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Laboratoire dInformatique pour la Mécanique et les Sciences de lIngénieur

DISCIPLINE : Informatique

TH �ESE DE DOCTORAT

soutenue le ... novembre 2012

par

Ahmad Mohammed Hasasneh

Robot semantic place recognition based
on deep belief networks and a direct use

of tiny images

Directeur de th�ese : Philippe Tarroux Professeur,ÉNS
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Gilles Gasso Mâ�tre de Conf́erences, INSA Rouen

Hél�ene Paugam-Moisy Professeur, Université de Lyon 2
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Abstract

Usually, human beings are able to quickly distinguish between different

places, solely from their visual appearance. This is due to the fact that

they can organize their space as composed of discrete units. These units,

called “semantic places”, are characterized by their spatial extend and their

functional unity. Such a semantic category can thus be used as contextual

information which fosters object detection and recognition. Recent works

in semantic place recognition seek to endow the robot with similar capabil-

ities. Contrary to classical localization and mapping works, this problem

is usually addressed as a supervised learning problem.

The question of semantic places recognition in robotics - the ability to

recognize the semantic category of a place to which scene belongs to - is

therefore a major requirement for the future of autonomous robotics. It is

indeed required for an autonomous service robot to be able to recognize

the environment in which it lives and to easily learn the organization of this

environment in order to operate and interact successfully. To achieve that

goal, different methods have been already proposed, some based on the

identi�cation of objects as a prerequisite to the recognition of the scenes,

and some based on a direct description of the scene characteristics. If

we make the hypothesis that objects are more easily recognized when the

scene in which they appear is identi�ed, the second approach seems more

suitable. It is however strongly dependent on the nature of the image de-

scriptors used, usually empirically derived from general considerations on

image coding.

Compared to these many proposals, another approach of image coding,

based on a more theoretical point of view, has emerged the last few years.



Energy-based models of feature extraction based on the principle of min-

imizing the energy of some function according to the quality of the re-

construction of the image has lead to the Restricted Boltzmann Machines

(RBMs) able to code an image as the superposition of a limited number of

features taken from a larger alphabet. It has also been shown that this pro-

cess can be repeated in a deep architecture, leading to a sparse and ef�cient

representation of the initial data in the feature space. A complex problem

of classi�cation in the input space is thus transformed into an easier one

in the feature space. This approach has been successfully applied to the

identi�cation of tiny images from the 80 millions image database of the

MIT.

In the present work, we demonstrate that semantic place recognition can be

achieved on the basis of tiny images instead of conventional Bag-of-Word

(BoW) methods and on the use of Deep Belief Networks (DBNs) for im-

age coding. We show that after appropriate coding a softmax regression

in the projection space is suf�cient to achieve promising classi�cation re-

sults. To our knowledge, this approach has not yet been investigated for

scene recognition in autonomous robotics.

We compare our methods with the state-of-the-art algorithms using a stan-

dard database of robot localization. We study the in�uence of system pa-

rameters and compare different conditions on the same dataset. These ex-

periments show that our proposed model, while being very simple, leads

to state-of-the-art results on a semantic place recognition task.

Keywords: Semantic Places Recognition, Energy-based models, Restrict-

ed Boltzmann Machines, Deep Belief Networks, Bag-of-Words, Softmax

Regression.



Résuḿe

Il est ǵeńeralement facile pour les humains de distinguer rapidement diffé-

rents lieux en se basant uniquement sur leur aspect visuel. Cela est, en

effet, du fait qu'ils peuvent organiser leur espace de telle sorte qu'il soit

compośe d'unités discr�etes. Ces unités, appeĺees lieux śemantiques, se

caract́erisent par leurs limites spatiales et leur unité fonctionnelle. Cette

cat́egorie śemantique peut donĉetre utiliśee comme information contex-

tuelle favorisant la d́etection et la reconnaissance d'objets. Des travaux

récents en reconnaissance des lieux sémantiques visent�a doter les robots

de capacit́es similaires. Contrairement aux travaux classiques, portant sur

la localisation et la cartographie, cette tâche est ǵeńeralement consid́eŕee

comme un probl�eme d'apprentissage supervisé.

En robotique, la reconnaissance de lieux sémantique - la capacité �a re-

connâ�tre la cat́egorie śemantique�a laquelle un endroit o�u une sc�ene appar-

tient - peutêtre consid́eŕee comme une condition essentielle pour l'avenir

de la robotique autonome. Il est en effet nécessaire pour un robot au-

tonome de reconna�̂tre l'environnement dans lequel il vit et d'apprendre

facilement l'organisation de cet environnement pour pouvoir fonctionner

et interagir avec succ�es. Pour atteindre cet objectif, différentes ḿethodes

ont d́ej�aét́e propośees. Certaines sont basées sur l'identi�cation des objets

comme une condition préalable�a la reconnaissance des sc�enes, et d'autres

fondées sur une description directe des caractéristiques de la sc�ene. Si

nous faisons l'hypoth�ese que les objets sont plus faciles�a reconnâ�tre

quand la sc�ene dans laquelle ils apparaissent est bien identi�ée, la deuxi�eme

approche semble plus appropriée. Elle est cependant fortement dépendante

de la nature des descripteurs d'images utilisées qui sont ǵeńeralement



dérivés empiriquement a partir des observations géńerales sur le codage

d'images.

En opposition avec ces propositions, une autre approche de codage des

images, baśee sur un point de vue plus théorique, áemerǵe ces derni�eres

anńees. Les mod�eles d'extraction de caractéristiques fond́es sur le principe

de la minimisation d'une fonction d'énergie en relation avec un mod�ele

statistique ǵeńeratif expliquant au mieux les données, ont abouti�a l'appari-

tion des Machines de Boltzmann Restreintes (RBMs) capables de coder

une image comme la superposition d'un nombre limité de caract́eristiques

extraites�a partir d'un plus grand alphabet. Il áet́e montŕe que ce pro-

cessus peut̂etre ŕeṕet́e dans une architecture plus profonde, conduisant

�a une repŕesentation parcimonieuse et ef�cace des données initiales dans

l'espace des caractéristiques. Le probl�eme complexe de la classi�cation

dans l'espace de début est ainsi remplacé plus un probl�eme plus simple

dans l'espace des caractéristiques. Cette approche aét́e appliqúee avec

succ�es�a l'identi�cation de mini-images�a partir d'une base de données du

MIT contenant 80 millions d'images.

Dans ce travail, nous démontrons que la reconnaissance sémantique des

lieux peutêtre ŕealiśee en consid́erant des mini-images au lieu des méthodes

classiques exploitant les méthodes de type “sacs-de-mots” (bag-of-words,

BoW) et par l'utilisation des Deep Belief Networks (DBNs) pour le codage

des images. Nous montrons que, apr�es avoir realiśe un codage appro-

prié, une ŕegression softmax dans l'espace de projection est suf�sante pour

obtenir des ŕesultats de classi�cation prometteurs. A notre connaissance,

cette approche n'a pas encoreét́e étudíee pour la reconnaissance de sc�ene

en robotique autonome.

Nous avons comparé nos ḿethodes avec les algorithmes de l'état-de-l'art

en utilisant une base de données standard de localisation de robot. Nous

avonśetudíe l'in�uence des param�etres du syst�eme et comparé les diff́eren-

tes conditions sur la m̂eme base de données. Les exṕeriences ŕealiśees

montrent que le mod�ele que nous proposons, tout enétant tr�es simple,



conduit �a des ŕesultats comparables�a l' état-de-l'art sur une tâche de re-

connaissance de lieux sémantique.

Mots-clés: reconnaissance de lieux sémantiques, modéles baśes sur l'́ener-

gie, machine de Boltzmann restreinte, architecture profonde, sac-de-mots,

régression Softmax.

Introduction

Un robot autonome doit̂etre en mesure de reconna�̂tre l'environnement

dans lequel iĺevolue. Cette caractéristique lui permet d'apprendre l'organi-

sation de son environnement pour un fonctionnement et une interaction op-

timaux. Pour atteindre cet objectif, différentes solutions ontét́e propośees.

Certaines approches sont basées sur la localisation ḿetrique (c.�a.d. la ca-

pacit́e d'un robot mobile�a d́eterminer sa position dans un rep�ere commun),

d'autres exploitent la localisation topologique (c.�a.d. la capacit́e de pro-

duire une carte de son environnement). Toutefois, dans ces approches,

l'information concernant l'emplacement est différente de l'information

utilisée pour d́eterminer la cat́egorie śemantique du lieu. Ainsi, au-del�a

d'une localisation ḿetrique pŕecise utiliśee dans les ḿethodes de localisa-

tion et de cartographie simultanées (Simultaneous Localization and Map-

ping: SLAM), la capacit́e pour un robot mobile de déterminer la nature de

son environnement (cuisine, pi�ece, couloir,etc.) reste une t̂ache dif�cile.

La connaissance des coordonnées ḿetriques ou m̂eme l'information de

voisinage qui peut̂etre encod́ee dans des cartes topologiques n'est, en ef-

fet, pas suf�sante. L'approche par reconnaissance de lieux sémantiques

(Semantic Place Recognition: SPR) est cependant nécessaire pour un grand

nombre de t̂aches. Elle peut par exempleêtre utiliśee comme une infor-

mation contextuelle qui favorise la détection et la reconnaissance d'objets

(donnant a priori l'identit́e, l'emplacement et l'́echelle de l'objet). Ceci

peutêtre utile lorsque la śemantique est obtenue sans aucune référence�a

des objets pŕesents dans la sc�ene. De plus, la catégorisation śemantique

offre une ŕeférence absolue pour l'emplacement du robot, fournissant une

solution simple pour des probl�emes o�u la localisation ne peut paŝetre

déduite�a partir des emplacements voisins. C'est le cas, par exemple, pour



résoudre des problémes tels que celui du robot kidnappé ou de la fermeture

de boucle.

Etat de l'art

Les recherches récentes ont proposé d'exploiter les descripteurs visuels

pour la reconnaissance sémantique. Les approches les plus fréquentes

utilisent les descripteurs basés sur des caractéristiques utilisant des détec-

teurs globaux, tels que les descripteurs GiST et CENTRIST [Pronobis

et al., 2006; Torralba et al., 2003a; Wu et al., 2009], ou les signatures

locales calcuĺees autour des points d'intér̂et en utilisant des d́etecteurs lo-

caux, comme par exemple les signaux SIFT et SURF [Filliat, 2008; Ullah

et al., 2008]. Cependant, ces représentations ont recours�a des ḿethodes

de type sac-de-mots (Bag-of-Words : BoWs), a�n de réduire la taille des

repŕesentations. Une quanti�cation vectorielle est ensuite appliquée de

telle sorte que a�n de représenter l'image par un histogramme. Les ap-

proches discriminantes peuventêtre utiliśees pour calculer la probabilité

d'être dans un lieu donné en fonction de l'observation courante. Les ap-

proches ǵeńeratives peuvent́egalement̂etre utiliśees pour calculer la prob-

abilité d'une observation donnée dans un certain lieu en utilisant le �ltrage

baýesien. Parmi ces approches, certains travaux [Torralba et al., 2008]

omettent l'utilisation de l'́etape de quanti�cation et modélisent la densit́e

de probabilit́e �a l'aide d'un ḿelange de gaussiennes (Gaussian Mixture

Model : GMM). Les approches récentes proposentégalement d'utiliser

des classi�cateurs bayésiens nä�fs et l'intégration temporelle qui permet-

tent de combiner les observations successives [Dubois et al., 2011].

La SPR ńecessite donc l'utilisation d'un espace de caractéristiques ap-

propríe qui permet une classi�cation précise et rapide. Contrairement�a

ces ḿethodes empiriques, de nouvelles méthodes d'apprentissage automa-

tique ont ŕecemment́emerǵe. La structure auto-similaire des images na-

turelles a permis la création de codes optimaux. Ces codes sont basés sur

des caract́eristiques statistiquement indépendantes. A cet effet, différentes

méthodes ont́et́e propośees pour construire ces codes�a partir de bases

de donńees des images. Imposer des contraintes de localité et de faible



densit́e �a ces caractéristiques est tr�es important. Ceci est probablement

dû au fait que les algorithmes simples basés sur ces contraintes peuvent

obtenir des signatures linéaires analogues�a la notion de champ récepteur

dans les syst�emes naturels. Ces derni�eres anńees, diff́erent travaux se

sont int́eresśe aux algorithmes de vision par ordinateur reposant sur des

repŕesentations locales clairsemé, en particulier pour les probl�emes de

classi�cation d'images et de reconnaissance d'objets [Boureau et al., 2010;

Ranzato et al., 2007b; Wright et al., 2010; Yang et al., 2009]. En outre,

d'un point de vue ǵeńeratif, l'ef�cacit é de codage local clairsemé dense,

par exemple pour la reconstruction d'image [Labusch and Martinetz], est

justi� ée par le fait qu'une image naturelle peutêtre reconstruite par un plus

petit nombre de caractéristiques. Il áet́e d́emontŕe que l'analyse par com-

posantes ind́ependantes (Independent Component Analysis: ICA) gén�ere

des caract́eristiques localiśees. De plus, cette analyse est ef�cace pour

les distributions pŕesentant un niveau de kurtosisélev́e qui repŕesentent

des statistiques d'images naturelles dominées par des composants rares

comme les contours. Cependant, cette méthode est lińeaire et non ŕecursive.

Ces deux limitations n'existent pas dans le cas des approches DBN [Hin-

ton et al., 2006] qui introduisent des non-linéarit́es dans le syst�eme de

codage et qui présentent de multiples couches. Chaque couche est con-

stituée d'une RBM, une version simpli�ée d'une machine de Boltzmann

propośe par Smolensky [Smolensky, 1986] et Hinton [Hinton, 2002]. Cha-

que RBM est capable de construire un mod�ele ǵeńeratif statistique pour ses

entŕees�a l'aide d'un algorithme d'apprentissage relativement rapide (Con-

trastive Divergence: CD), qui áet́e introduit la premi�ere fois par Hinton

[Hinton, 2002]. Une autre caractéristique importante des codes utilisés

dans les syst�emes naturels, la densité de repŕesentation [Olshausen and

Field, 2004], est́egalement ŕealiśee avec l'approche DBN. En outre, il aét́e

montŕe que ces approches sont robustes pour extraire des caractéristiques

locales clairseḿe dans de mini-images [Torralba et al., 2008].

Cependant, dans ces recherches, nous supposons que les représentations

clairseḿe conduisent�a des probl�emes lińeairement śeparables. Ce type



de repŕesentations devrait simpli�er le probl�eme de classi�cation. Par

ailleurs, nous avonśetudíe l'extraction de caractéristiques�a partir de don-

nées blanchies et normalisées. Nous avonśegalement́etudíe l'effet de

cette normalisation sur le probl�eme SPR.

Description du mod�ele

Notre nouvelle approche SPR comporte trois principalesétapes: le pŕetrai-

tement des images, l'élaboration non-supervisée des caractéristiques de

l'em-placement, et l'apprentissage supervisé de l'emplacement. Plus préci-

sément, la premi�ereétape consiste�a convertir la couleur en niveaux de gris,

en les ŕeduisant�a de petits patches d'images, puis en normaliser le résultat.

La deuxi�emeétape consiste�a coder les images d'entrée en utilisant les car-

act́eristiques extraites. Elle consiste�a extraire�a travers plusieurs couches

RBM formant un DBN un alphabet de caractéristiques. La ḿethode DBN

est capable de coder de façon optimale les images d'une mani�ere adapt́ee

�a leur classi�cation. La phase �nale est la classi�cation qui consiste�a

discriminer entre les diff́erents localisations possibles pour le robot.

Traitement des images

Utilisation des mini-images

La dimension d'entŕee typique pour un DBN est d'environ 1000 unités

(par exemple 30� 30 pixels). L'utilisation de plus petits patches pourraient

rendre le mod�ele incapable d'extraire des caractéristiques int́eressantes.

L'utilisation de plus grands patches peut conduire�a des temps d'ex́ecution

importants durant l'apprentissage des caractéristiques. En outre, la multi-

plication des poids de connexion agit négativement sur la convergence de

l'algorithme CD. La question est donc de savoir comment redimension-

ner la taille des images réalistes (par exemple 300� 300 pixels) pour les

rendre appropriées pour l'DBN.

Trois solutions peuventêtre envisaǵees. La premi�ere consiste�a śelectionner

les patches aléatoirement�a partir de chaque image comme réaliśe dans

les travaux de [Ranzato et al., 2010]. La seconde approche consiste�a

utiliser une architecture convolutive, telle que proposée dans [Lee et al.,



2009]. En�n, la derni�ere approche consiste�a redimensionner la taille de

chaque image pour obtenir une image de plus petite taille comme proposé

dans [Torralba et al., 2008]. La premi�ere solution revient�a extraire les

caract́eristiques locales. La caractérisation d'une image�a l'aide de ces

caract́eristiques peut̂etre ŕealiśee �a l'aide de l'approche BoW que nous

souhaitonśeviter. La deuxi�eme solution pŕesente les m̂emes limites et

augmente le nombre de calculs qui doiventêtre trait́es par le processeur

graphique. L'extraction de caractéristiques utilisant les patches aléatoires

est ind́ependante des structures spatiales de chaque image [Norouzi et al.,

2009]. Dans le cas de sc�enes structuŕees comme celles utilisées avec les

SPR, ces structures portent une information intéressante.

En outre, des mini-images ontét́e utilisées avec succ�es dans [Torralba

et al., 2008] pour classer et extraire des images�a partir de la base de

donńees de 80 millions d'images dévelopṕee au MIT. Torralba et al. ont

montŕe que l'utilisation des mini-images combinées avec une approche

DBN conduit�a coder chaque image par un petit vecteur binaire. Ce vecteur

dé�nit les éléments d'un alphabet caractéristique qui peut̂etre utiliśe pour

dé�nir de façon optimale l'image originale. Le vecteur binaire agit comme

un code-barres tandis que l'alphabet de caractéristiques est calculé une

seule fois�a partir d'un ensemble représentatif de l'image. L'int́er̂et de

cette approche est démontŕe par le fait que le petit vecteur binaire (comme

ceux que nous utilisons comme sortie de notre structure de DBN) dépasse

largement le nombre d'images qui doiventêtre cod́ees m̂eme dans le cas

d'uneénorme base de données (2256 � 1075). Pour toutes ces raisons nous

avons choisi l'approche de réduction de l'image.

Blanchiment des données et normalisation locale

Géńeralement, les images naturelles sont tr�es structuŕes et contiennent

d'importantes redondances statistiques, c'est�a-dire que leurs pixels présen-

tent de fortes corrélations [Attneave, 1954; Barlow, 2001]. Par exemple,

il est bien connu que les images naturelles incluent des régularit́es im-

portantes dans leurs statistiques de premier et second ordre (corrélations



spatiales). Ces statistiques peuventêtre mesuŕees �a l'aide d'une fonc-

tion d'autocorŕelation ou de la densité spectrale de Fourier [Field, 1987].

Ces corŕelations sont dues�a la nature redondante des images naturelles

(les pixels adjacents ont géńeralement de fortes corrélations, sauf autour

des bords). La présence de ces corrélations permet, la reconstruction

de l'image, par exemple, en utilisant les champs de Markov. Il a ainsi

ét́e montŕe par [Bell and Sejnowski, 1997; Field, 1987; Olshausen and

Field, 1996] que les arêtes sont les principales caractéristiques des images

naturelles et qu'elles sont plutt codées par des d́ependances statistiques

d'ordre suṕerieur. On peut d́eduire de cette observation que les statis-

tiques des images naturelles ne sont pas gaussiennes comme démontŕe

préćedemment (puisque les moments supérieurs�a l'ordre deux sont nuls

pour les distributions gaussiennes). Ces statistiques sont dominées par des

événements rares comme les contours, conduisant�a des kurtosiśelev́es.

Les pŕetraitements visant�a éliminer ces corŕelations d'ordre deux sont

connus sous le nom de blanchiment. Il aét́e montŕe que le blanchiment

est une stratégie de pŕetraitement utile pour l'ICA [Hyv̈arinen and Oja,

2000; Soman et al., 2009]. Il estégalement unéetape obligatoire pour

l'utilisation de ḿethodes de classi�cation dans la reconnaissance d'objets

[Coates et al., 2011]. Le blanchiment est un processus linéaire. Par ailleurs,

il ne supprime pas les statistiques d'ordre supérieur ou encore les régulari-

tés pŕesentes dans les données. Th́eoriquement, le blanchiment est une

tâche simple. Apr�es centrage, les vecteurs de données sont projetés sur

les axes principaux (calculés comme des vecteurs propres de la matrice

de variance-covariance) et ensuite divisés par la variance le long de ces

axes. De cette façon, le nuage de données pŕesente une forme sphérique,

laissant appara�̂tre uniquement les axes correspondant géńeralement�a ses

ordres suṕerieurs de d́ependances statistiques.

Une autre approche pour le prétraitement des données consiste�a effectuer

une normalisation locale. Dans ce cas, chaque correctifx(i) est normaliśe

en soustrayant la moyenne et en divisant le résultat par l'́ecart-type de ses

éléments. Pour les données visuelles, cela correspond�a la normalisation



locale de la luminosit́e et du contraste. On peut trouver dans [Coates et al.,

2011] uneétude sur la normalisation locale et ses effets sur une tâche de

classi�cation. Cependant, on peut noter que cetteétude áet́e effectúee en

utilisant deux bases de données, NORB et CIFAR, qui ontét́e sṕecialement

conçues pour la reconnaissance d'objets.

Nous pouvonśegalement noter que dans [Ranzato et al., 2010], les auteurs

af�rment que le blanchiment accél�ere le convergence de l'algorithme. Ce-

pendant, ce ŕesultat n'a paśet́e justi� é.

Élaboration de caract́eristiques spatiales non superviśee

Machine de Boltzmann Restreinte (RBM avec Gaussienne-Bernoulli)

�A la diff érence de la machine de Boltzmann, une RBM est un mod�ele

graphique non orienté bipartiteq = f wi j ;bi ;c jg, qui apprend un mod�ele

géńeŕe �a partir de donńees observ́ees. Elle consiste en deux couches.

La couche cach́ee, contenant des variables latentesh, est utiliśee pour

géńerer la couche visible, contenant les variables observéesv. D�es que la

géńerationP(vjh) a appris, les connexions non orientées peuvent d́etermi-

ner P(hjv). Les deux couches sont enti�erement connectées par le biais

d'un ensemble de poidswi j et les biaisf bi ;c jg et il n'y a pas de con-

nexion entre les unités d'une m̂eme couche. Dans un RBM classique, la

con�guration des connexions entre les unités binaires visibles et les unités

binaires cach́ees a une fonction d'énergieE(v;h;q) donńee par :

E(v;h;q) = � å
i
å

j
vih jwi j � å

i2v
bivi � å

j2h
c jh j (1)

La probabilit́e de l'état d'une unit́e en une seule couche est basée sur l'́etat

de l'autre couche et peut doncêtre aiśement calcuĺee. Selon la distribution

de Gibbs:

P(v;h;q) = �
1

Z(q)
exp� E(v;h;q) (2)



o�u Z(q) est une constante de normalisation. Ainsi, apr�es la marginalisa-

tion, la probabilit́e d'une con�guration cach́ee de l'́etath peutêtre d́erivée

comme suit :

P(h;q) = å
v

P(v;h;q) =
å v e� E(v;h;q)

å v å h e� E(v;h;q)
(3)

Cependant, selon [Krizhevsky, 2009], la probabilité conditionnelle ci-des-

sus peut̂etre calcuĺee en utilisant la fonction logistique sigmo�̈de comme

suit :

P(h j = 1 j v;q) = s(c j + å
i

wi j vi) (4)

o�u s(x) = 1=(1+ e� x) est la fonction logistique. Une fois que lesétats

binaires cach́es sont́echantillonńes, nous produisons une “reconstruction”

de la mini-image d'origine en mettant l'état de chaque unité visible �a la

valeur 1 avec une probabilité :

P(vi = 1 j h;q) = s(bi + å
j

wi j h j ): (5)

Cependant, des unités visibles logistiques ou binaires ne sont pas appro-

priées pour coder des valeurs multiples en entrées comme les niveaux

de gris des pixels, parce que les unités logistiques représentent mal des

donńees telles que les sous-images d'images naturelles. Pour surmonter

ce probl�eme, comme l'a sugǵeŕe [Hinton, 2010], dans le présent travail,

nous remplaçons les unités binaires visibles par un syst�eme d'activation

gaussienne avec moyenne nulle comme suit :

P(vi = 1 j h;q)  N(bi + å
j

wi j h j ;s2) (6)

o�u s2 désigne la variance du bruit. Dans ce cas, la fonction d'énergie de

RBM avec Gaussienne-Bernoulli est donnée par:

E(v;h;q) = å
i2v

(vi � bi)2

2s2
i

� å
j2h

c jh j � å
i
å

j

vi

s i
h jwi j (7)



Apprentissage RBM avec une contrainte de parcimonie

Pour connâ�tre les param�etres RBM, il est possible de maximiser la log-

vraisemblance dans une procédure de descente de gradient. Ainsi, la

dérivée du mod�ele du logarithme ńeṕerien de la vraisemblance sur un en-

semble d'apprentissageD est donńee par:

¶
¶q

L(q) =
�

¶E(v;q)
¶q

�

M

�
�

¶E(v;q)
¶q

�

D

(8)

o�u le premier terme correspond�a la moyenne par rapport au mod�ele de

distribution et le second correspond�a l'esṕerance sur les données. Bien

que le second terme soit simple�a calculer, le premier est souvent insol-

uble. Cela est d̂u au fait que le calcul de la vraisemblance a besoin du

calcul de la fonction de partition,Z(q), qui est habituellement impossi-

ble �a calculer. Une ḿethode de type Markov-Chain Monte Carlo, comme

l' échantillonnage de Gibbs, peutêtre utiliśee pour calculer l'esṕerance.

Ces ḿethodes, cependant, sont tr�es lentes et souffrent d'une forte variance

dans leurs estimations.

En 2002, Hinton a proposé une proćedure d'apprentissage rapide appelé

Divergence Contrastive (Contrastive Divergence : CD) [Hinton, 2002].

Cet algorithme d'apprentissage est basé sur le fait que minimiser l'énergie

du ŕeseau revient�a minimiser la distance entre les données originales et

les donńees statistiques géńeŕees. La comparaison est faite entre les statis-

tiques des donńees et des statistiques géńeŕees par uńechantillonnage de

Gibbs. Par conśequent, dans l'apprentissage des CD, nous essayons de

minimiser la distance de Kullback-Leibler entre la distribution des données,

Q0, et le mod�ele de distribution,Q¥ , comme suit:

CDn = KL(Q0jjQ¥ ) � KL(Q1jjQ¥ ) (9)

Le principal avantage de cet algorithme, est que les termes irréductibles,

Q¥ , dans l'́equation ci-dessus s'annulent les uns les autres, comme il est

expliqúe dans [Andrzejewski, 2009; Hinton, 2002]. Cela signi�e que,



dans la pratique, nous utilisons habituellement seulement quelques pas de

l' échantillonnage de Gibbs (la plupart du temps ré duit �a un) pour assurer

la convergence. Pour une RBM, les poids du réseau peuvent doncêtre mis

�a jour �a l'aide de l'́equation suivante:

�
¶

¶wi j

�
Q0kQ¥ � Q1kQ¥ �

� h v0
i h0

j i Q0 � h vn
i hn

j i Q1 (10)

Cetteéquation peut̂etre ŕeécrite comme suit :

wi j  wi j + h(hv0
i h0

j i data� h vn
i hn

j i recon:) (11)

o�u h est le taux d'apprentissage,v0 correspond�a la distribution de donńees

initiales, h0 est calcuĺe en utilisant l'́equation 4,vn est échantillonńe �a

l'aide de la distribution Gaussienne de l'équation 6 et avecn pas d'́echanti-

llonnage de Gibbs.hn est de nouveau calculée�a partir de l'́equation 4. En

outre, les r�egles de mise�a jour des biais des neurones visibles et cachés

sont similaires�a la r�egle de mise�a jour pour les poids:

bi  bi + h[hv0
i i data� h vn

i i recon:] (12)

et

c j  c j + h[hh0
j i data� h hn

j i recon:] (13)

o�u vi , h j , bi , et c j désignent lei-i �eme neurone visible, lej-i �eme neurone

cach́e, lei-i �eme biais visible, et lej-i �eme biais cach́e respectivement.

En ce qui concerne la contrainte de parcimonie dans les RBMs, nous

suivons l'approche d́evelopṕee dans [Lee et al., 2008]. Cette méthode

introduit un terme de ŕegularisation qui ŕeduit les activations moyennes

des variables cachées sur l'ensemble des exemples de formation. Ainsi,

l'activation des neurones du mod�ele devientégalement clairseḿee. En

fait, cette ḿethode est similaire�a celle utiliśee dans d'autres mod�eles Ol-

shausen and Field [1996]. Ainsi, comme illustré dans [Lee et al., 2008],

étant donńe un ensemble d'apprentissagef v(1); : : : ;v(m)g qui comprendm



exemples, nous posons le probl�eme d'optimisation suivant:

minimizef wi j ;bi ;c jg �
m

å
l= 1

log
�

å
h

P(v(l );h(l ))
�

+ l
n

å
j= 1

�
�
�
� p�

1
m

m

å
l= 1

E[h(l )
j jv(l )]

�
�
�
�

2

;

(14)

o�u E[:] est l'esṕerance conditionnelle en fonction des données,p est la

cible contrlant de la parcimonie des unités cach́eesh j , et l est le côut de

parcimonie. Ainsi, apr�es avoir emploýe cette ŕegularisation dans l'algorith-

me d'apprentissage de CD, le gradient du terme de régularisation de parci-

monie sur les param�etres (poidswi j et les biais cach́esc j ) peutêtreécrite

comme suit:

wi j  µ� wi j + h �
��

(hv0
i h0

j i � h vn
i hn

j i )
�

� l � ( p�
1
m

m

å
l= 1

p(l )
j ); (15)

c j  c j + h[hh0
j i data� h hn

j i recon] � l � ( p�
1
m

m

å
l= 1

p(l )
j ); (16)

o�u mdans ce cas est la taille du mini-batch etp(l )
j , s(å i v

(l )
i wi j + c j ).

Il a ét́e montŕe que l'algorithme d'apprentissage clairsemé RBM peut cap-

turer d'intéressantes caractéristiques d'ordre suṕerieur �a partir d'images

naturelles [Lee et al., 2008]. Nous espérons qu'un tel algorithme d'appren-

tissage reste capable de capturer des caractéristiques d'ordre suṕerieur

�a partir de diverses bases de données, comme par exemple une base de

donńees cŕeée a�n de localiser d'un robot.

Apprentissage par couche pour les DBNs

Les RBM peuvent̂etre empiĺees pour produire une architecture DBN,

o�u les param�etres du mod�ele qi , �a la couchei, sont appris en gardant

les param�etres du mod�ele dans la partie inférieure des couches constants.

Autrement dit, l'algorithme d'apprentissage DBN forme les couches RBM

d'une façon gloutonne par couche. Les param�etres du mod�ele �a la couche

i � 1 sont �gés et les probabilités conditionnelles des valeurs unitaires

cach́ees sont utiliśees a�n de ǵeńerer les donńees ńecessaires pour en-

trâ�ner les param�etres du mod�ele �a la couchei. Ce proćed́e peut̂etre ŕeṕet́e



�a travers les couches pour obtenir des représentations creuses des données

initiales qui seront utiliśees comme des vecteurs d'entrée pour effectuer le

processus de classi�cation.

Description des bases de donńees

La base de donńees d'images naturelles de Van Hateren

A�n d' étudier l'impact de la normalisation des données sur la d́etection de

caract́eristiques, nous utilisons une base de données populaire contenant

des images naturelles, la base de données de Van Hateren. Il s'agit d'une

base de donńees d'images de haute résolution, calibŕees et monochromes

prises dans des conditions d'éclairage d́e�nies, conçues pour diff́erentes

tâches de traitement d'images. Cette base contient environ 4000 images

de ŕesolution 1536x1024 pixels.

Pour cette t̂ache, nous avons extrait aleatoirement unéchantillon de 100000

de parcelles d'images 16� 16. Ces parcelles sont ensuite blanchies en

utilisant un algorithme de blanchiment et normalisées�a l'aide d'une nor-

malisation locale dans deux prétraitement distincts, tel qu'indiqué dans la

�gure 1.

Figure 1:Premi�ere colonne:256 patchs choisis au hasard�a partir de la base de données de van
Hateren.Deuxi�eme colonne:Les éléments correspondants normalisés. Troisi �eme colonne:
Leséléments correspondants blanchis.

La base de donńees COLD

Cette base de données (base de données de localisation COSY) aét́e orig-

inellement d́evelopṕee par [Ullah et al., 2007] pour la localisation en robo-

tique. Cette base contient une collection d'imagesétiquet́ees de resolu-

tion 640� 480 acquises�a cinq images par seconde lors de l'exploration



d'un robot de trois laboratoires differents: Freiburg, Ljubljana, et Saar-

bruecken. Deux ensembles de chemins (Type A et B) ontét́e acquis dans

des conditions d'́eclairage diff́erentes (ensoleillé, nuageux et nuit), et pour

chaque condition, un chemin consiste�a visiter diff́erentes pi�eces (couloirs,

zones d'impression,etc:). Ces promenades�a travers les laboratoires sont

réṕet́ees plusieurs fois. Bien que les images en couleur ontét́e enreg-

istrées au cours de l'exploration, seules les images en niveaux de gris sont

utilisées puisque des travaux antérieurs ont d́emontŕe que dans les couleurs

de la base de données COLD sont faiblement informatives et rendent le

syst�eme plus d́ependant de l'́eclairage [Ullah et al., 2007].

Tel que propośe par [Torralba et al., 2008], la taille de l'image est réduite

�a 32� 24 (voir, par exemple, la �gure 2). La derni�ere śerie des mini-

images (une nouvelle base de données appelée tiny-COLD) est centrée et

blanchie/normaliśee a�n d'éliminer les statistiques de second ordre. Par

conśequent, la variance dans l'équation 6 est d́e�nie �a 1. Contrairement

�a Torralba, les 32� 24= 768 pixels des images blanchies ou normalisées

sont utiliśes directement en tant que vecteur d'entrée du ŕeseau.

Zone d'impression Corridor Chambre Terminal

Lab de robotique Zone d'impression

Figure 2: Deśechantillons de la base de données initiale COLD. les mini-images correspon-
dantes sont af�ch́ees en baśa droite. On peut voir que, malgré la ŕeduction de la taille, ces
mini-images restent pleinement reconnaissables.

Les résultats exṕerimentaux

Effet de la normalisation sur les caractéristiques spatiales

Pour cette t̂ache, nous avons mené deux exṕeriences en utilisant un ensem-

ble de donńees de patchs aléatoirement́echantillonńes �a partir de la base



de donńees de van Hateren. Apr�es avoir d́ecorŕelé (algorithme de blanchi-

ment) et normaliśe des patchs en deux pré-processus sépaŕes comme mon-

tré pŕećedemment, une structure plus-compl�ete (256� 512) de la premi�ere

couche RBM áet́e utilisée.

La �gure 3.20 (�a gauche) montre des caractéristiques extraites en utilisant

les donńees localement normalisées, tandis que la �gure 3.20 (�a droite)

montre des caractéristiques extraites en utilisant les données blanchies. Il

estévident que les caractéristiques extraites�a partir des donńees blanchies

sont plus localiśees. Les donńees blanchies modi�ent clairement les car-

act́eristiques apprises. Le lien entre les corrélations du second ordre et la

présence de basses fréquences dans les images pourrait expliquer l'effet de

blanchiment. Si l'algorithme de blanchiment enl�eve ces corŕelations dans

l'ensemble des données d'origine, cela produit des données ne couvrant

que les fŕequences spatialesélev́ees. Dans ce cas L'algorithme de RBM

ne trouve que des caractéristiques de haute fréquence.

Toutefois, les caractéristiques apprises�a partir des donńees de normalisa-

tion sont totalement diff́erentes de celles apprises avec les données blan-

chies. Ces caractéristiques restent clairsemées, mais couvrent un large

spectre de fŕequences spatiales. Il est intéressant de noter que ces car-

act́eristiques ont l'air plus proches de celles obtenues avec les réseaux�a

convolution Lee et al. [2009] pour lesquels aucun blanchiment n'est ap-

pliqué aux donńees initiales. Nous pouvons remarquer que ces différences

entre les donńees normaliśees et blanchies ont déj�a ét́e observ́ees dans

Krizhevsky [2009]. Il a obtenu de meilleures performances en utilisant

des caract́eristiques tiŕees des donńees normaliśee sur CIFAR-10 dans une

tâche de reconnaissance d'objets.

Pour essayer de comprendre plus profondément pourquoi les caractéristi-

ques obtenues�a partir de patchs blanchis ou normalisés sont diff́erentes,

nous avons calculé la densit́e spectrale moyenne de Fourier des patchs dans

les deux conditions, et nous l'avons comparée�a la m̂eme fonction pour les

patchs originaux. Nous avons tracé la moyenne du logarithme de la den-

sité de puissance spectrale de la transformée de Fourier de tous les patchs



Figure 3: Bases sur-compl�ete extraites d'images naturelles.A gauche :512 les caractéristiques
appris par l'apprentissage de la couche RBM premi�ere en utilisant de patchs normalisée
(16� 16) échantillonńees�a partir de van Hateren base de données.A droite: Caract́eristiques
correspondantes acquises par l'apprentissage de la premi�ere couche RBM en utilisant des
patchs blanchis (16� 16) échantillonńes �a partir de la m̂eme base de données. Pour les deux
exṕeriences. Le protocole d'apprentissage est similaire�a celui propośee dans Lee et al. [2008]
(300époques, taille de mini-batch 200, taux d'apprentissage 0;02, moment initial 0;5, moment
�nal 0 ;9, d́ecroissance des poids 0;0002, un param�etre de parcimonie de 0;02 et un côut de
parcimonie de 0;02).

selon les fŕequences comme indiqué dans la �gure 4. La loi d'́echelle en

1=f a caract́eristique des images naturelles est approximativement véri� ée

comme pŕevu pour les patchs initiaux. Pour la normalisation locale, la

loi d' échelle est aussi conservée (le d́ecalage entre les deux courbes est

uniquement du�a une diff́erence de multiplication de l'amplitude du sig-

nal entre l'original et les patchs localement normalisés). Cela signi�e que

la composition de fŕequence des images localement normalisés ne diff�ere

de la premi�ere que par un facteur constant. La composition de fréquence

relative est la m̂eme que dans les images initiales.

Au contraire, le blanchiment supprime compl�etement la d́ependance en-

tre l' énergie du signal et la fréquence. Cela signi�e que le blanchiment

égalise le rle de chaque fréquence dans la composition des images. Ceci



Figure 4: La repŕesentation Log-Log du spectre de Fourier puissance moyenne pour les patchs
d'image avec et sans normalisation. 256 de 16� 16 patchs ont́et́e extraites de la base de
donńees van Hateren et puis normalisées. Le Log de la transforḿee de Fourier de chacun de
ces patchs áet́e calcuĺe et traće selon le Log de la fréquence spatiale.

sugg�ere une relation entre la loi d'échelle des images naturelles et les deux

premiers moments de la statistique de ces images. Il est nécessaire de

souligner que nous avons une manifestation du lien entre les propriét́es

statistiques d'une image et ses propriét́es structurelles (en termes de fréquen-

ces spatiales). Ce lien est bien illustré �a travers le th́eor�eme de Wiener-

Khintchine et la relation entre la fonction d'auto-corrélation de l'image et

sa densit́e spectrale de puissance. En ce qui concerne les caractéristiques

extraites, les remarques citées ci-dessus permettent de déduire que la repré-

sentation similaire (en termes d'amplitude) de toutes les fréquences dans

le signal initial donne lieu�a une sur-repŕesentation des hautes fréquences

dans les caractéristiques obtenues. Cela peutêtre d̂u au fait que, dans les

donńees blanchies, l'énergie contenue dans chaque bande de fréquence

augmente avec la fréquence pendant qu'elle est constante dans les images

initiales ou normaliśees.

Toutefois, le ŕesultat d́epend de la base de données utiliśee et par conśequent

des fŕequences spatiales contenues dans les patchs initiaux. Le fait que la

normalisation locale conserve (�a une constante pr�es) la m̂eme composi-

tion de fŕequence que dans données initiales. Cela prouve que la nor-

malisation ne supprime pas enti�erement les corrélations du second or-



dre. Olshausen [Olshausen and Field, 1997] a montré que, en utilisant

le blanchiment, L'analyse en composantes indépendantes (Independent

Component Analysis : ICA) conserve principalement des �ltres dans une

gammeétroite de fŕequences spatiales. Les basses fréquences spatiales

sont sous-représent́ees dans le résultat obtenu. Ces remarques concernent

les ŕesultats obtenus en utilisant les données de blanchiment. Cependant,

dans le cas des données de normalisation, les caractéristiques enregistrent

une plus large gamme de fréquences spatiales.

Les d́ependances entre les basses fréquences sont liées �a la corŕelation

statistique entre les pixels voisins. Ainsi, la suppression de ces corrélations

du second ordre supprimerait ces basses fréquences dans les patchs blan-

chis. Nous observons que les caractéristiques, qui sont moins localisées,

ont plus de chances de contenir un plus grand nombre de basses fréquences.

Dans la section suivante nous présentons comment nous avons utilisé la

base de donńees COLD pour tester notre mod�ele SPR selon ces deux

méthodes de normalisation. Nous présentonśegalement comment ces

changements dans la composition de fréquence spatiale affectent les per-

formances de classi�cation.

Extraction des caract́eristiques: l'alphabet

Des essais préliminaires ont montŕe que la structure optimale du DBN

en termes de score �nal de classi�cation est 768� 256� 128. Les car-

act́eristiques indiqúees sur la �gure 5 (�a gauche) ont́et́e extraites par appren-

tissage de la couche RBM sur 137:069 patchs blanchis (32x24 pixels)

échantillonńes�a partir de la base de données COLD. Certains d'entre eux

repŕesentent des parties du couloir, qui est sur-représent́e dans la base

de donńees. Il correspond�a de longues śequences d'images tr�es simi-

laires lors de l'exploration du robot. D'autres sont localisées et corre-

spondent�a de petites parties des vues initiales, comme les bords et les

coins, qui peuvent̂etre identi�és comméeléments de pi�ece, c'est�a-dire

qu'ils ne sont pas sṕeci�ques á pi�ece donńee). Les caractéristiques in-

diquées sur la �gure 5 (�a droite) ont́et́e obtenues en utilisant les données

normaliśees. Comme nous l'avons observé pŕećedemment pour la base de



donńees de van Hateren, les caractéristiques obtenues sont tr�es diff́erentes.

Les parties de pi�eces sont beaucoup plus représent́es que dans la base de

donńees blanchie. Nous remarquons que la gamme de fréquences spatiales

couverte par les caractéristiques est beaucoup plus large. Dans les deux

cas, les combinaisons de ces caractéristiques initiales dans les couches

suṕerieures correspondent aux structures les plus caractéristiques des diff́e-

rentes pi�eces.

Figure 5: A gauche: Les 256 �ltres obtenus par l'apprentissage d'une premi�ere couche de
RBM 32� 24 avec des patchs blanchiséchantillonńes�a partir de la base de données COLD.A
droite: les 256 �ltres obtenus par l'apprentissage d'une premi�ere couche de RBM 32x24 avec
des patchs normaliséeéchantillonńes �a partir de la base de données COLD. Le protocole de
l'apprentissage est similaire�a celles propośee dans Krizhevsky [2010]; Lee et al. [2008] (300
époques, taille de mini-batch 100, taux d'apprentissage 0;002, d́ecroissance des poids 0;0002,
moment initial 0;5, moment �nal de 0;9, param�etre de parcimonie 0;02, côut de parcimonie
0;02).

Apprentissage supervisé des lieux

Apr�es la ŕealisation de la représentation appropriée en fonction des DBNs,

une classi�cation áet́e effectúee dans l'espace des caractéristiques comme

le montre le tableau 1 (la deuxi�eme ligne). En supposant que la transfor-

mation non lińeaire exploit́ee par les DBN aḿeliore la śeparabilit́e linéaire

des donńees, une ḿethode de ŕegression simple áet́e utilisée pour effectuer

le processus de classi�cation dans le cas initial. Pour exprimer le résultat

�nal comme une probabilit́e qu'une vue donńee appartienne�a une seule

pi�ece, nous normalisons le résultat en utilisant la ḿethode de ŕegression



softmax. Nous avonśegalement́etudíe la phase de classi�cation en util-

isant un classi�eur non-lińeaire, comme Support Vector Machine (SVM).

Nous avons utiliśe ce classi�eur non-lińeaire pour d́emontrer que le DBN

calcule une signature séparable lińeairement et donc il ne devrait pas af-

fecter les ŕesultats de la classi�cation �nale.

Laboratory name Saarbruecken Freiburg Ljubljana
` ` ` ` ` ` ` ` ` ` ` `Training

Condition
Cloudy Night Sunny Cloudy Night Sunny Cloudy Night Sunny

Ullah 84.20% 86.52% 87.53% 79.57% 75.58% 77.85% 84.45% 87.54% 85.77%
No thr. 70.21% 70.80% 70.59% 70.43% 70.26% 67.89% 72.64% 72.70% 74.69%
SVM 69.92% 71.21% 70.70% 70.88% 70.46% 67.40% 72.20% 72.57% 74.93%
0.55 thr. 84.73% 87.44% 87.32% 85.85% 83.49% 86.96% 84.99% 89.64% 85.26%

Table 1: Ŕesultats de la classi�cation moyenne pour les trois laboratoires différents et les trois
conditions de l'apprentissage.Premi�ere ligne: le travail de Ullah;deuxi�eme ligne: résultats
bruts sans seuil;troisi �eme ligne:taux de classi�cation en utilisant SVM classi�eur;quatri �eme
ligne: taux de classi�cation avec seuil, comme indiqué dans le texte. Nos résultats ont́et́e
obtenus sur la base des caractéristiques appriseśa partir des donńees blanchies.

Leséchantillons pŕelev́es dans chaque laboratoire et chaqueétat d'́eclairage

ont subi un apprentissage sépaŕement, comme dans [Lee et al., 2008].

Pour chaque image, le résultat du ŕeseau softmax a donné la probabilit́e

d'être dans chacune des pi�ece visit́ees. Selon les principes du maximum de

vraisemblance, la plus grande valeur de probabilité d́etermine la d́ecision

du syst�eme. Lorsque nous utilisons les caractéristiques extraites des don-

nées blanchies, on obtient une moyenne de bonnes réponses allant de 65%

�a 80% selon les diff́erentes conditions et les laboratoires comme le montre

le tableau 1 (la deuxi�eme ligne). Plus préciśement, on obtient 73;4%,

69;5% et 71% pour les laboratoires COLD-Ljubljana, COLD-Fribourg

et COLD-Sarrebruck respectivement, et avec une moyenne globale de

réponses correctes de 71;3%. En revanche, lorsque nous utilisons les car-

act́eristiques extraites des données normaliśees, on obtient une moyenne

de bonnes ŕeponses allant de 71%�a 90% selon les diff́erentes conditions

et les laboratoires comme le montre le tableau 2 (la deuxi�eme ligne). Plus

préciśement, on obtient 83;13%, 80;515% et 81;5% pour les laboratoires



présent́es ci-dessus, et avec une moyenne globale de réponses correctes de

81;375%. Les derniers résultats sont comparables aux meilleurs résultats

donńes dans [Lee et al., 2008]. Les résultats restent robustes aux variations

d'illumination comme dans [Lee et al., 2008].

Laboratory name Saarbruecken Freiburg Ljubljana
` ` ` ` ` ` ` ` ` ` ` `Training

Condition
Cloudy Night Sunny Cloudy Night Sunny Cloudy Night Sunny

Ullah 84.20% 86.52% 87.53% 79.57% 75.58% 77.85% 84.45% 87.54% 85.77%
No thr. 80.41% 81.29% 83.66% 81.65% 80.08% 79.64% 83.14% 82.38% 83.87%
0.55 thr. 86.00% 88.35% 87.36% 88.15% 85.00% 87.98% 85.95% 90.63% 86.86%

Table 2: Ŕesultats de la classi�cation moyenne pour les trois laboratoires différents et les trois
conditions de l'apprentissage.Premi�ere ligne: le travail de Ullah;deuxi�eme ligne: résultats
bruts sans seuil;troisi �eme ligne: taux de classi�cation avec un seuil, comme indiqué dans
le texte. Nos ŕesultats ont́et́e obtenus sur la base des caractéristiques tiŕees des donńees nor-
maliśee.

Ces ŕesultats d́emontrent qu'un RBM calculé �a partir de donńees nor-

maliśees est plus performant qu'un RBM provenant de données blanchis.

Ceci illustre le fait que le processus de normalisation conserve plus d'infor-

mations ou de structures provenant des images initiales. En effet, ces struc-

tures sont tr�es importantes pour le processus de classi�cation. D'autre

part, le blanchiment enl�eve compl�etement les statistiques d'ordre un et

deux �a partir de la donńee initiale. Cette d́e-corŕelation permet au DBN

d'extraire des caractéristiques d'ordre suṕerieur. Cela d́emontre que les

donńees de blanchiment pourraientêtre utiles pour le codage d'images.

Cependant, ce n'est pas la méthode de pŕe-traitement optimale dans le cas

de la classi�cation d'images.

Toutefois, il existe deux stratégies diff́erentes pour aḿeliorer ces ŕesultats.

La premi�ere est d'utiliser l'int́egration temporelle tel que proposé dans

[Guillaume et al., 2011]. La seconde stratégie s'appuie sur la th́eorie de

la décision. Le taux de d́etection pŕesent́e dans le tableau 1 (deuxi�eme

ligne) aét́e calcuĺe �a partir des classes ayant les plus grandes probabilités,

quelles que soient les valeurs relatives de ces probabilités. Certaines de



ces probabilit́es sont proches de la chance (dans notre cas 0;20 ou 0;25,

selon le nombre de catégories�a reconnâ�tre) et il estévident que dans

de tels cas, la con�ance dans la décision rendue est faible. Ainsi, en

dessous d'un seuil donné, lorsque la distribution de la probabilité tend

�a devenir uniforme, on pourrait considérer que la ŕeponse donńee par le

syst�eme n'a pas de signi�cation. Cela pourraitêtre d̂u au fait que l'image

donńee contient des caractéristiques communes ou des structures qui peu-

vent être trouv́ees dans deux ou plusieurs classes. L'effet du seuil est

alors d'́eliminer les ŕesultats les plus incertains. Le tableau 1 (troisi�eme

ligne) montre les ŕesultats de la classi�cation moyenne pour un seuil de

0;55 (seuls les ŕesultats o�u maxX p(X = ckjI ) � 0:55, o�u p(X = ck est la

probabilit́e que le point de vue actuelI appartient�a ck, sont conserv́es).

Ces ŕesultats ont́et́e obtenus en utilisant les caractéristiques extraites�a

partir des donńees blanchies. Dans ce cas, le taux d'acceptation moyen

(le pourcentage d'exemples pris en compte) varie de 75%�a 85%, selon

le laboratoire. Les ŕesultats obtenus ici sont meilleurs que ceux publiés

dans [Ullah et al., 2008]. Lorsque l'on consid�ere l'ensemble des résultats

obtenus par apprentissage et par tests avec des conditions de luminosité

semblables, nous avons obtenu un taux de classi�cation moyen de 90;68%

pour COLD-Saarbrucken laboratoire, 89;88% pour COLD-Freiburg labo-

ratoire et 90;66% pour COLD-Ljubljana laboratoire.

Comme les ŕesultats pŕesent́es dans [Ullah et al., 2008] la performance a

diminué pour les exṕeriences meńees dans des conditions de luminosité

diff érentes. Dans ce cas, nous avons obtenu des taux de classi�cation

de 83;683% pour COLD-Saarbrucken laboratoire, 83;14% pour COLD-

Freiburg laboratoire et 84;62% pour COLD-Ljubljana laboratoire.

Nous avonśegalement appliqúe la ḿethode du seuil sur les résultats obtenus

avec les donńees normaliśees localement. Le tableau 2 (deuxi�eme ligne)

montre les ŕesultats de la classi�cation moyenne en utilisant un seuil simi-

laire (0;55). On remarque que le taux moyen des images acceptées a aug-

ment́e pour se situer entre 86%�a 90%, selon le laboratoire. ces résultat



démontrent qu'un nombre pluśelev́e d'images áet́e utilisé dans la classi-

�cation que dans l'exṕerience pŕećedente. En outre, les résultats moyens

sont largement meilleurs que ceux publiés dans [Ullah et al., 2008]. Ceci

indique que la śeparabilit́e linéaire des donńees aét́e signi�cativement

améliorée dans le cas de l'utilisation des données normaliśees pour l'extrac-

tion de caract́eristiques.

En ce qui concerne la sensibilité �a la luminosit́e. Dans les deux cas, nos

résultats semblent̂etre moins sensibles aux conditions d'illumination par

rapport aux ŕesultats obtenus dans [Ullah et al., 2008]. Comme dans les

exṕeriences pŕećedentes, nous avons constaté une faible performance sur

les donńees COLD-Freiburg données, ce qui con�rme que cette collection

est la plus dif�cile de toute la base COLD comme indiqué dans [Ullah

et al., 2008]. Toutefois, dans le cas de l'utilisation des fonctions apprises

�a partir des donńees non blanchies, avec et sans seuillage, nos résultats de

classi�cation pour le laboratoire Freiburg dépassent les meilleurs obtenus

par [Ullah et al., 2008].

En r�egle ǵeńerale, les tableaux 1 et 2 montrent une comparaison globale

de nos ŕesultats avec ceux de [Ullah et al., 2008] pour les trois conditions

d'apprentissage. Ils montrentégalement les résultats obtenus en utilisant

une classi�cation SVM au lieu d'une régression softmax. Les résultats

obtenus sont tout�a fait comparables�a softmax montrant que le DBN cal-

cule une signature lińeairement śeparable. Ils soulignent le fait que les

éléments appris par l'approche DBNs sont plus robustes pour une tâche

de reconnaissance de lieu sémantique que l'extraction des caractéristiques

ad-hocbaśee sur les descripteurs (GiST, CENTRIST, SURF, et SIFT).

Conclusion et perspectives

Le but de cette th�eseétait d'étudier l'utilisation de DBNs dans une tâche de

reconnaissance d'image dif�cile, la reconnaissance sémantique de lieux.

Nos ŕesultats montrent qu'une approche fondée sur des images minia-

ture suivie d'une projection sur un espace de caractéristiques approprié

peut obtenir des résultats int́eressants dans la classi�cation d'une tâche de

reconnaissance de lieux sémantiques. Ils ont d́epasśe les performances



des meilleures publications [Ullah et al., 2008] basés sur des techniques

plus complexes (utilisation de détecteurs SIFT suivie d'une classi�cation

SVM). Comme attendu, les résultats de classi�cation ontét́e signi�cative-

ment meilleurs quand nous avons utilisé les caract́eristiques tiŕees d'un

ensemble de données normaliśees localement. On peut dire que les car-

act́eristiques extraites par les statistiques de premier et second ordre sont

nettement meilleures que les caractéristiques extraites par les statistiques

d'ordre suṕerieur en termes de classi�cation comme déj�a indiqúe par Ag-

garwal and Agrawal [2012]. Toutefois, a�n de reconna�̂tre un lieu, il ne

semble pas ńecessaire de classer correctement chaque image du lieu. En

ce qui concerne la reconnaissance de lieu, toutes les images ne sont pas

instructives: certaines d'entre elles sont �oues quand le robot tourne ou

se d́eplace trop rapidement d'un endroit�a un autre, d'autres ne montrent

pas de d́etails informatifs (par exemple lorsque le robot est face�a un mur).

Comme le syst�eme propośe calcule la probabilit́e de la pi�ece la plus prob-

able parmi toutes les pi�eces possibles, il offre la possibilité de pond́erer

chaque conclusion d'un facteur de con�ance associé �a la distribution de

probabilit́e sur toutes les classes. On peut alorséliminer les images les

plus incertaines, augmentant ainsi le score de reconnaissance. Il offre une

alternative plus simple�a la ḿethode propośee dans [Pronobis et al., 2006]

baśee sur l'int́egration d'indices et le calcul d'un crit�ere de con�ance dans

une approche de classi�cation SVM.

L'apport fondamental de cette th�ese est donc la démonstration que les

DBNs coupĺes avec des mini-images peuventêtre utiliśees avec succ�es

dans le cadre de la SPR. Ces considérations ont grandement contribué

�a la simpli�cation de l'algorithme de classi�cation global. En effet, ils

apportent des vecteurs de codage qui peuventêtre utiliśes directement

dans une ḿethode discriminante.�A notre connaissance, c'est la premi�ere

démonstration que l'extraction de caractéristiques�a partir de mini-images

normaliśees en utilisant les DBNs est une approche discriminante alterna-

tive pour la SPR qui ḿerite d'être pris en consid́eration.



Ainsi, la pŕesente approche obtient des scores comparables aux approches

baśees sur des signatures obtenues manuellement (comme les détecteurs

de GiST ou SIFT) et des techniques de classi�cation plus sophistiqués

comme SVM. Comme l'ont souligńe [Hinton et al., 2011], les caractéristi-

ques extraites par les DBNs sont plus prometteuses pour la classi�cation

d'images que les caractéristiques obtenues manuellement.

Diff érentes voies peuventêtre utiliśees dans des prochainesétudes pour

étendre cette recherche. Une derni�ereétape d'ajustement �n peut̂etre in-

troduite�a l'aide de ŕetro-propagation au lieu d'utiliser des caractéristiques

grossi�eres, comme illustré dans [Krizhevsky and Hinton]. Cependant,

l'utilisation de caract́eristiques grossi�eres rend l'algorithme enti�erement

incrémentielévitant l'adaptation�a un domaine sṕeci�que. La śeparation

stricte entre la construction de l'espace des caractéristiques et la clas-

si�cation permet d'́etudier les probl�emes de classi�cation qui partagent

les m̂emes caractéristiques d'espace. L'ind́ependance de la construction

des caract́eristiques d'espace a un autre avantage dans le contexte de la

robotique autonome: cela peutêtre consid́eŕe comme une maturation de

développement acquise en ligne par le robot, une seule fois, au cours

d'une phase d'exploration de son environnement. Une autre question n'a

pasét́e étudíee dans ce travail et reste ouverte malgré quelques tentatives

intéressantes [Guillaume et al., 2011; Ullah et al., 2008] il s'agit de la

cat́egorisation de lieux basée sur la vision. La catégorisation est la façon

de reconnâ�tre le caract�ere fonctionnel d'une pi�ece, par exemple avec la

base de donńees COLD la reconnaissance d'un bureau ou d'un couloir

dans diff́erents laboratoires. Ainsi, il pourraitêtre int́eressant de voir si une

approche baśee sur les DBNs est capable d'améliorer les performances de

cat́egorisation. En outre, il pourraitêtreégalement int́eressant d'́evaluer la

performance de DBN sur les tâches de reconnaissance d'objets.
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Chapter 1

Introduction

1.1 Introduction

Today, mobile robotic systems are widely used in the industry to perform different

tasks such as packaging, painting, welding,etc. However, robotics research devel-

ops more sophisticated applications that need the robot to be autonomous. Autonomy

means that the robot will be able to decide by itself what behavior to adopt in unknown

and uncertain environments. One type of tasks that require autonomy are the one in-

volving people since people behavior is often unpredictable. Situations in which robots

work in interaction with people are numerous. However, they often require the knowl-

edge of the human environments. Personal assistance for example needs that the robots

has a knowledge of the organization of the environment. In order to achieve that, the

robot needs to locate itself. The answer of questions like “Where am I?”, “How do I

get there?”, and “Where am I going to?” will allow the robot to behave and interact

successfully and freely. Localization, mapping, and semantic place recognition seem

to be required to solve these questions. Most of works have focused on the �rst two

tracks. On the contrary, the last point has been addressed only recently and is currently

always under investigations.

Whenever and wherever the robots are designed to behave and interact with the

users, semantic information concerning places can be interesting and important. If

the robot location is correctly recognized, its behavior will be improved for a lot of

different applications and tasks. This is one of the main reasons why, in this research,

we address the problem of robot localization based on semantic cues.
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In this introduction, we start by identifying the research problem statement and the

substantial motivations to propose a new approach to this problem. We then describe

the main objectives and advantages to develop this work. We end this chapter by

presenting an outline of the remaining chapters of this thesis.

1.2 Problem de�nition and overview

Robot localization is one of the major problems for the future of autonomous systems.

If the robot does not know where it is, it will be very dif�cult to do further processes

or tasks. The robot will indeed need to have at least some information about where it

is to be able to operate and interact successfully [Kor, 1998; Borenstein et al., 1997].

The question of semantic place recognition poses immediately one important problem

: what are the categories a robot should be able to recognize and what are the mecha-

nisms by which human and animals recognize the categories of their environments. It

seems obvious that the categories that divide the world of a �y, a dog or a human are

deeply different. This seems to be due to the fact that at least some of these categories

involve speci�c functionalities that each of these animals must use for recognition.

The �y is attracted by soft meals, the dog recognizes its kennel to speci�c smells, the

human forms categories with chairs since it can use them to sit. This ecological way to

consider categories is surely the most adapted to future autonomous robotics. It would

involve reinforcement and unsupervised learning but it seems for the moment largely

out of reach. This is why the large majority of researches on place recognition have

focused on recognition categories that humans make in their environment. Note that if

the problem is less ecological than the recognition of genuine categories, it is helpful

for interaction with humans. Besides, the problem is simpler than the previous one and

can be solved using supervised learning methods.

Probabilistic approaches [Thrun et al., 2005] have given rise to Simultaneous Lo-

cation and Mapping (SLAM) techniques. However, the place information in this case

is different from the information used for the determination of the semantic categories

of places. Beyond the precise metric localization given by SLAM, the ability for a

mobile robot to determine the nature of its environment (kitchen, room, corridor,etc.)

remains a challenging task. The knowledge of its metric coordinates or even the neigh-

borhood information that can be encoded into topological maps is indeed not suf�cient.
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The semantic place recognition (SPR) is however required for a large set of tasks. It

can for example be used as contextual information which fosters object detection and

recognition (giving priors on object identity, location and scale) when it is achieved

without any reference to the objects present in the scene. Moreover, it is able to build

an absolute reference to the robot location, providing a simple solution for problems

where the localization cannot be deduced from neighboring locations, such as in the

kidnapped robot or the loop closure problems.

Most of the proposed approaches for place recognition or place categorization have

used vision alone or combined with several types of telemeters such as laser or sonar
�
see [Pronobis et al., 2010]

�
. Only few approaches have addressed this problem by

integrating semantic information
�
see [Guillaume et al., 2011]

�
. It is well known that

vision provides richer information than telemeters which is an important advantage for

�ne discrimination. Vision also offers more portable and cost effective solutions. It

also can provide information unavailable for other sensors, for instance, it can provide

semantic information on a scene through the understanding of its visual appearance,

not just the geometric aspect of it. This is why we are interested in visual semantic

place recognition. This would improve the performance in terms of �exibility and

complexity for the classi�cation process.

In spite of recent works, current approaches to vision-based semantic place recog-

nition are still facing several challenges. The complexity and adaptability are probably

the most important ones. In this thesis, we focus on developing a system that should

overcome some of these challenges. We tried an alternative approach than the ones

proposed recently in the literature. All of the approaches require a description of the

scene in terms of a signature. Two different approaches are possible, the one more

traditional based on hand-crafted methods based on empirical descriptors (like SURF

(Speeded Up Robust Features) or SIFT (Scale Invariant Feature transform) detectors),

the second based on the use of an alphabet of features designed from theoretical consid-

erations and able to create an appropriate representation of the initial images. Recently

the use of Restricted Boltzmann Machines (RBMs) has been shown able to derive such

an alphabet. The method we propose in this work is based on such approaches.
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1.3 Research objectives

This thesis thus presents a novel approach for SPR based on RBMs and a direct use of

tiny images. We will see that the major advantage of this model is that it provides a

simple alternative to the existing approaches of SPR like [Pronobis and Caputo, 2007;

Ullah et al., 2008]. In particular, the objectives of this thesis are itemized in the fol-

lowing points:

� The model must provide mobile robotic systems an ability to determine the cur-

rent location based on semantic information.

� Ideally, the performance of the system should be directly proportional to the

recognition accuracy,i.e. this system must be able to provide an accurate classi-

�cation process.

� Since most of the current approaches are very complex, the designed system

should simplify the overall classi�cation process.

� The system should also demonstrate that Deep Belief Networks (DBNs) coupled

with tiny images followed by a simple classi�er, can be used as an alternative

approach to achieve vision-based place recognition for autonomous agents.

The main objective of this work is thus to de�ne a feasible simple algorithm for

scalable semantic place recognition. The �rst two goals have already been achieved in

most of the current approaches such as [Pronobis and Caputo, 2007; Ullah et al., 2008;

Wu and Rehg, 2011] but irrespective to the complexity of the whole process. We want

to show here that these goals can be achieved using DBNs coupled with tiny images,

that would facilitate the classi�cation process.

1.4 Thesis organization

The rest of the thesis is organized as follows. In chapter 2, we �rst introduce the

problem of SPR in detail and then present background information about the existing

SPR approaches. Energy-based models, such as Boltzmann Machines (BMs), RBMs,

and DBNs, are also described in this chapter. The chapter also presents the Contrastive
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Divergence (CD) learning algorithm for training RBM models. Then, it presents a

theoretical background for SVM and softmax classi�ers. Finally, it concludes towards

the choices of the proposed model for a SPR task.

In chapter 3, using two standard databases of natural images, we experimentally in-

vestigate several parameters and factors that play important roles in having an optimal

generative model. We also study the role of normalization on the selection of spatial

ferquencies in the initial image set. The chapter concludes that DBNs can capture a

set of high-level interesting features, and thus their use in image coding could simplify

the problem of SPR.

In chapter 4, we describe the different phases of the model including, image pre-

processing, image coding, and image classi�cation, are explained. Then, we study

what kind of features are extracted from datasets that are directly used as the input of

the network. To do that we reduce the images to very small images (“tiny” images).

We show that the loss of information is limited and that such tiny images can be used

for SPR. We also study the effect of the normalization of the images on the extracted

features to conclude that normalization extracts higher semantic level features than

whitening.

In chapter 5, we use the COLD database of robot localization to present the �nal

performances of the proposed model. Features extracted by training two RBM layers

are then used to create a new representation of the initial data that is used as input to

the classi�cation. Several classi�cation results using a linear and a nonlinear classi�ers

are presented.

In chapter 6, we present our conclusions and suggestions for future research. A

number of directions for future development of a SPR using DBNs are given. Finally,

several proofs are presented in the appendices.
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Chapter 2

Background and related work

2.1 Introduction to semantic place recognition

The �rst part of the present chapter introduces the problem of semantic place recogni-

tion (SPR) for autonomous robotic systems in more details and the tracks followed to

solve it. The SPR problem refers to distinguishing differences between different envi-

ronmental locations (e.g. distinguishing a kitchen from an of�ce). Usually, coding is

the �rst step before recognizing the robot place. Thus, this chapter provides a detailed

discussion of coding and learning methods that have been used to achieve SPR. The

coding methods can be classi�ed into object-based and view-based methods [Torralba

et al., 2003a]. Object-based recognition methods are used to identify a large number of

objects as an information to recognize the robot place, while view-based recognition

approaches are used to compute directly a set of signatures or features, that exploit vi-

sual context, without having to identify speci�c regions or objects. These features can

be used to generate a new representation of the initial data and then allow performing

classi�cation in the feature space. According to [Hsu and Grif�ths, 2010], learning

methods can also be categorized into generative and discriminative approaches. Gen-

erative approaches are used within the framework of naive Bayes classi�er (NBC) and

Bayesian �ltering [Torralba et al., 2003b; Wu and Rehg, 2011] to learn a model �tting

the original data. While discriminative approaches are used to directly discriminate

data within the framework of Neural Networks (NNs) and support vector machines

(SVMs) [Ullah et al., 2008]. A detailed description of these methods will be presented

later in this chapter.
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The second part of the chapter presents deep architecture models as alternative

techniques to SVMs for the construction of the feature space. In this context, we �rst

illustrate the main mathematical concepts of Energy-Based Models (EBMs), general

Boltzmann Machines (BM), and Restricted Boltzmann Machines (RBMs). We then

explain how to stack RBM models to generate Deep Belief Networks (DBNs). The

chapter ends by introducing the different learning techniques such as maximizing the

log-likelihood, Markov-Chain Monte-Carlo (MCMC) sampling methods like Gibbs

sampling, and Contrastive Divergence (CD) that can be used to train Product of Experts

(PoEs) models.

In general, knowing “where am I?” is a challenging question for mobile robotic

platforms. Different researches have answered this question either by the use of metric

localization or by the use of topological localization (mapping). Metric localization is

the ability of a mobile robot to determine its position in a common coordinate frame,

while topological localization is the ability for a mobile robot to produce a map of its

environment.

For simple environments, it is possible to provide a map to the robot, for instance

from building plans. However, these plans are not always accurate and do not consider

the various objects inside each building which can impede the progress of the robot.

Moreover, these plans are not always available (consider for example robots that must

operate after a natural disaster). It is therefore necessary for the robot to map its envi-

ronment while it explores. This problem is known as Simultaneous Localization and

Mapping (SLAM). In fact, this problem is dif�cult because the construction of a map

requires locating the different objects. However, the authors in [Thrun, 2001; Thrun

et al., 2005] have proposed several probabilistic approaches for this problem. They are

based on statistical models of sensors. Thus, in a navigation task, instead of giving a

single estimation of the robot location, they proposed to use probabilistic algorithms

which are based on the probability distribution of all locations. However, the ability

for a mobile robot to determine the nature of its environment (the ability to distinguish

different rooms using semantic cues) remains a challenging task in these approaches.

This task is known as semantic place recognition.

The semantic category of a place gives priors on objects and de�nes what to do;

for instance, the probability to �nd a television is higher in the living room than in

the bathroom. So, if we �rst predict the robot place, then it will be easier to use this
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place to recognize local objects. Besides, SPR build an absolute reference to the robot

location, providing a simple solution for problems in which the localization cannot

be deduced from neighboring locations, such as in the kidnapped robot or the loop

closure problems. Furthermore, semantic place recognition will facilitate the human-

robot interaction (with a topological map),e.g. the human can give the following

command to the robot “go to the bedroom”.

However, as mentioned earlier, performing semantic place recognition seems to be

a challenging task for the following reasons:

� Firstly, the appearance of a room is not always stable due to the dynamical vari-

ations in time, like illumination condition changes (day or night), presence or

absence of people, or even changing furnitures. For example, see the changes in

�gure 2.1. All these samples are selected from the COLD database [Ullah et al.,

2007]1 .

Cloudy Day

Presence of People

Sunny Day Night Day

Furniture Added

(a)

(b)

Figure 2.1: Dynamical variations due to the: (a) In�uence of illumination or (b) In�uence of
human activity.

� Secondly, some classes share common visual features,e.g., the of�ces in the

COLD database as shown in �gure 2.2 or even when the robot turns from one

room to another one. It means that the variance between these classes is very

small.
1The COLD database (COsy Localization database) is a collection of labeled images created for the

purpose of robot localization. See Chapter 4 for a more in depth description.

8



1-person of�ce 2-person of�ce 1-person of�ce 2-person of�ce 2-person of�ce

Figure 2.2: Two different classes of 1-person and 2-person of�ces, but they have strong com-
mon visual features. All these samples are also selected from the COLD database [Ullah et al.,
2007].

� Finally, the image annotation is usually based on the position of the robot during

acquisition rather than the contents of the images. As a result, the labels might

not be consistent with the visual information when the robot was positioned in a

transition region between two rooms. This dif�culty is illustrated in �gure 2.3,

which shows sample images of the interior of each room, captured with both

perspective and omni-directional cameras1 [Ullah et al., 2007],.

Corridor Corridor Robotics lab Conference room Corridor

Figure 2.3: Exemplary images selected from the COLD-Saarbruecken dataset illustrating the
limitations of the labeling technique. The �gure shows images acquired with perspective cam-
era with labels assigned on the basis of the location of the robot. The labels do not correspond
to the visual information in the images due to the relatively narrow �eld of view of the cameras.
The corresponding images are acquired using the omni-directional camera [Ullah et al., 2007].

In this work, we need to design an approach to perform the classi�cation process

taking into account illumination variations. We want to design a supervised machine
1Omnidirectional camera shows the interior of each room by a set of images rather than an image

by itself as in the perspective camera.
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learning approach by letting the closed-world assumption hold true, that is, the robot

does not have to decide what are the places or even the extent of these different places.

The robot indeed needs to recognize its current location based on semantic categories

which are de�ned by the human. A detailed description of this novel approach will be

drawn in Chapter 4 after having a thorough review of the relevant literature.

Several recent methods have been used to address the problem of robot localization

based on semantic information (for instance see [Dubois et al., 2011; Guillaume et al.,

2011; Torralba et al., 2003a; Ullah et al., 2008; Wu et al., 2009]). These approaches

and others are illustrated in the next sections.

2.2 Current approaches for semantic place recognition

Although most of the proposed approaches to the problem of robot localization have

given rise to SLAM techniques, some other approaches have addressed this problem

as a SPR task. This task usually requires �rst to produce an appropriate code for the

initial data and then use this code to learn the robot places. In the following sections

we make a survey of the different coding and learning approaches that can be used in

the context of SPR.

2.2.1 Coding methods

Most of the researchers have shown that before preforming a SPR task, it is necessary

to create an appropriate code of the initial data [Oliva and Torralba, 2006; Torralba

et al., 2003b; Ullah et al., 2008; Wu et al., 2009]. To achieve that, different coding

methods have already been proposed within the framework of object-based and view-

based methods. We introduce both approaches in order to understand the differences

between them and we also describe the state-of-the-art of these approaches in the con-

text of place recognition.

2.2.1.1 Object-based semantic place recognition methods

Object-based place recognition can be used for mobile robotics, to determine the robot

place. Traditionally, this kind of approach is �rst based on learning and detecting a set

of interesting objects in the images and then use them to determine the robot location.
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In other words, object-based methods seek to learn the objects in the scene to perceive

and understand the environment of the robot [Chang et al., 2008, 2009].

Recently, visual object recognition has been widely investigated, with the develop-

ment of different methods. Most of these approaches have �rst focused on extracting

the local image features at a variety of positions and scales, and then comparing the

extracted features of an object with a set of well-known objects. This allows classi-

fying each image patch independently from the others (see [Murase and Nayar, 1995;

Papageorgiou and Poggio, 2000; Schneiderman and Kanade, 2000; Viola and Jones,

2002]).

Several other approaches based on image segmentation have investigated both prob-

lems of object and place recognition. In these approaches, the authors �rst segment the

image into objects, using a segmentation algorithm, and then use them to recognize the

robot location. Among of these approaches, some authors [Chang et al., 2008] propose

to use an image segmentation algorithm, called “jigsaw puzzle”, to segment the input

scene image into regions that may correspond to objects or parts of objects. Based on

these image regions, they detect a set of salient objects to represent a place and the

SIFT descriptors contained in these salient objects are kept in the database. A similar

approach, in [Chang et al., 2009], proposes to use a more sophisticated segmentation

algorithm. This algorithm �rst segments the salient objects appearing in the scene us-

ing “Gestalt laws” to detect the boundaries of the major object classes like vehicles,

buildings, pedestrians,etc. 1. They then represent each prominent object with a list of

SIFT descriptors. Both approaches recognize the place by recalling if they have seen

some of the salient objects appearing in the scene before.

However, although it is possible to use object-based place recognition approaches,

Fergus stated that successful approaches to object recognition must address a variety

of problems [Fergus, 2005]:

� Changes of aspect. Different views of an object can be very different, as shown

in �gure 2.4 (a).

1Gestalt principles, or gestalt laws, are rules of the organization of perceptual scenes. They aim to
formulate the regularities according to which the perceptual input is organized into unitary forms, also
referred to as (sub)wholes, groups, groupings. These principles mainly apply to vision.

11



� Changes of viewpoint. Objects can also be subject to in-plane transformations

(translation, rotation, scaling, skews) and out-of-plane transformations (fore-

shortenings) that change their appearance. However, some viewpoints may be

more likely than others (i.e. motorbikes are rarely vertically oriented) and this

prior knowledge may be exploited.

� Illumination differences. A change in the lighting of the object will change the

pixel values in the image. The change could be a shift or scaling of the pixel

values or, if the light source changes position, a non-linear transformation, com-

plicated by shadows falling on the object. The images in �gure 2.4 (b) illustrate

examples of drastic changes in lighting.

� Background clutter. In the majority of images it is rare for the object to be cleanly

segmented from the background. More typically, the background of the image

contains many other objects (other than the one of interest), which distract from

the object itself. The images in �gures 2.4 (a and b) have cluttered backgrounds.

� Occlusion. Some parts of the object may be obscured by another object, as

illustrated by the monkeys in �gure 2.4 (c). Additionally, as the aspect changes,

one part of the object may hide another. This is known as self-occlusion.

� Intra-class variation. As in the car example of �gure 2.5, the category itself can

have a large degree of visual variability. The variability can take various forms:

in the geometry, appearance, texture and so on. Also, one instance of an object

may have features which are missing on another (e.g. the radiator grille on the

cars of �gure 2.5).

Globally, the methods based on objects require complex models and heavy learning

procedures. Furthermore, the use of object recognition in classi�cation is not trivial.

Therefore, recognizing the objects before recognizing the place itself seems to be a

dif�cult task. In contrast, recognizing the room would provide strong priors, simpli-

fying the process of object recognition, which is not possible in object-based methods

but possible in view-based methods.
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(a)

(b)

(c)

Figure 2.4: (a) Variation due to changes in aspect, (b) Variation in appearance due to a change
in illumination, and (c) Some examples of occlusion [Fergus, 2005].

2.2.1.2 View-based semantic place recognition methods

View-based methods are used to predict the robot place from images of the scene. They

seem to be a more powerful technique than object-based methods for both place and

object recognition problems [Torralba et al., 2003b]. Vision-based place recognition

have two major advantages:

� Firstly, vision can guide the action selection by the system. It can determine

what are the most signi�cant actions (features) in the place so that have to be

extracted.

Generally, the best methods reach a high level classi�cation rate, sometimes

exceeding 90%. However, most of these methods do not test the classi�ca-
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Figure 2.5: Some examples from a visual category [Fergus, 2005].

tion robustness with respect to the illumination conditions. Some others do so,

for instance, the authors in [Pronobis and Caputo, 2007] proposed to use the

IDOL (Image Database for rObot Localization) database which allows this kind

of tests. More information about this database can be found in [Luo et al., 2006].

The recognition rate reaches 95% when the illumination conditions are the same

for learning and recognition, but drop to about 75% when it is not the case. The

authors in [Ullah et al., 2008] also proposed to use the COLD database to test

more precisely the robustness to dynamic changes and environmental variabili-

ties. They proposed to use the following protocol: training and testing were al-

ways done on different sequences acquired in the same laboratory. They trained

on one illumination condition, and tested on sequences acquired under various

illumination conditions, and after some time. With these experiments they were

able to address at the same time the robustness with respect to dynamic and

geographical changes.

� Secondly, several works (like [Torralba, 2003; Torralba et al., 2003b]) have

shown that recognizing a place would facilitate the recognition of its local ob-

jects. For instance, the recognition of an object like a coffee machine would

be easier if we �rst know that the robot is located in the cafeteria and own the

detailed local properties of this room, like its materials components, its typical

shape,ect. This is called contextual priming: being in a place (e.g. a kitchen),

you can expect to �nd speci�c objects like pan, but not others like television.

14



Besides, semantic cues (color, shape, and texture) in the retinal image produced

by an object provide enough information to unambiguously determine the object

category [Torralba et al., 2003a].

The place usually appears as a two-dimensional image, and each image is repre-

sented by a raster-scan of pixels,i.e. a vector of intensity values. More formally,

view-based systems exploit visual context (contextual information) to have a low-

dimensional representation of the image (for instance the Generalized Search Tree

“GiST” of the scene) [Oliva and Torralba, 2001]. Such a representation can be sim-

ply computed without the necessity to identify speci�c regions or objects within the

scene. Having identi�ed the overall type of the scene, one can then proceed to identify

speci�c objects within the scene.

Recently, signi�cant works have been developed for place recognition based on vi-

sual descriptors. These descriptors are used to extract signatures, by extracting the re-

gions of interest (ROI), from the images. These signatures are used recognize the robot

place. They consist in a constellation of descriptors, computed over different kinds of

local or global covariant regions [Ramisa et al., 2009]. In other words, these signatures

are a vocabulary computed either using global descriptors
�
Generalized Search Tree

(GiST) [Oliva and Torralba, 2001] and CENsus TRansform hISTogram (CENTRIST)

[Wu et al., 2009]
�

or using local descriptors
�
Speeded Up Robust Features (SURF)

[Bay et al., 2006], and Scale Invariant Feature Transform (SIFT) [Lowe, 1999, 2004]
�
.

Local descriptors are used to extract the most interesting pixels in the image in

order to compute its signature. In particular, SIFT descriptors are used to detect and

describe local features in images, like elements of scenery, objects, people,etc. [Lowe,

1999, 2004]. They are digital information derived from local analysis of an image and

they characterize the visual content of the image as independently as possible from the

rotation, translation, and scale invariance. SURF is another robust image local detector

and descriptor, �rst introduced by [Bay et al., 2006]. It is partly inspired by the SIFT

descriptors, where the extracted features based on the sum of two-dimensional Haar

wavelet responses with the aid of integral images to reduce the computation load.

Global descriptors have also been used to detect the features (for instance see [Tor-

ralba et al., 2003a; Wu et al., 2009]). These descriptors use the whole image pixels
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to compute the signature regardless of “interesting points”. Similarly to local descrip-

tors, global descriptors capture the visual context of the image. In particular, GiST

descriptor was introduced in the context of scene recognition by [Oliva and Torralba,

2001]. It is a vector of principal components of outputs of a Gabor-like �lter bank

applied to the image. This descriptor describes the spatial layout by capturing features

such as naturalness, openness, expansion, depth, roughness, complexity, ruggedness

and symmetry [Coelho and Ribeiro, 2010]. CENTRIST is another global descriptor

presented by [Wu et al., 2009]. It aims at capturing the local intensity pattern in the

image, based on the Census Transform (CT) of the edges [Zabih and Wood�ll, 1994]
1. Note that the CT is equivalent to the local binary pattern code(LBP8;1) [Ojala et al.,

2002]. It has been shown that this descriptor is robust to illumination changes and

other minor variations (e.g.moving persons, moved objects in an image,etc.) because

the transformation in the CT is robust to these changes [Wu and Rehg, 2011]. This

point is interesting, because the robot can recognize its current location under different

illumination conditions,i.e. the place recognition can be achieved insensitive to the

lighting conditions.

Several vision-based place recognition approaches have already been proposed

based on these coding methods. For instance, the authors in [Oliva and Torralba, 2006;

Torralba et al., 2003b] used the GiST descriptor, while the authors in [Andreasson

et al., 2005; Se et al., 2001; Ullah et al., 2008] used the SIFT descriptor, and �nally

the authors in [Wu and Rehg, 2011] used the CENTRIST one. These representations

usually give signatures that are continuous vectors which are not suitable to compute

probabilities and they are not constant in size (i.e. the number of interest points varies

from one image to another). To reduce the size of these representations, most of the

authors use Bag-of-Words (BoWs) approaches, which consider only a small set of in-

terest points in the image [Filliat, 2008; Gokalp and Aksoy, 2007; Lazebnik et al.,

2006; Wu et al., 2009]. This step is usually followed by a vector quantization process,

such that the image can be represented as an histogram.

Several other approaches have been suggested to extract color histograms using

panoramic images [Blaer and Allen, 2002; Ulrich and Nourbakhsh, 2000], or extract

1CT compares the intensity value of a pixel with its eight neighboring pixels, if the intensities of
the neighboring pixels are equal or less than the intensity of the center pixel, then a bit is set to 1 at the
corresponding location, otherwise it is set to 0.
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the Fourier coef�cients of low frequency image components [Menegatti et al., 2004],

or use eigen-space representation of images [Gaspar et al., 2000] to recognize the dif-

ferent places. Some other works [Pronobis, 2005; Pronobis et al., 2006] use composed

receptive �eld histograms which were introduced by [Linde and Lindeberg, 2004].

These histograms have shown to be able to cope with small illumination and pose

variations.

Generally, it is dif�cult to conclude whether global or local descriptors are more

bene�cial. However, global encodings seem to have good performance in terms of

classi�cation.

After image coding, the next step is to perform the recognition process itself (learn-

ing the robot places) using classi�cation methods. In the next section we will introduce

the existing classi�cation methods that can be used to recognize the robot place.

2.3 Classi�cation methods

Before introducing the main concepts of the existing classi�cation methods and their

use in the context of SPR, it is important to note that we are interested in the recog-

nition of instances, as presented in [Ullah et al., 2008], and not in the recognition of

concepts “categorization” which has also been investigated in [Ullah et al., 2008]. In

categorization, observers make decisions about whether distinct objects belong to the

same class or not (i.e. they measure the similarity between objects or between groups

of objects) (e.g. discriminate the of�ces in different buildings). On the contrary in

recognition or classi�cation, observers judge whether each test object exactly matches

a study object or not [Nosofsky et al., 2011] (e.g. distinguish between of�ce and cor-

ridor). Many terms related to the word “recognition” are used in a somewhat loose

manner in the literature. So, to avoid confusion between these terms, here are some

de�nitions for them:

� Category (class): set of entities grouped together under one or more common

characteristics. For example, the books are categorized into beginner and ad-

vanced.

� Instance recognition (identi�cation): the process by which an entity is identi-

�ed in an image, with respect to the objects, the viewing angle, brightness,etc.
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Concerning the scene, the task is to recognize the same scene from a different

angle.

� Categorization (category recognition): the process of deciding what class the

entity belongs to, out of many possible classes. In the literature, this term is

sometimes used in the sense of classi�cation. However, in this work we assume

that the classi�cation process which associates each object to a category is differ-

ent from the categorization process which creates a category in order to associate

an object to it.

� Classi�cation: the process by which an object is recognized as belonging to a

class or category. For instance, the books in the library are classi�ed according

to the subject.

� Localization (detection): the process of specifying the location within the image

of all instances of an object.

� Recognition: this term is used generically to refer to the problem as a whole (i.e.

any of the set of classi�cation, identi�cation or localization.

Therefore, in this work we use the terms “recognition” and “classi�cation” to speak

about the process of “instance recognition” or “identi�cation”. Instance recognition

usually involves linking each new instance to a particular class. Of course, it could be

possible to use rules characterizing a room. However, they are dif�cult to �nd for the

human. This is why it seems to be more appropriate to use numerical methods to solve

this machine learning (ML) problem.

The goals of machine learning are �rst to develop algorithms that could learn (i.e.

re-cognize patterns) from an initial set of known data and then make accurate predic-

tions for previously unseen data. Methods derived from machine learning approaches

have been applied to various questions like autonomous car driving, optical character

recognition, face detection, and speech recognition,etc. [Abdel-Rahman et al., 2011;

Hinton et al., 2006; Sarikaya et al., 2011].

ML is a branch of Arti�cial Intelligence (AI) and it focuses on the statistical nature

of learning. Arthur Samuel has de�ned ML as a �eld of study that gives computers the

ability to learn without being explicitly programmed [Samuel, 1959]. Thomas Mitchell
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has also de�ned ML saying: “A computer program is said to learn from experience E

with respect to some class of tasks T and performance measure P, if its performance at

tasks in T, as measured by P, improves with experience E” [Mitchell, 1997]. The main

goal of ML is to develop algorithms which learn directly from the empirical data by

exploiting the statistical relationships present in the image. These algorithms can be

organized into supervised, unsupervised, semi-supervised, or reinforcement learning

based on the desired outcome of the algorithm. We provide here some de�nitions for

these algorithms, in order to understand the differences between them.

� Supervised learning algorithms generate a function that labels the inputs to de-

sired output, where the labeling “right answers” are provided by human experts.

The learning in this case is thus performed with the presence of an “expert”,

teacher, or knowledge of output. Some examples of supervised learning algo-

rithms are: Neural Network [Rumelhart and McClelland, 1986], Support Vector

Machines [Vapnik, 1998], Decision Trees [Quinlan, 1986], Bayesian Classi�ers

[Pazzani and Domingos, 1997],etc.

� Unsupervised learning algorithms model a set of inputs by themselves, so that

the learning procedure does not include any knowledge about output class or

value (data is unlabeled or value is unknown). Some self-guided learning algo-

rithms are: k-Nearest Neighbor algorithm (k-NN) [Beyer et al., 1999], genetic

algorithms [Deb et al., 1999], clustering approaches [Steinbach et al., 2000],etc.

� Semi-supervised learning algorithms combine both labeled and unlabeled exam-

ples for training to generate an appropriate function. Typically, semi-supervised

learning techniques learn from a combination of a limited set of labeled data

with a large amount of unlabeled data which can be inexpensive to generate. For

instance, semi-supervised and transductive SVM [Bennett and Demiriz, 1998;

Joachims, 1999] and co-training [Blum and Mitchel, 1998] are two examples of

semi-supervised learning algorithms.

� Reinforcement learning algorithms study how arti�cial systems and animals can

learn to improve and optimize their actions in a complex environment. The

most reinforcement learning algorithms are: Monte Carlo Methods (MCMs)
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[Doucet, 1998], Temporal Difference Methods (TDMs) like Q-learning [Christo-

pher, 1989], and Direct Policy Search (DPS) [Peters et al., 2003].

The problem of semantic place recognition can therefore be solved using machine

learning methods (for instance see the discriminative approaches based on SVMs in

[Pronobis and Caputo, 2007; Ullah et al., 2008] or see the generative approaches based

on Bayesian �ltering techniques in [Torralba et al., 2003b; Wu and Rehg, 2011]). In

addition to that, contrarily to the classical localization and mapping works, this work

addresses the problem of robot localization as a supervised machine learning problem.

To introduce the notations of supervised discriminative approaches, let us consider

an example of supervised learning which is represented by a pair(y;c), wherey 2 Y is

the representation of the place in a spaceY of dimensiont andc 2 C is the class mem-

bership ofy from a �nite set ofC classes. A training setS= f (y1;c1); : : : ; (yN;cN)g

consisting inN examples can then be generated. The idea is to discriminate between

N different classes in the representation data spaceY, i.e. �nd and learn the “decision

frontier” that will assign each class to each point of the data space. To achieve that,

generative or discriminative machine learning methods can be used. Discriminative

approaches aim at directly �nding the best way to separate the classes (they directly

search for the decision frontier), while the generative ones aim at �rst �nding the opti-

mal model that explains and �ts the original data and then, using the generated model,

�nd the frontier between the data. In the next sections, we will explain in more detail

how to use both approaches in the context of semantic place recognition.

2.3.1 Generative approaches

Generative approaches can be used to compute the likelihood of an observation given

a certain place within the framework of Bayesian �ltering. These approaches are used

in machine learning for data modeling using the probability density function (PDF) as

shown in �gure 2.7 (left) and through the use of Bayes' rule. They describe the data

using structured probabilistic models.

The problem of semantic place recognition can then be expressed as a conditional

probability problem using Bayes theorem as follows:P(xt = cjyt). More precisely, we

have a set of observations,yt : y1; : : : ;yt , from which we need to deduce the place or

class “c” the robot is in.
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2.3.1.1 Naive Bayes classi�ers

Naive Bayes Classi�ers (NBCs) are probabilistic methods based on Bayes theorem,

under the assumption of the independency between the model features. NBCs assume

that the features of one class are statistically independent from the features of other

classes. This can be explained mathematically using Bayes theorem as follows:

P(xt = cjyt) =
P(xt = c)P(yt jxt = c)

P(yt)
(2.1)

where

� P(xt) represents the prior probabilities assigned to each class independently from

the observations.

� P(yt jxt) is the probability density of an observationyt given a certain placext . It

represents the probability of observing different datayt for each class belongs to

xt . Note thatyt is the observation sequence:y1:t .

� P(yt) is the marginal density (or the probability density) of the datayt , i.e. it

represents the probability of observing the different examples. However, this

denominator has no in�uence on the classi�cation process. Because it does not

depend onc and the values of the featuresyt are given, so that it is effectively

constant and it plays a normalization role so thatå i P(ci jyt) = 1.

� P(xt = cjyt) is the posterior probability,i.e. the conditional probability ofxt

givenyt . In other words, the probability to be in a given placext according to a

given observationyt .

Bayes rule can therefore express the posterior probabilityP(xt = cjyt) in terms of

prior probabilityP(xt) and conditional probability densityP(yt jxt). Once the model

is learned, the distributionP(XjY) models the phenomena of the original training data

and allows generating new samples. That's why learning in this model is called gener-

ative.

The most important characteristic of NBC is that the data attributes are assumed

to be independent,
�
i.e. P(yt) = Õk

i= 1P(yi)
�
, and thus this term has no in�uence on

equation 2.1 as earlier said. However, the question is how to compute the likelihood
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of an observation
�
the probability density termP(yt jxt)

�
using Bayes theorem. There

are a couple of solutions to this problem: one is to use the Maximum Likelihood (ML)

technique; another one is to useMaximum A Posterior (MAP)technique, which learns

the data maximizing the likelihood as follows:

xMAP = argmax
t2T

P(xt = cjyt)

= argmax
t2T

P(xt)P(yt jxt = c)
P(yt)

= argmax
t2T

P(xt)P(yt jxt = c) (2.2)

where T is a set of observations. Once again, we dropped the factorp(yt) because

the probability of the data is constant, based on the fact that independent features are

assumed in NBC. Besides, this gives the rule of NBC and equation 2.2 can be re-written

as follows:

xMAP = argmax
t2T

P(xt)Õ
i

P(yi jxt = c) (2.3)

Hence, this equation computes the individual measurements which are independent

given the robot position. Finally, if we assume that all the classes are equally probable,

the previous equation can be re-written as follows:

xMAP = argmax
t2T

P(yjxt = c) (2.4)

NBC therefore provides a decision theory for data classi�cation.

Among those approaches, recent researches have been published in [Dubois et al.,

2011]. In this work, the authors propose to use NBCs and temporal integration that

combines successive observations. This model obtained interesting classi�cation re-

sults on the COLD database. The overall performance is very close to the state-of-the-

art results [Guillaume et al., 2011; Ullah et al., 2008].

2.3.1.2 Bayesian �ltering techniques

Another probabilistic generative approach based on Bayesian �ltering techniques has

been developed to achieve visual place recognition [Torralba et al., 2003b; Wu et al.,
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2009]. These techniques provide a powerful statistical tool to �lter the classi�cation

results. More formally, Bayes �lters address the problem of recognizing the place,c,

the robot is in, using sensory information. Given a stream of observationsyt and con-

trols ut , which describe the dynamics of the system, Bayes �lter recursively computes

the posterior distribution according to the following equation:

Bel(xt) = P(xt = cju1;y2; : : : ;ut� 1;yt) (2.5)

However, Bayes �lters make the assumption that the dynamic system is modeled

as Markov Chain,i.e. as shown in �gure 2.6, the observationyt and the control mea-

surementut are conditionally independent from the previous measurements given the

statext . More precisely, this probabilistic approach is based on two assumptions:

1. The Markov assumption of the state evolution says that the knowledge of the

state at timet depends only on the previous state at timet � 1

P(xt jx0:t� 1;y1:t� 1;u1:t) = P(xt jxt� 1;ut) (2.6)

This probability distribution is called the transition model and represents the

changing state of the world based on the actions of the robot. It also depends on

the dynamics of the system.

2. The assumption of completeness says that the current state completely explains

the current observation:P(yt jx0:t ;y1:t� 1;u1:t) = P(yt jxt). Moreover, this proba-

bility distribution is often independent oft: P(yt jxt) = P(yjx). This is known as

sensors model although the model response depends on the state of the world.

Based on these assumptions, the posterior distribution of equation 2.5 can be re-

computed ef�ciently using the following update rule:

Bel(xt) = P(xt = cju1;y2; : : : ;ut� 1;yt) � P(yt jxt = c) å
t� 1

P(xt jxt� 1)P(xt� 1jyt� 1) (2.7)

However, there are still two problems in this update rule. The �rst one is how to

compute or model the likelihood part,P(yt jxt = c), i.e. how to compute the conditional

probability of an observation according to the considered class. Two possible ways
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Figure 2.6: Markov assumption:P(yt jx0:t ;y1:t� 1;u1:t) = P(yt jxt) andP(xt jx0:t� 1;y1:t� 1;u1:t) =
P(xt jxt� 1;ut).

have been proposed to solve this problem: the �rst one, proposed in [Torralba et al.,

2003b], omits the quantization step and models the likelihood as a Gaussian Mixture

Model (GMM); another possible solution is proposed in [Wu and Rehg, 2011], where

the authors discretized the likelihood using BoW methods.

The second problem is how to compute the place transition distribution,P(xt jxt� 1).

As illustrated in [Wu et al., 2009], this distribution can be de�ned using a transition

matrix as:P(xt jxt� 1) = pe if xt equalsxt� 1, where the value ofpe can be in the interval

from 0:9 to 0:99. The rest of the probability mass is shared uniformly among all other

transitions. A framet is then classi�ed as the category which index isarg max P(xt jyt)

in the Bayesian �ltering framework.

Markov-Chain Monte Carlo (MCMC) approaches can also be used to determine the

robot location given a map of its environment and using Markov localization. Although

these methods have been discovered since 1960's by [Handschin, 1970; Handschin

and Mayne, 1969], they became increasingly popular in robotics over the last few

years. This is due to the fact that they need powerful computer machines. A detailed

discussion around Monte Carlo methods can be found in [Doucet, 1998].

MCMC methods were therefore used in the �eld of mobile robot localization. For

example, in [Dellaert et al., 1999], the authors proposed a Monte Carlo Localization

(MCL) method to determine the robot location. This method uses uncertainty rep-

resentation,i.e. it represents the PDF by maintaining a set of samples that are ran-

domly drawn from it. This step is followed by the use of Monte Carlo methods to

update this density representation over time. Another probabilistic localization algo-

rithm is proposed in [Thrun et al., 2000], where the authors develop an algorithm called
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Mixture-MCL, which integrates two complementary ways to generate samples in the

estimation. To apply this algorithm for mobile robots localization, a kernel density tree

is learned that permits fast sampling. Another work has been developed in [Torralba

et al., 2003a], where the authors use Hidden Markov Model (HMM) to represent each

robot place as a hidden state of the HMM and the feature vector stands for the obser-

vation. The recognition is therefore achieved using standard Bayesian techniques.

Furthermore, another approach proposed in [Torralba et al., 2003b] which is the

�rst works that addressed the problem of semantic place recognition and categoriza-

tion. This approach uses the global descriptor GIST together with a temporal integra-

tion. The temporal integration is based on a HMM to mix the information over time

and space. This system was tested in recognition and categorization of instances, on

indoor and outdoor places. However, the estimation of the transition between places

is not straightforward. Besides, the overall algorithm needs high computational cost

to perform the whole classi�cation process. The authors in [Wu et al., 2009] also pro-

posed to use another global descriptor “CENTRIST” for feature extraction. This step

is followed by the use of K-means clustering algorithm, NBC and BoW methods to

perform the classi�cation process. The authors also used the same Bayesian �ltering

to improve the results. Besides, the overall algorithm is very complex.
Generative Model Discriminative Model

Figure 2.7: Discriminativeversus generative models. Discriminative models try to directly
perform the classi�cation, which can be expressed as P(cjX). Generative approaches �rst
learn the conditional probability P(Xjc) of each class of the data representation space and
then compute the likelihood, P(cjX), using the Bayesian theory.

If the observed data are truly sampled from the generative model, then �tting the

generative model parameters to maximize the data likelihood is a common method.
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However, since most statistical models are only approximations to the true distribu-

tion, then it can be argued that the approximation makes more assumptions than are

necessary to solve the problem by hand. In such cases, it can be more accurate to model

the conditional density functions directly using a discriminative model, although each

application-speci�c details will ultimately dictate which approach is most suitable.

2.3.2 Discriminative approaches

Although it was possible to use generative approaches using Bayes rules to compute

the posterior probabilityP(xt = cjyt), there is a direct way to estimate this probability

using discriminative approaches. Discriminative approaches can be used to compute

the probability to be in a given place,c, according to the current observation,yt , as

P(xt = cjyt). More precisely, these approaches directly learn the decision frontier in

the data space representation as shown in �gure 2.7 (right). The decision frontier in

the binary case, for instance, means that some examples belong to class 0 and other

examples belong to class 1. The principle of classi�cation in these methods is based on

learning the separating surfaces between the data. This learning is particularly based

on modeling the relationships between input and output data. These relationships can

be obtained using a minimum number of assumptions about the structure of input data

to minimize the cost function of the classi�cation.

Most of the discriminative approaches have focused on NNs [Rumelhart and Mc-

Clelland, 1986] and SVMs models [Vapnik, 1998]. These two approaches are based

on a scalar product. More formally, NNs are based on the scalar product in the data

representation space,xi , i.e. a measure of the projection of one vector onto another. To

illustrate that, let's consider the example shown in �gure 2.8:

Figure 2.8: Scalar product example of neural networks.
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The unitvi has an activation function,ai , given by the following equation:

ai =
n

å
j= 1

wi j x j = < w;x > (2.8)

where this activation function can be represented as a scalar product of the input vector,

x j , and the weights,wi j . Besides, this function de�nes the decision frontier to separate

the data into different classes. Similarly, SVMs provide an ef�cient way to map the

data into a high-dimensional feature space,i.e. x! j (x), using the following kernel

function:

K(w;x) = < j (w)j (x) > (2.9)

NNs and SVMs approaches can therefore be used to predict the current robot place.

In order to illustrate these models in a more precise way, let's explain each of them

separately.

2.3.2.1 Neural networks classi�ers

Conventional feed-forward networks are non-recurrent neural networks in which the

connections between the layers are not directed cycles. As shown in �gure 2.9, the

data are feed-forward from the input layer, through the hidden layer(s) and then to the

output layer. This kind of network is called Multi-Layer Perceptrons (MLPs). Usually,

the training process of MLPs for pattern classi�cation problems includes two differ-

ent tasks, the �rst one is to choose an appropriate network for the problem, and the

second is the adjustment of the network connection weights. If the problem is lin-

early separable, then it is easy to �nd the appropriate decision frontier. Otherwise,

this task seems to be a big challenge since we don't know how many hidden units or

even the number of hidden layers are required to compute the optimal decision frontier.

Finding the appropriate network indeed varies from one problem to another and can

be achieved by preliminary trials speci�c of the problem at hand. For the learning of

weights, Rumelhartet al. [Rumelhart et al., 1986] introduced back-propagation as an

alternative learning algorithm to Boltzmann Machine for multi-layer neural networks

training. Back-propagation, or propagation of error, is a supervised learning mech-
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anism to teach neural networks to perform a given task for networks which have no

feedback.

Figure 2.9: Partly connected feed-forward neural network with one hidden layer and one output
layer. Energies can be contributed by output variables in both hidden and output layers, where
the number of output variables need not correspond to the number of input variables.

The outputs of MLPs, which are based on the weightsw, are usually used to per-

form the classi�cation process,i.e. we use the extracted weights features to separate

the different classes within the framework of Bayesian theorem,P(xt = cjyt ;w). How-

ever, these output units do not sum to 1,i.e. å i P(ci jyt ;w) 6= 1, and thus cannot be

used directly to perform the classi�cation process. To overcome this problem, one way

is to use a softmax regression to transform these units into real probability values so

that the summation of these values will be equal to 1 for a given observationyt . This

transformation can then be achieved using the following softmax formula:

P(xt = ci jyt ;w) =
ewT

i yt

å k
l= 1ewT

l yt
(2.10)

Note that a detailed description to softmax regression can be found in section 2.3.2.3.

NNs models can therefore be used to �nd the decision frontier which separates the

data into different classes. However, Vapnik [Vapnik, 1995] has demonstrated that the
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decision frontier in NNs cannot be assumed to be the optimal one. This result has lead

to the development of a new classi�cation method, the Support Vector Machines.

2.3.2.2 Support vector machines approaches

Support Vector Machine (SVM) is a discriminative model able to construct a hyper-

plane or a set of hyperplanes in a high-dimensional space and can be used for further

tasks such as classi�cation. SVMs methods were �rst proposed by [Vapnik, 1998] to

�nd the decision rules based on the feature space to discriminate the different classes.

Contrarily to NNs, SVMs do not need to choose the number of hidden units or layers,

but their feature space depends on the use of the different kernels (polynomial, linear,

sigmoid,etc.).

SVM is a supervised statistical learning algorithm1. It can be used to train the data

and predict the patterns of the data to create a “decision-maker”. Figure 2.10 illustrates

the high-level view of how we perform these tasks using an SVM approach, where the

input corresponds to the dataset and the output results correspond to the classi�cation

of the data which is used for testing. More precisely, using this algorithm we perform

two different tasks:

� Learning: by training the input examples (data) using SVM-train function.

� Prediction: new examples are used for testing. Usually, if the problem task

is to classify the observations in a set of �nite labels, the task is said to be a

classi�cation task.

It has been shown that this approach has a good performance on character recog-

nition, text classi�cation (see for instance [Joachims, 1999; Leopold and Kindermann,

2002]). Promising results are also reported for place recognition in [Pronobis et al.] us-

ing this approach. Moreover, SVMs approach has a major advantage over many other

techniques, like Arti�cial Neural Networks (ANNs): it's solution is global and unique,

and thus avoids local minima, (for further details, see for instance [Bishop, 1995]).

Another important characteristic in this approach is the ability to use different kernels,

1Sometimes, the authors use SVC or SVM-C to show that the SVM approach is used for a classi�-
cation purpose.
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Figure 2.10: High-level conceptual point of view of an SVM approach.

of different degrees, such as linear, polynomial, radial, and sigmoid. It means that it is

possible to identify the appropriate kernel for a particular classi�cation problem.

Data classi�cation is a common task in machine learning. If the data is linearly

separable, then a linear SVM would be suf�cient to perform the classi�cation process.

Otherwise, a nonlinear SVM is required. The only difference between the nonlinear

SVM and their linear counterparts is the use of kernel function instead of the inner

product. In the next sections, we introduce both linear and nonlinear SVMs.

Linear support vector machines

Linear SVM classi�er is used to learn linear separators in a high dimensional space

with a maximum margin as shown in �gure 2.11. In particular, in the case of a linear

classi�cation, a data can be viewed as an-dimensional vector, and the idea behind is

to know whether we can separate such points with a (n� 1)-dimensional hyperplane.

Usually, there are many hyperplanes that could separate the data. However, it is possi-

ble to �nd the optimal hyperplane which represents the largest separation, or margin,

between the two classes. So we choose the hyperplane so that the distance from it

to the nearest data point on each side is maximized. This is calledmaximum-margin

hyperplane (MMH).

To better understand how linear SVMs classify the data, let us consider the follow-

ing example shown in �gure 2.12 (a). In this example there are two different classes of

positive and negative nodes. So, the question is how could we separate (i.e. classify)

these data examples into two different regions.
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Figure 2.11: An example of a separable problem in a 2 dimensional space. The support vectors,
marked with gray squares, de�ne the margin of largest separation between the two classes
[Cortes and Vapnik, 1995].

Figure 2.12: (a) Simple example of two different sets of nodes which are linearly separable. (b)
The results obtained using a linear SVM classi�er, the black line perfectly separates positive
and negative nodes.

It is obvious that the two different nodes shown in this �gure are linearly separable.

It is possible therefore to use a linear SVM to separate the two different categories, as

shown in �gure 2.12 (b). However, �nding the optimal separation between these data

examples is a challenging task. Therefore, we need to �nd the separator margin which
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Figure 2.13: (a) Another example of two different sets of nodes which are not linearly sepa-
rable. (b) The results obtained using a linear SVM, the black line does not perfectly separate
positive and negative nodes.

Figure 2.14: A nonlinear SVM process presentation. It shows that after the data is transformed
from two-dimensional space to three-dimensional space, the data becomes linearly separable.

is determined by just a few examples called “support vectors” 1. In other words, as

shown in �gure 2.11 this separator can be de�ned in terms of support vectorssi and

classi�er examplesx as follows:

f (~x)  (å
si

wi~si �~x+ b) (2.11)

1Support vectors are a subset of training instances that de�ne the decision boundary between classes
as shown in �gure 2.11.
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Non-Linear Support Vector Machines

In the former section, we described how to �nd the optimal separating hyperplane in

the linearly separable case using a linear SVM. However, if the data is not linearly sep-

arable as shown in �gures 2.13 (a) and 2.14 (left), then linear SVMs are not suf�cient

to classify the data into different regions. To illustrate that, let us consider theExclusive

OR (XOR)classi�cation problem, it has 4 different samples,f (0;0); (0;1); (1;0); (1;1)g,

located on the corners of a rectangle. Finding a decision frontier that separates these

samples in a two-dimensional space seems to be impossible since the data is not lin-

early separable. However, if we add a new dimension, the problem becomes lin-

early separable and the samples can thus be separated by a hyperplane in the three

dimensions space. This indicates that it is possible to transform non-linearly separable

problems into linearly separable ones by projecting the data into a higher dimensional

space, as illustrated in �gure 2.14.

SVMs provide an easy and ef�cient way of doing this mapping to a higher dimen-

sional space, which is referred to the use of the kernel function, and then they construct

the decision frontier in that space. The linear SVM relies on a dot product between data

point vectors, as illustrated in equation 2.11. However, the nonlinear SVM classi�er

relies on a dot product between feature vectors which will be illustrated mathemati-

cally later. It means that it is possible to increase the separability of the dataRN by

mapping it to a high-dimensional spaceH using a non-linear kernel basis functionj

which can be de�ned as follows:

j : RN ! H (2.12)

This kernel function can be used to de�ne discriminant function of the SVM clas-

si�er in the feature spaceH as follows:

f (x) =
m

å
i= 1

wiyi j (xi)T j (x)+ b (2.13)

wherex1;x2; : : : ;xm are the support vectors,wi areLagrange multipliers1, yi are the

1Lagrange multipliers provide a strategy for �nding the local maxima and minima of a function
subject to equality constraints. For instance, consider the following optimization problem:f (x1; : : : ;xn) :
Rn ! R subject tog(x1; : : : ;xn) = 0. In other words, you need to �nd the minimum and maximum

33



corresponding labels of the input samplesxi , andb is a bias. It can be seen that the

computations in equation 2.13 depend on the inner product of the vectors in the feature

space. Unfortunately, performing these computations in a high dimensional space can

be extremely costly. However, this problem can be solved exploiting the idea of kernel

function. In other words, the training depends only on the inner products of the form

j (xi)T j (x). Consequently, we can overcome determining the feature space represen-

tation of the vectors by introducing the kernel function, which is de�ned as follows:

K(x;y) = j (x)T j (y) (2.14)

Thus after the substitution, equation 2.13 becomes:

f (x) =
m

å
i= 1

wiyiK(x;y)+ b (2.15)

Note that the kernel functionK(x;y) is a similarity measure between the two vectorsx

andy which is sometimes mentioned asMercer kernels theorem. In other words, the

kernel function must satisfy theMercer's theorem, that is, thekernel matrix Kgiven

by:

K =

2

6
6
4

K(x1;x1) : : : K(x1;xn)
...

...
...

K(xn;x1) : : : K(xn;xn)

3

7
7
5 (2.16)

must have only non-negative eigenvalues. A thorough explanation of this theorem can

be found in [Cristianini and Shawe-Taylor, 2000].

This similarity measure is obtained using different kernels in order to classify var-

ious kinds of data (see for instance [Chapelle et al.; Wallraven et al., 2003]). The more

important kernel functions are:

� Linear kernel:

K(x;y) = xTy (2.17)

� Polynomial kernel:

K(x;y) = ( xTy+ q)d (2.18)

extremes with respect to the constraintg.
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whereq denotes the �rst coef�cient of this kernel function (default is 0) andd

denotes the degree of the kernel function.

� Gaussian kernel:

K(x;y) = e� jj x� yjj2

2s2 = e� gjjx� yjj2 (2.19)

wheregis a coef�cient in the kernel function (default is 1=f eaturesnumber).

� Sigmoid kernel:

K(x;y) = tanh(gxTy+ q) (2.20)

� Exponential kernel:

K(x;y) = e� jj x� yjj
2s2 = e� gjjx� yjj (2.21)

The parameters of these kernel functions are speci�ed by the user, usually experimen-

tally. For instance, in the sigmoid kernel we keep changing ingandq until theMercer's

theoremis satis�ed. In chapter 5, we will employ some of these kernels and study their

impact on the �nal classi�cation results.

SVM approaches have been widely used in the literature. For instance, [Pronobis

and Caputo, 2007] proposed to use cue integration followed by a SVM classi�cation

technique. Also, in [Ullah et al., 2008] the authors used SIFT descriptor combined with

Harries Laplace Detectors (HLDs) for feature extraction, followed by the use of SVM

to perform the classi�cation process. These algorithms lead to a highly accurate result

in recognition and is robust to the noise. However, they are based on sophisticated

classi�ers.

2.3.2.3 Softmax regression

In statistics, this model is a probabilistic, linear classi�er (for example see �gure 2.15).

It is a supervised learning algorithm which can be used to predict of the probability of

occurrence of an event based on the input data. More precisely, this technique can also

be used in recognition for robotic systems to compute the probability to be in a given

place according to the input image.

Binary or binomial classi�cation is the task of classifying the members of a given

set of objects into two groups on the basis of whether they have some property or
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Figure 2.15: Simple example of linear classi�cation for two different classes.

not. For instance, distinguishing e-mails into two different classes of spam and not-

spam. While, multiclass or multinomial classi�cation is the problem of classifying

instances into more than two classes. For instance classifying the e-mails into three

different classes; spam, not-spam, and personnel e-mail or performing the recognition

task on MNIST handwritten digits to classify them into 10 different classes. This can

be modeled as a distributed system according to a multinomial distribution. However,

before explaining the softmax regression model, we want to give a brief description of

the logistic function which is a special case of the softmax regression.

Given a training set:
�

(x(1);y(1)); (x(2);y(2)); : : : ; (x(m);y(m))
	

wherey(i) denotes

the labeled samples of the input featuresx(i) 2 Rn+ 1. If the labels are taking the fol-

lowing form: y(i) 2 f 0;1g, a logistic regression is then enough to classify the data.

While if y(i) 2 f 1;2;3; : : : ;kg, a softmax regression is required to distinguish between

k classes. For a logistic regression, the hypothesis is given by the following formula:

hq(x) = s(qTx) =

"
P(y(i) = 1jx(i);q)

P(y(i) = 2jx(i);q)

#

=
1

1+ e� bqTx
=

1

å 2
j= 1ebqT

j x(i)

"
ebqT

1 x(i)

ebqT
2 x(i)

#

(2.22)

where

s(z) =
1

1+ e� bz
(2.23)

is called the logistic function.b represents the inverse temperature which determines
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the slope of the sigmoid function. Figure 2.16 shows this function, where, in this case,

the inverse temperature is assumed to be 1. Note that this function tends towards 1 as

z ! ¥ , and it tends towards 0 asz ! � ¥ . Therefore, the logistic function and hence

h(x), are always bounded between 0 and 1. The model parametersq1 andq2, which

are also known as “regression coef�cients”, can be learned minimizing the following

cost function:

J(q) = �
1
m

� m

å
i= 1

y(i) loghq(x(i)) + ( 1� y(i))log
�
1� hq(x(i))

�
�

(2.24)

Figure 2.16: Logistic sigmoid function:f (x) = 1=(1+ Exp(� bx)) with b = 1. This function
can be used as an “activation function” for a mathematical model of a neuron.

Softmax and logistic regressions are discriminative approaches since they try to

approximate decision frontiers between the data. If the classes are mutually exclusive,

so a softmax regression classi�er would be appropriate1. However, if they are not

mutually exclusive it would be more appropriate to build a set of separate logistic

regression classi�ers. It means that the non-exclusive case for multiple classes is just

an extension of the binary case. A data belongs or not (with a given probability) to each

of the considered classes but these probabilities do not have to sum to 1. On contrary,

all the probabilities of the classes in the exclusive case have to sum to 1 and thus

1Two events are said to be mutually exclusive ifP(A\ B) = 0. Note that if all events in a sample
space are mutually exclusive, then all the probabilities must sum to 1 and thusP(A[ B) = 1
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we need to use a softmax regression instead of the logistic one for our classi�cation

problem. It results that in our classi�cation problem using a non-exclusive approach

leads to a scene classi�cation (a scene can belong to several classes because it can

include parts of different rooms or locations). While using an exclusive approach leads

to a real place recognition since the robot cannot be in two different places at the

same time. So, logically, a softmax regression classi�er would be appropriate for our

classi�cation problem because it ensures that probabilities of the different classes are

mutually exclusive.

The hypothesis of a softmax regression for a multinomial distribution takes the

following form:

hq(x) =

2

6
6
6
6
4

P(y(i) = 1jx(i);q)

P(y(i) = 2jx(i);q)
...

P(y(i) = kjx(i);q)

3

7
7
7
7
5

=
1
Z

2

6
6
6
6
4

ebqT
1 x(i)

ebqT
2 x(i)

...

ebqT
k x(i)

3

7
7
7
7
5

=
1

å k
j= 1ebqT

j x(i)

2

6
6
6
6
4

ebqT
1 x(i)

ebqT
2 x(i)

...

ebqT
k x(i)

3

7
7
7
7
5

(2.25)

whereZ represents the “partition function” which normalizes the data distribution, so

that it sums to one. Also, it is important to note that the model parameters,q1;q2; : : : ;qk 2

Rn+ 1, are stacking up in rows and they are given by the following matrix:

q =

2

6
6
6
6
4

� qT
1 �

� qT
2 �
...

� qT
k �

3

7
7
7
7
5

(2.26)

If these regression coef�cients are positive, the probability of the softmax func-

tion outcome will be increased, while negative regression coef�cients mean that the

probability of that outcome will be decreased. Large coef�cients of the regression will

strongly in�uence the probability, while very small regression coef�cients will have

a small in�uence on the probability of that outcome. To overcome these challenges,

we need to regularize the model coef�cients during the learning phase. This can be

achieved using a regularized term or a weight decay, which penalizes the large param-

eters during the learning process.
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Like in the logistic regression, the parameters of a softmax regression can be

learned minimizing the following cost function:

J(q) = �
1
m

� m

å
i= 1

k

å
j= 1

1f y(i) = jglog
ebqT

j x(i)

å k
l= 1ebqT

l x(i)

�
+

l
2

k

å
i= 1

n

å
j= 0

q2
i j (2.27)

where the �rst term on the left-hand-side of the previous equation represents the regular

cost function of a softmax regression and the second term on the right-hand-side of the

same equation represents the weight decay term. Also, in the �rst term there is an

indicator function,f�g , which takes a value of 1 if its argument is true and 0 otherwise.

So, the idea behind this model is to minimize this cost function,J(q), by changing

the model parameters,q. This can be achieved using a gradient descent procedure as

follows:

q j := q j � a
¶

¶qj
J(q); f or all j (2.28)

wherea is the learning rate of the model. The partial derivative of the cost function,
¶

¶qj
J(q), can be derived as follows:

¶
¶qj

J(q) = Ñq j J(q) = �
1
m

m

å
i= 1

�
x(i) � 1f y(i) = jg � P(y(i) = jjx(i);q)

��
+ lq j (2.29)

whereP(y(i) = jjx(i);q) represents the conditional probability of a given class with

respect to the model parameters. This probability can be rewritten as follows:

P(y(i) = jjx(i);q) =
ebqT

j x(i)

å k
l= 1ebqT

l x(i) (2.30)

The demonstration of this equation can be found in Appendix B and in [Ng, 2011],

and a pseudo code of the update rule for a softmax regression is proposed in Algorithm

1.

It was stated that the use of a softmax regression depends on the assumption of

obtaining the linear separation of the data using DBNs. However, if this assumption is

false, a nonlinear classi�er, like SVM, is required to perform the classi�cation process.

The question of whether discriminative or generative approaches are more ef�cient

to solve robot localization problem seems to be interesting to explore in this context.
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input : the model parameters,q, which are the weights matrix,W, and the
biases,b. y represents the top hidden layer, the matrixz represents
the pre-de�ned labels of the classes(1f y(i) = jg), l = 0:008 is a
regularization rate used to avoid over-parameterization problem,
a = 0:1 is a learning rate of the gradient descent, and �nally, the
number of required epochs to ensure the convergence of the model
parameters, set to 10000.

output: recognize the robot places such as corridor, toilet, of�ce, . . .etc.
for e= 1 to epochsdo1

compute the conditional probability using:2

P(y(i) = jjx(i);q) = e
qT

j x(i)

å k
l= 1eqT

l x(i)
3

compute the partial derivative of the cost function using:4

¶
¶qj

J(q) = Ñq j J(q) = � 1
m å m

i= 1

�
x(i)

�
z� P(y(i) = jjx(i);q)

��
+ lq j5

use the gradient descent method which is given in equation 2.28 to6

update the model parameters as follows:
q j := q j � a ¶

¶qj
J(q); f or all j7

end8

Algorithm 1 : This algorithm shows the learning update procedure of a soft-
max regression.
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This question has been investigated in the literature, for example, in [Ng and Jordan,

2002] the authors have introduced an interesting comparison between the two different

approaches considering two particular classi�cation algorithms. The �rst one is the

logistic regression, which is a discriminative approach, and the second one is NBC,

which is a generative one. Together they form “discriminative-generative approach”

pair. It means that while naive Bayes aims at maximizing the joint likelihood,P(x;y),

of the inputsx and the labelsy, the logistic regression aims at maximizing the condi-

tional likelihood on the training set,P(yjx). In this case, the authors have empirically

shown that the performance of naive Bayes is better than the logistic regression for

less data, but the asymptotic error is higher for the former. They have also shown that

the error in the generative model may converge asymptotically much faster than the

discriminative approach, where the number of training examples is only logarithmic in

the generative model and linear in the discriminative one. However, these hypotheses

are not true for all pairs of discriminative and generative models,i.e. we can not gen-

eralize them. Hence, the conclusion of Ng and Jordan is that discriminative learning

can sometimes be more ef�cient than generative learning algorithms for some prob-

lems. On the other hand, generative learning models might be advantageous for other

problems at least when the model considered �ts well the data. Another interesting

work is presented in [Ulusoy and Bishop, 2005] where the authors have introduced

and compared the two approaches for object recognition based on local invariant fea-

tures. They have shown that a discriminative model is capable of very fast inference,

and is able to focus on highly informative features. By contrast, the generative model

gives high classi�cation accuracy, and also has some ability to localize the objects

within the image.

As a conclusion, after presenting the different existing approaches that have been

used to achieve SPR, we have noted that these approaches generally include two main

phases of coding and classi�cation. We have also seen that most of the coding methods

are based on hand-crafted feature extractors like SIFT, SURF, CENTRIST, and GIST

detectors. These detectors are empirical and they often use BoWs approaches [Chum

et al., 2009; Philbin et al., 2007]. Some of them use the local feature matching [Lowe,

2004] and they often need to reduce the size of their representations [Torralba et al.,

2008]. They are often followed by vector quantization such that the image can be

represented as a histogram.
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SPR thus requires the use of an appropriate feature space. In the next section we

will see that DNNs offer an interesting alternative to these empirical methods.

2.4 Deep architecture methods

Semantic place recognition therefore requires projecting images onto an appropriate

feature space that allows an accurate and rapid classi�cation. Although in the previous

approaches, the feature space was build in an empirical way, we are going to see that

a set of recent methods based on deep architectures of neural networks give the ability

to build it from theoretical considerations.

Concerning features extraction, the last two decades have seen the emergence of

new approaches strongly related to the way natural systems code images [Olshausen

and Field, 2004]. One of the roots of these methods is the analogy with the visual sys-

tem, the �rst layers of which seem to correspond to a coding step and to the extraction

by more and more specialized cells of universal elements of the images,i.e. elements

that are present in almost all natural images. It has been shown that these elements

are parts of contours and their combinations [Field, 1994; Olshausen and Field, 2004].

These approaches are based on the consideration that natural image statistics are not

Gaussian as it would be if they had a completely random structure [Field, 1994]. The

auto-similar structure of natural images allows the evolution to build “optimal codes”.

These codes are made of statistically independent features and many different methods

have been proposed to construct them from image datasets. One characteristic of these

features is their locality, that can be related to the notion of receptive �eld in natural

systems.

It has been shown that Independent Component Analysis (ICA) [Bell and Se-

jnowski, 1997] produces localized features. Besides, it is ef�cient for distributions with

high kurtosis well representative of natural image statistics, dominated by rare events

like contours; however the method is linear and not recursive. These two constraints

are released by Deep Belief Networks (DBNs) [Hinton et al., 2006] that introduce

non-linearities in the coding scheme and exhibit multiple layers.

Each layer in DBNs is made of a Restricted Boltzmann Machine (RBM), a simpli-

�ed version of a Boltzmann Machine proposed by Smolensky [Smolensky, 1986] and

Hinton [Hinton, 2002]. Each RBM is able to build a generative statistical model of
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its inputs using a relatively fast learning algorithm, Contrastive Divergence (CD), �rst

introduced by Hinton [Hinton, 2002]. Another important characteristic of the codes

used in natural systems, the sparsity of the representation [Olshausen and Field, 2004]

is also achieved in DBNs.

Deep architecture learning has indeed recently become popular as a powerful way

to code data using a set of independent features [Bengio, 2009]. In particular, deep

neural networks (DNNs) like DBNs and deep Boltzmann machines (DBMs) have been

applied to different machine learning tasks with impressive improvements over con-

ventional approaches ([Hinton and Salakhutdinov, 2006; Salakhutdinov and Hinton,

2009]). They have recently been used in different applications such as phone recog-

nition in [Abdel-Rahman et al., 2011], natural language processing in [Sarikaya et al.,

2011], and audio processing in [Abdel-Rahman et al., 2012]. They have also been

used for hand-written character recognition [Hinton, 2002; Hinton et al., 2006], ob-

ject recognition [Nair and Hinton, 2009], collaborative �ltering [Salakhutdinov et al.,

2007] and document retrieval. Based on previous observations, RBMs can be used to

model high-dimensional, sequential data and they have proved to be very successful

for motion capture data modeling [Taylor et al., 2006]. They have shown to be ef�cient

and powerful for image coding. [Hinton et al., 2006; Torralba et al., 2008].

In [Torralba et al., 2008] the authors have shown that DBNs can be successfully

used to code huge amounts of images in an ef�cient way. Each image in a very large

database is �rst reduced to a small size patch (e.g.32x32) to be used as an input vector

for a DBN network. A set of prede�ned features (the alphabet) is computed, only once,

from a set of representative images and each image is represented by a unique weighted

combination of features taken from the alphabet. With the appropriate parameters the

CD algorithm converges towards a sparse representation of the images, which means

that an image is coded by the smallest possible number of features. A simple distance

measurement between the image codes allows comparing them. To better understand

how DBNs approaches can be used for image coding, we give a detailed description of

them in the next sections.

DNNs are characterized by a large number of layers of neurons and by the use

of layer-wise unsupervised pre-training to learn a probabilistic model for the data. A

DBN is typically constructed by multiple layers of RBMs stacking so that the hidden
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layer of one RBM becomes the visible layer of another higher RBM layer. Layer-

wise pre-training of RBMs then facilitates �nding a more accurate model for the data.

Many researchers have empirically shown that such multi-stage learning works better

than conventional learning methods, such as the back-propagation with random ini-

tialization [Hinton and Salakhutdinov, 2006; Ranzato et al., 2010; Salakhutdinov and

Hinton, 2009]. It is thus important to have an ef�cient method for RBM training.

More precisely, deep architectures are used to �nd a high-level representation of

the initial data (extract the most interesting features of the input image and use them to

create a new representation of the initial data) for instance, see �gure 2.17.

Figure 2.17: An explanation of how to transform the input image into higher levels of rep-
resentation, which includes the most interesting information (characteristics) such as: edges,
corners, object parts,etc.

Because DBNs are based on RBMs, which are particular type of Energy-Based

Models (EBMs), we �rst introduce the main mathematical concepts of EBMs (A more

detailed description can be found in [LeCun et al., 2006]), a detailed discussion on

Boltzmann Machines (BMs) and its simpler variant, RBMs, that could be helpful to

understand the main concepts of DBNs models. Then, we focus on describing the

44



mathematical concepts of Contrastive Divergence (CD) as a powerful learning algo-

rithm that can be used to train DBNs models.

2.4.1 Energy-based models

Several methods have been proposed to achieve image coding [Bell and Sejnowski,

1997; Hinton et al., 2006; Olshausen and Field, 1996, 1997]. Some of them are Non-

Energy-Based Models (NEBMs) such as Independent Component Analysis (ICA). It

has been shown that ICA produces localized features and is ef�cient for distribu-

tions with high kurtosis well representative of natural image distributions; however

this method is linear and non-recursive as previously said [Bell and Sejnowski, 1997].

These restrictions are released by DBNs [Hinton et al., 2006] which are a particular

type of EBMs based on RBMs.

The energy-based approach is interesting because it suggests an ICA extension to

overcomplete [Olshausen and Field, 1997] and multi-layer models [Teh et al., 2003].

It has also been shown that the features of an EBM exhibit marginal dependencies [Teh

et al., 2003]. Allowing these dependencies can strongly contribute in speeding up the

inference process for the model. While in causal generative models, like ICA, the as-

sumption of marginal independence often leads to intractable inference which needs

to be approximated using some iterative, data dependent scheme. The role of these

iterations can be understood as suppressing the “activity” of less relevant feature, thus

producing a sparse code. However, EBMs can be enriched with inhibitory lateral con-

nections to suppress less relevant features in order to produce a sparser representation.

Another powerful generalization of EBMs is a hierarchical non-linear architecture

in which the output activities are computed with a feed-forward neural network (see

�gure 2.9), where each layer may contribute to the total energy (for related work see

[Hyvärinen et al., 2001]). To �t this model to data, back-propagation or CD tech-

niques can be used to compute the energy gradients with respect to both data vector

and weights. Finally, the authors in [Teh et al., 2003] have concluded that the EBMs

provide a �exible modeling tool which can be trained ef�ciently to uncover useful

structures in the data.

Usually, the main purpose of statistical modeling and machine learning is to encode

dependencies between variables [LeCun et al., 2006]. By capturing those dependen-
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cies, a model can be used to answer questions about the values of unknown variables

given the values of known variables. Recognition systems capture the dependencies

between a set of observed variablesx, for example the pixels of an image, and a set of

answer variablesy to be predicted (e.g. the robot places of natural images). An EBM

takes all the variables (observed and unobserved) as inputs, and produces a scalar en-

ergy (y;x) which measures the “compatibility” between the values of the variables.

More precisely, in an EBM the inference process is done by choosing a valuey� , from

the set of all possible values of the unobserved variablesy, for which the energy func-

tion E(y;x) is the smallest:

y� = argminy2YE(y;x) (2.31)

whereY is a suitably de�ned domain fory 1. Therefore, EBMs associate to each

con�guration a global energy,E, that is the sum of a number of local contributions

which de�ne the probability for an image to be proportional toexp(� E) [Welling

et al., 2004],i.e. EBM is one of the exponential family forms. In particular, one can

transform an EBM into a probabilistic model through the Gibbs distribution:

P(yjx) =
e� bE(y;x)

Z
(2.32)

whereZ is a normalization factor or a “partition function”. It represents the sum of the

numerator over all possible observation vectors of the input space and it is given by:

Z = å
y2Y

e� bE(y;x) (2.33)

where the parameterb is an arbitrary positive constant, the “inverse temperature 1=T”,

which determines the slope of the energy function.

The EBM inference through the energy minimization can therefore be seen as a

Maximum A Posteriori(MAP) estimation ofy. In general, we would like to learn

1inference process is the task of �nding the best answer for a given input. For example,y could
take six possible values: animal, human �gure, airplane, truck, car, and “none of the above”. Given a
�xed input x, which is observed from the world, the process of inference involves, asking the model
to produce a value of the unobserved variabley that is most compatible with the observed variablex
[LeCun et al., 2006].
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a set of features based on the principle of having low energy between the different

con�gurations of a model. In the following sections, we describe how it is possible

to compute the conditional probability of one layer given the other one for BM and

RBM models, which are particular examples of EBMs, using the exponential family

distributions.

2.4.2 Classical Boltzmann machines

The general Boltzmann Machine (BM) learning algorithm is a kind of probabilistic

generative models which was originally introduced by Hinton and Sejnowski [Hinton

et al., 1984]. As shown in �gure 2.18 (left), the classical BMs can be viewed as a

network of binary probabilistic units, which interact through weighted undirected con-

nections. In this model, the network is fully connected,i.e. a BM consists in one layer

of visible units,v, and one layer of hidden units,h. The units in each layer are fully

connected and are also connected to all other units in other layers. The visible units

are usually clamped by the observed data and the hidden units can be computed using

equation 2.32 by letting the network run freely and sampling the activities of all units.

Figure 2.18:Left : a general Boltzmann Machine. The top layer represents a vector of hidden
features,h, the bottom layer represents a vector of visible units,v, andw represents the sym-
metric interactions betweenv andh layers. Right: A restricted Boltzmann machine with no
hidden-to-hidden and no visible-to-visible connections. Since there are no direct connections
within the same layer, the activation function can update all units simultaneously.

Given the units of BM,x = f x1;x2; : : : ;xng, the energy function of BM is postulated
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by the following equation:

E(x;q) = � å
i
å

j
wi j xix j � å

i
bixi ; f or i < j (2.34)

whereq = f W;bg denotes the model parameters consisting of a weight matrixW =

[wi j ] and a bias vectorb = [ bi ]. wi j is the weight of the synaptic connections (sym-

metric connections) between neuronsi and j. As in equation 2.32, the probability of a

particular statex is then given through the Gibbs distribution as follows:

P(x;q) =
e� bE(x;q)

Z(q)
=

e� bE(x;q)

å u e� E(u;q)
(2.35)

For the binary case, the above conditional probability equation of a single unitxi ,

given the states of all other units can be driven as follows:

P(xi = 1jx;q) = s(bi + å
i6= j

wi j x j ) (2.36)

where the sigmoid function is given by:s(x) = 1=(1+ e� bx). The derivation of equa-

tion 2.36 is explained in Appendix A. This derivation is universal for RBM and general

BM [Krizhevsky, 2009].

The neurons of BM are usually divided into visible and hidden unitsx = [ v;h],

where the statesv of the visible neurons are clamped to observed data, and the statesh

of the hidden neurons can change freely as previously said. In this case, the probability

of a speci�c con�guration of the visible neurons can be computed by marginalizing out

the hidden neurons.

Although general BMs are theoretically easy to understand, they have not proven to

be useful for practical problems in machine learning or inference [Hinton, 2002]. This

is due to the fact that the learning is impractical in general BMs,i.e. the convergence

process needs long time to be achieved since we have to learnP(x) as it was illustrated

in equation 2.36. In fact, the unconstrained connectivity between the units (see �gure

2.18 (left)) is the main problem in those approaches. However, this connectivity prob-

lem has been restricted by introducing RBM models, which can be useful in practical

problems.
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2.4.3 Gaussian-Bernoulli restricted Boltzmann machines

In 1986, Smolensky introduced Restricted Boltzmann Machines (RBMs) [Smolensky,

1986] as a powerful learning algorithm which trains deep networks in a greedy layer-

wise fashion. In other words, RBMs train one hidden layer of DBNs at a time by

minimizing the energy function which is given in equation 2.37. Contrarily to feed-

forward architectures, which support only bottom-up inference, RBMs are generative

approaches for image coding, which support both bottom-up and top-down inference

processes1.

Unlike a classical Boltzmann machine, a RBM is a bipartite undirected graphical

modelq = f wi j ;bi ;c jg, that learns a generative model of the observed data. It consists

in two layers. The hidden layer, containing latent variablesh, is used to generate

the visual layer, containing observed variablesv. While generationP(vjh) is learned,

the undirected connections also allow recognitionP(hjv). The two layers are fully

connected through a set of weightswi j and biasesf bi ;c jg, and there are no connections

between units of the same layer, as shown in �gure 2.18 (right). As illustrated in

[Hop�eld, 1982], a joint con�guration, (v,h) of the visible and hidden units has an

energy function,E(v;h;q), given by:

E(v;h;q) = � å
i
å

j
vih jwi j � å

i2v
bivi � å

j2h
c jh j (2.37)

This energy function corresponds to the binary states of visible unitsv and hidden

unitsh. The probabilities of the state for a unit in one layer conditional to the state of

the other layer can therefore be easily computed. According to Gibbs equation:

P(v;h;q) = �
1

Z(q)
exp� bE(v;h;q) (2.38)

whereq = f w;b;cg represents the model parameters, andZ(q) is again the “partition

function”. Intuitively, con�gurations with low energy are assigned high probability,

while con�gurations with high energy are assigned low probability.

1Bottom-up inference is the synthesis of new information from the old one, while top-down infer-
ence is the analysis of goals into subgoals. The lower RBM layers could support object detection by
spotting low-level features indicative of object parts. Conversely, information about objects in the higher
RBM layers could resolve lower-level ambiguities in the image or infer the locations of hidden object
parts.
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Thus after marginalization, the probability of a particular hidden state con�guration

h can be derived as follows:

P(h;q) = å
v

P(v;h;q)

=
å v e� bE(v;h;q)

å v å h e� bE(v;h;q)
(2.39)

The sum in the denominator is over all possible visible and hidden con�gurations,

and is thus extremely hard to compute when the number of units is large. However, as

previously said, in RBMs there are no direct connections between the visible neurons

or the hidden neurons. It can thus be easy to write down the conditional probability of

a single unit being either 0 or 1 given the states of the other units as follows:

P(h j = 1 j v;q) =
P(h j = 1;v;q)

P(v;q)
(2.40)

Given the energy function,E(v;h), of the visible and hidden units, we can rewrite

the above conditional probability equation as follows:

P(h j = 1 j v;q) =
e� bE(v;h)

å h e� bE(v;h)
(2.41)

whereb represents the inverse temperature, 1=T , which determines the slope of the

sigmoid function. However, for the binary case whereh j 2 f 0;1g, the above prob-

ability equation of turning on can be derived using the logistic sigmoid function as

demonstrated in [Krizhevsky, 2009] and Appendix A, according to its energy func-

tion, as follows:

P(h j = 1 j v;q) = s(c j + å
i

wi j vi) (2.42)

Once the hidden binary states are computed, we produce a “reconstruction” of the

original patch by setting the state of each visible unit to be 1 with probability:

P(vi = 1 j h;q) = s(bi + å
j

wi j h j ) (2.43)
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However, logistic or binary units are not appropriate for multi-valued inputs like

pixel levels, because logistic units are a very poor representation for data such as

patches of natural images [Hinton, 2010]. To overcome this problem, as suggested

by Hinton [Hinton, 2010], in the present work we replace the binary visible units by a

zero-mean Gaussian activation scheme as follows:

P(vi = 1 j h;q)  N(bi + å
j

wi j h j ;s2) (2.44)

Concerning the variance of the noise,s2, it is possible to learn it for each visible

unit, but this is dif�cult using CD as it is time-consuming. It is more appropriate to

�rst normalize the data components to have zero-mean and unit variance and then use

a unit variance and zero-mean for the Gaussian noise. After this modi�cation, Gaus-

sian visible units and binary hidden units correspond to the following energy function

model:

E(v;h;q) = å
i2v

(vi � bi)2

2s2
i

� å
j2h

c jh j � å
i
å

j

vi

s i
h jwi j (2.45)

As a conclusion, contrarily to auto-encoder models that are non-statistical but “de-

terministic models” and aim at �nding the best reconstruction of the data or reproduce

the images. RBMs are generative models used to learn the optimal statistical model

which explains the original data or images. Moreover, there are other good reasons to

use RBMs:

First, these approaches are able to produce sparse ef�cient features extracted from a

larger alphabet. A sparse representation means that the linear separability of the initial

data should be gained in the feature space. Secondly, RBM can handle multi-modal

stimuli. Units are independent of each other, since there are no connections between

units of the same layer. This allows the units to encode different modalities without

problems. Moreover, RBMs are just basic building blocks. They can be stacked on top

of each other to create Deep Belief Networks. They can be extended to model time-

series [Sutskever et al., 2008] or to feature three-way interactions ([Taylor and Hinton,

2009]. Finally, RBMs fall under Bayesian models, which have been used extensively

to model the brain [Vilares and Kording, 2011]. However, full Bayesian models are

computationally intractable and therefore biologically implausible. By using only an
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approximation, we have not only fast inference and learning, but also a more plausible

algorithm.

The parameters of RBM can be learned from the data using different training tech-

niques. Some of them are: maximizing the log-likelihood, Markov-Chain Monte-Carlo

(MCMC) sampling techniques like Gibbs sampling, and Contrastive Divergence (CD)

learning algorithm. We will see in the next section how we could use these mecha-

nisms for Product of Experts (PoEs) models training and we will concentrate on the

use of CD as a faster and powerful learning algorithm to maximize the log-likelihood

gradient.

2.4.4 Learning products of experts by minimizing contrastive di-

vergence

It has been mentioned that Back-Propagation (BP) learning technique works well in a

network where just a single layer is suf�cient. However, it does not work well in net-

works with many hidden layers, like DBNs, because it requires to train the whole layers

of the model [Bengio and LeCun, 2007; Hecht-Nielsen, 1995; Larochelle et al., 2009;

Tesauro, 1992]. In other words, minimizing the error for each layer requires back-

propagating the error on all model layers, updating the weights and biases. Therefore,

the convergence of BP algorithm becomes more dif�cult in networks with multiple

hidden layers,i.e. it is time-consuming to assure the convergence. Furthermore, BP

algorithm is not very accurate in the case of DBNs because the gradient of error be-

comes �at for the different layers and weights. However, several alternative learning

techniques have been proposed to train DBNs models. But before introducing them

we need to understand the term “Products of Experts” (PoEs).

General BMs or RBMs are particular examples of PoEs model. PoE combinesn

individual models by taking the product of their conditional probabilities and normal-

izing the result using the partition functionZ(q) as follows [Hinton, 2002]:

P(d j q1; : : : ;qn) =
ÕmPm(d j qm)

Z(qm)
=

ÕmPm(d j qm)
å cÕmPm(c j qm)

(2.46)

whered is a discrete input vector,c represents the indexes for all possible vectors in the

input space,qm represents the parameters of a particular modelm, andPm(d j qm) is the
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probability ofd under the modelm. A common way to learn the PoE parameters is to

maximize the data log-likelihood. Given a training datasetf digN
i= 1, the log-likelihood

of PoE is given by:

log P(d j q1; : : : ;qn) =
N

å
i= 1

M

å
j= 1

log P(di j f q jg) (2.47)

By taking the �rst derivative of the log-likelihood function,log P(d j q1; : : : ;qn),

with respect to the model parameters,q j , we can then drive the gradient descent as

follows:

¶log P(d j q1; : : : ;qn)
¶qm

=
�

¶log Pm(d j qm)
¶qm

� å
c

P(c j q1; : : : ;qn)
¶log Pm(c j qm)

¶qm

�

(2.48)

A thorough demonstration for this derivative can be found in Appendix C and in

[Wood and Hinton, 2012]. In equation 2.48, the �rst part represents the data distribu-

tion, while the second one represents the expected derivative of the log-likelihood of

an expert on fantasy data,c, generated from the PoE1. The average over the data and

model distributions in equation 2.48 can thus be written as follows:

�
¶log P(d j q1; : : : ;qn)

¶qm

�

Q0
µ

 �
¶log Pm(d j qm)

¶qm

�

Q0
�

�
¶log Pm(c j qm)

¶qm

�

Q¥

!

(2.49)

However, the computation ofQ¥ seems to be dif�cult to obtain, especially in an

inner gradient ascent loop. In other words, computing the partition function,Z(q),

requires to compute the summation over all possible con�gurations of BM, and it is

simply impossible for large BMs. Fortunately, this problem can be tackled in various

ways. One obvious approach is to use Markov-Chain Monte-Carlo (MCMC) sampling

techniques to compute the stochastic gradient to maximize the log-likelihood. Due to

the simplicity of the activation rule for a single neuron given the states of other neurons,

a simple Gibbs sampling is enough to get stochastic gradients. A detailed description

of how to use Gibbs sampling method for traditional BMs training can be found in

[Geman and Geman, 1984].

1Fantasy data (or confabulation data) is the reconstruction data produced by training an observed
data-vector using the CD algorithm.
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However, there are also other kinds of limitations in Gibbs sampling use for BM

training. The biggest problem is due to the full-connectivity of BM: since each neuron

is connected to and in�uenced by all the other neurons, it takes as many steps as the

number of neurons to get one sample of the BM state. Even when the visible neurons

are clamped to the training data, the number of required steps for a single fresh sample

is still at least the number of hidden neurons. This makes the successive samples in the

chain highly correlated with each other, and this poor mixing affects the performance

of learning. Another limitation of this approach is that multi-modal distributions are

problematic for Gibbs sampling due to the nature of component-wise sampling, the

samples might miss some modes of the distribution [Salakhutdinov, 2009].

MCMC learning techniques are therefore not useful for classical BMs training

where the network is fully-connected. They also remain slow in training RBMs even

if we restrict the connectivity of the visible and hidden units and thus cannot be used

to train RBMs.

Another way based on Kullback-Leibler Divergence (KLD), �rst introduced by

[Kullback and Leibler, 1951], can be used to maximize the log-likelihood. It has been

formally demonstrated that maximizing the log-likelihood of the data (averaged over

the data distribution) is equivalent to minimizing the KLD between the data distribu-

tion, Q0, and the equilibrium distribution over the visible variables,Q¥ , that is pro-

duced by prolonged Gibbs sampling from the generative model [Hinton, 2002]1. The

KLD between the data and model distributions can then be written as follows:

DKL
�
Q0kQ¥ �

= å
d

Q0
dln

Q0
d

Q¥
d

= å
d

Q0
dlogQ0

d � å
d

Q0
dlogQ¥

d

= � H
�
Q0�

� h logQ¥
d i Q0 (2.50)

wherek represents the KLD operator,h�i denotes the cross entropy ofQ0 and Q¥
d

(expectations over the distribution),H
�
Q0

�
represents the entropy of the data distribu-

tion which can be ignored during learning becauseQ0 does not depend on the model

parameters, andQ¥
d = P(d j q1; : : : ;qn).

1Q0 is a natural way to denote the data distribution if we imagine starting a Markov chain at the
data distribution at time 0 [Hinton, 2002].
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However, as illustrated in [Hinton, 2002], instead of minimizing the KLD between

Q0 (initial derivative) andQ¥ (�nal derivative), it is possible to minimize the diver-

gence between(Q0kQ¥ ) and(Q1kQ¥ ) whereQ1 can be computed by performing one

step of reconstruction of the data generated by one full step of Gibbs sampling. In fact,

this minimization represents the de�nition of “Contrastive Divergence” (CD) which

was proposed by Hinton [Hinton, 2002] as an approximate learning method for PoE

models training. Instead of running the chain to equilibrium and comparing the initial

and �nal derivatives, we can simply run the chain for one full step and then update

the parameters to reduce the tendency of the chain to wander away from the initial

distribution on the �rst step. A comparison is thus made between the statistics of the

data and the statistics of its representation generated by Gibbs sampling. Therefore, in

contrastive divergence learning, we try to minimize the following related objective:

CDn = KL(Q0jjQ¥ ) � KL(Q1jjQ¥ ) (2.51)

The key bene�t for the contrastive divergence is that the intractable expectation

overQ¥ on the right-hand-side of equation 2.50 cancels out as cited in [Hinton, 2002],

i.e. theQ¥ term of equation 2.51 cancels each other out, as explained in [Andrzejewski,

2009; Hinton, 2002]. Consequently, equation 2.49 can be re-written as follows:

�
¶

¶qm

�
Q0kQ¥ � Q1kQ¥ �

=

 �
¶log Pm(d j qm)

¶qm

�

Q0
�

�
¶log Pm(d̂ j qm)

¶qm

�

Q1

!

+
¶Q1

¶qm

¶(Q1kQ¥ )
¶Q1

(2.52)

The �rst two terms of equation 2.52 are tractable, because we can compute the

derivative of the initial data,d, and the derivative of the reconstruction data,d̂. In

other words, it is straightforward to sample fromQ0 andQ1, while the third term is

problematic to compute. However, extensive simulations have shown that this term

can safely be neglected because it has a small effect on the �nal result compared with

the other two terms [Hinton, 2002]. These extensive simulations were performed using

RBMs with small numbers of visible and hidden units. By performing computations

that are exponential in the number of hidden units and exponential in the number of
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visible units, it is possible to compute the exact values ofhv0
i h0

j i Q0 andhvn
i hn

j i Q1. It is

also possible to measure what happens toQ0kQ¥ � Q1kQ¥ when the approximation

in equation 2.54 is used to update the weights by an amount that is large compared

with the numerical precision of the machine but small compared with the curvature

of the CD. After performing that, two histograms of the improvements in the CD and

in data log likelihood have been presented in [Hinton, 2002]. The main conclusion is

that the learning procedure does not always improve the log likelihood of training data,

though it has a strong tendency to do so. However, when we ignore the third term in

equation 2.52, the learning procedure in the case of CD becomes better. Consequently,

by ignoring the third term in equation 2.52, the model parameters can be adjusted using

the following update rule:

Dqm µ

 �
¶log pm(d j qm)

¶qm

�

Q0
�

�
¶log pm(d̂ j qm)

¶qm

�

Q1

!

(2.53)

As shown in �gure 2.19, CD learning starts by setting the states of the visible units

to a training vector. Then the binary states of the hidden units are all computed in

parallel using equation 2.42. Once binary states have been sampled for the hidden

units, a “reconstruction” is produced by setting eachvi to 1 with a probability given by

the equation 2.44. The overall update formula in the weightswi j is therefore given by:

�
¶

¶wi j

�
Q0kQ¥ � Q1kQ¥ �

� h v0
i h0

j i Q0 � h vn
i hn

j i Q1 (2.54)

This equation can be rewritten as:

wi j  wi j + h[hv0
i h0

j i data� h vn
i hn

j i recon] (2.55)

whereh denotes the learning rate andhv0
i h0

j i andhvn
i hn

j i are the cross product of the

visible and hidden units with respect to the data and the model (reconstruction) distri-

butions.v0 corresponds to the initial data distributions,h0 is computed using equation

2.42, vn is sampled using the Gaussian distribution in equation 2.44 and withn full

steps of Gibbs sampling, andhn is again computed from equation 2.42. Then, for

separate biases of visible and hidden neurons, the update rules are, in analogy to the
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update rule for the weights:

bi  bi + h[hv0
i i data� h vn

i i recon] (2.56)

and

c j  c j + h[hh0
j i data� h hn

j i recon] (2.57)

wherevi , h j , bi , andc j denote thei-th visible neuron, thej-th hidden neuron, thei-th

visible bias, and thej-th hidden bias respectively.

As it can be anticipated from the fact that the direction of the gradient is not iden-

tical to the exact gradient, CD learning is known to be biased [Bengio, 2009; Carreira-

Perpinan and Hinton, 2005]. Nevertheless, CD learning has been shown to work well

in practice. A good property of CD is that if the data distribution is multi-modal,

running the chains starting from each data sample guarantees that the samples approx-

imating the negative phase are representative from different modes. Therefore, it has

been formally demonstrated that the minimization of the CD is an approximation of the

maximization of the data log-likelihood [Carreira-Perpinan and Hinton, 2005; Hinton,

2002].

A clear pseudo-code of the Contrastive Divergence learning algorithm is proposed

in Algorithm 2. This pseudo-code is valid to train Gaussian-Bernoulli-RBM model,

i.e. to train a RBM with Gaussian visible units and binary hidden units.

Figure 2.19:Left : Layer-wise training for a RBM with visible and hidden layers using con-
trastive divergence learning algorithm.Right: a deep belief network with two hidden layers.

2.4.5 Deep belief networks

DBNs are probabilistic generative models composed of multiple RBMs layers of latent

stochastic variables. The latent variables typically have binary values. They corre-
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input : random patch,v0, selected from the database, learning rate,h the
weights matrix,wi j , of dimension (number of visible units, number
of hidden units) and it is initialized with Gaussian distribution.bi
represents the visible biases,c j represents the hidden biases,l is the
weight decay,µ is the momentum,s is a unit variance set to 1, the
training set is divided into small “minibatch-size (g)” of 100, the
weights increments,winci j , are set to zero,numh represents the
number of hidden units,numv represents the number of visible
units, andepochsrepresents the number of epochs need to ensure
the convergence.

output: a set of features which are stored in (wi j;bi ;c j ).

for e= 1 to epochsdo1

for j = 1 to numh do2

computethebinaryhiddenunits,using:h0 = s
�
c j + å i wi j vi0

�
;3

samplethehiddenstates,using: ph0 � Bernoulli(h0);4

end5

for i = 1 to numv do6

computethevisibleactivationunits,using:v1 = s
�
bi + å i wi j ph0j

�
;7

samplethevisiblestatesusingGaussiandistributionas:8

pv1 � v1 + N(0;s2);
end9

for j = 1 to numh do10

computethebinaryhiddenunits,using:h1 = s
�
c j + å i wi j pvi1

�
;11

end12

for i = 1 to numv do13

for j = 1 to numh do14

winci j  µ� winci j + h �
�

�
(v0 � h0) � (pv1 � h1)

�
=g

�
� l � wi j

15

wi j  wi j + winci j

end16

bi  bi + h � (v0 � pv1)17

end18

for j = 1 to numh do19

c j  c j + h � (h0 � h1)20

end21

end22

Algorithm 2 : Training update procedure for a RBM over Gaussian visible
units and binomial hidden units using Contrastive Divergence.
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spond to hidden units or feature detectors. The input variables are zero-mean Gaussian

activation units and are often used to reconstruct the visible units. As shown in �gure

2.20, the top two layers have undirected, symmetric connections between them and

they form the weights or the features. These features are extracted using the principle

of energy function minimization according to the quality of the image reconstruction.

DBNs are powerful unsupervised machine learning models for several reasons,

including:

� There is an ef�cient, layer-by-layer procedure for learning the top-down, gener-

ative weights that determine how the variables in one layer depend on the vari-

ables in the layer above [Hinton, 2009].

� After learning, the values of the latent variables in every layer can be inferred by

a single, bottom-up pass that starts with an observed data vector in the bottom

layer and uses the generative weights in the reverse direction [Hinton, 2009].

� DBNs are able to extract sparse ef�cient features from a larger alphabet. These

features can be successfully used to code huge amounts of images in an ef�cient

way [Torralba et al., 2008].

Since DBNs are composed of RBMs layers (Figure 2.20), they can be trained in

a greedy layer-wise way. We describe this training methodology in more detail in the

next section.

2.4.6 Deep belief networks layer-wise training

Extensive works have empirically shown that DNNs training is a challenging task

[Bengio et al., 2007; Erhan et al., 2009]. The authors of those works have suggested

to use gradient-based methods for supervised DNNs training starting from a random

initialization. However, this approach gets stuck in “apparent local minima” and the

problem becomes much more complex with deep architectures [Bengio, 2009]. In

2006, Hinton [Hinton et al., 2006] has suggested that it would be more ef�cient if we

train deep neural networks in a greedy layer-wise unsupervised learning way. By us-

ing this model we try to learn a hierarchical feature representation of which high level

features are composed of simpler low level features.
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Figure 2.20: Stacking Restricted Boltzmann Machines (RBM) to achieve Deep Belief Network.
This �gure also illustrates the layer-wise training of a DBN.

As shown in �gure 2.21, DBNs can thus be learned one layer at a time, by consid-

ering the values of the latent variables in one layer, after they have been inferred from

the previous layer, as the data for training the next layer.

This ef�cient, greedy learning can be followed by, or combined with, other learning

procedures that �ne-tune all of the weights to improve the discriminative performance

of the whole network.

Figure 2.21: DBNs Layer-wise training withn hidden layers using CD and RBM.

More precisely, the �rst DBN model parametersq = f wi j ;bi ;c jg, are learned by

training the �rst RBM layer between the visible and hidden layers. Then, the model

parameters are frozen and the conditional probabilities of the �rst hidden unit values

are used to generate the data to train the higher RBM layer in the network. New layers

can be stacked and trained using the same scenario. The process is repeated across the

layers to obtain a sparse representation of the initial data that will be used as the �nal

output. In sparse methods, the code is forced to have only few non-zero units while
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most code units are zero most of the time. Eventually, sparse representations present

several potential advantages, as demonstrated in a number of recent studies [Doi et al.,

2006; Olshausen and Field, 1997; Ranzato et al., 2006]. They, in particular, have good

robustness to noise, and provide a simple interpretation of the input data in terms of a

small number of “parts” by extracting the structure hidden in the data. Furthermore,

using high-dimensional representations increases the likelihood that image categories

will be easily (possibly linearly) separable. Therefore, in this context, we assume that

a sparse feature code increases the linear separability between the data in the feature

space, which would facilitate the classi�cation process.

2.5 Summary

In the present chapter we have discussed the problem of SPR and outlined the most

signi�cant dif�culties to develop solutions for this problem. We started by introduc-

ing the differences between “metric localization”, “topological localization”, and “se-

mantic place recognition”. We also studied the SPR issues in terms of place recog-

nition system designing and testing. We therefore reviewed different approaches for

this problem, including in particular [Oliva and Torralba, 2006; Pronobis and Caputo,

2007; Torralba et al., 2003b; Ullah et al., 2008; Wu and Rehg, 2011; Wu et al., 2009].

These approaches have led to notable successes to achieve vision-based place recog-

nition. However, they are based on complex or sophisticated techniques in order to

achieve robust place recognition. In other words, performing the task of SPR using

a simple classi�cation method is still an open question. Therefore, SPR requires an

appropriate code that allows fast and robust classi�cation. That's why we have pre-

sented in this chapter a recent machine learning method, DBNs, as an alternative to

hand-designed feature coding approaches. We hope that such approach is suitable for

crating an appropriate representation for our classi�cation problem.
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Chapter 3

Feature space construction : a

parameter study

3.1 Introduction

We have seen that most of the methods used for SPR solving are based on the use of

hand-engineered features (GiST, CENTRIST, SURF, or SIFT descriptors). In order to

cope with the continuous nature of the data representation, a discretization step using

BoWs approaches and vector quantization is often applied. The used descriptors are

low level and don't capture the structural organization of the scene. It has been shown

that despite this lack of information, BoWs methods have given interesting results in

SPR. However these methods are complex and depend on the quantization step. Their

use is often followed by a complex phase of learning with sophisticated methods like

SVMs.

Concerning the feature extraction, RBMs seem more appropriate since they take

their root in theoretically grounded statistical methods (PCA and ICA) and they have

shown to be ef�cient for image coding [Abdel-Rahman et al., 2011; Hinton, 2002; Hin-

ton et al., 2006; Nair and Hinton, 2009; Salakhutdinov et al., 2007; Taylor et al., 2006;

Torralba et al., 2008] in many applications. They also learn sparse edge �lters, which

are more suitable for classi�cation and they are based on models of natural vision

[Serre et al., 2007] which have impressive performances in object and scene recogni-

tion. Another attractive characteristic of this approach is that RBMs can be stacked to
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form deep networks, the output of which could provide a high level non linear repre-

sentation of the scene [Hinton et al., 2006] and thus capture spatial relationship lacking

in the previous approaches.

We thus propose in the present work to code the images as a set of independent

features obtained using DBNs [Hinton and Salakhutdinov, 2006; Torralba et al., 2008].

It has been shown that features extracted by DBNs are more promising for image

classi�cation than hand-engineered features [Hinton et al., 2011]. So, we hope that,

due to the statistical independence of the features and their sparse nature, learning in

the feature space will become linearly independent, greatly simplifying the way we

will learn to classify the scenes.

One of the main question with the use of DBNs to classify an image set is to de�ne

the conditions required to build an optimal feature space. The general RBM training

algorithm is governed by a lot of parameters acting on learning rate, sparsity of the

�nal representation, locality of the obtained features and also speed of convergence.

As stated by Hinton [Hinton, 2009] these parameters have to be set up carefully to

obtain an appropriate feature extraction. In this chapter we report our own parametric

study of the RBMs and DBNs that will be further used in our model. We study the

effect of all these parameters on the feature obtained for image coding. In particular,

we investigated the effect of the different parameters on the sparsity of the obtained

coding and the locality of the features. These properties are indeed a major requirement

for achieving good classi�cation results.

3.2 Used databases

In this preliminary study, in order to compare easily our results with the ones published

in the literature, we used two popular datasets, the van Hateren and the Berkeley image

databases. The �rst one is a database of high-resolution calibrated monochrome images

taken in de�ned illumination conditions1, designed for various image processing tasks.

It contains approximately 4000 images of 1536x1024 pixels. The second one, the

Berkeley database, is a collection of 481x321 and 321x481 natural images2. This

database has been created to provide an empirical basis for image segmentation and

1van Hateren's Natural Image Database is available at: http://www.kyb.tuebingen.mpg.de/?id=227
2Berkeley database is available at: http://www.cs.berkeley.edu/projects/vision/grouping/segbench/
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boundary detection researches [David et al., 2004]. It contains 300 different color

images divided into a training set of 200 images, and a test set of 100 images. A subset

of samples from this database is shown in �gure 3.1.

Figure 3.1: A subset of 481x321 and 321x481 natural images selected from the Berkeley
database [David et al., 2004].

As shown in �gure 3.1, the images contain a lot of borders, corners, textures and

edges because they are created for the purpose of image segmentation as earlier said.

This kind of images would facilitate the process of feature extraction using a RBM.

Moreover, they do not contain a lot of �at areas.

Two approaches can be considered for feature extraction. The �rst one consists in

the extraction of small patches that can be used as inputs of a DBN. The second one

consists in reducing the size of the whole images to an acceptable value in such a way

that they can be used directly as the inputs of the network. This second approach will

be considered in the next chapter.
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For now, as proposed by [Ranzato et al., 2010], after gray-scale conversion, we

have sampled 100;000 random patches of size 16x16 pixels from these databases. This

extraction step was followed by a normalization that we are going to consider more in

depth in the next section. After that, the obtained image patches were used as a training

set for an RBM.

3.3 Normalization

3.3.1 Data whitening

Usually, natural images are highly structured and contain signi�cant statistical redun-

dancies,i.e. their pixels have strong correlations [Attneave, 1954; Barlow, 2001]. For

example, it is well known that natural images bear considerable regularities in their

�rst and second order statistics (spatial correlations), which can be measured using

the autocorrelation function or the Fourier power spectral density [Field, 1987]. These

correlations are due to the redundant nature of natural images (adjacent pixels usu-

ally have strong correlations except around edges). The presence of these correlations

allows, for instance, image reconstruction using Markov Random Fields. It has thus

been shown [Bell and Sejnowski, 1997; Field, 1987; Olshausen and Field, 1996] that

the edges are the main characteristics of the natural images and that they are rather

coded by higher order statistical dependencies. It can be deduced from this observa-

tion that the statistics of natural images is not Gaussian (since the moments greater

than order-two are zero for Gaussian distributions). This statistics is dominated by rare

events like contours, leading to high-kurtosis long-tailed distributions.

Pre-processing the images to remove these expected order-two correlations is known

as whitening. It has been shown that whitening is a useful pre-processing strategy in In-

dependent Component Analysis (ICA) [Hyvärinen and Oja, 2000; Soman et al., 2009].

It seems also a mandatory step for the use of clustering methods in object recognition

[Coates et al., 2011]. Whitening being a linear process, it does not remove the higher

order statistics or regularities present in the data. The theoretical grounding of whiten-

ing is simple: after centering, the data vectors are projected onto their principal axes

(computed as the eigenvectors of the variance-covariance matrix) and then divided by
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the variance along these axes. In this way, the data cloud is sphericized, letting ap-

pear only the usually non orthogonal axes corresponding to its higher-order statistical

dependencies.

More formally, vectors of observationsx are linearly transformed to obtain new

vectors(x̃), which components are uncorrelated and which variances equals unity. In

other words, the covariance matrix of the whitened data is equivalent to the identity

matrix as follows:

Ef x̃x̃Tg = I (3.1)

There are several equivalent ways to perform this whitening transform. One pop-

ular way is the use of EigenValue Decomposition (EVD) of the covariance matrix as

follows:

Ef x̃x̃Tg = EDET (3.2)

whereE is the orthogonal matrix of eigenvectors ofEf x̃x̃Tg and D is the diagonal

matrix of its eigenvalues,D = diag(d1; : : : ;dn). Whitening can thus be achieved by:

xwhiten= x̃ = ED� 1=2ETx (3.3)

whereD� 1=2 is the inverse square root of the diagonal matrix which can be computed

as follows:

D� 1=2 = diag(d� 1=2
1 ; : : : ;d� 1=2

n ) (3.4)

Figure 3.2 (right) shows a subset of 16x16 random whitened patches from the

Berkeley database. Figure 3.2 (left) shows the corresponding original patches. It can

be seen that after whitening, a lot of noise has been removed. Besides, the �rst and

second statistical structures have also been removed. Thus, after data whitening, we

assume that the �nal set of tiny-images is centered and whitened. Consequently the

variance,s2 in equation 2.43 can be set to 1.

It is easy to see on the covariance matrix of a set of original patches from the van

Hateren database (Figure 3.3) (�rst row) that pixels are strongly correlated to nearby

pixels and weakly correlated to faraway pixels. These strong correlations can prevent

66



Figure 3.2:Left: A subset of 16x16 original random image patches sampled from Berkeley
database.Right: The corresponding 16x16 whitened image patches are obtained after pre-
processing.

the algorithms learning the feature space from rather focus on higher-order correla-

tions. Instead it can force the model to get distracted by modeling order-two corre-

lations. Thus if these correlations need to be eliminated before attempting to extract

features, data whitening is required. Figure 3.3 (second row) shows the covariance

matrix of the whitened patches for the same database. It shows that the whitened data

became uncorrelated. However the higher order statistics corresponding to the differ-

ence between correlation and statistical dependence remains preserved. To build a set

of statistically independent detectors, it will be required to �nd “factorial codes” such

that the statistical distribution of the transformed data is as close as possible to the

product of its components [Bell and Sejnowski, 1997; Olshausen and Field, 1996].

3.3.2 Local normalization

Another way to preprocess data is to perform local normalization. In this case, each

patchx(i) is normalized by subtracting the mean and dividing by the standard devia-

tion of its elements. For visual data, this corresponds to local brightness and contrast

normalization. One can �nd in [Coates et al., 2011] a study of whitening and local

normalization and their effect on a further classi�cation task. However we can note
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Figure 3.3:First row: The covariance matrix of the tiny images for the van Hateren database.
White indicates high values, black indicates low values. All values are positive. The size of the
tiny images is 32x32. Second row:The corresponding covariance matrix of the whitened tiny
images from the same database.

that this study has been performed using two databases, NORB1 and CIFAR2, that

1NORB dataset : www.cs.nyu.edu/ ylclab/data/norb-V1.0/
2CIFAR dataset : www.cs.utoronto.ca/ kriz/cifar.html
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have been especially designed for object recognition.

Figure 3.4 shows a dataset from the van Hateren database showing the effects on a

initial dataset (left) of respectively local normalization (middle) and whitening (right).

Figure 3.4:First column: 256 tiny images randomly sampled from the van Hateren database.
Second column: The corresponding normalized ones.Third column: The corresponding
whitened ones.

We can also note that in [Ranzato et al., 2010], the authors argue that whitening

speeds-up the convergence of the algorithm without any justi�cation. It could probably

due to the fact that all variables have similar variances.

3.4 Unsupervised construction of the feature space

An RBM is usually trained as shown in �gure 3.5, using the contrastive divergence

learning procedure proposed by [Hinton, 2002].

Figure 3.5: Training an RBM layer using contrastive divergence learning..

In order to present the general setup of the RBM training algorithm we will refer

�rst on �gure 3.5. A �rst set of weights1 linking visible and hidden layers is taken
1Weights represent the symmetric interactions between the visible and hidden units which are

known as features.
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at random. Thus from one image it is possible to compute a �rst con�guration of the

hidden layer units probabilities. From con�gurations of the hidden layer drawn from

the probabilities, the visible layer is reconstructed. We obtain a so-called ”confab-

ulation” of the input image. The contrastive divergence (CD) is then computed for

this particular image for weights and biases. However, in a practical implementation,

this CD is not directly used for weights and biases updating. The results for a set of

images taken at random and called a mini-batch are pooled together and used to up-

date the parameters. This process is repeated for a speci�c number of epochs or until

convergence.

Unfortunately, training a RBM is known to be dif�cult. Recent researches have

shown that without a careful choice of learning parameters, well suited to speci�c data

sets and RBM structures, learning algorithms can easily fail to model the data distri-

bution correctly [Desjardins et al., 2010; Fischer and Igel, 2010; Schulz et al., 2010].

This problem is often evidenced during learning. As illustrated in [Hinton, 2010], the

update procedure of an RBM requires a certain amount of practical experience to de-

cide how to set the values of different parameters, including the learning rateh, the

initial and �nal momentumsµi andµf , the weight-decayl , the penalty term, the initial

values of the weights, the size of the mini-batchg, the number of epochse, the number

of the hidden layers and the size of each hidden layer in order to learn the optimal

features. In the next sections we will describe the most signi�cant points concerning

these parameters, which have been empirically investigated during our research work,

to �nd out the optimal values. Note that a thorough description of these parameters

and other questions can be found in [Hinton, 2010].

3.4.1 Overall organization of the network

RBM's were originally developed using binary visible and hidden units. However,

other types of units such as Gaussian, binomial, and recti�ed linear ones can be used,

for example see [Hinton, 2010; Krizhevsky, 2009; Lee et al., 2009; Norouzi et al.,

2009]. The use of one of these unit types indeed depends on the problem to be solved.

For instance, binary units with Bernouilli statistics work well in the case of handwrit-

ten digits, but they are not appropriate for multi-valued inputs like pixel levels. To

deal with multi-valued data such as the pixel intensities in natural images, Hinton and

70



Salakhutdinov [Hinton and Salakhutdinov, 2006] replaced the binary visible units by

linear units with independent Gaussian noise as �rst suggested by [Freund and Haus-

sler, 1994]. This model has been successfully used in several other works such as [Lee

et al., 2009; Norouzi et al., 2009; Torralba et al., 2008].

Within the framework of stochastic approaches, the �rst question raised by the

model organization concerns the type of unit to use. We have shown that Bernouilli

units are not well suited for image coding. We thus used Gaussian units for the input

layer. However, for the upper layers of the network, binary Bernoulli units can be used.

In this case, the outputs act as an indicator function indicating that a feature is selected

or not for the construction of the internal representation of the image. The neural

analogy corresponds to a neuron switched on in the presence of a speci�c feature in

the visual �eld and off when the feature is absent. The feature is coded by the weights

of the previous layer. It has been shown that Gaussian-Bernoulli RBMs are ef�cient

for gray-scale images modeling, such as speech waves in [Jaitly and Hinton, 2011] and

faces images in [Hinton and Salakhutdinov, 2006].

After preparing and pre-processing the different databases, we used a RBM with

Gaussian visible and Bernoulli hidden units. However, training a Gaussian-Bernoulli

RBM can be expensive, because we need a much greater number of weight updates

than for an equivalent binary RBM. This problem becomes more dif�cult when the

dimensionality of the input image is too large. To tackle this problem, in the present

work we have followed the approach of [Nair and Hinton, 2008] by �rst training the

�rst layer of the DBN as a Gaussian-Bernoulli RBM and then uses its hidden units as

input to higher RBM layers. In other words, the higher layers of the DBNs use RBMs

with Bernoulli visible and hidden units, as pereviously said. Note that the �rst model

parameters are frozen and the conditional probabilities of the �rst hidden unit values

are used to generate the data to train the higher RBM layers. This process is repeated

several times across the RBM layers in order to obtain a sparse representation of the

initial data which will be used as the �nal output.

As previously mentioned, we �rst tested the RBM algorithm on general purpose

natural images and then apply it on images created for the purpose of robot localization.

In this experiment, the structure of the �rst RBM layer is 256� 256. Figure 3.6 (left)

shows 256 global �lters of size 16x16 pixels learned by training an RBM on 100;000

whitened patches that are randomly sampled from Berkeley database. As we expected,
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Figure 3.6:Left: 256 features learned by training the �rst RBM layer on whitened patches
sampled from Berkeley dataset, these features are globally normalized. The training protocol
is similar to the one proposed in [Ranzato et al., 2010] (e= 300,g= 100,h = 0:02, µi = 0:5,
µf = 0:9, andl = 0:0002).Right: 256 features obtained from the same database by [Ranzato
et al., 2010].

these features look like band-pass oriented and localized edge detectors. The extracted

features are quite similar to those obtained by [Ranzato et al., 2010] shown in the same

�gure (right), or to those extracted by Independent Component Analysis (ICA) models

in [Hyvärinen et al., 2001], and to sparse coding algorithms in [Olshausen and Field,

1997; Teh et al., 2003].

A similar experiment was applied to the van Hateren database. In this experiment,

the structure and the training protocol were similar to the Berkeley experiment [Ran-

zato et al., 2010]. Figure 3.7 shows 256 global �lters of size 16x16 pixels learned by

training an RBM on 100;000 whitened patches that are randomly sampled from the

van Hateren database. These features are very close to the ones obtained from the

Berkeley database.

3.4.2 The learning rate

The learning rate parameter,h, determines to what extent the newly acquired informa-

tion will override the old information. Therefore, this parameter plays an important

role for features extraction. In the gradient descent procedure, the learning rate is im-

72



Figure 3.7: 256 features learned by training the �rst RBM layer on whitened patches sampled
from the van Hateren's dataset, these features are globally normalized and obtained using the
same training protocol as in the experiment of Berkeley database (see �gure 3.6).

portant because some high and low values ofh may suppress some of RBM's feature

maps to become always inactive, and in fact dismiss some of features [Norouzi et al.,

2009]. Thus, in this work we have tested a set of different values forh and selected the

one giving the higher number of active features.

Practically, using large values ofh (e.g. 0:05) yielded to increase the reconstruc-

tion error and thus the weights (features extracted from the Berkeley database) have

completely exploded within the �rst few epochs,i.e. the RBM did not learn anything.

Thus, using large values ofh increase the oscillation problem during the adjustments

of the weights1. However, when the value ofh is reduced to 0:02, for instance, the

network does not converge fast within the �rst few epochs as shown in �gure 3.8 where

some features are going to be extracted and appeared with more epochs2.

On the other hand, using very small values ofh will slow down the convergence

process and a lot of epochs are thus required to reach the equilibrium. For example if

we reduced the learning rate from 0:02 to 0:002, the extracted features for both cases

was quite different, as shown in �gure 3.9 after 200 epochs. This �gure shows that

1Oscillation: the repetitive variation, typically in time, of some measure about a central value (often
a point of equilibrium) or between two or more different states as in our case.

2One epoch means a complete iteration through all images in the dataset. Within an epoch we
update the weights after presenting a mini-batch of size 100 selected at random from the training data.
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Figure 3.8: 256 features learned by training the �rst RBM layer on whitened patches from
Berkeley dataset. These features are obtained using:h = 0:02,l = 0:0002,g= 100,e= 5, and
momentums.

the convergence has been almost achieved when the learning rate was 0:02, while a lot

of additional epochs were still required to achieve the convergence for the other case

when the learning rate was 0:002. Another important fact is that, once the convergence

was almost achieved for both cases, the number of extracted features with a learning

rate of 0:02 was greater than the number of extracted features when the learning rate

was 0:002 (see �gure 3.10), where the �rst case has converged after 300 epochs while

the second case has converged after 1000 epochs.

A good way to set the learning rate parameter is to look at a histogram of weight

updates and a histogram of the weights as illustrated in [Hinton, 2010]. The updates

should be about 10� 3 times the weights. This way, we can reset (increase or decrease)

the value of the learning rate.

3.4.3 The size of the mini-batch

Although it is possible to update the weights after estimating the gradient on a single

training case, Hinton [Hinton, 2010] and other researchers [Lee et al., 2009; Norouzi

et al., 2009] have experimentally demonstrated that it is more ef�cient to divide the

training set into small “mini-batches” of 10 to 100 images1. In this case, we adjust the

1A mini-batch is a collection of patches. It usually means the entire training set.
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Figure 3.9: Left: 256 features learned by training the �rst RBM layer on 16x16 whitened
patches sampled from Berkeley dataset. Same conditions as in �gure 3.8, excepte = 200.
Right: 256 features learned using the same conditions, excepth = 0:002.

Figure 3.10:Left: 256 features learned by training the �rst RBM layer on 16x16 whitened
patches sampled from Berkeley dataset. These features are also obtained using the same condi-
tions as in �gure 3.8, excepte= 300. Right: A similar subset of �lters leaned using the same
conditions, excepth = 0:002 ande= 1000.

weights after estimating the total gradient of the mini-batch, which means that we need

to divide the total gradient computed on a mini-batch by the size of the mini-batch (g),
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and thus the weights update procedure in equation 2.54 can be re-written as follows:

wi j  wi j + h � (hv0
i h0

j i � h vn
i hn

j i )=g (3.5)

Usually, the ideal mini-batch size is equal to the number of different classes. Each

mini-batch should contain one example of each class to reduce the sampling error while

estimating the gradient for the whole training set from a single mini-batch [Hinton,

2010]. In this work, we have tried many different values ofg to examine its �nal

impact on the feature extraction. It is noticed that when we use a large mini-batch size,

for instance 200, the extracted features are not so different from those obtained using

a mini-batch of 100, as shown in both experiments, �gure 3.11. The total number of

features is slightly higher wheng= 100, while when we use a small mini-batch, for

instance 10, the RBM algorithm does not learn interesting features after hundred of

epochs as shown in �gure 3.12. Moreover, the convergence was not improved by an

increased number of epochs (e.g. from 200 to 400 epochs) as illustrated in the same

�gure.

Figure 3.11:Left: 256 features learned by training the �rst RBM layer on 16x16 whitened
patches sampled from Berkeley dataset. Similar conditions as in �gure 3.9 (left) are used for
this experiment.Right: 256 �lters extracted using the same conditions, exceptg= 200.

Therefore, the size of the mini-batch also plays an important role in the extraction

of features. Furthermore, it has been shown that this process speeds-up the training

process [Hinton, 2010; Salakhutdinov et al., 2007].
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Figure 3.12:Left: 256 features learned by training the �rst RBM layer on 16x16 whitened
patches sampled from Berkeley dataset. Also, the same conditions as in �gure 3.9 (left) are
used for this experiment, exceptg= 10. Right: The same �lters, but withe= 400 epochs.

3.4.4 The initial values of weights and biases

Several ways can be used to initialize the weights. A possible one is to use small ran-

dom values chosen from a zero-mean Gaussian distribution with a standard deviation,

s, of 0:01. Another way is to use small random values chosen from a uniform distri-

bution. In fact, using larger random values will force the network to converge faster,

which might lead to a worse �nal model.

Since we have proposed to use a Gaussian-Bernoulli RBM model, we have initial-

ized the weights matrix using a Gaussian distribution as follows:

wi j � N(µ;s2) (3.6)

whereµ represents the mean ands2 represents the variance of the Gaussian distribu-

tion.

In this work, we have tested different values of the standard deviation,s (for in-

stance see �gure 3.13). We can see that the convergence with high values ofs is

slightly faster than with smaller values ofs. If we compare the extracted features

shown in �gure 3.13 with each other or even with the features shown in �gure 3.10

(left)(obtained usings = 0:01, they seem quite similar. Thus, in order to be sure that
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the network leads to a good �nal model, it is more appropriate to use a small value of

s like 0:01, as recommended in [Hinton, 2010].

Figure 3.13:Left: 256 features learned by training the �rst RBM layer on 16x16 whitened
patches sampled from Berkeley dataset. Similar conditions as in �gure 3.10 (left) are used,
however,s = 0:5. Right: 256 features learned using the same conditions, excepts = 0:1.

Concerning the initial values of visible and hidden biases, one possible way is to

initialize them all to zero. However, to encourage the sparsity, Hinton [Hinton, 2010]

recommended to start the hidden biases with very large negative values of about� 4 as

we will see later (section 3.4.9).

3.4.5 Momentum

Momentum (µ) is a standard parameter used in many neural network applications.

It is added to speed-up the learning process of a RBM, smoothen the gradients and

avoid getting stuck in local minima. So that, this term, together with the learning rate,

controls the weights update and yield a modi�ed update rule:

wi j  µ� wi j + h � (hv0
i h0

j i � h vn
i hn

j i )=g (3.7)

where the momentum term must be between 0 and 1. More precisely, Hinton and other

researchers have recommended to start with a momentum of 0:5 for the �rst several
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epochs (for example, the �rst �ve epochs) and a momentum of 0:9 for the rest of

epochs [Hinton, 2010; Lee et al., 2008; Norouzi et al., 2009].

In fact, we have also tested different values of this factor. For instance, if we ignore

the effect of this term by using a momentum of 1, the network converges towards a

wrong solution as shown in �gure 3.14. Because whenµ is equal to 1, the effect of

the previous weights (the Left-Hand Side of equation 3.7) will be much higher than

the effect of the gradient (the Right-Hand Side of equation 3.7) since we use a small

learning rate. It means that using high values of momentum also lead to increase the

oscillation in the weights adjustments as in the case of learning rate. Therefore, using

a smaller momentum, like 0:5, for the �rst several epochs, decreases the effect of the

initial weights and let the gradient make more in�uence on the network to converge to

the right solution. After 5 epochs the initial weights become more compatible with the

model (they �t the model) and, in this case, it is possible to increase the momentum

to 0:9, for example, in order to increase the network convergence speed. This way to

proceed ensures the stability of the learning process.

Figure 3.14: 256 features learned by the �rst RBM layer on 16x16 whitened patches sampled
from Berkeley dataset. Similar conditions were used in this experiment as in �gure 3.10 (left),
exceptµi = 1 ande= 10.
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3.4.6 Weight decay

Weight-decay (or weight-cost (l )) is another important factor added to the normal

gradient as shown in equation 3.8. This regularization term penalizes large parameter

values, such as weights, which sometimes happens during the learning process. This

yields the following update rule:

wi j  µ� wi j + h �
��

(hv0
i h0

j i � h vn
i hn

j i )=g
�

� l � wi j
�

(3.8)

In general, the values ofl should be typically ranged from 0:01 to 0:00001. Simi-

larly to previous factors, different values of (l ) have been investigated in this work. For

instance, see the extracted features shown in �gure 3.15 using a weight-decay of 0:02

and 0:002 respectively. This �gure obviously demonstrates two facts: �rstly, when we

use a large value ofl the RBM learns �at features. This is due to the fact that the im-

pact of the weight-cost becomes much higher than the impact of the gradient descent

and thus all weights reach very large negative values. Secondly, when we use a smaller

value, a set of features have emerged. Therefore, a large value ofl forces the network

to have less effect of the gradient descent. In other words, we need to select a value of

l , so that we must make a balance between the two expressions(i.e. (hv0
i h0

j i � h vn
i hn

j i )

and (l � wi j )) of equation 3.8.

It is important to multiply the derivative of the weight-decay by the learning rate.

Otherwise, changes in learning rate change the function that is being optimized rather

than just changing the optimization procedure [Hinton, 2010]. Weight-decay is typi-

cally not applied to the hidden and visible biases because they are less likely to cause

over�tting 1. Also, the biases sometimes need to be quite large.

There are other forms of the weight-decay that can be used to achieve sparsity and

locality in the features. One of them called “L2norm” which is half of the sum of the

squared weights times a coef�cient which is called the weight-decay. Another form

called “L1norm” which is the use of the derivative of the sum of the absolute values

of the weights.L1norm weight-decay often leads to strongly localized receptive �elds,

because it causes many of the weights to become exactly zero whilst allowing few of

1Over�tting occurs when a statistical model describes random error or noise instead of the under-
lying relationship. Over�tting generally occurs when a model is excessively complex,e.g.a model has
too many parameters with respect to the number of observations.
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Figure 3.15:Left: 256 features learned by training the �rst RBM layer on 16x16 whitened
patches sampled from Berkeley dataset. Similar conditions as in �gure 3.10 (left) are used,
exceptl = 0:002.Right: 256 �lters learned using the same conditions, exceptl = 0:02.

them to increase signi�cantly. Moreover, Hinton has mentioned four different reasons

to use these weight-cost terms in an RBM [Hinton, 2010]:

1. It improves the generalization to new data by reducing over�tting to the training

data.

2. It makes the receptive �elds of the hidden units smoother and more interpretable

by shrinking useless weights.

3. It increases the sparsity for the extracted features.

4. It improves the mixing rate of the alternating Gibbs Markov chain. So, with

small weights, the Markov chain mixes more rapidly.

3.4.7 Penalty term

A popular way to minimize the information content in the code is to make it sparse or

low-dimensional. In this context, a vector is called sparse if it contains only a minimum

number of active (non-zero) units. Sparsity estimation (or sparse recovery) is playing

an increasingly important role in statistics and machine learning communities, because
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it simpli�es further tasks like the classi�cation process and it is a useful way to reduce

the dimensionality of data with neural networks [Hinton and Salakhutdinov, 2006].

Usually the model parameters are trained through the maximization of the log-

likelihood of the reconstructed data. This maximization problem corresponds to learn-

ing wi j , bi , andc j to minimize the energy of states drawn from the data distribution.

In the meantime, the hidden unit activations have to be sparse. To achieve that goal,

it is possible to apply “L1norm” regularization, however, it is expensive because the

Gaussian-Bernoulli RBM representation uses stochastic binary variables. Hence, sev-

eral other methods have recently been developed [Lee et al., 2008, 2009; Mairal et al.,

2008; Olshausen and Field, 1996, 1997] to achieve the sparsity goal for RBMs. Their

methods rely on adding a penalty or regularization term to improve the sparsity of the

data representation. For instance, [Lee et al., 2008] proposed to couple the maximum

likelihood of contrastive divergence (CD) with a regularization term that penalizes

non-selective units. Similarly, [Nair and Hinton, 2009] used the cross-entropy mea-

sure between the actual and desired distributions to compute the penalty. In more

details, in the latter method [Nair and Hinton, 2009], the additional update is a penalty

proportional toq � p, wherep is the “sparsity target”, which represents the desired

probability that a unit is active, andq is the penalty term which encourages the actual

probability of being active. As illustrated in [Hinton, 2010], the sparsity of a hidden

unit is therefore computed by a process of averaging its activation across training as

follows:

qt = l � qt� 1 + ( 1� l ) � qcurrent (3.9)

wherel represents the decay-rate which can be between 0:9 and 0:99, qcurrent is the

average hidden activation probability that a unit is active for the current mini-batch.

The cross entropy between the desired and actual activation distributions is used as

a penalty measure as follows:

cost= � plogq� (1� p)log(1� q) (3.10)

where the sparsity target,p, can be between 0:01 and 0:1.

This has the derivative ofq� p and is scaled by a meta-parameter called “sparsity-

cost”. So, sparsity adds three meta-parameters to the model which are: the sparsity
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targetp, the decay ratel , and the sparsity cost,cost. When we add the sparsity penalty

to the learning rule, the new weight update formula becomes:

wi j  µ� wi j + h �
��

(hv0
i h0

j i � h vn
i hn

j i )=g
�

� cost� (pt � q)
�

(3.11)

Using this regularization term, we have obtained the features shown in �gure 3.16.

They are more localized than the features shown in �gure 3.10 (left). It turns out that

adding the penalty term has successfully encouraged to achieve sparse activities for

the hidden units. Figure 3.17 shows the 128 unit outputs of the corresponding network

for 300 samples of the Berkeley database. It shows graphically that most of the input

images are represented by a few active units (spatial sparsity) and that each unit is

rarely active over samples (temporal sparsity).

Figure 3.16: 256 features learned by training the �rst RBM layer on 16x16 whitened patches
sampled from Berkeley dataset. Similar conditions as in �gure 3.10 (left) are also used, except
the penalty term was included. Thus, we usedp = 0:02 andl = 0:99.

The other method proposed in [Lee et al., 2008] and mentioned above introduces a

regularizer term that makes the average hidden variable activation low over the entire

training examples. Thus the activations of the model neurons become also sparse.

In fact, this method is similar to the one used in other models [Olshausen and Field,

1996]. Thus, as illustrated in [Lee et al., 2008], given a training setf v(1); : : : ;v(m)g
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Figure 3.17: An exemple of the spatial and temporal sparsities achieved using a sparse network
obtained from the Berkeley database. Same parameter settings as in �gure 3.16.l for both
weight and hidden biases was set to 0:015.

includingm examples, we pose the following optimization problem:

minimizef wi j ;bi ;c jg �
m

å
l= 1

log
�

å
h

P(v(l );h(l ))
�

+ l
n

å
j= 1

�
�
�
� p�

1
m

m

å
l= 1

E[h(l )
j jv(l )]

�
�
�
�

2

(3.12)

whereE[:] is the conditional expectation given the data, once againp is the sparsity

target controlling the sparseness of the hidden unitsh j , and l is the sparsity cost.

Thus, after involving this regularization in the CD learning algorithm, the gradient of

the sparsity regularization term over the parameters (weightswi j and the hidden biases
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c j ) can be written as follows:

wi j  µ� wi j + h �
��

(hv0
i h0

j i � h vn
i hn

j i )=g
�

� l � ( p�
1
m

m

å
l= 1

p(l )
j ) (3.13)

c j  c j + h[hh0
j i data� h hn

j i recon] � l � ( p�
1
m

m

å
l= 1

p(l )
j ) (3.14)

wherem, in this case,represents the size of the mini-batch andp(l )
j , s(å i v

(l )
i wi j + c j ).

It has been shown that the sparse RBM learning algorithm can capture interest-

ing high-order features from natural image statistics [Lee et al., 2008]. The hope is

that such a learning algorithm remains capable to capture higher-order features from

various databases, such as a database created for the purpose of robot localization.

The previous experiments have been achieved using the conventional Gaussian-

Bernoulli RBM learning algorithm, where the question of sparsity has been included in

this algorithm using a penalty term as illustrated earlier. We have also implemented the

sparse RBM which is developed in [Lee et al., 2008]. However, we have not observed

a big difference in features extraction using both learning algorithms (see for instance

�gure 3.18). This similarity of features for locality and sparsity con�rms that the

penalty term in the regular RBM and the sparsity target in the sparse RBM can capture

sparse codes from the initial images. Therefore, using any of them leads to extract

sparse features.

3.4.8 The number of hidden units

Usually, three different situations are distinguished in the literature for the size of the

hidden layer : less than the size of the input layer (under-completeness), equal (com-

pleteness) or greater (over-completeness). These situations can be related to the feature

set of ICA that is, by construction, always complete. The question of using over-

complete feature sets has been �rst raised in [Olshausen and Field, 1997]. It seems

that in the visual system, working with an over-complete feature alphabet makes the

coding more adaptive to natural images variability. Thus, for a particular image, the

�nal coding is more precise, even if the over-completeness reintroduces a kind of re-

dundancy.
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Figure 3.18: Left: 256 features learned by training the regular RBM on whitened image
patches (16x16) sampled from Berkeley dataset, these �lters are obtained using the same con-
ditions as in �gure 3.16.Right: The corresponding features learned by training the sparse
RBM on the same whitened image patches. In this case, we also used the same conditions,
exceptp = 0:02 andl = 0:02.

In fact, the optimal size of the hidden layer depends on several things: the size

of the visible layer, the target to achieve, and the redundancy of the patches in the

training set. More precisely, the size of the hidden layer should be compatible with

the size of the visible layer. However, if the sparsity target is very small, more hidden

units could be used. Contrarily, if the training cases are highly redundant, as they

typically will be for very big training sets, fewer units are necessary [Hinton, 2010]

for two reasons: �rst, it may be quite reasonable to use less output units if in 100;000

training images each image is repeated for instance 1;000 times. Otherwise it's time-

consuming. Second, when you feed similar images to the network, the use of many

parameters would not change the results as shown in �gure 3.19.

In this work, since our training set is highly redundant, the size of the �rst hidden

layer could either be equivalent to the size of the visible layer or reduced to half (more

or less) of the visible layer size. The same scenario can be used for higher hidden

layers. This proposition has been investigated using different sizes of the hidden layer.

For instance, the features shown in �gure 3.9 (left) were obtained using an equivalent

visible and hidden layers size (256� 256 units), while �gure 3.19 (top) shows features

obtained using an under-complete hidden layer (256� 128 units) and (bottom) shows

features obtained using an over-complete hidden layer (256� 512 units). These ex-

periments show that when we reduce the size of the hidden layer, the network extracts
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similar features, but the matrix is fully used, while when we increase the size of the

hidden layer, a lot of the features were �at. However, these facts cannot be generalized

to other databases.

Figure 3.19:Top: 128 features learned by training the �rst RBM layer on 16x16 whitened
patches sampled from Berkeley dataset. Same conditions were used as in �gure 3.10 (left).
Bottom: 512 features learned using the same conditions.

3.4.9 Effect of normalization on the feature space

In the previous sections, we have seen that several parameters (for example the spar-

sity term, the number of hidden units, the mini-batch size,etc.) play an important role

in obtaining interesting features. In this section we investigate the effect of whiten-

ing and normalization on the detection of features using a RBM learning algorithm.

These factors, orthogonal to the learning algorithm itself, can have a large impact on

87



performances.

For this task, we have conducted extensive experiments using datasets of random

patches sampled from van Hateren and Berkeley natural image databases respectively.

The random patches extracted from these databases were normalized or whitened in

two separate pre-processes. In both experiments, an over-complete structure (256�

512) of the �rst RBM layer was used.

Figure 3.20: Learned over-complete natural image bases.Left: 512 features learned by training
the �rst RBM layer on normalized image patches (16x16) sampled from van Hateren's dataset.
Right: The corresponding features learned by training the �rst RBM layer on whitened image
patches (16x16) sampled from the same database. For both experiments, the training protocol
is similar to the one proposed in [Lee et al., 2008] (e = 300, g = 200, h = 0:02, µi = 0:5,
µf = 0:9, p = 0:02, l = 0:02).

Figure 3.20 (left) shows features extracted using the locally normalized data, while

�gure 3.20 (right) shows features extracted using the whitened one. It is obvious

that the features extracted from the whitened data are more localized. Data whiten-

ing clearly changes the characteristics of the learned bases. One explanation could be

that the second order correlations are linked to the presence of low frequencies in the
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images. If the whitening algorithm removes these correlations in the original data set,

it leads to whitened data covering only high spatial frequencies. The RBM algorithm

in this case �nds only high frequency features.

It is also obvious that the features obtained from the whitened dataset are more

localized compared with the previous experiments that were also conducted using the

whitened data. This is due to the fact that the hidden biases, in this case, are initialized

with very large negative values of� 4.

We have also applied our learning algorithm on the Berkeley database. Similarly,

we have created two datasets (normalized and whitened data) from this database. Each

dataset contains 100;000 of 16x16 random patches. The features shown in �gure 3.21

are quite similar to those obtained from the van Hateren database. However, the num-

ber of features extracted from van Hateren database is more than the number of features

learned from the Berkeley one. It could mean that the natural images, in the case of van

Hateren database, contain more interesting structures, edges, and orientation contours.

Several other experiments have been conducted using both complete and under-

complete RBM structures. The main goal for doing these experiments is to demon-

strate that an under-complete RBM structure can also capture interesting high-order

features using the locally normalized data.

Two experiments with a complete structure (256� 256) have been conducted for

van Hateren and Berkeley databases. As shown in �gure 3.22, the RBM learning

algorithm extracts features similar to those obtained using an over-complete structure.

They still cover a larger range of spatial frequencies. There seems to be no difference

in the shape of the features from the two databases. However the number of almost �at

features (features that have not converged or that will take a very long time to appear)

is greater for the Berkeley database.

Similarly, with an under-complete structure, as shown in �gure 3.23, the learning

algorithm remains able to extract interesting features covering a large range of spatial

frequencies as in the cases of complete and over-complete RBM structures. Once

again, we observe that the number of features extracted from the van Hateren database

is greater.

In general, the features learned from the normalization data are totally different

from the ones learned with whitened data. They remain sparse but cover a broader

spectrum of spatial frequencies. An interesting observation is that they look closer to
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Figure 3.21: Learned over-complete natural image bases.Left: 512 features learned by training
the �rst RBM layer on normalized image patches (16x16) sampled from the Berkeley dataset.
Right: The corresponding features learned by training the �rst RBM layer on whitened image
patches (16x16) sampled from the same database. For both experiments, the same conditions
as in �gure 3.20 were used.

Figure 3.22: Learned complete natural image bases.Left: 256 features learned by training
the �rst RBM layer on normalized image patches (16x16) sampled from van Hateren dataset.
Right: The corresponding features learned from Berkeley database. For both experiments,
similar conditions as in �gure 3.20 were also used.
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Figure 3.23: Learned under-complete natural image bases.Left: 128 �lters learned by training
the �rst RBM layer on normalized image patches (16x16) sampled from van Hateren dataset,
these features are globally normalized.Right: The corresponding features learned from Berke-
ley database. For both experiments, similar conditions as in �gure 3.20 were also used.

the ones obtained with convolutional networks [Lee et al., 2009] for which no whiten-

ing is applied to the initial dataset. We can mention that these differences between

normalized and whitened data have already been observed in [Krizhevsky, 2009] and

related to better performances for normalized data on CIFAR-10 in an object recogni-

tion task.

To try to understand more deeply why features obtained from whitened or nor-

malized patches are different, we computed the mean Fourier spectral density of the

patches in the two conditions and we compared them to the same function for the orig-

inal patches. We plotted the mean of the Log Fourier power spectral density of all the

patches according to the Log of the frequencies shown in �gure 3.24. The scale law

in 1=f a characteristic of natural images is approximatively veri�ed as expected for the

initial patches. For the local normalization it is also conserved (the shift between the

two curves is only due to a multiplicative difference in the signal amplitude between

the original and the locally normalized patches). It means that the frequency compo-

sition of the locally normalized images differs from the initial one only by a constant

factor. The relative frequency composition is the same as in initial images.

On the contrary, whitening completely abolishes this dependency of the signal en-

ergy with frequency. This means that whitening equalizes the role of each frequency

in the composition of the images1. This suggests a relationship between the scale

law of natural images and the �rst two moments of the statistics of these images. It

is interesting to underline that we have here a manifestation of the link between the

statistical properties of an image and its structural properties (in terms of spatial fre-

quencies). This link is well illustrated by the Wiener-Khintchine theorem and the

1That is an expected effect since whitening can be related to white noise, a noise in which all the
frequencies are equally represented
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Figure 3.24: The Log-Log representation of the mean Fourier power spectrum for image
patches with and without normalization. 10000 16x16 patches have been extracted from the
Berkeley database and then normalized. The mean of the Log of the Fourier transform of each
of these patches has been computed and plotted according to the Log of the spatial frequency.

relationship between the autocorrelation function of the image and its power spectral

density. Concerning the extracted features, these observations allow to deduce that an

equal representation (in terms of amplitude) of all the frequencies in the initial signal

gives rise to an over-representation of high frequencies in the obtained features. This

could be due to the fact that, in whitened data, the energy contained in each frequency

band increases with the frequency while it is constant in initial or normalized images.

However the result depends on the database used and consequently on the spatial

frequencies contained in the initial patches. The fact that local normalization preserves

(to a constant value) the same frequency composition as in initial data tends to prove

that normalization does not entirely remove second-order correlations. Olshausen [Ol-

shausen and Field, 1997] showed that, with whitening, ICA mainly retains �lters in a

narrow range of spatial frequencies. Low spatial frequencies are under-represented in

the obtained result. This is clearly what we obtain here with whitening but not with

normalization, which tends to save a broader range of spatial frequencies.

We are going to see in the next two chapters how the �nal database used to test

our SPR model behaves according to these two normalization methods and how these

changes in spatial frequency composition affect classi�cation performances.
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We can argue that low frequency dependencies are related to statistical correlation

between neighbor pixels. Thus, the suppression of these second order correlations

would suppress these low frequencies in the whitened patches. The resulting features

set is expected to contain a larger number of low frequency less localized features,

what is actually observed.

3.5 Summary

In this chapter, we have �rst conducted experiments on different datasets and we have

shown that our RBM algorithm captures high-order interesting features similar to those

obtained by the state-of-the-art. This underlines that the algorithm has been success-

fully implemented. We have seen that the appropriate values of these parameters are

typically found by trial and error. This task is very tricky and con�rmed that the

stochastic gradient learning of an RBM can easily diverge, if the associated parame-

ters are not chosen carefully [Fischer and Igel, 2010; Schulz et al., 2010]. Our �ndings

are roughly in accordance with those proposed in the most recent literature [Hinton,

2010]. Finally, we have seen that data normalization signi�cantly affects the detection

of features by extracting higher semantic level features than whitening.
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Chapter 4

Model presentation and properties

4.1 Introduction

In the preceding chapters we have �rst seen the main approaches to SPR and we have

focused on a new way of building a feature space appropriate for SPR, the use of Deep

Belief Networks (DBNs). In the previous chapter we have presented a thorough set of

experiments designed to precise the conditions for obtaining this appropriate feature

space.

In this chapter we are going to put at work all of these observation in a model able

to perform SPR. We will �rst present the overall organization of the proposed model

and then the different conditions of use of this model in the context of SPR, including

image pre-processing and the use of tiny images. We will study what kind of features

we obtain in these speci�c conditions and how they can be used for image classi�-

cation. Thus, two main questions will be raised here : what kind of features will be

extracted from tiny images and how the feature space is affected by the normalization

procedure in this speci�c case? The present chapter focuses on describing these ap-

proaches and their characteristics in the context of image coding. We assume that the

use of this coding method (based on the assumption that sparse features are extracted)

will increase the linear separability of the data representation, so that a simple classi�er

like softmax regression in the feature space will suf�ce to determine the robot place

according to a given image.
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4.2 Databases description

However, before describing the organization and study the properties of the model, we

are going to present the databases used for the experiments of this chapter. In particular

we will here discuss the way these databases are transformed in order to make them

suitable for image classi�cation and SPR.

4.2.1 The WILD database

The RBM algorithms seen in the previous chapter used random patches sampled from

natural images. We are interested to investigate our RBM model using small tiny

images. In this context, there is a difference between object and scene recognition.

One major question is, for object recognition, the role of focusing. It seems obvious

that when the objects are aligned (focused at the center of the images) the feature set

build by a DBN is different from the one with unaligned objects. To investigate the

effects of the alignment technique on the detection of features we used a new database

called “Labeled Faces in the Wild database” (LFW). Contrarily to previous ones, this

database is designed for classi�cation but it is simpler than NORB or CIFAR-10. It

has been already used in the literature in such a way that we can compare our results

with previous ones and is suitable, as we have said, for studying the effect of object

alignment or focusing.

The LFW dataset is a collection of 250x250 color faces designed for studying the

problem of unconstrained face recognition [Gary et al., 2007]. This database contains

13;233 images of 5;749 people collected from the web [Gary et al., 2007]1. An align-

ment technique is used to normalize the faces. As a result, the noses, eyes, eyebrows,

mouths, and head limits become aligned.

For the centered faces, background surrounding each face is not useful. Thus, as

proposed in [Nair and Hinton, 2010], we have eliminated the background information

using a 144x144 window from the center of each face, as if the face would have been

at the center of an attentional window.
1LFW dataset is available at: http://vis-www.cs.umass.edu/lfw/
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4.2.2 The COLD database

The COLD database (COsy Localization Database) was originally developed by [Ullah

et al., 2007] for the purpose of robot localization1. It is the main database on which we

have chosen to validate our model. The main reason is that it has been used to produce

what can be considered as the state-of-the-art results in SPR. This is naturally to these

results we want to compare the results obtained by our model.

Figure 4.1: Map of Freiburg laboratory, portion B.

This database is a collection of labeled 640x480 images (137;069 different images)

acquired at 5 frames/sec during a robot exploration of three different laboratories in

Freiburg, Ljubljana, and Saarbruecken. Two sets of paths called standard A and B have

been acquired under different illumination conditions (sunny, cloudy and night), and

for each condition, one path consists in the visit of different rooms (corridors, printer

areas, one person of�ce, two persons of�ce, toilets,etc.), for detail see for instance

1COLD Database is available at: http://cogvis.nada.kth.se/COLD/
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the map of Freiburg laboratory for portion B in �gure 4.1. These walks across the

laboratories are repeated several times.

Although color images have been recorded during the exploration, only gray-level

images were used since previous works have demonstrated that, in the case of the

COLD database, colors are weakly informative and made the system more illumination

dependent [Ullah et al., 2007]. This fact is illustrated in �gure 4.2.

Figure 4.2: First row: color images acquired under three different illumination conditions
(sunny, cloudy, and night) respectively.Second row: the corresponding gray-scale images. It
is obvious that the illumination variations reduced in the case of gray images.

4.3 Model initial steps - Unsupervised feature learning

Figure 4.3 shows the general scheme of the proposed approach. It involves three main

phases : i/ image coding, ii/ unsupervised feature space elaboration, and iii/ supervised

places learning. We hope that the properties of separability of the feature space will

allow good classi�cation performances.

Figure 4.4 illustrates in detail the phases of the proposed model. The �rst phase

consists in the conversion of color to gray-scale images, reducing them to small image

patches, and then normalizing them. The second phase is the coding of the input im-

ages using features. It consists in the extraction through several layers of RBMs form-

ing a DBN of an alphabet of features able to optimally code the images and suitable

for their classi�cation. The third phase is the classi�cation itself, which discriminates

between the robot possible places.
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Figure 4.3: General framework of the proposed visual place recognition system. The arrows
show the direction of the data �ow between the different phases.

Figure 4.4: The different phases of the proposed model to achieve SPR for autonomous sys-
tems.
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4.3.1 Pre-processing

As shown in �gure 4.4, data pre-processing is the �rst phase of our algorithm. It

involves three inner functions (or steps): image color conversion, image reduction, and

image normalization. These three stages are illustrated in the following sections.

4.3.1.1 Use of tiny images?

The typical input dimension for a DBN is approximately 1000 units (e.g. 30x30 pix-

els). Dealing with smaller patches could make the model unable to extract interesting

features. Using larger patches can be extremely time-consuming during feature learn-

ing. Additionally the multiplication of the connexion weights acts negatively on the

convergence of the CD algorithm. The question is therefore how to scale the size of

realistic images (e.g.300x300 pixels) to make them appropriate for DBNs?

Three solutions can be envisioned. The �rst one is to select random patches from

each image as done in [Ranzato et al., 2010], the second is the use of convolutional

architectures, as proposed in [Lee et al., 2009], and the last one is to reduce the size

of each image to a tiny image as proposed in [Torralba et al., 2008]. The �rst solu-

tion extracts local features and the characterization of an image using these features

can only be made using BoWs approaches we wanted to avoid. The second solution

shows the same limitations as the �rst one and additionally gives raise to extensive

computations that are only tractable on GPU architectures. Features extraction using

random patches is irrespective of the spatial structures of each image [Norouzi et al.,

2009]. In the case of structured scenes like the ones used in SPR these structures bear

an interesting information.

Besides, tiny images have been successfully used ([Torralba et al., 2008]) for clas-

sifying and retrieving images from the 80-million images database developed at MIT
1. Torralba showed that the use of tiny images combined with a DBN approach led to

code each image by a small binary vector de�ning the elements of a feature alphabet

that can be used to optimally de�ne the considered image. The binary vector acts as

a bar-code while the alphabet of features is computed only once from a representative

set of images. The power of this approach is well illustrated by the fact that a rela-

tively small binary vector (like the ones we use as the output of our DBN structure)

1The 80-million database is available at : http://groups.csail.mit.edu/vision/TinyImages/
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An nonaligned face

An aligned face

Figure 4.5: An example of non-aligned and aligned faces: the �rst row represents an unaligned
face, where the �rst image is the original face of size of 255x255, the second one is the centered
face of size of 144x144, and the �nal one is the reduced face of size of 32x32. The second row
represents the corresponding aligned face [Gary et al., 2007].

largely exceeds the number of images that have to be coded even in a huge database

(2256 � 1075). So, for all these reasons we have chosen image reduction.

Thus for the WILD database, the images were reduced to 32x32 pixels for the

aligned and non-aligned (original faces) images as shown in �gure 4.5.

For the COLD database they were reduced to 32x24 pixels (�gure 4.6) to approxi-

mately save the aspect ratio of the initial images (640x480). As for the WILD database,

after this reduction, the tiny images are still fully recognizable as shown in the same

�gure. The �nal set of tiny gray images (a new database called tiny-gray-COLD) will

therefore be used as input for the normalization algorithms.

4.3.1.2 Image conversion

Although color images have been recorded during the exploration, only gray images

are used according to [Ullah et al., 2007]. Therefore, the whole images are converted
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Figure 4.6: Samples of the initial COLD DB. The corresponding 32x24 tiny images are dis-
played bottom right. One can see that, despite the size reduction, the small images remain fully
recognizable.

from colors to gray-scale using the following linear transformation function:

Y = ( 0:299� R)+ ( 0:587� G)+ ( 0:114� B) (4.1)

Thus, the �rst two functions of the pre-processing phase, gray-scale conversion

and size reduction, are applied to the whole images. A proposed �owchart is shown in

�gure 4.7 to perform these functions.

As explained in the previous chapter, data can be whitened or locally normalized.

However, in the previous chapter we investigated the effect of the two methods on

small random patches extracted from large images. Here we will consider the effects

of these methods on reduced images. Before seeing these effects on the classi�cation

results in the next chapter, we will study them here on the feature extraction.
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Figure 4.7: A �owchart of the �rst step of pre-processing phase: Image conversion and reduc-
tion. Note that the parameterss andC denote the size of the database and the image counter
respectively.

4.3.2 Unsupervised features extraction

4.3.2.1 WILD database

Focusing We have tested our model on aligned and non-aligned faces databases. Af-

ter gray-scale conversion and image reduction, whitened tiny images from the WILD

database have been used as input for training the RBM algorithm. We have tested �rst

a complete structure. Thus the �rst RBM layer was 1024� 1024 as the images have

been reduced to 32x32 pixels.

Figure 4.8 shows the most interesting features extracted from respectively the non-

aligned faces database (left) and the aligned one (middle). These features have been

selected as the ones having the lowest entropy among all the 1024 features obtained

in both experiments. These results are quite similar to the ones published by [Nair
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and Hinton, 2010] as shown on the same �gure 4.8 (right). The only difference is that

the authors in [Nair and Hinton, 2010] used color images as input to the RBM. The

aligned database leads to features representing faces or parts of faces (like eyes, mouth

or noses) as well in our case as in [Nair and Hinton, 2010].

Figure 4.8:Left: 64 selected �lters among 1024 learned by training a RBM layer on 32x32
whitened image patches sampled from the non aligned face database.Middle: 64 selected
�lters learned by training a RBM layer on 32x32 whitened image patches sampled from aligned
faces.Right: A subset of features extracted from the same database by [Nair and Hinton, 2010]
for comparison.

The features extracted from the non-aligned database are more localized. They are

very peaked and include no semantic details about the nature of the objects although

the database is only made of faces.

Completeness Another important point is that a large number of features did not

converge to a signi�cant pattern even after extensive computation. Contrarily to what

happened with the van Hateren and Berkeley databases for which the number of ex-

tracted features increased with the number of hidden units, it was not here possible

to obtain the same result. We have also tried other experiments using over-complete

structures (1024� 4096), but it does not show any improvement in the extracted fea-

tures with a much greater computational load.

Thus, it could be interesting to investigate the RBM algorithm ability to extract

similar features, reducing the number of hidden units. To do so, an under-complete

structure of 1024� 256 has been investigated using the aligned database, as shown in

�gure 4.9.
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Figure 4.9: 256 features learned by an RBM layer on 32x32 whitened image patches sampled
from the aligned face database. The same training protocol as in previous experiments has been
used.

We can observe that the features extracted using an under-complete structure are

similar to the most signi�cant of those extracted using a complete structure. The lack

of improvement using a more important number of hidden units suggests to use such

under-complete structure for the �nal classi�cation. We will see later if this result is

con�rmed with the COLD database.

Normalization The question of whitening impact has also been investigated on the

LFW database as we have done on the van Hateren and Berkeley databases. Two

experiments with aligned and non-aligned LFW normalized image patches gave the

features shown in �gures 4.10 and 4.11 respectively. Note that, in this case, a complete

RBM structure was used. Two observations can be made : �rst, all the features gave

signi�cant patterns and second, the obtained features seem to cover a broader range of

spatial frequencies especially in the case of the non aligned database. Thus the result

seems to be different from the one obtained with whitened data and shown before

(�gure 4.9).

Such features seem to be more promising for reconstructing original or new faces.

We can close up this result with the one published years ago [Turk and Pentland, 1991]

showing that with a face database, the principal axes of a PCA correspond to ”eigen-
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Figure 4.10: 1024 �lters learned by training the �rst RBM layer on 32x32 normalized image
patches sampled from the aligned face database. The training protocol is similar to the one
proposed in [Nair and Hinton, 2010] (e = 300, g= 100, h = 0:02, µi = 0:5, µf = 0:9, and
l = 0:0002).

faces”. Otherwise stated, the �rst eigen-vectors of the PCA correspond to the main

shapes of faces from which any particular face can be reconstructed. We have here an

interesting parallel with PCA and linear methods. Instead of extracting the decorrelated

characteristics of an input signal or even the independent components on the basis of

linear transforms, RBMs extract much richer and numerous statistically independent

components from a similar database.

However, these results do not show the difference we have observed with whitened

data between aligned and non aligned face images. Although, in whitened data, the

features obtained with the aligned faces consist in parts of faces and are rarely ”eigen-

faces”, with normalized data, the features seem to code for larger structures like the

structures of the whole faces. To summarize, the normalized data produces more fea-

tures as well in the case of non-aligned as aligned faces. These features seem to repre-

sent high-level semantic parts of the images and more frequently ”eigen-faces” [Turk
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Figure 4.11: 1024 �lters learned by training the �rst RBM layer on 32x32 normalized image
patches sampled from the non-aligned face database. These features have been obtained using
the same training protocol as in the previous experiment.

and Pentland, 1991] in aligned images than in non-aligned images.

Additionally, an under-complete RBM extracts similar features as shown in �gure

4.12. However in this case the variability of the features is less than for complete

structures.

4.3.2.2 COLD database - Final validation

Low level features and Normalization We �nally performed the same experiments

on the tiny-COLD database which is our reference database. In these experiments, with

a learning rate of 0:02 as in previous experiments, the network converged very fast but

the obtained solutions are not optimal. Consequently, we have reduced the learning

rate to 0:002. One explanation could be that, in the case of the COLD database, the

images are highly redundant and neighbor images in time are similar. The network

could need more time to focus on the small details distinguishing one image to the
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Figure 4.12: Learned under-complete natural faces bases. 256 features learned by an RBM
layer on 32x32 normalized image patches sampled from the aligned face database. In this
experiment, same protocol used as previous ones.

others. Using a smaller learning rate will slow down the convergence process but it

allows the network to converge to a better solution (i.e., the network extracts more

interesting features). It has also been shown that when modeling real-valued Gaussian

visible units, training the �rst RBM layer of features typically requires a much smaller

learning rate to avoid oscillations [Salakhutdinov and Hinton, 2009]. But we observed

this effect only on the COLD database.

The features shown in �gure 4.13 have been extracted by training the �rst RBM

layer on 137;069 whitened image patches (32x24 pixels) sampled from the COLD

database. Some of them represent parts of the corridor, which is over-represented in

the database. They correspond to long sequences of images quite similar during the

robot exploration. Some others are localized and correspond to small parts of the initial

views, like edges and corners, that can be identi�ed as room elements (i.e. they are not

speci�c of a given room).

The features shown in �gure 4.14 have been obtained using the normalized data. As

previously observed for the other databases, the obtained features look very different.

Parts of rooms are much more represented than for the whitened database and it seems

that the range of spatial frequencies covered by the features is much broader con�rming
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Figure 4.13: 256 �lters obtained by training a �rst RBM layer on 32x24 whitened image
patches sampled from the COLD database. The training protocol is similar to the one proposed
in [Krizhevsky, 2010] (e= 100,g= 100,h = 0:002,l = 0:0002,µi = 0:5, andµf = 0:9).

Figure 4.14: The 256 �lters obtained by training the �rst RBM layer on 32x24 normalized im-
age patches sampled from the COLD database. The training protocol is similar to the previous
experiment.

what has been already observed in other parts of this work.
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Figure 4.15: The second-level features extracted from the whitened tiny-COLD data-base. The
�gure shows the three most prominent �rst level features used in the construction of each high-
level feature. The pattern for this second level feature is a linear combination of the �rst one
weighted by the �rst layer connection weights.

Upper layers In order to understand how these low level features are used to form

higher level representations in the upper layer of the DBN we have performed a simi-

lar computation as in [Lee et al., 2008]. �gures 4.15 and 4.16 show the 128 high level

features (�rst left patch in each column) formed with the linear combination of fea-

tures in the preceding layer. The combination of these initial features in higher RBM

layers correspond or partially correspond to larger structures, more characteristics of

the different rooms (�gures 4.15 and 4.16).

However, the high level feature space obtained with locally normalized data shows
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Figure 4.16: The second-level features extracted from the normalized tiny-COLD database.
The �gure shows the three most prominent �rst level features used in the construction of each
high-level feature. The pattern for this second level feature is a linear combination of the �rst
one weighted by the �rst layer connection weights.

patterns that can be more easily related to room structures than those from whitened

data.

The obtained codes in the different conditions of normalization were used directly

as the �nal input vector of the classi�cation process that we will study in the next

chapter.

110



4.4 Summary

After the relevant works have already been presented and discussed in the previous

chapter, in this chapter we have focused on some speci�c characteristics of our model

for SPR with an emphasis to the following points:

� The use of tiny images.

� The differences in the obtained features between whitening and local normaliza-

tion.

Image conversion and normalization This chapter has provided a detailed descrip-

tion of the proposed model stages. In particular, we �rst presented the different func-

tions (image color conversion, image reduction, and image normalization) required to

pre-process images. On the other hand, we have noted that without any initial correc-

tion (without whitening and without local normalization of brightness and illumina-

tion) of the patches, the RBM algorithm converges to a wrong solution. A normaliza-

tion of any kind of the initial patches is necessary for a RBM to get localized features.

Then, the second part of these experiments have focused on studying the �nal im-

pact of whitening and normalization on features extraction. We have seen that data

whitening encourages the RBM algorithm to learn very localized features, while data

normalization forces the RBM algorithm to converge toward features that cover a larger

spatial frequency spectrum and especially the low frequencies able to capture the over-

all organization of the scene.

Use of tiny images We have proposed to use tiny images instead of image patches

that would have required to use BoWs approaches and we have shown that DBNs can

be successfully used in this case to extract sparse ef�cient features. Working with

size-reduced images seems indeed simpler than BoWs approaches.

Sparse code A sparse code makes the data linearly separable in the feature space

and thus allows to use a simple linear classi�er, like softmax regression, to achieve an

accurate and rapid SPR. As a consequence, we proposed to use RBM approaches to

extract a set of independent features that can be used in image coding. We assumed
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that these features must be sparsely represented and thus they can be used to create a

linear separable code in the feature space. This process can be repeated several times

until the CD learning algorithm converges towards a sparse representation of the initial

images.

Linear separability If this assumption is true, a simple classi�er is then suf�cient

to determine the robot place according to the given input image. To investigate this

hypothesis, we proposed to test the classi�cation phase �rst using a linear classi�er,

like softmax regression, and then using a nonlinear classi�er, like SVM. The hope is

that DBN computes a linear separable signature for the initial data. These questions

will be studied in the next chapter.

Completeness and network structure Finally, our RBM learning algorithm extracts

interesting features in the cases of over-complete, complete, and under-complete struc-

tures. This allows us to use an under-complete structures of DBNs to speed-up the

learning process and thus simpli�es the classi�cation process. Besides, DBNs perform

non-linear dimensionality reduction and they can learn short binary codes that allow

very fast retrieval of documents or images [Hinton and Salakhutdinov, 2006; Salakhut-

dinov and Hinton, 2007]. More precisely, the high-dimensional data can be converted

to low-dimensional codes by training a deep belief network. This reduction speeds

up the classi�cation process. It has been formally demonstrated that this reduction

works much better than principal components analysis (PCA) as a tool to reduce the

dimensionality of data [Salakhutdinov and Hinton, 2007].

Alignment We have also considered the question of the effect of focusing the gaze

of the system towards a region of interest through a study of the feature extracted from

an aligned and a non aligned face database. As expected, focus the image on a speci�c

class of objects allows the system to extract more semantically relevant features than

when the images are not centered on the object to be considered. However, it could

seem contradictory with the view-based scene recognition approach we have adopted

since focusing on objects could require to recognize them before. We just want to

mention the numerous recent works on attentional focalization on proto-objects or re-

gion of interest [Walther and Koch, 2006] that open the vicious circle : to recognize an
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object, it is required to center it in the visual �eld and, in the meantime, to center it, it

must have been recognized before.

The COLD database is obviously uncentered. So we would wait for unspeci�c

features with a low semantic level. This is not exactly the case due to the way the

robots acquire the images : for example in corridors, the images are more centered

due to the high level of constraints in the movements of the robots and the repetitive

nature of the images. In this case, the extracted features will be more semantically

signi�cant. If a robotic system is endowed with a mechanism that attracts its gaze to

speci�c views, it will have an over-representation of these view in its dataset and these

views will be learned as independent features as in natural systems (e.g. the existence

of speci�c cells in the infero-temporal cortex of mammals).
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Chapter 5

Vision-based classi�cation: Supervised

learning of robot places

5.1 Introduction

In the present chapter, we want to gather all the observations we have made in the pre-

vious chapters and the organization we have developed to process the COLD database.

We will study here the classi�cation abilities of the high level representation that can

be obtained from tiny images. Therefore, this chapter focuses on performing extensive

classi�cation experiments in order to evaluate the performance of our approach. To

investigate whether the linear separability in the feature space is achieved, we propose

to compare the classi�cation performances using a linear or a nonlinear classi�er. All

the classi�cation results presented here will be interpreted and compared with the most

recent approaches of SPR [Guillaume et al., 2011; Ullah et al., 2008].

5.2 Vision-based classi�cation results: Supervised learn-

ing of robot places

5.2.1 Recall of previous results

In this section, we will �rst present the best performance for instances recognition that

have been achieved in the literature [Pronobis and Caputo, 2007; Ullah et al., 2008] for
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easy comparison with our own results. The authors in [Ullah et al., 2008] used the de-

scriptor Scale-Invariant Feature Transform (SIFT) to describe the images. Each image

is then classi�ed independently through the use of Support Vector Machines (SVMs).

The results obtained for the three laboratories (in particular for standard sequences)

are presented in �gure 5.1. For each training illumination condition (indicated on top

of the charts), the bars present the average classi�cation rates over the corresponding

testing sequences under the illumination condition marked on the bottom axis.

Figure 5.1: Average classi�cation rates from the three different laboratories obtained by [Ullah
et al., 2008]. They are grouped according to the illumination conditions under which the train-
ing sequences were acquired. Thus, the training conditions are on top of each set of bar-charts
while the bottom axes indicate the illumination conditions used for testing. The uncertainty
bars represent the standard deviation. Results corresponding to the two different portions of
the laboratories which are indicated by A and B. We can see from these results that the system
is quite robust to the changes of illumination conditions and the overall performance is almost
identical. These graphs have been taken from [Ullah et al., 2008].
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Based on their method, they have got an average of correct classi�cation of 90:5%

for Saarbrucken laboratory, 85:58% for Freiburg laboratory and 90:38% for Ljubljana

laboratory. These average results have been obtained when the illumination conditions

were similar for the training and testing. However, the performances decrease for ex-

periments were conducted under various illumination conditions. In this case they have

reached classi�cation rates of 82:96% for Saarbrucken laboratory, 73:24% for Freiburg

laboratory and 83:69% for Ljubljana laboratory. Finally, they have observed that there

is a decrease in performance for the Freiburg laboratory. This can be caused by the

glass walls in Freiburg laboratory and the fact that the cameras were mounted signi�-

cantly lower than for the other laboratories, resulting in less diagnostic information in

some of the images [Ullah et al., 2008].

As a conclusion, these methods lead to notable classi�cation rates, however, they

are based on sophisticated classi�cation techniques like SVM. Also, the classi�cation

results decreased in the case of testing under different illumination conditions, which

indicates that these models remain sensitive to these changes.

5.2.2 Recognition of places based on DBNs and tiny images

In this section, we present the classi�cation result of our model, based on DBNs and

a direct use of tiny images. We follow the same training and testing protocols as in

[Ullah et al., 2008]. Also, we interpret and compare our results with the work of [Ullah

et al., 2008]. Finally, we investigate the robustness of our results to the illumination

conditions.

It was stated at the beginning of this chapter that after image coding, the �nal step

is to use a classi�cation algorithm to the actual recognition on the basis of the features

extracted from the input data,i.e. using the feature space. In the present section,

we will show the classi�cation results using a simple linear classi�er like softmax

regression [Ng, 2011] and a nonlinear classi�er like Support Vector Machines (SVMs)

[Cristianini and Shawe-Taylor, 2000; Vapnik, 1995] respectively. Assuming that the

non-linear transform operated by DBN improves the linear separability of the data, a

simple regression method would suf�ce to perform the classi�cation process. We have

seen that DBNs are able to extract sparse features from a large amount of images and,

using these features, we can create sparse representations of the initial images.
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However, if we assume that the problem has not been made linearly separable by

DBNs, a simple linear classi�er is not suf�cient and therefore a nonlinear classi�er,

like SVMs, will be required to perform the classi�cation process. Studying the classi-

�cation process using a linear and a nonlinear classi�ers would de�nitely demonstrate

whether the linear separability of the data has been obtained by DBNs or not.

The different experiments presented in the preceding chapters have suggested to

use an under-complete structure for SPR. We have tested different size of the DBN and

concluded that the optimal structure of the DBN for SPR using the COLD database is

768� 256� 128. We have used this network structure in all the results presented here

unless otherwise stated.

5.2.2.1 Classi�cation results using a softmax regression

The samples have been taken from each laboratory and each illumination condition

were trained separately, as in [Ullah et al., 2008]. For each image, the softmax net-

work output gives the probability of being in each room. According to the maximum

likelihood principle, the largest probability value gives the decision of the system. In

this case, we obtain an average of correct answers ranging from 50% to 76% according

to the different conditions and laboratories as shown in �gure 5.2.

Note that the classi�cation results shown in �gure 5.2 have been obtained using

the code generated by the features extracted without including the regularization term

which plays a key element in improving the sparsity property for the features.

5.2.2.2 Classi�cation results using support vector machines

Figure 5.3 shows the classi�cation results using a SVM classi�er1 with a polynomial

kernel of degree 2. In this experiment, we have also used the same protocol for both

training and testing as in the previous experiment. This �gure shows that the average

of correct answers is still ranging from 50% to 75% for the different conditions and

laboratories. For veri�cation, we have also tried to use this nonlinear classi�er with

different kernels (linear, radial basis function, sigmoid function, and precomputed ker-

nel). All of them gave very close results to the polynomial one. Furthermore, we have

1We have used teh SVM package developed at http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Figure 5.2: Average classi�cation rates from the three different laboratories using a softmax
regression. Training conditions are on top of each set of bar-charts. Each bar corresponds to a
testing condition. The extracted features in this case are obtained using a learning rate of 0:002
and a weight decay of 0:0002.

investigated different degrees (2 “default”, 3, and 4) of the polynomial kernel. They

did not notably change or improve the �nal classi�cation results.

As we have previously said, we can thus conclude that the feature space we have

obtained with DBN is linearly separable for the current classi�cation problem.

Concerning the classi�cation results achieved by the linear regression, they seem

to be worse compared with the state-of-the-art results [Guillaume et al., 2011; Ullah

et al., 2008]. More precisely, the results obtained by [Guillaume et al., 2011] have an

average of correct recognition of 80% based on GIST descriptor and 81:24% based

on CENTRIST descriptor for the three different laboratories of the COLD database.

Also, the results in [Ullah et al., 2008] have an average of correct answers of 83%

based on more sophisticated techniques (use of SIFT detectors followed by a SVM

classi�cation) for the same three laboratories. While in our case, the results have
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Figure 5.3: Average classi�cation rates from the three different laboratories using a nonlinear
SVM classi�er. The extracted features in this case are obtained using a learning rate of 0:002
and a weight decay of 0:0002.

an average of correct answers of 61:5%. Perhaps the strong size reduction of the

initial images from 640x480 to 32x24 pixels has strongly affected in losing a lot of

interesting information. However, there are still several open ways for improving these

classi�cation results to reach the state-of-the-art results. The �rst possible way is to

study different factors acting on sparsity.

5.3 Encouraging sparse hidden activities

Since the use of the nonlinear classi�er does not change or improve the classi�cation

results, thus we should think about another way to improve them. A possible way relies

on encouraging the sparsity property for the hidden activities. Improving this property

should allow �nal recognition results improvement through linear separability data

increasing. To achieve that, several factors, including the learning rate, the weight
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decay, and the penalty term could have some impact. In particular, adding a penalty

term to encourage hidden activation units to be sparse would signi�cantly change the

overall classi�cation results.

Figure 5.4: Average classi�cation rates from the three different laboratories. The extracted
features in this case are obtained using a learning rate of 0:001 and a weight decay of 0:0001.

We have started by decreasing the learning rate and the weight cost to 0:001 and

0:0001 respectively. After obtaining the code, the classi�cation process was performed

in the feature space as shown in �gure 5.4. Unfortunately, the results seem to be

similar for COLD-Ljubljana laboratory and worse for COLD-Freiburg and COLD-

Saarbruecken laboratories compared with the experiment shown in �gure 5.2. We

thought that we have obtained these worse results because of decreasing the weight

decay, thus we kept the learning rate unchanged and we increased the weight cost to

0:0008. However, the results shown in �gure 5.5 are still very close to the results

obtained with a weight cost of 0:0001. This underlines that these factors do not im-

prove the sparsity and thus they did not have any real impact on changing the �nal

classi�cation results.
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Figure 5.5: Average classi�cation rates from the three different laboratories. The extracted
features in this case are obtained using a learning rate of 0:001 and a weight decay of 0:0008.

Based on these experiments, we can observe two facts: First, we noted that in the

case of the COLD database, using a learning rate ranging from 0:001 to 0:005 does not

affect or change the features too much. The number and types of features were quite

similar. The only difference is that the network will converge faster if we use a larger

learning rate, however, after a lot of epochs, any learning rate value in the above range

will let the network converge towards similar features. Secondly, We have seen that

using a weight decay ranging from 0:0001 to 0:0008 does not change the results. This

indicates that any value in this range is suf�cient to penalize large values that could

happen during the learning process.

However, by adding a penalty term which particularly aims at encouraging the spar-

sity on hidden activation units, the �nal average classi�cation scores are signi�cantly

increased, as shown in �gure 5.6. In this experiment, we obtained an average of correct

answers ranging from 65% to 80% according to the different conditions and laborato-

ries as shown in �gure 5.6. It has been shown that adding this term effectively improves
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the sparsity of the data representation through encouraging hidden unit activations to

be sparse [Hinton, 2010; Lee et al., 2008, 2009; Mairal et al., 2008; Olshausen and

Field, 1996, 1997]. More explanation of this term can be found in chapter 3.

Figure 5.6: Average classi�cation rates from the three different laboratories. The extracted
features in this case are obtained using the same CD parameters but with a penalty term.

Compared to the previous experiments shown in �gure 5.2, the average results of

correct classi�cation were: 69:9%, 57:5%, and 60% for COLD-Ljubljana, COLD-

Freiburg, and COLD-Saarbruecken laboratories respectively and with an overall av-

erage of correct answers of 61:5% for the three laboratories. However, the average

results shown in �gure 5.6 are: 73:4%, 69:5%, and 71% for the same three laborato-

ries and with an overall average of correct answers of 71:3%. This means that we have

managed to successfully raise the classi�cation results by 10% which become closer

to the state-of-the-art results. This underlines an important fact that adding the penalty

term has effectively improved the quality of the image coding.

Another possible way is to investigate the effect of normalization on the �nal clas-

si�cation results. We have seen in the previous chapter using data whitening or local
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normalization had some in�uences on features extraction. Thus, investigating this fac-

tor would also have some impact on the classi�cation process. In the next section, we

study the classi�cation process using features extracted from the normalized data.

5.4 Role of normalization on the classi�cation

All previous experiments have been conducted using the features learned by training

two RBM layers on the whitened data. However, during our work we have observed

that learning features from a non-whitened data would play an important role in im-

proving the classi�cation results. Thus, after using the features shown in �gure 4.14 to

train the second RBM layer, the real-valued output of the second RBM units is used to

perform the classi�cation as shown in �gure 5.7 using a softmax regression.

Figure 5.7: Average classi�cation rates from the three different laboratories. These results have
been achieved by training two RBM layers on the normalized COLD data.

In this case, we obtain an average of correct answers ranging from 71% to 90%
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according to the different conditions and laboratories. Compared to our previous re-

sults shown in �gure 5.6, these classi�cation results seem to be more competitive to

the state-of-the-art. More precisely, the average results of correct classi�cation are:

83:13%, 80:515%, and 81:50% for COLD-Ljubljana, COLD-Freiburg, and COLD-

Saarbruecken laboratories respectively and with an overall average of correct answers

of 81:375% for the three laboratories. This indicates that we have improved the results

by 10% to 11% for the different laboratories. They are then at the level of the best

published ones [Ullah et al., 2008]. The results remain robust to illumination varia-

tions as in [Ullah et al., 2008]. We underline once again the lower performance on

the COLD-Freiburg dataset. However, in this case, our results outperform the results

obtained in [Ullah et al., 2008].

These results demonstrate that the features learned from a data normalization are

more bene�cial for our classi�cation problem. It illustrates the fact that the normaliza-

tion process keeps much more information or structures of the initial views which are

very important for the classi�cation process. On the other hand, data whitening com-

pletely removes the �rst and second order statistics from the initial data which allows

DBNs to extract higher-order features. This demonstrates that data whitening could

be useful for image coding. However, it is not the optimal pre-processing method in

the case of image classi�cation. This is in accordance with the results in the litera-

ture showing that �rst and second order statistics based features are signi�cantly better

than higher order statistics in terms of classi�cation [Aggarwal and Agrawal, 2012;

Krizhevsky, 2010].

However, two different ways are still open to improve these results. The �rst one

is to use temporal integration, as proposed in [Guillaume et al., 2011]. The second one

is presented in the next section and relies on decision theory.

5.5 Image rejection

Usually, in any video sequence taken during robot exploration, some of the images are

non informative especially when the robot faces a wall or when it turns or moves too

fast as noted in the case of the Freiburg laboratory. The main justi�cation of using a

rejection mechanism is therefore to discard these blurred images from the classi�cation

process.
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The detection rate presented in �gure 5.6 has been computed from the classes with

the highest probabilities, irrespective of the relative values of these probabilities. Some

of them are close to the chance (in our case 0:20 or 0:25 depending on the number

of categories to recognize) and it is obvious that, in such cases, the con�dence in the

decision made is weak. Thus below a given threshold, when the probability distribution

tends to become uniform, one could consider that the answer given by the system is

meaningless. This could be due to the fact that the given image contains common

characteristics or structures that can be found in two or more classes. As shown in

�gure 5.8, the effect of the threshold is then to discard the most uncertain results.

Figure 5.9 (�rst column) shows the average classi�cation results for a threshold of 0:55

(only the results where maxX p(X = ckjI ) � 0:55, wherep(X = ck is the probability

that the current viewI belongs tock, are retained). These results have been achieved

using the features extracted from the whitened data.

Figure 5.8: A comparison between the classi�cation results with and without a threshold. This
test has been done for a subset of images selected from Saarbruecken laboratory, partB. First
level represents the actual probabilities of the four different classes (corridor (CR), toilet (TL),
one person of�ce (1PO), and printer area (PA)). Second and third levels represent classi�cations
based on a softmax regression without and with a threshold respectively. Finally, the forth level
represents the original correct classi�cation.

In this case, the average acceptance rate (the percentage of considered examples)

ranges from 75% to 85%, depending on the laboratory, and the average results show

values that outperform the best published ones [Ullah et al., 2008]. When consider-

ing all the results obtained by training and testing on similar illumination conditions,

we got an average classi�cation rate of 90:68% for COLD-Saarbrucken laboratory,

89:88% for COLD-Freiburg laboratory and 90:66% for COLD-Ljubljana laboratory.

Similarly to [Ullah et al., 2008] results, the performance has also decreased in case of

the experiments under varying illumination conditions. In this case we have achieved
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Figure 5.9: Average classi�cation rates from the three different laboratories with a threshold of
0.55.First column: classi�cation rates that have been obtained based on the features extracted
from the whitened data.Second column:classi�cation rates that have been obtained based on
the features extracted from the normalized data.

classi�cation rates of 83:683% for COLD-Saarbrucken laboratory, 83:14% for COLD-

Freiburg laboratory and 84:62% for COLD-Ljubljana laboratory. However, our results

are less sensitive to the illumination conditions than the results obtained in [Ullah et al.,

2008]. As in previous experiments, we noted the weaker performance on the COLD-
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Freiburg data, which con�rms that this collection is the most challenging of the whole

COLD database as indicated in [Ullah et al., 2008]. However, with and without thresh-

old, our classi�cation results for this laboratory outperforms the best ones obtained by

[Ullah et al., 2008].

Similarly, we have also applied the threshold method on the results obtained in �g-

ure 5.7 with locally normalized data. Figure 5.9 (second column) shows the average

classi�cation results using a similar threshold (0.55). In this case, the average rate of

acceptance examples increases to be between 86% to 90%, depending on the labora-

tory, showing that more examples are used in the classi�cation than the former experi-

ment. Also, the average results, in this case, show scores that strongly outperform the

best published one [Ullah et al., 2008]. This indicates that the linear separability of the

data was signi�cantly improved in the case of using the normalized data for features

extraction.

Concerning the sensitivity to illumination for both cases, our results seem to be less

sensitive to the illumination conditions compared to the results obtained in [Ullah et al.,

2008]. As in previous experiments, we noted the lower performance on the COLD-

Freiburg data, which con�rms that this collection is the most challenging of the whole

COLD database as indicated in [Ullah et al., 2008]. However, in case of using features

learned from the un-whitened data, with and without threshold our classi�cation results

for this laboratory outperforms the best ones obtained by [Ullah et al., 2008].

Tables 1 and 2 show an overall comparison of our results with those from [Ullah

et al., 2008] for the three training conditions in a more synthetic view. It also shows

the results obtained using a SVM classi�cation instead of a softmax regression. The

results are quite comparable to softmax showing that the DBN computes a linearly

separable signature. They underline the fact that features learned by DBNs approach

are more robustness for a semantic place recognition task than the extraction ofad hoc

features based on (GiST, CENTRIST, SURF, and SIFT detectors).
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Laboratory name Saarbruecken Freiburg Ljubljana
` ` ` ` ` ` ` ` ` ` ` `Training

Condition
Cloudy Night Sunny Cloudy Night Sunny Cloudy Night Sunny

Ullah 84.20% 86.52% 87.53% 79.57% 75.58% 77.85% 84.45% 87.54% 85.77%
No thr. 70.21% 70.80% 70.59% 70.43% 70.26% 67.89% 72.64% 72.70% 74.69%
SVM 69.92% 71.21% 70.70% 70.88% 70.46% 67.40% 72.20% 72.57% 74.93%
0.55 thr. 84.73% 87.44% 87.32% 85.85% 83.49% 86.96% 84.99% 89.64% 85.26%

Table 5.1: Average classi�cation results for the three different laboratories and the three train-
ing conditions.First row: Ullah's work; second row: rough results without threshold;third
row: classi�cation rates using SVM classi�er;fourth row: classi�cation rates with threshold
as indicated in text. Our results have been obtained based on the features learned from the
whitened data.

Laboratory name Saarbruecken Freiburg Ljubljana
` ` ` ` ` ` ` ` ` ` ` `Training

Condition
Cloudy Night Sunny Cloudy Night Sunny Cloudy Night Sunny

Ullah 84.20% 86.52% 87.53% 79.57% 75.58% 77.85% 84.45% 87.54% 85.77%
No thr. 80.41% 81.29% 83.66% 81.65% 80.08% 79.64% 83.14% 82.38% 83.87%
0.55 thr. 86.00% 88.35% 87.36% 88.15% 85.00% 87.98% 85.95% 90.63% 86.86%

Table 5.2: Average classi�cation results for the three different laboratories and the three train-
ing conditions.First row: Ullah's work; second row: rough results without threshold;third
row: classi�cation rates with threshold as indicated in text. Our results have been obtained
based on the features learned from the normalized data.

5.6 Summary

In the present chapter we have presented our experiments on SPR and image classi-

�cation using the DBN we have designed in the previous chapters. Concerning the

classi�cation, our system was tested using two different classi�cation methods (linear

with softmax and nonlinear with SVM). We observed that the results of the nonlin-

ear classi�er are quite comparable to the softmax regression results, suggesting that

the DBN computes a linearly separable signature. We have also observed that adding a

penalty term improved the quality of image coding and thus increased the classi�cation

scores.

We also investigated the effect of normalization on the classi�cation process. We

saw that extracting features from a locally normalized database that covers a larger

range of spatial frequencies gave signi�cantly better classi�cation results. Compared

to the state-of-the-art [Guillaume et al., 2011; Ullah et al., 2008], they are in the

same range for COLD-Saarbrucken and COLD-Ljubljana laboratories and they out-

performed the results for COLD-Freiburg laboratory.
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Finally, we introduced a method to discard the most uncertain images and we show

that even with a small rejection rate the classi�cation results are signi�cantly improved

and largely outperformed the state-of-the-art. This last way to perform SPR relates to

the observation that to recognize a speci�c location it could not be necessary to rec-

ognize all the views within a data �ow but only the most statistically signi�cant ones.

The reached con�dence level in this case could be very high. We can push forward

this hypothesis saying that recognizing a unique but speci�c detail characterizing a

place could be suf�cient to recognize it. Future approaches could be based on such

considerations.

129



Chapter 6

Conclusions and future works

6.1 Summary of contributions

The aim of this thesis was to study the use of Deep Belief Networks in a challenging

image recognition task, View-based Semantic Place Recognition. DBNs have been

widely used to learn high-level feature representations that can be successfully applied

in a wide spectrum of application domains, including in particular image retrieval,

classi�cation and regression tasks, as well as nonlinear dimensionality reduction. We

proposed here to use them as a novel approach to achieve robot SPR. The most signif-

icant characteristics behind learning deep generative models are as follows :

� Multiple layers of representation that can be trained in a greedy layer-wise by

training one layer at a time.

� The greedy learning carried out in a completely unsupervised way.

� Their ability to learn sparse ef�cient features and perform non-linear dimension-

ality reduction that simplify the classi�cation.

� The theoretical grouding of the feature space construction that outperforms the

empirical building of sets of descriptors.

The �rst part of the thesis focused on introducing the problem of SPR in robotics

systems. Thus, in chapter 2 we provided a detailed overview of the different coding
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and classi�cation methods that have been used to solve the problem of SPR. In par-

ticular, we showed that, in the framework of the view-based approaches, the problem

of SPR �rst requires an appropriate code of the initial data. Such a code can be pro-

vided by DBNs with the advantage to be problem independent and to be theoretically

grounded. We then provided a detailed description of DBNs and their building mod-

ules, Restricted Boltzmann Machines (RBMs), along with its most popular learning

algorithm, Contrastive Divergence (CD). We have seen that although Boltzmann Ma-

chines (BMs) and RBMs have been introduced as early as in the 80's, the wide use of

them had to wait until [Hinton, 2002] who introduced CD learning. The main barrier

in the acceptance of RBMs was the dif�culty in computing the stochastic gradient for

training the model. Thanks to CD learning, the popularity of RBM and its variants

grew rapidly, and a whole �eld opened [Bengio, 2009] in the early 2000s.

Since different parameter settings strongly in�uence the quality and the nature of

the obtained feature space, we have developed an extensive parameter study presented

in chapter 3. This study allowed us to precise the role of the network structure and

to discuss the question of over-completeness. We also focused on the parameters in-

�uencing the locality of the obtained features. This locality can increases the sparsity

of the network, its ability to activate only a few units to code for an image (spatial

sparsity) and to activate a given unit only rarely over time (time sparsity).

The effect of whitening compared to local normalization was also studied in this

chapter. Our studies allow to draw an interesting conclusion about the spatial frequency

representation with the two modes of normalization. While whitening equalizes the

Fourier power spectral density and thus the autocorrelation of the signal, the local

normalization equalizes the energy included in each frequency band (each octave). The

obtained features in this case cover a broader range of spatial frequencies suggesting

that the energy of the signal plays the most important role in the emergence of the

features during RBMs learning.

Chapter 4 studies the use of tiny images for classi�cation through the dimension-

ality reduction ability of the DBNs. The impact of image centering was studied with

aligned and non aligned images and it is shown that the plasticity of the RBM learning

algorithm allows to build different feature spaces in these case with a higher semantic

level for the aligned dataset. This shows that the composition of the database plays the
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most prominent role in the nature of the features that will be obtained. Obtaining lo-

calized low-level features focused on non speci�c edges is not a property of the RBM

algorithm but depends on the used databases. To shed light on this point we can argue

that the statistically independent components of an image could be higher level details

if these details are aligned in the initial dataset. This can be related to the role of atten-

tional mechanisms in the acquisition of an optimal image coding. Without attention,

looking at random to the scene, the obtained feature space is made of the localized

low-level edges of the images. With the attention to very frequent objects or image

characteristics (like faces or familiar objects) a DBN network can easily mimick what

happens in the primate visual cortex, the selection of detectors speci�c of the structural

details of these frequent characteristics (e.g.parts of faces).

Chapter 5 focused on performing extensive classi�cation experiments to show the

performance of the proposed model. An approach based on tiny images followed by a

projection onto an appropriate feature space can achieve good classi�cation results in

a semantic place recognition task. They outperformed the best published ones [Ullah

et al., 2008] based on more complex techniques (use of Scale Invariant Feature Trans-

form (SIFT) detectors followed by a Support Vector Machine (SVM) classi�cation).

As we expected, the classi�cation results were signi�cantly better when we used the

features learned from a locally normalized dataset. It can be argued that �rst and sec-

ond order statistics based features are signi�cantly better than higher order statistics in

terms of classi�cation as already stated by [Aggarwal and Agrawal, 2012]. However,

to recognize a place it seems not necessary to correctly classify every image of the

place. With respect to place recognition not all the images are informative: some of

them are blurred when the robots turns or moves too fast from one place to another,

some others show no informative details (e.g. when the robot is facing a wall). As

the proposed system computes the probability of the most likely room among all the

possible rooms, it offers the way to weight each conclusion by a con�dence factor as-

sociated with the probability distribution over all classes. We can then discard the most

uncertain views thus increasing the recognition score. It offers a simpler alternative to

the method proposed in [Pronobis and Caputo, 2007] based on cue integration and the

computation of a con�dence criterion in a SVM classi�cation approach.

The fundamental contribution of this work is therefore the demonstration that DBNs

coupled with tiny images can be successfully used in the context of semantic place
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recognition. These considerations have greatly contributed in simplifying the overall

classi�cation algorithm. They indeed provide coding vectors that can be used directly

in a discriminative method. To our knowledge this is the �rst demonstration that tiny

images feature extraction using DBN is an alternative approach for SPR that deserves

to be considered.

6.2 Future works and open questions

There are several potential extensions and applications of the ideas presented in this

thesis, particularly related to learning DBNs.

Convolutional deep belief networks.As we have stated before, scaling such models

to full-sized, high-dimensional images remains a dif�cult problem for DBNs.

However, very recent works have addressed this problem (see for instance, [Lee

et al., 2009; Norouzi et al., 2009]) through the use of convolutional operator. In

particular, they proposed to use a probabilistic max-pooling, a technique which

shrinks the representations of higher layers in a probabilistically sound way.

They have shown that the algorithm learns useful high-level visual feature and

led to excellent performance on visual recognition tasks. Therefore, we plan to

apply this model on the COLD database and investigate their features extraction.

However, for the classi�cation process, we need to use the small tiny images,

otherwise the classi�cation becomes very expensive.

Sparse-overcomplete representations.This idea has already been investigated in this

thesis in terms of features extraction. We have seen that the use of overcom-

plete structures for DBNs did not improve the features themselves for some

databases. However, the number of extracted features was different as in the

case of LFW database experiment. Sparse-overcomplete representations have

a number of theoretical and practical advantages, as demonstrated in a number

of recent studies [Doi et al., 2006; Olshausen and Field, 1997; Ranzato et al.,

2007a]. In particular, they have good robustness to noise, and provide a good

tiling of the joint space of location and frequency. These representations can be
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advantageous for problems of classi�cations, such as the problem SPR, because

they will allow to have more features of the different places.

Place categorization.A question that has not been investigated in this work and that

remain open despite some interesting attempts [Guillaume et al., 2011; Ullah

et al., 2008] is the view-based categorization of places. The work presented in

this thesis concerns instance classi�cation. Categorization is the way to recog-

nize the functional nature of a room, for example with the COLD database the

recognition of an of�ce or a corridor from the different labs. The view-based

approaches usually give very poor results (usually around 25% of recognition).

Although we think that this problem is fundamentally ill-posed and that catego-

rization of functional classes like printer area or kitchen must be rather made on

the basis of the recognition of their functions, it could be interesting to see if an

approach based on DBNs is able to improve these results.

Object recognition. As previously said, DBNs have the ability to learn layers of fea-

ture detectors that become progressively more complex, which is thought to be

a promising model to address the problem of object recognition. However, cur-

rently, most of the existing object recognition systems that achieve state-of-the-

art results are based on hand coded methods like GiST, CENTRIST, SURF, and

SIFT detectors (see for instance [Guillaume et al., 2011; Ullah et al., 2008] and

include many hand-crafted features. On the light of what was done in this thesis

for SPR, it could be interesting to evaluate the performance of DBNs on these

object recognition tasks.

We have outlined several potential research works for the future. However, re-

search on deep learning is still new and there are a lot of open questions that have not

been considered yet [Yu et al., 2009]. Some of them are: Can we develop better opti-

mization or approximation techniques that would allow us to learn deep models more

ef�ciently without signi�cant human intervention? Can we develop algorithms that are

capable of extracting high-level feature representations that can be transferred to un-

known future tasks? Under what conditions does the feature hierarchy achieve a better

regularization or statistical ef�ciency? How can we make deep models more robust
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to deal with highly ambiguous or missing sensory inputs? We believe that answering

these questions will allow and facilitate the emergence of more intelligent machines.

Finally, the system presented in this thesis could also be successfully applied to

mobile robot platform with limited memory and processing resources. In particular,

semantic place recognition can be used to guide the robot navigation. It seems not too

dif�cult to use the classi�cation tool after off-line learning of both the feature space and

the classi�cation space. The fact that these learning steps are not well-suited for on-line

learning is one of the major drawback. However, it could be very interesting to study

the features that emerge from on-line DBN learning when the images are provided

during the exploration of its environment by the robot. In particular, the impact of

two different situations, the free random acquisition of images and the acquisition of

images driven by an attentional mechanism, will be interesting to study.

6.3 Publications

6.3.1 Posters and oral presentations

Part of the work presented in this thesis has been also presented in the following events:

� Ahmad Hasasneh, Emmanuelle Frenoux, and Philippe Tarroux (2010, July).

Medical Image Segmentation Using New Machine Learning Methods: a Prospec-

tive Study. Poster session presented at the BMVA Summer School on Computer

Vision, 2010, Kingston University, London, UK.

� Ahmad Hasasneh, Emmanuelle Frenoux, and Philippe Tarroux (2012, February).

Semantic place recognition using tiny images and deep belief networks. Oral

presentation in SIG-TAO meetings, 2012, LRI Lab, Paris SUD University, Paris,

France.

6.3.2 International conferences

Part of the work presented in this thesis has been published in the following interna-

tional conference:
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� Ahmad Hasasneh, Emmanuelle Frenoux, and Philippe Tarroux (2012, July). Se-

mantic Place Recognition Based on Deep Belief Networks and Tiny Images. In

9th International Conference on Informatics in Control, Automation and Robotics

ICINCO, 2012, Rome, Italy.

6.4 Closing remarks

This thesis has explored the problem of semantic place recognition for autonomous

systems. As one solution for this problem, I proposed to use DBNs approaches that

exploit sparsity and locality, while demonstrating good performance in many AI prob-

lems. Given that the quality of features signi�cantly affects the performance of im-

age classi�cation. We have seen that our approach obtains scores comparable to

approaches based on computer vision methods (like the use of SIFT detectors) and

more sophisticated classi�cation techniques like SVM. As emphasized by [Hinton

et al., 2011], it illustrates the fact that features extracted by DBN algorithms are more

promising for image classi�cation than hand-engineered features. I believe that such

algorithms will allow machine learning systems to be much more easily applied to

problems in vision, text understanding, audio understanding, and other problems, and

to achieve superior performance without the manual feature engineering while using

signi�cantly less labeled data.
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Appendices

This section demonstrates the derivation of the most important equations.

Appendix A This appendix presents the derivation of the sigmoid function for an

RBM and general BM [Krizhevsky, 2009]. An RBM withV visible units andH hidden

units is governed by the following energy function:

E(v;h;q) = �
V

å
i= 1

H

å
j= 1

vih jwi j �
V

å
i= 1

bivi �
H

å
j= 1

c jh j ;

where Agence franaise pour la promotion de lenseignement suprieur

� v is the binary state vector of the visible units,

� h h is the binary state vector of the hidden units,

� vi is the state of visible uniti,

� h j is the state of hidden unitj,

� wi j is the real-valued weight between visible uniti and hidden unitj,

� bi is the real-valued bias into visible uniti,

� c j is the real-valued bias into hidden unitj.

According to Gibbs distribution, a probability is associated with con�guration (v,h)

is given as follows:

P(v;h) =
e� E(v;h)

Z
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whereZ is a normalizing constant. Thus after marginalization:

P(v) = å
g

P(v;g)

We can also derive some simple conditional expressions:

P(hjv) =
P(v;h)
P(v)

=
e� E(v;h)

å ge� E(v;g)

As illustrated in [Krizhevsky, 2009], it can also drive closed-form expression for

P(hk = 1jv), the probability of a particular hidden unit being on given a visible con�g-

uration.. To do this, they introduced the notation,

P(hk = 1;h j6= k;v)

to denote the probability of the con�guration in which hidden unitk has state 1, the

rest of the hidden units have stateh j6= k, and the visible units have statev. Given this,
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we have:

P(hk = 1jv) =
P(hk = 1;v)

P(v)

=
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e
�

åV
i= 1 viwik+ ck

� �

å h j6= k
e� E(hk= 0;h j6= k;v)

å ge� E(v;g)

=

�
e
�

åV
i= 1 viwik+ ck

� �

å h j6= k
e� E(hk= 0;h j6= k;v)

å g j6= k
e� E(gk= 1;g j6= k;v) + å g j6= k

e� E(gk= 0;g j6= k;v)

=

�
e
�

åV
i= 1 viwik+ ck

� �

å h j6= k
e� E(hk= 0;h j6= k;v)

�
e
�

åV
i= 1 viwik+ ck

� �

å g j6= k
e� E(gk= 1;g j6= k;v) + å g j6= k

e� E(gk= 0;g j6= k;v)

=
1

1+ e�
�

åV
i= 1 viwik+ ck

�

=
�

1+ e�
�

åV
i= 1 viwik+ ck

� � � 1

=) P(hk = 1jv) = s(ck + å
i
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Appendix B The derivation of the softmax regression for multinomial classi�cation

problem [Ng, 2011].

Unlike logistic regression, in softmax regression we have a multi-nomial classi�-

cation problem, so �rst let us de�ney 2 f 1;2; : : : ;kg of k different classes. We also

need to de�ne the model parameters overk possible outcomes as follow:f 1; f 2; : : : ; f k.

In other words, these parameters specify the probability of each outcome as follows:

f i = P(y = i)

and

f k = 1�
�
f 1 + f 2 + � � � + f k� 1

�

it means that we need to processk� 1 parameters. To express the multinomial as

an exponential family distribution, we need to de�neT(y) 2 Rk� 1 as follows:

T(1) =

2

6
6
6
6
6
6
6
4

1

0

0
...

0

3

7
7
7
7
7
7
7
5

;T(2) =

2

6
6
6
6
6
6
6
4

0

1

0
...

0

3

7
7
7
7
7
7
7
5

;T(3) =

2

6
6
6
6
6
6
6
4

0

0

1
...

0

3

7
7
7
7
7
7
7
5

; : : : ;T(k� 1) =

2

6
6
6
6
6
6
6
4

0

p0

0
...

1

3

7
7
7
7
7
7
7
5

;T(k) =

2

6
6
6
6
6
6
6
4

0

0

0
...

0

3

7
7
7
7
7
7
7
5

We will therefore write
�
T(y) i

�
to denote theith elements of the vectorT(y). For

notational convenience, the relationship betweenT(y) andy can be expressed as:

�
T(y) i

�
= 1f y = ig

where 1f�g is the usual de�nition of the indicator function which takes a value of 1 if

its argument is true, and 0 otherwise. The expectation ofT(y) can be de�ned as:

E
�
T(y) i

�
= P(y = i) = f i
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Using these de�nitions, it is possible now to de�ne the multinomial as exponential

distribution as follows:

P(y = i) = f 1f y= 1g
1 f 1f y= 2g

2 : : : f 1f y= kg
k

= f 1f y= 1g
1 f 1f y= 2g

2 : : : f
1� å k� 1

i= 1 1f y= kg
k

= f 1f y= 1g
1 f 1f y= 2g

2 : : : f
1� å k� 1

i= 1

�
T(y)

�
i

k

= e

�
�

T(y)
�

1
log(f 1)+

�
T(y)

�
2
log(f 2)+ ���+

�
1� å k� 1

i= 1

�
T(y)

�
i

�
log(f k)

�

= e

�
�

T(y)
�

1
log(f 1=f k)+

�
T(y)

�
2
log(f 2=f k)+ ���+

�
T(y)

�
k� 1

log(f k� 1=f k)+ log(f k)

�

= b(y)e
�

hTT(y)� a(h)
�

where

h =

2

6
6
6
6
4

log(f 1=f k)

log(f 2=f k)
...

log(f k� 1=f k)

3

7
7
7
7
5

; a(h) = � log(f k); b(y) = 1:

The above formulations con�rm that the multinomial can be expressed as an ex-

ponential family distribution. For more convenience, the link function is given(for

i = 1; : : : ;k) by

hi = log
f i

f k

by taking the exponential for both sides, we can then get

ehi =
f i

f k

=) f ke
hi = f i

=) f k

k

å
i= 1

ehi =
k

å
i= 1

f i = 1
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This implies thatf k = 1
�

å k
i= 1ehi , and it can be substituted in the above equation

to give:

f i = f ke
hi =

ehi

å k
j= 1eh j

but

f i = P(y = ijx;q)

=
ehi

å k
j= 1eh j

=
eqT

i x

å k
j= 1eqT

j x

This model is called softmax regression which can be used to perform multi-class

classi�cation problems,i.e., y 2 f 1;2; : : : ;kg . This model is a generalization of the

logistic regression.
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Appendix C This appendix demonstrates the partial derivative of the log-likelihood

function for Product of Experts (PoEs) models [Wood and Hinton, 2012].

Usually, PoEs combinesn individual models by taking the product of their condi-

tional probabilities and normalizing the result usingZ(q), as follows [Hinton, 2002]:

P(X j q1; : : : ;qn) = Õ
x2X

ÕmPm(x j qm)
Z(qm)

= Õ
x2X

ÕmPm(x j qm)
å yÕmPm(y j qm)

The log-likelihood of the previous equation can be written as follows:

logP(X j q1; : : : ;qn) = logÕ
x2X

ÕmPm(x j qm)
å yÕmPm(y j qm)

also, the gradient of the likelihood can be de�ned with respect to the model parameters

qm as follows:

¶
logP(X j q1; : : : ;qn)

¶qm
=

¶
¶qm

logÕ
x2X

ÕmPm(x j qm)
å yÕmPm(y j qm)

now, it is possible to multiply both sides of the previous equation by 1=N and we then

get:

1
N

¶
logP(X j q1; : : : ;qn)

¶qm
=

1
N

¶
¶qm

logÕ
x2X

ÕmPm(x j qm)
å yÕmPm(y j qm)

=
1
N å

x2X

¶logPm(x j qm)
¶qm

�
1
N å

x2X

¶logå yÕmPm(y j qm)
¶qm

=
1
N å

x2X

¶logPm(x j qm)
¶qm

�
¶logå yÕmPm(y j qm)

¶qm

=
�

¶logPm(x j qm)
¶qm

�

Q0
�

¶logå yÕmPm(y j qm)
¶qm
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however, we know thatlog(x)0= x0=x. It means that¶logå yÕmPm(y j qm)=¶qm =
�
¶å yÕmPm(y j qm)=¶qm

�
�

�
1=å yÕmPm(y j qm)

�
and thus the previous equation can

be rewritten as follows:

1
N

¶
logP(X j q1; : : : ;qn)

¶qm
=

�
¶logPm(x j qm)

¶qm

�

Q0
�

1
å yÕmPm(y j qm)

�
¶å yÕmPm(y j qm)

¶qm

=
�

¶logPm(x j qm)
¶qm

�

Q0
�

1
å yÕmPm(y j qm)

�
å yÕm¶Pm(y j qm)

¶qm

remember,¶Pm(y j qm)=¶qm = Pm(y j qm) � ¶logPm(y j qm)=¶qm, so that:

1
N

¶
logP(X j q1; : : : ;qn)

¶qm
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�
¶logP(X j q1; : : : ;qn)

¶qm

�

=
�

¶logPm(x j qm)
¶qm

�

Q0
�

1
å yÕmPm(y j qm)

�
å yÕmPm(y j qm)¶logPm(y j qm)

¶qm

=
�

¶logPm(x j qm)
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�

Q0
� å

y

ÕmPm(y j qm)
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�
¶logPm(y j qm)

¶qm

=
�

¶logPm(x j qm)
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�

Q0
� å

y
P(y j q1; : : : ;qn) �

¶logPm(y j qm)
¶qm

=
�

¶logPm(x j qm)
¶qm

�

Q0
�

�
¶logPm(y j qm)

¶qm

�

Q¥

Therefore, the gradient of the log-likelihood is proportional to the following equa-

tion:

�
¶logP(X j q1; : : : ;qn)

¶qm

�
µ

�
¶logPm(x j qm)

¶qm

�

Q0
�

�
¶logPm(y j qm)

¶qm

�

Q¥
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