after having a thorough review of the relevant literature.

Several recent methods have been used to address the problem of robot localization
based on semantic information (for instance see [Dubois ét al.| 2011; Guillaurme et al.,
2011;[ Torralba et al;, 2003a; Ullah et|al., 2008; Wu et al., 2009]). These approaches
and others are illustrated in the next sections.

2.2 Current approaches for semantic place recognition

Although most of the proposed approaches to the problem of robot localization have

given rise to SLAM techniques, some other approaches have addressed this problem
as a SPR task. This task usually requires rst to produce an appropriate code for the

initial data and then use this code to learn the robot places. In the following sections

we make a survey of the different coding and learning approaches that can be used in
the context of SPR.

2.2.1 Coding methods

Most of the researchers have shown that before preforming a SPR task, it is necessary
to create an appropriate code of the initial data [Oliva and Torralba,| 2006; Torralba
et all,| 2003b; Ullah et all, 2008; Wu et|al., 2009]. To achieve that, different coding
methods have already been proposed within the framework of object-based and view-
based methods. We introduce both approaches in order to understand the differences
between them and we also describe the state-of-the-art of these approaches in the con-
text of place recognition.

2.2.1.1 Object-based semantic place recognition methods

Object-based place recognition can be used for mobile robotics, to determine the robot
place. Traditionally, this kind of approach is rst based on learning and detecting a set
of interesting objects in the images and then use them to determine the robot location.

10



In other words, object-based methods seek to learn the objects in the scene to perceive
and understand the environment of the robot [Changlet al., 2008, 2009].

Recently, visual object recognition has been widely investigated, with the develop-
ment of different methods. Most of these approaches have rst focused on extracting
the local image features at a variety of positions and scales, and then comparing the
extracted features of an object with a set of well-known objects. This allows classi-
fying each image patch independently from the others (see [Murase and Nayar, 1995;
Papageorgiou and Poggjo, 2000; Schneiderman and Kanade, 2000; Viola and Jones,
2002)).

Several other approaches based on image segmentation have investigated both prob-
lems of object and place recognition. In these approaches, the authors rst segment the
image into objects, using a segmentation algorithm, and then use them to recognize the
robot location. Among of these approaches, some authors [Chang et al., 2008] propose
to use an image segmentation algorithm, called “jigsaw puzzle”, to segment the input
scene image into regions that may correspond to objects or parts of objects. Based on
these image regions, they detect a set of salient objects to represent a place and the
SIFT descriptors contained in these salient objects are kept in the database. A similar
approach, in/[Chang et al., 2009], proposes to use a more sophisticated segmentation
algorithm. This algorithm rst segments the salient objects appearing in the scene us-
ing “Gestalt laws” to detect the boundaries of the major object classes like vehicles,
buildings, pedestrianatc.ﬂ. They then represent each prominent object with a list of
SIFT descriptors. Both approaches recognize the place by recalling if they have seen
some of the salient objects appearing in the scene before.

However, although it is possible to use object-based place recognition approaches,
Fergus stated that successful approaches to object recognition must address a variety
of problems|[Fergus, 2005]:

Changes of aspect. Different views of an object can be very different, as shown
in gure .4 (a).

1Gestalt principles, or gestalt laws, are rules of the organization of perceptual scenes. They aim to
formulate the regularities according to which the perceptual input is organized into unitary forms, also
referred to as (sub)wholes, groups, groupings. These principles mainly apply to vision.
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Changes of viewpoint. Objects can also be subject to in-plane transformations
(translation, rotation, scaling, skews) and out-of-plane transformations (fore-
shortenings) that change their appearance. However, some viewpoints may be
more likely than othersi.e. motorbikes are rarely vertically oriented) and this
prior knowledge may be exploited.

lllumination differences. A change in the lighting of the object will change the
pixel values in the image. The change could be a shift or scaling of the pixel
values or, if the light source changes position, a non-linear transformation, com-
plicated by shadows falling on the object. The images in duré 2.4 (b) illustrate
examples of drastic changes in lighting.

Background clutter. In the majority ofimages itis rare for the object to be cleanly

segmented from the background. More typically, the background of the image
contains many other objects (other than the one of interest), which distract from
the object itself. The imagesin gurés 2.4 (a and b) have cluttered backgrounds.

Occlusion. Some parts of the object may be obscured by another object, as
illustrated by the monkeys in gure 2.4 (c). Additionally, as the aspect changes,
one part of the object may hide another. This is known as self-occlusion.

Intra-class variation. As in the car example of glire|2.5, the category itself can
have a large degree of visual variability. The variability can take various forms:

in the geometry, appearance, texture and so on. Also, one instance of an object
may have features which are missing on anotkag. the radiator grille on the

cars of gure[2.5).

Globally, the methods based on objects require complex models and heavy learning
procedures. Furthermore, the use of object recognition in classi cation is not trivial.
Therefore, recognizing the objects before recognizing the place itself seems to be a
dif cult task. In contrast, recognizing the room would provide strong priors, simpli-
fying the process of object recognition, which is not possible in object-based methods
but possible in view-based methods.
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Figure 2.4: (a) Variation due to changes in aspect, (b) Variation in appearance due to a change
in illumination, and (c) Some examples of occlusipn [Fergus, 2005].

2.2.1.2 View-based semantic place recognition methods

View-based methods are used to predict the robot place from images of the scene. They
seem to be a more powerful technique than object-based methods for both place and
object recognition problems [Torralba et al., 2003b]. Vision-based place recognition
have two major advantages:

Firstly, vision can guide the action selection by the system. It can determine
what are the most signi cant actions (features) in the place so that have to be
extracted.

Generally, the best methods reach a high level classi cation rate, sometimes
exceeding 90%. However, most of these methods do not test the classi ca-
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Figure 2.5: Some examples from a visual category [Fergus,/2005].

tion robustness with respect to the illumination conditions. Some others do so,
for instance, the authors in [Pronobis and Caputo, 2007] proposed to use the
IDOL (Image Database for rObot Localization) database which allows this kind
of tests. More information about this database can be found in [Lug et al/, 2006].
The recognition rate reaches 95% when the illumination conditions are the same
for learning and recognition, but drop to about 75% when it is not the case. The
authors in[Ullah et all, 2008] also proposed to use the COLD database to test
more precisely the robustness to dynamic changes and environmental variabili-
ties. They proposed to use the following protocol: training and testing were al-
ways done on different sequences acquired in the same laboratory. They trained
on one illumination condition, and tested on sequences acquired under various
illumination conditions, and after some time. With these experiments they were
able to address at the same time the robustness with respect to dynamic and
geographical changes.

Secondly, several works (like [Torralba, 2003; Torralba €t/al., 2003b]) have
shown that recognizing a place would facilitate the recognition of its local ob-
jects. For instance, the recognition of an object like a coffee machine would
be easier if we rst know that the robot is located in the cafeteria and own the
detailed local properties of this room, like its materials components, its typical
shapegct This is called contextual priming: being in a plaeeg( a kitchen),

you can expect to nd speci c objects like pan, but not others like television.
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Besides, semantic cues (color, shape, and texture) in the retinal image produced
by an object provide enough information to unambiguously determine the object
category|[Torralba et al., 2003a].

The place usually appears as a two-dimensional image, and each image is repre-
sented by a raster-scan of pixeig. a vector of intensity values. More formally,
view-based systems exploit visual context (contextual information) to have a low-
dimensional representation of the image (for instance the Generalized Search Tree
“GIST” of the scene)|[Oliva and Torralba, 2001]. Such a representation can be sim-
ply computed without the necessity to identify speci ¢ regions or objects within the
scene. Having identi ed the overall type of the scene, one can then proceed to identify
speci ¢ objects within the scene.

Recently, signi cant works have been developed for place recognition based on vi-
sual descriptors. These descriptors are used to extract signatures, by extracting the re-
gions of interest (ROI), from the images. These signatures are used recognize the robot
place. They consist in a constellation of descriptors, computed over different kinds of
local or global covariant regions [Ramisa et al., 2009]. In other words, these signatures
are a vocabulary computed either using global descriptGeneralized Search Tree
(GiST) [Oliva and Torralbe, 2001] and CENsus TRansform hiISTogram (CENTRIST)
[Wu et al}, 2009] or using local descriptorsSpeeded Up Robust Features (SURF)
[Bay et al.| 2006], and Scale Invariant Feature Transform (SIFT) [lLowe, 1999, 2004]

Local descriptors are used to extract the most interesting pixels in the image in
order to compute its signature. In particular, SIFT descriptors are used to detect and
describe local features in images, like elements of scenery, objects, petopfeowe,

1999, 2004]. They are digital information derived from local analysis of an image and
they characterize the visual content of the image as independently as possible from the
rotation, translation, and scale invariance. SURF is another robust image local detector
and descriptor, rst introduced by [Bay etlal., 2006]. It is partly inspired by the SIFT
descriptors, where the extracted features based on the sum of two-dimensional Haar
wavelet responses with the aid of integral images to reduce the computation load.

Global descriptors have also been used to detect the features (for instarnce see [Tor-
ralba et al.] 2003a; Wu et @al., 2009]). These descriptors use the whole image pixels
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to compute the signature regardless of “interesting points”. Similarly to local descrip-
tors, global descriptors capture the visual context of the image. In particular, GiST
descriptor was introduced in the context of scene recognition by [Oliva and Torralba,
2001]. It is a vector of principal components of outputs of a Gabor-like Iter bank
applied to the image. This descriptor describes the spatial layout by capturing features
such as naturalness, openness, expansion, depth, roughness, complexity, ruggedness
and symmetry [Coelho and Ribeliro, 2010]. CENTRIST is another global descriptor
presented by [Wu et al., 2009]. It aims at capturing the local intensity pattern in the
image, based on the Census Transform (CT) of the edges [Zabih and Wood II, 1994]
E|. Note that the CT is equivalent to the local binary pattern ¢@d#%.1) [Ojala et al.,

2002]. It has been shown that this descriptor is robust to illumination changes and
other minor variationsd.g. moving persons, moved objects in an imagfe,) because

the transformation in the CT is robust to these changes [Wu and Rehg, 2011]. This
point is interesting, because the robot can recognize its current location under different
illumination conditions,.e. the place recognition can be achieved insensitive to the
lighting conditions.

Several vision-based place recognition approaches have already been proposed
based on these coding methods. For instance, the authors in [Oliva and Torralba, 2006;
Torralba et al., 2003b] used the GiST descriptor, while the authors in [Andreasson
et all, 2005 Se et al., 2001; Ullah et al., 2008] used the SIFT descriptor, and nally
the authors in[Wu and Rehg, 2011] used the CENTRIST one. These representations
usually give signatures that are continuous vectors which are not suitable to compute
probabilities and they are not constant in size. the number of interest points varies
from one image to another). To reduce the size of these representations, most of the
authors use Bag-of-Words (BoWs) approaches, which consider only a small set of in-
terest points in the image [Filliat, 2008; Gokalp and Akdoy, 2007; Lazebnik|et al.,
2006; Wu et al., 2009]. This step is usually followed by a vector quantization process,
such that the image can be represented as an histogram.

Several other approaches have been suggested to extract color histograms using
panoramic images [Blaer and Allen, 2002; Ulrich and Nourbakhsh,|2000], or extract

1CT compares the intensity value of a pixel with its eight neighboring pixels, if the intensities of
the neighboring pixels are equal or less than the intensity of the center pixel, then a bit is set to 1 at the
corresponding location, otherwise it is set to 0.
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the Fourier coef cients of low frequency image componehts [Menegattilet al.,| 2004],
or use eigen-space representation of images [Gaspatr et al., 2000] to recognize the dif-
ferent places. Some other works [Pronobis, 2005; Pronobis et al), 2006] use composed
receptive eld histograms which were introduced by [Linde and Lindeberg, |2004].
These histograms have shown to be able to cope with small illumination and pose
variations.

Generally, it is dif cult to conclude whether global or local descriptors are more
bene cial. However, global encodings seem to have good performance in terms of
classi cation.

After image coding, the next step is to perform the recognition process itself (learn-
ing the robot places) using classi cation methods. In the next section we will introduce
the existing classi cation methods that can be used to recognize the robot place.

2.3 Classi cation methods

Before introducing the main concepts of the existing classi cation methods and their
use in the context of SPR, it is important to note that we are interested in the recog-
nition of instances, as presented (in [Ullah et/al., 2008], and not in the recognition of
concepts “categorization” which has also been investigated in [Ullahl ét al., 2008]. In
categorization, observers make decisions about whether distinct objects belong to the
same class or not.€. they measure the similarity between objects or between groups
of objects) €.g. discriminate the of ces in different buildings). On the contrary in
recognition or classi cation, observers judge whether each test object exactly matches
a study object or not [Nosofsky etlal., 201&]q. distinguish between of ce and cor-
ridor). Many terms related to the word “recognition” are used in a somewhat loose
manner in the literature. So, to avoid confusion between these terms, here are some
de nitions for them:

Category (class): set of entities grouped together under one or more common
characteristics. For example, the books are categorized into beginner and ad-
vanced.

Instance recognition (identi cation): the process by which an entity is identi-
ed in an image, with respect to the objects, the viewing angle, brightregss,
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Concerning the scene, the task is to recognize the same scene from a different
angle.

Categorization (category recognition): the process of deciding what class the
entity belongs to, out of many possible classes. In the literature, this term is
sometimes used in the sense of classi cation. However, in this work we assume
that the classi cation process which associates each object to a category is differ-
ent from the categorization process which creates a category in order to associate
an object to it.

Classi cation: the process by which an object is recognized as belonging to a
class or category. For instance, the books in the library are classi ed according
to the subject.

Localization (detection): the process of specifying the location within the image
of all instances of an object.

Recognition: this term is used generically to refer to the problem as a witmle (
any of the set of classi cation, identi cation or localization.

Therefore, in this work we use the terms “recognition” and “classi cation” to speak
about the process of “instance recognition” or “identi cation”. Instance recognition
usually involves linking each new instance to a particular class. Of course, it could be
possible to use rules characterizing a room. However, they are dif cult to nd for the
human. This is why it seems to be more appropriate to use numerical methods to solve
this machine learning (ML) problem.

The goals of machine learning are rst to develop algorithms that could learn (i.e.
re-cognize patterns) from an initial set of known data and then make accurate predic-
tions for previously unseen data. Methods derived from machine learning approaches
have been applied to various questions like autonomous car driving, optical character
recognition, face detection, and speech recognigbn,[Abdel-Rahman et all, 2011;
Hinton et al.| 2006; Sarikaya etlal., 2011].

ML is a branch of Arti cial Intelligence (Al) and it focuses on the statistical nature
of learning. Arthur Samuel has de ned ML as a eld of study that gives computers the
ability to learn without being explicitly programmed [Samuel, 1959]. Thomas Mitchell
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has also de ned ML saying: “A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E” [Mitc¢hell,/1997]. The main
goal of ML is to develop algorithms which learn directly from the empirical data by
exploiting the statistical relationships present in the image. These algorithms can be
organized into supervised, unsupervised, semi-supervised, or reinforcement learning
based on the desired outcome of the algorithm. We provide here some de nitions for
these algorithms, in order to understand the differences between them.

Supervised learning algorithms generate a function that labels the inputs to de-
sired output, where the labeling “right answers” are provided by human experts.
The learning in this case is thus performed with the presence of an “expert”,
teacher, or knowledge of output. Some examples of supervised learning algo-
rithms are: Neural Network [Rumelhart and McClelland, 1986], Support Vector
Machines|[Vapnik, 1998], Decision Trees [Quinlan, 1986], Bayesian Classi ers
[Pazzani and Domingos, 1994ic

Unsupervised learning algorithms model a set of inputs by themselves, so that
the learning procedure does not include any knowledge about output class or
value (data is unlabeled or value is unknown). Some self-guided learning algo-
rithms are: k-Nearest Neighbor algorithm (k-NN) [Beyer et|al., 1999], genetic
algorithms|[[Deb et al., 1999], clustering approaches [Steinbach let all, 20€0],

Semi-supervised learning algorithms combine both labeled and unlabeled exam-
ples for training to generate an appropriate function. Typically, semi-supervised
learning techniques learn from a combination of a limited set of labeled data
with a large amount of unlabeled data which can be inexpensive to generate. For
instance, semi-supervised and transductive SVM [Bennett and Demiriz, 1998;
Joachims, 1999] and co-training [Blum and Mitchel, 1998] are two examples of
semi-supervised learning algorithms.

Reinforcement learning algorithms study how arti cial systems and animals can
learn to improve and optimize their actions in a complex environment. The
most reinforcement learning algorithms are: Monte Carlo Methods (MCMs)

19



[Doucet| 1998], Temporal Difference Methods (TDMs) like Q-learning [Chriisto-
pher/1989], and Direct Policy Search (DPS) [Peters gt al.,|2003].

The problem of semantic place recognition can therefore be solved using machine
learning methods (for instance see the discriminative approaches based on SVMs in
[Pronobis and Caputp, 2007; Ullah et al., 2008] or see the generative approaches based
on Bayesian ltering techniques in [Torralba et al., 2003b; Wu and Rehg, 2011]). In
addition to that, contrarily to the classical localization and mapping works, this work
addresses the problem of robot localization as a supervised machine learning problem.

To introduce the notations of supervised discriminative approaches, let us consider
an example of supervised learning which is represented by &ypejr wherey 2 Y is
the representation of the place in a sp¥a& dimensiont andc 2 C is the class mem-

consisting inN examples can then be generated. The idea is to discriminate between
N different classes in the representation data space. nd and learn the “decision
frontier” that will assign each class to each point of the data space. To achieve that,
generative or discriminative machine learning methods can be used. Discriminative
approaches aim at directly nding the best way to separate the classes (they directly
search for the decision frontier), while the generative ones aim at rst nding the opti-
mal model that explains and ts the original data and then, using the generated model,
nd the frontier between the data. In the next sections, we will explain in more detail
how to use both approaches in the context of semantic place recognition.

2.3.1 Generative approaches

Generative approaches can be used to compute the likelihood of an observation given
a certain place within the framework of Bayesian Itering. These approaches are used
in machine learning for data modeling using the probability density function (PDF) as
shown in gure[2.7 (left) and through the use of Bayes' rule. They describe the data
using structured probabilistic models.

The problem of semantic place recognition can then be expressed as a conditional
probability problem using Bayes theorem as folloR§x = cjy'). More precisely, we

class €” the robot is in.
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2.3.1.1 Naive Bayes classi ers

Naive Bayes Classi ers (NBCs) are probabilistic methods based on Bayes theorem,
under the assumption of the independency between the model features. NBCs assume
that the features of one class are statistically independent from the features of other
classes. This can be explained mathematically using Bayes theorem as follows:

P(x = c)P(y'j% = ©)

P(Y) 1)

P(x = ciy!) =

where

P(x) represents the prior probabilities assigned to each class independently from
the observations.

P(Y'j%) is the probability density of an observatighgiven a certain placg. It
represents the probability of observing different datior each class belongs to
X. Note thaty* is the observation sequencgs.

P(y") is the marginal density (or the probability density) of the dgatd.e. it
represents the probability of observing the different examples. However, this
denominator has no in uence on the classi cation process. Because it does not
depend orc and the values of the featurgsare given, so that it is effectively
constant and it plays a normalization role so tha®(cijy') = 1.

P(x = cjy!) is the posterior probabilityi.e. the conditional probability ok
givenyt. In other words, the probability to be in a given plageccording to a
given observatioy'.

Bayes rule can therefore express the posterior probaBiity= cjy') in terms of
prior probability P(x) and conditional probability density(y'jx). Once the model
is learned, the distributioR(XjY) models the phenomena of the original training data
and allows generating new samples. That's why learning in this model is called gener-
ative.

The most important characteristic of NBC is that the data attributes are assumed
to be independent,i.e. P(y!) = C)ikzlP(yi) , and thus this term has no in uence on
equatior] 2.1 as earlier said. However, the question is how to compute the likelihood
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of an observationthe probability density terr®(y'j%) using Bayes theorem. There
are a couple of solutions to this problem: one is to use the Maximum Likelihood (ML)
technique; another one is to uskEximum A Posterior (MAPechnique, which learns
the data maximizing the likelihood as follows:

XMAP argmaxP(x = ¢jy')
02T

P(x)P(Y'jx = )
TR
arg rTna>P(xt)P(y‘jxt = ¢) (2.2)

where T is a set of observations. Once again, we dropped the fagtorbecause

the probability of the data is constant, based on the fact that independent features are
assumed in NBC. Besides, this gives the rule of NBC and equatipn 2.2 can be re-written
as follows:

Xwap = arg rpaP(xt) OP(yijx = ¢) (2.3)
t [
Hence, this equation computes the individual measurements which are independent
given the robot position. Finally, if we assume that all the classes are equally probable,
the previous equation can be re-written as follows:

XMAP = arg2 rTna>P(ijt =0 (2.4)

NBC therefore provides a decision theory for data classi cation.

Among those approaches, recent researches have been published in [Dubois et al.,
2011]. In this work, the authors propose to use NBCs and temporal integration that
combines successive observations. This model obtained interesting classi cation re-
sults on the COLD database. The overall performance is very close to the state-of-the-
art results|[Guillaume et al., 201/1; Ullah et al., 2008].

2.3.1.2 Bayesian ltering techniques

Another probabilistic generative approach based on Bayesian ltering techniques has
been developed to achieve visual place recognition [Torralbal et al., 2003b; Wu et al.,
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2009]. These techniques provide a powerful statistical tool to Iter the classi cation
results. More formally, Bayes Iters address the problem of recognizing the pace,
the robot is in, using sensory information. Given a stream of observafiasl con-

trols ut, which describe the dynamics of the system, Bayes lter recursively computes
the posterior distribution according to the following equation:

Bel(x) = P(x = cjui;yz;:ii; U 1, 1) (2.5)

However, Bayes Iters make the assumption that the dynamic system is modeled
as Markov Chaini.e. as shown in gurg 26, the observatignand the control mea-
surementy are conditionally independent from the previous measurements given the
statex;. More precisely, this probabilistic approach is based on two assumptions:

1. The Markov assumption of the state evolution says that the knowledge of the
state at time depends only on the previous state at timel

P(%jXot 1;Y11 1;U11) = P(X%j% 1;Ut) (2.6)

This probability distribution is called the transition model and represents the
changing state of the world based on the actions of the robot. It also depends on
the dynamics of the system.

2. The assumption of completeness says that the current state completely explains
the current observatior®(yijXot; Y11 1;U11) = P(Ytj%). Moreover, this proba-
bility distribution is often independent of P(y;jx) = P(yjx). This is known as
sensors model although the model response depends on the state of the world.

Based on these assumptions, the posterior distribution of equiation 2.5 can be re-
computed ef ciently using the following update rule:

Bel(x) = P(% = Gjui;y2:iU 1Y)  P(wix = 0 & P(xix 1)P(x 1y 1) (2.7)
t 1

However, there are still two problems in this update rule. The rst one is how to
compute or model the likelihood paR(y;jx; = c), i.e. how to compute the conditional
probability of an observation according to the considered class. Two possible ways
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Figure 2.6: Markov assumptio®(ytjXo1; Y1t 1;U11) = P(%j%) andP(XjXot 1;Y1t 1;U1t) =
P(xj% 1;Ut).

have been proposed to solve this problem: the rst one, proposed in [Torralba et al.,
2003b], omits the quantization step and models the likelihood as a Gaussian Mixture
Model (GMM); another possible solution is proposed in [Wu and Rehg,|2011], where

the authors discretized the likelihood using Bow methods.

The second problem is how to compute the place transition distribiR{eg)x; 1)-

As illustrated in [Wu et al, 2009], this distribution can be de ned using a transition
matrix as:P(Xj% 1) = peif % equals¢ 1, where the value obe can be in the interval
from 0:9 to 099. The rest of the probability mass is shared uniformly among all other
transitions. A framé is then classi ed as the category which indexig max Rx;jy')

in the Bayesian ltering framework.

Markov-Chain Monte Carlo (MCMC) approaches can also be used to determine the
robot location given a map of its environment and using Markov localization. Although
these methods have been discovered since 1960's by [Handschin,| 1970; Handschin
and Mayne| 1969], they became increasingly popular in robotics over the last few
years. This is due to the fact that they need powerful computer machines. A detailed
discussion around Monte Carlo methods can be found in [Dgucet| 1998].

MCMC methods were therefore used in the eld of mobile robot localization. For
example, in[[Dellaert et al., 1999], the authors proposed a Monte Carlo Localization
(MCL) method to determine the robot location. This method uses uncertainty rep-
resentationj.e. it represents the PDF by maintaining a set of samples that are ran-
domly drawn from it. This step is followed by the use of Monte Carlo methods to
update this density representation over time. Another probabilistic localization algo-
rithmis proposed iri [Thrun et al., 2000], where the authors develop an algorithm called
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Mixture-MCL, which integrates two complementary ways to generate samples in the
estimation. To apply this algorithm for mobile robots localization, a kernel density tree
is learned that permits fast sampling. Another work has been developed in [Torralba
et al|,| 2003a], where the authors use Hidden Markov Model (HMM) to represent each
robot place as a hidden state of the HMM and the feature vector stands for the obser-
vation. The recognition is therefore achieved using standard Bayesian techniques.

Furthermore, another approach proposed in [Torralba et al., 2003b] which is the
rst works that addressed the problem of semantic place recognition and categoriza-
tion. This approach uses the global descriptor GIST together with a temporal integra-
tion. The temporal integration is based on a HMM to mix the information over time
and space. This system was tested in recognition and categorization of instances, on
indoor and outdoor places. However, the estimation of the transition between places
is not straightforward. Besides, the overall algorithm needs high computational cost
to perform the whole classi cation process. The authors$ in [Wu gt al.,|2009] also pro-
posed to use another global descriptor “CENTRIST” for feature extraction. This step
is followed by the use of K-means clustering algorithm, NBC and BoW methods to
perform the classi cation process. The authors also used the same Bayesian Itering
to improve the results. Besides, the overall algorithm is very complex.

Generative Model Discriminative Model

Figure 2.7: Discriminativeversus generative models. Discriminative models try to directly
perform the classi cation, which can be expressed &sj®). Generative approaches rst
learn the conditional probability £Xjc) of each class of the data representation space and
then compute the likelihood(&X), using the Bayesian theory.

If the observed data are truly sampled from the generative model, then tting the
generative model parameters to maximize the data likelihood is a common method.
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However, since most statistical models are only approximations to the true distribu-
tion, then it can be argued that the approximation makes more assumptions than are
necessary to solve the problem by hand. In such cases, it can be more accurate to model
the conditional density functions directly using a discriminative model, although each
application-speci ¢ details will ultimately dictate which approach is most suitable.

2.3.2 Discriminative approaches

Although it was possible to use generative approaches using Bayes rules to compute
the posterior probabilitf(x = cjy'), there is a direct way to estimate this probability
using discriminative approaches. Discriminative approaches can be used to compute
the probability to be in a given place, according to the current observation, as

P(x = cjy;). More precisely, these approaches directly learn the decision frontier in
the data space representation as shown in gurg 2.7 (right). The decision frontier in
the binary case, for instance, means that some examples belong to class 0 and other
examples belong to class 1. The principle of classi cation in these methods is based on
learning the separating surfaces between the data. This learning is particularly based
on modeling the relationships between input and output data. These relationships can
be obtained using a minimum number of assumptions about the structure of input data
to minimize the cost function of the classi cation.

Most of the discriminative approaches have focused on NNs [Rumelhart and Mc-
Clelland, 1986] and SVMs models [Vapnjk, 1998]. These two approaches are based
on a scalar product. More formally, NNs are based on the scalar product in the data
representation space, i.e. a measure of the projection of one vector onto another. To
illustrate that, let's consider the example shown in gure 2.8:

Figure 2.8: Scalar product example of neural networks.
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The unity; has an activation functiomy, given by the following equation:

WijXj =< W X> (2.8)
1

ai:

T Qo

where this activation function can be represented as a scalar product of the input vector,
Xj, and the weightsy;j. Besides, this function de nes the decision frontier to separate
the data into different classes. Similarly, SVMs provide an ef cient way to map the
data into a high-dimensional feature spaae, x! | (x), using the following kernel
function:

K(w,x) =< (wW)j () > (2.9)

NNs and SVMs approaches can therefore be used to predict the current robot place.
In order to illustrate these models in a more precise way, let's explain each of them
separately.

2.3.2.1 Neural networks classi ers

Conventional feed-forward networks are non-recurrent neural networks in which the
connections between the layers are not directed cycles. As shown in[gure 2.9, the
data are feed-forward from the input layer, through the hidden layer(s) and then to the
output layer. This kind of network is called Multi-Layer Perceptrons (MLPs). Usually,
the training process of MLPs for pattern classi cation problems includes two differ-
ent tasks, the rst one is to choose an appropriate network for the problem, and the
second is the adjustment of the network connection weights. If the problem is lin-
early separable, then it is easy to nd the appropriate decision frontier. Otherwise,
this task seems to be a big challenge since we don't know how many hidden units or
even the number of hidden layers are required to compute the optimal decision frontier.
Finding the appropriate network indeed varies from one problem to another and can
be achieved by preliminary trials speci ¢ of the problem at hand. For the learning of
weights, Rumelharet al. [Rumelhart et al), 1986] introduced back-propagation as an
alternative learning algorithm to Boltzmann Machine for multi-layer neural networks
training. Back-propagation, or propagation of error, is a supervised learning mech-
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anism to teach neural networks to perform a given task for networks which have no
feedback.

Figure 2.9: Partly connected feed-forward neural network with one hidden layer and one output
layer. Energies can be contributed by output variables in both hidden and output layers, where
the number of output variables need not correspond to the number of input variables.

The outputs of MLPs, which are based on the weightare usually used to per-
form the classi cation process.e. we use the extracted weights features to separate
the different classes within the framework of Bayesian theof{m,= cjy;; w). How-
ever, these output units do not sum toi.g, a;P(cijy;;w) 6 1, and thus cannot be
used directly to perform the classi cation process. To overcome this problem, one way
is to use a softmax regression to transform these units into real probability values so
that the summation of these values will be equal to 1 for a given obserwatidinis
transformation can then be achieved using the following softmax formula:

eWiTYt

PO = Cijyw) =

2.10
él:lewiryt ( )

Note that a detailed description to softmax regression can be found in section 2.3.2.3.
NNs models can therefore be used to nd the decision frontier which separates the
data into different classes. However, Vapnik [Vaphik, 1995] has demonstrated that the
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decision frontier in NNs cannot be assumed to be the optimal one. This result has lead
to the development of a new classi cation method, the Support Vector Machines.

2.3.2.2 Support vector machines approaches

Support Vector Machine (SVM) is a discriminative model able to construct a hyper-
plane or a set of hyperplanes in a high-dimensional space and can be used for further
tasks such as classi cation. SVMs methods were rst proposed by [Vapnik,| 1998] to
nd the decision rules based on the feature space to discriminate the different classes.
Contrarily to NNs, SVMs do not need to choose the number of hidden units or layers,
but their feature space depends on the use of the different kernels (polynomial, linear,
sigmoid,etc).

SVM is a supervised statistical learning algoriiﬁmt can be used to train the data
and predict the patterns of the data to create a “decision-maker”. Figufe 2.10 illustrates
the high-level view of how we perform these tasks using an SVM approach, where the
input corresponds to the dataset and the output results correspond to the classi cation
of the data which is used for testing. More precisely, using this algorithm we perform
two different tasks:

Learning: by training the input examples (data) using SVM-train function.

Prediction: new examples are used for testing. Usually, if the problem task
is to classify the observations in a set of nite labels, the task is said to be a
classi cation task.

It has been shown that this approach has a good performance on character recog-
nition, text classi cation (see for instance [Joachims, 1999; Leopold and Kindefmann,
2002]). Promising results are also reported for place recognition in [Pronobis et al.] us-
ing this approach. Moreover, SVMs approach has a major advantage over many other
techniques, like Arti cial Neural Networks (ANNS): it's solution is global and unique,
and thus avoids local minima, (for further details, see for instance [Bishop, 1995]).
Another important characteristic in this approach is the ability to use different kernels,

1Sometimes, the authors use SVC or SVM-C to show that the SVM approach is used for a classi -
cation purpose.
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Figure 2.10: High-level conceptual point of view of an SVM approach.

of different degrees, such as linear, polynomial, radial, and sigmoid. It means that it is
possible to identify the appropriate kernel for a particular classi cation problem.

Data classi cation is a common task in machine learning. If the data is linearly
separable, then a linear SVM would be suf cient to perform the classi cation process.
Otherwise, a nonlinear SVM is required. The only difference between the nonlinear
SVM and their linear counterparts is the use of kernel function instead of the inner
product. In the next sections, we introduce both linear and nonlinear SVMs.

Linear support vector machines

Linear SVM classi er is used to learn linear separators in a high dimensional space
with a maximum margin as shown in gufe 2]11. In particular, in the case of a linear
classi cation, a data can be viewed as-@limensional vector, and the idea behind is

to know whether we can separate such points with a 1)-dimensional hyperplane.
Usually, there are many hyperplanes that could separate the data. However, it is possi-
ble to nd the optimal hyperplane which represents the largest separation, or margin,
between the two classes. So we choose the hyperplane so that the distance from it
to the nearest data point on each side is maximized. This is calledimum-margin
hyperplane (MMH)

To better understand how linear SVMs classify the data, let us consider the follow-
ing example shown in gurg 2.12 (a). In this example there are two different classes of
positive and negative nodes. So, the question is how could we sepagatdassify)
these data examples into two different regions.
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Figure 2.11: An example of a separable problem in a 2 dimensional space. The support vectors,
marked with gray squares, de ne the margin of largest separation between the two classes
[Cortes and Vapnik, 1995].

Figure 2.12: (a) Simple example of two different sets of nodes which are linearly separable. (b)
The results obtained using a linear SVM classi er, the black line perfectly separates positive
and negative nodes.

It is obvious that the two different nodes shown in this gure are linearly separable.
It is possible therefore to use a linear SVM to separate the two different categories, as
shown in gure[2.12 (b). However, nding the optimal separation between these data
examples is a challenging task. Therefore, we need to nd the separator margin which
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Figure 2.13: (a) Another example of two different sets of nodes which are not linearly sepa-
rable. (b) The results obtained using a linear SVM, the black line does not perfectly separate
positive and negative nodes.

Figure 2.14: A nonlinear SVM process presentation. It shows that after the data is transformed
from two-dimensional space to three-dimensional space, the data becomes linearly separable.

is determined by just a few examples calledifyport vector‘sﬂ In other words, as
shown in gure[2.1] this separator can be de ned in terms of support vestansd
classi er examplex as follows:

fx) (& ws x+b) (2.11)
S

1Support vectors are a subset of training instances that de ne the decision boundary between classes
as shown in gurg 2.11.
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Non-Linear Support Vector Machines

In the former section, we described how to nd the optimal separating hyperplane in
the linearly separable case using a linear SVM. However, if the data is not linearly sep-
arable as shown in gurds 2.113 (a) gnd 2.14 (left), then linear SVMs are not suf cient

to classify the data into different regions. To illustrate that, let us considé&ntiesive

OR (XORXlassi cation problem, it has 4 different samplé&g); 0);(0; 1); (1;0);(1; 1) g,
located on the corners of a rectangle. Finding a decision frontier that separates these
samples in a two-dimensional space seems to be impossible since the data is not lin-
early separable. However, if we add a new dimension, the problem becomes lin-
early separable and the samples can thus be separated by a hyperplane in the three
dimensions space. This indicates that it is possible to transform non-linearly separable
problems into linearly separable ones by projecting the data into a higher dimensional
space, as illustrated in gufe 2.14.

SVMs provide an easy and ef cient way of doing this mapping to a higher dimen-
sional space, which is referred to the use of the kernel function, and then they construct
the decision frontier in that space. The linear SVM relies on a dot product between data
point vectors, as illustrated in equation 3.11. However, the nonlinear SVM classi er
relies on a dot product between feature vectors which will be illustrated mathemati-
cally later. It means that it is possible to increase the separability of theRdatay
mapping it to a high-dimensional spaleusing a non-linear kernel basis functipn
which can be de ned as follows:

j :RNT H (2.12)

This kernel function can be used to de ne discriminant function of the SVM clas-
si er in the feature spackl as follows:

f)= & wyij 6)7j (x+ b (2.13)
i=1

lLagrange multipliers provide a strategy for nding the local maxima and minima of a function
subject to equality constraints. For instance, consider the following optimization prob{em:::; x,) :
R" ! R subject tog(x1;:::;%,) = 0. In other words, you need to nd the minimum and maximum

33



corresponding labels of the input samplgsandb is a bias. It can be seen that the
computations in equatign 2]13 depend on the inner product of the vectors in the feature
space. Unfortunately, performing these computations in a high dimensional space can
be extremely costly. However, this problem can be solved exploiting the idea of kernel
function. In other words, the training depends only on the inner products of the form

i (x)Tj (X). Consequently, we can overcome determining the feature space represen-
tation of the vectors by introducing the kernel function, which is de ned as follows:

KOay) =7 (%] (¥) (2.14)

Thus after the substitution, equation 3.13 becomes:

f(x) = gWiyiK(XJY)"' b (2.15)
i=1
Note that the kernel functiok(x;y) is a similarity measure between the two vectors
andy which is sometimes mentioned Bercer kernels theoremn other words, the
kernel function must satisfy thiglercer's theoremthat is, thekernel matrix Kgiven
by: 3
K(Xl,Xl) 11 K(X15 %)

o § 0 216

K(Xn.xl) o K(xn;xn)
must have only non-negative eigenvalues. A thorough explanation of this theorem can
be found in|[Cristianini and Shawe-Taylor, 2000].
This similarity measure is obtained using different kernels in order to classify var-
ious kinds of data (see for instance [Chapelle éf al.; Wallraven ét al.; 2003]). The more
important kernel functions are:

Linear kernel:
K(xy)= xTy (2.17)

Polynomial kernel:
K:y) = (XTy+ q)° (2.18)

extremes with respect to the constragnt
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whereq denotes the rst coef cient of this kernel function (default is 0) ahd
denotes the degree of the kernel function.

Gaussian kernel:
jix vii2

K(xy)= e =2 =g 9x yi* (2.19)

wheregis a coef cient in the kernel function (default issteaturesnumbey.

Sigmoid kernel:

K(xy) = tanh(gx"y+ q) (2.20)
Exponential kernel: o
K(xy)= e =2 = e 9 Vi (2.21)

The parameters of these kernel functions are speci ed by the user, usually experimen-
tally. For instance, in the sigmoid kernel we keep changirggindg until theMercer's
theoremis satis ed. In chapter 5, we will employ some of these kernels and study their
impact on the nal classi cation results.

SVM approaches have been widely used in the literature. For instance, [Pronobis
and Caputo, 2007] proposed to use cue integration followed by a SVM classi cation
technique. Also, in [Ullah et al., 2008] the authors used SIFT descriptor combined with
Harries Laplace Detectors (HLDs) for feature extraction, followed by the use of SVM
to perform the classi cation process. These algorithms lead to a highly accurate result
in recognition and is robust to the noise. However, they are based on sophisticated
classi ers.

2.3.2.3 Softmax regression

In statistics, this model is a probabilistic, linear classi er (for example see 2.15).
It is a supervised learning algorithm which can be used to predict of the probability of
occurrence of an event based on the input data. More precisely, this technique can also
be used in recognition for robotic systems to compute the probability to be in a given
place according to the input image.

Binary or binomial classi cation is the task of classifying the members of a given
set of objects into two groups on the basis of whether they have some property or
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Figure 2.15: Simple example of linear classi cation for two different classes.

not. For instance, distinguishing e-mails into two different classes of spam and not-
spam. While, multiclass or multinomial classi cation is the problem of classifying
instances into more than two classes. For instance classifying the e-mails into three
different classes; spam, not-spam, and personnel e-mail or performing the recognition
task on MNIST handwritten digits to classify them into 10 different classes. This can
be modeled as a distributed system according to a multinomial distribution. However,
before explaining the softmax regression model, we want to give a brief description of
the logistic function which is a special case of the softmax regression.

the labeled samples of the input featurés2 R™ 1. If the labels are taking the fol-

lowing form: y{) 2 f 0;1g, a logistic regression is then enough to classify the data.
While if yi) 2 f 1;2;3;::::kg, a softmax regression is required to distinguish between
k classes. For a logistic regression, the hypothesis is given by the following formula:

n . - # " . #
L POY= 0 |1 1 e
he(x) = s(gq'X) = P(y® = 2jx():; =~ bITX 22  balx) ghapx®
YW=2xV;q) 1te 4% €™ 2
(2.22)
where 1
S(Z) = 1+—ebZ (223)

is called the logistic functionb represents the inverse temperature which determines
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the slope of the sigmoid function. Figdre 2.16 shows this function, where, in this case,
the inverse temperature is assumed to be 1. Note that this function tends towards 1 as
z! ¥,andittendstowards O ad  ¥. Therefore, the logistic function and hence
h(x), are always bounded between 0 and 1. The model parantgtarsdg,, which

are also known as “regression coef cients”, can be learned minimizing the following
cost function:

YDloghy(xXV)+ (1 y)log 1 hy(x) (2.24)

=1
Qo3

J(g) =

i=1

Figure 2.16: Logistic sigmoid functiont(x) = 1=(1+ Exp( bx)) with b = 1. This function
can be used as an “activation function” for a mathematical model of a neuron.

Softmax and logistic regressions are discriminative approaches since they try to
approximate decision frontiers between the data. If the classes are mutually exclusive,
S0 a softmax regression classi er would be approp@até—lowever, if they are not
mutually exclusive it would be more appropriate to build a set of separate logistic
regression classi ers. It means that the non-exclusive case for multiple classes is just
an extension of the binary case. A data belongs or not (with a given probability) to each
of the considered classes but these probabilities do not have to sum to 1. On contrary,
all the probabilities of the classes in the exclusive case have to sum to 1 and thus

1Two events are said to be mutually exclusiv®{®\ B) = 0. Note that if all events in a sample
space are mutually exclusive, then all the probabilities must sum to 1 an@¢AfisB) = 1
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we need to use a softmax regression instead of the logistic one for our classi cation
problem. It results that in our classi cation problem using a non-exclusive approach
leads to a scene classi cation (a scene can belong to several classes because it can
include parts of different rooms or locations). While using an exclusive approach leads
to a real place recognition since the robot cannot be in two different places at the
same time. So, logically, a softmax regression classi er would be appropriate for our
classi cation problem because it ensures that probabilities of the different classes are
mutually exclusive.

The hypothesis of a softmax regression for a multinomial distribution takes the
following form:

2 . 3 2 2
PO = 1jxV; ) x>
P i) — % (I)’ ebq'zrx(i) ebq T ()
hg(X) = g () EJX qé _ %E E %: o equ (')g % (2.25)
Py = kjx®: q) ehal X0 1= ebq NO)

whereZ represents the “partition function” which normalizes the data distribution, so

2 3
T
ng o % (2.26)

If these regression coef cients are positive, the probability of the softmax func-
tion outcome will be increased, while negative regression coef cients mean that the
probability of that outcome will be decreased. Large coef cients of the regression will
strongly in uence the probability, while very small regression coef cients will have
a small in uence on the probability of that outcome. To overcome these challenges,
we need to regularize the model coef cients during the learning phase. This can be
achieved using a regularized term or a weight decay, which penalizes the large param-
eters during the learning process.
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Like in the logistic regression, the parameters of a softmax regression can be
learned minimizing the following cost function:

T (0)
k Pd; X | X

. n
a 1y9 = jgog———~= + - a4 & (2.27)
1j=1 érzlebqﬁxo 2i:1j:0 ij

Qoz

J(9) =

Sl

where the rstterm on the left-hand-side of the previous equation represents the regular
cost function of a softmax regression and the second term on the right-hand-side of the
same equation represents the weight decay term. Also, in the rst term there is an
indicator functionf g, which takes a value of 1 if its argument is true and O otherwise.
So, the idea behind this model is to minimize this cost functiifny), by changing

the model parameterg, This can be achieved using a gradient descent procedure as
follows:

ﬂlqj‘](q); forall j (2.28)
wherea is the learning rate of the model. The partial derivative of the cost function,

ﬂiqj\](q), can be derived as follows:

g;:==Qq; a

m . . . .

o= Rgd@= =8 X0 1y0=jg PO = g +lq; (229)
Tia; M-y

whereP(y®) = jjx(;q) represents the conditional probability of a given class with

respect to the model parameters. This probability can be rewritten as follows:

_
ehaj x®

—_— 2.30
i(: 1 ebq;rx(l) ( )

P = jix0;q) =

Qo

The demonstration of this equation can be found in Appendix B and in [Ng, 2011],
and a pseudo code of the update rule for a softmax regression is proposed in Algorithm
(L.

It was stated that the use of a softmax regression depends on the assumption of
obtaining the linear separation of the data using DBNs. However, if this assumption is
false, a nonlinear classi er, like SVM, is required to perform the classi cation process.

The question of whether discriminative or generative approaches are more ef cient
to solve robot localization problem seems to be interesting to explore in this context.
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input : the model parameterg, which are the weights matri¥y, and the
biasesh. y represents the top hidden layer, the matngpresents
the pre-de ned labels of the classg y{) = jg),| = 0:008 is a
regularization rate used to avoid over-parameterization problem,
a = 0:1is a learning rate of the gradient descent, and nally, the
number of required epochs to ensure the convergence of the model
parameters, set to 10000.
output: recognize the robot places such as corridor, toilet, of ceetc.
1 for e= 1to epochdo
2 compute the conditional probability using:
PRV IR
. | PO =00 YR
4 compute the partial derivative of the cost function using:
5 ﬂlqu(Q) = quJ(Q): %éinll x z PyD = jix0;q) +Iq j
6 use the gradient descent method which is given in equ 2.2810
update the model parameters as follows:
;| gj=qj aﬂiqj\](q); forall j
s end

Algorithm 1: This algorithm shows the learning update procedure of a soft-
max regression.
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This question has been investigated in the literature, for example, in [Ng and|Jordan,
2002] the authors have introduced an interesting comparison between the two different
approaches considering two particular classi cation algorithms. The rst one is the
logistic regression, which is a discriminative approach, and the second one is NBC,
which is a generative one. Together they form “discriminative-generative approach”
pair. It means that while naive Bayes aims at maximizing the joint likelin&(xt,y),

of the inputsx and the labely, the logistic regression aims at maximizing the condi-
tional likelihood on the training seB(yjx). In this case, the authors have empirically
shown that the performance of naive Bayes is better than the logistic regression for
less data, but the asymptotic error is higher for the former. They have also shown that
the error in the generative model may converge asymptotically much faster than the
discriminative approach, where the number of training examples is only logarithmic in
the generative model and linear in the discriminative one. However, these hypotheses
are not true for all pairs of discriminative and generative mod&sye can not gen-
eralize them. Hence, the conclusion of Ng and Jordan is that discriminative learning
can sometimes be more ef cient than generative learning algorithms for some prob-
lems. On the other hand, generative learning models might be advantageous for other
problems at least when the model considered ts well the data. Another interesting
work is presented in [Ulusoy and Bishap, 2005] where the authors have introduced
and compared the two approaches for object recognition based on local invariant fea-
tures. They have shown that a discriminative model is capable of very fast inference,
and is able to focus on highly informative features. By contrast, the generative model
gives high classi cation accuracy, and also has some ability to localize the objects
within the image.

As a conclusion, after presenting the different existing approaches that have been
used to achieve SPR, we have noted that these approaches generally include two main
phases of coding and classi cation. We have also seen that most of the coding methods
are based on hand-crafted feature extractors like SIFT, SURF, CENTRIST, and GIST
detectors. These detectors are empirical and they often use BoWs approaches [Chum
et all, 2009; Philbin et al., 2007]. Some of them use the local feature matching|[Lowe,
2004] and they often need to reduce the size of their representations [Torralba et al.,
2008]. They are often followed by vector quantization such that the image can be
represented as a histogram.
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SPR thus requires the use of an appropriate feature space. In the next section we
will see that DNNs offer an interesting alternative to these empirical methods.

2.4 Deep architecture methods

Semantic place recognition therefore requires projecting images onto an appropriate
feature space that allows an accurate and rapid classi cation. Although in the previous
approaches, the feature space was build in an empirical way, we are going to see that
a set of recent methods based on deep architectures of neural networks give the ability
to build it from theoretical considerations.

Concerning features extraction, the last two decades have seen the emergence of
new approaches strongly related to the way natural systems code images [Olshausen
and Field, 2004]. One of the roots of these methods is the analogy with the visual sys-
tem, the rst layers of which seem to correspond to a coding step and to the extraction
by more and more specialized cells of universal elements of the imageslements
that are present in almost all natural images. It has been shown that these elements
are parts of contours and their combinations [Field, 1994; Olshausen and Field, 2004].
These approaches are based on the consideration that natural image statistics are not
Gaussian as it would be if they had a completely random structure [Field, 1994]. The
auto-similar structure of natural images allows the evolution to build “optimal codes”.
These codes are made of statistically independent features and many different methods
have been proposed to construct them from image datasets. One characteristic of these
features is their locality, that can be related to the notion of receptive eld in natural
systems.

It has been shown that Independent Component Analysis (ICA) [Bell and Se-
jnowski,[1997] produces localized features. Besides, itis ef cient for distributions with
high kurtosis well representative of natural image statistics, dominated by rare events
like contours; however the method is linear and not recursive. These two constraints
are released by Deep Belief Networks (DBNSs) [Hinton et|al., 2006] that introduce
non-linearities in the coding scheme and exhibit multiple layers.

Each layer in DBNs is made of a Restricted Boltzmann Machine (RBM), a simpli-
ed version of a Boltzmann Machine proposed by Smolensky [Smolensky,| 1986] and
Hinton [Hintor,| 2002]. Each RBM is able to build a generative statistical model of
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its inputs using a relatively fast learning algorithm, Contrastive Divergence (CD), rst
introduced by Hinton|[Hinton, 2002]. Another important characteristic of the codes
used in natural systems, the sparsity of the representation [Olshausen and Field, 2004]
is also achieved in DBNs.

Deep architecture learning has indeed recently become popular as a powerful way
to code data using a set of independent features [Bengio] 2009]. In particular, deep
neural networks (DNNSs) like DBNs and deep Boltzmann machines (DBMs) have been
applied to different machine learning tasks with impressive improvements over con-
ventional approaches ([Hinton and Salakhutdinov, 2006; Salakhutdinov and Hinton,
2009]). They have recently been used in different applications such as phone recog-
nition in [Abdel-Rahman et al., 20111], natural language processing in [Sarikaya et al.,
2011], and audio processing in [Abdel-Rahman et/al., 2012]. They have also been
used for hand-written character recognition [Hinton, 2002; Hinton gt al.,|2006], ob-
ject recognition|[Nair and Hinton, 2009], collaborative ltering [Salakhutdinov et al.,
2007] and document retrieval. Based on previous observations, RBMs can be used to
model high-dimensional, sequential data and they have proved to be very successful
for motion capture data modeling [Taylor et al., 2006]. They have shown to be ef cient
and powerful for image coding. [Hinton etjal., 2006; Torralba et al., 2008].

In [Torralba et al., 2008] the authors have shown that DBNs can be successfully
used to code huge amounts of images in an ef cient way. Each image in a very large
database is rstreduced to a small size pately(32x32) to be used as an input vector
for a DBN network. A set of prede ned features (the alphabet) is computed, only once,
from a set of representative images and each image is represented by a unique weighted
combination of features taken from the alphabet. With the appropriate parameters the
CD algorithm converges towards a sparse representation of the images, which means
that an image is coded by the smallest possible number of features. A simple distance
measurement between the image codes allows comparing them. To better understand
how DBNs approaches can be used for image coding, we give a detailed description of
them in the next sections.

DNNs are characterized by a large number of layers of neurons and by the use
of layer-wise unsupervised pre-training to learn a probabilistic model for the data. A
DBN is typically constructed by multiple layers of RBMs stacking so that the hidden

43



layer of one RBM becomes the visible layer of another higher RBM layer. Layer-
wise pre-training of RBMs then facilitates nding a more accurate model for the data.
Many researchers have empirically shown that such multi-stage learning works better
than conventional learning methods, such as the back-propagation with random ini-
tialization [Hinton and Salakhutdinoy, 2006; Ranzato et al., 2010; Salakhutdinov and
Hinton, 2009]. It is thus important to have an ef cient method for RBM training.

More precisely, deep architectures are used to nd a high-level representation of
the initial data (extract the most interesting features of the input image and use them to
create a new representation of the initial data) for instance, see[gurg 2.17.

Figure 2.17: An explanation of how to transform the input image into higher levels of rep-
resentation, which includes the most interesting information (characteristics) such as: edges,
corners, object partgfc.

Because DBNs are based on RBMs, which are particular type of Energy-Based
Models (EBMs), we rstintroduce the main mathematical concepts of EBMs (A more
detailed description can be found [n [LeCun et [al., 2006]), a detailed discussion on
Boltzmann Machines (BMs) and its simpler variant, RBMs, that could be helpful to
understand the main concepts of DBNs models. Then, we focus on describing the
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mathematical concepts of Contrastive Divergence (CD) as a powerful learning algo-
rithm that can be used to train DBNs models.

2.4.1 Energy-based models

Several methods have been proposed to achieve image coding [Bell and Sejnowski,
1997;/ Hinton et al., 2006, Olshausen and Figeld, 1996, [1997]. Some of them are Non-
Energy-Based Models (NEBMSs) such as Independent Component Analysis (ICA). It
has been shown that ICA produces localized features and is ef cient for distribu-
tions with high kurtosis well representative of natural image distributions; however
this method is linear and non-recursive as previously said [Bell and Sejnowski, 1997].
These restrictions are released by DBNs [Hinton et al., 2006] which are a particular
type of EBMs based on RBMs.

The energy-based approach is interesting because it suggests an ICA extension to
overcomplete| [Olshausen and Field, 1997] and multi-layer models [Teh et al!, 2003].
It has also been shown that the features of an EBM exhibit marginal dependéncies [Teh
et all,[2003]. Allowing these dependencies can strongly contribute in speeding up the
inference process for the model. While in causal generative models, like ICA, the as-
sumption of marginal independence often leads to intractable inference which needs
to be approximated using some iterative, data dependent scheme. The role of these
iterations can be understood as suppressing the “activity” of less relevant feature, thus
producing a sparse code. However, EBMs can be enriched with inhibitory lateral con-
nections to suppress less relevant features in order to produce a sparser representation.

Another powerful generalization of EBMs is a hierarchical non-linear architecture
in which the output activities are computed with a feed-forward neural network (see
gure R.9), where each layer may contribute to the total energy (for related work see
[Hyvarinen et al.| 2001]). To t this model to data, back-propagation or CD tech-
niques can be used to compute the energy gradients with respect to both data vector
and weights. Finally, the authors in [Teh et al., 2003] have concluded that the EBMs
provide a exible modeling tool which can be trained ef ciently to uncover useful
structures in the data.

Usually, the main purpose of statistical modeling and machine learning is to encode
dependencies between variables [LeCun ef al., [2006]. By capturing those dependen-
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cies, a model can be used to answer questions about the values of unknown variables
given the values of known variables. Recognition systems capture the dependencies
between a set of observed varialse$or example the pixels of an image, and a set of
answer variableg to be predictedd.g. the robot places of natural images). An EBM
takes all the variables (observed and unobserved) as inputs, and produces a scalar en-
ergy (y;X) which measures the “compatibility” between the values of the variables.
More precisely, in an EBM the inference process is done by choosing ayalfrem

the set of all possible values of the unobserved variaplés which the energy func-

tion E(y;x) is the smallest:

y = argmin,yE(y;Xx) (2.31)

whereY is a suitably de ned domain foy [} Therefore, EBMs associate to each
con guration a global energyE, that is the sum of a number of local contributions
which de ne the probability for an image to be proportionaleeg E) [Welling

et al|, 2004],.e. EBM is one of the exponential family forms. In particular, one can
transform an EBM into a probabilistic model through the Gibbs distribution:

e PE(yX)

P(yjx) = — (2.32)

whereZ is a normalization factor or a “partition function”. It represents the sum of the
numerator over all possible observation vectors of the input space and it is given by:

Z= § e PEOX (2.33)
y2Y

where the parametéris an arbitrary positive constant, the “inverse temperatgfié’,1
which determines the slope of the energy function.

The EBM inference through the energy minimization can therefore be seen as a
Maximum A Posterior(MAP) estimation ofy. In general, we would like to learn

linference process is the task of nding the best answer for a given input. For exame)d
take six possible values: animal, human gure, airplane, truck, car, and “none of the above”. Given a
xed input x, which is observed from the world, the process of inference involves, asking the model
to produce a value of the unobserved variapkhat is most compatible with the observed variable
[LeCun et al.| 2006].
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a set of features based on the principle of having low energy between the different
con gurations of a model. In the following sections, we describe how it is possible
to compute the conditional probability of one layer given the other one for BM and
RBM models, which are particular examples of EBMs, using the exponential family
distributions.

2.4.2 Classical Boltzmann machines

The general Boltzmann Machine (BM) learning algorithm is a kind of probabilistic
generative models which was originally introduced by Hinton and Sejnowski [Hinton

et al|,[1984]. As shown in gurg 2.18 (left), the classical BMs can be viewed as a
network of binary probabilistic units, which interact through weighted undirected con-
nections. In this model, the network is fully connectieel,a BM consists in one layer

of visible units,v, and one layer of hidden unith, The units in each layer are fully
connected and are also connected to all other units in other layers. The visible units
are usually clamped by the observed data and the hidden units can be computed using
equatiorj 2.32 by letting the network run freely and sampling the activities of all units.

Figure 2.18:Left: a general Boltzmann Machine. The top layer represents a vector of hidden
featuresh, the bottom layer represents a vector of visible unitgndw represents the sym-
metric interactions betweenandh layers. Right: A restricted Boltzmann machine with no
hidden-to-hidden and no visible-to-visible connections. Since there are no direct connections
within the same layer, the activation function can update all units simultaneously.
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by the following equation:

Ea) = Qawjxx abx; fori< | (2.34)
i [
whereq = fW;bg denotes the model parameters consisting of a weight mdtrix
[wij] and a bias vectab = [j]. wij is the weight of the synaptic connections (sym-
metric connections) between neuromsdj. As in equatior 2.32, the probability of a
particular state is then given through the Gibbs distribution as follows:

e PE(X®) g PE(XQ)

Pixa) = Z(q9) ~ a,e Ewo

(2.35)

For the binary case, the above conditional probability equation of a single;unit
given the states of all other units can be driven as follows:

P(x = 1jx;0) = s(bi+ @ wijx;) (2.36)
i6]
where the sigmoid function is given bg{x) = 1=(1+ e ). The derivation of equa-
tion[2.36 is explained in Appendix A. This derivation is universal for RBM and general
BM [Krizhevsky,[2009].

The neurons of BM are usually divided into visible and hidden uxits| v; h],
where the stategof the visible neurons are clamped to observed data, and the Istates
of the hidden neurons can change freely as previously said. In this case, the probability
of a speci ¢ con guration of the visible neurons can be computed by marginalizing out
the hidden neurons.

Although general BMs are theoretically easy to understand, they have not proven to
be useful for practical problems in machine learning or inference [Hihton, 2002]. This
is due to the fact that the learning is impractical in general BiMsthe convergence
process needs long time to be achieved since we have toRégyas it was illustrated
in equatior] 2.36. In fact, the unconstrained connectivity between the units (see gure
[2.18 (left)) is the main problem in those approaches. However, this connectivity prob-
lem has been restricted by introducing RBM models, which can be useful in practical
problems.
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2.4.3 Gaussian-Bernoulli restricted Boltzmann machines

In 1986, Smolensky introduced Restricted Boltzmann Machines (REMs) [Smo|ensky,
1986] as a powerful learning algorithm which trains deep networks in a greedy layer-
wise fashion. In other words, RBMs train one hidden layer of DBNs at a time by
minimizing the energy function which is given in equatfon 2.37. Contrarily to feed-
forward architectures, which support only bottom-up inference, RBMs are generative
approaches for image coding, which support both bottom-up and top-down inference
processed,

Unlike a classical Boltzmann machine, a RBM is a bipartite undirected graphical
modelqg = fwij;bj;cjg, that learns a generative model of the observed data. It consists
in two layers. The hidden layer, containing latent varialiless used to generate
the visual layer, containing observed variabledVhile generatiorP(vjh) is learned,
the undirected connections also allow recogniti®{injv). The two layers are fully
connected through a set of weighg and biase$by; cjg, and there are no connections
between units of the same layer, as shown in gure [2.18 (right). As illustrated in
[Hop eld; 1982], a joint con guration, ¥,h) of the visible and hidden units has an
energy functiong(v;h;q), given by:

E(vihia)= & qvhw; dbvi & ch (2.37)
P i2v i2h
This energy function corresponds to the binary states of visible uritsl hidden
unitsh. The probabilities of the state for a unit in one layer conditional to the state of
the other layer can therefore be easily computed. According to Gibbs equation:

1 e
P V; h’ = ——ex bE(v:h;q) 2.38
()= e exp (2.38)
whereq = fw; b; cg represents the model parameters, Zfg) is again the “partition
function”. Intuitively, con gurations with low energy are assigned high probability,
while con gurations with high energy are assigned low probability.

1Bottom-up inference is the synthesis of new information from the old one, while top-down infer-
ence is the analysis of goals into subgoals. The lower RBM layers could support object detection by
spotting low-level features indicative of object parts. Conversely, information about objects in the higher
RBM layers could resolve lower-level ambiguities in the image or infer the locations of hidden object
parts.
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Thus after marginalization, the probability of a particular hidden state con guration
h can be derived as follows:

P(h;a) = & P(v;h;q)

Vv

2 bE(v;h;q)

_ ayeé

= 5k e b (2.39)

The sum in the denominator is over all possible visible and hidden con gurations,
and is thus extremely hard to compute when the number of units is large. However, as
previously said, in RBMs there are no direct connections between the visible neurons
or the hidden neurons. It can thus be easy to write down the conditional probability of
a single unit being either 0 or 1 given the states of the other units as follows:

P(hj = Lv;q)
P(v;q)

Given the energy functiork(v; h), of the visible and hidden units, we can rewrite

P(hj=1jv;q) = (2.40)

the above conditional probability equation as follows:
bE(v;h)

P(hj = 1jv;q) = 3,6 BEGH (2.41)

whereb represents the inverse temperaturel 1 which determines the slope of the
sigmoid function. However, for the binary case whéaje f 0; 1g, the above prob-
ability equation of turning on can be derived using the logistic sigmoid function as
demonstrated in [Krizhevsky, 2009] and Appendix A, according to its energy func-
tion, as follows:

P(hj = 1jv;q) = s(cj+ é Wij Vi) (2.42)
|

Once the hidden binary states are computed, we produce a “reconstruction” of the
original patch by setting the state of each visible unit to be 1 with probability:

P(vi = 1jh;g) = s(bi+ & wijh)) (2.43)
]
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However, logistic or binary units are not appropriate for multi-valued inputs like
pixel levels, because logistic units are a very poor representation for data such as
patches of natural images [Hintgn, 2010]. To overcome this problem, as suggested
by Hinton [Hinton,/2010], in the present work we replace the binary visible units by a
zero-mean Gaussian activation scheme as follows:

P(vi= 1jh;q)  N(bi+ § wijhj;s?) (2.44)
j

Concerning the variance of the noise, it is possible to learn it for each visible
unit, but this is dif cult using CD as it is time-consuming. It is more appropriate to
rst normalize the data components to have zero-mean and unit variance and then use
a unit variance and zero-mean for the Gaussian noise. After this modi cation, Gaus-
sian visible units and binary hidden units correspond to the following energy function
model: )

E(v;h;g)= & % & ch & & —hw (2.45)
i2v 25§ i2h i j Si

As a conclusion, contrarily to auto-encoder models that are non-statistical but “de-
terministic models” and aim at nding the best reconstruction of the data or reproduce
the images. RBMs are generative models used to learn the optimal statistical model
which explains the original data or images. Moreover, there are other good reasons to
use RBMs:

First, these approaches are able to produce sparse ef cient features extracted from a
larger alphabet. A sparse representation means that the linear separability of the initial
data should be gained in the feature space. Secondly, RBM can handle multi-modal
stimuli. Units are independent of each other, since there are no connections between
units of the same layer. This allows the units to encode different modalities without
problems. Moreover, RBMs are just basic building blocks. They can be stacked on top
of each other to create Deep Belief Networks. They can be extended to model time-
series|[Sutskever et dl., 2008] or to feature three-way interactions ([Taylor and Hinton,
2009]. Finally, RBMs fall under Bayesian models, which have been used extensively
to model the brain|[Vilares and Kording, 2011]. However, full Bayesian models are
computationally intractable and therefore biologically implausible. By using only an
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approximation, we have not only fast inference and learning, but also a more plausible
algorithm.

The parameters of RBM can be learned from the data using different training tech-
niques. Some of them are: maximizing the log-likelihood, Markov-Chain Monte-Carlo
(MCMC) sampling techniques like Gibbs sampling, and Contrastive Divergence (CD)
learning algorithm. We will see in the next section how we could use these mecha-
nisms for Product of Experts (POEs) models training and we will concentrate on the
use of CD as a faster and powerful learning algorithm to maximize the log-likelihood
gradient.

2.4.4 Learning products of experts by minimizing contrastive di-
vergence

It has been mentioned that Back-Propagation (BP) learning technique works well in a
network where just a single layer is suf cient. However, it does not work well in net-
works with many hidden layers, like DBNs, because it requires to train the whole layers
of the model|[Bengio and LeCun, 2007; Hecht-Nie|sen, 1995; Larochell€ gt al., 2009;
Tesaurd| 1992]. In other words, minimizing the error for each layer requires back-
propagating the error on all model layers, updating the weights and biases. Therefore,
the convergence of BP algorithm becomes more dif cult in networks with multiple
hidden layersj.e. it is time-consuming to assure the convergence. Furthermore, BP
algorithm is not very accurate in the case of DBNs because the gradient of error be-
comes at for the different layers and weights. However, several alternative learning
technigues have been proposed to train DBNs models. But before introducing them
we need to understand the term “Products of Experts” (POES).

General BMs or RBMs are particular examples of POEs model. PoE comiines
individual models by taking the product of their conditional probabilities and normal-
izing the result using the partition functia{q) as follows [Hinton| 2002]:

OmPm(dj dm) _ OmPm(dj am)
Z(9m) acOmPm(cj dm)

(2.46)

whered is a discrete input vectog,represents the indexes for all possible vectors in the
input spaceg, represents the parameters of a particular mog@ndPy(d j gm) is the
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probability ofd under the modei. A common way to learn the PoE parameters is to
maximize the data log-likelihood. Given a training datafsbgi’i 1» the log-likelihood
of PoE is given by:

N M
log P(djqe;::5an) = & & log P(dijfaj0) (2.47)

with respect to the model parametegg, we can then drive the gradient descent as
follows:
flogP(djas;:izian) _ TMogRn(djdm) o o/ni ..., flog Rn(cj dm)

- A P(Cjgy::::
T o a(} (Cjay:::;an) o

(2.48)

A thorough demonstration for this derivative can be found in Appendix C and in
[Wood and Hintoh|, 2012]. In equati$n 2|48, the rst part represents the data distribu-
tion, while the second one represents the expected derivative of the log-likelihood of
an expert on fantasy date,generated from the P(ﬁ The average over the data and
model distributions in equatign 248 can thus be written as follows:

flog P(dj g1;:::;an) " fllog Rn(d j am) fllog Rn(cj gm)
ﬂqm QO ﬂQm QO ﬂCIm Q¥
(2.49)

However, the computation @@¥ seems to be dif cult to obtain, especially in an
inner gradient ascent loop. In other words, computing the partition funcZity),
requires to compute the summation over all possible con gurations of BM, and it is
simply impossible for large BMs. Fortunately, this problem can be tackled in various
ways. One obvious approach is to use Markov-Chain Monte-Carlo (MCMC) sampling
techniques to compute the stochastic gradient to maximize the log-likelihood. Due to
the simplicity of the activation rule for a single neuron given the states of other neurons,
a simple Gibbs sampling is enough to get stochastic gradients. A detailed description
of how to use Gibbs sampling method for traditional BMs training can be found in
[Geman and Gemah, 1984].

IFantasy data (or confabulation data) is the reconstruction data produced by training an observed
data-vector using the CD algorithm.
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However, there are also other kinds of limitations in Gibbs sampling use for BM
training. The biggest problem is due to the full-connectivity of BM: since each neuron
is connected to and in uenced by all the other neurons, it takes as many steps as the
number of neurons to get one sample of the BM state. Even when the visible neurons
are clamped to the training data, the number of required steps for a single fresh sample
is still at least the number of hidden neurons. This makes the successive samples in the
chain highly correlated with each other, and this poor mixing affects the performance
of learning. Another limitation of this approach is that multi-modal distributions are
problematic for Gibbs sampling due to the nature of component-wise sampling, the
samples might miss some modes of the distribution [Salakhutdinov| 2009].

MCMC learning techniques are therefore not useful for classical BMs training
where the network is fully-connected. They also remain slow in training RBMs even
if we restrict the connectivity of the visible and hidden units and thus cannot be used
to train RBMs.

Another way based on Kullback-Leibler Divergence (KLD), rst introduced by
[Kullback and Leibler; 1951], can be used to maximize the log-likelihood. It has been
formally demonstrated that maximizing the log-likelihood of the data (averaged over
the data distribution) is equivalent to minimizing the KLD between the data distribu-
tion, Q°, and the equilibrium distribution over the visible variabl€¥,, that is pro-
duced by prolonged Gibbs sampling from the generative model [Hinton, E)cme
KLD between the data and model distributions can then be written as follows:

0
Dk Q%Q* = & Qfin 8¥
d
= 4 QlogQf anlogQ¥
d
= HQ hIogQ¥|Qo (2.50)

wherek represents the KLD operatdn,i denotes the cross entropy P and Qﬁ
(expectations over the distributioy, Q° represents the entropy of the data distribu-
tion which can be ignored during learning beca@edoes not depend on the model
parameters, an@; = P(dj gy;:::;0n).

1Q%is a natural way to denote the data distribution if we imagine starting a Markov chain at the
data distribution at time 0 [Hinton, 2002].
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However, as illustrated in [Hintoh, 2002], instead of minimizing the KLD between
QP (initial derivative) andQ¥ ( nal derivative), it is possible to minimize the diver-
gence betweefQ’kQ¥) and(QkQ¥) whereQ! can be computed by performing one
step of reconstruction of the data generated by one full step of Gibbs sampling. In fact,
this minimization represents the de nition of “Contrastive Divergence” (CD) which
was proposed by Hinton [Hintbh, 2002] as an approximate learning method for PoE
models training. Instead of running the chain to equilibrium and comparing the initial
and nal derivatives, we can simply run the chain for one full step and then update
the parameters to reduce the tendency of the chain to wander away from the initial
distribution on the rst step. A comparison is thus made between the statistics of the
data and the statistics of its representation generated by Gibbs sampling. Therefore, in
contrastive divergence learning, we try to minimize the following related objective:

CDn = KL(QY%Q¥) KL(QYjiQ¥) (2.51)

The key bene t for the contrastive divergence is that the intractable expectation
overQ¥ on the right-hand-side of equatipn 2.50 cancels out as citéd in [Hinton, 2002],
i.e. theQ¥ term of equatiof 2.51 cancels each other out, as explaingd in [Andrzejewski,

2009; Hinton| 2002]. Consequently, equafion 2.49 can be re-written as follows:
!

T oy ~1~v _  TogPndjam) flog Pn(d j Om)
_ k k =
10m QkQ QkQ dm Q° dm QL
. 1M 1(QQY)
Tdm ﬂQl

(2.52)

The rst two terms of equatiof 2.52 are tractable, because we can compute the
derivative of the initial datad, and the derivative of the reconstruction dada, In
other words, it is straightforward to sample fra@? andQ!, while the third term is
problematic to compute. However, extensive simulations have shown that this term
can safely be neglected because it has a small effect on the nal result compared with
the other two terms [Hintan, 2002]. These extensive simulations were performed using
RBMs with small numbers of visible and hidden units. By performing computations
that are exponential in the number of hidden units and exponential in the number of
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visible units, it is possible to compute the exact valuels/ﬂﬁ?i oo andhvhiliy. Itis

also possible to measure what happen®tQ¥ Q'kQ* when the approximation

in equatior] 2.54 is used to update the weights by an amount that is large compared
with the numerical precision of the machine but small compared with the curvature
of the CD. After performing that, two histograms of the improvements in the CD and
in data log likelihood have been presented in [Hinton, 2002]. The main conclusion is
that the learning procedure does not always improve the log likelihood of training data,
though it has a strong tendency to do so. However, when we ignore the third term in
equationj 2.52, the learning procedure in the case of CD becomes better. Consequently,
by ignoring the third term in equatin 2]52, the model parameters can be adjusted using
the following update rule:

flog pm(d j gm) flog pm(d j dm)

2.53
T[Qm QO ﬂqm Ql ( )

Do W

As shown in gurg[2.1D, CD learning starts by setting the states of the visible units
to a training vector. Then the binary states of the hidden units are all computed in
parallel using equation 2.42. Once binary states have been sampled for the hidden
units, a “reconstruction” is produced by setting escto 1 with a probability given by
the equatiof 2.44. The overall update formula in the weighytss therefore given by:

ﬂ%j Q%kQ* QKQ* hVPhdig h Vi (2.54)

This equation can be rewritten as:
Wij Wi+ h[mioh(j)idata h Vinhrj]i recorl (2.55)

whereh denotes the learning rate ahe?h?i andh/'hli are the cross product of the
visible and hidden units with respect to the data and the model (reconstruction) distri-
butions.\V° corresponds to the initial data distributioh8,is computed using equation
[2.42,V" is sampled using the Gaussian distribution in equdtion| 2.44 andnfith

steps of Gibbs sampling, arid is again computed from equatipn 2.42. Then, for
separate biases of visible and hidden neurons, the update rules are, in analogy to the
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update rule for the weights:
bi b+ h[h‘/iOi data N V/'i recor] (2.56)

and
Cj Cjt h[m?idata h hTirecorﬂ (2.57)

wherev;, hj, bj, andcj denote the-th visible neuron, thg-th hidden neuron, theth
visible bias, and thg-th hidden bias respectively.

As it can be anticipated from the fact that the direction of the gradient is not iden-
tical to the exact gradient, CD learning is known to be biased [Béngio, 2009; Carreira-
Perpinan and Hinton, 2005]. Nevertheless, CD learning has been shown to work well
in practice. A good property of CD is that if the data distribution is multi-modal,
running the chains starting from each data sample guarantees that the samples approx-
imating the negative phase are representative from different modes. Therefore, it has
been formally demonstrated that the minimization of the CD is an approximation of the
maximization of the data log-likelihood [Carreira-Perpinan and Hinton, 2005; Hinton,
2002].

A clear pseudo-code of the Contrastive Divergence learning algorithm is proposed
in Algorithm[J. This pseudo-code is valid to train Gaussian-Bernoulli-RBM model,
i.e. to train a RBM with Gaussian visible units and binary hidden units.

Figure 2.19:Left: Layer-wise training for a RBM with visible and hidden layers using con-
trastive divergence learning algorithiRight: a deep belief network with two hidden layers.

2.4.5 Deep belief networks

DBNSs are probabilistic generative models composed of multiple RBMs layers of latent
stochastic variables. The latent variables typically have binary values. They corre-
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input : random patchyo, selected from the database, learning ratthe
weights matrixw;j, of dimension (number of visible units, number
of hidden units) and it is initialized with Gaussian distributitn.
represents the visible biases represents the hidden biaskss the
weight decayp is the momentums is a unit variance set to 1, the
training set is divided into small “minibatch-sizg{ of 100, the
weights incrementsying; , are set to zeraum, represents the
number of hidden unitsjum, represents the number of visible
units, ande pochgepresents the number of epochs need to ensure
the convergence.

output: a set of features which are stored wi {; bj; c;).

1 for e= 1to epochdo

2 for j = 1to num, do
3 computethebinaryhiddenunits,using:hp= s cj+ &;WijVio ;
4 samplethe hiddenstatesusing: phy  Bernoulli(hg);
5 end
6 for i = 1to num, do
7 computethevisible activationunits,using:v1 = s bj + &; wij phoj ;
8 samplethevisible stateausingGaussiamistributionas:
pvi vi+ N(0;s9);
9 end
10 for j = 1to num, do
11 \ computethebinaryhiddenunits,using:h; = s c¢j+ &; Wjj pv1 ;
12 end
13 for i = 1to num, do
14 for j = 1to num, do
s Wing; M Wing;+h  (vo ho) (pvu hi)) =g | w
Wij  Wij + Wing;
16 end
17 bi  bi+h (v pw)
18 end
19 for j = 1to num, do
20 ‘ ci cj+h (ho hy)
21 end
22 end

Algorithm 2: Training update procedure for a RBM over Gaussian visible
units and binomial hidden units using Contrastive Divergence.
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spond to hidden units or feature detectors. The input variables are zero-mean Gaussian
activation units and are often used to reconstruct the visible units. As shown in gure
[2.20, the top two layers have undirected, symmetric connections between them and
they form the weights or the features. These features are extracted using the principle
of energy function minimization according to the quality of the image reconstruction.

DBNs are powerful unsupervised machine learning models for several reasons,
including:

There is an ef cient, layer-by-layer procedure for learning the top-down, gener-
ative weights that determine how the variables in one layer depend on the vari-
ables in the layer abovg [Hintgn, 2009].

After learning, the values of the latent variables in every layer can be inferred by
a single, bottom-up pass that starts with an observed data vector in the bottom
layer and uses the generative weights in the reverse direction [Hinton, 2009].

DBNSs are able to extract sparse ef cient features from a larger alphabet. These
features can be successfully used to code huge amounts of images in an ef cient
way [Torralba et al!, 2008].

Since DBNs are composed of RBMs layers (Fidure [2.20), they can be trained in
a greedy layer-wise way. We describe this training methodology in more detail in the
next section.

2.4.6 Deep belief networks layer-wise training

Extensive works have empirically shown that DNNs training is a challenging task
[Bengio et al.| 2007; Erhan et dl., 2009]. The authors of those works have suggested
to use gradient-based methods for supervised DNNSs training starting from a random
initialization. However, this approach gets stuck in “apparent local minima” and the
problem becomes much more complex with deep architectures [Bengio, 2009]. In
2006, Hinton|[Hinton et al/, 2006] has suggested that it would be more ef cient if we
train deep neural networks in a greedy layer-wise unsupervised learning way. By us-
ing this model we try to learn a hierarchical feature representation of which high level
features are composed of simpler low level features.
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Figure 2.20: Stacking Restricted Boltzmann Machines (RBM) to achieve Deep Belief Network.
This gure also illustrates the layer-wise training of a DBN.

As shown in gure/2.2]L, DBNs can thus be learned one layer at a time, by consid-
ering the values of the latent variables in one layer, after they have been inferred from
the previous layer, as the data for training the next layer.

This ef cient, greedy learning can be followed by, or combined with, other learning
procedures that ne-tune all of the weights to improve the discriminative performance
of the whole network.

Figure 2.21: DBNs Layer-wise training withhidden layers using CD and RBM.

More precisely, the rst DBN model parameteys= fwij;bj;c;g, are learned by
training the rst RBM layer between the visible and hidden layers. Then, the model
parameters are frozen and the conditional probabilities of the rst hidden unit values
are used to generate the data to train the higher RBM layer in the network. New layers
can be stacked and trained using the same scenario. The process is repeated across the
layers to obtain a sparse representation of the initial data that will be used as the nal
output. In sparse methods, the code is forced to have only few non-zero units while
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most code units are zero most of the time. Eventually, sparse representations present
several potential advantages, as demonstrated in a number of recent studies [Doi et al.,
2006; Olshausen and Field, 1997; Ranzato &t al.,|2006]. They, in particular, have good
robustness to noise, and provide a simple interpretation of the input data in terms of a
small number of “parts” by extracting the structure hidden in the data. Furthermore,
using high-dimensional representations increases the likelihood that image categories
will be easily (possibly linearly) separable. Therefore, in this context, we assume that

a sparse feature code increases the linear separability between the data in the feature
space, which would facilitate the classi cation process.

2.5 Summary

In the present chapter we have discussed the problem of SPR and outlined the most
signi cant dif culties to develop solutions for this problem. We started by introduc-

ing the differences between “metric localization”, “topological localization”, and “se-
mantic place recognition”. We also studied the SPR issues in terms of place recog-
nition system designing and testing. We therefore reviewed different approaches for
this problem, including in particular [Oliva and Torralba, 2006; Pronobis and Caputo,
2007; Torralba et al., 2003b; Ullah et al., 2008; Wu and Rehg,|2011; WU et al., 2009].
These approaches have led to notable successes to achieve vision-based place recog-
nition. However, they are based on complex or sophisticated techniques in order to
achieve robust place recognition. In other words, performing the task of SPR using
a simple classi cation method is still an open question. Therefore, SPR requires an
appropriate code that allows fast and robust classi cation. That's why we have pre-
sented in this chapter a recent machine learning method, DBNSs, as an alternative to
hand-designed feature coding approaches. We hope that such approach is suitable for
crating an appropriate representation for our classi cation problem.
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Chapter 3

Feature space construction : a
parameter study

3.1 Introduction

We have seen that most of the methods used for SPR solving are based on the use of
hand-engineered features (GiST, CENTRIST, SURF, or SIFT descriptors). In order to
cope with the continuous nature of the data representation, a discretization step using
BoWs approaches and vector quantization is often applied. The used descriptors are
low level and don't capture the structural organization of the scene. It has been shown
that despite this lack of information, BoWs methods have given interesting results in
SPR. However these methods are complex and depend on the quantization step. Their
use is often followed by a complex phase of learning with sophisticated methods like
SVMs.

Concerning the feature extraction, RBMs seem more appropriate since they take
their root in theoretically grounded statistical methods (PCA and ICA) and they have
shown to be ef cient for image coding [Abdel-Rahman et al., 2011; Hinton, 2002} Hin-
ton et al.| 2006; Nair and Hinton, 2009; Salakhutdinov et al., 2007; Taylor et al., 2006;
Torralba et al., 2008] in many applications. They also learn sparse edge lters, which
are more suitable for classi cation and they are based on models of natural vision
[Serre et al., 2007] which have impressive performances in object and scene recogni-
tion. Another attractive characteristic of this approach is that RBMs can be stacked to
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form deep networks, the output of which could provide a high level non linear repre-
sentation of the scene [Hinton et al., 2006] and thus capture spatial relationship lacking
in the previous approaches.

We thus propose in the present work to code the images as a set of independent
features obtained using DBNs [Hinton and Salakhutdinov, 2006; Torralbal et all, 2008].
It has been shown that features extracted by DBNs are more promising for image
classi cation than hand-engineered features [Hinton ét al., 2011]. So, we hope that,
due to the statistical independence of the features and their sparse nature, learning in
the feature space will become linearly independent, greatly simplifying the way we
will learn to classify the scenes.

One of the main question with the use of DBNSs to classify an image set is to de ne
the conditions required to build an optimal feature space. The general RBM training
algorithm is governed by a lot of parameters acting on learning rate, sparsity of the
nal representation, locality of the obtained features and also speed of convergence.
As stated by Hinton/ [Hintar, 2009] these parameters have to be set up carefully to
obtain an appropriate feature extraction. In this chapter we report our own parametric
study of the RBMs and DBNSs that will be further used in our model. We study the
effect of all these parameters on the feature obtained for image coding. In particular,
we investigated the effect of the different parameters on the sparsity of the obtained
coding and the locality of the features. These properties are indeed a major requirement
for achieving good classi cation results.

3.2 Used databases

In this preliminary study, in order to compare easily our results with the ones published

in the literature, we used two popular datasets, the van Hateren and the Berkeley image
databases. The rstone is a database of high-resolution calibrated monochrome images
taken in de ned illumination conditiorﬁ designed for various image processing tasks.

It contains approximately 4000 images of 1%B624 pixels. The second one, the
Berkeley database, is a collection of 4821 and 32%481 natural image@. This
database has been created to provide an empirical basis for image segmentation and

lvan Hateren's Natural Image Database is available at: http://www.kyb.tuebingen.mpg.de/?id=227
2Berkeley database is available at: http://www.cs.berkeley.edu/projects/vision/grouping/segbench/
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boundary detection researchées [David et|al., 2004]. It contains 300 different color
images divided into a training set of 200 images, and a test set of 100 images. A subset
of samples from this database is shown in gurg 3.1.

Figure 3.1: A subset of 4&B21 and 324481 natural images selected from the Berkeley
database [David et al., 2004].

As shown in gure[3.1, the images contain a lot of borders, corners, textures and
edges because they are created for the purpose of image segmentation as earlier said.
This kind of images would facilitate the process of feature extraction using a RBM.
Moreover, they do not contain a lot of at areas.

Two approaches can be considered for feature extraction. The rst one consists in
the extraction of small patches that can be used as inputs of a DBN. The second one
consists in reducing the size of the whole images to an acceptable value in such a way
that they can be used directly as the inputs of the network. This second approach will
be considered in the next chapter.
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For now, as proposed by [Ranzato et al., 2010], after gray-scale conversion, we
have sampled 19000 random patches of sizeXiis pixels from these databases. This
extraction step was followed by a normalization that we are going to consider more in
depth in the next section. After that, the obtained image patches were used as a training
set for an RBM.

3.3 Normalization

3.3.1 Data whitening

Usually, natural images are highly structured and contain signi cant statistical redun-
danciesj.e. their pixels have strong correlations [Attneave, 1954; Barlow, 2001]. For
example, it is well known that natural images bear considerable regularities in their
rst and second order statistics (spatial correlations), which can be measured using
the autocorrelation function or the Fourier power spectral density [Field| 1987]. These
correlations are due to the redundant nature of natural images (adjacent pixels usu-
ally have strong correlations except around edges). The presence of these correlations
allows, for instance, image reconstruction using Markov Random Fields. It has thus
been shown [Bell and Sejnowski, 1997; Field, 1987; Olshausen and [Field, 1996] that
the edges are the main characteristics of the natural images and that they are rather
coded by higher order statistical dependencies. It can be deduced from this observa-
tion that the statistics of natural images is not Gaussian (since the moments greater
than order-two are zero for Gaussian distributions). This statistics is dominated by rare
events like contours, leading to high-kurtosis long-tailed distributions.

Pre-processing the images to remove these expected order-two correlations is known
as whitening. It has been shown that whitening is a useful pre-processing strategy in In-
dependent Component Analysis (ICA) [Hywnen and Oja, 2000; Soman et al., 2009].

It seems also a mandatory step for the use of clustering methods in object recognition
[Coates et al/, 201.1]. Whitening being a linear process, it does not remove the higher
order statistics or regularities present in the data. The theoretical grounding of whiten-
ing is simple: after centering, the data vectors are projected onto their principal axes
(computed as the eigenvectors of the variance-covariance matrix) and then divided by
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the variance along these axes. In this way, the data cloud is sphericized, letting ap-
pear only the usually non orthogonal axes corresponding to its higher-order statistical
dependencies.

More formally, vectors of observationsare linearly transformed to obtain new
vectors(X), which components are uncorrelated and which variances equals unity. In
other words, the covariance matrix of the whitened data is equivalent to the identity
matrix as follows:

EffX'g= | (3.1)

There are several equivalent ways to perform this whitening transform. One pop-
ular way is the use of EigenValue Decomposition (EVD) of the covariance matrix as
follows:

Ef%X'g= EDE'" (3.2)

whereE is the orthogonal matrix of eigenvectors Bf X' g and D is the diagonal

whereD 7 s the inverse square root of the diagonal matrix which can be computed
as follows:

D 2= diag(d, ;00 ) (3.4)

Figure[3.2 (right) shows a subset of X6 random whitened patches from the
Berkeley database. Figure B.2 (left) shows the corresponding original patches. It can
be seen that after whitening, a lot of noise has been removed. Besides, the rst and
second statistical structures have also been removed. Thus, after data whitening, we
assume that the nal set of tiny-images is centered and whitened. Consequently the
variances2 in equatior] 2.43 can be set to 1.

It is easy to see on the covariance matrix of a set of original patches from the van
Hateren database (Figdre[3.3) ( rst row) that pixels are strongly correlated to nearby
pixels and weakly correlated to faraway pixels. These strong correlations can prevent
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Figure 3.2:Left: A subset of 1816 original random image patches sampled from Berkeley
database.Right: The corresponding 286 whitened image patches are obtained after pre-
processing.

the algorithms learning the feature space from rather focus on higher-order correla-
tions. Instead it can force the model to get distracted by modeling order-two corre-
lations. Thus if these correlations need to be eliminated before attempting to extract
features, data whitening is required. Figfire] 3.3 (second row) shows the covariance
matrix of the whitened patches for the same database. It shows that the whitened data
became uncorrelated. However the higher order statistics corresponding to the differ-
ence between correlation and statistical dependence remains preserved. To build a set
of statistically independent detectors, it will be required to nd “factorial codes” such
that the statistical distribution of the transformed data is as close as possible to the
product of its components [Bell and Sejnowski, 1997; Olshausen and [Field, 1996].

3.3.2 Local normalization

Another way to preprocess data is to perform local normalization. In this case, each
patchx() is normalized by subtracting the mean and dividing by the standard devia-
tion of its elements. For visual data, this corresponds to local brightness and contrast
normalization. One can nd in [Coates et|al., 2011] a study of whitening and local
normalization and their effect on a further classi cation task. However we can note
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Figure 3.3:First row: The covariance matrix of the tiny images for the van Hateren database.
White indicates high values, black indicates low values. All values are positive. The size of the
tiny images is 3232. Second row: The corresponding covariance matrix of the whitened tiny
images from the same database.

that this study has been performed using two databases, NKGRE CIFARP, that

INORB dataset : www.cs.nyu.edu/ ylclab/data/norb-V1.0/
2CIFAR dataset : www.cs.utoronto.ca/ kriz/cifar.html
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have been especially designed for object recognition.
Figure[3.4 shows a dataset from the van Hateren database showing the effects on a
initial dataset (left) of respectively local normalization (middle) and whitening (right).

Figure 3.4:First column: 256 tiny images randomly sampled from the van Hateren database.
Second column: The corresponding normalized one$hird column: The corresponding
whitened ones.

We can also note that in [Ranzato ef al., 2010], the authors argue that whitening
speeds-up the convergence of the algorithm without any justi cation. It could probably
due to the fact that all variables have similar variances.

3.4 Unsupervised construction of the feature space

An RBM is usually trained as shown in gufe 3.5, using the contrastive divergence
learning procedure proposed by [Hinton, 2002].

Figure 3.5: Training an RBM layer using contrastive divergence learning..

In order to present the general setup of the RBM training algorithm we will refer
rst on gure A rst set of weight§] linking visible and hidden layers is taken

IWeights represent the symmetric interactions between the visible and hidden units which are
known as features.
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at random. Thus from one image it is possible to compute a rst con guration of the
hidden layer units probabilities. From con gurations of the hidden layer drawn from
the probabilities, the visible layer is reconstructed. We obtain a so-called "confab-
ulation” of the input image. The contrastive divergence (CD) is then computed for
this particular image for weights and biases. However, in a practical implementation,
this CD is not directly used for weights and biases updating. The results for a set of
images taken at random and called a mini-batch are pooled together and used to up-
date the parameters. This process is repeated for a speci ¢ number of epochs or until
convergence.

Unfortunately, training a RBM is known to be dif cult. Recent researches have
shown that without a careful choice of learning parameters, well suited to speci ¢ data
sets and RBM structures, learning algorithms can easily fail to model the data distri-
bution correctly|[Desjardins et al., 2010; Fischer and|Igel, 2010; SchulZ gt al., 2010].
This problem is often evidenced during learning. As illustrated in [Hinton, 2010], the
update procedure of an RBM requires a certain amount of practical experience to de-
cide how to set the values of different parameters, including the learning rate
initial and nal momentumgy andps, the weight-decal/, the penalty term, the initial
values of the weights, the size of the mini-batgthe number of epoche the number
of the hidden layers and the size of each hidden layer in order to learn the optimal
features. In the next sections we will describe the most signi cant points concerning
these parameters, which have been empirically investigated during our research work,
to nd out the optimal values. Note that a thorough description of these parameters
and other questions can be found|in [Hiriton, 2010].

3.4.1 Overall organization of the network

RBM's were originally developed using binary visible and hidden units. However,
other types of units such as Gaussian, binomial, and recti ed linear ones can be used,
for example se€ [Hintan, 2010; Krizhevsky, 2009; Lee et|al., 2009; Norouzi|et al.,
2009]. The use of one of these unit types indeed depends on the problem to be solved.
For instance, binary units with Bernouilli statistics work well in the case of handwrit-
ten digits, but they are not appropriate for multi-valued inputs like pixel levels. To
deal with multi-valued data such as the pixel intensities in natural images, Hinton and
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Salakhutdinov|[Hinton and Salakhutdinov, 2006] replaced the binary visible units by
linear units with independent Gaussian noise as rst suggested by [Freund and Haus-
sler,[1994]. This model has been successfully used in several other works such as [Lee
et al},[2009; Norouzi et al., 2009; Torralba et al., 2008].

Within the framework of stochastic approaches, the rst question raised by the
model organization concerns the type of unit to use. We have shown that Bernouilli
units are not well suited for image coding. We thus used Gaussian units for the input
layer. However, for the upper layers of the network, binary Bernoulli units can be used.
In this case, the outputs act as an indicator function indicating that a feature is selected
or not for the construction of the internal representation of the image. The neural
analogy corresponds to a neuron switched on in the presence of a speci c feature in
the visual eld and off when the feature is absent. The feature is coded by the weights
of the previous layer. It has been shown that Gaussian-Bernoulli RBMs are ef cient
for gray-scale images modeling, such as speech waves in [Jaitly and Hintoh, 2011] and
faces images in [Hinton and Salakhutdihov, 2006].

After preparing and pre-processing the different databases, we used a RBM with
Gaussian visible and Bernoulli hidden units. However, training a Gaussian-Bernoulli
RBM can be expensive, because we need a much greater number of weight updates
than for an equivalent binary RBM. This problem becomes more dif cult when the
dimensionality of the input image is too large. To tackle this problem, in the present
work we have followed the approach of [Nair and Hinton, 2008] by rst training the
rst layer of the DBN as a Gaussian-Bernoulli RBM and then uses its hidden units as
input to higher RBM layers. In other words, the higher layers of the DBNs use RBMs
with Bernoulli visible and hidden units, as pereviously said. Note that the rst model
parameters are frozen and the conditional probabilities of the rst hidden unit values
are used to generate the data to train the higher RBM layers. This process is repeated
several times across the RBM layers in order to obtain a sparse representation of the
initial data which will be used as the nal output.

As previously mentioned, we rst tested the RBM algorithm on general purpose
natural images and then apply it on images created for the purpose of robot localization.
In this experiment, the structure of the rst RBM layer is 25@56. Figurd 3.6 (left)
shows 256 global Iters of size 236 pixels learned by training an RBM on 1,000
whitened patches that are randomly sampled from Berkeley database. As we expected,

71



Figure 3.6:Left: 256 features learned by training the rst RBM layer on whitened patches
sampled from Berkeley dataset, these features are globally normalized. The training protocol
is similar to the one proposed in [Ranzato €t/al., 2083 300,g= 100,h = 0:02, 4 = 0:5,

ps = 0:9, andl = 0:0002).Right: 256 features obtained from the same databasg by [Ranzato
et al|,/2010].

these features look like band-pass oriented and localized edge detectors. The extracted
features are quite similar to those obtained by [Ranzato et al.| 2010] shown in the same
gure (right), or to those extracted by Independent Component Analysis (ICA) models

in [Hyvarinen et al., 2001], and to sparse coding algorithms in [Olshausen and Field,
1997 Teh et al[, 2003].

A similar experiment was applied to the van Hateren database. In this experiment,
the structure and the training protocol were similar to the Berkeley experiment [Ran-
zato et al., 2010]. Figuie 3.7 shows 256 global lters of siz&lBopixels learned by
training an RBM on 10000 whitened patches that are randomly sampled from the
van Hateren database. These features are very close to the ones obtained from the
Berkeley database.

3.4.2 The learning rate

The learning rate parametér, determines to what extent the newly acquired informa-
tion will override the old information. Therefore, this parameter plays an important
role for features extraction. In the gradient descent procedure, the learning rate is im-
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Figure 3.7: 256 features learned by training the rst RBM layer on whitened patches sampled
from the van Hateren's dataset, these features are globally normalized and obtained using the
same training protocol as in the experiment of Berkeley database (se@re 3.6).

portant because some high and low valuek afay suppress some of RBM's feature
maps to become always inactive, and in fact dismiss some of features [Norouzi et al.,
2009]. Thus, in this work we have tested a set of different valuels ford selected the

one giving the higher number of active features.

Practically, using large values bf (e.g. 0:05) yielded to increase the reconstruc-
tion error and thus the weights (features extracted from the Berkeley database) have
completely exploded within the rst few epochse. the RBM did not learn anything.
Thus, using large values dfincrease the oscillation problem during the adjustments
of the weightsl] However, when the value df is reduced to @2, for instance, the
network does not converge fast within the rst few epochs as shown in jgufe 3.8 where
some features are going to be extracted and appeared with more pochs

On the other hand, using very small valueshodvill slow down the convergence
process and a lot of epochs are thus required to reach the equilibrium. For example if
we reduced the learning rate fromr0@ to Q002, the extracted features for both cases
was quite different, as shown in gufe 3.9 after 200 epochs. This gure shows that

1oscillation: the repetitive variation, typically in time, of some measure about a central value (often
a point of equilibrium) or between two or more different states as in our case.

20One epoch means a complete iteration through all images in the dataset. Within an epoch we
update the weights after presenting a mini-batch of size 100 selected at random from the training data.
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Figure 3.8: 256 features learned by training the rst RBM layer on whitened patches from
Berkeley dataset. These features are obtained ukirgd:02,I = 0:0002,g= 100,e= 5, and
momentums.

the convergence has been almost achieved when the learning rat®©@asifile a lot

of additional epochs were still required to achieve the convergence for the other case
when the learning rate wasdD2. Another important fact is that, once the convergence
was almost achieved for both cases, the number of extracted features with a learning
rate of Q02 was greater than the number of extracted features when the learning rate
was 0002 (see gur¢ 3.10), where the rst case has converged after 300 epochs while
the second case has converged after 1000 epochs.

A good way to set the learning rate parameter is to look at a histogram of weight
updates and a histogram of the weights as illustrated in [Hinton,| 2010]. The updates
should be about 1& times the weights. This way, we can reset (increase or decrease)
the value of the learning rate.

3.4.3 The size of the mini-batch

Although it is possible to update the weights after estimating the gradient on a single
training case, Hintori [Hintan, 2010] and other researchers [Leeg ét al., 2009; Norouzi
et all, 2009] have experimentally demonstrated that it is more ef cient to divide the
training set into small “mini-batches” of 10 to 100 imaﬂ}sd;n this case, we adjust the

1A mini-batch is a collection of patches. It usually means the entire training set.
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Figure 3.9: Left: 256 features learned by training the rst RBM layer onx16 whitened
patches sampled from Berkeley dataset. Same conditions as in[gdre 3.8, exce?d0.
Right: 256 features learned using the same conditions, excepd:002.

Figure 3.10:Left: 256 features learned by training the rst RBM layer onx16 whitened

patches sampled from Berkeley dataset. These features are also obtained using the same condi-
tions as in gurg 3.8, excem= 300. Right: A similar subset of Iters leaned using the same
conditions, except = 0:002 ande= 1000.

weights after estimating the total gradient of the mini-batch, which means that we need
to divide the total gradient computed on a mini-batch by the size of the mini-bg)tch (
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and thus the weights update procedure in equatior) 2.54 can be re-written as follows:
wij  wij+h (Whdi h vhili)=g (3.5)

Usually, the ideal mini-batch size is equal to the number of different classes. Each
mini-batch should contain one example of each class to reduce the sampling error while
estimating the gradient for the whole training set from a single mini-batch [Hinton,
2010]. In this work, we have tried many different valuesgaio examine its nal
impact on the feature extraction. It is noticed that when we use a large mini-batch size,
for instance 200, the extracted features are not so different from those obtained using
a mini-batch of 100, as shown in both experiments, dure3.11. The total number of
features is slightly higher wheg= 100, while when we use a small mini-batch, for
instance 10, the RBM algorithm does not learn interesting features after hundred of
epochs as shown in gurfe 3.J12. Moreover, the convergence was not improved by an
increased number of epochs.d. from 200 to 400 epochs) as illustrated in the same
gure.

Figure 3.11:Left: 256 features learned by training the rst RBM layer orx16 whitened
patches sampled from Berkeley dataset. Similar conditions as in [gufe 3.9 (left) are used for
this experimentRight: 256 Iters extracted using the same conditions, exaept200.

Therefore, the size of the mini-batch also plays an important role in the extraction
of features. Furthermore, it has been shown that this process speeds-up the training
process|[Hintor, 2010; Salakhutdinov et al., 2007].
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Figure 3.12:Left: 256 features learned by training the rst RBM layer onx16 whitened
patches sampled from Berkeley dataset. Also, the same conditions as if_gpre 3.9 (left) are
used for this experiment, except 10. Right: The same lters, but witle= 400 epochs.

3.4.4 The initial values of weights and biases

Several ways can be used to initialize the weights. A possible one is to use small ran-
dom values chosen from a zero-mean Gaussian distribution with a standard deviation,
s, of 0:01. Another way is to use small random values chosen from a uniform distri-
bution. In fact, using larger random values will force the network to converge faster,
which might lead to a worse nal model.

Since we have proposed to use a Gaussian-Bernoulli RBM model, we have initial-
ized the weights matrix using a Gaussian distribution as follows:

wij  N(ys?) (3.6)

wherep represents the mean asd represents the variance of the Gaussian distribu-
tion.

In this work, we have tested different values of the standard deviaidfar in-
stance see gur¢ 3.13). We can see that the convergence with high valsess of
slightly faster than with smaller values of If we compare the extracted features
shown in gure[3.1I8 with each other or even with the features shown in 3.10
(left)(obtained using = 0:01, they seem quite similar. Thus, in order to be sure that
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the network leads to a good nal model, it is more appropriate to use a small value of
s like 0:01, as recommended in [Hintan, 2010].

Figure 3.13:Left: 256 features learned by training the rst RBM layer orx16 whitened
patches sampled from Berkeley dataset. Similar conditions as in 3.10 (left) are used,
howevers = 0:5. Right: 256 features learned using the same conditions, excepd:1.

Concerning the initial values of visible and hidden biases, one possible way is to
initialize them all to zero. However, to encourage the sparsity, Hinton [Hihton,| 2010]
recommended to start the hidden biases with very large negative values of abasit

we will see later (section 3.4.9).

3.4.5 Momentum

Momentum (1) is a standard parameter used in many neural network applications.
It is added to speed-up the learning process of a RBM, smoothen the gradients and
avoid getting stuck in local minima. So that, this term, together with the learning rate,
controls the weights update and yield a modi ed update rule:

wj  Wowij+h (Whli h vihili)=g (3.7)

where the momentum term must be between 0 and 1. More precisely, Hinton and other
researchers have recommended to start with a momentund ddOthe rst several
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epochs (for example, the rst ve epochs) and a momentum & for the rest of
epochs|[Hinton, 2010; Lee etlal., 2008; Norouzi €t al., 2009].

In fact, we have also tested different values of this factor. For instance, if we ignore
the effect of this term by using a momentum of 1, the network converges towards a
wrong solution as shown in gurg 3.14. Because wheis equal to 1, the effect of
the previous weights (the Left-Hand Side of equafiony 3.7) will be much higher than
the effect of the gradient (the Right-Hand Side of equdtion 3.7) since we use a small
learning rate. It means that using high values of momentum also lead to increase the
oscillation in the weights adjustments as in the case of learning rate. Therefore, using
a smaller momentum, like:B, for the rst several epochs, decreases the effect of the
initial weights and let the gradient make more in uence on the network to converge to
the right solution. After 5 epochs the initial weights become more compatible with the
model (they t the model) and, in this case, it is possible to increase the momentum
to 0.9, for example, in order to increase the network convergence speed. This way to
proceed ensures the stability of the learning process.

Figure 3.14. 256 features learned by the rst RBM layer om1lBwhitened patches sampled
from Berkeley dataset. Similar conditions were used in this experiment as in[ gurie 3.10 (left),
excepty = 1 ande= 10.

79



3.4.6 Weight decay

Weight-decay (or weight-cost )) is another important factor added to the normal
gradient as shown in equatipn .8. This regularization term penalizes large parameter
values, such as weights, which sometimes happens during the learning process. This
yields the following update rule:

wij  Wowj+h o (Whli hvihli)=g 1wy (3.8)

In general, the values of should be typically ranged from@1 to Q00001. Simi-
larly to previous factors, different values df)(have been investigated in this work. For
instance, see the extracted features shown in 3.15 using a weight-decé@ of O
and Q002 respectively. This gure obviously demonstrates two facts: rstly, when we
use a large value df the RBM learns at features. This is due to the fact that the im-
pact of the weight-cost becomes much higher than the impact of the gradient descent
and thus all weights reach very large negative values. Secondly, when we use a smaller
value, a set of features have emerged. Therefore, a large valu®afes the network
to have less effect of the gradient descent. In other words, we need to select a value of
|, so that we must make a balance between the two expreggierv’h% h v'hi)
and { w;j)) of equatior 3..

It is important to multiply the derivative of the weight-decay by the learning rate.
Otherwise, changes in learning rate change the function that is being optimized rather
than just changing the optimization procedure [Hinton, 2010]. Weight-decay is typi-
cally not applied to the hidden and visible biases because they are less likely to cause
over tting H Also, the biases sometimes need to be quite large.

There are other forms of the weight-decay that can be used to achieve sparsity and
locality in the features. One of them calledZ,orm” Which is half of the sum of the
squared weights times a coef cient which is called the weight-decay. Another form
called ‘L1,orm” Which is the use of the derivative of the sum of the absolute values
of the weights.L1,orm Weight-decay often leads to strongly localized receptive elds,
because it causes many of the weights to become exactly zero whilst allowing few of

1over tting occurs when a statistical model describes random error or noise instead of the under-
lying relationship. Over tting generally occurs when a model is excessively comelgxa model has
too many parameters with respect to the number of observations.
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Figure 3.15:Left: 256 features learned by training the rst RBM layer onx16 whitened
patches sampled from Berkeley dataset. Similar conditions as in 3.10 (left) are used,
except = 0.002.Right: 256 Iters learned using the same conditions, exdept0:02.

them to increase signi cantly. Moreover, Hinton has mentioned four different reasons

to use these weight-cost terms in an REM [Hinton, 2010]:

1. Itimproves the generalization to new data by reducing over tting to the training
data.

2. It makes the receptive elds of the hidden units smoother and more interpretable
by shrinking useless weights.

3. Itincreases the sparsity for the extracted features.

4. It improves the mixing rate of the alternating Gibbs Markov chain. So, with
small weights, the Markov chain mixes more rapidly.

3.4.7 Penalty term

A popular way to minimize the information content in the code is to make it sparse or
low-dimensional. In this context, a vector is called sparse if it contains only a minimum
number of active (non-zero) units. Sparsity estimation (or sparse recovery) is playing
an increasingly important role in statistics and machine learning communities, because
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it simpli es further tasks like the classi cation process and it is a useful way to reduce
the dimensionality of data with neural networks [Hinton and Salakhutdinov, 2006].
Usually the model parameters are trained through the maximization of the log-
likelihood of the reconstructed data. This maximization problem corresponds to learn-
ing wij, bj, andcj to minimize the energy of states drawn from the data distribution.
In the meantime, the hidden unit activations have to be sparse. To achieve that goal,
it is possible to apply El,orm” regularization, however, it is expensive because the
Gaussian-Bernoulli RBM representation uses stochastic binary variables. Hence, sev-
eral other methods have recently been developed [Lee et al.,[2008; 2009; Mairal et al.,
2008; Olshausen and Field, 1996, 1997] to achieve the sparsity goal for RBMs. Their
methods rely on adding a penalty or regularization term to improve the sparsity of the
data representation. For instance, [Lee ét al., 2008] proposed to couple the maximum
likelihood of contrastive divergence (CD) with a regularization term that penalizes
non-selective units. Similarly] [Nair and Hintgn, 2009] used the cross-entropy mea-
sure between the actual and desired distributions to compute the penalty. In more
details, in the latter method [Nair and Hinton, 2009], the additional update is a penalty
proportional tog p, wherep is the “sparsity target”, which represents the desired
probability that a unit is active, anglis the penalty term which encourages the actual
probability of being active. As illustrated in [Hintbn, 2010], the sparsity of a hidden
unit is therefore computed by a process of averaging its activation across training as
follows:

=1 a 1+(1 1) Qecurrent (3.9)

wherel represents the decay-rate which can be betwe2mfd 099, qcurrent IS the
average hidden activation probability that a unit is active for the current mini-batch.

The cross entropy between the desired and actual activation distributions is used as
a penalty measure as follows:

cost= plogg (1 p)log(l q) (3.10)

where the sparsity targgt, can be between:01 and 01.
This has the derivative @f p and is scaled by a meta-parameter called “sparsity-
cost”. So, sparsity adds three meta-parameters to the model which are: the sparsity
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targetp, the decay ratk, and the sparsity costpst When we add the sparsity penalty
to the learning rule, the new weight update formula becomes:

wj W owj+h  (Whli h vhli)=g cost (pr Q) (3.11)

Using this regularization term, we have obtained the features shown in[gurg 3.16.
They are more localized than the features shown in gure|3.10 (left). It turns out that
adding the penalty term has successfully encouraged to achieve sparse activities for
the hidden units. Figufe 3.]17 shows the 128 unit outputs of the corresponding network
for 300 samples of the Berkeley database. It shows graphically that most of the input
images are represented by a few active units (spatial sparsity) and that each unit is
rarely active over samples (temporal sparsity).

Figure 3.16: 256 features learned by training the rst RBM layer oxl&6nhitened patches
sampled from Berkeley dataset. Similar conditions as in ure|3.10 (left) are also used, except
the penalty term was included. Thus, we uged 0:02 and = 0:99.

The other method proposed in [Lee et/al., 2008] and mentioned above introduces a
regularizer term that makes the average hidden variable activation low over the entire
training examples. Thus the activations of the model neurons become also sparse.
In fact, this method is similar to the one used in other models [Olshausen and Field,
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Figure 3.17: An exemple of the spatial and temporal sparsities achieved using a sparse network
obtained from the Berkeley database. Same parameter settings as i _gurd Fd6both
weight and hidden biases was set t015.

includingm examples, we pose the following optimization problem:

N g o 3 13 ). 2
minimizey, .5.cq & log & P(vV;h) +1°§ p —a E[hg v (3.12)
=1 h =1 =1

whereE[:] is the conditional expectation given the data, once agasthe sparsity
target controlling the sparseness of the hidden umitsand! is the sparsity cost.
Thus, after involving this regularization in the CD learning algorithm, the gradient of
the sparsity regularization term over the parameters (wewghtnd the hidden biases
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cj) can be written as follows:

o 1y
wj  pow+h o (W% h hT)=g 1 (p ma P p\”) (3.13)
=1
G+ hitigaa h Miecod | (0 =& B) (3.14)
=1

wherem, in this case,represents the size of the mini-batchpéll)ld s(éivi(')wij + Cj).

It has been shown that the sparse RBM learning algorithm can capture interest-
ing high-order features from natural image statistics [Lee et al.,|2008]. The hope is
that such a learning algorithm remains capable to capture higher-order features from
various databases, such as a database created for the purpose of robot localization.

The previous experiments have been achieved using the conventional Gaussian-
Bernoulli RBM learning algorithm, where the question of sparsity has been included in
this algorithm using a penalty term as illustrated earlier. We have also implemented the
sparse RBM which is developed in [Lee et al., 2008]. However, we have not observed
a big difference in features extraction using both learning algorithms (see for instance
gure B.18). This similarity of features for locality and sparsity con rms that the
penalty term in the regular RBM and the sparsity target in the sparse RBM can capture
sparse codes from the initial images. Therefore, using any of them leads to extract
sparse features.

3.4.8 The number of hidden units

Usually, three different situations are distinguished in the literature for the size of the
hidden layer : less than the size of the input layer (under-completeness), equal (com-
pleteness) or greater (over-completeness). These situations can be related to the feature
set of ICA that is, by construction, always complete. The question of using over-
complete feature sets has been rst raised in [Olshausen and Field, 1997]. It seems
that in the visual system, working with an over-complete feature alphabet makes the
coding more adaptive to natural images variability. Thus, for a particular image, the
nal coding is more precise, even if the over-completeness reintroduces a kind of re-
dundancy.
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Figure 3.18: Left: 256 features learned by training the regular RBM on whitened image
patches (1616) sampled from Berkeley dataset, these lters are obtained using the same con-
ditions as in gure[3.16.Right: The corresponding features learned by training the sparse
RBM on the same whitened image patches. In this case, we also used the same conditions,
exceptp= 0:02 andl = 0:02.

In fact, the optimal size of the hidden layer depends on several things: the size
of the visible layer, the target to achieve, and the redundancy of the patches in the
training set. More precisely, the size of the hidden layer should be compatible with
the size of the visible layer. However, if the sparsity target is very small, more hidden
units could be used. Contrarily, if the training cases are highly redundant, as they
typically will be for very big training sets, fewer units are necessary [Hirton, |2010]
for two reasons: rst, it may be quite reasonable to use less output units if f©Q00
training images each image is repeated for instan®@times. Otherwise it's time-
consuming. Second, when you feed similar images to the network, the use of many
parameters would not change the results as shown in 3.19.

In this work, since our training set is highly redundant, the size of the rst hidden
layer could either be equivalent to the size of the visible layer or reduced to half (more
or less) of the visible layer size. The same scenario can be used for higher hidden
layers. This proposition has been investigated using different sizes of the hidden layer.
For instance, the features shown in giire]3.9 (left) were obtained using an equivalent
visible and hidden layers size (25&56 units), while gurg 3.1IP (top) shows features
obtained using an under-complete hidden layer (28@8 units) and (bottom) shows
features obtained using an over-complete hidden layer (258 units). These ex-
periments show that when we reduce the size of the hidden layer, the network extracts
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similar features, but the matrix is fully used, while when we increase the size of the
hidden layer, a lot of the features were at. However, these facts cannot be generalized
to other databases.

Figure 3.19:Top: 128 features learned by training the rst RBM layer onx16 whitened
patches sampled from Berkeley dataset. Same conditions were used as ifi_gure 3.10 (left).
Bottom: 512 features learned using the same conditions.

3.4.9 Effect of normalization on the feature space

In the previous sections, we have seen that several parameters (for example the spar-
sity term, the number of hidden units, the mini-batch sete) play an important role

in obtaining interesting features. In this section we investigate the effect of whiten-
ing and normalization on the detection of features using a RBM learning algorithm.
These factors, orthogonal to the learning algorithm itself, can have a large impact on
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performances.

For this task, we have conducted extensive experiments using datasets of random
patches sampled from van Hateren and Berkeley natural image databases respectively.
The random patches extracted from these databases were normalized or whitened in
two separate pre-processes. In both experiments, an over-complete structure (256
512) of the rst RBM layer was used.

Figure 3.20: Learned over-complete natural image bdssft. 512 features learned by training

the rst RBM layer on normalized image patches x16) sampled from van Hateren's dataset.
Right: The corresponding features learned by training the rst RBM layer on whitened image
patches (1616) sampled from the same database. For both experiments, the training protocol
is similar to the one proposed in [Lee et al., 2008}(300,g= 200, h = 0:02, i = 0:5,

K = 0:9, p= 0:02,1 = 0:02).

Figure3.20 (left) shows features extracted using the locally normalized data, while
gure B.2Q (right) shows features extracted using the whitened one. It is obvious
that the features extracted from the whitened data are more localized. Data whiten-
ing clearly changes the characteristics of the learned bases. One explanation could be
that the second order correlations are linked to the presence of low frequencies in the
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images. If the whitening algorithm removes these correlations in the original data set,
it leads to whitened data covering only high spatial frequencies. The RBM algorithm
in this case nds only high frequency features.

It is also obvious that the features obtained from the whitened dataset are more
localized compared with the previous experiments that were also conducted using the
whitened data. This is due to the fact that the hidden biases, in this case, are initialized
with very large negative values of4.

We have also applied our learning algorithm on the Berkeley database. Similarly,
we have created two datasets (normalized and whitened data) from this database. Each
dataset contains 10000 of 1616 random patches. The features shown in dure[3.21
are quite similar to those obtained from the van Hateren database. However, the num-
ber of features extracted from van Hateren database is more than the number of features
learned from the Berkeley one. It could mean that the natural images, in the case of van
Hateren database, contain more interesting structures, edges, and orientation contours.

Several other experiments have been conducted using both complete and under-
complete RBM structures. The main goal for doing these experiments is to demon-
strate that an under-complete RBM structure can also capture interesting high-order
features using the locally normalized data.

Two experiments with a complete structure (25856) have been conducted for
van Hateren and Berkeley databases. As shown in 3.22, the RBM learning
algorithm extracts features similar to those obtained using an over-complete structure.
They still cover a larger range of spatial frequencies. There seems to be no difference
in the shape of the features from the two databases. However the number of almost at
features (features that have not converged or that will take a very long time to appear)
is greater for the Berkeley database.

Similarly, with an under-complete structure, as shown in dure 3.23, the learning
algorithm remains able to extract interesting features covering a large range of spatial
frequencies as in the cases of complete and over-complete RBM structures. Once
again, we observe that the number of features extracted from the van Hateren database
is greater.

In general, the features learned from the normalization data are totally different
from the ones learned with whitened data. They remain sparse but cover a broader
spectrum of spatial frequencies. An interesting observation is that they look closer to
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Figure 3.21: Learned over-complete natural image bdssdt. 512 features learned by training

the rst RBM layer on normalized image patches X16) sampled from the Berkeley dataset.
Right: The corresponding features learned by training the rst RBM layer on whitened image
patches (1616) sampled from the same database. For both experiments, the same conditions
asin gure[3.20 were used.

Figure 3.22: Learned complete natural image basedt: 256 features learned by training

the rst RBM layer on normalized image patches x16) sampled from van Hateren dataset.
Right: The corresponding features learned from Berkeley database. For both experiments,
similar conditions as in gurg 3.20 were also used.
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Figure 3.23: Learned under-complete natural image basdis. 128 lters learned by training
the rst RBM layer on normalized image patches x16) sampled from van Hateren dataset,
these features are globally normaliz&ight: The corresponding features learned from Berke-
ley database. For both experiments, similar conditions as in 3.20 were also used.

the ones obtained with convolutional networks [Lee ét al., 2009] for which no whiten-
ing is applied to the initial dataset. We can mention that these differences between
normalized and whitened data have already been observed in [Krizhevsky, 2009] and
related to better performances for normalized data on CIFAR-10 in an object recogni-
tion task.

To try to understand more deeply why features obtained from whitened or nor-
malized patches are different, we computed the mean Fourier spectral density of the
patches in the two conditions and we compared them to the same function for the orig-
inal patches. We plotted the mean of the Log Fourier power spectral density of all the
patches according to the Log of the frequencies shown in 3.24. The scale law
in 1=f2 characteristic of natural images is approximatively veri ed as expected for the
initial patches. For the local normalization it is also conserved (the shift between the
two curves is only due to a multiplicative difference in the signal amplitude between
the original and the locally normalized patches). It means that the frequency compo-
sition of the locally normalized images differs from the initial one only by a constant
factor. The relative frequency composition is the same as in initial images.

On the contrary, whitening completely abolishes this dependency of the signal en-
ergy with frequency. This means that whitening equalizes the role of each frequency
in the composition of the imagf_@,s This suggests a relationship between the scale
law of natural images and the rst two moments of the statistics of these images. It
is interesting to underline that we have here a manifestation of the link between the
statistical properties of an image and its structural properties (in terms of spatial fre-
quencies). This link is well illustrated by the Wiener-Khintchine theorem and the

1That is an expected effect since whitening can be related to white noise, a noise in which all the
frequencies are equally represented
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Figure 3.24: The Log-Log representation of the mean Fourier power spectrum for image
patches with and without normalization. 100016 patches have been extracted from the
Berkeley database and then normalized. The mean of the Log of the Fourier transform of each
of these patches has been computed and plotted according to the Log of the spatial frequency.

relationship between the autocorrelation function of the image and its power spectral
density. Concerning the extracted features, these observations allow to deduce that an
equal representation (in terms of amplitude) of all the frequencies in the initial signal
gives rise to an over-representation of high frequencies in the obtained features. This
could be due to the fact that, in whitened data, the energy contained in each frequency
band increases with the frequency while it is constant in initial or normalized images.

However the result depends on the database used and consequently on the spatial
frequencies contained in the initial patches. The fact that local normalization preserves
(to a constant value) the same frequency composition as in initial data tends to prove
that normalization does not entirely remove second-order correlations. Olshausen [OI-
shausen and Field, 1997] showed that, with whitening, ICA mainly retains lters in a
narrow range of spatial frequencies. Low spatial frequencies are under-represented in
the obtained result. This is clearly what we obtain here with whitening but not with
normalization, which tends to save a broader range of spatial frequencies.

We are going to see in the next two chapters how the nal database used to test
our SPR model behaves according to these two normalization methods and how these
changes in spatial frequency composition affect classi cation performances.
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We can argue that low frequency dependencies are related to statistical correlation
between neighbor pixels. Thus, the suppression of these second order correlations
would suppress these low frequencies in the whitened patches. The resulting features
set is expected to contain a larger number of low frequency less localized features,
what is actually observed.

3.5 Summary

In this chapter, we have rst conducted experiments on different datasets and we have
shown that our RBM algorithm captures high-order interesting features similar to those
obtained by the state-of-the-art. This underlines that the algorithm has been success-
fully implemented. We have seen that the appropriate values of these parameters are
typically found by trial and error. This task is very tricky and con rmed that the
stochastic gradient learning of an RBM can easily diverge, if the associated parame-
ters are not chosen carefully [Fischer and|lgel, 2010; Schulz gt al.l, 2010]. Our ndings
are roughly in accordance with those proposed in the most recent literature |Hinton,
2010]. Finally, we have seen that data normalization signi cantly affects the detection
of features by extracting higher semantic level features than whitening.
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Chapter 4

Model presentation and properties

4.1 Introduction

In the preceding chapters we have rst seen the main approaches to SPR and we have
focused on a new way of building a feature space appropriate for SPR, the use of Deep
Belief Networks (DBNS). In the previous chapter we have presented a thorough set of
experiments designed to precise the conditions for obtaining this appropriate feature
space.

In this chapter we are going to put at work all of these observation in a model able
to perform SPR. We will rst present the overall organization of the proposed model
and then the different conditions of use of this model in the context of SPR, including
image pre-processing and the use of tiny images. We will study what kind of features
we obtain in these speci ¢ conditions and how they can be used for image classi -
cation. Thus, two main questions will be raised here : what kind of features will be
extracted from tiny images and how the feature space is affected by the normalization
procedure in this speci c case? The present chapter focuses on describing these ap-
proaches and their characteristics in the context of image coding. We assume that the
use of this coding method (based on the assumption that sparse features are extracted)
will increase the linear separability of the data representation, so that a simple classi er
like softmax regression in the feature space will suf ce to determine the robot place
according to a given image.
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4.2 Databases description

However, before describing the organization and study the properties of the model, we
are going to present the databases used for the experiments of this chapter. In particular
we will here discuss the way these databases are transformed in order to make them
suitable for image classi cation and SPR.

4.2.1 The WILD database

The RBM algorithms seen in the previous chapter used random patches sampled from
natural images. We are interested to investigate our RBM model using small tiny
images. In this context, there is a difference between object and scene recognition.
One major question is, for object recognition, the role of focusing. It seems obvious
that when the objects are aligned (focused at the center of the images) the feature set
build by a DBN is different from the one with unaligned objects. To investigate the
effects of the alignment technique on the detection of features we used a new database
called “Labeled Faces in the Wild database” (LFW). Contrarily to previous ones, this
database is designed for classi cation but it is simpler than NORB or CIFAR-10. It
has been already used in the literature in such a way that we can compare our results
with previous ones and is suitable, as we have said, for studying the effect of object
alignment or focusing.

The LFW dataset is a collection of 28250 color faces designed for studying the
problem of unconstrained face recognition [Gary et al., 2007]. This database contains
13;233 images of 5749 people collected from the web [Gary et al., 2(@)7,% align-
ment technique is used to normalize the faces. As a result, the noses, eyes, eyebrows,
mouths, and head limits become aligned.

For the centered faces, background surrounding each face is not useful. Thus, as
proposed in[[Nair and Hinton, 2010], we have eliminated the background information
using a 144144 window from the center of each face, as if the face would have been
at the center of an attentional window.

ILFW dataset is available at: http://vis-www.cs.umass.edu/lfw/
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4.2.2 The COLD database

The COLD database (COsy Localization Database) was originally developed by [Ullah
et all, 2007] for the purpose of robot Iocalizat@nt is the main database on which we

have chosen to validate our model. The main reason is that it has been used to produce
what can be considered as the state-of-the-art results in SPR. This is naturally to these
results we want to compare the results obtained by our model.

Figure 4.1: Map of Freiburg laboratory, portion B.

This database is a collection of labeled 8480 images (13069 different images)
acquired at 5 frames/sec during a robot exploration of three different laboratories in
Freiburg, Ljubljana, and Saarbruecken. Two sets of paths called standard A and B have
been acquired under different illumination conditions (sunny, cloudy and night), and
for each condition, one path consists in the visit of different rooms (corridors, printer
areas, one person of ce, two persons of ce, toilets;), for detail see for instance

1COLD Database is available at: http://cogvis.nada.kth.se/COLD/
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the map of Freiburg laboratory for portion B in gufe 4.1. These walks across the
laboratories are repeated several times.

Although color images have been recorded during the exploration, only gray-level
images were used since previous works have demonstrated that, in the case of the
COLD database, colors are weakly informative and made the system more illumination
dependent [Ullah et al., 2007]. This fact is illustrated in g{ire|4.2.

Figure 4.2: First row: color images acquired under three different illumination conditions
(sunny, cloudy, and night) respectivelyecond row: the corresponding gray-scale images. It
is obvious that the illumination variations reduced in the case of gray images.

4.3 Model initial steps - Unsupervised feature learning

Figure[4.3 shows the general scheme of the proposed approach. It involves three main
phases : i/ image coding, ii/ unsupervised feature space elaboration, and iii/ supervised
places learning. We hope that the properties of separability of the feature space will
allow good classi cation performances.

Figure[4.4 illustrates in detail the phases of the proposed model. The rst phase
consists in the conversion of color to gray-scale images, reducing them to small image
patches, and then normalizing them. The second phase is the coding of the input im-
ages using features. It consists in the extraction through several layers of RBMs form-
ing a DBN of an alphabet of features able to optimally code the images and suitable
for their classi cation. The third phase is the classi cation itself, which discriminates
between the robot possible places.
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Figure 4.3: General framework of the proposed visual place recognition system. The arrows
show the direction of the data ow between the different phases.

Figure 4.4: The different phases of the proposed model to achieve SPR for autonomous sys-
tems.
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4.3.1 Pre-processing

As shown in gure[4.4, data pre-processing is the rst phase of our algorithm. It
involves three inner functions (or steps): image color conversion, image reduction, and
image normalization. These three stages are illustrated in the following sections.

4.3.1.1 Use of tiny images?

The typical input dimension for a DBN is approximately 1000 unitg(30x30 pix-

els). Dealing with smaller patches could make the model unable to extract interesting
features. Using larger patches can be extremely time-consuming during feature learn-
ing. Additionally the multiplication of the connexion weights acts negatively on the
convergence of the CD algorithm. The question is therefore how to scale the size of
realistic imagesd.g.30x300 pixels) to make them appropriate for DBNs?

Three solutions can be envisioned. The rst one is to select random patches from
each image as done in [Ranzato et|al., 2010], the second is the use of convolutional
architectures, as proposed |n [Lee et|al., 2009], and the last one is to reduce the size
of each image to a tiny image as proposed in [Torralba et al.,|2008]. The rst solu-
tion extracts local features and the characterization of an image using these features
can only be made using BoWs approaches we wanted to avoid. The second solution
shows the same limitations as the rst one and additionally gives raise to extensive
computations that are only tractable on GPU architectures. Features extraction using
random patches is irrespective of the spatial structures of each image [Norouzi et al.,
2009]. In the case of structured scenes like the ones used in SPR these structures bear
an interesting information.

Besides, tiny images have been successfully used ([Torralba et al., 2008]) for clas-
sifying and retrieving images from the 80-million images database developed at MIT
H Torralba showed that the use of tiny images combined with a DBN approach led to
code each image by a small binary vector de ning the elements of a feature alphabet
that can be used to optimally de ne the considered image. The binary vector acts as
a bar-code while the alphabet of features is computed only once from a representative
set of images. The power of this approach is well illustrated by the fact that a rela-
tively small binary vector (like the ones we use as the output of our DBN structure)

1The 80-million database is available at : http:/groups.csail.mit.edu/vision/Tinylmages/
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An nonaligned face

An aligned face

Figure 4.5: An example of non-aligned and aligned faces: the rst row represents an unaligned
face, where the rstimage is the original face of size of 2556, the second one is the centered
face of size of 14x¥144, and the nal one is the reduced face of size of22 The second row
represents the corresponding aligned face [Gary|et al.,| 2007].

largely exceeds the number of images that have to be coded even in a huge database
(22%6  1079). So, for all these reasons we have chosen image reduction.

Thus for the WILD database, the images were reduced 1823pixels for the
aligned and non-aligned (original faces) images as shown in gufe 4.5.

For the COLD database they were reduced &232ixels ( gure[4.6) to approxi-
mately save the aspect ratio of the initial images {880). As for the WILD database,
after this reduction, the tiny images are still fully recognizable as shown in the same
gure. The nal set of tiny gray images (a new database called tiny-gray-COLD) will
therefore be used as input for the normalization algorithms.

4.3.1.2 Image conversion

Although color images have been recorded during the exploration, only gray images
are used according tb [Ullah etlal., 2007]. Therefore, the whole images are converted
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Figure 4.6: Samples of the initial COLD DB. The corresponding232tiny images are dis-
played bottom right. One can see that, despite the size reduction, the small images remain fully
recognizable.

from colors to gray-scale using the following linear transformation function:
Y =(0:299 R)+(0:587 G)+(0:114 B) 4.1)

Thus, the rst two functions of the pre-processing phase, gray-scale conversion
and size reduction, are applied to the whole images. A proposed owchart is shown in
gure .7 to perform these functions.

As explained in the previous chapter, data can be whitened or locally normalized.
However, in the previous chapter we investigated the effect of the two methods on
small random patches extracted from large images. Here we will consider the effects
of these methods on reduced images. Before seeing these effects on the classi cation
results in the next chapter, we will study them here on the feature extraction.
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Figure 4.7: A owchart of the rst step of pre-processing phase: Image conversion and reduc-
tion. Note that the parametessaandC denote the size of the database and the image counter
respectively.

4.3.2 Unsupervised features extraction
4.3.2.1 WILD database

Focusing We have tested our model on aligned and non-aligned faces databases. Af-
ter gray-scale conversion and image reduction, whitened tiny images from the WILD
database have been used as input for training the RBM algorithm. We have tested rst
a complete structure. Thus the rst RBM layer was 1022024 as the images have
been reduced to 332 pixels.

Figure[4.8 shows the most interesting features extracted from respectively the non-
aligned faces database (left) and the aligned one (middle). These features have been
selected as the ones having the lowest entropy among all the 1024 features obtained
in both experiments. These results are quite similar to the ones published by [Nair

102



and Hinton| 2010] as shown on the same gure 4.8 (right). The only difference is that
the authors in/[Nair and Hinton, 2010] used color images as input to the RBM. The
aligned database leads to features representing faces or parts of faces (like eyes, mouth
or noses) as well in our case as|in [Nair and Hinton, 2010].

Figure 4.8:Left: 64 selected Iters among 1024 learned by training a RBM layer ax832
whitened image patches sampled from the non aligned face databbdeéle: 64 selected

Iters learned by training a RBM layer on 332 whitened image patches sampled from aligned
faces.Right: A subset of features extracted from the same database by [Nair and|Hintoh, 2010]
for comparison.

The features extracted from the non-aligned database are more localized. They are
very peaked and include no semantic details about the nature of the objects although
the database is only made of faces.

Completeness Another important point is that a large number of features did not
converge to a signi cant pattern even after extensive computation. Contrarily to what
happened with the van Hateren and Berkeley databases for which the number of ex-
tracted features increased with the number of hidden units, it was not here possible
to obtain the same result. We have also tried other experiments using over-complete
structures (1024 4096), but it does not show any improvement in the extracted fea-
tures with a much greater computational load.

Thus, it could be interesting to investigate the RBM algorithm ability to extract
similar features, reducing the number of hidden units. To do so, an under-complete
structure of 1024 256 has been investigated using the aligned database, as shown in

gure 4.9
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Figure 4.9: 256 features learned by an RBM layer ox322whitened image patches sampled
from the aligned face database. The same training protocol as in previous experiments has been
used.

We can observe that the features extracted using an under-complete structure are
similar to the most signi cant of those extracted using a complete structure. The lack
of improvement using a more important number of hidden units suggests to use such
under-complete structure for the nal classi cation. We will see later if this result is
con rmed with the COLD database.

Normalization The question of whitening impact has also been investigated on the
LFW database as we have done on the van Hateren and Berkeley databases. Two
experiments with aligned and non-aligned LFW normalized image patches gave the
features shown in gures 4.10 apd 4] 11 respectively. Note that, in this case, a complete
RBM structure was used. Two observations can be made : rst, all the features gave
signi cant patterns and second, the obtained features seem to cover a broader range of
spatial frequencies especially in the case of the non aligned database. Thus the result
seems to be different from the one obtained with whitened data and shown before
(gure 4.9).

Such features seem to be more promising for reconstructing original or new faces.
We can close up this result with the one published years ago [Turk and Péntland, 1991]
showing that with a face database, the principal axes of a PCA correspond to "eigen-
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Figure 4.10: 1024 lters learned by training the rst RBM layer onx32 normalized image
patches sampled from the aligned face database. The training protocol is similar to the one
proposed in|[[Nair and Hinton, 2010¢ € 300,g= 100,h = 0:02, 4 = 0:5, y; = 0:9, and

| = 0:0002).

faces”. Otherwise stated, the rst eigen-vectors of the PCA correspond to the main
shapes of faces from which any particular face can be reconstructed. We have here an
interesting parallel with PCA and linear methods. Instead of extracting the decorrelated
characteristics of an input signal or even the independent components on the basis of
linear transforms, RBMs extract much richer and numerous statistically independent
components from a similar database.

However, these results do not show the difference we have observed with whitened
data between aligned and non aligned face images. Although, in whitened data, the
features obtained with the aligned faces consist in parts of faces and are rarely "eigen-
faces”, with normalized data, the features seem to code for larger structures like the
structures of the whole faces. To summarize, the normalized data produces more fea-
tures as well in the case of non-aligned as aligned faces. These features seem to repre-
sent high-level semantic parts of the images and more frequently "eigen-faces” [Turk
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Figure 4.11: 1024 lters learned by training the rst RBM layer onx32 normalized image
patches sampled from the non-aligned face database. These features have been obtained using
the same training protocol as in the previous experiment.

and Pentland, 1991] in aligned images than in non-aligned images.

Additionally, an under-complete RBM extracts similar features as shown in gure
[4.12. However in this case the variability of the features is less than for complete
structures.

4.3.2.2 COLD database - Final validation

Low level features and Normalization We nally performed the same experiments

on the tiny-COLD database which is our reference database. In these experiments, with
a learning rate of @2 as in previous experiments, the network converged very fast but
the obtained solutions are not optimal. Consequently, we have reduced the learning
rate to 0002. One explanation could be that, in the case of the COLD database, the
images are highly redundant and neighbor images in time are similar. The network
could need more time to focus on the small details distinguishing one image to the

106



Figure 4.12: Learned under-complete natural faces bases. 256 features learned by an RBM
layer on 3%32 normalized image patches sampled from the aligned face database. In this
experiment, same protocol used as previous ones.

others. Using a smaller learning rate will slow down the convergence process but it
allows the network to converge to a better solutioe.(the network extracts more
interesting features). It has also been shown that when modeling real-valued Gaussian
visible units, training the rst RBM layer of features typically requires a much smaller
learning rate to avoid oscillations [Salakhutdinov and Hihton, 2009]. But we observed
this effect only on the COLD database.

The features shown in gurg 4.3 have been extracted by training the rst RBM
layer on 137069 whitened image patches {22 pixels) sampled from the COLD
database. Some of them represent parts of the corridor, which is over-represented in
the database. They correspond to long sequences of images quite similar during the
robot exploration. Some others are localized and correspond to small parts of the initial
views, like edges and corners, that can be identi ed as room elemeanth €y are not
speci c of a given room).

The features shownin gufe 4.]L4 have been obtained using the normalized data. As
previously observed for the other databases, the obtained features look very different.
Parts of rooms are much more represented than for the whitened database and it seems
that the range of spatial frequencies covered by the features is much broader con rming
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Figure 4.13: 256 Iters obtained by training a rst RBM layer onx22 whitened image
patches sampled from the COLD database. The training protocol is similar to the one proposed
in [Krizhevsky, 2010] €= 100,g= 100,h = 0:002,1 = 0:0002, = 0:5, andy; = 0:9).

Figure 4.14: The 256 lters obtained by training the rst RBM layer orx32 normalized im-
age patches sampled from the COLD database. The training protocol is similar to the previous

experiment.

what has been already observed in other parts of this work.
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Figure 4.15: The second-level features extracted from the whitened tiny-COLD data-base. The
gure shows the three most prominent rst level features used in the construction of each high-
level feature. The pattern for this second level feature is a linear combination of the rst one
weighted by the rst layer connection weights.

Upper layers In order to understand how these low level features are used to form
higher level representations in the upper layer of the DBN we have performed a simi-
lar computation as irj [Lee et al., 2008]. gures 4.15 &nd .16 show the 128 high level
features (rst left patch in each column) formed with the linear combination of fea-
tures in the preceding layer. The combination of these initial features in higher RBM
layers correspond or partially correspond to larger structures, more characteristics of
the different rooms ( guref 4.15 afnd 4]16).

However, the high level feature space obtained with locally normalized data shows
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Figure 4.16: The second-level features extracted from the normalized tiny-COLD database.
The gure shows the three most prominent rst level features used in the construction of each
high-level feature. The pattern for this second level feature is a linear combination of the rst

one weighted by the rst layer connection weights.

patterns that can be more easily related to room structures than those from whitened
data.

The obtained codes in the different conditions of normalization were used directly
as the nal input vector of the classi cation process that we will study in the next
chapter.
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4.4 Summary

After the relevant works have already been presented and discussed in the previous
chapter, in this chapter we have focused on some speci ¢ characteristics of our model
for SPR with an emphasis to the following points:

The use of tiny images.

The differences in the obtained features between whitening and local normaliza-
tion.

Image conversion and normalization This chapter has provided a detailed descrip-
tion of the proposed model stages. In particular, we rst presented the different func-
tions (image color conversion, image reduction, and image normalization) required to
pre-process images. On the other hand, we have noted that without any initial correc-
tion (without whitening and without local normalization of brightness and illumina-
tion) of the patches, the RBM algorithm converges to a wrong solution. A normaliza-
tion of any kind of the initial patches is necessary for a RBM to get localized features.

Then, the second part of these experiments have focused on studying the nal im-
pact of whitening and normalization on features extraction. We have seen that data
whitening encourages the RBM algorithm to learn very localized features, while data
normalization forces the RBM algorithm to converge toward features that cover a larger
spatial frequency spectrum and especially the low frequencies able to capture the over-
all organization of the scene.

Use of tiny images We have proposed to use tiny images instead of image patches
that would have required to use BoWs approaches and we have shown that DBNs can
be successfully used in this case to extract sparse ef cient features. Working with
size-reduced images seems indeed simpler than BoWs approaches.

Sparse code A sparse code makes the data linearly separable in the feature space
and thus allows to use a simple linear classi er, like softmax regression, to achieve an
accurate and rapid SPR. As a consequence, we proposed to use RBM approaches to
extract a set of independent features that can be used in image coding. We assumed
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that these features must be sparsely represented and thus they can be used to create a
linear separable code in the feature space. This process can be repeated several times
until the CD learning algorithm converges towards a sparse representation of the initial
images.

Linear separability If this assumption is true, a simple classi er is then suf cient

to determine the robot place according to the given input image. To investigate this
hypothesis, we proposed to test the classi cation phase rst using a linear classi er,
like softmax regression, and then using a nonlinear classi er, like SVM. The hope is
that DBN computes a linear separable signature for the initial data. These questions
will be studied in the next chapter.

Completeness and network structure Finally, our RBM learning algorithm extracts
interesting features in the cases of over-complete, complete, and under-complete struc-
tures. This allows us to use an under-complete structures of DBNs to speed-up the
learning process and thus simpli es the classi cation process. Besides, DBNs perform
non-linear dimensionality reduction and they can learn short binary codes that allow
very fast retrieval of documents or images [Hinton and Salakhutdinov, 2006; Salakhut-
dinov and Hintoh, 2007]. More precisely, the high-dimensional data can be converted
to low-dimensional codes by training a deep belief network. This reduction speeds
up the classi cation process. It has been formally demonstrated that this reduction
works much better than principal components analysis (PCA) as a tool to reduce the
dimensionality of datd [Salakhutdinov and Hintbn, 2007].

Alignment We have also considered the question of the effect of focusing the gaze
of the system towards a region of interest through a study of the feature extracted from
an aligned and a non aligned face database. As expected, focus the image on a speci ¢
class of objects allows the system to extract more semantically relevant features than
when the images are not centered on the object to be considered. However, it could
seem contradictory with the view-based scene recognition approach we have adopted
since focusing on objects could require to recognize them before. We just want to
mention the numerous recent works on attentional focalization on proto-objects or re-
gion of interest/[Walther and Koch, 2006] that open the vicious circle : to recognize an
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object, it is required to center it in the visual eld and, in the meantime, to center it, it
must have been recognized before.

The COLD database is obviously uncentered. So we would wait for unspeci c
features with a low semantic level. This is not exactly the case due to the way the
robots acquire the images : for example in corridors, the images are more centered
due to the high level of constraints in the movements of the robots and the repetitive
nature of the images. In this case, the extracted features will be more semantically
signi cant. If a robotic system is endowed with a mechanism that attracts its gaze to
speci ¢ views, it will have an over-representation of these view in its dataset and these
views will be learned as independent features as in natural syséegnghe existence
of speci c cells in the infero-temporal cortex of mammals).
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Chapter 5

Vision-based classi cation: Supervised
learning of robot places

5.1 Introduction

In the present chapter, we want to gather all the observations we have made in the pre-
vious chapters and the organization we have developed to process the COLD database.
We will study here the classi cation abilities of the high level representation that can
be obtained from tiny images. Therefore, this chapter focuses on performing extensive
classi cation experiments in order to evaluate the performance of our approach. To
investigate whether the linear separability in the feature space is achieved, we propose
to compare the classi cation performances using a linear or a nonlinear classi er. All
the classi cation results presented here will be interpreted and compared with the most
recent approaches of SPR [Guillaume et al., 2011; Ullahlet al., 2008].

5.2 Vision-based classi cation results: Supervised learn-
ing of robot places

5.2.1 Recall of previous results

In this section, we will rst present the best performance for instances recognition that
have been achieved in the literatdre [Pronobis and Caputo} 2007; Ullah et al., 2008] for
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easy comparison with our own results. The authors in [Ullah et al.,|2008] used the de-
scriptor Scale-Invariant Feature Transform (SIFT) to describe the images. Each image
is then classi ed independently through the use of Support Vector Machines (SVMSs).
The results obtained for the three laboratories (in particular for standard sequences)
are presented in gurg §.1. For each training illumination condition (indicated on top
of the charts), the bars present the average classi cation rates over the corresponding
testing sequences under the illumination condition marked on the bottom axis.

Figure 5.1: Average classi cation rates from the three different laboratories obtained by [Ullah
et al| [ 2008]. They are grouped according to the illumination conditions under which the train-
ing sequences were acquired. Thus, the training conditions are on top of each set of bar-charts
while the bottom axes indicate the illumination conditions used for testing. The uncertainty
bars represent the standard deviation. Results corresponding to the two different portions of
the laboratories which are indicated by A and B. We can see from these results that the system
is quite robust to the changes of illumination conditions and the overall performance is almost
identical. These graphs have been taken from [Ullah et al.,| 2008].
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Based on their method, they have got an average of correct classi cation5$690
for Saarbrucken laboratory, 88% for Freiburg laboratory and S8% for Ljubljana
laboratory. These average results have been obtained when the illumination conditions
were similar for the training and testing. However, the performances decrease for ex-
periments were conducted under various illumination conditions. In this case they have
reached classi cation rates of 85% for Saarbrucken laboratory,:23% for Freiburg
laboratory and 8%9% for Ljubljana laboratory. Finally, they have observed that there
is a decrease in performance for the Freiburg laboratory. This can be caused by the
glass walls in Freiburg laboratory and the fact that the cameras were mounted signi -
cantly lower than for the other laboratories, resulting in less diagnostic information in
some of the images [Ullah etal., 2008].

As a conclusion, these methods lead to notable classi cation rates, however, they
are based on sophisticated classi cation techniques like SVM. Also, the classi cation
results decreased in the case of testing under different illumination conditions, which
indicates that these models remain sensitive to these changes.

5.2.2 Recognition of places based on DBNs and tiny images

In this section, we present the classi cation result of our model, based on DBNs and
a direct use of tiny images. We follow the same training and testing protocols as in
[Ullah et al|, 2008]. Also, we interpret and compare our results with the work of [Ullah
et all,| 2008]. Finally, we investigate the robustness of our results to the illumination
conditions.

It was stated at the beginning of this chapter that after image coding, the nal step
is to use a classi cation algorithm to the actual recognition on the basis of the features
extracted from the input datage. using the feature space. In the present section,
we will show the classi cation results using a simple linear classi er like softmax
regression [NQ, 2011] and a nonlinear classi er like Support Vector Machines (SVMs)
[Cristianini and Shawe-Taylor, 2000; Vaphik, 1995] respectively. Assuming that the
non-linear transform operated by DBN improves the linear separability of the data, a
simple regression method would suf ce to perform the classi cation process. We have
seen that DBNs are able to extract sparse features from a large amount of images and,
using these features, we can create sparse representations of the initial images.
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However, if we assume that the problem has not been made linearly separable by
DBNSs, a simple linear classi er is not suf cient and therefore a nonlinear classi er,
like SVMs, will be required to perform the classi cation process. Studying the classi-
cation process using a linear and a nonlinear classi ers would de nitely demonstrate
whether the linear separability of the data has been obtained by DBNSs or not.

The different experiments presented in the preceding chapters have suggested to
use an under-complete structure for SPR. We have tested different size of the DBN and
concluded that the optimal structure of the DBN for SPR using the COLD database is
768 256 128. We have used this network structure in all the results presented here
unless otherwise stated.

5.2.2.1 Classi cation results using a softmax regression

The samples have been taken from each laboratory and each illumination condition
were trained separately, as |n [Ullah et al., 2008]. For each image, the softmax net-
work output gives the probability of being in each room. According to the maximum
likelihood principle, the largest probability value gives the decision of the system. In
this case, we obtain an average of correct answers ranging from 50% to 76% according
to the different conditions and laboratories as shown in guré 5.2.

Note that the classi cation results shown in gure 5.2 have been obtained using
the code generated by the features extracted without including the regularization term
which plays a key element in improving the sparsity property for the features.

5.2.2.2 Classi cation results using support vector machines

Figur shows the classi cation results using a SVM clasﬂ aith a polynomial
kernel of degree 2. In this experiment, we have also used the same protocol for both
training and testing as in the previous experiment. This gure shows that the average
of correct answers is still ranging from 50% to 75% for the different conditions and
laboratories. For veri cation, we have also tried to use this nonlinear classi er with
different kernels (linear, radial basis function, sigmoid function, and precomputed ker-
nel). All of them gave very close results to the polynomial one. Furthermore, we have

IWe have used teh SVM package developed at http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Figure 5.2: Average classi cation rates from the three different laboratories using a softmax
regression. Training conditions are on top of each set of bar-charts. Each bar corresponds to a
testing condition. The extracted features in this case are obtained using a learning ra@2of 0

and a weight decay of.0002.

investigated different degrees (2 “default”, 3, and 4) of the polynomial kernel. They
did not notably change or improve the nal classi cation results.
As we have previously said, we can thus conclude that the feature space we have
obtained with DBN is linearly separable for the current classi cation problem.
Concerning the classi cation results achieved by the linear regression, they seem
to be worse compared with the state-of-the-art results [Guillaume| et al.} 2011} Ullah
et al|, 2008]. More precisely, the results obtained|by [Guillaume et al., 2011] have an
average of correct recognition of 80% based on GIST descriptor arzd®1based
on CENTRIST descriptor for the three different laboratories of the COLD database.
Also, the results in/[Ullah et al., 2008] have an average of correct answers of 83%
based on more sophisticated techniques (use of SIFT detectors followed by a SVM
classi cation) for the same three laboratories. While in our case, the results have
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Figure 5.3: Average classi cation rates from the three different laboratories using a nonlinear
SVM classi er. The extracted features in this case are obtained using a learning rad®@»f 0
and a weight decay of.0002.

an average of correct answers of.®b. Perhaps the strong size reduction of the
initial images from 648480 to 3%24 pixels has strongly affected in losing a lot of
interesting information. However, there are still several open ways for improving these
classi cation results to reach the state-of-the-art results. The rst possible way is to
study different factors acting on sparsity.

5.3 Encouraging sparse hidden activities

Since the use of the nonlinear classi er does not change or improve the classi cation
results, thus we should think about another way to improve them. A possible way relies
on encouraging the sparsity property for the hidden activities. Improving this property
should allow nal recognition results improvement through linear separability data

increasing. To achieve that, several factors, including the learning rate, the weight
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decay, and the penalty term could have some impact. In particular, adding a penalty
term to encourage hidden activation units to be sparse would signi cantly change the
overall classi cation results.

Figure 5.4: Average classi cation rates from the three different laboratories. The extracted
features in this case are obtained using a learning rat®06fi.Gand a weight decay of@O01.

We have started by decreasing the learning rate and the weight cas0tb &d
0:0001 respectively. After obtaining the code, the classi cation process was performed
in the feature space as shown in gyre]5.4. Unfortunately, the results seem to be
similar for COLD-Ljubljana laboratory and worse for COLD-Freiburg and COLD-
Saarbruecken laboratories compared with the experiment shown in [gure 5.2. We
thought that we have obtained these worse results because of decreasing the weight
decay, thus we kept the learning rate unchanged and we increased the weight cost to
0:0008. However, the results shown in gure b.5 are still very close to the results
obtained with a weight cost of:@001. This underlines that these factors do not im-
prove the sparsity and thus they did not have any real impact on changing the nal
classi cation results.
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Figure 5.5: Average classi cation rates from the three different laboratories. The extracted
features in this case are obtained using a learning rat®0f.Gand a weight decay of@08.

Based on these experiments, we can observe two facts: First, we noted that in the
case of the COLD database, using a learning rate ranging fro@i @ Q005 does not
affect or change the features too much. The number and types of features were quite
similar. The only difference is that the network will converge faster if we use a larger
learning rate, however, after a lot of epochs, any learning rate value in the above range
will let the network converge towards similar features. Secondly, We have seen that
using a weight decay ranging from0Q01 to 00008 does not change the results. This
indicates that any value in this range is suf cient to penalize large values that could
happen during the learning process.

However, by adding a penalty term which particularly aims at encouraging the spar-
sity on hidden activation units, the nal average classi cation scores are signi cantly
increased, as shown in gufe %.6. In this experiment, we obtained an average of correct
answers ranging from 65% to 80% according to the different conditions and laborato-
ries as shown in gurg 5]6. It has been shown that adding this term effectively improves
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the sparsity of the data representation through encouraging hidden unit activations to
be sparse [Hinton, 2010; Lee et/ al., 2008, 2009; Mairal ét al.,|2008; Olshausen and
Field,[1996| 1997]. More explanation of this term can be found in chapter 3.

Figure 5.6: Average classi cation rates from the three different laboratories. The extracted
features in this case are obtained using the same CD parameters but with a penalty term.

Compared to the previous experiments shown in 5.2, the average results of
correct classi cation were: 689%, 575%, and 60% for COLD-Ljubljana, COLD-
Freiburg, and COLD-Saarbruecken laboratories respectively and with an overall av-
erage of correct answers of 6% for the three laboratories. However, the average
results shown in guré 5]6 are: 78%, 695%, and 71% for the same three laborato-
ries and with an overall average of correct answers @%l This means that we have
managed to successfully raise the classi cation results by 10% which become closer
to the state-of-the-art results. This underlines an important fact that adding the penalty
term has effectively improved the quality of the image coding.

Another possible way is to investigate the effect of normalization on the nal clas-
si cation results. We have seen in the previous chapter using data whitening or local
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normalization had some in uences on features extraction. Thus, investigating this fac-
tor would also have some impact on the classi cation process. In the next section, we
study the classi cation process using features extracted from the normalized data.

5.4 Role of normalization on the classi cation

All previous experiments have been conducted using the features learned by training
two RBM layers on the whitened data. However, during our work we have observed
that learning features from a non-whitened data would play an important role in im-
proving the classi cation results. Thus, after using the features shown in 4.14 10
train the second RBM layer, the real-valued output of the second RBM units is used to
perform the classi cation as shown in gufe %.7 using a softmax regression.

Figure 5.7: Average classi cation rates from the three different laboratories. These results have
been achieved by training two RBM layers on the normalized COLD data.

In this case, we obtain an average of correct answers ranging from 71% to 90%
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according to the different conditions and laboratories. Compared to our previous re-
sults shown in gurg 5.6, these classi cation results seem to be more competitive to
the state-of-the-art. More precisely, the average results of correct classi cation are:
83:13%, 80515%, and 8560% for COLD-Ljubljana, COLD-Freiburg, and COLD-
Saarbruecken laboratories respectively and with an overall average of correct answers
of 81:375% for the three laboratories. This indicates that we have improved the results
by 10% to 11% for the different laboratories. They are then at the level of the best
published ones [Ullah et al., 2008]. The results remain robust to illumination varia-
tions as in[[Ullah et al], 2008]. We underline once again the lower performance on
the COLD-Freiburg dataset. However, in this case, our results outperform the results
obtained in[[Ullah et all, 2008].

These results demonstrate that the features learned from a data normalization are
more bene cial for our classi cation problem. Itillustrates the fact that the normaliza-
tion process keeps much more information or structures of the initial views which are
very important for the classi cation process. On the other hand, data whitening com-
pletely removes the rst and second order statistics from the initial data which allows
DBNs to extract higher-order features. This demonstrates that data whitening could
be useful for image coding. However, it is not the optimal pre-processing method in
the case of image classi cation. This is in accordance with the results in the litera-
ture showing that rst and second order statistics based features are signi cantly better
than higher order statistics in terms of classi cation [Aggarwal and Agrawal, |2012;
Krizhevsky, 2010].

However, two different ways are still open to improve these results. The rst one
is to use temporal integration, as proposed in [Guillaumelet al., 2011]. The second one
is presented in the next section and relies on decision theory.

5.5 Image rejection

Usually, in any video sequence taken during robot exploration, some of the images are
non informative especially when the robot faces a wall or when it turns or moves too
fast as noted in the case of the Freiburg laboratory. The main justi cation of using a
rejection mechanism is therefore to discard these blurred images from the classi cation
process.
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The detection rate presented in gure]5.6 has been computed from the classes with
the highest probabilities, irrespective of the relative values of these probabilities. Some
of them are close to the chance (in our cas200r 025 depending on the number
of categories to recognize) and it is obvious that, in such cases, the con dence in the
decision made is weak. Thus below a given threshold, when the probability distribution
tends to become uniform, one could consider that the answer given by the system is
meaningless. This could be due to the fact that the given image contains common
characteristics or structures that can be found in two or more classes. As shown in
gure B.8, the effect of the threshold is then to discard the most uncertain results.
Figure5.9 ( rst column) shows the average classi cation results for a threshol&bf 0
(only the results where mgp(X = cjl) 0:55, wherep(X = ¢ is the probability
that the current view belongs tacy, are retained). These results have been achieved
using the features extracted from the whitened data.

Figure 5.8: A comparison between the classi cation results with and without a threshold. This
test has been done for a subset of images selected from Saarbruecken laboratory, partB. First
level represents the actual probabilities of the four different classes (corridor (CR), toilet (TL),
one person of ce (1PO), and printer area (PA)). Second and third levels represent classi cations
based on a softmax regression without and with a threshold respectively. Finally, the forth level
represents the original correct classi cation.

In this case, the average acceptance rate (the percentage of considered examples)
ranges from 75% to 85%, depending on the laboratory, and the average results show
values that outperform the best published ones [Ullah et al.,|2008]. When consider-
ing all the results obtained by training and testing on similar illumination conditions,
we got an average classi cation rate of:68% for COLD-Saarbrucken laboratory,
89:88% for COLD-Freiburg laboratory and %% for COLD-Ljubljana laboratory.
Similarly to [Ullah et al.| 2008] results, the performance has also decreased in case of
the experiments under varying illumination conditions. In this case we have achieved
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Figure 5.9: Average classi cation rates from the three different laboratories with a threshold of
0.55. First column: classi cation rates that have been obtained based on the features extracted
from the whitened dateBecond column:classi cation rates that have been obtained based on
the features extracted from the normalized data.

classi cation rates of 8%83% for COLD-Saarbrucken laboratory,:83% for COLD-
Freiburg laboratory and 882% for COLD-Ljubljana laboratory. However, our results
are less sensitive to the illumination conditions than the results obtairied in [Ullah et al.,
2008]. As in previous experiments, we noted the weaker performance on the COLD-
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Freiburg data, which con rms that this collection is the most challenging of the whole
COLD database as indicated in [Ullah et al., 2008]. However, with and without thresh-
old, our classi cation results for this laboratory outperforms the best ones obtained by
[Ullah et al}, 2008].

Similarly, we have also applied the threshold method on the results obtained in g-
ure[5.T with locally normalized data. Figre]5.9 (second column) shows the average
classi cation results using a similar threshold (0.55). In this case, the average rate of
acceptance examples increases to be between 86% to 90%, depending on the labora-
tory, showing that more examples are used in the classi cation than the former experi-
ment. Also, the average results, in this case, show scores that strongly outperform the
best published oné [Ullah etfal., 2008]. This indicates that the linear separability of the
data was signi cantly improved in the case of using the normalized data for features
extraction.

Concerning the sensitivity to illumination for both cases, our results seem to be less
sensitive to the illumination conditions compared to the results obtained in [Ullah et al.,
2008]. As in previous experiments, we noted the lower performance on the COLD-
Freiburg data, which con rms that this collection is the most challenging of the whole
COLD database as indicated in [Ullah et al., 2008]. However, in case of using features
learned from the un-whitened data, with and without threshold our classi cation results
for this laboratory outperforms the best ones obtained by [Ullah|et al.| 2008].

Tables 1 and 2 show an overall comparison of our results with those from [Ullah
et all,/ 2008] for the three training conditions in a more synthetic view. It also shows
the results obtained using a SVM classi cation instead of a softmax regression. The
results are quite comparable to softmax showing that the DBN computes a linearly
separable signature. They underline the fact that features learned by DBNs approach
are more robustness for a semantic place recognition task than the extraettbhaf
features based on (GiST, CENTRIST, SURF, and SIFT detectors).
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. Laboratory name Saarbruecken Freiburg Ljubljana
Training e ‘C\on\d|F|0‘n Cloudy | Night Sunny | Cloudy | Night Sunny | Cloudy | Night Sunny
Ullah 84.20% | 86.52% | 87.53% | 79.57% | 75.58% | 77.85% | 84.45% | 87.54% | 85.77%
No thr. 70.21% | 70.80% | 70.59% | 70.43% | 70.26% | 67.89% | 72.64% | 72.70% | 74.69%
SVM 69.92% | 71.21% | 70.70% | 70.88% | 70.46% | 67.40% | 72.20% | 72.57% | 74.93%
0.55 thr. 84.73% | 87.44% | 87.32% | 85.85% | 83.49% | 86.96% | 84.99% | 89.64% | 85.26%

Table 5.1: Average classi cation results for the three different laboratories and the three train-
ing conditions.First row: Ullah's work; second row: rough results without thresholthird

row: classi cation rates using SVM classi efpurth row: classi cation rates with threshold

as indicated in text. Our results have been obtained based on the features learned from the
whitened data.

. Laboratory name Saarbruecken Freiburg Ljubljana
Training ) \C\on\d|§|0\ﬂ Cloudy | Night Sunny | Cloudy | Night Sunny | Cloudy | Night Sunny
Ullah 84.20% | 86.52% | 87.53% | 79.57% | 75.58% | 77.85% | 84.45% | 87.54% | 85.77%
No thr. 80.41% | 81.29% | 83.66% | 81.65% | 80.08% | 79.64% | 83.14% | 82.38% | 83.87%
0.55 thr. 86.00% | 88.35% | 87.36% | 88.15% | 85.00% | 87.98% | 85.95% | 90.63% | 86.86%

Table 5.2: Average classi cation results for the three different laboratories and the three train-
ing conditions.First row: Ullah's work; second row: rough results without thresholthird

row: classi cation rates with threshold as indicated in text. Our results have been obtained
based on the features learned from the normalized data.

5.6 Summary

In the present chapter we have presented our experiments on SPR and image classi-
cation using the DBN we have designed in the previous chapters. Concerning the
classi cation, our system was tested using two different classi cation methods (linear
with softmax and nonlinear with SVM). We observed that the results of the nonlin-
ear classi er are quite comparable to the softmax regression results, suggesting that
the DBN computes a linearly separable signature. We have also observed that adding a
penalty term improved the quality of image coding and thus increased the classi cation
scores.

We also investigated the effect of normalization on the classi cation process. We
saw that extracting features from a locally normalized database that covers a larger
range of spatial frequencies gave signi cantly better classi cation results. Compared
to the state-of-the-arf [Guillaume et|al., 2011; Ullah et |al., 2008], they are in the
same range for COLD-Saarbrucken and COLD-Ljubljana laboratories and they out-
performed the results for COLD-Freiburg laboratory.
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Finally, we introduced a method to discard the most uncertain images and we show
that even with a small rejection rate the classi cation results are signi cantly improved
and largely outperformed the state-of-the-art. This last way to perform SPR relates to
the observation that to recognize a speci ¢ location it could not be necessary to rec-
ognize all the views within a data ow but only the most statistically signi cant ones.
The reached con dence level in this case could be very high. We can push forward
this hypothesis saying that recognizing a unique but speci ¢ detail characterizing a
place could be suf cient to recognize it. Future approaches could be based on such
considerations.

129



Chapter 6

Conclusions and future works

6.1 Summary of contributions

The aim of this thesis was to study the use of Deep Belief Networks in a challenging
image recognition task, View-based Semantic Place Recognition. DBNs have been
widely used to learn high-level feature representations that can be successfully applied
in a wide spectrum of application domains, including in particular image retrieval,
classi cation and regression tasks, as well as nonlinear dimensionality reduction. We
proposed here to use them as a novel approach to achieve robot SPR. The most signif-
icant characteristics behind learning deep generative models are as follows :

Multiple layers of representation that can be trained in a greedy layer-wise by
training one layer at a time.

The greedy learning carried out in a completely unsupervised way.

Their ability to learn sparse ef cient features and perform non-linear dimension-
ality reduction that simplify the classi cation.

The theoretical grouding of the feature space construction that outperforms the
empirical building of sets of descriptors.

The rst part of the thesis focused on introducing the problem of SPR in robotics
systems. Thus, in chapter 2 we provided a detailed overview of the different coding
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and classi cation methods that have been used to solve the problem of SPR. In par-
ticular, we showed that, in the framework of the view-based approaches, the problem
of SPR rst requires an appropriate code of the initial data. Such a code can be pro-
vided by DBNs with the advantage to be problem independent and to be theoretically
grounded. We then provided a detailed description of DBNs and their building mod-
ules, Restricted Boltzmann Machines (RBMs), along with its most popular learning
algorithm, Contrastive Divergence (CD). We have seen that although Boltzmann Ma-
chines (BMs) and RBMs have been introduced as early as in the 80's, the wide use of
them had to wait until [Hintor], 2002] who introduced CD learning. The main barrier
in the acceptance of RBMs was the dif culty in computing the stochastic gradient for
training the model. Thanks to CD learning, the popularity of RBM and its variants
grew rapidly, and a whole eld opened [Bengio, 2009] in the early 2000s.

Since different parameter settings strongly in uence the quality and the nature of
the obtained feature space, we have developed an extensive parameter study presented
in chapter 3. This study allowed us to precise the role of the network structure and
to discuss the question of over-completeness. We also focused on the parameters in-
uencing the locality of the obtained features. This locality can increases the sparsity
of the network, its ability to activate only a few units to code for an image (spatial
sparsity) and to activate a given unit only rarely over time (time sparsity).

The effect of whitening compared to local normalization was also studied in this
chapter. Our studies allow to draw an interesting conclusion about the spatial frequency
representation with the two modes of normalization. While whitening equalizes the
Fourier power spectral density and thus the autocorrelation of the signal, the local
normalization equalizes the energy included in each frequency band (each octave). The
obtained features in this case cover a broader range of spatial frequencies suggesting
that the energy of the signal plays the most important role in the emergence of the
features during RBMs learning.

Chapter 4 studies the use of tiny images for classi cation through the dimension-
ality reduction ability of the DBNs. The impact of image centering was studied with
aligned and non aligned images and it is shown that the plasticity of the RBM learning
algorithm allows to build different feature spaces in these case with a higher semantic
level for the aligned dataset. This shows that the composition of the database plays the
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most prominent role in the nature of the features that will be obtained. Obtaining lo-
calized low-level features focused on non speci ¢ edges is not a property of the RBM
algorithm but depends on the used databases. To shed light on this point we can argue
that the statistically independent components of an image could be higher level details
if these details are aligned in the initial dataset. This can be related to the role of atten-
tional mechanisms in the acquisition of an optimal image coding. Without attention,
looking at random to the scene, the obtained feature space is made of the localized
low-level edges of the images. With the attention to very frequent objects or image
characteristics (like faces or familiar objects) a DBN network can easily mimick what
happens in the primate visual cortex, the selection of detectors speci c of the structural
details of these frequent characteristieg(parts of faces).

Chapter 5 focused on performing extensive classi cation experiments to show the
performance of the proposed model. An approach based on tiny images followed by a
projection onto an appropriate feature space can achieve good classi cation results in
a semantic place recognition task. They outperformed the best published ones [Ullah
et al|,| 2008] based on more complex techniques (use of Scale Invariant Feature Trans-
form (SIFT) detectors followed by a Support Vector Machine (SVM) classi cation).
As we expected, the classi cation results were signi cantly better when we used the
features learned from a locally normalized dataset. It can be argued that rst and sec-
ond order statistics based features are signi cantly better than higher order statistics in
terms of classi cation as already stated by [Aggarwal and Agrawal, [2012]. However,
to recognize a place it seems not necessary to correctly classify every image of the
place. With respect to place recognition not all the images are informative: some of
them are blurred when the robots turns or moves too fast from one place to another,
some others show no informative detaiksg. when the robot is facing a wall). As
the proposed system computes the probability of the most likely room among all the
possible rooms, it offers the way to weight each conclusion by a con dence factor as-
sociated with the probability distribution over all classes. We can then discard the most
uncertain views thus increasing the recognition score. It offers a simpler alternative to
the method proposed in [Pronobis and Caputo, 2007] based on cue integration and the
computation of a con dence criterion in a SVM classi cation approach.

The fundamental contribution of this work is therefore the demonstration that DBNs
coupled with tiny images can be successfully used in the context of semantic place
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recognition. These considerations have greatly contributed in simplifying the overall
classi cation algorithm. They indeed provide coding vectors that can be used directly
in a discriminative method. To our knowledge this is the rst demonstration that tiny
images feature extraction using DBN is an alternative approach for SPR that deserves
to be considered.

6.2 Future works and open questions

There are several potential extensions and applications of the ideas presented in this
thesis, particularly related to learning DBNSs.

Convolutional deep belief networks. As we have stated before, scaling such models
to full-sized, high-dimensional images remains a dif cult problem for DBNs.
However, very recent works have addressed this problem (see for instance, [Lee
et al|,| 2009; Norouzi et al., 2009]) through the use of convolutional operator. In
particular, they proposed to use a probabilistic max-pooling, a technique which
shrinks the representations of higher layers in a probabilistically sound way.
They have shown that the algorithm learns useful high-level visual feature and
led to excellent performance on visual recognition tasks. Therefore, we plan to
apply this model on the COLD database and investigate their features extraction.
However, for the classi cation process, we need to use the small tiny images,
otherwise the classi cation becomes very expensive.

Sparse-overcomplete representationsThis idea has already been investigated in this
thesis in terms of features extraction. We have seen that the use of overcom-
plete structures for DBNs did not improve the features themselves for some
databases. However, the number of extracted features was different as in the
case of LFW database experiment. Sparse-overcomplete representations have
a number of theoretical and practical advantages, as demonstrated in a number
of recent studies [Doi et al., 2006; Olshausen and Field, /1997; Ranzato et al.,
2007a]. In particular, they have good robustness to noise, and provide a good
tiling of the joint space of location and frequency. These representations can be
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advantageous for problems of classi cations, such as the problem SPR, because
they will allow to have more features of the different places.

Place categorization. A question that has not been investigated in this work and that
remain open despite some interesting attempts [Guillaume]| et al.] 2011} Ullah
et al|, 2008] is the view-based categorization of places. The work presented in
this thesis concerns instance classi cation. Categorization is the way to recog-
nize the functional nature of a room, for example with the COLD database the
recognition of an of ce or a corridor from the different labs. The view-based
approaches usually give very poor results (usually around 25% of recognition).
Although we think that this problem is fundamentally ill-posed and that catego-
rization of functional classes like printer area or kitchen must be rather made on
the basis of the recognition of their functions, it could be interesting to see if an
approach based on DBNs is able to improve these results.

Object recognition. As previously said, DBNs have the ability to learn layers of fea-

ture detectors that become progressively more complex, which is thought to be
a promising model to address the problem of object recognition. However, cur-
rently, most of the existing object recognition systems that achieve state-of-the-
art results are based on hand coded methods like GiST, CENTRIST, SURF, and
SIFT detectors (see for instance [Guillaume et al., 2011; Ullah|et al.] 2008] and
include many hand-crafted features. On the light of what was done in this thesis
for SPR, it could be interesting to evaluate the performance of DBNs on these
object recognition tasks.

We have outlined several potential research works for the future. However, re-
search on deep learning is still new and there are a lot of open questions that have not
been considered yet [Yu etlal., 2009]. Some of them are: Can we develop better opti-
mization or approximation techniques that would allow us to learn deep models more
ef ciently without signi cant human intervention? Can we develop algorithms that are
capable of extracting high-level feature representations that can be transferred to un-
known future tasks? Under what conditions does the feature hierarchy achieve a better
regularization or statistical ef ciency? How can we make deep models more robust
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to deal with highly ambiguous or missing sensory inputs? We believe that answering
these questions will allow and facilitate the emergence of more intelligent machines.

Finally, the system presented in this thesis could also be successfully applied to
mobile robot platform with limited memory and processing resources. In particular,
semantic place recognition can be used to guide the robot navigation. It seems not too
dif cult to use the classi cation tool after off-line learning of both the feature space and
the classi cation space. The fact that these learning steps are not well-suited for on-line
learning is one of the major drawback. However, it could be very interesting to study
the features that emerge from on-line DBN learning when the images are provided
during the exploration of its environment by the robot. In particular, the impact of
two different situations, the free random acquisition of images and the acquisition of
images driven by an attentional mechanism, will be interesting to study.

6.3 Publications

6.3.1 Posters and oral presentations

Part of the work presented in this thesis has been also presented in the following events:

Ahmad Hasasneh, Emmanuelle Frenoux, and Philippe Tarroux (2010, July).
Medical Image Segmentation Using New Machine Learning Methods: a Prospec-
tive Study. Poster session presented at the BMVA Summer School on Computer
Vision, 2010, Kingston University, London, UK.

Ahmad Hasasneh, Emmanuelle Frenoux, and Philippe Tarroux (2012, February).
Semantic place recognition using tiny images and deep belief networks. Oral
presentation in SIG-TAO meetings, 2012, LRI Lab, Paris SUD University, Paris,
France.

6.3.2 International conferences

Part of the work presented in this thesis has been published in the following interna-
tional conference:
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Ahmad Hasasneh, Emmanuelle Frenoux, and Philippe Tarroux (2012, July). Se-
mantic Place Recognition Based on Deep Belief Networks and Tiny Images. In
9" International Conference on Informatics in Control, Automation and Robotics
ICINCO, 2012, Rome, Italy.

6.4 Closing remarks

This thesis has explored the problem of semantic place recognition for autonomous
systems. As one solution for this problem, | proposed to use DBNs approaches that
exploit sparsity and locality, while demonstrating good performance in many Al prob-
lems. Given that the quality of features signi cantly affects the performance of im-
age classi cation. We have seen that our approach obtains scores comparable to
approaches based on computer vision methods (like the use of SIFT detectors) and
more sophisticated classi cation techniques like SVM. As emphasized by [Hinton
et al|, 2011], it illustrates the fact that features extracted by DBN algorithms are more
promising for image classi cation than hand-engineered features. | believe that such
algorithms will allow machine learning systems to be much more easily applied to
problems in vision, text understanding, audio understanding, and other problems, and
to achieve superior performance without the manual feature engineering while using
signi cantly less labeled data.
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Appendices

This section demonstrates the derivation of the most important equations.

Appendix A This appendix presents the derivation of the sigmoid function for an
RBM and general BM [Krizhevsky, 2009]. An RBM wit visible units andd hidden
units is governed by the following energy function:

H

a cih;;

g 8 g
E(vih;g)= a a vihjwij bivi
=1 =1

i=1j=1 i=
where Agence franaise pour la promotion de lenseignement suprieur
v is the binary state vector of the visible units,
h h is the binary state vector of the hidden units,
v; is the state of visible unit
hj is the state of hidden unijt
wij is the real-valued weight between visible uréind hidden unif,
b; is the real-valued bias into visible umjt
cj is the real-valued bias into hidden umnit

According to Gibbs distribution, a probability is associated with con guratigh)(
is given as follows:

E(v;h)
P(v;h) =
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whereZ is a normalizing constant. Thus after marginalization:
P(v)= & P(v;g)
9

We can also derive some simple conditional expressions:

P(v;h) _ e BV

PIVI= o) = 3,6 B0

As illustrated in [Krizhevsky, 2009], it can also drive closed-form expression for
P(hx = 1jv), the probability of a particular hidden unit being on given a visible con g-
uration.. To do this, they introduced the notation,

P(h«= 1;hjsi;V)

to denote the probability of the con guration in which hidden ukihas state 1, the
rest of the hidden units have stdtg;, and the visible units have state Given this,
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we have:

P(hg = 1;v)
P(v)
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P(v)
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Appendix B The derivation of the softmax regression for multinomial classi cation
problem [Ng, 2011].

Unlike logistic regression, in softmax regression we have a multi-nomial classi -
cation problem, so rstletus deng 2 f 1;2;:::;kg of k different classes. We also

In other words, these parameters specify the probability of each outcome as follows:

fi=P(y=1)

and

fk:]_ fl+f2+ +fk1

it means that we need to procdss 1 parameters. To express the multinomial as
an exponential family distribution, we need to de Miéy) 2 Rk 1 as follows:

3
1
0

2 2 3 23 2 3 2 3

0 0 0 0

1 0 p0 0

T(1)=607;T(2)= q0z;T(3)=@alz;:::;T(k 1)=a0027;T(k= QO
0 0 1 0

0

We will therefore write T(y); to denote thé'" elements of the vectdF(y). For
notational convenience, the relationship betw&€€y) andy can be expressed as:

T(y)i = Ufy=ig

where I g is the usual de nition of the indicator function which takes a value of 1 if
its argument is true, and O otherwise. The expectatioh(gf can be de ned as:

ET()i =Py=1i)=f;
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Using these de nitions, it is possible now to de ne the multinomial as exponential
distribution as follows:

. 1fy=1g, 1fy=2g . . ¢ Ify=k
P(y= i) fp¥ 9, 0,

_ ply=1gp1fy=29.. .1 al fafy=kg
1 2 P k

_  ¢lfy=1g.1fy=2g.. .1 alt T) i
fl f5 i

T() Jogfo)+ TG logfz+ + 1 &kl T , log(fy)
= e

T Jog(f1=f)+ T(y) ogf=F)+ + T(y)  log(f 1=fi)+ log(f)
= e

T
— b(y)e h T(y) a(h)

where 2 3
log(f 1 )
h= 'og(ffﬁk) ca(h)=  log(fy); b(y) = 1:

log(fx 1=fk)

The above formulations con rm that the multinomial can be expressed as an ex-
ponential family distribution. For more convenience, the link function is gi{fen

hi = Iog:—:(

by taking the exponential for both sides, we can then get

141



This implies thaff , = 1 8% ; €, and it can be substituted in the above equation
to give:

ghi

fi=feli= ———
I k é_lj(:lehl

but

fi = P(y=ijxq)

This model is called softmax regression which can be used to perform multi-class

classi cation problemsj.e., y2f 1;2;:::;kg . This model is a generalization of the
logistic regression.
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Appendix C This appendix demonstrates the partial derivative of the log-likelihood
function for Product of Experts (PoEs) models [Wood and Hirjton, 2012].

Usually, PoEs combinasindividual models by taking the product of their condi-
tional probabilities and normalizing the result usif), as follows [Hinton, 2002]:

= OmPm(Xj gm)
O~ Zam

- 6 OmPm(X]j qm)
X2 X éyOmF)m(Yj Om)

P(XjQy;:::;0n)

The log-likelihood of the previous equation can be written as follows:

OmPm(Xj am)
X2 X éyom Pm(Y] dm)

also, the gradient of the likelihood can be de ned with respect to the model parameters
Om as follows:

I0gPOX asi::ick) _ 1,0 8 OmP(X] o)

1 — .
Tom fam " ox ayompm(YJ dm)

now, it is possible to multiply both sides of the previous equationy and we then
get:

lﬂIOQP(XjQLZ::;Qn) _ Eilog@ OLan(XJ' Om)
N fom NTam “,ox é-yom Prn(Y] dm)
_ 1 o TlogRn(X]j qm) 1 o ﬂ|09éyémpm()’j Om)
N x?x T%m N x?'x T0m
_ 1o TlogRu(Xjgm) TogéyOmPm(yi dm)
- N x?X f9m TAim
_ TogRu(Xjdm) 05y OrPr(y] dm)
- 10m Qo T0m
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however, we know thalog(x)°= x%x. It means thafllogdyOmPm(y j om)=Tdm =
T8y OmPm(y] Am)=Ttm
be rewritten as follows:

1:éyC)um(yj Ogm) and thus the previous equation can

LglogP(Xjdu:ian)  _ TIogPn(X] Gm) 1 M&yOmPm(y] dm)
N fiam f1Am Qo éyém Pm(Y] dm) T10m
- MlogPn(Xj dm) 1 éy(hjmﬂpm(yj Om)
f0m Q0 8yOmPm(yj m) fT0m

rememberfiPm(yj dm)=10m = Pm(y]j dm) fogRn(y ] dm)=Tdm, so that:

iﬂlogP(Xj q1;:::;0n) MogP(Xjg1;:::;qn)
N f1gm 1gm
_ TlogPn(Xj am) 1 éyém Pm(Yj dm) TIogRn(Y | am)
- Tam o  &yOmPm(Y]j dm) T10m
_ flogRn(X]j dm) o OmPn(yjdm)  TlogPn(yj dm)
- figm 0 a 8y OmPm(y]j dm) T0m
Q y ¢y~m
_ TlogRn(xj qm) 2 Dy g TlogRn(yj dm)
- f10m o "f} PIY] i3 n) ™
_ TYlogRn(xj qm) flogRn(yj Am)
T0m Q° 10m o*

Therefore, the gradient of the log-likelihood is proportional to the following equa-

tion:

fOm

f0m
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