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General Introduction

Minitubes is a family founded company specialized in the manufacturing of precision tubes.
The principal applications include biomedical devices such as surgical implants, stents and
cardiac valves or a variety of in vitro diagnostic devices such as probes. Other applications
in the �eld of aerospace or electronics for example exist but they are less challenging in
term of precision compared to biomedical applications. Indeed, the components designed
to be implanted in the human body require the tightest speci�cations.
From its foundation, Minitubes has developed a re�ned know-how in the �eld of tube
drawing. Today, this know-how enables to reach the sharpest requirements and to satisfy
clients demand. In the future, Minitubes intention is to formalise the process and to build
a series of tools to de�ne the di�erent tube manufacturing process steps. More speci�cally,
the intention is to optimise the process in order to increase the productivity and improve
the product quality.
A better understanding of the process can be achieved by conducting large series of tests.
Such approach happens to be time and money consuming due to the amount of raw material
needed and more especially because the tests must be performed on the industrial drawing
benches. At the industrial scale, experimental studies enable to easily measure di�erent
data, such as the drawing force, the temperature, the tube surface aspect and roughness,
the �nal tube dimensions and the tube straightness. At a laboratory scale, due to the
access to more complex analysis devices, experimental tests can give information about the
material structure, texture, internal residual stresses, anisotropy and the heat generated
due to plastic deformation to cite some of them. The combination of the possibilities
o�ered by both environments can deliver rich information.
In this context, �nite element modelling appears to be a helpful tool to improve the process
understanding. The �rst interest of �nite element modelling is to virtually perform a
large number of tests. The second interest of numerical methods is that they give access
to non measurable physical values such as strains and stresses during drawing. Such
informations are necessary to improve the understanding of the process and above all to
link the experimentally measured data to the internal phenomena taking place during
material deformation.
Evidently, the model must be physically based and a series of experimental tests must
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be performed in order to build it. First, as the material deforms during the process,
its mechanical behaviour must be accurately characterised by means of laboratory tests.
Any mechanical test can give stress vs strain data but it is fundamental to perform the
laboratory tests in representative conditions compared to the industrial tube drawing.
In the case where the variety of the testing devices is limited, it is crucial to evaluate
the errors that can be made when simulating the process with simpler models. Second,
like in any metal forming process, the material to be formed interacts with forming tools.
Most of the time the contact is lubricated. This interaction phenomenon is important
to be considered as it directly in�uences the drawing conditions and it can in�uence the
deformations undergone by the material surfaces. Third, as the material plastically deforms
and due to the friction between the material and the forming tools, heat is generated. If
this phenomenon intends to be included in a �nite element model, it must be characterised
with care.
In the objective of process optimisation, a major point is to identify the material formability
limit. In other words it signi�es to determine the maximum deformation a tube can undergo
before fracture. Once the experimental formability limit is known, the goal is to be able to
predict it by means of �nite element method. The challenge to predict tube failure is to
select the appropriate tool among all the models and criteria that were de�ned by di�erent
authors. Due to the industrial requirements of selecting an e�cient method and because
of the limited mechanical testing techniques that were available at Minitubes, the choice
was oriented towards failure criteria that could be calibrated on uniaxial tensile tests only.

The di�erent topics dealt with in this thesis �t into the above described framework.
The general objective of this study is to develop the �nite element modelling of the tube
drawing, �rst in order to improve the process understanding, second to �nd the formability
limit and to optimise the process.

The �rst chapter is devoted to the presentation of all the notions involved in this study
and to de�ne the vocabulary. The principle of the tube drawing process is introduced and
the di�erent physical phenomena that are involved in such forming process are detailed.
The di�erent techniques that exist to analyse the drawing process are described and the
focus is put on the interest of �nite element modelling compared to analytical methods.
Then, as one of the main concern is the material formability during tube drawing, the dif-
ferent tools that were developed to study and to predict material formability are presented.
This chapter ends with the description of a mechanical test called tube bulge test which is
devoted to tube testing.

The second chapter presents the procedure that was used to characterise the materials
mechanical and thermo-mechanical properties. The di�erent testing techniques are intro-
duced and the results are presented. The �rst objective of these experimental tests is to
identify materials constitutive behaviour in order to model it. The second objective is to
characterise materials failure.

The third chapter deals with an experimental tube drawing test that was designed for
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the purpose of this study. The originality of this test relies on the geometry of a drawing
tool that was designed to draw tubes up to failure. The principle of this test is detailed
and the di�erent measurements performed during the test are described. From these tests,
the material formability limit during tube drawing is identi�ed.

The fourth chapter is devoted to the �nite element modelling of the tube drawing
process. First a general description of the model is made, second, the focus is put on the
development of di�erent models considering di�erent aspects. Three models are developed:
�rst, a purely mechanical one considering plastic isotropy, second, a thermo-mechanical
one considering also plastic isotropy and last a pure mechanical model considering plastic
anisotropy. The methods used to identify contact properties by inverse analysis are detailed.
Finally, once the �nite element model is fully de�ned, the tube drawing process is analysed
in term of stress and strain �elds and energies.

The last chapter compiles the di�erent methods that were developed in the previous
chapters and the results that were obtained throughout this study. The goal is to try to
predict the formability limit that was experimentally found by means of �nite element
modelling.
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The objective of the introduction chapter is to present the general context of this study
and to identify the di�erent issues. As a starter, the principle of the tube drawing process
is described and the di�erent parameters involved in the process are listed. The objective is
to have an insight into the issues that can be encountered during the process. In a second
part, all the phenomena at the basis of the drawing process are explained. This part deals
with material plasticity, friction, thermal aspects and fracture. Then, in a third part, all
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the mechanical approaches that enable to analyse the process are detailed. Some analytical
methods are brie�y introduced and the insight is put into the Finite Element Modelling.
A fourth part presents a major issue of metal forming industry, the metal formability.
Indeed, the major concern of industry is to form parts safely which means without fracture
occurrence. Finally, a test designed for the evaluation of mechanical properties of tubular
materials is presented.

1.1 Tube drawing process

1.1.1 Introduction on tube drawing process

Cold tube drawing is a metalworking process used to produce high-quality seamless tubes
with precise dimensions and good surface �nish. Cold forming process compared to hot
forming has three main advantages: tubes have more precise dimensions because it is not
a�ected by thermal expansion, the surface �nish is better and the mechanical properties
are increased by strain hardening.
This introductory section �rst presents the di�erent drawing techniques that are commonly
used in the industry. Then the di�erent operations required to manufacture the end
product are explained.

1.1.1.1 Presentation of the different drawing processes

Cold tube drawing consists in reducing tube dimensions by pulling it through a die. There
are four types of tube drawing process. For each of them, the tube outer diameter is
calibrated by the die diameter. Their di�erence relies on the technique used for inner
diameter calibration. The four kinds of tube drawing are tube sinking, mandrel drawing,
�oating plug drawing and �xed plug drawing. For illustration, the reader might refer to
the �gure 1.1 where the di�erent kinds of tube drawing are shown. A brief explanation of
each technique and their respective advantages and drawbacks are detailed below.

ˆ Tube sinking consists in reducing the inner diameter with no tool inserted inside
the tube. The inner surface is free to deform, as a consequence, the surface �nish
is degraded. The advantage of this technique is that it can be used in continuous
drawing of coils.

ˆ In the mandrel drawing technique, the tube inner diameter is calibrated by a rod,
also named mandrel, which moves together with the tube. The advantage is the good
surface �nish which is obtained. There are two principal drawbacks associated to this
technique. First the drawn length is limited by the mandrel and the drawing bench
lengths. Literature reports length up to 30 m but at Minitubes the length is limited
to a maximum between 5 and 6 m. Second, it requires an additional operation to
remove the mandrel. This operation is called reeling. It induces dimensional changes
to unstick the tube from the mandrel and introduces surface defects.
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Figure 1.1: Four types of tube drawing (Yoshida and Furuya, 2004)

ˆ Floating plug drawing is also known as�oating mandrel drawing. It consists in
inserting a speci�cally designed short plug inside the tube. The plug is free to move
but stays located in the die vicinity due to friction forces between the mandrel and
the tube. This process enables to reach a good surface roughness both inside and
outside the tube. It can be used in continuous drawing of coils.

ˆ In the �xed plug drawing the plug is �xed at the end of a rod. This technique is
similar to the �oating plug drawing and enables to reach the best surface �nish.

1.1.1.2 Presentation of the drawing operations

Drawing a tube up to the wanted �nal dimensions requires several operations that are
detailed here.
The very �rst tube to be drawn is manufactured by successive forging, rolling and drilling.
This tube is called "ebauche". Starting from the ebauche to end up with the �nal product
requires di�erent successive drawing steps called passes. At each pass the tube is drawn to
a certain section and thickness reduction. Between two passes, the tube is annealed to
restore the material microstructure and ductility properties. The �nal passes are de�ned
according to mechanical and metallurgical characteristics that are required by the client
(ultimate tensile strength, yield strength, elongation, hardness, grain size). Finally, the
process is ended by a straightening step to correct the curvature the tube has developed
along the process. Figure 1.2 presents in a synthetic way an example of the operations
required to manufacture a classic product in Minitubes

The �rst passes are generally made by means of mandrel drawing, since the drawing
forces are high and a �oating plug could not undergo such forces. The last passes are made
on �oating plug drawing to reach precise �nal dimensions and surface �nish.
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Figure 1.2: Evolution of the tube dimensions throughout the drawing process and detail of
the manufacturing operations. ro and r i are the tube outer and inner radii respectively. A
stands for Annealing step andS stands for Straightening step

The bibliography is very rich for the study of wire drawing but less developed for
tube drawing. Nevertheless, both processes have common characteristics and some of the
studies concerning wire drawing can be expanded to tube drawing. In the following section,
various references concerning the wire drawing are cited but one has to keep in mind that
the observations transfer to the tube drawing process.

1.1.2 Process parameters

The de�nition of a drawing pass requires to adjust di�erent parameters. The section below
enumerates the principal process parameters.

ˆ The section and thickness reductions : ideally they should be the highest possible
to limit the number of drawing passes. The �rst consequence of their increases is
the increase of the drawing force. But the latter must not reach the bench limit
capacity. Moreover the section and thickness reductions induce variations of plastic
strain imposed to the material. Thus, the additional deformation necessary for the
reeling step, which is compulsory after a mandrel drawing pass, may be greater. As
a consequence, in this case, the risk of deteriorating tube dimensions and aspect
during reeling is increased.

ˆ The die geometry including the die angle, the bearing length, the entry radius. the
di�erent die geometrical characteristics are detailed in �gure 1.3. The die angle is the
most critical parameter. It has a strong in�uence on the drawing force (Wistreich,
1955; Belandet al., 2011). First, it induces variations of the work of friction. Second,
it in�uences the redundant plastic work of deformation (Aguilar et al., 2002). The
redundant deformation is a radial strain heterogeneity due to localised shear and
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tensile strains (Sadoket al., 1994b) which do not contribute to the section reduction.
It is the cause of the loss of the cylinder shape of the tube after drawing. An example
illustrating the tube deformation is shown in �gure 1.4. Redundant deformation
appears as a deformation with an angle� positive at the tube extremity. The
redundant deformation can be characterised by a redundant deformation factor�
which is the ratio of the average e�ective strain in the cross section of the material
� avg on the homogeneous strain imposed in the drawing process� h : � = � avg

� h
. The

factor � depends only on the die semi-angle� and on the section reduction of the pass
RedS (Chin and Steif, 1995; Aguilar et al., 2002). Thus, it is common to compute a
parameter � to combine both parameters. It can be expressed in di�erent manners
according to di�erent authors but the numerical results di�er little. As an example,
Atkins and Caddel (1968) de�ned the � parameter as:

1 +
p

1 � RedS
1 �

p
1 � RedS

sin � (1.1)

And Backofen (1972) de�ned the � parameter as:

� =
�

RedS
(1 �

p
1 � RedS)2 (1.2)

Beland et al. (2011) analysed the in�uence of the die angle on the drawing force and
revealed that an optimum die angle exists leading to a minimum drawing force. An
example of the evolution of the experimental drawing force as a function of the die
angle is shown in �gure 1.5. But the drawing force must not be the only criterion to
select a die angle. Indeed, die angle has a strong e�ect on the level of residual stress
in the tube after drawing. Residual stresses are directly linked to the inhomogeneous
deformation (redundant deformation). Depending on the application of the �nal
product, residual stresses can in�uence the mechanical behaviour and the durability.
For example, concerning wires, tensile residual stress at the wire surface can cause
stress corrosion cracking and reduce the service time of the product (Eliceset al.,
2004; Överstam, 2006). Die angle is not the only responsible for the presence of
residual stresses, one can also mention the heat generated during the process (Lee
et al., 2012). The phenomenon of heat generation is addressed in a further part.
Finally, the die angle can in�uence the material properties: de Castroet al. (1996)
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Figure 1.5: In�uence of the die angle on the experimental drawing force during wire
drawing (Beland et al., 2011)

performed tensile tests on wires drawn with the same reduction and di�erent die
angles and found that the yield and tensile strength increase with die angle.

ˆ The drawing speed : it can in�uence the friction and the material behaviour if the
material behaviour is viscoplastic.

ˆ The lubrication : its role is to reduce friction between the tube and the drawing tools.
It enables to prevent the occurrence of surface defects like scratches or wrenching. It
is also a vector for heat extraction produced by plastic deformation and friction. The
lubrication is dependent on the amount of lubricant, the nature of the contacting
materials, their roughness, the sliding speed, the temperature and the pressure.

All the above detailed parameters have to be analysed to understand and to optimize
the process. Moreover, they have a direct in�uence on the di�erent mechanical and thermal
phenomena that take place during the process. Next paragraph explains in a more detailed
way the mechanical and thermal phenomena encountered during tube drawing.
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1.2 Phenomena to be modelled

Tube drawing like any other metal forming process involves di�erent phenomena that must
be taken into account in a modelling. First, during forming, the material deforms in a
irreversible way due to plastic deformation. Second, the material interacts with tools and
the respective sliding of contacting materials causes friction. Finally, when a material
plastically deforms and when there is friction between two materials, heat is generated. The
generated heat then transfers to the contacting parts and to the surrounding environment.
This part will be devoted to the description of the three phenomena to be modelled in
metal forming process:

ˆ plasticity;

ˆ friction;

ˆ heat generation and thermal exchanges.

1.2.1 Plasticity

Metal forming is possible because of the material plasticity properties which is the ability
of a material to undergo non-reversible deformations. The physical mechanism which is
behind plastic deformation is the motion of dislocations. A dislocation is a linear defect
corresponding to a discontinuity in the crystal organisation. The strain hardening is due
to the accumulation of dislocations within the grains of a polycrystalline material. The
dislocations can form di�erent substructures depending on the nature of the material.
Strain hardening is also due to the evolution of crystallographic texture. During plastic
deformation, the tendency of the grains is to rotate towards more stable orientations and
as a consequence, material hardening behaviour is modi�ed.
Plasticity can be described by phenomenological models or by physically based ones. Phe-
nomenological models are already implemented in FEM codes or can be easily implemented,
and thus, they are convenient for industrial applications. Physical models are based on
the theory of crystalline plasticity or on micromechanics. Models based on the crystal
plasticity take into account the grain shape, the movement of dislocations within grains
and the rotation of individual grains (Kalidindi and Schoenfeld, 2000; Van Houtte et al.,
2002; Delannayet al., 2006; Li et al., 2008). All the physical phenomena at the origin of
plastic deformation are modelled. Thus, the evolution of material anisotropy is naturally
modelled.
Micromechanically-based models like self-consistent models also enable to take into account
the material microstructure evolution on the mechanical behaviour of bulk materials. These
models are coupled with the Hall-Petch relationship which models the strengthening due
to the grain size and grain boundaries. Self consistent are upgradable as they can be
coupled with di�erent local constitutive behaviour associated with grains in order to analyse
microstructural e�ects such as grain size, crystallographic texture, grain boundary, porosity
and damage. Buiet al. (2013) list a number of studies dealing with the above mentioned
phenomena. As an example, Seguradoet al. (2012) predicted the mechanical behaviour and
the development of material texture during deformation. They implemented a viscoplastic
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self consistent model in an UMAT subroutine. A UMAT is a subroutine that enables to
model a user-de�ned mechanical material behaviour in Abaqus. The originality of their
work is that they considered each integration point as a crystal with a given initial texture
and followed texture evolution with deformation. But the main drawback of seft-consistent
model combined with Hall-Petch only is that the strengthening due to dislocation density
is neglected (Kapooret al., 2010). Bui et al. (2013) developed a model to �ll this gap.
They modelled the strengthening due to both grain boundaries and substructures formed
by dislocations and could predict the mechanical behaviour of cold drawn aluminium
tubes up to various cross sectional reductions. The use of such models that enable to
take into account the evolution of mechanical properties with deformation is important in
the case of successive deformations analysis. For example, Karnezis and Farrugia (1998)
analysed tube drawing by means of FEM and came to the conclusion that a two-pass tube
drawing could be turned into a single pass. Buiet al. (2013) pointed out that Karnezis and
Farrugia (1998) used the same phenomenological constitutive equation to study the two
successive drawing passes and that, in this way, they did not take into account the change
of mechanical properties of the tube after the �rst pass. They considered the mechanical
properties of the tube being drawn at the second pass to be identical to the initial tube.
As a comparison, Bui et al. (2011a) showed that a 36% section reduction of an aluminium
tube caused the yield strength of the drawn tube to be three times higher than the initial
tube and the elongation to be divided by four.
The main drawback of these models is that they require greater computational time and
as a consequence they are less convenient for industrial applications.
Finally, phenomenological models are at the basis of this work due to their implementation
into FEM codes and because of their ability to model material behaviour correctly.
In a general way, phenomenological models are based on the de�nition of di�erent consti-
tutive equations that are detailed in the following section.

1.2.1.1 Plastic constitutive equations

Plasticity is commonly described by three constitutive equations which are a yield condition,
a �ow rule and a hardening law.

ˆ The yield condition is described following a yield function which de�nes a surface in
the stress space corresponding to the elastic limit and the transition to the plastic
deformation. Its mathematical expression describes the shape of the yield surface.

ˆ The �ow rule relates the stress and strain components and their time derivatives, it
gives the plastic strain rate.

ˆ The hardening law describes the evolution of the yield surface during deformation in
terms of expansion and translation.

Each of the above mentioned constitutive equations is detailed in this section.
Before presenting the constitutive equations it is necessary to de�ne two categories of
material behaviour: isotropic and anisotropic. A polycrystalline material is a solid com-
posed of grains of di�erent size and orientation. A material whose crystals are oriented
in random directions exhibits the same mechanical properties in every loading directions.
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This material is said isotropic. On the contrary a material composed of directed grains
exhibits properties that depend on the testing direction. This material is said anisotropic.
Thus, constitutive equations can be classi�ed into two categories depending on whether
the material is isotropic or anisotropic.

1.2.1.1.1 Isotropic yield functions

The oldest isotropic yield function are the Tresca (1864) and the quadratic Von Mises
(1913) yield criteria. Their respective expressions in the principal basis are the following:

Tresca : f =
1
2

max(� i � � j ) �
� 0

2
(1.3)

and
Von Mises : f =

1
2

q
(� 1 � � 2)2 + ( � 2 � � 3)2 + ( � 3 � � 1)2 � � 0 (1.4)

� i and � j are principal stresses withi and j equals to (1, 2 ,3). Tresca expresses that
yielding occurs when the maximum shear stress reaches a constant critical value.� 0 is the
yield stress in uniaxial tension.

Later Hosford (1972) extended the Von Mises yield criterion to a non-quadratic criterion
based on polycrystal plasticity:

f =
1
2

�
j� 2 � � 3jn + j� 3 � � 1jn + j� 1 � � 2jn )

� 1
n � � 0 (1.5)

where n is a material parameter which is dependent upon the crystalline structure: for
body-centered cubic (bcc) materials,n = 6 and for face-centered cubic (fcc) materials,
n = 8 . Taking n = 2 returns the Von Mises expression.

1.2.1.1.2 Anisotropic yield functions

In some metal forming processes, materials are deformed in preferred directions. The
consideration of material anisotropic behaviour is crucial to study any material forming
process.
As an example, in wire drawing, the wire is drawn in the axial direction several times. As a
result, the �nal product exhibits mechanical properties variations depending on the direction
of deformation. For example, Masséet al. (2011) showed anisotropy evolution throughout
the cold wire drawing process. Their method to highlight material anisotropy was to study
the ovalisation of small cylindrical samples cut from the wires under compression tests as
shown in �gure 1.6. Anisotropy appeared as an easier �ow in the radial direction compared
to the axial direction (the axial direction corresponding to the drawing direction).
Lopeset al. (2003) observed a decrease of 30% of uniform elongation between the rolling
directions and the 45� directions during tensile tests of aluminum alloy sheet samples. As
a consequence when parts are formed from metallic sheets by deep drawing or stamping,
the plastic �ow localization and fracture depend on the direction of deformation. Such
variations are due to the fact that the initial sheet used in drawing or stamping was
produced by rolling. During the rolling process, the material was deformed in preferred
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Figure 1.6: scheme of the compression sampling and compression tests (Masséet al., 2011)

Direction of rolling  

Figure 1.7: Example of grain elongation with reduction during sheet rolling (Park, 1999)

directions and anisotropy was induced. As a result the initial sheet showed anisotropic
properties.
As a consequence, when forming materials, it is essential to know the whole deformation
history in order to evaluate the material behaviour and to be able to model it with the
appropriate constitutive equations. In order to explain the anisotropic behaviour, the
material should be analysed at the microscopic scale.
The plastic anisotropy in metal is due to preferred orientations of grains (crystallographic
texture) and dislocation microstructures (Hiwatashi et al., 1998). In the particular case
of metal forming, the favoured orientation is induced by the plastic deformation that
takes place in preferred directions. Park (1999) showed aluminium sheet micrographies
after di�erent successive rolling passes and the grain alignment in the direction of rolling
appeared clearly as it can be seen in �gure 1.7. Pole �gures also revealed that a texture
was developing during the process. Buiet al. (2011b) also observed a grain re�nement and
elongation with increasing section reduction in �xed plug drawing.
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Some forming processes can produce complex textures such as gradient of texture in
the thickness of the formed part. As an example, Park (1999) and Choet al. (2006) showed
that a gradient of texture was developing in the part thickness during cold sheet rolling and
cold wire drawing respectively. Shear strain is said to be responsible for these variations.
Indeed, Cho et al. (2006) found the shear strain to increase with the distance from the
center line and found a gradient of texture between the center and the wire surface. Park
(1999) noticed that friction at the sheet/roll interface during sheet rolling was causing
shear deformation and as a consequence, the developed texture varied between the middle
and the sheet surface.
As mentioned above, the forming process can induce anisotropic properties, thus, it is
important to consider material anisotropy. The following paragraph lists anisotropic yield
criteria proposed throughout the years.
The �rst anisotropic yield criterion was introduced by Hill (1948). Hill modi�ed the Von
Mises quadratic yield criterion by introducing coe�cients to describe the plastic �ow
direction dependency. Hill's expression is valid for orthogonal anisotropy and writes:

f = [ F (� 22 � � 33)2 + G(� 33 � � 11)2 + H (� 11 � � 22)2 +2L� 23 +2M� 31 +2N� 12] = � 2
0 (1.6)

where � ij are the components of the Cauchy stress tensor andF , G, H , L , M and N are
materials parameters. In the case of plane stress (� 33 = � 13 = � 23 = 0 ) the quadratic
Hill yield criterion can be expressed as a function of the Lankford coe�cients r0 and r90

which are the ratio of the width to the thickness strains r i = � width
� thickness

. The strains are
measured during tensile tests in0� and 90� with respect to the rolling or drawing direction
respectively. The yield criterion expression then turns:

f = � 2
1 +

r0(1 + r90)
r90(1 + r0)

� 2
2 �

2r0

1 + r0
� 1� 2 = � 2

0 (1.7)

where � 1 and � 2 are the principal stresses whose directions are aligned with the axis of
anisotropy. � 1 is aligned with the rolling or drawing direction and � 2 is perpendicular.
This criterion was extensively used in di�erent studies and led to good results (Liaoet al.,
1997; Zanget al., 2011).
Afterwards, Hill generalized his own criterion (Hill, 1979) by introducing an anisotropy
exponent m. Hill (1979) anisotropic yield criterion expresses in the space of principal
stress:

f = [ F j� 2 � � 3jm + Gj� 3 � � 1jm + H j� 1 � � 2jm +

L j2� 1 � � 2 � � 3jm + M j2� 2 � � 3 � � 1jm + N j2� 3 � � 1 � � 2jm ] = � m
0 (1.8)

with � 1, � 2 and � 3 the principal stresses.
Hosford (1979) de�ned another yield criterion whose expression is similar to Hill (1979)
and writes:

f = F j� 2 � � 3jm + Gj� 3 � � 1jm + H j� 1 � � 2jm = 2 � m (1.9)

where F , G and H are material constants,m = 6 for bcc (body-centered cubic) materials
and m = 8 for fcc (face-centered cubic) materials. Even though Hill (1979) and Hosford
(1979) expressions are similar, they di�er in the fact that for Hill (1979) the m exponent
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is dependent on the anisotropicr values while it is independent in the case of Hosford
(1979). Both Hill and Hosford non-quadratic anisotropic yield criteria are valid for
planar/orthotropic anisotropy, when the directions of the principal stresses are superposed
with the anisotropy axes. Their drawback is that they do not involve shear stresses. As a
consequence, they cannot model the yield stress when the anisotropy axes do not coincide
with the principal stress axes. Barlat and Lian (1989) introduced a new criterion to
complete this limitation and de�ned a yield function which takes into account the shear
stresses. Barlat and Lian (1989) yield function writes:

f = ajK 1 + K 2jm + ajK 1 � K 2jm + cj2K 2jm = 2 � m
s (1.10)

with K 1 and K 2 de�ned as:

K 1 =
� 11 + h� 22

2
and K 2 =

vu
u
u
t

 
� 11 � h� 22

2

! 2

+ ( p� 12)2 (1.11)

where a; c; h and p are the anisotropy coe�cients and m is a non quadratic exponent
depending on the material crystallographic structure as for Hosford (1979). In the special
case of metal forming,11 and 22 refer to the rolling or drawing directions and to the
perpendicular to the rolling or drawing directions respectively.
As Barlat and Lian (1989) criterion includes the shear stress component, it can be used in
cases were the anisotropy axes do not coincide with the stress axes. Nevertheless, this yield
criterion is limited to plane stress problem. In order to solve three dimensional stress state
problems, Barlat et al. (1991) proposed another yield criterion named Yld91 and extended
the isotropic Hosford (1972) yield criterion to anisotropy by introducing a modi�ed stress
tensor ~� obtained from a linear transformation of the Cauchy stress tensor� :

~� = M � (1.12)

where M if a 4th-order tensor which due to the symmetry of the stress tensor can be
reduced to a 6 � 6 matrix. In the case of an isotropic material, M reduces to the unit
tensor. If the plastic behaviour is pressure independent, the stress deviators can be used
instead of the stress tensor. Similarly to the stress tensor, a modi�ed stress deviator~s can
be introduced by linear transformation of the stress deviators:

~s = Cs = CT � = L � (1.13)

whereC and L are fourth order tensors containing the anisotropy coe�cients. T enables to
transform the stress tensor� into the deviatoric stress tensors. In the case of orthotropic
materials, the matrix of linear transformation writes:

L =
1
3

0

B
B
B
B
B
B
B
B
B
@

b+ c � c � b 0 0 0
� c c+ a � a 0 0 0
� b � a a + b 0 0 0
0 0 0 3f 0 0
0 0 0 0 3g 0
0 0 0 0 0 3h

1

C
C
C
C
C
C
C
C
C
A

(1.14)
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where a; b; c; f; g; h are six independent coe�cients characterising anisotropy. The Yld91
yield criterion then writes:

f = j~s2 � ~s3jm + j~s3 � ~s1jm + j~s1 � ~s2jm = 2 � m (1.15)

Barlat et al. (1991) can be expressed in another form such as:

f =
�
2
q

H 2
1 + H2

� m h�
�
� cos

� �
3

�
� cos

� � � 2�
3

� �
�
�
m

+
�
�
� cos

� � � 2�
3

�
� cos

� � + 2 �
3

� �
�
�
m

+
�
�
� cos

� � + 2 �
3

�
� cos

� �
3

� �
�
�
m

= 2 � m (1.16)

with,

� = arccos
� q

p3=2

�
; 0 6 � 6 � (1.17)

p = H 2
1 + H2 (1.18)

q = (2 H 3
1 + 3H1H2 + 2H3)=2 (1.19)

and H1, H2 and H3 are the invariants of the transformed stress deviator:

H1 = (~s11 + ~s22 + ~s33)=3 (1.20)

H2 = (~s2
23 + ~s2

31 + ~s2
12 � ~s22~s33 � ~s33~s11 � ~s11~s22)=3 (1.21)

H3 = (2~s23~s31~s12 + ~s11~s22~s33 � ~s11~s2
23 � ~s22~s2

33 � ~s33~s2
12)=2 (1.22)

Barlat et al. (1991) revealed that this criterion could predict the uniaxial tensile yield stress
in di�erent directions but the accuracy was lower in the case of the Lankford coe�cient
prediction. Thus to improve predictions accuracy, Barlat et al. (2003) in 2000 proposed
a new criterion called Yld2000-2d. This criterion is limited to plane stress state. Its
expression is based on Hosford (1972)(1.5) isotropic criterion which is expressed as a
function of the principal values of the stress deviator. Hosford (1972) yield function reduces
to:

f = f 0+ f 00= 2 � m where f 0 = js1 � s2jm and f 00= j2s2 + s1jm + j2s1 + s2jm (1.23)

The expressions off 0 and f 00were transformed and expressed in terms of linear transfor-
mations of the stress deviator:

f 0 = j~s0
1 � ~s0

2jm and f 00= j2~s00
2 + ~s00

1jm + j2~s00
1 + ~s00

2jm (1.24)

where ~s0
1, ~s0

2 and ~s00
1, ~s00

2 are the principal values of the transformed stress deviators~s0 and
~s00respectively such as:

~s0 = C0s = C0T � = L 0� (1.25)

~s00= C00s = C00T � = L 00� (1.26)

Finally, the linearly transformed stress deviators can be written in a matrix form as:

~s0 �

0

B
B
@

~s0
11

~s0
22

~s0
12

1

C
C
A =

0

B
B
@

C0
11 C0

12 0
C0

21 C0
22 0

0 0 C0
66

1

C
C
A

0

B
B
@

~s11

~s22

~s12

1

C
C
A ; ~s00�

0

B
B
@

~s00
11

~s00
22

~s00
12

1

C
C
A =

0

B
B
@

C00
11 C00

12 0
C00

21 C00
22 0

0 0 C00
66

1

C
C
A

0

B
B
@

~s11

~s22

~s12

1

C
C
A

(1.27)
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As a result, ten coe�cients are necessary to describe plastic anisotropy. The procedure for
parameters identi�cation was given in Barlat et al. (2003). Nevertheless the Yld2000-2d
criterion is limited to plane stress problems.
In order to solve three dimensions problems Barlatet al. (2005) proposed a new criterion
named Yld2004-18p based on the combination of two linear transformations of the stress
deviator. The expression of Yld2004-18p yield function is the following:

f = f (~s0;~s00) = j~s0
1 � ~s00

1jm + j~s0
1 � ~s00

2jm + j~s0
1 � ~s00

3jm + j~s0
2 � ~s00

1jm + j~s0
2 � ~s00

2jm

+ j~s0
2 � ~s00

3jm + j~s0
3 � ~s00

1jm + j~s0
3 � ~s00

2jm + j~s0
3 � ~s00

3jm (1.28)

The di�erent linear transformations applied to the stress deviators ~s0 and ~s00are:

C0 =

0

B
B
B
B
B
B
B
B
B
@

0 � c0
12 � c0

13 0 0 0
� c0

21 0 � c0
23 0 0 0

� c0
31 � c0

32 0 0 0 0
0 0 0 c0

44 0 0
0 0 0 0 c0

55 0
0 0 0 0 0 c0

66

1

C
C
C
C
C
C
C
C
C
A

and C00=

0

B
B
B
B
B
B
B
B
B
@

0 � c00
12 � c00

13 0 0 0
� c00

21 0 � c00
23 0 0 0

� c00
31 � c00

32 0 0 0 0
0 0 0 c00

44 0 0
0 0 0 0 c00

55 0
0 0 0 0 0 c00

66

1

C
C
C
C
C
C
C
C
C
A

(1.29)
In this case, the identi�cation of the anisotropic coe�cients requires a large number of
experimental data such as uniaxial tensile test in seven directions between the rolling or
drawing and the transverse directions and biaxial tests (Barlatet al., 2005). Yld2004-18p
criterion was implemented by Yoon et al. (2006) in the FEM of cup drawing of a circular
blank sheet and they successfully predicted the the cup heigh pro�le. They also showed
the improved accuracy of Yld2004-18p compared to Yld96.

1.2.1.1.3 Flow rule

The �ow rule gives the direction of the plastic strain rate and writes:

_� p
ij = d�

@g
@�ij

(1.30)

where _� p
ij are the plastic strain rate components,d� a scalar coe�cient and g the dissipative

potential. This equation is called the non-associative �ow rule as the dissipative potential
g is di�erent from the yield function. In the case where the yield function f is taken as
the dissipative plastic potential, it is called the associated �ow rule and writes:

_� p
ij = d�

@f
@�ij

(1.31)

1.2.1.1.4 Hardening constitutive equations

The concern of the previous paragraph was to present the yield functions de�ning the
elastic limit. The study of material mechanical properties relies also on the formulation
of hardening law that de�nes the evolution of the yield surface during deformation. The
present paragraph is devoted to the presentation of the hardening laws.
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Di�erent material models can describe the work-hardening behaviour. The Hollomon's
equation writes:

�� = K �� n
p (1.32)

where �� is the equivalent �ow stress, K is the strength index, �� p is the equivalent plastic
strain and n is the strain hardening exponent. Ludwik's equation is generally preferred
since it includes the yield stress� 0:

�� = � 0 + K �� n
p (1.33)

Voce law takes into account the variation of strain hardening exponent stating that the
yield stress � 0 approaches a saturation value� s. The expression of the Voce law is the
following:

�� = � s � (� s � � 0) exp(� � �� )) (1.34)

with � a dimensionless material parameter. Finally the Swift law can be used in the case
of pre-strained materials as it is expressed as a function of a initial pre-strain�� 0.

�� = C(�� 0 + �� p)n (1.35)

The above expressions can be used in the case of both strain rate and temperature
independent materials.

1.2.1.2 Viscoplastic constitutive equations

Other functions were developped to model visco-plastic materials behaviour. A comparative
study of the di�erent �ow stress models was made by Banerjee (2007). In a general way,
Johnson-Cook model is the most widely used. The Johnson-Cook model (Johnson and
Cook, 1983) is an empirical relationship for the �ow stress�� which is described by:

�� = ( A + B �� n
p )

�
1 + C ln

� �_�p
�_�0

���
1 � T � m

�
with T � =

� T � T0

Tm � T0

�
(1.36)

with �� p the equivalent plastic strain, �_�p the plastic strain rate, �_�0 the reference plastic strain
rate, A the yield stress,B the pre-exponential factor, n the work-hardening coe�cient,
C the strain rate sensitivity factor, T is the temperature of the material, Tm the melting
temperature, T0 the reference temperature andm the thermal softening exponent.

1.2.1.3 Residual stresses

Tube drawing induces residual stresses in the tube. These stresses are not visible at
�rst sight but it can be of importance to evaluate their presence for speci�c applications.
There exist di�erent methods to measure residual stresses in the tube: destructive and
non-destructive ones. Non-destructive methods are X-ray di�raction or neutron di�raction.
In destructive methods stresses are released by doing a cut and the associated deformation
is measured. Figure 1.8 shows an example of drawn tube that was cut to release the
residual stresses. Kubokiet al. (2008) computed the released stresses from the deformed
tube geometry by measuring the circumferential expansionS and the radial expansion
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Figure 1.8: Example of residual stress release by means of a destructive method (Kuboki
et al., 2008)

� that are shown in �gure 1.8. Figure 1.9 illustrates the process leading to the presence
of residual stresses and the deformation which is induced by their release. Figure 1.9(a)
shows that inner and outer surfaces are successively loaded and unloaded up to di�erent
stress levels. The outer surface is unloaded and kept in an axial tensile state while the
inner surface is unloaded and remained in an axial compressive state (�g.1.9(b)). The �nal
state shown in �gure 1.9(a) is taken as the initial state shown in �gure 1.9(c) and the
stresses are released. Outer surface stresses release leads to a negative axial strain while
inner surface stresses release leads to a positive axial strain. As a consequence, tube outer
surface shortens and the inner surface extends conducting to the deformed shape observed
in �gure 1.8.
Drawing methods (�xed plug drawing, mandrel drawing, tube sinking) lead to di�erent
levels of residual stresses (Yoshida and Furuya, 2004). Kubokiet al. (2008) showed that
�oating plug drawing compared to tube sinking could lower residual stresses. Photographies
of the drawn tube can be seen in �gure 1.8. In this �gure, the tubes were cut to release the
stresses, it is clear that the tube drawn with a �oating plug deforms less which is the proof
that the amount of residual stresses is lower in this case. Karnezis and Farrugia (1998)
showed that turning a two-passes mandrel drawing process into a single-pass one to reach
the same �nal tube dimensions could lower the residual stresses in the tube.
The residual stresses that can be present in tubes after drawing is a complex phenomenon
that was not analysed in this study.

1.2.2 Friction

Friction depends on several parameters such as the sliding speed, the contact normal
pressure, the material roughness and the properties of contacting materials, the nature and
the amount of lubricant and the temperature. These parameters are delicate to characterize
in the forming process and thus they are di�cult to reproduce in experimental test. Some
authors studied the in�uence of the process and the materials parameters on the friction
coe�cient. Their conclusions are based on a �at-die test. This test consists in compressing
a pre-lubricated sheet of material between two �at dies and drawing the sheet horizontally.
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Figure 1.9: Explanation of the tube deformation due to the release of residual stresses

The normal load and the drawing speed are measured and controlled throughout the test.
The conclusions of various studies are the following:

ˆ the friction coe�cient decreases with increasing sliding velocity (Nakamura et al.,
1988; Kosanovet al., 2006; Szakaly and Lenard, 2010);

ˆ the friction coe�cient decreases with increasing normal contact pressure (Nakamura
et al., 1988; Emmens, 1997; Kosanovet al., 2006; Szakaly and Lenard, 2010). Maet al.
(2010) developed a pressure dependent friction model based on the plastic deformation
of surface asperities. Any surface which looks �at in appearance presents irregularities
at the micro or nano scale: protrusions and depressions. When two irregular surfaces
contact, and when the normal contact pressure increases, irregularities plastically
deform and increase the friction surface which has a consequence on the apparent
friction coe�cient. For more information, the reader might refer to Szakaly and
Lenard (2010) where the mechanism of lubrication is detailed;

ˆ the friction coe�cient increases with increasing material roughness (Emmens, 1997;
Kosanov et al., 2006; Szakaly and Lenard, 2010);

ˆ the friction coe�cient decreases with the thickness of the lubricant �lm, i.e. the
amount of lubricant (Nakamura et al., 1988; Emmens, 1997);

ˆ the friction coe�cient varies with the nature of the materials, harder tool materials
induce lower friction coe�cients (Szakaly and Lenard, 2010);

ˆ the friction coe�cient depends on the nature of the lubricant (Majzoobi et al., 2008)
and its viscosity (Kosanov et al., 2006);
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ˆ the friction coe�cient depends on the temperature and the evolution of the friction
coe�cient with temperature can be described by a power law (Haddi et al., 2011):

�
� 0

= �
�

T
T0

� m

(1.37)

where � is the friction coe�cient at the temperature T, � 0 is the friction coe�cient
at the reference temperatureT0 and m and � are parameters.

The di�erent studies that were listed above reveal the complexity of the frictional behaviour.
The purpose of this study is not tribology but the concern is to identify a single friction
coe�cient value in order to use it as an input data into the tube drawing model. Thus, it is
fundamental to identify a friction coe�cient corresponding to the exact friction condition
during tube drawing. Next section presents di�erent experimental methods for friction
characterisation.

1.2.2.1 Tests for friction coef�cient characterisation

The experimental characterisation of the friction coe�cient is complex. Some experimental
tests were developed in order to evaluate the friction coe�cient but their validity is
uncertain as the tests are more or less representative of the experimental forming process.
Lazzarotto et al. (1997) developed an experimental device to identify the friction coe�cient
in cold wire drawing. The as-developed upsetting sliding test consists in two parts extracted
from real workpieces (a wire and an indenter) that are sliding relative to each other. The
wire is �xed in a specimen stand linked to a tensile test machine. The indenter penetrates
into the wire with a normal force Fn and slides on the wire with a sliding velocityv equal to
the drawing process one. During the test, the wire is plastically deformed by the indenter
and the normal and tangential forcesFn and Ft are recorded. The friction coe�cient is
expressed as a function of the radial spring-back of the wire behind the indenter� , the
penetration depth p, the contact length q and the measured normal and tangential forces.
The expression is the following:

� =
� � p + qA

q � (� � p)A
with A =

Ft

Fn
(1.38)

Then Lazzarotto et al. (1997) introduced the as-determined friction coe�cient in the Finite
Element Modelling (FEM) of the wire drawing and found a relative error of 1% between
the experimental and numerical drawing forces.

Vollertsen and Plancak (2002) present a push through test which is widely used for
friction coe�cient identi�cation in the tube hydroforming process. A picture describing
the test principle is presented in �gure 1.11. In this method, a tube is expanded by an
internal pressure against the tool. The tube is then pushed through the tool at a constant
speed. As the tube slides inside the tool, a friction force is generated. It can be measured
as a di�erence between the punch forcesF1 and F2 or as a resulting force on the toolFR .
The friction coe�cient is then obtained from the ratio of the measured friction force on
the nominal contact force which is the contact area times the internal pressure.

More recently, Vollertsen and Plancak (2002) developed a new test for friction coe�cient
identi�cation considering plastic deformation. The test is called tube upsetting test and is
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Figure 1.10: Design of the experimental sliding test and mechanical analysis (Lazzarotto
et al., 1997)

Figure 1.11: Example of the push through test for friction coe�cient identi�cation (Vollert-
sen and Plancak, 2002)
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Figure 1.12: Example of the tube upsetting test for friction coe�cient identi�cation
(Vollertsen and Plancak, 2002)

presented in �gure 1.12. It consists in upsetting a tube in a closed die while applying a
internal pressure causing plastic deformation of the tube wall. The wall thickness then
increases non-homogeneously due to the friction forces. The friction coe�cient is then
determined from the geometry of the tube wall with the help of analytical solutions or
FEM.
The main purpose of the friction coe�cient identi�cation is to insert the identi�ed values
into a FEM. Next section introduces the main friction models that are currently used in
contact modelling.

1.2.2.2 Friction model

There are two principal friction laws that are widely used to model the sliding behaviour
between two contacting materials: the Coulomb and the Tresca models. To explain both
models, it is convenient to de�ne a contact between two rigid bodies A and B, sliding
on each other at a velocity �! v s. Two stresses components act at the interface: a normal
contact stress� n and a shear contact stress� t which is tangent to the surface (�g.1.13).
The general expression of the Coulomb friction model is:

� t � �� n (1.39)

with � the friction coe�cient. The model de�nes a condition for sticking when � t < �� n

and a condition for sliding when � t = �� n . The general expression for the Tresca friction
model is:

� t � g (1.40)

with g a sliding threshold. g is a constant and expresses asg = m � 0p
3

with m the Tresca
friction coe�cient. This model states that when � t < g then the contact sticks and when
� t = g sliding occurs.
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Figure 1.13: Description of a frictional contact

1.2.2.3 Examples of friction coef�cient

This section lists di�erent examples of friction coe�cient of a Coulomb model identi�ed
and used by di�erent authors:

Reference Process studied Identi�cation method �

Majzoobi et al. (2008) Wire drawing FEM and analytical methods 0.035 to 0.15

Szakaly and Lenard (2010) - Experimental �at die tests 0.1 to 0.2

Karnezis and Farrugia (1998) Mandrel tube drawing Not mentioned 0.06

Yoshida and Furuya (2004) Floating plug drawing Not mentioned 0.1

Beland et al. (2011) Fixed plug drawing Not mentioned 0.035

Kuboki et al. (2008) Floating plug drawing Not mentioned 0.05

Table 1.1: Examples of used friction coe�cient in di�erent studies

Majzoobi et al. (2008) presented a range of friction coe�cients depending on the nature
of the lubricant. Szakaly and Lenard (2010) carried out a study to evaluate the e�ect of
the normal contact pressure, the sliding speed, the nature of the contacting materials and
the material roughness on the friction coe�cient. In a general way, the range of friction
coe�cient used by di�erent authors to study wire or tube drawing goes from 0.035 to 0.2
depending on the contacting materials, sliding speed, contact pressure and lubricant. Thus
any study involving friction should be fed with a friction coe�cient speci�cally identi�ed
to ensure its validity.

1.2.3 Heat generation and transfer

Plastic deformation of metal induces heat generation. In the particular case of metal
forming processes, plastic deformation is imposed by tools, and the relative friction between
the part to be formed and the tools also induces heat generation. The generated heat then
transfers to the part, the tools and to the environment. This section deals with the thermal
aspects of metal forming. First, general basis of any thermal study is introduced. Then, in
a further paragraph, the focus is put on the heat generated by plastic deformation. Next
heat generated by friction is addressed and �nally, the di�erent heat exchange mechanisms
are detailed.
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1.2.3.1 Introduction

The basis of any thermal problem is the heat equation:

�C p
@T
@t

= _q + div(��!qcond) (1.41)

where � is the mass density,Cp the speci�c heat capacity, _q a volumetric heat source
and ��!qcond the conduction heat �ux vector. The right term of the above expression is the
combination of two components:

ˆ The �rst component, _q, corresponds to a volumetric heat source de�ned as the
thermal power per unit volume. In metal forming process, _q have two sources, plastic
deformation and friction.

ˆ The second component,��!qcond represents the heat conducted from other domains that
are in contact with the domain of interest. The heat �ux for conduction within a
body is de�ned according to the Fourier law which states that the local heat �ux
vector ��!qcond (Wm� 2) for an isotropic material is equal to the product of thermal
conductivity k (Wm� 1K � 1) and the negative local temperature gradient (Km � 1):

��!qcond = � k
��!
gradT (1.42)

1.2.3.2 Heat generated by plastic deformation

Mechanical energy used in cold working operations is converted both in heat and stored
energy. The stored energy also known as the stored energy of cold work is in fact due
to the creation or the rearrangement of crystal defects and the formation of dislocation
structures.
The fraction of energy converted into heat is identi�ed by the Taylor-Quinney coe�cient �
(Taylor and Quinney, 1933). � is equal to the ratio of the thermoplastic heating _Qp = � _W p

on the plastic work rate _W p = trace(� _� p). Thus _q in equation 1.41 can be replaced by:

_q = � trace(� _� p) (1.43)

It is commonly admitted that � is a constant parameter bounded to the range [0.8,1]
for most metals (Ravichandran et al., 2001). Mason et al. (1994) and Rosakiset al.
(2000) investigated the assumption that � was a constant parameter and they found that
the measurement of� varied considerably as a function of the materials, the strain and
the strain rate. The risk of assuming a constant� is to introduce inaccuracies in the
thermomechanical process analysis. Macdougall (2000) lists the� values measured by
di�erent authors. Some of the referenced values are presented in table 1.2. Most of the
measurements of heat generation during a mechanical test are made by means of infrared
radiometry. Macdougall (2000) also reported that thermocouples and calorimetry could be
used but these devices were not fast enough and resulted in averaged� values such as the
values detailed for Kapoor and Nemat-Nasser (1998).

26



Material Test _� , s� 1 Max � � range � mean References

Steel (4340) Comp 3000 0.20 0.4 - 0.9 0.75 Masonet al. (1994)

Steel (mild) Tors 0.0003 1.2 0.87 - 0.93 0.90 Taylor and Quinney (1933)

Steel (1018) Comp 3000 0.56 0.80 Kapoor and Nemat-Nasser (1998)

Aluminium (2024) Comp 3000 0.33 0.5 - 0.9 0.80 Masonet al. (1994)

Aluminium (3061) Comp 3000 0.72 0.85 Kapoor and Nemat-Nasser (1998)

Table 1.2: Example of measured Taylor-Quinney coe�cients (Comp and Tors stand for
compression and torsion respectively)

More recently, Palengat (2009) computed an equivalent Taylor-Quinney coe�cient by
means of infrared measurements during tube tensile tests. Finally, Rusinek and Klepaczko
(2009) estimated the fraction of plastic work converted into heat for TRansformation
Induced Plasticity (TRIP) steels. This study is particular because added to the heat gener-
ated by plastic deformation, there are also heat variations due to the phase transformation
induced by plastic deformation.

1.2.3.3 Heat generated by friction

Two surfaces sliding on each other generate heat by friction. In most forming processes
the heat which is generated is just a consequence of the process and is not speci�cally
wanted. On the other hand, some processes use the heat generated by friction to assemble
materials. It is the case for friction welding or friction stir welding were friction takes place
at high speed. The power of frictionPf is de�ned as the product of the interfacial shear
stress� and the sliding speedjj �! vs jj :

Pf = � jj �! vs jj (1.44)

Only a part of this power is converted into heat and transmitted to the contacting
materials. Heat is then distributed between the contacting surfaces according to a heat
sharing coe�cient f . The other part of the power is involved into wear phenomenon.
Heat �uxes relative to a master qm and a slaveqs surfaces write:

qm = f �P f and qs = (1 � f )�P f (1.45)

with � the fraction of power of friction converted into heat.
The heat sharing coe�cient is traditionally de�ned as a function of the material thermal
e�usivity � according to Vernotte (1956). The material e�usivity expresses as function of
the density � , the speci�c heat capacity Cp and the thermal conductivity k:

� =
q

�C pk (1.46)

Vernotte (1956) de�nes the heat sharing coe�cient between two contacting materials as
follow:

f =
em

em + es
(1.47)

em and es correspond to the e�usivies of the materials corresponding to the master and
slave surface respectively.
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1.2.3.4 Surface thermal exchanges

Surface thermal exchanges can be divided into three distinct mechanisms: conduction,
convection and radiation.

Concerning the interfacial heat conduction, a temperature drop is often observed at the
interface between the two contacting surfaces. This phenomenon results from a thermal
contact resistance existing between the surfaces in contact. Then, the thermal heat �ux
�!qth between two contacting surfaces writes:

�!qth = k(Tm � Ts)�! n (1.48)

where k is the contact thermal conductance,Tm and Ts the temperature of the master and
slave surfaces respectively and�! n the normal to the body surface.
Convection is the transfer of heat by the movement of �uids: the transfer takes place
between a body and its environment. The heat �ux by convection (��!qconv) is described
according to the Newton cooling law which states that the heat loss of a body is proportional
to the di�erence in temperatures between the body and its surroundings:

��!qconv = h(T � T1 )�! n (1.49)

with h the heat tranfer coe�cient ( Wm� 2K � 1), T the temperature of the body and T1

the temperature of the environment, far from the body surface.
Radiation is the emission or absorption of electromagnetic radiation. The heat �ux by
radiation ( ��!qrad ) is described by the Stefan-Boltzmann law:

��!qrad = �� (T4 � T4
1 )�! n (1.50)

with � the material emissivity, � the Stefan-Boltzmann constant equal to5:67:10� 8Wm� 2K � 4,
T the temperature of the body and T1 the temperature of the environment.

1.2.3.5 Intermediate conclusion concerning thermal aspects

As detailed above, conducting a thermo-mechanical analysis of a metal forming process
leads to the consideration of di�erent thermal aspects. First, there are heat sources due to
plastic deformation and friction. Heat generated by plastic deformation is characterized
by a material property i.e. a Taylor-Quinney coe�cient � . Heat generated by friction is
characterized by a coe�cient � which links the amount of friction work converted into
heat and by a heat sharing coe�cient f which de�nes the amount of heat transferring to
the di�erent bodies. Second, there are surface heat exchanges in the form of conduction,
convection and radiation. All the heat exchange mechanisms are de�ned by the material
thermal properties. Conduction within the material and at an interface depends on
the material thermal conductivity and on the thermal contact conductance respectively.
Convection is function of a heat transfer coe�cient which depends on the surrounding
environment. Finally, the radiation is function of the material emissivity. Thus, thermal
and thermo-mechanical material properties and thermal contact properties have to be
identi�ed to carry on a thermo-mechanical analysis.
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1.3 Analysis of tube drawing

At Minitubes, the drawing passes are currently de�ned according to an empirical know-how.
In a perspective of optimizing the production time, the concern of formalizing the process
has grown. There are three techniques to conduct a process optimization study. First,
tests can be conducted on small scale laboratory drawing equipments and the results can
be transcribed at the industrial scale. Second, tests can be performed directly on the
industrial drawing bench. Compared to the �rst method, it requires the interruption of the
production and is more costly. Finally, the process can be modelled either by analytical
methods of by FEM which is the main concern of this study.
As they are less time and money consuming, the last category will be presented in this
section.

1.3.1 Analytical methods

Analytical methods are limited to the approximate expression of the drawing stress which
is the ratio of the drawing force on the �nal tube section.
Deformation during tube drawing can be decomposed into three di�erent components: the
homogeneous deformation which depends only on the reduction ratio, an inhomogenous
deformation also called redundant deformation linked to the geometrical parameters and
�nally the friction. Thus the work necessary for tube drawing can be written according to
the work balance as:

W = Wh + Wr + Wf (1.51)

with Wh the work of homogeneous deformation,Wr the work of redundant deformation
and Wf the work of friction. Three analytical methods with respective advantages and
drawbacks are detailed and compared in this part: the homogeneous deformation method,
the slab method and the upper bound method. These methods are presented in this order
as they were developed with increasing complexity. Indeed, the homogeneous deformation
method considersWh only, the slab method includesWf and the upper bound method
adds Wr

The presentation of the methods is limited to a brief introduction. The development of
the methods and their application to tube drawing and in the speci�c case of this study
will be detailed in chapter 4.

1.3.1.1 Homogeneous deformation method

This method relies on the hypothesis that all the work of external forces is converted
into plastic deformation. An initial parallelepiped element transforms into a deformed
parallelepiped element, no matter the intermediate deformations as shown in �gure 1.14.
In the �rst approximation the material is supposed perfectly plastic. The expression of the
drawing stress is a function of the initial and �nal tube dimensions:

� d =
F
A f

= � 0 ln
A i

A f
(1.52)
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Figure 1.14: Homogeneous deformation method applied to tube drawing (Rubio, 2006)

with � d the drawing stress,F the drawing force, � 0 the material yield stress andA i and
A f the initial and �nal tube sections respectively.
It can be seen that the drawing stress is expressed as a function of initial and �nal tube
dimensions and as a consequence, it is independent of the die angle. It is a purely geometric
method. The method can be more realistic considering material hardening by replacing
the constant yield stress by a �ow stress model. Finally, the homogenous deformation
method is the simplest but it considers only the homogeneous deformation and neglects
the friction and the redundant shear deformation. It idealises the process.

1.3.1.2 Slab method

The �rst development of the slab method was made by Siebel and Von Karman in 1924
and 1925 for the rolling process. Then Sachs (1927) was the �rst to investigate the slab
method for the drawing process. The slab method is based on three principal assumptions:

ˆ the principal stresses do not vary on the planes perpendicular to the direction of the
applied load,

ˆ frictional e�ects do not cause internal distortion of the material,

ˆ plane sections remain plane and the deformation is homogeneous.

In this method, a di�erential slab is considered within the deformed region. Figure 1.15
presents the di�erent stresses acting on a slab element during mandrel drawing. The
equilibrium of the stresses acting on the element is written considering both friction and
homogeneous deformation. The drawing stress results from the integration of the as
obtained expressions along the tube surface. The equilibrium equation of the slab in the z
direction writes:

� 1 = ( � 1 + d� 1)( t � dt) � � 2

� dz
cos�

�
� � 1� 2dz � � 2� 2dz (1.53)

� 1 and � 2 are the die/tube and mandrel/tube friction coe�cient respectively.
Integrating this expression considering a Tresca yield criterion gives the expression of the
drawing force:

� 1 =
1 + B

B

 

1 �
�

r
r0

� B
!

� � with B =
� 1 + � 2

tan �
(1.54)
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Figure 1.15: Stresses acting on an elemental slab during mandrel drawing (Kartik, 1995)

Modifiez le style du titre 
(a) (b)  (c) 

Figure 1.16: Evolution of the predicted drawing force as function of the die angle: compar-
ison of di�erent analytical methods: (a) homogeneous deformation, (b) slab method, (c)
upper bound method (Luis et al., 2005)

� � is the uniaxial yield stress. More generally, the slab method can be seen as an
homogeneous method completed with friction.

1.3.1.3 Upper bound method

Luis et al. (2005) showed that both the homogeneous deformation and the slab method were
unable to capture the e�ect of the die angle on the wire drawing force and the existence
of an optimum die angle. Figure 1.16 shows the evolution of the predicted drawing force
as a function of the drawing angle for the di�erent methods they compared. The plot
corresponding homogeneous deformation method shows no variation of the drawing force
with the die angle and the slab method plot shows a decreased drawing force with increasing
die angle, but no optimum appears. Figure 1.17 presents an example of chevron like fracture
that can occur in wire during drawing or extrusion. Such a fracture is a direct observation
of the axial stress heterogeneity in the wire and cannot be explained by the homogeneous
and slab methods since these methods neglect shear. On the contrary, the upper bound
method considers the shear introduced by the changes of direction of the material �ow
both at the die entrance and exit.

To summarize, the upper bound method covers the three aspects, homogeneous de-
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Figure 1.17: Example of a chevron like fracture during extrusion (Ko and Kim, 2000)
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Figure 1.18: Upper bound model applied to tube drawing (Um and Lee, 1997)

formation, friction and redundant deformation and is more complete regarding all the
phenomena taking place during the process. In this method, the tube is decomposed into
three di�erent areas and two discontinuities as illustrated in �gure 1.18(a and b):

ˆ the entry zone, where the material is rigid and has a speedv0;

ˆ the (AA 0) discontinuity corresponding to shear deformation;

ˆ the working zone, where the material deforms. In this part, friction and homogeneous
deformation are considered;

ˆ the (BB 0) shear discontinuity;

ˆ the exit zone, where the material is rigid and has a speedvf = v0
S0
Sf

with S0 and Sf

are the initial and �nal tube sections respectively.

1.3.2 Finite Element Modelling

Finite element method is the most accurate technique to study tube drawing and any
metal forming process in general. Indeed it considers the mechanical, thermal and contact
aspects of the process as it includes a large number of parameters and enables to model
complex geometries.
The analysis of the tube and wire drawing process has been investigated by several authors.
A review of some models de�ned by di�erent authors and their applications is detailed
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below.
Dixit and Dixit (1995) used an Eulerian formulation to model the plastic �ow during
wire drawing. In their model, the material is considered rigid-plastic, strain hardening
according to a Ludwik constitutive equation and yielding according to von Mises. They
neglected thermal e�ects and viscoplasticity. Friction was characterised by a constant fric-
tion coe�cient. Through their analysis, they evaluated the e�ect of the process parameters
(die angle, friction coe�cient) on the strain rate, equivalent strain, contact pressure and
drawing stress. Their main conclusions were that a die angle increase caused the contact
pressure to increase and that the optimum die angle should be selected as a function of
the friction conditions.
Karnezis and Farrugia (1998), compared to Dixit and Dixit (1995) added elasto-plasticity
and thermal e�ects. The material viscoplasticity was still neglected. They modelled the
tube drawing process with Abaqus/Standard considering frictionnal heating and heat
generated by plastic deformation but considered the material mechanical behaviour to
be temperature independent. The die and the mandrel were considered as deformable
solids. They used FEM to validate the transformation of a two-pass drawing process into a
single-pass without tube damage and evaluated damage by means of Cockcroft and Latham
(1968) failure criterion. Surface temperature, drawing load and mandrel reaction force
were experimentally measured to identify the friction coe�cient and to validate the model.
Sawamiphakdi et al. (1998) also worked with Abaqus even though they did not mention if
it was an implicit or explicit solver. They considered the material being elasto-plastic, the
die and the mandrel were modelled as rigid body and they considered a Tresca friction
model. They did not give much details about their model. They designed a program
to de�ne a drawing pass and the corresponding process parameters to predict the �nal
product dimensions and properties. They also estimated the drawing force. The originality
of their work is that they analysed di�erent die geometries: ellipse, square, rectangle and
hexagon.
More recently, Vegaet al. (2009) also conducted experimental and FEM analysis to �nd
the optimum conditions for minimizing the drawing force. In brief, their material was
modelled as viscoplastic, a Coulomb friction model was used and the die was supposed
rigid. Palengat et al. (2013) with a similar model additionally included the heat generated
by friction and plastic deformation.
From the above described models, it can be observed that there is a large variety of FEM
studies devoted to wire or tube drawing. Through all of them, it can be deduced that
whatever are the simpli�cations made by the authors to model the material mechanical
behaviour and contact properties, the FEM of tube drawing leads to satisfactory predictive
results. So far, no analysis has been made to evaluate the in�uence of the choice of the
di�erent hypotheses concerning the material plasticity, the friction or the thermal e�ects.
The above mentioned studies focus on the drawing stress and the equivalent strain �eld
while in more recent studies the focus is put on more local stress analysis.
As an example, Kuboki et al. (2008) and Yoshida and Furuya (2004) analysed the intensity
of residual stresses within the tube wall thickness as a function of the drawing technique
used. They focused on the local evolution of the stress �eld during drawing. Kubokiet al.
(2008) model was not very di�erent from the above presented models: the material was
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considered elastoplastic, a von Mises yield criterion and a Coulomb friction model were
used. Nevertheless, while both of their studies intended to analyse the residual stresses,
they did not assess the hardening being isotropic or kinematic which can in�uence the
state of stress after drawing. Panteghini and Genna (2010) demonstrated that the use of
an isotropic hardening law led to an over-estimation of the residual stresses values while
a kinematic-hardening was more accurate. However, Kubokiet al. (2008) validated the
predicted residual stresses by means of experiments: they revealed the amount of residual
stresses with a destructive method as presented in �gure 1.8 and found good correlation
with FEM. Similarly, Lee et al. (2012) analysed the e�ect of process parameters on the
axial residual stresses in a wire but in their model they considered the heat generated by
friction and plastic deformation. They showed that both the heat generated by plastic
deformation and friction in�uenced the residual stress and that it was more accurate to
consider the thermal phenomena.
A recent series of studies focuses on the drawing of aluminium tubes and in particular
on the process optimization. In a �rst attempt, Beland et al. (2011) optimized the die
geometry in order to increase the maximum area reduction achievable with a single pass.
The die was designed to combine a step of hollow sinking followed by a �oating plug
drawing step in a single pass. The die geometry was de�ned according to the minimization
of the axial drawing stress computed by means of FEM. Then, Bihamtaet al. (2011, 2012)
developed a new drawing technique to produce tube of variable thickness. This technique
was further analysed by Bui et al. (2011b) who focused on the failure prediction of such
tubes during drawing. Their failure criterion was a maximum drawing stress that was
computed by means of FEM.
Finally, an original study made by Shinohara and Yoshida (2005) that is worth being
mentioned is the analysis of surface defects evolution during wire drawing. They analysed
by means of a 3D FEM the e�ect of successive drawing passes on the geometrical evolution
of defects up to their removal from the wire surface. Their study can be a basis to analyse
this kind of problematic which is also met in tube drawing.
The review of di�erent studies concerning wire and tube drawing analysis by means of
FEM reveals the wide variety of FEM that can be built to model the process. Whatever
are the di�erent hypotheses made to model the material or contact behaviour, the di�erent
analysis lead to satisfactory results. Moreover, it would be interesting to evaluate the
in�uence of the di�erent model hypotheses on result accuracy. Finally, this overview
demonstrated the ability of the FEM tool to capture complex phenomena as FEM enables
to compute stress and strain �elds.

1.3.3 Comparison of the different methods

It is clear that analytical methods give only approximations of the drawing force and they
cannot compete with FEM. Indeed the latter enables to consider more complex geometries
and more realistic material and contact behaviour.
Some author's works show good results of analytical methods. Their results are limited
to the estimation of the drawing force. For example, Sawamiphakdiet al. (1998) used
the slab method to compute the drawing force of tube drawing and wrote that they
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found good correlation with FEM. They did not show numerical results and did not
proceed to any experimental validation neither. Luis et al. (2005) have conducted a
comparative study of the analytical methods applied to the wire drawing process. They
have applied the homogeneous deformation method to wire drawing and have shown that
the homogeneous deformation energy was independent of die angle (�g.1.16) while it is
experimentally observed that the drawing force varies with die angle. The slab method and
the homogeneous deformation method were dismissed since the results were inconsistent
with experimental observation. These methods were unable to predict correctly the drawing
stress. Finally, they have shown that FEM and the upper bound method were the more
suitable for predicting the drawing stress because these methods take into account all the
energies involved in the process.

1.3.4 Conclusion concerning the process analysis

Finite element modelling can compute the drawing force accurately but a special care has
to be taken for the calibration of material and contact parameters. The computation time
is longer than for the analytical methods but the results are accurate and enable to reach
local data.
In an industrial context, it can be useful to have analytical expressions of the drawing
force to be able to make quick estimates. Consequently a small part of this thesis will be
dedicated to �nd a analytical expression of the drawing force and to provide an easy-to-use
expression of the drawing force.

1.4 Formability

One of the major concern of metal forming industry is the constant improvement of
productivity and product quality. The question is how far the material can be processed
without appearance of defects and failure. This limit is called formability limit. It
characterises the bound separating the domain where material forming is successful and the
domain where damage occurs, in the form of necking, cracks or failure. Formability limit
is not an intrinsic material property. It depends on the forming process and its parameters
such as formed part geometry, process speed, lubrication and temperature.
Ductile fracture is the result of successive steps that are introduced in �gure 1.19. Damage
starts with the nucleation of micro-cavities, then voids grow and coalesce to create local
cracks. The micro cracks extend and form a macroscopic crack which propagates and
causes fracture. In the literature, there are four reported methods to study ductile fracture:
continuous damage mechanics models (Lemaitre, 1985; Chaboche, 1988), porous solid
mechanics models (Gurson, 1977; Tvergaard and Needleman, 1984), cohesive models
(Barenblatt, 1962) and phenomenological models:

ˆ continuous damage mechanics is a local approach based on the accurate description
of the stress and strain �elds in the vicinity of a crack tip;

ˆ porous solid mechanics models are micro mechanical models that enable to model
the void nucleation and growth during the plastic deformation Gurson (1977) model
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Figure 1.19: Successive steps of ductile fracture (Thomason, 1990)

expresses the �ow stress as function of the hydrostatic stress and the void volume
fraction. It was further extended by Tvergaard and Needleman (1984) who introduced
the void coalescence which accelerates the fracture process. The condition under
which the coalescence occurs is de�ned by a critical volume fraction of porosity.
Maoût et al. (2009) used this method to model damage during the hemming process
and found the void volume fraction to be a pertinent forming limit criterion;

ˆ cohesive models regard fracture as a phenomenon of surface separation. The cohesive
zone model is de�ned by laws describing the separation of the surfaces as function of
the stresses acting nearby the crack tip;

ˆ phenomenological models are based on the computation of functions of stress, strain
and work of plastic deformation. They can be based on energetic expression of
damage or on instantaneous variable.

The latter do not directly model physical mechanisms of ductile fracture but predict its
occurrence. In industrial forming processes, the main issue is to predict failure initiation
in order to avoid fracture. The point is not to understand failure mechanism but to
have an e�ective failure indicator. As a consequence, the study of crack propagation
and the development of mechanical analysis of ductile cracking is not relevant in this
study. Moreover, the implementation in FEM of complex physically based models such as
continuous damage mechanics models, porous solid mechanics models or cohesive models
is computationally much more expensive than phenomenological models (Zadpooret al.,
2009). Vallellano et al. (2008) and Takuda et al. (1999) found failure criteria to be good
competitors with physically based models. They used di�erent failure criteria to predict
fracture limits of aluminum 2024-T3 and found the same limits as Leeet al. (1997) and
Tang et al. (1999) who used a continuum ductile failure criterion. For these reasons, the
emphasis of this study is put on �nding criteria for predicting fracture loci and deformation
levels at the onset of fracture.

Processes like extrusion are best able to deform metals up to high deformation levels.
These kind of processes are characterized by the development of high hydrostatic stresses
that contain the growth of cavities and delay fracture. Thus, metals showing poor ductility
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(a) (b)  

Figure 1.20: (a) Example of an experimental forming limit diagram obtained for a 2008 T4
aluminum, (b) changes of the forming limit curve after di�erent prestrains. The dashed
lines represents the prestrain path. (Stoughton and Zhu, 2004)

properties can be formed under hydrostatic stresses. Bridgman (1952) showed that fracture
of mild steel subjected to tensile test could be delayed under the application of hydrostatic
stress and that the section reduction of the sample could be increased. Rogers (1968)
measured the density evolution of drawn aluminum 6011-T6 bands. He showed that
hydrostatic pressure had a limiting e�ect on cavity growth, indeed, under the e�ect of the
pressure, cavities were contained and the material density was maintained constant.

1.4.1 Formability Limit Diagram

Formability Limit Diagram is a standard tool which is widely used in the sheet metal
forming industry. FLD was initially developed by Keeler (1965) and Goodwin (1968). It
represents in the 2D space of major principal strain vs minor principal strain the conditions
for the onset of sheet necking (�g.1.20(a)). The diagram represents an irregular parabolic
curve delimiting two areas: a material subjected to strains above the curve will fail while
one subjected to strains below the curve will be formed safely.

Initially, the FLD was determined analytically or experimentally for linear strain
paths. From the 1972 many researchers revealed the strain path dependency of the FLDs,
Kobayashi et al. (1972); Chin-Chan (1982); Graf and Hosford (1994); Kuroda and Tvergaard
(2000) and Stoughton and Zhu (2004) contributed to this work. The experimental FLDs
obtained from a 2008 T4 aluminum with di�erent strain paths are shown in �gure 1.20(b).
It can be seen from this �gure that di�erent strain paths lead to di�erent FLD. The strain
path dependency of the formability limit has consequences on the use of FLD in industry.
For example, this tool cannot be used to predict the occurrence of failure in non linear
processes such as hydroforming. Indeed during hydroforming of a part, the strain path may
vary within the part itself. Such a case would require the use of di�erent FLDs depending
on the considered zone. Ideally, the number of FLDs should tend towards in�nity. As a
consequence, it is crucial to �nd other tools to characterise formability limits. Arrieux
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et al. (1982); Stoughton (2000) and Zhaoet al. (1996) showed that the variations of strain
path induced no changes on the forming limit stresses. As a consequence, FLD could be
turned into Forming Limit Stress diagram (FLSD) which represents in the 2D space of
major principal stress vs minor principal stress the conditions for the onset of necking.
The advantage of FLSD is that they are strain path independent.
Experimentally building a FLD is a very time consuming procedure as it requires several
tests up to fracture with di�erent strain paths in order to �nd the Formability Limit
Curve. Thus, a signi�cant e�ort has been made to determine analytically the FLD with
the di�erent ductile failure models or by means of FEM.
In this study, as said previously, the focus is to �nd a tool which is able to predict the onset
of failure. Phenomenological models seem well suited for this purpose as they are easy to
implement into FEM codes. Next part presents in detail the di�erent failure criteria that
are used in this study.

1.4.2 Ductile fracture criterion

1.4.2.1 Introduction on failure criteria

Historically, several failure criteria have been established. They describe the failure in
terms of mechanical variables such as stress, strain or mechanical work. All the failure
criteria presented in this work are based on functions which depend on these variables. If
these functions reach a critical value, failure is expected. There are two simple models for
failure prediction. The �rst one is to consider that failure occurs when a function of the
current stress tensor reaches a critical value. The second model is to consider a function of
current strain tensor. Both of these models are based on instantaneous damage variableD .
Their general expressions are the following:

D = f (� ) or D = f (� p) (1.55)

where � and � p are the current Cauchy stress and the plastic strain tensors respectively.
Additionally, there are more complex failure criteria which consider mechanical work.
These criteria take into account the stress and strain history. They are based on a damage
accumulation variable D whose general expression is detailed below:

D =
Z �� p

0
f (� )d�� p (1.56)

with d�� p the equivalent plastic strain increment and �� p the current equivalent plastic strain.
Freudenthal (1950) was the �rst to establish a failure criterion introducing the work of
plastic deformation. Cockcroft and Latham (1968) successively suggested that the largest
principal stress was more likely to cause fracture and they established a failure criterion
based on the highest tensile stress. Brozzoet al. (1972) introduced the level of hydrostatic
stress in a new failure criterion in accordance with the experimental study of Bridgman
(1952) who showed that imposing hydrostatic pressures to samples loaded in tension
could contain the growth of cavities and thus improve formability. Their conclusions were
reinforced recently by Wu et al. (2009). McClintock (1968b), Rice and Tracey (1969) and
Oyane et al. (1980) established other failure criteria according to the void growth model
and the theory of porous media.
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1.4.2.2 Expressions of failure criteria

Many researchers have worked on failure criteria and they suggested di�erent phenomeno-
logical expressions of the instantaneous damage or damage accumulation variables. Among
all the failure criteria available a limited number of criteria is selected for the purpose of
this study. Only criteria that can be calibrated on a single experimental test (i.e. uniaxial
tensile test) are chosen. Thus, eleven failure criteria are considered. They are listed in
table 1.3. In table 1.3, D i (i = 1 :::11) are the damage variables or damage accumulation
variables, � j (� 1 > � 2 > � 3) are the three principal stresses,� max is the maximum shear
stress, �� is the Mises equivalent stress,� m is the hydrostatic stress, �� is the equivalent
strain and �� p is the equivalent plastic strain.

Type Abbreviation Criterion Damage variable

1 STRN Equivalent strain D1 = ��

1 MSS Maximum shear stress D2 = � max = � 1 � � 3
2

1 SHAB Vujovic and Shabaic (1986) D3 = 3� m
��

2 FREU Freudenthal (1950) D4 =
R�� p

0 ��d �� p

2 COCK Cockcroft and Latham (1968) D5 =
R�� p

0 max(0; � 1)d�� p

2 RICE Rice and Tracey (1969) D6 =
R�� p

0 exp(3� m
2�� )d�� p

2 BROZ Brozzo et al. (1972) D7 =
R�� p

0
2� 1

3(� 1 � � m ) d�� p

2 ARGO Argon et al. (1975) D8 =
R�� p

0 (� m + �� )d�� p

2 OH Oh et al. (1976) D9 =
R�� p

0
� 1
�� d�� p

2 AYAD Ayada et al. (1984) D10 =
R�� p

0
� m
�� d�� p

2 TREN Tresca energy D11 =
R�� p

0
(� 1 � � 3 )

2 d�� p

Table 1.3: Details of the selected fracture criteria

As mentioned above, there are also failure criteria expressed as a function of di�erent
parameters and they require calibration with several experimental tests. Johnson and Cook
(1985), Oyaneet al. (1980) and Wierzbicki and Xue (2005) expressions are written in table
1.4. In table 1.4, � and � are the stress triaxiality and the deviatoric state parameters
respectively. These criteria will not be used in our study as they require several calibration
tests, but they are presented as an opening purpose.
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Type Criterion Damage or damage accumulation variable
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Table 1.4: Details of fracture criteria requiring more complex calibration

1.4.2.3 Failure criteria calibration

In a general way, the onset of failure is predicted when the ratio of the damage variable
(2.4) or the damage accumulation variable (1.56) to a limit valueD crit reaches 1:

D
D crit > 1 (1.57)

The critical value D crit for each criterion is calibrated on mechanical tests like tensile tests
or upsetting tests for example (Koet al., 1996; Wierzbicki et al., 2005; Stoughton and Yoon,
2011). Li et al. (2011) mentionned that the quality of failure predictions was in�uenced
by the critical value estimation. Consequently calibration tests have to be carried on
accurately.
Upsetting of cylinder is the simplest and the most widespread workability test used to
assess failure criteria (Venugopal-Raoet al., 2003). Ko et al. (1996) calibrated Cockcroft-
Latham criterion on an uniaxial tensile test and found good predictability results both on
axisymmetric extrusion and on upsetting tests.
Karnezis and Farrugia (1998) used a failure criterion based on Cockcroft-Latham damage
accumulation variable and calibrated on tensile test to evaluate tube formability. They
wanted to evaluate the transformation of a two-pass drawing process into a single-pass.
Their study does not present experimental validation of their conclusions.
Some forming processes involve much more complex states of stress and strain than the one
reached in calibration tests. Gouveiaet al. (1996) stated that there was a risk to calibrate a
failure criterion on a unique experimental test. They calibrated Cockcroft-Latham, Oyane,
Freudenthal and Brozzo failure criteria on �ve upsetting tests with di�erent local stress and
strain distributions and found only Cockcroft-Latham and Oyane criteria to be accurate.
They validated their accuracy with a further study (Gouveia et al., 2000) on more complex
cold forging processes : radial extrusion, open die forging and blanking. Consequently, it is
important to use a failure criterion whose calibrated critical value remains constant under
di�erent conditions of stress and strain.
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1.4.2.4 Failure criteria predictability

The di�erent failure criteria that were previously presented were tested and applied to
di�erent cases by numerous authors. This paragraph aims at presenting di�erent studies
that were conducted.
Venugopal-Raoet al. (2003) collected experimental upsetting test data from the literature
and compared criteria predictability by means of FEM. They evaluated 10 failure criteria
on upsetting tests on cylindrical specimens of various aspect ratios. They classi�ed criteria
according to two speci�cations: the reliability of the given threshold value (statistical
mean deviation) and the sensitivity (spatial variation) of the predicted fracture locci. They
showed that failure criteria reliability and sensitivity depended both on the material and
on the friction conditions. They found Brozzo, Oh and Kobayashi and Cockcroft-Latham
failure criteria to be the most accurate and reliable failure criteria.
Wierzbicki et al. (2005) evaluated seven fracture criteria on a set of 15 tests and found
the simple Tresca model also named Maximum Shear Stress model to be the most com-
petitive. Their mechanical tests included tensile tests on unnotched and notched round
bars, upsetting, shear tests and tensile tests on samples of various geometries. Zadpoor
et al. (2009) calibrated the same failure criteria on a wider range of stress triaxiality to
be closer to stress states that can be reached in complex metal forming processes. They
concluded that the Tresca model was able to predict fracture locus qualitatively but that
its quantitative performances were poor (large prediction error). They also concluded that
the Tresca criterion prediction was more accurate for high stress triaxialities.
Bui et al. (2011b); Beland et al. (2011); Bihamta et al. (2012) and Yoshida and Furuya
(2004) investigated the tube formability limit by considering a maximum drawing stress.
Based on the large number of studies dealing with failure prediction by means of failure
criteria, it is not obvious to select an appropriate failure criterion. In some cases instanta-
neous criteria appeared to be the most predictive (Wierzbickiet al., 2005; Yoshida and
Furuya, 2004) while in some other cases cumulative damage variables were the most reliable
(Oh et al., 1976; Kim et al., 2007). Thus, from this point it is not possible to select a single
criterion.
Nevertheless most scientists highlight the fact that failure criteria based on cumulative
damage variable are more reliable in predicting fracture. Indeed, metal working process
are strain history dependent and the integration of plastic energy deformation along the
deformation path is a better approach (Venugopal-Raoet al., 2003).
As a consequence, all the failure criteria that were presented above will be tested in the
case of tube drawing. The failure criteria accuracy will be evaluated in term of predicted
section and thickness reductions and failure initiation loci.

1.5 Tube bulge test

The principal application of tube bulge tests is linked to hydroforming industry for which
the material characterization by uniaxial tensile test is not su�cient. When data obtained
from a uniaxial tensile test are used for tube hydroforming analysis, results are often not
acceptable (Lianfa and Cheng, 2008; Strano and Altan, 2004). Moreover, strains reached
during uniaxial tensile tests are limited by localised necking. During hydroforming, e�ective
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Figure 1.21: (a) Example of bulge test apparatus

strains that are reached are higher and the material is submitted to a biaxial stress state.
Thus tube bulge test was developed to characterise tubular materials in biaxial stress state
and to reach higher e�ective strains. The principle of the tube bulge test is simple: a
tube is clamped at two ends and a �ow is introduced inside the tube to increase internal
pressure. A free zone of the tube is free to expand and bulges under pressure.
Figure 1.21 presents examples of bulge tests that were developed by several researchers.
Sokolowskiet al. (2000), Velasco and Boudeau (2008), Bortotet al. (2008) and Ouirane
et al. (2011) developed apparatus for tube bulging under pressure only. On the contrary,
Lianfa and Cheng (2008) and Hwanget al. (2009) designed the tool to conduct bulge
test under pressure and with the possibility of adding axial feeding. Hwanget al. (2009)
apparatus is similar to Sokolowski et al. (2000) one. Bortot et al. (2008) conceived a
tool to be introduced into the hydroforming equipments. They insure the �uid tightness
by plastically deforming the tube ends on conical dies (similar for Velasco and Boudeau
(2008)). Sokolowskiet al. (2000) and Lianfa and Cheng (2008) guarantee �uid tightness by
urethane rings that expand under pressure. In all the cases, the tube diameter is very large
(between 40 and 50 mm) and the bulged length is short which di�ers from the apparatus
developed in this study.

While the principle of bulge test is simple and relatively similar for all the authors
working on it, the strain measurement and stress computation methods are quite di�erent.
This part �rst presents the di�erent strain measurement techniques that are used by
di�erent authors. Then the methods for stress computation are detailed.

1.5.1 Strain measurement

Several authors developed di�erent techniques to measure the deformation. Figure 1.22
presents the geometry and the geometrical characteristics of a bulged tube. The con-
�gurations can be distinguished: for a short bulged length (�g.1.22.a) the tube pro�le
is ellipse like, for longer bulged length (�g.1.22.b), the tube keeps its cylindrical shape.
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As a consequence, the parameters to be measured during a tube bulge test for further
analysis di�er slightly. Di�erent parameters can be used to describe the bulge test and
di�er between both con�gurations. The common parameters between both con�gurations
are: the internal pressurep, the axial force F , the circumferential radius of curvature r � ,
and the thicknesst. They are detailed in �gure 1.22. In the case (a) the longitudinal radius
of curvature r � is measured while it tends toward in�nity in the case (b)
The strain tensor in the case of bulge test writes:

in case (a) � =

0

B
B
@

� r 0 0
0 � � 0
0 0 � �

1

C
C
A

er ;e� ;e�

or in case (b) � =

0

B
B
@

� r 0 0
0 � � 0
0 0 � z

1

C
C
A

er ;e� ;ez

(1.58)
The di�erent strains can be expressed as a function of the geometrical parameters:
in the case (a),
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(1.60)

Geometrical characteristics necessary for strain computations can be obtained by means
of di�erent measurement techniques that can be classi�ed into two categories: "on line"
and "o� line". On line measurements are made during the test while o� line measurements
require to remove the tube from the experimental device. Both techniques are detailed
further.
In some cases, experimental measurements are not su�cient to obtain all the geometrical
characteristics. As they are all necessary to compute the stresses, the missing characteristics
have to be found analytically or by means of FEM.

1.5.1.1 On line measurements

A direct method for strain computation would be to obtain all the geometrical characteristics
from on line measurements. This method is said to be sophisticated and costly as it requires
the use of speci�c tools like lasers, utlrasonic sensors and non touching sensors (Koçet al.,
2001). The bulge tool turns to be more complex and more e�cient data acquisition systems
are required.

Strano and Altan (2004) work concerns tubes that were formed from bended tubes.
During the bulge tests, they measured both the pressure and the bulge height. Then, they
computed the radii corresponding to the inner and outer tube pro�les by assuming that
the tube pro�le was following an analytical cosine-like function whose variable was the
bulge height. The strains were then computed from the as obtained radius pro�le.
Hwang and Lin (2006) built a model to express the bulge height as a function of the
internal pressure considering the bulge shape to be an ellipsoidal surface and the tube
thickness to follow a quadratic distribution.
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Figure 1.22: (a) initial tube dimensions (b,c) dimensional parameters of a bulged tube and
state of stress of an element of the bulged zone

Velasco and Boudeau (2008) elaborated a method to compute strains from the measurement
of the outer bulge height only. They make the hypothesis that the tube deforms into
two arcs of circumference in two perpendicular planes. From the analytical expression of
the arcs they express the volume of bulged material as function of di�erent geometrical
parameters. The only unknown is the tube thickness (t) which is found by means a
Newton-Raphson algorithm. For more details on the method, the reader might refer to
Velasco and Boudeau (2008). This method was further used by Ouiraneet al. (2011)
who investigated the contributions of the di�erent geometrical parameters (thickness and
radius)on the global error made on the computed equivalent strain and stress.
Hwang et al. (2009) used a micrometer for the measurement of the bulged tube outer
diameter and obtained the principal major and minor strains from the measurement of
deformed grids that were electrochemically etched on the tube surface.

1.5.1.2 Off line measurements

When the on line measurement of some geometrical characteristics is impossible the o�
line technique is required. It consists in bulging a number a tubes up to di�erent pressure
levels and removing the tubes from the bulge tool, each pressure level corresponds to a
di�erent level of deformation. Examples of di�erent methods are presented below.
Bortot et al. (2008) measured the tube thickness at the top of the dome with a micrometer.
The tubes were cut along a plane in the radial direction. They measured the circumferential
and longitudinal radii of curvature with a coordinate measurement machine. Sokolowski
et al. (2000) and Lianfa and Cheng (2008) also measured the tube thickness and circum-
ferential radius of curvature on cut tubes but obtained the missing longitudinal radius of
curvature by di�erent methods: Sokolowski et al. (2000) �tted the longitudinal radius of
curvature through iterations with the tube bulge test FEM while Lianfa and Cheng (2008)
obtained the longitudinal radius of curvature analytically. They measured the whole bulge
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pro�le by measuring the bulge radii along the tube. From this operation, they obtained a
list of coordinate points corresponding to the tube pro�le and �tted a curve using a spline
function to �nd the equation of the bulged pro�le. The �rst and secondary derivations of
this function enabled to know the longitudinal radius of curvature. This technique requires
a lot of successive tests to explore the range of pressures up to tube fracture. Moreover,
each set of tests must be repeated several times to ensure that the measured characteristics
are accurate. Finally, o� line measurement is both time and material consuming.
Koç et al. (2001) compared three methods deriving from the on line and o� line techniques
and revealed that the on line measurements were more accurate.
Finally, depending on the technique used for strain measurement, di�erent methods can
be used for stress computation.

1.5.2 Stress computation

In the case of the bulge test, the stress tensor writes:
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(1.61)

The most common method for stress computation is the use of the thin-walled structure
approximation (Sokolowski et al., 2000; Koçet al., 2001; Lianfa and Cheng, 2008; Velasco
and Boudeau, 2008). The membrane theory considers the thickness to be small enough
compared to the external diameter. The stress is then assumed to distribute uniformly in
the radial direction and the radial stress (� r ) is equal to zero. It enables to express the
equilibrium of an element of a bulged tube as follow:

� �

r �
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� �

r �
=

p
t

(1.62)

Strano and Altan (2004) developed an energy method to identify the �ow curve parameters.
Their method relies on the minimization of a least square function which is based on the
di�erence of the internal work of deformation and the external work.
Bortot et al. (2008) identi�ed the �ow curve parameters with an iterative method. They
�rst computed the stresses using the membrane hypothesis and obtained a �rst set of
parameters that was inserted into a FEM. Then, they re�ned the �ow curve parameters to
obtain the best match between experimental and numerical data. The advantage of this
method is that in the end, the membrane hypothesis is not made for stress computation.
The drawback is that all the geometrical measurements were made o� line which is time
consuming. The di�erent iterations between FEM and experimental data may be time
consuming too.

1.5.3 Application of the bulge test

Strano and Altan (2004) showed that the �ow curves obtained from tensile test and bulge
tests di�ered and as a consequence, the �ow stress curve parameters were also di�erent. In
their study, they mention that tubes were formed by bending sheets of stainless steel AISI
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304. They do not specify the direction of folding regarding the longitudinal or transverse
directions, the direction of the tube tensile test is not speci�ed either as the material is
supposed isotropic. Moreover, they do not mention if the tube was annealed after bending.
Finally the �ow stress curve parameters obtained from the tube bulge test gave more
accurate results when inserted into the FEM of the tube hydroforming process. Hwang
et al. (2009) constructed forming limit diagrams by means of bulge tests conducted with
di�erent strain path. They compared the experimental data with the FLD predicted with
Hill's localized and Swift di�used necking criteria and found good agreement.
The tube bulge test is also an experimental tool that can be used to evaluate material
anisotropy (Hwang et al., 2009). More recently Boudeau and Malécot (2012) proposed an
analytical model to contribute to the de�nition of standard tube bulge tests dedicated to
industry. They introduced the need to take into account tube anisotropy. They compared
Hill 1948 and Hill 1993 quadratic yield criteria and found Hill 1993 plastic criterion to �t
better the experimental data.

1.6 Conclusions

In the introductory chapter, all the concepts to be used in this study were detailed.
The context of the study was �rst presented with the description of the drawing process
and the detail of the di�erent process parameters. Then, in a second part, the basis to
understand plasticity, friction and heat generation and transfer were developed. Plasticity
was described in terms of constitutive equations including the yield condition, the �ow
rule and the hardening law. The di�erent models of yield conditions and isotropic or
anisotropic �ow rules were described. A short review concerning the evolution of the
friction coe�cient with the contact characteristics enabled to put into relief the di�culties
linked to its identi�cation. A set of experimental tests for friction characterisation was
presented and the friction models were introduced. Then, referring to the heat generation
and transfer, the heat conservation equation was written, which enabled to introduce the
di�erent phenomena involved in heat generation and transfer. Heat is generated by plastic
deformation and by friction, and transferred to the contacting materials and surrounding
environment by conduction and convection. A third part was devoted to the presentation
and the description of the methods for tube drawing analysis. Analytical methods were
brie�y introduced and the insight was put in the Finite Element Method. Both methods
were compared with a review of various works and the necessity of using FEM was justi�ed.
Finally, in a fourth part, a mechanical test dedicated to tube testing i.e. the tube bulge
test was presented.
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2
Materials experimental characterisation

Sommaire

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2 Presentation of the testing methods . . . . . . . . . . . . . . . . . . . . 48

2.2.1 Uniaxial tensile tests on tubes . . . . . . . . . . . . . . . . . . . 48

2.2.2 Tensile tests on samples cut from the tubes . . . . . . . . . . . 50

2.2.3 Tube bulge test . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3 Mechanical characterisation . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.3.1 Work hardening characterisation . . . . . . . . . . . . . . . . . 57

2.3.2 Anisotropy characterisation . . . . . . . . . . . . . . . . . . . . 61

2.3.3 In�uence of annealing temperature . . . . . . . . . . . . . . . . 85

2.4 Thermo-mechanical characterisation . . . . . . . . . . . . . . . . . . . . 87

2.4.1 Introduction on thermomechanics . . . . . . . . . . . . . . . . . 87

2.4.2 Identi�cation of the Taylor-Quinney coe�cient for L605 . . . . 88

2.5 Failure characterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.5.1 Failure criteria calibration . . . . . . . . . . . . . . . . . . . . . 91

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

2.1 Introduction

The �rst step of any process modelling project is the characterisation of the material of
concern in order to obtain the model input data. As seen in the previous chapter, both
mechanical and thermal properties have to be identi�ed for the purpose of this study.
This chapter is devoted to the explanation of the procedure that was used for the material
characterisation. In a �rst part, the di�erent testing techniques are introduced. Three dif-
ferent mechanical testing methods used to characterise the material mechanical behaviour
are presented i.e. uniaxial tube tensile test, tensile tests on samples cut from tubes and
tube bulge test. In the second part, the experimental results are detailed together with the
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identi�cation of the material parameters. The �rst concern is the characterisation of the
work hardening behaviour. The second one is the identi�cation of the parameters of the
Johnson-Cook visco-plastic hardening constitutive equation. The third one is the evaluation
of the material anisotropic plasticity properties. As the properties are strongly linked to
the material microstructure, it appears interesting to focus on this latter. Thus, material
crystallography is analysed by means of X-ray di�raction. Finally, the measurement of the
material thermo-mechanical properties is explained.

2.2 Presentation of the testing methods

Two materials were tested: a Cobalt Chromium alloy, L605 and a stainless steel, 316LVM.
The composition of both materials is detailed in table 2.1 and 2.2.
In all the testing methods presented below, the tubes were tested in an annealed state.
Annealing temperature was 1150� C and 1050� C for the L605 and 316LVM respectively.
Tubes were treated during 10 min under H2 atmosphere.

2.2.1 Uniaxial tensile tests on tubes

2.2.1.1 Control of the test

Tube tensile tests were carried out at room temperature (21� C) on a MTS 810 hydraulic
tensile testing machine with a load capacity of 100 kN. The speci�city of the tensile test
machine was its ability to reach high crosshead speed. The maximum reachable crosshead
speed was 2 m s� 1 which enabled to reach high strain rates.
Two series of test were performed in order to characterise di�erent material mechanical
behaviours. First, tensile tests were conducted at a constant strain rate of 0.03s� 1 in
order to characterise the materials work-hardening behaviour. Second, three tensile tests
were conducted at three di�erent and constant strain rates (0.03s� 1, 2.9 s� 1 and 8.9 s� 1)
to characterise the visco-plastic behaviour. For low strain rate tensile tests, the crosshead
velocity (vcross) was real time controlled to impose a constant strain rate, _� as follow:

vcross = _� (l0 + � l) and _� =
_l
l

(2.1)

with l0 and l the initial and current tube lengths respectively, � l the crosshead displacement
and _l = dl

dt = vcross.

Co Cr W Ni Fe Mn C Si P S
Balance 19-21 14-16 9-11 <3 1-2 0.05-0.15 <0.4 <0.04 <0.03

Table 2.1: Chemical composition of the L605 (ASTM-F90)(mass%)

Fe Cr Ni Mo Mn Si Cu N C P S
Balance 17-19 13-15 2.25-3 <2 <0.75 <0.5 <0.1 <0.03 <0.025 <0.01

Table 2.2: Chemical composition of the 366LVM (ASTM-F138)(mass%)
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However, for strain rates higher than 1s� 1, real time computation of the crosshead velocity
was impossible and the tests were controlled with constant crosshead speed:

vcross = _�l 0 (2.2)

In this case, once the tests were complete, real strain rates were computed in order to
validate that they remained approximately constant during the test.

2.2.1.2 Tube positioning

The di�erent dimensions of tested tubes are detailed in table 2.3.

Material ID (mm) OD (mm) Thickness (mm)

L605 9.5 11.5 1

316LVM 9 10.5 0.75

Table 2.3: Dimensions of tubes tested by tensile tests. ID and OD are the Inner and Outer
Diameters respectively

Tested tubes were 200 mm long with a gauge length of 100 mm. They were taken
from the industrial process after the 7th drawing pass (cf. �g.1.2). Short mandrels of hard
steel were inserted in both tube extremities so that the tube did not crush when closing
the grips. A schematic view of the tensile test is presented in �gure 2.1. A special care
was taken for the shape of the mandrel extremities, more particularly for the tensile tests
of L605 tubes. With cylindric mandrels having sharp edges as shown in �gure 2.1.a, the
tendency of the tube was to break near the mandrel close to the grips. To prevent early
failure, the mandrels were machined to present a circular pro�le and smooth edges as
illustrated in �gure 2.1.b. This way, the material �ow was improved near the mandrels and
the failure was occurring in the center of the specimen. Concerning the tests on 316LVM
tubes, fracture always occurred in the center of the specimen, even with sharp mandrels.

2.2.1.3 Strain measurement

Two techniques were used for strain measurement. For low strain rates, length variations
were measured both with an extensometer and from the crosshead displacement. Results
from the two methods were compared to validate the measure from crosshead displacement.
Indeed, for higher strain rates, the use of the extensometer was not compatible and strain
was measured from the crosshead displacement only. The axial strain measured from the
crosshead displacement writes:

� z = ln
�

l
l0

�
= ln

�
1 +

� l
l0

�
(2.3)

with � z the axial true strain, l and l0 the current and initial tube lengths respectively and
� l the length variation.

49



(a) 

(b)  

(a) 

Grip  

Tube 

Mandrel 50
m

m
 

50
m

m
 

10
0m

m
 

(a) 

Figure 2.1: Con�guration of the tube tensile test, (a) sharp edge mandrel, (b) smooth edge
mandrel

2.2.2 Tensile tests on samples cut from the tubes

The purpose of these tests is to characterise the anisotropic plastic properties of the
materials.

2.2.2.1 Samples preparation

This test required a speci�c sample preparation as di�erent samples had to be cut from
the tubes. The di�erent steps of sample preparation are illustrated in �gure 2.2(a). First
tubes of outer radius R were cut into small tubular sections of length L equal to the
tube perimeter 2�R (1). Then the tubular sections were opened and �attened (bending
operation) to form square sheets (2). Finally, specimens were cut from the �attened tubes
by electrical discharge machining. Samples had a gauge length of 6 mm, a gauge width of
1.30 mm and a thickness of 0.5 mm. Stage (3) in �gure 2.2(a) illustrates the arrangement of
samples that were cut in the 0� direction. Other samples were cut in di�erent orientations
relative to the tube axis as shown in �gure 2.2(b): 0� (Drawing Direction, DD), 22.5 � , 45� ,
67.5� and 90� (Transverse Direction, TD). As the �attening step induces residual stresses
in the material, samples were annealed to restore the initial material properties. Annealing
conditions were identical to the one conventionally used in the tube drawing process, i.e.
1150� C during 10 minutes for the L605.

2.2.2.2 Control of the test

Tensile tests on oriented samples were carried out at room temperature (21� C) on a Gabo
500N tensile testing machine presenting a maximum load of 1.5 kN. The tests were strain
rate controlled. The strain rate was identical to the one imposed during tube tensile test,
i.e. 0.03 s� 1.
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Figure 2.2: Samples cut in di�erent directions relative to the Drawing Direction DD

2.2.2.3 Strain measurement

A general view of the test can be seen in �gure 2.3.a. Samples were �xed with speci�c
grips that were designed for such small samples (Delobelle, 2012). Figure 2.3.b shows a
sample inserted into the grips.
A camera was placed aligned with the sample and pictures were recorded during the test.
Displacements were measured from the pictures by means of Digital Image Correlation
(DIC). This technique enables to search the position of several points belonging to the
sample and to follow them during deformation. The points are identi�ed by a �ne black
and white painting which is projected onto the tube and forms a random pattern. An
example of random pattern is presented in �gure 2.3.c. Finally, strain �elds are computed
from the displacement �elds. In this study, 7D DIC software was used (Vacheret al., 1999).

2.2.3 Tube bulge test

In chapter 1, a number of tube bulge test devices that were developed by di�erent authors
were presented. These devices were designed for large diameter tubes and only tubes of
short length could be bulged. In some cases, the tubes were formed by sheet bending
and welding (Yoshida and Kuwabara, 2007). The large tube diameter and small thickness
enabled to bulge at low pressure (Lianfa and Cheng, 2008; Hwanget al., 2009). In our
study, the tubes were not speci�cally designed for the test and they were extracted from the
industrial process. As a consequence, the tube bulge test device was designed according to
the tube dimensions that intended to be tested. The initial requirements of the apparatus
were:

ˆ to bulge the tube with pressurized water;
ˆ to bulge the tube up to fracture;
ˆ to use the device for tubes of di�erent dimensions (diameter, thickness, length);
ˆ to combine the tube bulge test with tensile test;
ˆ to measure the pressure and the axial load;
ˆ to see the bulged area in order to record the bulging with cameras.
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Figure 2.3: Tensile test on oriented samples, (a) general view of the test, (b) zoom on the
sample and the grips, (c) zoom on the sample and the random black and white pattern

2.2.3.1 Dimensions of the tubes to be tested

The apparatus was designed for the purpose of this study but also for analysis beyond
the scope of this thesis. Thus as mentioned above, the objective was to make it easily
usable with di�erent tubes dimensions. Therefore, the �rst step was to de�ne the tube
dimensions that were planned to be tested. From the L605 and 316LVM drawing steps,
the dimensions of the tube that were selected are detailed in table 2.4. Tube length is
expected to range from 100 to 200 mm.

2.2.3.2 Pressure

Pressure was provided by a water pump. As mentioned previously, the tube bulge test
apparatus aims at bulging the tube up to fracture. As a consequence, the maximum
reachable pressure must be de�ned in this way. Thus, the pump capacity was de�ned
according an estimation of the bursting pressure for every tube dimensions. The estimated
bursting pressure is computed according to:

Pburst =
tR M

r i
(2.4)

with Pburst the bursting pressure,t the tube thickness, RM the ultimate tensile stress and
r i the tube inner radius. This expression is valid for small displacements and deformations
only as it does not consider the tube radius increase and the tube wall thinning. As a
consequence, the computed bursting pressure is over-estimated.
The ultimate tensile stresses are equal to 1700 MPa and 1000 MPa for the L605 and the
316LVM respectively. The computed bursting pressures are detailed in table 2.4.
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According to the computed bursting pressures, a pump with a capacity of 250 MPa was
chosen for the purpose of this study.

Material ID (m) OD (mm) Thickness (mm) estimated bursting pressure (MPa)

L605 7.5 8.8 0.65 295
6.5 7.5 0.5 262
5.5 6.3 0.4 247
4.5 5.16 0.33 249

316LVM 9 10.5 0.75 167
7 8.2 0.6 164

5.8 6.6 0.4 145
4.5 5.2 0.35 156

Table 2.4: Dimensions of the tubes to be tested by bulge tests. ID and OD are the Inner
and Outer Diameter respectively

2.2.3.3 Tube holding system

The requirements of the tube holding system were:

ˆ to have the possibility of bulging tubes of di�erent dimensions easily;
ˆ to be watertight under pressures up to 250 MPa;
ˆ to have the largest tube outer surface visible.

The tube holding system is described in the following paragraph. A general view and a
detailed view of the system are presented in �gure 2.4. When reading the above paragraph,
the reader might refer to this picture when coming across the numbers describing the
di�erent system parts.

The tube holding system is composed of two subsystems: a clamping (1) and a
watertight (2) systems. Both systems are successively described below.
The tube clamping is ensured by adapting a classical drill holder (3) to the requirement of
the bulge test. The advantage of such a tool is that tool-holder collets for di�erent drill
diameters are commercially available. Thus, a series of collets (4) covering the range of
tube outer diameter is used to hold the tube (collets diameters range from 5 to 10.5 mm
every 0.5 mm). Two tubes clamping systems are used, for the bottom and the top of the
tube. The distance between both clamping systems can be freely chosen.
Holding a tube with such a tool requires the insertion of a mandrel inside the tube in
order not to deform it when tightening it up. Such function is ensured by the watertight
system (2). The latter consists in a stainless steel tool (5) whose geometry �ts into the
drill holders. It has the double function of locking the tube in the axial direction and
ensuring watertightness. Watertightness is guaranteed by a urethane ring (6) placed
between two anti extrusion rings (7). The urethane ring expands with increasing pressure
and is maintained by means of the anti extrusion rings. A series of watertightness tools
was designed with di�erent diameters (9.5, 9, 8.5, 7.5, 7, 6.5, 5.8, 5.5, 4.5 mm) in order to
be inserted in the di�erent tubes to be tested . Finally, the top watertightness tool was
drilled to introduce a capillary tube (8) necessary for water inlet.
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Figure 2.4: (a) general view of the tube holding system, (b) details of the clamping
and watertight systems, (c) zoom on top clamping and watertight systems (designed in
collaboration with Top Industrie)

The as described tube holding systems are �nally inserted into 20 kN tensile testing
machine and the capillary tube is connected to the hydraulic power system. From this
point, preliminary tube bulge tests can be performed.
The interest of such a con�guration is that the tools are designed to be independently
inserted in any tensile test machine. This way, the bulge test can be performed with
di�erent end conditions, either tubes ends can be �xed or the bulge can be combined to a
tensile or compressive test. In this study, the tube ends were constrained in both axial and
radial directions and the central region of the tube was free to expand.

2.2.3.4 Measurements during the test

During a bulge test, the pressure is measured by means of a pressure transducer with a
capacity of 250 MPa. The pressure transducer is inserted at the pump exit, before the
capillary tube. Axial force is measured by the tensile testing machine load cell. Finally,
two cameras are put in front of the tube and displacements are measured by means of
Stereo Digital Image Correlation (SDIC) system. For this purpose, the tube outer surface
is preliminary painted with a black and white random pattern. Load, pressure and dis-
placement measurements are synchronised by means of a central computer. A general view
of the test is shown in �gures 2.5 and 2.6.
Two methods can be used to control a tube bulge test. First, it can be pressure controlled.
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Figure 2.5: Tube bulge test device: (a) photography of the device, (b) schematic represen-
tation of the tube bulge test in the initial con�guration, (c) in the bulged con�guration.
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Figure 2.6: General view of the tube bulge test

A target pressure is set and the pump injects water to reach this pressure. Second, it can
be injected volume controlled and the resulting pressure is measured.

2.2.3.5 User protection

Bulging a tube up to fracture leads to water projections. The pressure can be high
but the volume of projected water is small. As a consequence, the water jet quickly
loses intensity and the risk of injury is limited. Nevertheless adding a protection for the
user is necessary. The �rst solution that was considered was to surround the tube with
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Figure 2.7: Protective polycarbonate shell

a transparent polycarbonate shell. A photography of the protective shell is shown in
�gure 2.7. The shell was placed between the tube and the cameras. This con�guration
induced several problems: refraction phenomena could occur and induce measurement
errors, cameras acquisition required lighting that caused re�ection and �nally, keeping a
polycarbonate surface free from marks and scratches is not easy. The second solution was
to place a protection pane in front of the user. The latter was chosen.

2.2.3.6 Preliminary tests

Preliminary tests were performed in order to validate the bulge test design and the mea-
surement systems. They were performed on stainless steel tubes whose dimensions were
5.5� 6.5� 200mm3. In some cases, water injection caused buckling instead of bulging.
Figure 2.8(a) shows photographies of buckled and bulged tubes. The e�ects of initial
conditions such as the alignment of the top and the bottom tools and the initial defects of
the tube are not understood and were not the purpose of this study. To anticipate and
prevent the appearance of such instabilities during bulge test, an extra tool was designed
to reinforce the alignment of the holding tools. It is presented in �gure 2.8(b). Moreover,
shortening the tube lowers the risk of buckling (Koc and Altan (2002)).
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Figure 2.8: (a) Example of buckled and bulged tubes, (b) Tool designed to improve the
alignment of the holding tools

2.3 Mechanical characterisation

The di�erent techniques used for material characterisation were presented in the previous
section. In the following sections, the results of the experimental mechanical tests are
detailed.
A �rst part deals with the characterisation of the material mechanical behaviour considering
isotropic plasticity. The �rst concern is the characterisation of the work hardening behaviour
and the identi�cation of a Ludwik hardening constitutive equation. Then the second concern
is the characterisation of the visco-plastic behaviour and the identi�cation of the parameters
of the Johnson-Cook constitutive equation. A second part concerns the evaluation of the
material anisotropic plasticity and the identi�cation of the Hill's yield function parameters.

2.3.1 Work hardening characterisation

2.3.1.1 L605

Figure 2.9(a) presents the �ow curve obtained for the tensile test performed at a strain
rate of 0.03 s� 1. From these data, Ludwik's hardening model parameters were �tted. The
procedure used for parameters identi�cation is detailed below. The expression of Ludwik's
hardening constitutive equation is reminded:

�� = � 0 + K �� n
p (2.5)
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(a) (b)  

Figure 2.9: (a) Axial stress vs strain for tensile test conducted at a strain rates of 0.03
s� 1, (b) maximisation of the correlation coe�cient to identify � 0

In order to identify � 0, K and n the � 0 parameter is isolated and the logarithm of the
whole expression is taken:

ln(�� � � 0) = n ln �� + ln K (2.6)

n and K parameters values are found by linear regression for a given� 0 value. Thus, an
interval of � 0 values is explored and a single value is assigned to� 0 so that the correlation
coe�cient of the linear regression is maximized. Figure 2.9(b) illustrates the procedure
and the identi�cation of the optimum � 0. The �tted parameters are listed in table 2.5.

Figure 2.10(a) presents the �ow curves obtained for tensile tests conducted at three
di�erent strain rates (0.03 s� 1, 3 s� 1, 9 s� 1). It can be seen from this �gure that the
yield stress increases with increasing strain rate. Such an observation is characteristic of a
visco-plastic behaviour. According to this strain rate dependent behaviour, the parameters
of the Johnson-Cook constitutive equation were �tted. The as mentioned constitutive
equation is reminded below:

�� = ( A + B �� n
p )

�
1 + C ln

� �_�p
�_�0

���
1 � T � m

�
with T � =

� T � T0

Tm � T0

�
(2.7)

Starting with the thermal dependency and the thermal softening coe�cient identi�cation,
Palengat et al. (2013) measured temperature increase during cold tube drawing and showed
that temperatures did not exceed100� C. In this range of temperature, largely lower than
the melting temperature, the dependence of the mechanical properties on temperature
can be considered as negligible. Considering this slight increase, temperature e�ects are
neglected and the Johnson-Cook constitutive equation simpli�es:

�� = ( A + B �� n
p )

�
1 + C ln

� �_�p
�_�0

��
(2.8)

Finally, four coe�cients remain to be �tted: A, B , n and C. The methodology for
parameters identi�cation is detailed below.
ParametersA, B and n can be identi�ed with a reference test which is the test performed
at a strain rate of 0.03 s� 1. As a consequence the reference strain rate is:�_�0 = 0 :03s� 1.
Then, taking �_�p and �_�0 both equals to 0.03s� 1 transforms the Johnson-Cook expression
into the Ludwik equation. Thus A, B and n are easily identi�ed as A = � 0, B = K and
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Figure 2.10: (a) Axial stress vs strain for tensile tests conducted at di�erent strain rates,
(b) minimisation of the Least Absolute Errors to identify C

(a) (b)  

Figure 2.11: (a) Axial stress vs strain for tensile test conducted at a strain rates of 0.03
s� 1, (b) maximisation of the correlation coe�cient to identify � 0

n = n for the test performed at 0.03s� 1.
Parameter C identi�cation requires the use of tests conducted at di�erent strain rates. C
is �tted by a Least Absolute Errors (LAE) minimisation procedure. C value is chosen
so that the sum of the absolute errors between the experimental data and the model is
minimized as illustrated in �gure 2.10(b). The �tted parameters are listed in table 2.5.

2.3.1.2 316LVM

The �ow curve obtained for the tensile test performed at a strain rate of 0.03 s� 1 for
the 316LVM is presented in �gure 2.11(a). The parameters identi�cation of the Ludwik
constitutive equation was done with the same method used for the L605. Figure 2.11(b)
shows the identi�ed � 0 by means of the maximisation of the correlation coe�cient.

Figure 2.12(a) presents the �ow curves obtained for tensile tests conducted at three
di�erent strain rates (0.03 s� 1, 3s� 1, 9 s� 1). The yield stress increases with increasing
strain rate and the 316LVM exhibits a visco-plastic behaviour. Thus, the parameters of
the Johnson-Cook constitutive equation were �tted. The methodology is identical to the
one previously used for the L605. Figure 2.12(b) shows the identi�cation of theC value by
means of the LAE minimisation procedure. The �tted parameters are listed in table 2.5.
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Figure 2.12: (a) Axial stress vs strain for tensile tests conducted at di�erent strain rates,
(b) minimisation of the Least Absolute Errors to identify C
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Figure 2.13: Parameters identi�cation for the L605: superimposition of the Johnson-Cook
�t with the tensile tests conducted at di�erent strain rates

Material A = � 0 (MPa) B = K (MPa) C n �_�0 (s� 1)

L605 490 1922 0.023 0.658 0.03

316LVM 286 1267 0.021 0.663 0.03

Table 2.5: Fitted parameters of the hardening constitutive equation

Figures 2.13 and 2.14 show the superimposition of the experimental tensile test data
with the Johnson-Cook constitutive equation fed with the identi�ed parameters. It can be
observed that the Johnson-Cook constitutive equation represents the material behaviour
with good correlation.
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Figure 2.14: Parameters identi�cation for the 316LVM: superimposition of the Johnson-
Cook �t with the tensile tests conducted at di�erent strain rates

2.3.2 Anisotropy characterisation

2.3.2.1 Tube bulge test

Tube bulge tests were performed on L605 tubes only. Tested tubes dimensions were 7.5 mm
and 6.5 mm for OD and ID respectively. Tubes were extracted from the process after the
10th drawing pass (cf. �g.1.2). The bulged area was 100 mm long. After a preliminary test
where the bursting pressure was estimated to be 204 MPa, a series of test was conducted.

2.3.2.1.1 Strain measurement

Due to the e�ective tube length of 100mm, the tube bulged with a cylinder shape as
shown in �gure 1.22. Thus, SDIC measurements were made in the central part of the
bulged tube only.
In order to validate the bulge test repeatability, several tests were performed. Figure 2.15
shows the evolution of the measured circumferential logarithmic strain (� � ) in green and
axial logarithmic strain ( � z) in red as a function of the pressure for three di�erent bulge
tests. It enables to justify the test reproducibility as only measured data are plotted.

Figure 2.16 presents the measured circumferential and axial strains,� � and � z respec-
tively, prior to failure at a pressure of 204 MPa. The radial strain � r was computed with
the incompressibility hypothesis:

� r = � � � � � z (2.9)

From �gure 2.16, it can be seen that the tube expands circumferentially as the circum-
ferential strain � � is positive. � � ranges from 0.16 to 0.20. As the tube is constrained in
the axial direction, the axial strain � z is negative and nearly zero (� z � 0). It ranges from
� 0:013 to � 0:003. Thus, the tube bulge test induced a plane strain state in the (�! e � ; �! e r )
plane. The standard deviation on � � and � z are 0.8% and 0.5% respectively.
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Figure 2.15: � � (in green) and � z (in red) as a function of pressure for three di�erent bulge
tests.

Figure 2.16: Principal strain �elds of the bulged tube prior to failure (P = 204MPa).

2.3.2.1.2 Force measurement

Axial force measurement during tube bulge test was made with a load cell of 20kN.
In a general way, considering all the bulge tests that were performed, measured forces
range from 0 to -600N . Figure 2.17 shows the evolution of the measured axial force
with the pressure for a single test. All other tests showed the same tendencies. In a �rst
period, the compressive force decreases to the minimum value of -586 N at a pressure
of 121 MPa. From this point, the axial force starts to increase with irregular variations.
These jumps might be due to sliding episodes of the tube inside the grips. Metallic noises
were heard during the test and they may be associated with sliding. Moreover, tube sliding
could explain the axial force returning to zero, since it looses contact with the load cell.
According to the maximum axial strain � z that was measured, the tube axial displacement
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Figure 2.17: Evolution of the axial force as a function of the pressure in the tube
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Figure 2.18: Evolution of the tube shape as a function of the pressure

� l during sliding can be computed as follow:

� z = ln
�

1 +
� l
l0

�
and � l = ( e� z � 1)l0 (2.10)

The tube sliding was found to be 1.29 mm. Finally it is noticeable to mention that at the
end of the test, the grips opening is done with ease and without tools. It seems that the
grips open slightly during the test resulting in tube sliding.

2.3.2.1.3 Stress computation

During the bulge test, the tube deforms with a cylindrical shape up to a limit pressure.
When the test is pressure controlled, once the maximum pressure is reached, the deformation
localizes and the cylinder shape is lost (cf. �g.2.18). The pressure remains approximately
constant until the tube fractures. Before the loss of cylindricity, the stresses expressions
derive from the equilibrium of the tube elements presented in �gure 2.19 considering
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Figure 2.19: Schematic representation of the equilibrium of a cut tube in the axial direction
(a) and in the radial direction (b)

membrane hypothesis. Is this study, as the interest is the characterisation of the work-
hardening behaviour, data are used up to the moment when the tube loses its cylindricity
(phase B in �gure 2.18). As a consequence, stresses are computed considering a cylindrical
geometry.
In the axial direction, the equilibrium equation writes:

F + P �r 2 � � z� (R2 � r 2) = 0 (2.11)

F is the axial force, P is the pressure,� z is the axial principal stress andr and R are the
inner and outer tube radii respectively. And in the radial direction, it writes:

2� � (R � r ) � 2P r = 0 (2.12)

The axial and circumferential stresses� z and � � then express:

� z =
F + �P r 2

� (R2 � r 2)
(2.13)

� � =
Pr

R � r
(2.14)

Figure 2.20 presents the superimposition of axial and circumferential stresses versus
strains for three di�erent bulge tests and shows good reproducibility. All the tests were
conducted in the same conditions in order to evaluate the test reproducibility.

2.3.2.1.4 Evidence of an anisotropic behaviour

In order to compare the data obtained with the tube bulge test and the tube tensile
test, it is necessary to express the stresses and strains into an equivalent form. Indeed,
tube bulge test is a biaxial test while the tube tensile test is an uniaxial one.
In a �rst step, if the material is considered as isotropic, the equivalent stress can be
expressed following the isotropic von Mises yield function detailed in chapter 1. In the
case of tube bulge test, the equivalent stress�� V M and plastic strain rate �_�pV M express in
the principal cylindrical basis (r � , z) as follow:

�� V M =
q

� z
2 + � �

2 � � z� � and �_�pV M =

r
2
3

�
_� 2
r + _� 2

z + _� 2
�

�
(2.15)

Finally, the equivalent von Mises plastic strain computes following:

�� p =
Z t

0
�_�pV M dt (2.16)
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Figure 2.20: Superimposition of� z vs � z (in red) and � � vs � � (in green) for di�erent tube
bulge tests
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Figure 2.21: Comparison of the von Mises equivalent stress vs strain for tensile and bulge
test

The von Mises equivalent stress vs strain curves were plotted both for tensile and bulge
tests. Plots can be seen in �gure 2.21. From this �gure, it can be observed that the data
do not superpose and the von Mises yield function is unable to represent the material
behaviour. According to this observation, the material seems to exhibit an anisotropic
behaviour. As a consequence, other yield function has to be identi�ed in order to model
the material behaviour properly.

2.3.2.1.5 Identi�cation of anisotropic yield criteria

The evidence of plastic anisotropy was made by comparison of the experimental data of
the tube bulge and tensile test. In a �rst attempt, the yield stress function was modelled
with Hill's quadratic yield function presented in chapter 1.
The equivalent stress according to the Hill's quadratic yield criterion (Hill, 1948) expresses
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in the cylindrical basis (r � , z):

f (�� Hill ) =
q

[F (� rr � � �� )2 + G(� �� � � zz)2 + H (� zz � � rr )2] + 2L� r� + 2M� �z + 2N� zr

(2.17)
F , G, H , L , M and N are parameters that are obtained by uniaxial tensile tests of the
material in di�erent orientations. They are related to yield stress ratios Rij as follow :

F =
1
2

� 1
R2

rr
+

1
R2

��
�

1
R2

zz

�
(2.18)

G =
1
2

� 1
R2

��
+

1
R2

zz
�

1
R2

rr

�
(2.19)

H =
1
2

� 1
R2

zz
+

1
R2

rr
�

1
R2

��

�
(2.20)

L =
3

2Rr�
(2.21)

M =
3

2R�z
(2.22)

N =
3

2Rzr
(2.23)

(2.24)

where Rij are the anisotropic yield stress ratios de�ned as:

Rzz =
�� zz

� 0
(2.25)

Rrr =
�� rr

� 0
(2.26)

R�� =
�� ��

� 0
(2.27)

Rr� =
�� r�

� 0
(2.28)

R�z =
�� �z

� 0
(2.29)

Rzr =
�� zr

� 0
(2.30)

where �� ij is the measured yield stress value when� ij is applied as the only nonzero stress
component. � 0 is the user reference yield stress which is� zz in the present case.
In the principal cylindric basis, Hill's equivalent stress expresses:

�� Hill =
q

A[F (� r � � � )2 + G(� � � � z)2 + H (� z � � r )2] (2.31)

with A =
1
2

r
3
�

and � = FH + FG + GH (2.32)

F , G and H are related to yield stress ratiosRj as follow :

Rz =
1

p
G + H

(2.33)

Rr =
1

p
F + H

(2.34)

R� =
1

p
F + G

(2.35)
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Yield stress ratios Rj correspond to the ratio of the measured yield stress in one direction
� i and a reference yield stress� 0 corresponding to a reference direction.

Rz =
� z

� 0
(2.36)

Rr =
� r

� 0
(2.37)

R� =
� �

� 0
(2.38)

Ri are computed for an uniaxial test, i.e. tests where� i is the only nonzero stress
component.
Considering plane stress condition Hill's equivalent stress expression simpli�es:

�� Hill =
q

A[F � 2
� + G(� � � � z)2 + H� 2

z ] (2.39)

The equivalent strain rate expression deriving from the Hill's equivalent stress and the �ow
rule writes:

�_�pHill =

r
2
3

�
Corr _� 2

r + Cozz _� 2
z + Co�� _� 2

�

�
(2.40)

with

Cozz =

r
3
�

F , Corr =

r
3
�

G and Co�� =

r
3
�

H (2.41)

The above paragraph aimed at explaining the Hill parameters identi�cation based on
stresses. In some cases, it can be useful to identify the parameters from the strains directly.
The �ow rule according to the de�nition of Hill yield criterion and assuming normality
rule writes:

d� p =
d�
f

0

B
B
B
B
B
B
B
B
B
@

� G(� �� � � zz) + H (� zz � � rr )
F (� rr � � �� ) � H (� zz � � rr )

� F (� rr � � �� ) + G(� �� � � zz)
2L� zr

2M� �z

2N� r�

1

C
C
C
C
C
C
C
C
C
A

(2.42)

From the �ow rule expression and in the case of uniaxial tests where only one stress
component is non zero, the ratio of the di�erent components of the �ow rule enables to
identify some parameters. As an example, in an uniaxial tensile test in the tube axial
direction, � zz 6= 0 and the �ow rule writes:

d� p =
d�
f

0

B
B
B
B
B
B
B
B
B
@

(H + G)� zz

� H� zz

� G� zz

0
0
0

1

C
C
C
C
C
C
C
C
C
A

(2.43)

Then it turns that:
d� p

r

d� p
z

=
� H

G + H
(2.44)

d� p
�

d� p
z

=
� G

G + H
(2.45)

As the condition G + H = 1 is imposed, the ratios of the radial and circumferential plastic
strain rate on the axial plastic strain rate give H and G respectively.
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Figure 2.22: Presentation of the tube bulge model MA considering a single element

Parameters identi�cation of Hill's yield criterion

As presented previously,F , G and H are functions Ri which are ratios of the measured
yield stress in one direction� i and a reference yield stress� 0 corresponding to a reference
direction. Their identi�cations require tests conducted in di�erent directions and is not
possible with the tube bulge test with a direct method. Thus, Hill's anisotropic parameters
(F , G and H ) were identi�ed by means of an inverse analysis. The method is detailed in
the next paragraph.

Tube bulge test: isotropic and anisotropic models

Tube bulge test model (MA) was made in Abaqus/Implicit. Considering the membrane
hypothesis only one element of the tube wall was modelled with a 8-node linear brick
with reduced integration (C3D8R). Axial and circumferential displacements duz and du�

respectively were imposed as illustrated in �gure 2.22. The imposed displacements were
computed according to the experimentally measured strains as shown in �gure 2.23(a).
Figure 2.23(b) illustrates the strain path. Two di�erent models were de�ned, one with an
isotropic material MA iso and another with an anisotropic material MA ani . Di�erent series
of Hill's parameters were tested for the model MAani and a set was identi�ed due to good
correlation of experimental and numerical results. The identi�ed parameters corresponding
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Figure 2.23: (a) Experimental circumferential and axial strains as a function of time, (b)
experimental strain path

to Hill (1948) yield function are the following:

F = 0 :21 , G = 0 :41 and H = 0 :59 (2.46)

which can be expressed in terms of yield stress ratios as detailed in equations 2.33-2.35.
The correspondingRj values are the following:

Rz = 1 , Rr = 1 :115 and R� = 1 :265 (2.47)

Figure 2.24 shows the comparison of experimental and FEM stresses versus strains plots
obtained with the identi�ed parameters. The di�erent observations that can be made are
the following:

ˆ When examining the � � vs � � data corresponding to MAiso and the experimental
data, it is clear that a model considering isotropic plasticity is unable to model the
material behaviour during tube bulge test.

ˆ Regarding the � � vs � � data corresponding to MAani and the experimental data, one
can see that the plots superpose. The Hill's anisotropic parameters are identi�ed
correctly.

Validation of the anisotropic yield function

The tube anisotropy was revealed by superpimosition of the von Mises equivalent stress
versus strain plots for both the tube tensile and bulge tests (cf. �g. 2.21). After the
identi�cation of the Hill anisotropic parameters, the Hill equivalent stress vs strain curves
were plotted both for tensile and bulge tests. Plots are presented in �gure 2.25. It can
be observed that both �ow curves considering anisotropy superpose which validates the
identi�ed parameters.

In this part, an original method for identifying the parameters of Hill's yield function
was presented. This method relies on a tube bulge test in which the material is tested in
the initial tubular form.
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Figure 2.24: Comparison of the stress-strain according to von Mises for tensile and bulge
test
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Figure 2.25: Superimposition of the equivalent Hill's stress vs strain for tube drawing and
tensile test

2.3.2.2 Tensile tests on oriented samples

In the sheet forming industry another method is widely used to characterize anisotropic
behaviour. This technique consists in cutting oriented samples from the sheet and testing
them in uniaxial tensile tests. This method was applied to this study in order to validate
the parameters identi�cation that was done with the tube bulge test.
Di�erent parameters enabling the characterisation of anisotropic behaviour were previously
described. These parameters areF , G, and H or Rz, Rr and R� and are functions of each
others. Anisotropy can be described by other coe�cients, namely the Lankford coe�cients.
The Lankford coe�cients r k are de�ned as the ratio of the width to the thickness strain
during an uniaxial tensile test (the indices k indicates the direction of the tensile test).
Lankford coe�cients express as follow:

r k =
� width

� thickness
(2.48)
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Figure 2.26: Axial and width deformations measured at the �nal step of a tensile test on a
0� sample

Thus, a tensile test performed in the drawing direction (reference direction) or in the
transverse direction enables to identifyr0 and r90 respectively.
The di�erent steps for sample preparations were presented in section 1.2.2.2. As a reminder,
the tubes are annealed after drawing as it is conventionally done in the process, then they
are opened, �attened, cut and annealed again. The second annealing is done in the same
conditions as the �rst one. This step is necessary to release the residual stresses that were
created during the unfolding step.

Samples of di�erent orientations were tested in uniaxial tensile tests. The samples
directions were: 0� (Drawing Direction, DD), 22.5 � , 45� , 67.5� and 90� (Transverse
Direction, TD). The results of the tests are detailed within the next paragraphs.

2.3.2.2.1 Strain measurement

Figure 2.26 presents an example of strain measurement on a 0� sample. From this
�gure both the axial and the width strains ( � axial and � width respectively) are homogeneous.
Concerning this speci�c case, the standard deviations are 0.7% and 1.3% for � axial and � width

respectively which is the evidence of good quality measurements. The tests performed on
samples of di�erent orientations exhibit strain variations in the same order of magnitude.

From �gure 2.26, the Lankford coe�cients r0 can be computed as the ratio of the width
to the thickness strain (� thickness ). For better accuracy it is necessary to plot the evolution
of � width with � thickness all along the tests. Figure 2.27 presents such a plot for tensile tests
conducted on di�erent oriented samples. It can be observed that the evolution between
both strains is linear.

Thus, the Lankford coe�cients are computed by taking linear regression of the experi-
mental data points. The computed Lankford coe�cients are detailed in table 2.6. A more
geometrical representation can be seen in �gure 2.28 where the Lankford coe�cients are
plotted as a function of the angle relative to the Drawing Direction (DD). Coe�cients
listed in the table and �gure 2.28 are close to 1 in every directions. As a consequence,
according to the tensile tests on oriented samples, the material seems to be nearly isotropic.
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Figure 2.27: Width strain versus thickness strain for tests conducted in di�erent orientations

r0 r22:5 r45 r67:5 r90

0.970 0.927 0.986 0.910 0.916

Table 2.6: Computed Lankford coe�cients
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1 
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Figure 2.28: Lankford coe�cients as function of the angle relative to the Drawing Direction
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Figure 2.29: Flow curves obtained for tensile tests in di�erent directions

2.3.2.2.2 Flow curves

Figure 2.29 shows the stress strain response from three tensile tests (0� , 45� and 90� ).
The di�erence between the di�erent plots is slight which reinforces the observation that
the material is nearly isotropic.

2.3.2.3 Comparison of the anisotropic parameters

Two sets of Hill's anisotropic parameters were identi�ed by means of the tube bulge test
and the tensile tests on oriented samples. In order to compare the identi�ed parameters, it
is necessary to transform the Lankford coe�cients obtained by means of tensile tests into
Rr and R� . The relation between both coe�cients is the following:

Rr =

s
r90(r0 + 1)
r0(r90 + 1

and R� =

s
r90(r0 + 1)
(r0 + r90)

(2.49)

The di�erent Rr and R� values are listed in table 2.7. F , G and H values are also
listed.

Parameter Rz Rr R� F G H

Tensile tests on oriented samples 1 0.958 0.940 0.538 0.493 0.507

Tube bulge tests 1 1.115 1.265 0.26 0.41 0.59

Table 2.7: Comparison of the anisotropic parameters identi�ed by means of di�erent tests

From table 2.7, it can be seen that the parameters identi�ed with the di�erent methods
di�er. According to the tensile tests on oriented samples, the material is nearly isotropic
while it is anisotropic according to the tube bulge test.
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Figure 2.30: Tube tensile test with a circumferential extensometer

2.3.2.4 Additional tensile test

An additional tensile test was performed on a L605 6.5� 7.5mm2 tube in order to identify
the most accurate set of anisotropic parameters. Moreover, this test enabled to discard
the hypothesis of microstructure and properties changes induced by the tube unfolding,
cutting by electrical discharge and additional annealing. In this test, the circumferential
deformation was measured by means of a radial extensometer as shown in �gure 2.30 and
the axial deformation was computed from the cross-head displacement. The radial strain
is computed by the volume conservation hypothesis.
As detailed in equation 2.45 both parametersH and G can be identi�ed from the ratio of
the radial and circumferential plastic strain rates on the axial plastic strain rate respectively.
H and G values are identi�ed by linear regression of� r vs � z and � � vs � z respectively. The
identi�ed values are G = 0.482 and H = 0.518. These values are close to the one identi�ed
by means of the tensile tests on oriented samples (tab.2.7) and reinforce the material being
nearly isotropic.

2.3.2.5 Discussion

In this section, di�erent hypotheses to explain the discrepancies between the di�erent
identi�ed anisotropic parameters are discussed. The �rst hypothesis made is that the
constitutive equations selected are not compatible with the real material behaviour. The
second hypothesis is that the mechanical properties are inhomogeneous in the tube thickness.
A review of bibliographic references and measurements of material hardness are presented
to evaluate both hypothesis. Finally, the conclusions are compared with other authors
studies.

2.3.2.5.1 Incompatibility of constitutive equations

Zang et al. (2011) characterised the plastic anisotropy and hardening behaviour of
steels by mean of uniaxial and biaxial tensile tests and shear tests. They evaluated di�erent
constitutive equations (yield functions and strain hardening) in order to characterise the
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material anisotropy and hardening parameters. The di�erent models were combinations of
Hill 1948 and Bron-Besson yield functions (Bron and Besson, 2004) and Swift isotropic and
Yoshida-Uemori (Yoshida and Uemori, 2003) kinematic hardening models. The parameters
of the constitutive equations were identi�ed by the software SiDoLo (Pilvin, 1988; Chaparro
et al., 2008) which enables to search for an optimum set of parameters by minimising a
cost function. The results showed that Hill (1948) used together with isotropic hardening
presented the largest error in predicting the Cauchy stresses in biaxial and shear tests and
in estimating the anisotropic coe�cients. On the other hand, stresses were well predicted
in uniaxial tensile tests. On the contrary, a model based on Bron-Besson yield function
and Yoshida-Uemori kinematic hardening was able to model both the Cauchy stresses
and the transverse strains (linked to anisotropic coe�cients) with good accuracy for all
the mechanical tests. Thus, from Zanget al. (2011) study, it can be observed that the
combination of di�erent constitutive equations induces di�erent levels of accuracy.
Moreover, as presented in chapter 1, di�erent anisotropic yield functions were developed
throughout the years and, as mentioned by Barlatet al. (2003) and Barlat et al. (2005),
some yield functions are more reliable to analyse the stress state while others are more
accurate to analyse strain states.
From Zang et al. (2011) study, it can be deduced that the choice of the yield function
together with the hardening model in�uences the capability of a model to represent the
material behaviour. From this point and concerning this work, it can be suspected that the
use of di�erent models could lead to a better characterisation of the material anisotropy by
means of tensile and tube bulge tests. Indeed, in this study, both Hill (1948) and isotropic
hardening were used in FEM and Zanget al. (2011) reported their poor performances in
the case of stress states other than uniaxial tension. Nevertheless, the errors made by Hill
(1948) and isotropic hardening compared to the most predictive models (Bron-Besson and
Yoshida-Uemori) is largely lower that the error made in this study. Thus the di�erent
anisotropic coe�cients that were identi�ed with the tensile tests and the tube bulge tests
might have another origin.

2.3.2.5.2 Inhomogeneous mechanical properties

The origin of inhomogeneity

The second hypothesis to explain the inaccurate anisotropic coe�cients identi�ed
with the tensile tests on oriented samples and tube bulge test is to consider that the
material presents heterogeneous properties in the wall thickness. Majta and Luksza (1992b)
observed that the yield stress, tensile strength and uniform elongation were non-uniformly
distributed in the cross section of drawn bars and that properties heterogeneity was greater
for larger die semi-angles. Aguilaret al. (2002) analysed the e�ective strain distribution
over the cross section of a wire during wire drawing and revealed the presence of a strain
gradient. The e�ective strain was the lowest at the wire center and increased in the wire
cross section to reach a maximum at the wire surface.
Moreover, the strain gradient in the wire cross section leads to a non-uniform distribution
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of stored energy (Sadoket al., 1994b; Aguilar et al., 2002). As the stored energy is at
the origin of grain recrystallisation during annealing, it can be expected that a gradient
of stored energy in the wire cross section causes a inhomogeneous microstructure after
annealing. Kazeminezhad (2007) modelled the strain, the stored energy due to deformation
and the grain size distribution of as drawn and annealed wire by means of Monte Carlo
models. He found the strain and microstructure heterogeneities to increase with increased
redundant strain parameter � (Backofen, 1972):

� =
�
R

(1 +
p

1 � R)2 (2.50)

with � the semi-die angle in radian and R the reduction of area. Finally, a gradient in
microstructure leads to heterogeneous material properties in the wire (Sadoket al., 1994b,a,
1996).
It has been previously explained that wire drawing caused an heterogeneous microstructure
in the cross section and that the stored energy of cold work was also heterogeneous. It must
be noticed that when the material is annealed, a new microstructure is created by means
of this stored energy. The �rst question that comes out is "up to which point the annealing
step can reduce the microstructure heterogeneity?" and the second question is "can the
annealing step totally erase the microstructure gradient and generate an homogeneous
microstructure?". The answer to these questions is important in order to know whether the
material properties are homogeneous in the wire or the tube after annealing and before any
drawing step. The �rst trail analysed by Kazeminezhad (2007) is that the microstructure
heterogeneity decreases with increasing annealing time.

Measurement of mechanical heterogeneity

To summarize, the heterogeneity of mechanical properties is due to non-uniform
distribution of strains, microstructure gradients, texture and residual stresses (Majta and
Luksza, 1992a). The means that are available to analyse the properties heterogeneity in a
wire or in a tube are limited. Sadok et al. (1994a) performed tensile tests on samples cut
from wires parallel to the wire axis and at various location along the wire diameter. From
these experiments, they revealed an increase of yield and tensile strength and a decrease of
ductility (elongation) with increasing distance from the wire axis. Such tensile tests can
be envisaged on large wires only and are impossible for tubes with small thickness. The
other option available in order to evaluate the heterogeneity of mechanical properties is
micro-hardness measurement (Sadoket al., 1994a; Kraft et al., 1996)
Experimental measurements of tube hardness in the tube wall thickness were performed
by means of a micro-indenter on L605 tubes in a annealed state with a mass of 200 g.
The tubes were identical to the ones used for the tube bulge test and the tensile tests on
oriented samples. The measured hardnesses are presented in �gure 2.31 and were computed
as an average of the three measurements made at a distance d from the tube outer surface.
This measurement reveals that there is a hardness heterogeneity in the tube thickness.
Hardness is larger nearby the tube inner surface and decreases towards the tube outer
surface. As a consequence, a gradient of mechanical properties exists in the tube wall.
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Figure 2.31: (a) Observation of the indented tube surface by a binocular microscope, (b)
pro�le of measured hardness in the tube thickness

Strain �eld during di�erent mechanical tests

So far, the heterogeneity of mechanical properties does not fully explain the di�erent
equivalent stress vs strain behaviour characterised by means of tube bulge test and tensile
tests on oriented samples.
In the case of the tensile tests on oriented samples, the tube was �attened and deformed in
a uniaxial way. Thus, the imposed deformation during the tensile test was homogeneous
in the sample thickness. As a consequence, the measured force and the computed stresses
correspond to a mean material behaviour. The heterogeneous material properties are
averaged and seen as homogeneous.
In the case of the tube bulge test, the membrane hypothesis was made and the strain
�eld was supposed homogeneous in the tube thickness. As the ratio of the tube thickness
to radius is of the order of 0.15, it is clear that this hypothesis is a �rst approximation.
This strain heterogeneity combined with the material properties heterogeneity in the tube
thickness makes the analysis of the tube bulge test di�cult. As a consequence, it is
necessary to de�ne a new model (MB) for the tube bulge test. In this model, the whole
tube thickness requires to be considered. Only one half of the tube was modelled with
an axisymmetric simpli�cation. The tube was meshed with 4-node bilinear axisymmetric
quadrilateral elements with reduced integration (CAX4R). A symmetry boundary condition
was imposed on the bottom of the tube. During the experimental bulge test, tube sliding
was observed in the grips due to an insu�cient tightening. According to this observation,
the simulation was decomposed into two steps. In the �rst step, a clamping boundary
condition was imposed at the top tube extremity. In the second step, an axial displacement
duz was imposed to the top tube to take into account tube sliding. The displacement
amplitude was �tted according to the measured axial strain. Finally a uniform pressure
load was applied at the inner tube surface. Figure 2.32 illustrates the axisymmetric tube
bulge test model. A Ludwik constitutive equation was used combined with Hill (1948)
yield function. As the material properties were identi�ed to be non-homogeneous in the
tube thickness, the ideal would have been to model this heterogeneity. However, as the
local mechanical behaviour could not be characterised, the material mechanical properties
were supposed homogeneous in the tube thickness.
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Figure 2.32: Presentation of the tube bulge model MB considering tube axisymmetry
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Figure 2.33: Comparison of the stress-strain curves for the di�erent tube bulge test models

Figure 2.33 presents the stress vs strain curves obtained from the second model. It can
be seen that the plots corresponding to both anisotropic models superpose which enables
to validate the boundary conditions of the model MB.

Figure 2.34 illustrates the simulated principal plastic strains. Figure 2.34(a) presents
the general view of the bulged tube at a pressure of 200 MPa and �gures 2.34(b,c,d)
illustrate the plastic strain �eld in the tube and the plastic strain pro�les in the tube
thickness. The positions 0 mm and 0.40 mm correspond to the tube inner and outer surface
respectively.
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From this �gure, it can be seen that there is a plastic strain gradient in the tube thickness.
� p
z values present a di�erence of 1.5% between the tube inner and outer surfaces which

is negligible. The axial plastic strain �eld can be approximated as homogeneous in the
tube thickness. The radial plastic strain component � p

z is compressive and decreases from
the tube inner to outer surface: the radial strain state is more compressive close to the
inner surface. The relative di�erence between both surfaces is 21.7%. The circumferential
plastic strain component evolution is the opposite,� p

� decreases from the tube inner to
outer surface. The relative di�erence between both surfaces is 16.8%. In short, the strain
in the tube thickness is heterogeneous.

As a consequence, if the material properties are heterogeneous and vary in the tube
thickness, then, the stress �eld associated with the above described strain �eld will vary in
the tube thickness as a function of the material properties.
Finally, as the hypothesis of plastic anisotropy was made and as the heterogeneous material
properties in the tube thickness was neglected, the FEM does model an average material
behaviour. The accurate modelling of the tube bulge test requires to consider heteroge-
neous material properties in the tube wall thickness. The problematic that comes out is
the characterisation of the di�erent mechanical properties in the tube thickness. As the
properties in the tube thickness were unknown, the FEM of the tube drawing considering
non-homogeneous properties was not performed.

2.3.2.5.3 Comparison with other studies

Hwang and Lin (2006) and Hwanget al. (2009) who also studied the tube bulge test
by means of experimental tests and FEM found better correlation between experimental
tensile tests on oriented samples and tube bulge test. They considered both isotropic and
anisotropic plastic behaviour and found a better agreement between �ow rules that were
determined from tensile tests and bulge test if anisotropy was considered. As a consequence
the FEM of the bulge test gave better results when the material anisotropic behaviour was
considered. Hwang and Lin (2006) developed a mathematical model using Hill's orthogonal
anisotropic theory to take into account the material anisotropy during tube bulge tests.
They showed the importance of considering the material anisotropy for the evaluation of
forming limit as not taking into account the anisotropy could misestimate the formability
limit.
The main di�erence between Hwang and Lin (2006) and Hwanget al. (2009) studies and
this one is the tube dimensions used for the bulge tests. Hwang and Lin (2006) and Hwang
et al. (2009) used a tube with an outer radius of 25.96 mm and a thickness of 1.86 mm.
The corresponding thickness vs radius ratio was equal to 0.07. In the present study the
tube had an outer radius of 3.75 mm and a thickness of 0.5 mm and the thickness vs
radius ratio was equal to 0.13. As a consequence, a tube presenting a lower thickness vs
radius ratio is less likely to present a strain gradient in its thickness. Moreover, Hwang and
Lin (2006) and Hwang et al. (2009) did not mention heterogeneous mechanical properties
in the tube thickness. Such inhomogeneity can vary depending on the characteristics of
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Figure 2.34: Principal plastic strain computed by FEM, (a) general view of the bulged
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the drawing passes. The tube dimensions they used for their tests might indicate that
the tubes underwent fewer drawing steps than in this study. As a consequence, it can be
assumed that the tube exhibits less heterogeneity.

2.3.2.5.4 Microstructure aspects

The previous two sections aimed at characterising the material anisotropy by means of
mechanical techniques. But the anisotropic behaviour can also be explained by the material
crystallographic characteristics in the form of preferred crystallographic orientations. In
the following section the material is analysed by means of X-ray di�raction technique.

Principle of the X-ray di�raction technique

X-ray di�raction is a technique used to determinate the atomic structure of a crystal
and thus to identify the di�erent phases of a sample (Esling and Bunge, 1997a,b).
A crystal is a structure in which atoms are arranged in an ordered pattern extending in
three dimensions. The elementary pattern is called elementary mesh. Elementary meshes
are arranged to create parallel and equidistant planes whose characteristics are represented
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Figure 2.35: (a) Example of a crystallographic structure in the (a,b,c) basis, (b) interaction
of a X-ray with crystallographic planes

by the Miller indices (hkl). The distance between two planes is called the lattice spacing.
Figure 2.35(a) presents three elementary meshes assembled into a crystallographic structure.
(a,b,c) is the crystal basis. As an example, the plane (001) is presented in orange.
When a X-ray beam interacts with the crystallographic structure, it is di�racted into many
directions. Each direction corresponds to a family of planes as illustrated in �gure 2.35(b).
The condition for a X ray to be di�racted is given by the Bragg's law:

n� = 2dsin(� ) (2.51)

where n is an integer,� is the wave length of incident ray, d is the lattice spacing and
� is the angle between the incident ray and the scattering planes. The recording of the
angles and the intensities of the di�racted beams enables to produce a diagram. An X-ray
di�raction diagram or di�ractogram represents ray intensities as function of the angle.
Every crystalline phase has a unique di�ractogram characterized both by the ray position
(depending on the elementary mesh dimensions) and the relative intensity of the rays.
Finally, crystal phase identi�cation is made by superimposing the as obtained diagram
with a database of powder diagrams. The interest of the powder diagram is that crystals
can be statistically found in every directions and thus the material is seen as isotropic.
Thus, when comparing any diagram to the corresponding powder diagram, preferred plane
orientations appear automatically as the peaks are of higher intensity.
Concerning texture measurement, the drawback of X-ray di�raction is that only planes
that are parallel to the sample surface di�racts. To fully characterize material texture,
it is necessary to vary sample orientation to obtain information about plans with other
orientations. Thus, maps presenting the di�erent orientations of a family of planes can be
drawn. These maps are called pole �gures.

Tube analysis by X-ray di�raction

Surface Measurements
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X-ray di�raction diagrams are plotted for three samples extracted from di�erent stages
in the process. The �rst sample is a piece of "ebauche" with dimensions of ID� OD =
18� 24 mm2. Ebauches are obtained from rough bars that are shaped by metal casting.
The bars are �nally drilled to end up with tubes. In the production process of the ebauche,
there is no step that is likely to introduce anisotropy. The second sample is extracted after
the 6th pass (cf. �g.1.2), its dimensions are ID� OD = 10.5� 13 mm2. The third sample is
extracted after the 10th pass (cf. �g.1.2), and the tube dimensions are ID� OD = 6.5 � 7.5
mm2. This tube has the same dimensional characteristics as the tubes used in the bulge
test. Both of the tubes extracted after drawing passes were heat treated. Small curved
samples were cut from the tubes in order to analyse both the inner and outer tube surfaces.
The �rst two samples were too thick to be �attened but the curvature was correct to make
an analysis. On the contrary, the third sample had a radius of curvature too important to
perform the X-ray di�raction analysis and had to be �attened.
The analysis developed below refers to the X-ray di�raction diagrams shown in �gures
2.37 and 2.36 for the tube inner and outer surfaces respectively. Starting with the ebauche,
both inner and outer surfaces show a slight preferred orientation of type (111) but it is not
signi�cant. The material is nearly isotropic.
The second sample shows di�erences between inner and outer surfaces. The outer surface
shows a pronounced preferred orientation of type (111) while the inner surface shows a
preferred orientation of type (220). Same observations can be done for the third sample.
The �rst remark is that there is a di�erence of texture on the inner and outer tube surfaces.
These di�erences are probably due to the process but cannot be explained easily.
The comparison of the inner surface for the second and third samples reveals slight
di�erences on the pic intensities. Indeed, (111) pic intensity is higher for the third tube.
Thus, from these observations, it can be concluded that there is a texture evolution between
the tubes extracted at two di�erent passes.
The conclusions of this X-ray di�raction study are:

ˆ the ebauche is nearly isotropic and develops texture in the primary drawing passes;
ˆ then texture develops after successive passes. Thus, it can be expected that mechanical

tests performed on di�erent tubes that are extracted from di�erent passes will reveal
di�erent plastic behaviour;

ˆ there is a di�erent preferred orientation between inner and outer surfaces. This
di�erence is probably due to the process. As the penetration depth of the X-rays
was approximately 20 � m, the transition between both orientations was not visible.

Finally, it must be mentioned that the above analysis considered the tube surfaces only.
During the tube drawing process, the inner and outer tube surfaces undergo shear due to
friction . As a consequence, a speci�c texture can develop nearby the tube surface due to
friction and the above analysis is not signi�cant for the global material texture.

Volumetric measurements

Volumetric measurements required to use a more energetic X-ray beam in order to
analyse the whole sample volume. Thus, the analysis were performed at the ESRF in
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Figure 2.36: Superimposition of the X ray di�raction of the outer tube surface for di�erent
tubes
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Figure 2.37: Superimposition of the X ray di�raction of the inner tube surface for di�erent
tubes
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collaboration with Caroline Curfs and Jonathan Wright, on the ID11 beamline with an
energy of 80keV. A sample in the form of an arc was cut from the 6.5� 7.5mm2 L605 tube
with a thickness of 0.5 mm. The sample was placed in a rotating device aligned with
the x-ray beam and the sample orientation was identi�ed with a coordinate system as
shown in �gure 2.38. The marked x,y and z directions correspond to the radial, axial and
circumferential directions respectively. The sample was rotated along the z axis.
Figure 2.39 presents the pole �gures obtained from the X-ray di�raction analysis. Such
�gures represent the intensity of the planes (111), (200) and (220) oriented in di�erent
directions.
The pole �gure concerning the plane (111) presents a central spot and a ring of greater
intensity. The central spot indicates that the normals to the planes (111) are oriented in
the drawing direction. The ring indicates that there are also grains in which the planes
(111) have a di�erent orientation. The distance between the ring and the pole center
indicates the direction of the normal to the planes. A distance corresponding to an angle
of 54.7� corresponds to the direction <100>.
In the pole �gure (200) the central spot indicates that the normal of this plane is oriented
in the direction parallel to the drawing direction. The ring indicates that planes (200) are
also oriented in the <111> direction.
The pole �gure (220) indicates that the planes (220) are not oriented preferentially in the
direction of drawing as there is no central spot. This measure has to be compared with
the surface X-ray di�ractograms. In �gure 2.37 a preferred orientation of type (220) was
observed for the inner tube surface. During measurements performed at the ESRF, the
texture was measured for the entire tube thickness, thus the measured texture corresponds
to an average. As a consequence, it signi�es that the preferred orientation (220) is limited
to the tube inner surface. The main remarks deduced from the pole �gure are the following:

ˆ the material exhibits a slight �bre texture <111>;
ˆ the texture is not marked as the intensity of the spot and the ring are not important;
ˆ the (220) preferred orientation is limited to the inner tube surface.

Kraft et al. (1996) and Chenet al. (2011) also measured <111> and <200> �bre texture
in copper wire. But compared to tube drawing where the material is annealed between
two successive passes, in wire drawing the wire is not annealed and the texture is more
marked as the tube undergoes more deformation.
As a conclusion, as the texture in the L605 is not very marked, it indicates that the material
might get close to an isotropic plastic behaviour.

2.3.2.6 Conclusion

The approach in which the material plastic behaviour is considered as isotropic appears to
be founded regarding the tensile tests on oriented samples and the X-ray di�raction analysis.
Nevertheless, as the material exhibits heterogeneous properties in the tube thickness, the
anisotropic approach can lead to a better average of the mechanical properties in some
cases. Indeed, as shown in the tube bulge tests, the anisotropic plasticity enables to model
the tube bulge test while the isotropic one cannot. The stress state during tube drawing is
closer to the one during tube bulge test compared to the tube tensile test.
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Figure 2.38: Sample positioning for volumetric X-ray measurements
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Figure 2.39: Pole �gures in the axial direction

As an example, Strano and Altan (2004) modelled the tube hydroforming process by means
of FEM both with �ow curves obtained from tensile tests and bulge tests. Their model
showed better accuracy when the �ow stress parameters were identi�ed by bulge test
compared to tensile test.
Thus, in the case of tube drawing, it can be expected that the anisotropic hypothesis
identi�ed with the tube bulge test leads to more accurate results compared to the isotropic
hypothesis identi�ed with the tensile test. In short, the anisotropic plasticity enables
to model a mean mechanical behaviour which is more representative of the mechanical
heterogeneity as illustrated with the FEM of the tube bulge test.

2.3.3 In�uence of annealing temperature

The development of next part requires to refocus on the goal of this thesis work which is to
evaluate tube formability. In the industrial tube drawing process, tubes can be annealed
at di�erent temperatures depending on the di�culties that can be met during the process.
As a consequence, a small part of this work was devoted to the evaluation of the in�uence
of annealing temperature on tube formability and the �rst step to do so is to evaluate
their in�uence on material properties. Thus, next paragraph deals with the mechanical
testing of materials annealed at di�erent temperatures and the observation of resulting
microstructures.
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(a)    Tannealing = 1100°C (c)     Tannealing = 1175°C (b)     Tannealing = 1150°C 

Figure 2.40: Evolution of the L605 microstructure with annealing temperature

2.3.3.1 L605

Tensile tests were performed on tubes with an OD of 11.5 mm and a thickness of 1 mm
at constant strain rate of 0.03 s� 1. Three series of tubes were annealed during 10 min
at three di�erent temperatures: 1100, 1150 and 1175� C. The microstructures and the
corresponding grain sizes of the L605 are detailed in �gure 2.40.

Annealing temperature (� C) Mean grain size (�m )

1100 11.2

1150 22.5

1175 37.8

Table 2.8: L605 mean grain size as a function of the annealing temperature

It can be observed from the micrographies in �gure 2.40 that the grain size increases
with increasing annealing temperature. The mean grain sizes corresponding to the di�erent
annealing temperatures are listed in table 2.8. The �ow curves obtained from uniaxial
tensile tests as a function of the grain size are detailed in �gure 2.41. It can be seen from
these curves that the materials exhibit di�erent mechanical behaviour depending on their
grain size: the ultimate tensile stress is unchanged with grain size, the maximum plastic
strain or lengthening increases with increasing grain size and the yield stress decreases with
increasing annealing temperature. It can be noticed that in the context of metal forming
industry, it may be preferred to use a material with increased ductility, i.e. a material with
larger grain size.

2.3.3.2 316LVM

Tensile tests were performed on tubes with an OD of 10.5 mm and a thickness of 0.75 mm
at a constant strain rate of 0.03 s� 1. Three series of tubes were annealed at three di�erent
temperatures: 950, 1000 and 1050� C. The microstructures and the corresponding grain
sizes of the 316LVM are detailed in �gure 2.42 and table 2.9. The material behaviour is
similar to the one exhibited by the L605.
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Figure 2.41: L605 �ow curve as a function of annealing temperature and grain size

(a)    Tannealing = 950°C (c)     Tannealing = 1050°C (b)     Tannealing = 1000°C 

Figure 2.42: Evolution of the 316LVM microstructure with annealing temperature

Annealing temperature (� C) Mean grain size (�m )
950 13.3
1000 18.9
1050 31.8

Table 2.9: 316LVM mean grain size as a function of the annealing temperature

2.4 Thermo-mechanical characterisation

Plastic deformation is accompanied by heat generation. This phenomenon was detailed in
part 1.2.3. As the interest of this project is also to consider heat generation, it is necessary
to characterise the materials thermo-mechanical properties.

2.4.1 Introduction on thermomechanics

The percentage of plastic deformation work that is converted into heat is characterised
by the Taylor-Quinney coe�cient � also known as Inelastic Heat Fraction (IHF). This
coe�cient was identi�ed by means of thermal measurement with an infra-red camera
during the tensile tests of tubular specimens.
In a 3D thermal problem, the energy conservation equation links the temperature T(r,� ,z,t)
and the heat sources_q(r, � ,z,t) for a point M of cylindrical coordinates (r, � ,z) as illustrated
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in �gure 2.43. At the time t it writes:

�C p
@T
@t

� k lap(T) = _q (2.52)

with
_q = � trace(� _� p) (2.53)

where � is the mass density,Cp the speci�c heat capacity, k the heat conductivity.
In this study, convection is supposed to be the predominant surface heat transfer phe-
nomenon. It is supposed that the sample thickness is small and the temperature is
considered uniform in the sample thickness. The energy conservation equation then
simpli�es to a 2D problem (�g.2.43) and writes (Delobelle, 2012):

�C p
@~T
@t

� k lap2D ( ~T) +
2h
e

( ~T � T1 ) = ~_q (2.54)

with e the tube thickness andlap2D = @2T
@z2 + 1

r 2
@2T
@�2 . The temperature and heat source

reduce to ~T(� ,z,t) and ~_q(� ,z,t) respectively.
The temperature can be considered homogeneous in the direction�! e � due to the tube
geometry. Then, the energy conservation equation transforms into a 1D problem (�g.2.43)
and writes:

�C p
@~~T
@t

� k lap1D ( ~~T) +
2h
e

( ~~T � T1 ) = ~~_q (2.55)

where lap1D = @2T
@z2 . The temperature and heat source reduce to~~T(z,t) and ~~_q(z,t) respec-

tively.
The temperature is inhomogeneous near the gripper due to conduction phenomenon but it
can be considered homogeneous far from the gripper. Thus, considering the temperature
in the middle of the tube only, the energy conservation equation turns into a 0D problem
(�g.2.43) and writes:

�C p
@

~~~T
@t

+
2h
e

(
~~~T � T1 ) =

~~~_q (2.56)

Finally, if the temperature �eld is homogeneous, it turns to be dependent on the time only:
~~~T(t) and

~~~_q(t). In the above expression, the �rst unknown is the heat convection coe�cient
h. It can be identi�ed at the end of the test, when the hot sample naturally cools down
and when _q equals zero:

h =
e�C p

@
~~~T

@t

2(
~~~T � T1 )

(2.57)

Finally, combining equations 2.53 and 2.56 the expression of the Taylor-Quiney coe�cient
comes:

� =
�C p

@
~~~T

@t + 2h
e (

~~~T � T1 )
trace(� _� p)

(2.58)

2.4.2 Identi�cation of the Taylor-Quinney coef�cient for L605

The tubes were painted in black to reach an emissivity close to 1 (0.95) (Palengat, 2009;
Delobelle, 2012) and the temperature was measured during the tensile tests. Considering
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Figure 2.43: Illustration of the di�erent simpli�cations of the energy conservation equation
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Figure 2.44: Example of a temperature �eld measured during a tensile test on L605 tubes,
at the beginning of the test and at the end of the test

the geometry of the tube, the temperature �eld is supposed to vary only in the axial
direction z. The thermal measurement was made on the whole sample but data used
for further computations were acquired from a limited areaA(�; z ). The selected area is
limited to the center of the tube, corresponding to a small view angle from the camera
(�g.2.44). The temperature was measured to be homogeneous in this area.

Figure 2.45 shows the superimposition of the evolution of the true axial stress and the
temperature variation � = T � T0 as a function of the time. During plastic deformation,
the temperature increases with increasing strain. At the end of the tensile test, the tube
temperature slightly decreases due to natural convection. Cooling by convection is clearly
visible for the tubes annealed a temperature of 1100� C (blue plot) and 1175� C (green
plot). During the cooling phase, there is no plastic deformation work and the sources are
equal to zero. Thus, on the part of the temperature curve corresponding to this moment,
the heat convection coe�cient h is identi�ed and equal to 14.4Wm� 2K � 1.

Once the heat coe�cient coe�cient identi�ed, the Taylor-Quinney coe�cient can be
evaluated. Figure 2.46 presents the evolution of the computed� as a function of the axial
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Figure 2.45: Results of the tensile tests: Superimposition of the axial stress and temperature
variation vs time for a strain rate of 0.03 s� 1. Data are plotted for three annealing
temperatures

Figure 2.46: Evolution of the Taylor-Quinney coe�cient with axial strain. Data are plotted
for three annealing temperatures

strain and for materials treated at di�erent annealing temperatures. Globally, � increases
with increasing axial strain and ranges from 0.45 to 0.7.

2.5 Failure characterisation

This chapter �nally comes to the characterisation of the failure and the calibration of the
failure criteria. The choice was made to compute the failure criteria reference values by
means of uniaxial tube tensile tests. The choice of such a simple test comes from the
observation that this test is one of the most widely used in the industry as it is simple to
handle. The objective of this study is also to evaluate the predictability quality of fracture
criteria calibrated with only tube tensile test. More complex fracture criteria requiring
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Figure 2.47: Example of strain rates (s� 1) reached during tube drawing process

Abbreviation Expression of the damage variable in tension Critical Value

STRN D1 = � 1 D crit
1 = 0.451

MSS D2 = � max = � 1
2 D crit

2 = 902.6 MPa

SHAB D3 = 1 D crit
3 = 1

FREU D4 =
R� 1

0 � 1d� 1 D crit
4 = 622.4 MPa

COCK D5 =
R� 1

0 max(0; � 1)d� 1 D crit
5 = 622.4 MPa

RICE D6 =
R� 1

0 exp(1
2)d� 1 D crit

6 = 1.16

BROZ D7 =
R� 1

0 d� 1 D crit
7 = 0.701

ARGO D8 =
R� 1

0
4� 1

3 d� 1 D crit
8 = 829.9 MPa

OH D9 =
R� 1

0 d� 1 D crit
9 = 0.701

AYAD D10 =
R� 1

0
1
3d� 1 D crit

10 = 0.234

TREN D11 =
R� 1

0
� 1
2 d� 1 D crit

11 = 311.2 MPa

Table 2.10: Details of the fracture criteria calibrated on a tube tensile test for L605

other tests were not considered.

2.5.1 Failure criteria calibration

2.5.1.1 L605

According to the stress state taking place in the tube tensile test, the expression of the
damage or damage accumulation variable can be re-written as presented in the table 2.10
where � 1 and � 1 are the tensile Cauchy stress and the logarithmic strain respectively. The
critical computed values determined by means of tensile tests are also detailed. Table 2.10
summarizes the calibration values of di�erent failure criteria that are evaluated. Failure
criteria were calibrated on tensile test performed at a strain rate of 9s� 1 (cf. �g. 2.10).
Indeed, as presented in �gure 2.47 strain rates reached during the drawing process ranges
from 1 to 72s� 1 for a bench speed of 11.2 m min� 1. Predictability should be more accurate
if criteria are calibrated for strain rates close to the one reached during tube drawing.
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Strain rate (s� 1) COCK (MPa)

0.03 557.8

3 618.5

9 622.4

Table 2.11: Calibration values of Cockcroft-Latham failure criterion as function of strain
rate

Annealing temperature (� C) Grain size (� m) COCK (MPa)

1100 11.2 526.7

1150 22.5 557.8

1175 37.8 633.9

Table 2.12: Calibration values of Cockcroft-Latham failure criterion as function of grain
size

2.5.1.1.1 In�uence of visco-plasticity

The in�uence of strain rate on tensile test results was shown in �gure 2.13. Cockcroft-
Latham failure criterion was calibrated on the tests conducted at di�erent strain rates to
evaluate the e�ect of material visco-plasticity on failure. The computed values are listed
in table 2.11. From the computed values, it can be expected that material formability
improves slightly with increasing strain rate. The value of 622:4 MPa corresponding to the
higher strain rate was selected for failure prediction. Indeed, the strain rate of 9 s� 1 is
closer to the strain rates reached during tube drawing.

2.5.1.1.2 In�uence of grain size

The in�uence of grain size on tensile tests results was shown in �gure 2.41. Cockcroft-
Latham failure criterion was calibrated on the tensile tests performed on tubes annealed
at di�erent temperatures to evaluate the e�ect of grain size on failure. The computed
values are listed in table 2.12. It can be seen that increasing grain size can improve metal
formability.

2.5.1.1.3 In�uence of anisotropy

Failure criteria were calibrated considering material anisotropy and by means of the data
obtained on the tensile test with a strain rate of 9 s� 1. The expression of failure criteria
were modi�ed to take into account the anisotropic e�ects. Mises equivalent stress ans
strain were replaced by Hill's equivalent stress and strain. The expression of the modi�ed
failure criteria and the corresponding calibrated values are detailed in the following table:

2.5.1.2 316LVM

The failure criteria for the 316LVM were calibrated on the tube tensile test performed at a
strain rate of 9 s� 1. The calibrated values are detailed in table 2.14.
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Abbreviation Expression of the damage variable in tension Critical Value

STRNH D1 = �� H D crit
1 = 0.405

MSSH D2 = � max = � 1
2 D crit

2 = 903 MPa

SHABH D3 = � 1
�� H D crit

3 = 1

FREUH D4 =
R�� H

0 �� H d�� H D crit
4 = 568 MPa

COCKH D5 =
R�� H

0 max(0; � 1)d�� H D crit
5 = 645 MPa

RICEH D6 =
R�� H

0 exp( � 1
2�� H )d�� H D crit

6 = 0.657

BROZH D7 =
R�� H

0 d�� H D crit
7 = 0.423

ARGOH D8 =
R�� H

0 ( � 1
3 + �� H )d�� H D crit

8 = 834 MPa

OHH D9 =
R�� H

0
� 1
�� H d�� H D crit

9 = 0.372

AYAD H D10 =
R�� H

0
� 1

3�� H d�� H D crit
10 = 0.124

TREN H D11 =
R�� H

0
� 1
2 d�� H D crit

11 = 284 MPa

Table 2.13: Details of the fracture criteria calibrated on a tube tensile test considering
anisotropy for L605

Abbreviation Expression of the damage variable in tension Critical Value

STRN D1 = � 1 D crit
1 = 0.409

MSS D2 = � max = � 1
2 D crit

2 = 535.7 MPa

SHAB D3 = 1 D crit
3 = 1

FREU D4 =
R� 1

0 � 1d� 1 D crit
4 = 345.5 MPa

COCK D5 =
R� 1

0 max(0; � 1)d� 1 D crit
5 = 345.5 MPa

RICE D6 =
R� 1

0 exp(1
2)d� 1 D crit

6 = 0.709

BROZ D7 =
R� 1

0 d� 1 D crit
7 = 0.430

ARGO D8 =
R� 1

0
4� 1

3 d� 1 D crit
8 = 460.6 MPa

OH D9 =
R� 1

0 d� 1 D crit
9 = 0.430

AYAD D10 =
R� 1

0
1
3d� 1 D crit

10 = 0.143

TREN D11 =
R� 1

0
� 1
2 d� 1 D crit

11 = 172.7 MPa

Table 2.14: Details of the fracture criteria calibrated on a tube tensile test for 316LVM

2.6 Conclusion

This experimental work enabled to characterize material mechanical properties. Tensile
tests on tubes enabled to identify a visco-plastic constitutive law. The in�uence of grain
size on material properties was also addressed. This point is important when the decision
of modifying the annealing temperature in the industrial process is taken. A small change
in annealing temperature can have great consequence on the process and the �nal product.
The tube bulge test suggested the anisotropic behaviour of the material.
The plastic anisotropy was further studied by means of tensile tests on oriented samples
that were cut from �attened tubes. However, these tests revealed a nearly isotropic plastic
behaviour. An additional tensile test on a tube was performed. In this case both the
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circumferential and axial strains were measured to study anisotropy. This test enabled to
con�rm the results obtained from the tensile tests on oriented samples and con�rmed the
plasticity to be nearly isotropic.
Then, the material isotropy or anisotropy was investigated at the crystallographic scale and
the tubes were analysed by means of X-ray di�raction. First, surface measurements were
performed and revealed the tube inner and outer surfaces to present di�erent preferred
orientations. Second, volumetric measurements were performed at the ESRF on the ID11
beamline. These analyses enabled to draw pole �gures and to characterise the material
anisotropy at the crystallographic scale. A slight <111> �bre texture was observed but
the intensity was not signi�cant to ensure that the material is expected to exhibit an
anisotropic behaviour. So far, the material is likely to exhibit isotropic plasticity. In
parallel, micro-hardness measurements were performed in the tube thickness and it was
shown that the L605 tube exhibited heterogeneous mechanical properties in the tube
thickness.
As a consequence, due to the non-homogeneous mechanical properties in the tube thickness,
it appears that the anisotropic approach can lead to a good average of the mechanical
properties. As for the tube bulge test, it is expected that a FEM with anisotropic plasticity
might model the tube drawing with better accuracy.
Finally, failure criteria were calibrated on tube tensile tests. Di�erent failure criteria
were computed depending on the strain rate, the grain size, and whether anisotropy was
considered or not.
Calibrated failure criteria serve as a basis to evaluate material formability during tube
drawing. However, in order to accomplish such a task, it is necessary to determine the
experimental fracture limit. The latter can only be found by conducting experimental tube
drawing tests which is the purpose of the following chapter.
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Chapter

3
The conical mandrel tube drawing test
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This chapter is dedicated to a drawing test that was developed in order to evaluate
tube formability and to identify the remaining frictional and thermal properties that
still have to be identi�ed. The �rst method one can think to determine tube drawing
limit is to perform a series of drawing tests with several mandrels of di�erent diameters.
When the use of a mandrel makes the drawing impossible the drawing limit is reached.
This approach has mainly two drawbacks: it is time consuming due to the number of
necessary experiments and the transition between feasible and non-feasible drawing pass is
not accurately determined. The process limit can only be approached with an accuracy
depending on the diameter range of the mandrels that were used. Thus, in order to �ll in
the disadvantages of the previously presented method, a drawing test was designed to �nd
the drawing limit with a single drawing test. The success of this test relies on the design
of a conical mandrel.
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3.1 Description of the conical mandrel tube drawing test

The originality of this test relies on the design of the mandrel which was created to combine
three drawing tests in a single one. Details about the tubes and the experiments are
exposed in this part.

3.1.1 Mandrel geometry

The newly designed mandrel can be decomposed into three parts, each part having a
distinct role during tube drawing. The di�erent parts are presented in �gure 3.1 and
detailed below:

ˆ part (1) of the mandrel is a cylindrical section of constant small diameter enabling a
step of hollow sinking;

ˆ part (2) of the mandrel is a cylindrical section of constant diameter such as outer
and inner tube diameters are reduced but wall thickness is unchanged. The mandrel
geometry corresponds to a classical mandrel drawing case;

ˆ part (3) of the mandrel is the principal one. It consists in a conical part with a
continuously increasing section.

The mandrel dimensions are detailed in table 3.1. The corresponding section and thickness
reductions are also detailed for a initial tube dimension of 10.5� 13 mm2 and a die diameter
of 11.5 mm. On the third mandrel part, drawing takes place with a mandrel presenting a
progressively increasing diameter. As a consequence a range of thickness reduction (from 0
to 52.8%) with the corresponding section reduction (from 17.4 to 58.2%) is explored. The
test starts from 0% and 17.4% thickness and section reductions respectively and ends up
at failure. This way, the use of a single mandrel enables to know the thickness and section
reductions at fracture with very good accuracy. Nominal mandrel dimensions with the
corresponding imposed section and thickness reductions are detailed in table 3.1.

Part (1) Part (2)
Part (3): conical zone
Ømin Ømax

Nominal diameter (mm) 8.7 9.0 9.0 10.3

Section reduction (%) 16.9 17.4 17.4 58.2

Thickness reduction(%) 0 0.8 0.8 52.8

Length of the part (mm) 100 200 700

Table 3.1: Nominal mandrel dimensions and expected section and thickness reductions
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Figure 3.1: Schematic representation of the conical mandrel drawing process (dimensions
were exaggerated in the �gure for clarity)

The conical mandrels used in the experiments were machined from straight mandrels
made of hard steel. The total mandrel length was 1000 mm and the conical part was 700
mm long. Consequently the mandrel semi-cone angle was very small i.e. 0.053� . As a
comparison, Bui et al. (2011b) performed the same kind of test but used a conical mandrel
of shorter length (84.18 mm), a diameter ranging from 39.34 mm to 49.39 mm and a
semi-cone angle of 5� . Thus, concerning the mandrel of this study, the machining was very
di�cult mainly due to the mandrel length and the semi-cone angle. Then, real mandrels
dimensions were measured with a laser measurement system. The measured geometries of
the three mandrels that were used are represented in �gure 3.2. Each mandrel was used
several times. Between each test, the mandrel geometry was measured by means of a laser
measurement system. No signi�cant dimensional variations were measured, the mandrel
geometry remained unchanged after each drawing test.
Bui et al. (2011b) drawing test di�ers slightly from the mandrel drawing test described
here. In their study, the test called mandrel drawing can be seen as a �xed plug test
according to the vocabulary described in this thesis. The conical mandrel is a conical plug
which is �xed at the end of a rod. The position of the mandrel inside the die and the
imposed reductions are controlled by commanding the mandrel position with the rod.

3.1.2 Details on the tube and the dies

3.1.2.1 L605

The initial tube length was 1000 mm. The L605 tubes had an outer diameter of 13.1 mm
and a wall thickness of 1.3 mm approximately. The precise initial tube dimensions and
sections are detailed in the table 3.2.
The die angles have an in�uence on the drawing force as observed by di�erent authors
as detailed in part 1.1.2. To study the in�uence of die geometry on the drawing force,
four series of drawing tests were conducted with dies having di�erent semi-cone angles:
5� , 12.5� , 16� and 20� . The dies diameter was identical and equal to 11.5 mm. The die
geometry is presented in �gure 3.3
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Figure 3.2: Evolution of the measured diameter along the conical mandrel

Figure 3.3: Geometry of a die

3.1.2.2 316LVM

The initial tube length was 1000 mm. The 316LVM tubes had an outer diameter and wall
thickness of 12.6 mm and 1.05 mm respectively. The precise initial tube dimensions and
sections are detailed in the table 3.2.
In this series of tests, only one die was used. The die had a semi-cone angle of 12.5� and a
diameter of 10.5 mm.

Material L605 316LVM

Mandrel number 1 2 3 1 2

Tube inner diameter (mm) 10.51 10.50 10.52 10.61 10.62

Tube outer diameter (mm) 13.11 13.11 13.11 12.72 12.73

Initial mean section (mm2) 48.26 48.39 48.06 38.66 38.70

Table 3.2: Initial tube dimensions used with the corresponding mandrel

98



Figure 3.4: Infra-red and high speed cameras positioning during conical mandrel drawing
test

3.1.3 Measurements made during the tests

The drawing tests were carried out in the same lubricant conditions and the same drawing
speed as the conventional industrial process. Four di�erent measurements were done during
the conical mandrel drawing tests of L605 tubes.

ˆ The drawing force (FDrawing ) was recorded by the use of a load cell inserted between
the die and the die holding system (�g.3.1).

ˆ The bench drawing speed was measured by means of a motion transducer that was
linked to the tube gripper.

ˆ The tube temperature was recorded by an infra-red camera Flir SC700 pointing at
the die exit.

ˆ The tube exiting the die was �lmed by a high speed camera. The goal of the high
speed camera was to �lm the tube fracture and to locate the fracture locus in the
case it happened after the die.

Figure 3.4 presents the cameras positioned to observe the tube exiting the die during the
conical mandrel drawing test.
Only the drawing force was measured during the conical mandrel drawing tests on 316LVM
tubes.
In order to clarify the results obtained from the tests made on L605 and 316LVM tubes,
both materials are presented in separate sections. A �rst part details the drawing tests
performed on L605 tubes. Indeed, with this material, the measurements were more complete
due to temperature measurements. Moreover this series of test was the very �rst that was
done and consisted in a development test. As a consequence, the results of the drawing
tests made with the 316LVM tubes are presented more brie�y in a second part. This
second series of tests enables to validate the testing method.

99



3.2 Results of the experimental drawing tests on L605 tubes

3.2.1 Drawing Force measurements

3.2.1.1 Observation of a single test

In this section, only the results of the tests performed with a die semi-cone angle of 12.5�

are detailed. Figure 3.5 shows the drawing force and mandrel diameter at the die location
versus mandrel displacement obtained during the three conical mandrel drawing tests.
Generally speaking, the drawing force increases with increasing mandrel diameter. Looking
more into details, a clear link appears between the drawing force and the mandrel diameter.
For example, the mandrel 3 shows diameter irregularities while it is supposed to be straight.
These irregularities are due to mandrel machining. Consequently, as shown in �gure 3.5(c)
the measured drawing force �uctuates following the mandrel diameter variations. Figure 3.6
superimposes the three drawing forces measured during the three di�erent tests. In �gure
3.6(a), the force is plotted as a function of the mandrel displacement. The displacement
measurement related to the precise characterisation of the mandrel geometry enabled to
know with very good accuracy the mandrel diameter at the die location at any time. The
tube inner diameter was taken equal to the mandrel diameter and the tube outer diameter
was considered equal to the die diameter. In this way, it was possible to compute tube
section at any time and to compute the section and thickness reductions during the tests.
Then, �gure 3.6(b) presents the drawing force as a function of the section reduction. Both
�gures highlight the good repeatability of the tests as the three curves corresponding to
the three drawing tests are very close. Figure 3.6(b) clearly shows the section reduction
reached at maximum drawing force which corresponds to failure.

3.2.1.2 In�uence of the die semi-cone angle

Figure 3.7 shows the evolution of the drawing force as a function of the mandrel diameter
for di�erent die angles. Three tests were performed for each die to ensure reproducibility.
It can be observed that the drawing force shows little but not signi�cant variations for the
die semi-cone angles of 12.5� , 16� and 20� . In the special case of the die angle of 16� the
drawing force drastically increase at the end of the test which is probably due to the die
clogging. Indeed, each case the force presented such �uctuations, the die when removed
from the drawing bench presented stuck material on the working part. In this case, the
die were cleaned prior to any other test.
The increase of die angle is expected to lower the amount of work of friction. On the
contrary, it increases the amount of redundant work of deformation. It can be suspected
that a balance exists between friction and redundant deformation leading to no visible
in�uence of the die angle on the drawing force.
Concerning the measured drawing force for the die with a 5� semi-cone angle, a �rst
measure was made on a 50 kN drawing bench which stalled during the test. A second test
was made on a 100 kN drawing bench but the force measurement failed. Consequently
there are no force measurement for the 5� semi-cone die.
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Figure 3.5: Drawing force and mandrel diameter versus displacement obtained for a conical
mandrel drawing test: (a) mandrel 1, (b) mandrel 2, (c) mandrel 3.

Figure 3.6: (a) Force versus mandrel displacement and (b) force versus section reduction
during the conical mandrel drawings
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Figure 3.7: Drawing force vs mandrel diameter for di�erent die semi-angles

3.2.2 Section and thickness reductions

The computed section reduction and measured force at fracture for a die angle of 12.5� are
presented in table 3.3.

Mandrel number 1 2 3

Section reduction at fracture (%) 54.17 53.37 53.91

Thickness reduction at fracture (%) 50.01 48.86 50.43

Maximum drawing Force (daN) 3861 3741 3710

Table 3.3: Maximum drawing force and corresponding section and thickness reduction at
failure for a die angle of 12.5�

3.2.3 Fracture characterisation

3.2.3.1 High speed camera recording

The high speed camera recorded no failure during the tests and it can be said that failure
occurred inside the die.

3.2.3.2 Fracture surface aspect

Photographies of the fractured tubes are presented in �gure 3.8(a.1,b.1,c.1). It can be
seen that fracture angle in the tube wall is about 45� to the drawing direction. The tube
number 1 presented in �g.3.8(a.1) also shows a change in fracture surface orientation:
fracture angle is unchanged but the normal to the surface alternatively points to the inside
and to the outside of the tube. From these photographies, it can be observed that the
fracture probably initiated at the exit of the die conical section, very close to the end of
the die bearing length.
The sample observation by means of Scanning Electron Microscopy (SEM) reveals more
details about fracture. Fractographies of the tubes reveal many cavities in the fracture
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Figure 3.8: Fracture zone of drawn tubes (a.1,b.1,c.1), SEM fractography of tubes drawn
on the three mandrels: (x.2) and (x.3) are topographic contrast pictures, (b.4) is a
compositional contrast picture

surfaces which is characteristic of a dimple like fracture. Some voids nucleated on inclusions
of brittle carbide phase which are dispersed in the matrix (Poncinet al., 2005). Carbides
particles can be observed in white in �gure 3.8(b.4) which was taken with backscattered
electron (BSE). After nucleation, the voids expanded and coalesced before causing full
fracture.
Fractographies of the tubes also reveal the fracture propagation direction. It can be seen
from �gure 3.8(b.3,b.4) that there is a vertical scratch i.e. from the bottom to the top of
the picture. The bottom and the top correspond to the inside and the outside of the tube
respectively. More speci�cally in �gure 3.8(b.4) it can be observed that all cavities are �lled
with a carbide except the cavity in the continuation of the scratch. The scratch starts from
a cavity where the precipitate was initially. It indicates that the precipitate was extracted
from its cavity and dragged along the surface from the bottom to the top of the picture
which created a vertical scratch. So, considering SEM micrography, fracture initiated on
the inner surface of the tube and propagated outward. The scratch type morphology also
indicates a shear fracture. Liet al. (2011) observed such a morphology on fractographies
of shear-induced tensile test.
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3.2.3.3 Section and thickness reductions at fracture

3.2.3.3.1 In�uence of the die angle

This part focuses on the in�uence of the die angle on the maximum section and thickness
reductions. The measured section and thickness reductions as a function of the die angle
are listed in table 3.4. It must be noticed that no value is entered for the smaller die angle
as fracture did not occur in this case. Thus, section and thickness reductions are expected
to be above 58.2% and 52.8% respectively. From the values detailed in table 3.4, it can be
deduced that the maximum section and thickness reductions decrease with increasing die
angle.
The increase of die angle is expected to lower the amount of work of friction which is
expected to have little in�uence on the material formability. On the contrary, the amount
of redundant work of deformation increases which seems to be much more detrimental for
the tube. These hypotheses have to be studied with more details by means of the FEM.
Finally, this result is very interesting for the industrial production. A change in the die
angle can improve formability with little impact on the drawing force.

Die semi-cone angle (� ) 5 12.5 16 20

Mean section reduction at fracture (%) > 58.2 53.8 50.7 49.9

Mean thickness reduction at fracture (%) > 52.8 49.8 47.2 45.4

Table 3.4: Section and thickness reduction at fracture as a function of die semi-cone angle

3.2.3.3.2 In�uence of the grain size

It was mentioned in part 2.3.3 that the annealing temperature has an e�ect on the
mechanical behaviour of the material. Thus, it is important to evaluate the consequences
of a change of annealing temperature on material formability. To do so, conical mandrel
drawing tests with a die semi-cone angle of 12.5� were performed on tubes presenting
di�erent grain sizes depending on the temperature of the thermal treatment. The di�erent
L605 materials are the same as the one tested in tensile tests. The di�erent annealing
temperatures and the corresponding grain sizes are remembered in table 3.5.
The maximum section and thickness reductions at fracture for the di�erent materials are
shown in table 3.5. The material with lower annealing temperature and smaller grain
size fractures at lower section and thickness reductions compared to the material with
bigger grain size. This observation is consistent with the results of the uniaxial tensile
tests performed on tubes with di�erent grain sizes: strain at fracture in uniaxial tensile
test is lower for the smaller grain material.

Annealing temperature (� C) 1100 1150

Grain size (�m ) 11.2 22.5

Mean section reduction at fracture (%) 53.3 53.8

Mean thickness reduction at fracture (%) 49 49.8

Table 3.5: Section and thickness reduction at fracture as a function of grain size
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3.2.4 Thermal measurements

The temperature �eld induced by the plastic deformation and by the friction was measured
during the conical mandrel drawing test. The infra-red camera was placed along the bench
and focused on the die exit. Contrary to the tensile tests, where the tubes were painted
black, the tubes were raw in the drawing tests. As a consequence, tube emissivity could
not be approximated by 0.95 since the tube cannot be considered as a black body. Thus
tube emissivity was calibrated.

3.2.4.1 Calibration of the emissivity

It was detailed in part 3.2.3.2 that tube surface aspect was getting shinier with increasing
section reduction. Tube roughness decreases with increasing plastic deformation. As a
consequence, tube emissivity, which is dependent on surface aspect (Wen and Mudawar,
2006; Fu et al., 2012), varies during the test with mandrel diameter. Thus emissivity
calibration has to take into account the variation of surface aspect. Moreover at the die exit,
the tube is more or less still lubricated and the presence of lubricant changes emissivity
compared to dry tube. Emissivity calibration must consider two aspects:

ˆ the variation of surface roughness during the test,
ˆ the presence of lubricant.

A speci�c calibration test was made in order to calibrate the tube emissivity as a function
of the above mentioned parameters.
Two samples were cut from a drawn tube produced from the conical mandrel drawing test.
The tube was not removed from the mandrel in order not to modify surface aspect caused
by the reeling step. The �rst sample was cut on the part of the tube corresponding to the
beginning of the test, where the section reduction is minimum and the surface roughness
the highest. It is referred as sample 1. The second sample was cut on the part of the tube
the closest to tube fracture, where the section reduction is maximum, the surface aspect
the shiniest and the roughness the lowest. This sample is referred as number 2. Samples
were divided into �ve zones. Photographies of the samples in �gure 3.9(a) illustrate the
di�erent zones. Tubes extremities and a middle band were painted in black. The black
paint enabled to approximate tube emissivity by 0.95. The presence of two bands at the
extremities and one at the middle enabled to control the temperature gradient along the
tube. One of the uncovered band was left raw (R-zone) and the other was covered with
lubricant (L-zone). The lubricant was applied to obtain a �ne layer to get closer to drawing
conditions. But the thickness of the lubricant layer was not controlled and was supposed to
be homogeneous. Both samples were put in a oven at 120� C during 120 minutes. Samples
were removed from the oven and temperature �eld was measured during cooling with an
emissivity of 0.95.
The measured temperature in the black zone was taken as reference temperature. Figure
3.9(b) illustrates the acquisition made by the infra-red camera at the beginning of the
test (t=0). Temperatures are computed considering an emissivity of 0.95. Is is clearly
visible that the measured temperatures di�er depending on the considered zone. These
variations are due to an incorrect estimation of the material emissivity as the temperature
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Figure 3.9: (a) Photographies of the samples used for emissivity calibration, (b) temperature
�elds measured at t=0 for an emissivity of 0.95, (c) evolution of the identi�ed emissivity
as a function of the temperature and on the surface aspects

�eld is supposed to be homogeneous. Then the emissivity was calibrated so that the
temperature evolution as a function of time in the lubricated zone corresponds to the
reference temperature. Same method was done for the raw zone. This method was applied
for both samples.
Figure 3.9(c) shows the evolution of the as identi�ed emissivities as function of the
temperature. From this �gure, there are several remarks concerning the variations of
emissivity. First emissivity increases with increasing temperature. Second, the emissivity
is higher for the lubricated tube than for the raw tube. Third, the emissivity increases
with increasing surface roughness.
Figure 3.10 presents the validation of the identi�ed emissivities. This �gure presents the
temperature evolution during cooling of the reference zone (black zone with an emissivity
of 0.95). Below the reference curve is plotted the measured temperature of the lubricated
zone considering an emissivity of 0.95. And superimposed to the reference curve is plotted
the measured temperature of the lubricated zone considering the identi�ed emissivity as a
function of temperature. It can be seen that the temperature evolutions of the reference
zone and of the lubricated zone are identical. As a consequence, the emissivity calibration
is validated.

3.2.4.2 Measured temperatures

Figure 3.11 displays pictures of the conical mandrel drawing test. Figure 3.11(a) shows a
general view of the tube going through the die. Figure 3.11(b) presents the corresponding
thermal measurements. In a general way, a gradient of temperature is clearly visible. The
farther from the die, the cooler becomes the tube. This phenomenon is explained by
the fact that the heat which is generated at the die position transfers to the mandrel by
conduction and to the environment by convection principally. Lee et al. (2012) performed
temperature measurements during wire drawing. Parallel to the FEM of wire drawing, they
found the tube surface temperature to be greater than the temperature at the center of
the tube. They explained this di�erence stating that friction at the interface between the
die and the wire caused the temperature to increase more than the overall heat generated
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Figure 3.10: Validation of the identi�ed emissivity ( � )

by plastic deformation. Thus, the measured temperatures are surface measurement and
correspond to the contribution of both friction and plastic deformation.
Looking more into details, on both pictures 3.11(a and b) and more particularly on �gure
(b), some helical grooves are clearly visible. These grooves are due to the mandrel removal
step that is done prior to any mandrel drawing pass. Due to the grooves, local thermal
variations are measured as seen in �gure 3.12. The temperature variation is approximately
3.7� C. Next paragraph aims at explaining the origin of such local variations.
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Figure 3.12: Extract of measured temperature variations along an axial generatrix close to
the die exit during the conical mandrel drawing test

Figure 3.11: (a) Photography of the conical mandrel drawing test, (b) thermal measurement
by infra-red camera

There are two hypotheses concerning these variations. First, grooves, which are surface
defects clearly visible on the tube, are suspected to induce local emissivity variations which
result in temperature measurement �uctuations. Secondly, grooves are wavelet which are
formed on the tube surface during mandrel removal. Figure 3.13 shows a measure of surface
pro�le by means of a pro�lometer. The tube surface shows bumps and hollows with an
amplitude of 2�m . When the tube is plastically deformed inside the die, bump deforms
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Figure 3.13: Surface pro�le of the tube before drawing

more than hollows and then more heat is generated. The di�erence in heat generated by
plastic deformation was quanti�ed to be small. Thus, the hypothesis of local emissivity
variations is selected.
In spite of the above observations, it is clear that the measured thermal �uctuations are
small compared to the absolute temperatures that are measured. As the present study
does not intend to analyse these temperature �uctuations, the measured temperatures
are averaged. Not much information can be directly deduced from the temperature
measurements as presented above. Nevertheless, these data analysed in parallel with
FEM will enable to identify thermal properties such as the amount of heat generated by
friction, thermal contact conductance or the heat sharing coe�cient between two contacting
materials. As a consequence temperature measurements are analysed with more details in
chapter 4.

3.3 Results of the experimental drawing tests on 316LVM tubes

The results concerning the 316LVM tubes are limited to the section and thickness reduction
at fracture. The values are listed in table 3.6.

Mandrel number 1 2

Section reduction at fracture (%) 68.5 62.9

Thickness reduction at fracture (%) 66.4 60.4

Table 3.6: Section and thickness reductions at fracture for the 316LVM tubes

3.4 Conclusion

In this chapter, the handling of conical mandrel drawing tests enabled to draw L605 and
316LM tubes up to fracture. This way, the maximum section and thickness reductions a
tube can undergo were identi�ed precisely. A major conclusion directly transferable to the
industrial production was revealed: the tube formability can be improved if the die angle
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is decreased.
Once the experimental tube formability is known, next step is to predict its occurrence.
To do so, it is necessary to build a tool enabling the computation of failure criteria. This
tool is the FEM.
As a reminder, the elements necessary to build a model of tube drawing are:

ˆ the material behaviour constitutive equation. This aspect was addressed in chapter
2;

ˆ the friction coe�cient and the di�erent thermal properties. It was previously explained
that the conical mandrel drawing test was also designed to identify these properties.
But from this point, they have not been determined yet. In order to characterize
them, it is necessary to �rst build a FEM and to identify the parameters by inverse
analysis.

Finally, the interest of the conical mandrel drawing test was �rst to collect force mea-
surements that enable to identify the friction coe�cient by inverse analysis and second
to measure thermal �elds that enable to identify thermal properties by means of inverse
analysis. Consequently, next step consists in building the FEM. This stage is detailed in
the following chapter.

110



Chapter

4
Analysis of the tube drawing
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The analysis of the tube drawing process has two major objectives. The �rst interest is
very pragmatic in an industrial context: it enables to compute the drawing force which is
crucial to de�ne the drawing passes and to select the appropriate drawing bench depending
on its power. The second objective is to improve the understanding of the process in term
of stress and strains undergone by the tube during the process. Such information are
essential to master the process. They can explain the consequences of a change of process
parameters on the tube drawing and improve the understanding of the process. Finally,
in the speci�c context of this thesis, stress and strain data are necessary to compute the
failure criteria and to predict failure during drawing.
There are two means to perform the process analysis. The �rst technique is FEM. The
second method groups together di�erent analytical methods. These methods were created
when the FEM was not developed yet or when the computing power was not su�cient to
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run complex calculations. Both of these techniques are presented in detail in this chapter
and applied to the analysis of the tube drawing process.
A �rst part is devoted to the presentation of the FEM and the manner di�erent models
were built. The methodology for their construction is detailed and the simulations resulting
from the FEM are analysed.
A second part is dedicated to the analytical methods, from their construction to the
computed drawing force. Their reliability and their limitations are evaluated and compared
with the FEM.

4.1 FEM of the tube drawing

The FEM of the tube drawing process aims at computing the stress and strain �elds with
respect to process and material characteristics. Developing a FEM requires several steps
including the geometry de�nition, the material characterisation, the contact behaviour
identi�cation and the validation by comparison with experiments. In this thesis, both tube
drawings on L605 and 316LVM tubes were modelled, but in the current part, only the
model concerning the L605 is presented as the construction is identical fort both materials.
The model devoted to the L605 was next directly extended to the 316LVM.

4.1.1 General presentation of the model

There are two di�erent solvers available in Abaqus: explicit and implicit. The explicit
solver was �rst developed for dynamic problems but it is also well-suited for non linear
quasi-static problems because of its ability to handle complex contact problems. In the
case of the implicit solver, a complex contact induces more repetitive calculations and
thus the computation is more time consuming. As a consequence, the choice was made
to develop the model in ABAQUS/Explicit. Moreover, the choice is supported by the
numerous metal forming process FEM that were performed in ABAQUS/Explicit (Abaqus,
2010).

4.1.1.1 Geometry

The geometry of the system enabled to make great simpli�cations. Considering that
the mandrel, the die and the tube were perfectly coaxial the model was reduced to an
axisymmetric geometry. Figure 4.1 illustrates the di�erent parts to be modelled and their
geometries. The tube, the die and the mandrel were modelled as deformable solids. For
further simpli�cations, both the mandrel and the die could have been modelled with rigid
bodies but the contact between rigid bodies and deformable solid induces local stress
variations which in turn induces greater variations of the drawing force (A�agard, 2010).
In the case of a elastoplastic model, a tube length of 15 cm was modelled. This length
was su�cient to reach steady state conditions. In the speci�c case of the conical mandrel
drawing, the initial mandrel length of 1 m was also reduced to 15 cm. Thus, the modelled
mandrel angle was increased compared to the real mandrel angle. Such geometrical
variation was con�rmed to induce no variations in the stress and strain �elds. In the case
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Material WC steel
E (GPa) 650 210

� 0.3 0.3
Density (kg m� 3) 15� 103 7:9 � 103

Conductivity (W m � 1 K � 1) 100 50
Speci�c Heat (J kg� 1 K � 1) 234 500

Table 4.1: Material properties of the die and the mandrel

of a thermo-mechanical model, the real mandrel geometry was modelled due to the thermal
transfer aspect.
All other part dimensions were measured and drawn following their real dimensions:

ˆ The tubes and mandrel diameters were measured with a laser measurement system;
ˆ the die diameter was measured by means of a non contact measurement system called

Micro-Vu. This system consists in measuring the projected shadow of the object to
be characterised. The resolution is 1� m.

ˆ the die pro�le (�g.4.1.(b)) including the die semi-cone angle � , the bearing length
lb and the cone exit radius of curvaturer were measured by means of a pro�lome-
ter. Apart from the die angle, the geometrical characteristics of the die remained
unchanged throughout this study.

Figure 4.1: (a) geometry of the tube and tools, (b) dimensional details of the die

4.1.1.2 Material properties

4.1.1.2.1 Tools materials

The die was made of tungsten carbide (WC) and the mandrel was made of hard-steel.
Both tools were modelled as elastic materials. Their mechanical and thermal properties
are detailed in table 4.1.

4.1.1.2.2 Tube materials

The mechanical behaviours of both the L605 and the 316LVM were characterised by
means of experimental tests as detailed in the chapter 2. Three di�erent models were
de�ned according to the tube material properties that were identi�ed:
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ˆ in a �rst model ( M 1) the material is considered as isotropic and visco-plastic;
ˆ in a second model (M 2) the material is considered as isotropic, visco-plastic and the

thermal e�ects are included;
ˆ in a third model ( M 3) the material is considered as anisotropic and the visco-plastic

behaviour is neglected. Material properties corresponding to the di�erent models are
detailed further in respective parts.

4.1.1.3 Boundary conditions

The mechanical boundary conditions were identical for all the above detailed models (M 1,
M 2, M 3). Figure 4.2 summarises the applied boundary conditions. The die was �xed and
a displacement was applied to both mandrel and tube extremities. The displacement was
chosen to reach a constant drawing speed. In the thermomechanical modelM 2 the die was
fully modelled: compared to the mechanical models where only the die core was considered,
the thermal exchanges phenomena required the whole die volume to be modelled. Thus, as
illustrated in �gure 4.2(b) a part was added to the die core to increase its volume. Thermal
boundary conditions were applied to the modelM 2. All the parts were put at an initial
temperature of 20� C and natural convection was applied to surfaces in contact with the
air. The convection exchange coe�cient was taken equal to 14.4 W m� 2 K � 1 as identi�ed
during the tube tensile test (part.2.4.2). The hypothesis was made that natural convection
conditions were similar in the testing room and in the industrial production room.

4.1.1.4 Mesh

All the parts were modelled with 4-node bilinear axisymmetric quadrilateral elements
with reduced integration (CAX4R). Reduced integration enables to reduce the running
time. When thermal coupling was considered, the mesh elements were thermally coupled
(CAX4RT). The tube was meshed with a minimum of 8 elements in the thickness (Palengat,
2009). Both the mandrel and the die were coarsely meshed with a re�ned zone near the
contact zone. The element size of the die and mandrel surfaces contacting the tube was
chosen identical to the tube mesh size. Figure 4.3 shows a mesh example.

4.1.1.5 Time incrementation

A mass scaling option was used to speed up the computation. The principle of mass scaling
is to arti�cially increase the material density to lower down the number of increments
required for the simulation. The following paragraph aims at explaining the mass scaling
principle. The time increment � t is de�ned by the time a dilatational wave with a speed
cd takes to cross the smallest element in the mesh. It is de�ned as follow:

� t �
L min

cd
(4.1)

with L min the smallest element length. The dilatational wave speed is computed as follow:

cd =

s
� + 2 �

�
(4.2)
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Figure 4.2: Boundary conditions applied to the tube and tools

Figure 4.3: Example of mesh
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with � and � the Lam�e's coe�cients and � the material density.
The time increment expression then transforms:

� t � L min

r
�

� + 2 �
(4.3)

If the time increment � t remains constant during the simulation, the number of time
increments n required to simulate the total time period T is:

n =
T
� t

and n � T

 
1

L min

s
� + 2 �

�

!

(4.4)

Thus, arti�cially increasing the mass density by a factor f 2 reduces the number of time
increment by 1

f . The total time period is unchanged and rate-dependent behaviour can
still be considered in the analysis.
Nevertheless, mass scaling can cause computational errors and must be used with care. If
material density is increased too much, the increased inertial forces change the predicted
response. It must be ensured that the ratio of kinetic energy to internal energy stays lower
than 5%. Finally, Abaqus documentation mentions that thermal solutions for coupled
thermal-stress analysis are not a�ected by the mass scaling. Densities associated to thermal
phenomenon are not scaled.
Palengat (2009) previously selected the appropriate target �xed time increment that is
convenient for tube drawing modelling. In the present study and according to Palengat
(2009), the target time increment for mass scaling was then set to10� 6s.
For each simulation, it was ensured that the kinetic energy named ALLKE in ABAQUS
was lower than 5% of the internal energy named ALLIE.

4.1.1.6 Contact de�nition

Two contacting surfaces transmit shear and normal stresses across their interface. In
this study, friction between two surfaces is modelled by a Coulomb friction model. The
model assumes that no relative motion occurs between the two contacting surfaces if the
equivalent frictional stress � is less than the critical stress� crit :

� crit = �p (4.5)

with p the contact pressure and� the friction coe�cient that can be de�ned as a function
of the contact pressure. When� = � crit slip occurs.

Surface-to-surface contact option was chosen. Contact de�nition relies on the selection
of a master and a slave surface. The surfaces belonging to the more rigid surfaces are
de�ned as the master surfaces i.e. the die and the mandrel surfaces. The slave surface
was attributed to the tube. There are two algorithms for contact: kinematic and penalty.
Kinematic contact algorithm is used when a rigid surface contacts a deformable surface and
penalty contact algorithm is used when an analytical rigid surface contacts a deformable
surface. Thus, the �rst option was chosen.

Up to this point, all the parameters shared by the modelsM 1, M 2 and M 3 were
de�ned. The following sections present each model separately and detail their di�erent
characteristics.
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4.1.2 Isotropic models

In this section, the L605 and 316LVM material properties associated to bothM 1 and M 2
isotropic models are presented.

4.1.2.1 Mechanical model M 1

In the model M 1, the tube material is considered as isotropic and visco-plastic. The visco-
plastic behaviour is modelled by a Johnson-Cook constitutive model whose parameters are
inserted in ABAQUS/Explicit. The di�erent material properties are recalled in table 4.2.

4.1.2.2 Thermo-mechanical model M 2

The second model (M 2) considers isotropy, viscoplasticity and thermal e�ects. The visco-
plastic behaviour is modelled by a Johnson-Cook constitutive model identical to the model
M 1. Concerning the thermo-mechanical properties, the amount of plastic work converted
into heat is characterized by the Taylor-Quinney coe�cient � also named Inelastic Heat
Fraction (IHF) in Abaqus. In chapter 2, it was shown that the Taylor-Quiney coe�cient
was strain dependent. In Abaqus/Implicit, a subroutine called HETVAL enables to take
into account the IHF dependency with strain. HETVAL subroutine enables to compute a
volumetric heat �ow r from the stress and strain data.

r = � (�� )� : _� (4.6)

where � (�� ) is the strain dependent Taylor-Quinney coe�cient.
Such subroutine is not available in Abaqus/Explicit. As a consequence, a mean Taylor-
Quinney coe�cient was calculated and inserted into the model. The mean Taylor-Quinney
is computed as follow:

� mean =
R

(�� : _� )dt
R

(� : _� )dt
(4.7)

The di�erent mechanical and thermal properties are detailed in table 4.2.
Concerning the contact properties, the thermal contact conductance can be de�ned in
function of the distance separating both surfaces, the contact pressure and the temperature.
In this study, it was de�ned in function of the separation distance only and varies linearly
with it. The thermal contact conductance equals zero for a separation distance greater than
0.1 mm and is maximum for a separation distance equals to zero. The maximum thermal
contact conductance was identi�ed by means of an inverse analysis. Its identi�cation is
detailed further.
The whole frictional work is supposed to convert into heat. The heat sharing coe�cient
which de�nes the amount of heat distributing between the master and slave surfaces is
de�ned by computing the material e�usivity de�ned in part 1.2.3.3.
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Material L605 316LVM

Model M1 M2 M1 M2

Elastic
E (GPa) 243 192

� 0.3 0.29

Plastic
Viscoplastic A = 546 MPa A = 287 MPa

Johnson Cook B = 2216 MPa, C = 0.016 B = 1265 MPa, C = 0.021
parameters n =0.774, _�� 0 = 0.03 n =0.664, _�� 0 = 0.03

Thermal � (IHF) - 0.58 - 0.63

Density kg.m � 3 9200 7900

Conductivity W.m � 1 .K � 1 - 12.7 - 16.3

Speci�c Heat J.kg � 1 .K � 1 - 377 - 500

Table 4.2: Material properties of L605 and 316LVM in function of the model

4.1.3 Anisotropic model

In the model M 3, the plastic anisotropy is taken into account but the visco-plastic behaviour
is neglected. The anisotropic yield is modelled by Hill's potential function whose expression
was detailed in part 1.2.1.1.2. The anisotropic Hill's potential function was not used
combined to Johnson-Cook constitutive equation because both models were not available
simultaneously in ABAQUS/Explicit. The plastic yield stress in function of the plastic
strain was de�ned by entering the � z vs � z data obtained from the experimental tensile
test at a strain rate of 9s� 1. As the data extracted from the tensile tests were limited to
strains up to 0.45 approximately, data for higher strains were extrapolated by considering a
Ludwik constitutive equation (2.5). In the case of anisotropic plasticity, the stresses in the
other directions are computed from the reference axial data by means of the anisotropic
Hill's coe�cients. The di�erent material properties are detailed in table 4.3.

Material L605

Elastic
E (GPa) 243

� 0.3

Plastic Hill's coe�cients Rz =1, Rr =1.115, R � =1.165

Density kg.m � 3 9200

Table 4.3: Material properties of L605 for the anisotropic model (M 3).

4.1.4 Identi�cation of the friction coef�cient

Most of the models parameters were de�ned in the previous sections except the friction
coe�cients and the thermal contact properties. This part is devoted to the identi�ca-
tion of the friction coe�cients by inverse analysis. Such method was found to be the
best adapted to identify a speci�c friction coe�cient and to be sure that the latter is
characteristic of the process. It enables to ignore the di�erent parameters in�uencing fric-
tion like materials roughness, relative sliding velocity, thickness of the oil �lm and humidity.
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Figure 4.4: Comparison of the experimental and simulated drawing force for the conical
mandrel drawing

4.1.4.1 Identi�cation of constant friction coef�cients

Two friction coe�cients had to be calibrated independently: the friction coe�cient between
the mandrel and the tube � mandrel=tube and the friction coe�cient between the die and the
tube � die=tube. The identi�cation of both friction coe�cients was done by means of the
conical mandrel drawing test. The main principle of the inverse analysis is to simulate a
speci�c drawing test with friction coe�cient values chosen so that the simulated drawing
force is equal to the experimentally measured one. The strategy was to �rst calibrate
� die=tube using the hollow sinking step shown in �gure 3.1 part (1). Indeed, on this part of
the mandrel, friction takes place between the die and the tube only. Then� mandrel=tube

was successively calibrated using the constant diameter mandrel drawing step illustrated
in �gure 3.1 part (2). Indeed on this mandrel part, the mandrel/tube contact is added to
the die/tube contact.
According to the �rst identi�cation performed on the tube sinking step and on the con-
stant mandrel diameter drawing step, the following values were assigned to the friction
coe�cients: � die=tube = 0.065 and � mandrel=tube = 0.1.
The simulation of the full conical mandrel drawing was then performed with the previously
identi�ed parameters. The comparison of the experimental and simulated drawing force
is shown in �gure 4.4. The superimposition of both forces in function of time can be
decomposed into three di�erent parts. The drawing force measured and simulated in
the time interval [0,0.5] s corresponds to the tube hollow sinking (part (1)), the time
interval [0.5,2] s corresponds to the drawing on a constant diameter mandrel (part (2))
and �nally, after 2 s corresponds to the drawing force measured or simulated during the
conical mandrel drawing (part (3)).

It can be observed from this �gure that experimental and simulated drawing forces
superpose correctly up to 3 s approximately. After this point, the simulated drawing
force is over-estimated. Such a result is due to a friction coe�cient value which is too
high. This observation highlights the fact that a constant friction coe�cient is unable to
model contact behaviour. The hypothesis of a pressure dependent friction coe�cient can
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be formulated. In order to investigate this possibility it seems interesting to analyse the
normal stress in the die/tube and mandrel/tube contacts.

4.1.4.2 Analysis of the normal contact stress

Figure 4.5 shows the evolution of the normal contact stress in function of the position in
the die/tube contact zone (�g.4.5(a,b)) and in the mandrel/tube contact zone (�g.4.5(c,d)).
Three simulations were done for three di�erent mandrel diameters:? 1

mandrel = 9.0 mm,
? 2

mandrel = 9.32 mm and ? 3
mandrel = 9.78 mm. Thus, the evolution of the normal contact

stress can be interpreted as function of the mandrel diameter.

ˆ Starting with the die/tube contact, it can be seen in �gure 4.5(b) that the normal
contact stress in the tube varies along the contact and oscillates from 0 to 2200
MPa. The contact pressure near the die shows a �rst peak when the tube establishes
contact with the mandrel. Then, it lowers down and reaches a second peak at the
exit of the die cone to �nally end up at 0 MPa when the tube exits the die. The
tendency is similar for all mandrel diameters but the contact pressures increase with
increasing mandrel diameter. More generally, the contact pressure pro�le along the
die/tube contact has two peaks, one near the die entry and the other at the die exit.
Same observations were made by Dixit and Dixit (1995).

ˆ Concerning the mandrel/tube contact (�g.4.5(d)), normal contact stress also varies
along the contact and increases with increasing mandrel diameter.

The main conclusions resulting from this analysis are:

ˆ contact pressures vary locally along the tool/tube contacts;
ˆ the global contact pressure increases with increasing mandrel diameter;
ˆ higher contact pressures are reached in the die/tube contact compared to the man-

drel/tube contact.

4.1.4.3 Identi�cation of pressure dependent friction coef�cients

Putting the above observations in parallel with other studies, Petersenet al. (1997) com-
pared the use of a constant friction coe�cient and a pressure dependent one in bulk metal
forming and found a better adequacy between experimental and numerical data with a
pressure dependent friction coe�cient. Ma et al. (2010) tried to explain the physical
meaning of friction dependency with pressure. They modelled the pressure dependency of
the friction coe�cient taking into account the evolution of the surface contact morphology
with the pressure. They found that the friction coe�cient decreased with increasing
pressure. Azushima and Kudo (1995) de�ned pressure intervals in which friction coe�cient
behaviour varies. They de�ned a low pressure interval (p < 0:3� 0, with � 0 the yield stress)
where the friction coe�cient was constant, and a high pressure condition (p > 0:3� 0) where
the friction coe�cient decreased with increasing pressure. Finally, the referenced studies
and the observations made on the simulations reinforce the need to take into account the
pressure dependency of the friction coe�cient.
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Figure 4.5: Evolution of the normal contact stress with the position along (a,b) the die
and (c,d) the mandrel and depending on the mandrel diameter

Finally, pressure dependent friction coe�cients were identi�ed by inverse analysis. The
die/tube friction coe�cient was found to vary from 0.35 to 0.002 for pressures higher than
1000 MPa and the mandrel/tube friction coe�cient varied from 0.09 to 0.01. It must
be noted that the mandrel/tube friction coe�cient had little in�uence on the simulated
drawing force. As the mandrel and the tube move approximately at the same speed,
friction is expected to be low at the mandrel/tube contact. The set of identi�ed pressure
dependent friction coe�cients are listed �gure 4.6.
Figure 4.7 plots in parallel the normal and shear contact stresses and the friction coe�cient
for both the die/tube contact (�g.4.7(a-c)) and the mandrel/tube contact (�g.4.7(d-f)).
The identi�ed pressure dependent friction coe�cients were used to compute the plotted
data. The evolution of the normal and shear contact stresses and friction coe�cient can
be interpreted as function of the mandrel diameter:
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Pressure (MPa) � die=tube � mandrel=tube

0 0.35 0.09
213 0.35 0.09
580 0.17 0.045
1000 0.002 0.01
1200 0.002 0.01

Figure 4.6: Dependence of the friction coe�cients to the contact pressure

ˆ concerning the die/tube contact, �gure 4.7(b) shows irregular variations of the shear
contact stress. Shear stress values oscillate from 0 to 120 MPa which is largely lower
than contact pressure. Figure 4.7(c) presents the friction coe�cient computed from
the ratio of the shear stress (�g.4.7(b)) to normal stress (4.7(a)). It can be seen
from �gure 4.7(c) that the friction coe�cient varies locally along the contact and
globally decreases with increasing mandrel diameter. The comparison of �g.4.7(a)
and �g.4.7(c) puts in relief that the friction coe�cient decreases with increasing
contact pressure;

ˆ in the case of the mandrel/tube contact, the shear contact stress (�g.4.7(e)) shows
little variations and is very low. As a consequence, the computed friction coe�cient
in �gure 4.7(f) is also low.

Finally, the superimposition of the experimental and simulated drawing forces is shown in
�gure 4.8. It can be seen that the sets of identi�ed friction coe�cients enables to model
the evolution of the drawing force with the mandrel diameter accurately.

4.1.5 Thermal contact properties

Up to this point, the thermal contact properties remain to be characterized. The identi�-
cation of the missing parameters is presented in this part.

4.1.5.1 Interfacial Heat distribution

In the present study, 100% of the frictional work was supposed to be converted into heat.
The generated heat was supposed to distribute between the two surfaces proportionally to
the material e�usivities � =

p
�C pk. The fraction of heat f AB

A distributing to a material
A that belongs to a contact AB writes:

f AB
A =

� A

� A + � B
(4.8)

with � A and � B the e�usivities of the A and B materials respectively.
The di�erent materiel e�usivities are the following detailed in table 4.4:
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Figure 4.7: Evolution of the contact stresses and the friction coe�cient with the position
along (a-c) the die and (d-f) the mandrel and depending on the mandrel diameter

Figure 4.8: Validation of the pressure dependent friction coe�cient
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f W C=L 605
W C 73.8

f W C=L 605
L 605 26.2

f Steel=L 605
Steel 68.0

f Steel=L 605
L 605 32.0

Table 4.5: Fraction of heat distributed to contacting materials

Material � (J.K � 1.m� 2.s� 0:5)

L605 6.64� 103

Steel 14.1� 103

WC 18.7� 103

Table 4.4: Material e�usivities

These materials are involved in di�erent contacts. The die/tube contact takes place
between the L605 and the WC while the mandrel/tube contact is established between
the L605 and the steel. Table 4.5 lists the fractions of heat distributed to the materials
involved in the die/tube and mandrel/tube contacts.

4.1.5.2 Thermal contact conductance

As high contact pressures were observed within the contact, gap conductance was supposed
in�nite (1 � 108 W.m � 2.K � 1) for a clearance of 0 mm and equal to zero for a clearance
greater than 0.1 mm. The clearance de�nes the distance between two surfaces.

4.1.6 Results of FEM

4.1.6.1 Heat generation and exchanges

Figure 4.9 presents the comparison of the experimental temperature �eld that was measured
during the conical mandrel test with the raw material emissivity (�g.4.9.a) and the
temperature �eld computed from the simulation (�g.4.9.b). The geometry in �gure 4.9.b
was plotted in 3D to improve clarity but the model was axisymmetric. Both temperature
�elds are plotted with the same temperature scale. From this picture, it can be observed
that the simulated temperature is greater close to the die and that it decreases when
moving away from the die up to temperature values lower than the experimental one. The
simulated temperature gradient from the die to the tube extremity is greater than the
experimental one.

The experimental mean temperature nearby the die exit was measured on the one hand
with the material emissivity calibrated on the lubricated tube and on the other hand with
the material emissivity calibrated on the raw tube. Both measurements were compared to
the simulated temperature taken at approximately the same distance from the die. Both
data are plotted in function of the mandrel diameter in �gures 4.10 (a) and (c) for the
emissivity calibrated on the lubricated and raw tube respectively.
In these �gures, the temperatures measured for the three conical mandrels are relatively
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Figure 4.9: Comparison of the (a) experimental and (b) FEM temperature �elds (the 2D
calculus is represented in 3D for clarity).

Figure 4.10: Evolution of the mean temperature nearby the die exit in function of the
mandrel diameter: (a) emissivity of the lubricated material, (c) emissivity of the raw
material. Absolute error between FEM and experimental temperatures:(b) emissivity of
the lubricated material, (d) emissivity of the raw material.

125



close to each other. Nevertheless, when the emissivity is calibrated on the lubricated tube
(�g.4.10(a)), the FEM largely over-estimates the tube temperatures as seen in �gure 4.10(b)
where the relative errors between FEM and experimental data are plotted. Estimation
error ranges from 10% to 48% which is not acceptable. On the contrary, if the emissivity
is calibrated on the raw tube (�g.4.10(c)), the FEM prediction is in good accordance with
the experimental measurements. Estimation error ranges from 0% to 16% as presented in
�gure 4.10(d).
From these observations, it can be observed that the emissivity calibration can induce
large variations in the measured temperature. Thus, it is crucial to calibrate the emissivity
accurately. Concerning the calibration that was performed in this study, the result showing
that the measured temperatures are closer to the modelled ones when the emissivity is
calibrated on the raw tube reveals that:

ˆ the lubricant layer remaining on the tube after drawing is very thin. Intuitively, it is
clear that the spacing between the tube and the die during drawing is very small,
leaving little room for the lubricant layer;

ˆ the lubricant layer that was manually applied on the tube for the emissivity calibration
was too thick.

Finally, provided that the temperature is measured considering the emissivity calibrated on
the raw tube, the thermo-mechanical model is satisfactory. From this point, the emissivity
of the raw tube is taken for the thermal analysis.
The model accuracy can be further con�rmed considering the beginning of the conical
mandrel drawing test. When a conical mandrel test is performed, in a �rst time, the
tube is drawn by tube sinking and in a second time the tube is drawn on a constant
diameter mandrel. As a consequence, when the temperature is measured during both
of these steps a temperature drop is observed when the tube establishes contact with
the mandrel. The measured temperature drop is shown in �gure 4.11 and the values are
reported in table 4.6. The temperature drop is supposed to be due to material contact only.
Indeed, tube section and thickness reductions during tube sinking and mandrel drawing are
very close and as a consequence the plastic deformations are approximately similar. The
mean section and thickness reduction values are reported in table 4.6. The mandrel/tube
contact establishment was simulated by means of FEM and the simulated temperature was
compared with the experimental one. The simulated temperature drop was 15.2� C which
is satisfactory compared to the experimental temperature drop of 18� C. As a conclusion,
regarding the surface temperature, the thermo-mechanical FEM model is able to model
the temperature �eld accurately.
Then, it appears interesting to analyse the simulated temperature inside the tube. Figure
4.12 presents the simulated temperature during the conical mandrel drawing. Data are
plotted for a mandrel diameter of 10.16 mm. It can be observed that the tube which is
located inside the die is at a higher temperature compared to the surface located at Texit .
Figure 4.13 presents a plot of the maximum simulated temperature (Tmax ) in function
of the mandrel diameter during the conical mandrel FEM. The di�erence between the
surface temperature Texit and the maximum internal temperature T max is great. Moreover
Tmax can reach 220� C which is non negligible. Regarding this level of temperature, the
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Figure 4.11: Temperature drop measured when the tube establishes contact with the
mandrel.

Figure 4.12: Simulated temperature �eld during conical mandrel drawing and plotted for
a mandrel diameter of 10.16 mm.

hypothesis of neglecting the thermal softening term in the Johnson-Cook constitutive
equation should be revised.

Part (1) Part (2)

Mandrel 1 Mandrel 2 Mandrel 3

Mean section reduction (%) 16.9 17.3 19.2 17.7

Mean thickness reduction (%) 0 0.7 4.0 1.6

Temperature drop (� ) - 18 17 18

Table 4.6: Mean section and thickness reductions taking place during conical mandrel
drawing test on part (1) and part (2) of the mandrels, measured temperature drop
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Figure 4.13: Comparison of the simulated temperature at two locations: temperature at
the die exit (T exit ) and maximum internal temperature (T max ).

4.1.6.2 Mechanical analysis

4.1.6.2.1 General observations

This paragraph is devoted to the analysis of the Cauchy stress and strain tensors
modelled for a classical mandrel drawing i.e. with a mandrel of constant diameter. Figure
4.14 presents the distribution of the di�erent components of the Cauchy stress tensor
(�g.4.14 a, c, e and g) and the strain tensor (�g.4.14 b, d, f and h) during the tube drawing.
Concerning this speci�c analysis, the mandrel has a diameter of 9.5 mm and the die a
semi-cone angle of 12.5� . This �gure illustrates the tube drawing process and requires
to be analysed in details as it contains much information. The components are analysed
for each direction and some remarks refer to numbered zones that are pointed out in the
�gure.

ˆ Starting with the axial stress and strain components as shown in �gures 4.14(a)
and (b), before the tube enters in contact with the die, it is submitted to bending.
� zz > 0 at the outer surface (zone 1) and� zz < 0 at the inner surface (zone 2). The
compressive zone corresponds to a negative axial strain� zz < 0 (zone 5). Next, the
tube is submitted to high tensile stresses (zones 3 and 4). Finally, at the die exit,
a gradient of � zz remains in the tube thickness. The resulting axial stress state is
tensile nearby the tube outer surface� zz > 0 and compressive at the inner surface
� zz < 0. This situation explains the tube deformation when releasing the residual
stresses by cutting the tube axially as observed in �gures 1.8 and 1.9 in chapter 1.
The axial strain � zz occurs progressively throughout the conical part of the die. A
small gradient of strain remains in the tube once it leaves the die. The axial strain is
slightly higher on the tube inner side (zone 6).

ˆ Concerning the circumferential stress and strain components plotted in �gures 4.14(c)
and (d), before the tube enters in contact with the die, it undergoes a circumferential
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compression� �� < 0 which progressively increases and reaches a peak when the
tube contacts the die (zone 1). Another peak of lower intensity is visible in the
zone a�ected by bending (zone 2). After the tube contacts the mandrel (zone 3)
the circumferential stress gradually returns to tensile. Finally, when exiting the
die, � �� > 0 and a gradient of circumferential stress remains in the tube thickness.
� �� is greater nearby the tube outer surface (zone 4) and decreases in the direction
of the inner tube surface but remains tensile. It ranges from 300 to 1200 MPa
between the inner and outer tube surfaces respectively. The radial strain� �� is almost
homogeneous in the tube thickness and occurs in a smoother way compared to the
axial component. The tube circumferentially contracts regularly when going through
the die and the contraction starts before the tube contacts the die. After the die exit,
a small gradient of circumferential strain remains in the tube thickness.

ˆ In the case of the radial stress and strain components as shown in �gures 4.14(e) and
(f), the tube is submitted to radial tension in the bending zone (zone 1) and further
to this episode, the tube thickness increases as� rr > 0 (zone 3). The tube contact
with the die leads to high compressive stresses� rr < 0. Then, when the tube is in
contact both with the mandrel and the die � rr drastically decreases and the tube
undergoes most of its radial contraction (� rr < 0). Finally, when the tube exits the
die, a small gradient of radial stress and strain remains in the tube thickness.� rr

ranges from 0 MPa at the tube outer surface to 150 MPa at the tube inner surface
and � rr ranges from -0.2 nearby the tube outer surface to -0.275 nearby the tube
inner surface.

ˆ Concerning the shear components, presented in �gure 4.14(g) and (h), the tube
center successively undergoes positive and negative shear stresses, alternatively going
from one extremum to the other. When the tube exits the die, a gradient of shear
induced strain remains in the tube thickness.

To summarize the above analysis, the main information is that the di�erent points in the
tube thickness undergo di�erent stress ans strain histories. As a consequence, the tube
exiting the die exhibits stress and strain gradients in the tube thickness.

4.1.6.2.2 In�uence of the die angle on the stress and strain �elds

In this section, the die angle e�ect on di�erent quantities such as maximum principal
stress, shear stress, hydrostatic stress, stress triaxiality and plastic deformation is analysed.
The results concern the conical mandrel drawing.

Maximum principal stress

Four di�erent simulations were run with semi-cone angles of 5� , 12.5� , 16� , and 20� .
Figures 4.15(a,b,c and d) show the maximum principal stress� max �eld in the tube in
function of the die semi-cone angle. At �rst sight, the maximum principal stress distribution
is similar for all the simulations.
Figures 4.15(e) and (f) show the comparison of the maximum principal stress pro�le in the
tube thickness, along two di�erent lines (l1 and l2), for di�erent die semi-cone angles. The
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Figure 4.14: Distribution of the Cauchy stress and strain tensor components in the tube
during drawing. (a) � zz, (b) � zz, (c) � �� , (d) � �� , (e) � rr , (f) � rr , (g) � rz , (h) � rz
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die semi-cone angle (� ) 5 12.5 16 20
solid line l1 1381 1553 1634 1642

dashed line l2 2200 2299 2337 2433

Table 4.7: Maximum values of the maximum principal stress (MPa) computed in the tube
thickness along two di�erent lines

solid line l1 corresponds to the moment when the tube exits the conical part of the die
and the dashed line l2 corresponds to the tube exiting the die. It can be observed from
�gure 4.15(e) that lowering the semi-cone angle causes the maximum principal stress to
homogenise in the tube thickness. The e�ect of the die semi-cone angle is less obvious in
�gure 4.15(f) but � max decreases with decreasing� . Moreover, it can be seen that lowering
the die semi-cone angle causes� max to evolve more linearly with the tube radius.
Table 4.7 summarizes the maximum values recorded along both lines in function of the die
angle. From the listed values it is obvious that the maximum principal stress decreases
with decreasing angles.
To summarize this brief analysis, the consequences of die semi-cone angles on the maximum
principal stress are:

ˆ the stress in the tube thickness tends to homogenise with lower angles;
ˆ the maximum stress diminishes with lower angles.

Hydrostatic stress

Figures 4.16(a,b,c and d) present the hydrostatic stress �eld in the tube in function of
the die semi-cone angle. For all the die semi-angles, at the die entry (below the dashed
line), hydrostatic stress ranges from -400 MPa to 400 MPa. The zone between the two
lines corresponds to the zone where major deformation occurs, In this area, the hydrostatic
stress is negative. As it was previously mentioned in part 1.4, a compressive hydrostatic
stress is favourable to reach high deformations. Thus, stress conditions in the tube are in
favour of the forming process.
Next, the pro�les of hydrostatic stress in the tube thickness and along two straight lines l1
and l3 are plotted in �gure 4.16(e) and (f) respectively. The solid line l1 corresponds to the
moment when the tube exits the conical part of the die and the dashed line corresponds
to the tube contacting the mandrel. Table 4.8 enables to compare the maximum and
minimum values of the hydrostatic stress. It can be seen from both the �gure and the table
that lowering the die semi-angle enables to increase the compressive hydrostatic stress.
To summarize, the consequence of die semi-cone angles on the hydrostatic stress is that a
lower die semi-cone angle enables to develop higher compressive hydrostatic stress which is
favourable to reach higher deformations.
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Figure 4.15: (a,b,c,d) Maximum principal stress �eld in function of the die semi-cone angle,
(e,f) comparison of the maximum principal stress pro�les along the solid lines l1 (e) and l2
(f) for di�erent die semi-cone angles
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Figure 4.16: (a,b,c,d) Hydrostatic stress �eld in function of the die semi-cone angle, (e,f)
comparison of the hydrostatic stress pro�les along the solid lines l1 (e) and l3 (f) for
di�erent die semi-cone angles
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die semi-cone angle (� ) 5 12.5 16 20

Maximum -107 -48.3 -37.8 -6.37
Minimum -806 -605 -510 -472

Table 4.8: Maximum and minimum values of the hydrostatic stress (in MPa) computed in
the tube thickness along the solid line

Stress triaxiality

Figures 4.17(a,b,c and d) present the stress triaxiality �eld in the tube in function of
the die semi-cone angle. As a reminder, the stress triaxiality� is the ratio of the mean
stress� m to the equivalent stress �� :

� =
� m

��
(4.9)

� < � 1
3 corresponds to a compression state,� = 0 corresponds to pure shear,� = 1

3

corresponds to uniaxial traction, � = 2
3 corresponds to equibiaxial traction and above2

3

the stress state tends toward isotropic triaxial traction. The stress triaxiality �eld can be
divided into three principal zones. The �rst zone (1) is located below the dashed line and
corresponds to the tube undergoing bending and when it �rst contacts the die. The second
zone (2) corresponds to the tube which is in contact with the mandrel. The third zone (3)
corresponds to the die exit. The dashed line (l3) corresponds to a �rst discontinuity. It
is located where the inner tube surface contacts the mandrel. Finally, the solid line (l1)
corresponds to the discontinuity of the conical die section end. Stress triaxialities reveal
di�erent informations depending on the zones and discontinuities studied. First in zone
(1), tube is in a triaxial tensile state nearby the outer surface while it is in a compression
state near the inner tube surface. In zone (2), the tube is in a compression state and in
zone (3) it is in a triaxial tensile state. In a general way, there are no major di�erences
within the stress triaxiality �eld for di�erent die semi-cone angles. The pro�le of the stress
triaxiality in the tube thickness and along two straight lines l1 and l3 are plotted in �gure
4.17(e) and (f) respectively. In can be observed that a lower semi-die angle enables to
lower the stress triaxiality in the tube thickness along the line l1.

Plastic deformation

Figures 4.18(a,b,c and d) present the equivalent plastic strain �eld in the tube in
function of the die semi-cone angle. Figures 4.18(e) and (f) show the corresponding
equivalent plastic strain pro�les along two lines l1 and l3 crossing the tube thickness at
di�erent locations. From the �� p �elds, it can be observed that the maximum �� p values
increase with increasing semi-die angle. Moreover, plastic deformation takes place almost
homogeneously with a semi-die angle of 5� . Indeed in �gure 4.18(a) the iso-deformation
bands remain almost parallel which is not the case in �gures 4.18(b,c,d). This remark is
more obvious in �gures 4.18(e) and (f). According to the latter, a decrease of semi-die
angle enables to lower the equivalent plastic strain. Moreover, it is more homogeneous
in the tube thickness both along lines l1 and l3. Such an observation is consistent with
Vega et al. (2009) work who simulated by FEM the wire drawing process and found the
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Figure 4.17: (a,b,c,d) Triaxiality �eld in function of the die semi-cone angle, (e,f) comparison
of the stress triaxiality pro�le along the solid lines l1 (e) and l3 (f) for di�erent die semi-cone
angles
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Figure 4.18: (a,b,c,d) Equivalent plastic strain �eld in function of the die semi-cone angle,
(e,f) comparison of the equivalent plastic strain pro�le along the solid lines l1 (e) and l3 (f)
for di�erent die semi-cone angles

equivalent strain to homogenize over the wire cross section with decreasing die-angle.
Sadoket al. (1994b) experimentally measured a strain gradient in the wire cross section
by means of hardness measurements and grid-incremental method. The latter method
which is not currently used consisted in cutting axially a wire and marking a quadrilateral
grid on the cut surface. The wire parts were joined again and drawn. The strains were
then measured from the deformed grids. Their measurements were in good agreement
with FEM on Forge. The main conclusion of their study is that the strain heterogeneity
decreases with decreasing die semi-angle and, for low angle, the local strain values are close
to the homogeneous strain. Finally, Dixit and Dixit (1995) and de Castro et al. (1996)
also observed that decreasing the die angle enabled to procure more homogeneous wires.
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Figure 4.19: Evolution of drawing force with time in function of die semi-cone angles

4.1.6.2.3 In�uence of the die angle on the drawing force and energies

Figure 4.19 presents the evolution of drawing force during the simulation of the conical
mandrel drawing. Forces are plotted in function of time which is proportional to mandrel
diameter as the displacement speed is constant. For the die semi-cone angle of 12.5� , 16�

and 20� the drawing force evolution is identical and force ranges from 1800 daN to 5800
daN. For � = 5 � the drawing force is globally higher. From the previously presented
analysis concerning the in�uence of the semi-die angle on various components, di�erent
remarks were made. First, increasing the die angle caused the axial stress to reach higher
values and to be more heterogeneous in the tube thickness. Second, the hydrostatic stress
was more compressive with lower angles. Finally the equivalent plastic strain was lowered
down and tended to be more homogeneous in the tube thickness with lower die angle.
From these observations, it is complex to di�erentiate the contribution of each component
and to explain the drawing force increase with decreasing die angle. Moreover, information
about friction is missing. In this paragraph, an energetic analysis is conducted in order to
explain the force evolution as function of the die angle.
The internal energy of the system is computed by Abaqus as follow:

ALLIE = ALLSE + ALLAE + ALLPD + ALLFD + ALLCD + ALLDMD (4.10)

The above mentionned variables correspond to the following energies:

ALLIE : Internal energy or total strain energy

ALLSE : Recoverable strain energy

ALLAE : Arti�cial strain energy (Abaqus Analysis User's Manual)

ALLPD : Energy dissipated by plastic deformation

ALLFD : Energy dissipated through frictionnal e�ects

ALLCD : Energy dissipated by viscoelasticity (not included in this study)

ALLDMD : Energy dissipated by damage (not included in this study)
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Figure 4.20: Evolution of the energy of plastic deformation (ALLPD ) and the energy of
friction ( ALLFD ) with time in function of die semi-cone angles.

The order of magnitude of ALLAE and ALLSE is 107 J while it is 109 J for ALLPD and
ALLFD . ALLCD and ALLDMD are not available in this study. Thus, the principal con-
tribution to internal energy ( ALLIE ) is due to the energy dissipated by plastic deformation
(ALLPD ) and the energy dissipated by friction (ALLFD ). This observation is consistent
with the analytical method presented in chapter 1 where the principal contributions to the
drawing force are the plastic deformation, the friction and the redundant deformation.
The in�uence of the die semi-cone angle on the drawing force is analysed in terms of the
balance between energies dissipated by plastic deformation and friction. Figure 4.20 shows
the evolution of energy dissipated by plastic deformation (ALLPD ) during the conical
mandrel drawing simulation. Data are plotted for di�erent die semi-cone angles. It can be
seen that the greater� , the higher the energy dissipated by plastic deformation. In parallel,
�gure 4.20 presents the evolution of energy dissipated by friction (ALLFD ) during the
conical mandrel drawing simulation and for di�erent � . In this case, the lower � , the
higher the energy dissipated by friction. To explain the in�uence of the die semi-cone angle
on the drawing force, it is necessary to compute the sum ofALLPD and ALLFD .

Considering the lower order of magnitude ofALLAE and ALLSE the expression for
internal energy (ALLIE ) can be reduced to:

ALLIE approx = ALLPD + ALLFD (4.11)

Figure 4.21 presents the internal energyALLIE approx computed according to the approx-
imated expression as function of time and for di�erent die semi-cone angles. It can be
observed that ALLIE approx is the highest for � = 5 � while it is approximately equal for
� = 12:5� , 16� and 20� which is consistent with the observations made on the drawing
force.
As a conclusion, the drawing force increases with decreasing angle because the internal
energy is greater mainly due to the contribution of the energy dissipated by friction.
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Figure 4.21: Sum of ALLPD and ALLFD in function of time and die semi-cone angles

4.1.6.3 In�uence of the die angle on the contact stresses

Figure 4.22 exhibits the evolution of the normal and shear stresses along the tube inner
surface in contact with the mandrel (�g.4.22 a and c) and the tube outer surface in contact
with the die (�g. 4.22 b and d). Data are plotted for di�erent semi-die angles. Regarding
the mandrel/tube contact, data are presented in function of the position along the mandrel
with the origin taken at the point facing the die exit. Concerning the die/tube contact,
data are presented in function of the position along the die with the origin taken at the
die exit. The corresponding friction coe�cient is also plotted in �gures 4.22( e and f). The
objective of this �gure is to compare the in�uence of the die angle on the contact stresses
and to explain the di�erences observed with di�erent die semi-cone angles in terms of
friction energy. It can be observed from �gure 4.22( a and b) that the range of normal
contact stress values is similar for every die semi-cone angles, both for the mandrel/tube
and die/tube contacts. However, the contact length between the die and the tube increases
with decreasing die semi-cone angle. These observations correspond to the fact that the
work of friction or the energy dissipated by friction (ALLFD ) is more important for low
die angles. As developed in the part devoted to FEM, it becomes evident that this method
enables to deliver rich information about the process. The drawing force can be estimated
with good accuracy in function of di�erent process parameters and the FEM gives access
to stress, strain, and energy data that are useful to understand the process. In the context
of industrial production, a direct application of this technique is the estimation of the
drawing force in function of the tube dimensions. Indeed, the drawing force has to be
estimated in order to de�ne the di�erent drawing passes with the corresponding section
and thickness reductions. It enables to dimension the drawing passes and to select the
drawing benches to be used in function of their power.
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Figure 4.22: Variation of the normal contact stress, shear contact stress and friction
coe�cient for mandrel/tube and die/tube contacts.
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4.2 Analytical methods

In the past, di�erent analytical methods were de�ned. They were brie�y introduced in
chapter 1 and are further developed in this section. As mentioned in chapter 1, the
advantage of the analytical methods is that they enable to express the drawing force with
an expression which is easy to use. On the other side, the di�erent analytical methods
neglect di�erent aspects of the process and they are known to under- or over-estimate the
drawing force. Finally, their e�ciency is limited to the evaluation of the drawing force,
and some methods cannot take into account the variations of die dimensional parameters.
Nevertheless, even though the drawbacks of the analytical methods are known, their
e�ciency to estimate the drawing force is evaluated in this section.

4.2.1 Homogeneous deformation method

Figure 4.23(a) presents the geometry of tube drawing to be analysed by the homogeneous
deformation method. Figure 4.23(b) details the dimensions necessary for this analysis.

Figure 4.23: Slab analysis method: (a) general view of tube drawing, (b) dimensional
characteristics of the working zone

The drawing stress� d expresses according to the homogeneous deformation method as
follow:

� d = � 0 ln
� A i

A f

�
(4.12)

with A i and A f the tube initial and �nal cross sectional areas respectively:A i = 2 � (R2
i � r 2

i )
and A f = 2 � (R2

f � r 2
f ). � 0 is the material yield stress.

141



4.2.2 Slab method

Figure 4.24(a) introduces a slab into the general geometry of the mandrel tube drawing.
The methodology consists in writing the equilibrium of the slab. The as obtained equations
are next integrated along the tube length. Figures 4.24(b and c) detail the the notations
used to develop the method.

Figure 4.24: Slab analysis method: (a) general view of tube drawing, (b) dimensional
characteristics of the working zone, (c) dimensions of a slab, (d) equilibrium of a slab in
the z direction, (e and f) equilibrium of a slab in the r direction (Montmitonnet, 2006)

Figure 4.24(d) presents the di�erent stresses acting on a slab element and the equilibrium
in the z direction writes:

� zzt � (� zz + d� zz)( t + dt) � p1 sin �
dz

cos�
� � 1 cos�

dz
cos�

+ p2 sin �
dz

cos�
� � 2 cos�

dz
cos�

= 0

(4.13)
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thus:

� zzt � (� zz + d� zz)( t + dt) � p1 tan �dz � � 1dz + p2 tan �dz � � 2dz = 0 (4.14)

where p1 sin(� ) and p2 sin(� ) are the projections ofp1 and p2 on the z axis and dz
cos(� ) and

dz
cos(� ) are the projections of the surface on which the pressure apply on the z axis.
In their study, Kartik (1995) and Rubio (2006) both developed a slab method to study
tube drawing but they considered the pressuresp1 and p2 that apply on the outer and
inner tube surface respectively to be equal. Moreover, they used a Coulomb friction model
which states that � 1 = � 1p1 and � 2 = � 2p2. If � 1 = � 2 = � and p1 = p2 = p then, the
equilibrium equation writes:

� zzt � (� zz + d� zz)( t + dt) � p(tan � � tan � )dz � p(� 1 + � 2)dz = 0 (4.15)

The thickness incrementdt = tsi � tsf is linked to dz following:

dr i + tsi = dr f + tsf (4.16)

dt = tsi � tsf = dr f � dr i = dz tan � � dz tan � (4.17)

�nally dt = dz(tan � � tan � ) (4.18)

developing the equilibrium equation (4.15) and replacingdz by its expression as a function
of dt (eq. 4.18) turns:

� zzdt + d� zzt + pdt + p
(� 1 + � 2)

tan � � tan �
dt = 0 (4.19)

td� zz + ( � zz + p(1 + B � ))dt = 0 with B � =
� 1 + � 2

tan � � tan �
(4.20)

Then a Tresca yield condition p = � 0 � � zz is taken with � 0 the yield stress:

� zz � � rr = � 0 and as� rr = p then p = � 0 � � zz (4.21)

The pressurep which is unknown is then replaced in equation (4.20) by the expression
(4.21). Finally, the as obtained equation is integrated along the strain path:

Z � zz

0

d� zz

B � � zz � � 0(1 + B � )
=

Z t f

t i

dt
t

(4.22)

�
1

B � ln
�
� zz � � 0

1 + B �

B �

� � � zz

0
=

�
ln t

� t f

t i

(4.23)

which gives the drawing stress after transformations as follow:

� d = � zz = � 0

� 1 + B �

B �

�h
1 �

� t f

t0

� B � i
(4.24)

In the method presented above, a major hypothesis was to considerp1 and p2 to be equal.
Figure 4.25 shows the evolution of both contact pressures in the working zone during
mandrel drawing. These data were computed by means of FEM for a L605 tube, for a
mandrel whose diameter was 9.5 mm and a die semi-angle of 12.5� . It can be seen from
�gure 4.25 that p1 ranges from approximately 500 MPa to 2100 MPa andp2 ranges from
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Figure 4.25: (a) Evolution of the contact pressuresp1 and p2 in the working zone, (b)
detail of the mesh and the speci�ed working zone

1300 MPa to 1400 MPa. As a consequence,p1 and p2 vary with z and both pressures
cannot be considered as equal locally. Nevertheless, if an average pressure is computed
along the contacts,p1mean = 1142MPa and p2mean = 1316MPa, then Kartik (1995) and
Rubio (2006) hypothesis can be validated.

Montmitonnet (2006) proposed a more complete version of the slab method as he
considered independentlyp1 and p2 and took into account the tube diameter. Montmitonnet
(2006) method is detailed below. The method starts with the expression of the equilibrium
of a slab element considering the tube section:

(� zz + d� zz)� (R2
si � r 2

si ) � � zz� (R2
sf � r 2

sf ) + p1 tan( � )2�R sf dz + � 12�R sf dz

� p2 tan( � )2�r Sf dz + � 22�r sf dz = 0 (4.25)

Geometrically Rsi = Rsf + dr and r sf = Rsf � t and the expressions transforms:

d[(2Rsf t � t2)� zz] + 2Rsf � zzdr + 2Rsf (� 1 + p1 tan � )dz + 2( Rsf � t)( � 2 � p2 tan � )dz = 0
(4.26)

d[(2Rsf t � t2)� zz]
dz

+ 2Rsf (� 1 + p1 tan � ) + 2( Rsf � t)( � 2 � p2 tan � ) = 0 (4.27)

which can write indi�erently as a function of r i as follow:

d[(2Rsf t + t2)� zz]
dz

+ 2( Rsf + t)( � 1 + p1 tan � ) + 2 r sf (� 2 � p2 tan � ) = 0 (4.28)

The above equation is a di�erential equation that requires to be solved. Additional relations
can be found by writing the equilibrium on an outer and inner tube slab as described in
�gure 4.24(e and f) (Montmitonnet, 2006):

for the outer slab: 2� �� (r sf + t � r ) � 2� rr + (2 r sf + t)(p1 � � 1 tan � ) = 0 (4.29)

which gives: 2r (� �� � � rr ) � 2(r sf + t)( � �� + p1 � � 1 tan � ) = 0 (4.30)

for the inner slab: � 2r (� �� � � rr ) + 2 r sf (� �� + p2 + � 2 tan � ) = 0 (4.31)
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Summing equations 4.29 and 4.31 gives the expression of� �� :

� �� =
r sf (p2 + � 2 tan � ) � (r sf + t)(p1 � � 1 tan � )

t
(4.32)

Then, in equation 4.29 if r tends towards r sf + t and in equation 4.31 if r = r sf it gives
the expression of� rr :

� ext
rr � � 1 tan � � p1 (4.33)

� int
rr � � � 2 tan � � p2 (4.34)

Due to the slab hypothesis� rr is independent ofr . As a consequence,

p1 = � 1 tan � � � rr (4.35)

p2 = � � 2 tan � � � rr (4.36)

Inserting both relations into equation 4.32 gives that � �� � � rr .
Finally, a Tresca yield criteria can be written and � zz � � rr = � 0 and � rr = � zz � � 0.
From this point, two hypotheses can be made concerning the friction. First, friction can
be modelled according to a Coulomb model, second, it can be modelled by a Tresca model.
Starting with the Coulomb friction model, � 1 = � 1p1 and � 2 = � 2p2. p1 and p2 are two
unknowns and can be expressed as a function of� rr : from equations 4.35 and 4.36 and the
Coulomb model, p1 and p2 express as follow,

p1 � �
� rr

1 � � 1 tan �
(4.37)

p2 � �
� rr

1 + � 2 tan �
(4.38)

Inserting both expressions into the di�erential equation 4.28 enables to re-write it:

d[(2r sf t + t2)� zz]
dz

+ 2 r sf (� zz � � 0)K + 2 t(� zz � � 0)K 0 = 0 (4.39)

with (
K = � � 1 � tan �

1� � 1 tan � � � 2 � tan �
1+ � 2 tan �

K 0 = � � 1 � tan �
1� � 1 tan �

(4.40)

The �rst component of the di�erential equation 4.39 can be developed and transformed
with geometrical equivalences (cf �g.4.24(c)):

tsi + dr i = tsf + dr f (4.41)

tsi + z tan � = tsf + z tan � (4.42)

tsi = tsf � z(tan � � tan � ) (4.43)

Moreover,

dt = tsi � tsf = � dz(tan � � tan � ) (4.44)

tan � � tan � = �
dt
dz

(4.45)

t(z) = tsf � z
dt
dz

(4.46)
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Similarly,

r si = r sf + z tan � and tan � =
dr
dz

(4.47)

Finally, the �rst term of di�erential equation turns into:

d[(2r si t + t2)� zz]
dz

=
d[(2(r sf + z dr

dz )( tsf � z dt
dz ) + ( tsf � z dt

dz )2]� zz

dz
(4.48)

which after further developments gives:

(2r si t + t2)
d� zz

dz
+ � zz(2tsf

dr
dz

� 2tsf
dt
dz

� 2r sf
dt
dz

) (4.49)

Inserting the above term into the di�erential equation 4.39 and replacing dr
dz by tan � and

dt
dz by (tan � � tan � ) gives:

(2r si t + t2)
d� zz

dz
+ � zz[2r si (K +tan � � tan � )+2 t(K 0� tan � )] = � 0(2r si K +2 tK 0) (4.50)

which becomes:

(2r si t + t2)
d� zz

dz
+ � zz[2r si (K +tan � � tan � )+2 t(K 0� tan � )] = � 0(2r si K +2 tK 0) (4.51)

and:

(2r si t + t2)
d� zz

dz
+ � zz[(2r si + t)K 0(tan � � tan � ) + tK 1(tan � + tan � )]

= � 0[(2r si + t)(K 0 � 1)(tan � � tan � ) + t(K 1 + 1)(tan � + tan � )] (4.52)

with

K 0 =
1

tan � � tan �

� � � 1 � tan �
1 � � 1 tan �

�
� 2 � tan �

1 + � 2 tan �

�
+ 1 � �

� 1 + � 2

tan � � tan �
(4.53)

and

K 1 = �
1

tan � � tan �

� � 1 + tan �
1 � � 1 tan �

�
� 2 � tan �

1 + � 2 tan �

�
� 1 �

� 1 � � 2

tan � � tan �
(4.54)

The solution of this di�erential equation has the form:

� zz = C(z)(2r si + t)K 1 t � K 0 (4.55)

with

C(z) = C(0)+ � 0
(tan � � tan � )K 0

(tan � + tan � )K 1

h
(K 1+1)

Z z

0

� t0

tan � � tan �
� z

� K 0 � 2r sf + tsf

tan � + tan �
� z

� K 1+1
dz

� (K 0 � 1)
Z z

0

� tsf

tan � � tan �
� z

� K 0 � 1� 2r sf + tsf

tan � + tan �
� z

� � K 1
dz

i
(4.56)

The exact solution has to be found numerically.
The use of the Tresca friction model leads to a simpler drawing stress expression. The Tresca
friction model states that � 1 = m1

� 0p
3

and � 2 = m2
� 0p

3
. In this case, p1 � p2 � � � rr . After

inserting these expressions into the di�erential equation 4.28 and after a few transformation
comes the expression of the drawing stress:

� z

� 0
=

�
1 +

m1 + m2

(tan � � tan � )
p

3

��
ln

� t i

t f

�
�

(tan � � tan � )
(tan � + tan � )

ln
� 2r i + t i

2r f + t f

��

�
�
1 +

m1

tan �
p

3

� 2 tan �
(tan � + tan � )

ln
� 2r i + t i

2r f + t f

�
(4.57)
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Figure 4.26: Geometry of mandrel drawing, (a) de�nition of di�erent working zones, (b)
link with the deformed mesh

4.2.3 Upper bound method

In the upper bound method, the geometry can be divided into �ve di�erent zones as drawn
in �gure 4.26(a). Zone a corresponds to the initial tube moving forward the die. Zone b is
a part of tube sinking. In this zone, the tube outer surface contacts the die and follows
its pro�le. The tube inner surface sinks towards the mandrel but no thickness reduction
occurs. Then the tube inner surface contacts the mandrel and enters in zone c. In this
zone the tube thickness is decreasing. In zone d, the tube exits the die conical part. In
this zone, no deformation occurs and there is only friction between the tube and the tools.
Finally, the tube exits the die in zone e. Both lines FF' and GG' refer to discontinuities of
the velocity �eld. Figure 4.26(b) presents a deformed mesh extracted from the FEM to
justify the di�erent zones that were de�ned.

The upper bound method consists in computing the rate of energy of homogeneous
deformation _WH , the rate of energy dissipation due to internal shear at both discontinuities
_WF F 0 and _WGG0 and the rate of energy dissipated by friction at every tool/tube contact
_Wf . Each energy contribution is detailed in the following paragraph. The equations that

are developed below refer to the notation presented in �gure 4.27.

147



Figure 4.27: Notations used to compute the di�erent energies in (a) zone b, (b) zone c and
(c)zone d. Grey parts symbolise the die and the mandrel.

4.2.3.1 Energy dissipated by homogeneous deformation

Homogeneous deformation is linked to the initial and �nal tube dimensions only. In order to
express the work of homogeneous deformation, the geometry can be simpli�ed as illustrated
in �gure4.23. The plastic deformation work increment per unit volume writes by analogy
with the homogeneous deformation method:

_WH = � 0� H A f vf = � 0 ln
A i

A f
A f vf (4.58)

where v0 and vf are the initial and �nal velocities respectively and A i and A f are the
initial and �nal tube sections respectively. Um and Lee (1997) developped another method
to express the rate of energy dissipation due to homogeneous deformation. They expressed
_WH as a function of the ratio of the circumferential to axial strain increments:

_WH =
2� 0p

3

q
1 + y + y2A i v0 ln

A i

A f
(4.59)

with

y =
d� �

d� z
=

ln R f + rf
R i + r i

ln R2
i + r 2

i
R2

f + r 2
f

(4.60)

For further details, the reader might refer to the reference Um and Lee (1997). Both
expressions led to similar results.

4.2.3.2 Energy dissipation due to internal shear

Internal shear is linked to the change of direction of the velocity �eld that takes place at
discontinuities FF 0 and GG0. When a particle crosses theFF 0 discontinuity, its velocity
undergoes a discontinuityv�

F F 0(r ) which is proportional to its distance r from the center
line. At the outer surface, the particle velocity changes fromv0 to v�

F F 0(R i )
= v0 tan � and

at the inner surface it changes fromv0 to v�
F F 0(r i )

= v0 tan � . For a particle at the distance
r from the center line, the velocity discontinuity is v�

F F 0(r ) = r
R i

v0 tan � . The rate of energy
dissipation due to internal shear at the die entry and FF 0 discontinuity is given by:

d _WF F 0 = 2 �rdrkv �
F F 0(r ) (4.61)
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with k the material shear yield stress,k = � 0p
3

with � 0 the yield stress.
Moreover,

v�
F F 0(r ) = v0

r
Ri

tan � (4.62)

then,

d _WF F 0 = 2 �k
v0

Ri
r 2 tan �dr (4.63)

Integrating the above expression betweenr0 and R0 gives the expression of the rate of
energy dissipation due to internal shear at theFF 0 discontinuity:

_WF F 0 =
2
3

�kv 0
R3

i � r 3
i

Ri
tan � =

2k
3

R2
i + Ri r i + r 2

i

Ri (Ri + r i )
A i v0 tan � (4.64)

where A i = � (R2
i � r 2

i ).

Similarly for the GG0 discontinuity the rate of energy dissipation due to internal shear
is equal to:

_WGG0 =
2k
3

R2
f + Rf r f + r 2

f

Rf (Rf + r f )
A f vf tan � (4.65)

Summing both expressions forFF 0 and GG0 discontinuities and using the �ow conservation
v0A i = vf A f leads to the following expression for the rate of energy dissipated by internal
shear:

_Ws =
2k
3

A i v0 tan �
� R2

i + Ri r i + r 2
i

Ri (Ri + r i )
+

R2
f + Rf r f + r 2

f

Rf (Rf + r f )

�
(4.66)

with k = � 0p
3

4.2.3.3 Energy dissipation due to friction

The computation of the energy dissipation due to friction is the most complex as all the
di�erent interfaces have to be considered. Figure 4.27 presents all the tool/tube interfaces
that are detailed below.

ˆ In zone b, the contact takes place between the tube and the die which is characterised
by its angle � . The inner tube surface is free. The rate of energy dissipated at the
die/tube interface is _W �

fb . The lower-case letterf refers to friction, b refers to the
zone of consideration and the upper-case letter� refers to the side were the contact
takes place. � and � are related to the die and the mandrel sides respectively. This
notation is used for the other terms to be computed.

ˆ In zone c, there are two contacts: the die/tube contact whose rate of energy dissipated
by friction is _W �

fc and the mandrel/tube contact with _W �
fc .

ˆ In zone d there are also two contacts and the following terms can be computed:_W �
fd

and _W �
fc .

The expression of the above listed terms is detailed below. For clarity, a sketch was drawn
for every section in order to detail the notations and to improve clearness.
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Zone b

To start with zone b, this con�guration corresponds to tube sinking as the inner tube
surface is free. The geometry is detailed in �gure 4.27(a). The rate of energy dissipation
due to friction _W �

fb is given by:

d _W �
fb = 2 �� � vRdS (4.67)

Geometrically,

dS =
dR

sin �
and v =

vz

cos�
(4.68)

Thus,

d _W �
fb = 2 �� �

vz

cos�
RdR
sin �

=
4�� �

sin 2�
vzRdR (4.69)

Considering �ux conservation A i v0 = Azvz and vz = A i v0
A z

= v0
R2

i � r 2
i

R2 � r 2 . The equation then
transforms:

d _W �
fb =

4�� � v0

sin 2�
(R2

i � r 2
i )

R
R2 � r 2 dR (4.70)

Moreover, geometrically:

Ri � R
tan �

=
r i � r
tan �

which transforms and givesr = r i � t0(Ri � R) with t0 =
tan �
tan �

(4.71)

The angle � corresponds to the angle formed by the tube inner surface and the direction of
drawing. In the particular case of tube sinking, inner and outer tube surfaces are supposed
to remain parallel and � can be considered equal to� and t0 = 1 . Consequently, the rate
of energy dissipation due to friction computes as the integral of the above expression:

_W �
fb =

Z R f

R i

4�� � v0

sin 2�
(R2

i � r 2
i )

R
R2 � (r i � Ri + R)2 dR (4.72)

Such an integration requires some transformations of the term R
R2 � (r i � R i + R)2 . This

expression can be transformed as follow:

R
R2 � (r i � Ri + R)2 =

a
R � (r i � Ri + R)

+
b

R + ( r i � Ri + R)
(4.73)

where a and b are unknowns to be identi�ed. After development and identi�cation, the
resulting values area = b = 0 :5. As a consequence:

_W �
fb =

2�� � v0

sin 2�
(R2

i � r 2
i )

Z r f + R i � r i

R i

� 1
Ri � r i

+
1

r i � Ri + 2R

�
dR (4.74)

The integration gives:

_W �
fb =

2�� � v0

sin 2�
(R2

i � r 2
i )

�h R
Ri � r i

i r f + R i � r i

R i

+
1
2

h
ln

� r i � Ri

2
+ R

� i r f + R i � r i

R i

�
(4.75)

which leads to the �nal expression:

_W �
fb =

2�� � v0

sin 2�
(R2

i � r 2
i )

h� r f � r i

Ri � r i

�
+

1
2

ln
� 2r f + Ri � r i

r i + Ri

�i
(4.76)
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zone c

Now continuing with zone c and d _W �
fc , exactly the same method can be applied as for

d _W �
fb . Two di�erent con�gurations can be studied as shown in �gure 4.27(b): �rst on a

mandrel of constant section,� = 0 , second on a mandrel presenting an angle� , in this case
t0 = tan �

tan � 6= 1 . This second con�guration aims at being used in this study in the special
case of the conical mandrel drawing. As a reminder the mandrel cone angle is equal to
0:053� which can be approximated by0. As a consequence, it is convenient to neglect the
mandrel angle as it greatly simpli�es the expression of rate of energy dissipation due to
friction given by:

d _W �
fc =

4�� � v0

sin 2�
(R2

i � r 2
i )

R
R2 � r 2

f
dR (4.77)

which transforms:

d _W �
fc =

2�� � v0

sin 2�
(R2

i � r 2
i )

� 1
R + r f

+
1

R � r f

�
dR (4.78)

The integration gives:

_W �
fc =

2�� � v0

sin 2�
(R2

i � r 2
i )

Z Rf

r f + R i � r i

� 1
R + r f

+
1

R � r f

�
dR (4.79)

_W �
fc =

2�� � v0

sin 2�
(R2

i � r 2
i )

�
ln

Rf + r f

2r f + Ri � r i
+ ln

Rf � rf
Ri � r i

�
(4.80)

Up to this point, the energy dissipated by friction was computed in the zone c at the
die/tube contact. The following equations aims at developing the same quantity but for
the mandrel/tube contact d _W �

fC .

d _W �
fc = 2 �� � vzr f dz (4.81)

Due to �ow conservation:

v0A i = vzAz and v0(R2
i � r 2

i ) = vz(R2 � r 2
f ) then vz =

R2
i � r 2

i

R2 � r 2
f

v0 (4.82)

It turns that:

d _W �
fc = 2 �� � r f v0

R2
i � r 2

i

R2 � r 2
f

dz (4.83)

Geometrically (�g.4.27a),

tan � =
r f + Ri � r i � R

z
and R = r f + Ri � r i � z tan � (4.84)

Then,

d _W �
fc = 2 �� � r f v0

R2
i � r 2

i

(r f + Ri � r i � z tan � )2 � r 2
f

dz (4.85)

The above expression transforms as:

d _W �
fc = �� � v0(R2

i � r 2
i )

� 1
Ri � r i � z tan �

�
1

Ri � r i + 2 r f � z tan �

�
dz (4.86)

which integrates:

_W �
fc = �� � v0(R2

i � r 2
i )

Z l

0

� 1
Ri � r i � z tan �

�
1

Ri � r i + 2 r f � z tan �

�
dz (4.87)
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and gives:

_W �
fc = �� � v0(R2

i � r 2
i )

�
ln

l tan � � Ri + r i � 2r f

r i � Ri � 2r f
� ln

l tan � � Ri + r i

r i � Ri

�
(4.88)

Geometrically, tan � = r f � R f + R i � r i
l and l tan � = r f � Rf + Ri � r i Finally, replacing

l tan � in the previous equation turns:

_W �
fc = �� � v0(R2

i � r 2
i ) ln

(Rf + r f )(Ri � r i )
(r f � Rf )( r i � Ri � 2r f )

(4.89)

zone d

In zone d, the tube is in the bearing zone of the die and the die/tube and mandrel/tube
contacts are parallel. The remaining rate of energy dissipated by friction _W �

fD and _W �
fC

computes as follow:

d _Wfd = d _W �
fd + d _W �

fd = 2 �v (� � Rf + � � r f )dz (4.90)

which integrates between0 and l and gives:

_Wfd = _W �
fd + _W �

fd = 2 �v (� � Rf + � � r f )l (4.91)

with l the die bearing length.

Um and Lee (1997) developed a method and combined the b and c zones into a single
one. Moreover, they neglected the friction taking place in the die bearing zone (zone
d)(�g.4.27)

4.2.4 Drawing force

The drawing force is computed by equating the external work rate to the sum of all the
rate of dissipated energies computed previously:

� dvf A f = � dv0A i = _WH + _WF F 0 + _WGG0 + _W �
fb + _W �

fc + _W �
fc + _Wfd =

X
_Wi (4.92)

�nally,

Fd = � dA f =
P _Wi

vf
(4.93)

4.3 Comparison of the analytical and FEM methods

The three analytical methods that were developed in this chapter and the FEM of the
tube drawing are compared in this section. The comparison is limited to the estimation of
the drawing force as the analytical methods are limited to this result.
In the di�erent expressions resulting from the analytical methods appears the yield stress
� 0. During tube drawing, the material strain hardens and as a consequence, the �ow stress
varies during a drawing pass and it is di�erent at the die entry and exit. Generally, an
approximation of the drawing force can be computed using a mean �ow stress� 0m . There
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are di�erent ways to de�ne the mean �ow stress. First it can be considered as the average
between the material initial yield stress � 0i and the �nal yield stress � 0f :

� 0m = ( � 0i + � 0f )=2 (4.94)

A better approximation of the average �ow stress can be obtained by integration of the
�ow stress up to the �nal strain �� f (Altan et al., 1983):

� 0m =
1
� f

Z � f

0
��d �� (4.95)

with,

� f = � H = ln
A f

A i
(4.96)

The proposition made here to set this value was to take the �ow stress corresponding to
the �nal strain � f = � H . If a Ludwik constitutive equation was identi�ed, then:

� 0m = � 0 + K� n
H (4.97)

Table 4.9 lists the estimated drawing forces by means of analytical methods and FEM
for di�erent drawing passes. The comparison with the experimentally measured drawing
forces enables to evaluate the methods. The characteristics of each drawing test detailed
in the table 4.9 are listed in table 4.10. From the drawing forces listed in table 4.9, it can
be seen that the analytical methods estimate the drawing forces with great errors. The
homogeneous deformation method under-estimates the force from 10% to 94%. The slab
and upper bound methods both under and over-estimate the drawing force with an error
ranging of 50%. Finally, the most reliable technique to estimate the drawing force is the
FEM with an error ranging from up to 11.5%.
Figure 4.28 presents the predicted drawing force as a function of the die semi-angle and for
the di�erent analytical methods and the FEM. As can be seen in this �gure, the drawing
force determined by the homogeneous deformation method does not depend on the die
angle but only on the initial and �nal tube dimensions. The drawing forces obtained from
the slab methods decrease with increasing die angle, but no optimum die semi-angle is
revealed. It is interesting to notice that the slab method proposed by Montmitonnet (2006)
estimates a greater force compared to Kartik (1995); Rubio (2006). Nevertheless both
methods show the same evolution of the drawing force with the die semi-angle. Finally,
both the upper-bound method and the FEM reveal an optimum die semi-angle but it
di�ers for both methods. The optimum die semi-angle estimated by the upper-bound
method is between 7.5� and 10� while it is included between 15� and 20� according to the
FEM.
The conclusion concerning the comparison of the analytical methods and the FEM is that
the homogeneous deformation and the slab methods do not provide an accurate estimation
of the drawing force. The upper-bound method gives better approximation as it consider
the di�erent energies involved in the process but it is still not satisfactory. Moreover, it
must be mentioned that both the slab and homogeneous deformation methods require
the friction coe�cient to be known. The best and unique way which enables to identify
the friction coe�cient is the FEM. Thus, it is not worth running the FEM to obtain the
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friction coe�cient and then compute the drawing force by means of an analytical method.
As a conclusion, FEM is the most reliable method to compute the drawing force. Indeed, it
considers all the energies involved in the process and makes no approximation concerning
the stress and strain �elds. There are no geometrical approximation neither, the material
strain hardening is properly taken into consideration and as a consequence, there is no
need to approximate the yield stress. Finally, as a method must be chosen, the FEM is
selected since it models accurately the material deformation and the contact behaviours.

material Drawing test HD Slab 1 Slab 2 Upper-Bound FEM Experimental

316LVM

SM1900
F (kN) 59.5 53.6 79.4 103 67.48 67.35

error (%) 11.7 20.4 17.9 52.9 0.19 -

SM810*
F (kN) 8.9 12.7 17.2 18.7 10.41 9.95

error (%) 10.6 27.6 72.9 87.9 4.6 -

SM664*
F (kN) 2.14 3.33 4.07 6.03 7.08 7.39

error (%) 71.4 54.9 44.9 18.4 4.2 -

L605

SM750*
F (kN) 5.78 9.89 11.9 13.7 13.0 13.9

error (%) 58.4 28.8 14.3 1.44 0.064 -

SM630*
F (kN) 4.57 7.98 9.74 10.9 8.75 9.2

error (%) 50.3 13.1 5.87 18.5 0.049 -

SM530*
F (kN) 3.59 5.51 6.57 7.69 5.8 5.2

error (%) 30.1 5.96 26.3 47.9 11.5 -

SM301*
F (kN) 1.69 2.40 3.5 3.24 2.5 2.3

error (%) 26.5 4.35 52.1 40.9 8.70 -

Platinum** SM1848
F (kN) 41.8 82.3 93.8 91.2 60.7 60.6

alloy error (%) 31.0 35.8 54.9 50.5 0.16 -

Table 4.9: Drawing forces computed by means of di�erent methods, comparison with
experimental Forces. Data marked with � were extracted from Palengat (2009), the
constitutive equation for the material marked with �� was taken from A�agard (2010).

Reference R i (mm) r i (mm) Rf (mm) r f (mm) � ( � ) � 1 � 2

316LVM - SM1900 12 9 9.5 7.01 12.5 0.03 0.03

316LVM - SM810 5.25 4.5 4.05 3.5 16.5 0.05 0.05

316LVM - SM664 4.08 3.52 3.32 2.65 11 0.05 0.05

L605 - SM750 4.47 3.88 3.74 3.25 11.4 0.065 0.065

L605 - SM630 3.77 3.27 3.15 2.75 10.3 0.065 0.065

L605 - SM530 3.19 2.75 2.69 2.35 12 0.065 0.065

L605 - SM301 1.97 1.75 1.5 1.35 12.4 0.065 0.065

Platinum alloy - SM1848 10.85 8.15 9.24 7 33 0.07 0.07

Table 4.10: Description of the drawing tests
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Figure 4.28: Predicted drawing force as a function of the die semi-angle for the di�erent
analytical methods and FEM

4.4 Conclusion

In this chapter, �rst the FEM of tube drawing was developed and di�erent models were
presented. Three di�erent models were detailed, a �srt one in which the material is
considered visco-plastic and isotropic, a second where the material is anisotropic and the
visco-plasticity is neglected, a third one where the material is visco-plastic and isotropic
and the thermal aspects are considered. The identi�cation of the friction coe�cient and
thermal contact properties was detailed and a pressure dependent friction coe�cient
was identi�ed. The mechanical models enabled to analyse the stress and strain �elds
taking place during drawing and to evaluate the e�ect of the die angle on the process. It
was observed that decreasing the die angle enabled to homogenise the stress and strain
distribution in the tube thickness and to improve formability by increasing the compressive
hydrostatic stress. The thermo-mechanical model enabled to simulate temperature �elds
close to the experimentally measured with a satisfactory accuracy.
Finally, analytical methods were developed and the computed drawing forces were compared
with the simulated and the experimental ones. The analytical methods accuracy was not
satisfactory compared to the FEM. It was shown that the homogeneous deformation and
the slab method were not able to model the optimum die angle. On the contrary, the
upper-bound method which considers all the energies involved in the process and the FEM
enabled to estimate an optimum die angle. Nevertheless, the optimum angles computed by
both methods di�ered greatly.
As a consequence, this chapter enabled to �nalise the FEM and to prove its usefulness
regarding the process analysis and the drawing force computation. Moreover, it allowed to
dismiss the analytical methods whose performances are limited.
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Chapter

5
Failure prediction
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Throughout the previous chapters, the FEM of tube drawing was built and the
experimental formability limit of the material during drawing was identi�ed. The objective
of the present chapter is to predict the tube fracture by means of the failure criteria
that were presented in chapter 1 and calibrated on tensile tests in chapter 2. As detailed
in chapter 4, di�erent FE models were de�ned and failure criteria were computed for
each of them. As a reminder, in modelsM 1 and M 2 the material was considered as
isotropic and visco-plastic. The thermal e�ects were included inM 2 only. Nevertheless, as
the temperature increase was considered low enough, the material thermal softening was
neglected. As a consequence, the stress/strain �elds modelled byM 1 and M 2 were identical.
In the M 3 model, the material was considered as anisotropic and the visco-plasticity was
neglected. In short, both the section and thickness reductions were predicted by means
of the M 1 and M 3 models and compared with the experimentally observed reductions.
Despite the discussion about the material being plastic anisotropic or not in chapter 3,
both models were evaluated. It enabled to quantify the error made on failure prediction if
one or the other model was used. First, both models were evaluated on the conical mandrel
test performed with a die semi-cone angle of 12.5� on the L605 material. Then, they were
evaluated and validated on further conical mandrel drawing tests made with die semi-cone
angles of 5, 16, 20� . Finally, they were validated on the 316LVM tubes.
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5.1 Computation of the failure criteria from FEM

The failure criteria that were presented in chapter 1 are reminded in table 5.1. They were
computed independently of the FEM. A script was written in Python to extract stress and
strain data from Abaqus and to compute the failure criteria. The script enables to collect
the components of the Cauchy stress and strain tensor at the mesh nodes for each time
increment. It also enables to collect the nodes coordinates in order to plot the 2D stress
and strain maps. Criteria with an integral form are computed by �nite di�erences.

Type Abbreviation Criterion Damage variable

1 STRN Equivalent strain D1 = ��

1 MSS Maximum shear stress D2 = � max = � 1 � � 3
2

1 SHAB Vujovic and Shabaic (1986) D3 = 3� m
��

2 FREU Freudenthal (1950) D4 =
R�� p

0 ��d �� p

2 COCK Cockcroft and Latham (1968) D5 =
R�� p

0 max(0; � 1)d�� p

2 RICE Rice and Tracey (1969) D6 =
R�� p

0 exp(3� m
2�� )d�� p

2 BROZ Brozzo et al. (1972) D7 =
R�� p

0
2� 1

3(� 1 � � m ) d�� p

2 ARGO Argon et al. (1975) D8 =
R�� p

0 (� m + �� )d�� p

2 OH Oh et al. (1976) D9 =
R�� p

0
� 1
�� d�� p

2 AYAD Ayada et al. (1984) D10 =
R�� p

0
� m
�� d�� p

2 TREN Tresca energy D11 =
R�� p

0
(� 1 � � 3 )

2 d�� p

Table 5.1: Details of the selected fracture criteria

5.1.1 Mechanical model considering isotropy, M1

5.1.1.1 Evaluation of failure criteria

The approach was to follow the evolution of the di�erent failure criteria with an increasing
mandrel diameter during conical mandrel drawing. The focus was to identify the mandrel
diameter at which the tube was supposed to fracture. Figure 5.1 presents the di�erent
failure criteria computed throughout the FEM of conical mandrel drawing. The damage
variable are normalised by the calibrated valueDcrit (cf. table 2.10). In this �gure,
the normalised damage variables are plotted as a function of the mandrel diameter and
it can be observed that their values increase with increasing mandrel diameter. When
a normalised damage variable crosses the horizontal black line (critical value of 1) the
criterion is satis�ed and the tube is supposed to fracture. Figure 5.1(b) is an enlargement of
�gure 5.1(a) around the critical value of 1. In this �gure, the mandrel radii corresponding
to the fracture limit are highlighted. The corresponding predicted section reductions are
listed in table 5.2. The estimation errors are also listed. The errors were computed from
the experimental section reductions that are reminded in table 5.3.

It can be observed that estimation errors range from nearly 50% to 64.6% for MSS,
TREN, STRN and FREU. Estimation is improving with ARGO, RICE, OH and BROZ
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Figure 5.1: Isotropic plastic L605: evolution of failure criteria with mandrel radius, (a)
global view, (b) zoom around the critical value and plot of the critical mandrel radii

Abbreviation Predicted section reduction (%) Mean error (%)

STRN 27.6 48.7

MSS 19.2 64.3

SHAB - -

FREU 27.6 48.6

COCK 53.9 0.2

RICE 70.5 31.0

BROZ 71.6 33

ARGO 38.2 29.1

OH 75.0 39.3

AYAD > 75.4 > 40.1

TREN 25.7 52.2

Table 5.2: Predicted section reduction and section reduction prediction error (underlined
criteria are expressed in MPa, others are without units).

Tube 1 Tube 2 Tube 3
Experimental section reduction at fracture (%) 54.17 53.37 53.91

Table 5.3: Experimental section reduction at fracture obtained for the three drawing tests.
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Figure 5.2: Failure initiation loci of isotropic plastic L605: (a) detail of the process, (b)
enlargement of the zone close to the die and plot of the predicted tube inner surface and
failure locus for each criterion. The outer tube surface is common for all criteria.

criteria with errors ranging from 28.5% to 40.5% but prediction is still not satisfactory.
COCK criterion shows the lowest estimation error: 0.2%. Maximum section reduction
predicted by AYAD is unknown and above 75.4% because the simulation was interrupted
due to an excessive mesh distortion. Such phenomenon can be avoided by means of re
meshing techniques. Finally SHAB criterion predicts failure at the very �rst step of tube
drawing, thus, according to this criterion, drawing is not possible, which is obviously
not the case. It has to be mentioned that STRN failure criterion is commonly used at
Minitubes for the de�nition of the drawing passes. From this �rst analysis, it can be
deduced that the use of another failure criterion could improve the productivity.

Figure 5.2 presents ten tube inner surface pro�les corresponding to ten failure criteria.
Figure 5.2(a) �rst presents the position of the tube inner and outer surfaces relative to
the die and the conical mandrel for the MSS criterion only. The drawing direction is also
shown. In �gure 5.2(b), the mandrel was removed for clarity and several tube inner surface
pro�les are superimposed. Each inner tube surface is plotted for a given failure criterion
and corresponds to the moment when the criterion is satis�ed. The outer tube surface
is common for all the failure criteria. The mean experimental tube inner radius is also
plotted. Thus, one can easily compare the maximum reduction predicted by each criterion.
As mentioned earlier, COCK is very close to the experimental test, RICE, OH and BROZ
are overestimating the maximum reduction while ARGO, STRN, FREU, TREN and MSS
underestimate it. There are no data corresponding to AYAD criterion since the simulation
did not run long enough but the predicted section reduction at fracture is overestimated.
The tube inner surface would be located between OH prediction and the outer surface.
Figure 5.2 also shows the point where failure criteria is veri�ed for each criterion. This
point represents the locus of failure initiation. It can be seen that all the failure initiation
points are located at the tube inner surface. Fracture is then expected to initiate on the
inner tube surface and to propagate outward. This observation is consistent with the failure
propagation direction observed on SEM in �gure 3.8. The axial position of failure locus
is predicted with an error linked to the Mesh deformation. Indeed, damage variables are
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Die semi-cone angle (� ) 5 13.12 16 20

Experimental section reduction at fracture (%) > 56.4 53.8 50.7 49.9

Predicted section reduction at fracture (%) 59.7 53.9 51.4 47.1

Error ( %) - 0.2 1.3 5.6

Table 5.4: Experimental section reduction at fracture and Cockcroft-Latham predicted
section reduction as a function of the die semi-cone angle.

computed at the mesh nodes and the initial mesh is getting more distorted with increasing
tube reduction. Nevertheless, RICE, BROZ and OH predict that the fracture initiates
after the die while the other criteria predict the fracture to occur inside the die.
The conclusion that arises from this �rst analysis is that the fracture locus is well predicted
by nine of the eleven failure criteria but only COCK is able to quantitatively predict
fracture.

5.1.1.2 In�uence of the die angle on Cockcroft-Latham failure criterion

Further conical mandrel drawing tests were performed in order to validate the predictability
of COCK failure criterion. Three series of complementary drawing tests were performed
with dies of di�erent semi-cone angle: � = 5 � , � = 16 � , and � = 20 � . The drawing
conditions were identical to the �rst series of tests. Table 5.4 reminds the experimentally
observed section reductions at fracture and the COCK failure criterion prediction for the
four die semi-cone angles. It can be seen from these complementary tests and simulations
that Cockcroft-Latham failure criterion is able to predict failure accurately for di�erent
die semi-cone angles. During the test made with a semi-cone angle of� = 5 � the tube did
not fracture. For this die semi-cone angle the experimental section reduction at fracture is
unknown but above 56.4%. Furthermore it can be concluded from this series of drawing
tests that the maximum section at fracture increases with decreasing die semi-cone angle.
Thus, the use of smaller die angles should be considered in the tube drawing
industry to improve formability.
Figures 5.3(a,b,c,d) presents the Cockroft-Latham criterion �eld for di�erent semi-die
angles. Data were plotted for a mandrel diameter of 10.03 mm. The criterion pro�le along
two straight lines for di�erent die angles were also plotted in �gures 5.3(e,f). From these
�gures, it can be observed that increasing the die angle increases the heterogeneity of the
Cockroft-Latham criterion in the tube thickness: Cockcroft-Latham values are lowered
down nearby the outer tube surface and increased close to the inner tube surface. For
example, for a semi-cone angle of 20� , Cockcroft-Latham value reaches 1.03 MPa while it
reaches 0.61 MPa a semi-cone angle of 5� . As a reminder, Cockcroft-Latham is computed as
the integral of the maximum principal stress (axial stress) with the increment of equivalent
plastic strain. It was presented in chapter 4 that increasing die angle induced the principal
axial stress nearby the inner tube surface to increase and to decrease close to the outer
surface. Thus, the evolution of the axial principal stress in the tube thickness is consistent
with the fact that COCK increases close to the inner tube surface with increasing die angle
and that it decreases close to the outer tube surface.
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Figure 5.3: (a,b,c,d) Cockcroft-Latham failure criterion �eld as a function of the die
semi-cone angle (e,f) comparison of the Cockcroft-Latham failure criterion pro�les along
the solid lines l1 (e) and l3 (f) for di�erent die semi-cone angles
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Type Abbreviation Criterion Damage variable

1 STRNH Equivalent strain D H
1 = �� H

1 MSSH Maximum shear stress D H
2 = � max = � 1 � � 3

2

1 SHABH Vujovic and Shabaic (1986) D H
3 = 3� m

�� H

2 FREUH Freudenthal (1950) D H
4 =

R�� H
p

0 �� H d�� H
p

2 COCKH Cockcroft and Latham (1968) D H
5 =

R�� H
p

0 max(0; � 1)d�� H
p

2 RICEH Rice and Tracey (1969) D H
6 =

R�� H
p

0 exp(3� m
2�� H )d�� H

p

2 BROZH Brozzo et al. (1972) D H
7 =

R�� H
p

0
2� 1

3(� 1 � � m ) d�� H
p

2 ARGOH Argon et al. (1975) D H
8 =

R�� H
p

0 (� m + �� H )d�� H
p

2 OHH Oh et al. (1976) D H
9 =

R�� H
p

0
� 1
�� H d�� H

p

2 AYAD H Ayada et al. (1984) D H
10 =

R�� H
p

0
� m
�� H d�� H

p

2 TRENH Tresca energy D H
11 =

R�� H
p

0
(� 1 � � 3 )

2 d�� H
p

Table 5.5: Fracture criteria expression as function of Hill's equivalent stress and strain.
Exponent H denotes the anisotropic form of the failure criteria

5.1.2 Mechanical model considering anisotropy

The introduction of plastic anisotropy induces the modi�cation of the failure criteria
expressions. Indeed, failure criteria are expressed in terms of Mises equivalent stress and
strain. In the case of an anisotropic material, Mises equivalent stress and strain are not
representative of the material behaviour. Thus failure criteria expressions were written as
function of Hill's equivalent stress and strain as reminded in table 5.5. Moreover, they were
calibrated by means of the tube tensile tests considering Hill's equivalent stress and strain.
The evolution of anisotropic failure criteria as a function of the mandrel diameter during
conical mandrel drawing simulation is shown in �gure 5.4. The predicted section reductions
at fracture considering plastic anisotropy are detailed in table 5.6. From these data,
and considering that the material exhibits plastic anisotropy it can be observed that
Cockcroft-Latham, Brozzo and Rice failure criteria are the best able to predict section
reduction at fracture with errors of 0.03%, 3.9% and 7.3% respectively. The reason why the
anisotropic Cockcroft-Latham prediction is very similar to the isotropic criterion is due to
the fact that the axial direction was taken as the reference direction for Hill's parameters
identi�cation. In this way, the axial yield stress ratio Rz = � z

� 0
= 1 and as a consequence,

the axial stress appearing in Hill 1948 is not a�ected by any coe�cient. Finally, as � z is
the only stress appearing in Cockcroft-Latham expressions, the criterion value varies little
if anisotropy is considered. This result is important for this study as it means that an
error in characterising the material anisotropy does not induce any misestimation of the
section reduction at fracture by means of Cockcroft-Latham criterion.
The predicted failure loci are illustrated in �gure 5.5 and the same conclusions can be
drawn for the anisotropic failure criteria compared to the isotropic ones: failure locus is
predicted at the inner tube surface and failure is suspected to propagate outward.
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Figure 5.4: Anisotropic plastic L605: evolution of failure criteria with mandrel radius, (a)
global view, (b) zoom around the critical value and plot of the critical mandrel radii

Abbreviation Predicted section reduction (%) Mean error (%)

STRNH 20.8 61.3

MSSH 13.5 74.9

SHABH - -

FREUH 20.3 62.3

COCKH 53.8 0.03

RICEH 49.9 7.3

BROZH 55.9 3.9

ARGOH 32.4 39.8

OHH 61.1 52.7

AYAD H > 75.4 40.1

TREN H 19.8 53.5

Table 5.6: Predicted section reduction and section reduction prediction error considering
plastic anisotropy (underlined criteria are expressed in MPa, others are without units).

Figure 5.5: Failure initiation loci of anisotropic plastic L605: (a) detail of the process, (b)
enlargement of the zone close to the die and plot of the predicted tube inner surface and
failure locus for each criterion. The outer tube surface is common for all criteria.
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Section reduction (%) Thickness reduction (%)

Test 1 68.5 62.9

Experimental Test 2 66.4 60.4

Average 67.5 61.7

FEM Predicted 60 52.4

Error ( %) 11 15

Table 5.7: 316LVM: experimental section and thickness reduction

5.1.3 Validation with 316LVM

The e�ciency of Cockroft-Latham failure criterion was evaluated on the L605 with conical
mandrel drawing for di�erent semi-die angles. In the end, it is interesting to validate
its predictability for another material: the 316LVM. As for the L605, the failure criteria
were calibrated on tube tensile tests up to fracture, conical mandrel drawing tests were
performed and simulated and the failure criteria were computed. Table 5.7 presents the
experimental and predicted section and thickness reductions at fracture for the conical
mandrel drawing tests on 316LVM. The estimation error are 11% and 15% respectively.
The prediction is less accurate in this case but still satisfactory.

5.2 Discussion

5.2.1 The different criteria

The di�erent failure criteria that were presented and tested in this study were developed
throughout the years. Each of them was de�ned by its authors according to experimental
observations or based on the physical mechanism of ductile failure. Nevertheless, it appears
that their ability to predict fracture during tube drawing is very disparate. The following
paragraph aims at discussing the reason why some criteria might be more successful in
predicting failure.
Starting with the instantaneous damage variable like constant strain (STRN), maximum
shear stress (MSS) and Vujovic and Shabaic (1986)(SHAB), it was shown in chapter 1 that
material formability was dependent on the deformation history. As a consequence, it is
not surprising to see their inaccuracy in predicting failure.
Going on with the damage accumulation variables and the criteria based on energetics
consideration di�erent remarks can be expressed. The analysis of each criterion is detailed
in the following paragraphs.
Freudenthal (1950) criterion was based on the assumption that a material can only absorb
a limited amount of energy which is quanti�ed by the work of plastic deformation. Cock-
croft and Latham (1968) demonstrated that such a failure criterion was not accurate for
predicting failure. Their reasoning is based as follow. During a tensile test on a ductile
material, necking occurs and the strain at fracture depends on the neck geometry prior
to fracture. The stresses at the minimum section in the neck zone can be calculated and
considered as the sum of two components:� = �� + � m . The �rst component �� is the
current yield stress and is constant across the specimen section. The second component� m
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is an hydrostatic tension that varies from zero at the sample periphery and increases up to
a peak value at the center of the specimen. If the criterion of work of plastic deformation
is considered, then, only the yield stress is taken into account and integrated with respect
to the plastic strain. As the current yield stress is independent of the neck geometry the
consequence is that Freudenthal (1950) criterion predicts a fracture independent of the
neck geometry which is contradictory with the experimental observations (Bridgman, 1952).
In this way, Cockcroft and Latham (1968) set out their arguments to introduce a criterion
of ductile failure based on the highest principal stress. Rice and Tracey (1969) criterion is
based on the mechanism of ductile fracture by void growth and coalescence and includes
the hydrostatic stress � m . As a hydrostatic tensile stress is known to accelerate the void
growth and coalescence (Rice and Tracey, 1969), the account of� m in a criterion appears
to be a good indicator of its predictability due to its physical basis. Nevertheless, Rice and
Tracey (1969) criterion is based on the hypothesis that the fracture is dependent on the
void fraction only and that it is independent of the void size, shape and spacing. Such
consideration might not re�ect the real loading conditions. In the case of tube drawing,
the maximum principal stress is tensile while the other two radial and circumferential
components are compressive. Considering this stress state and the corresponding strain
state, a cylindrical void is expected to evolve towards an ovoid geometry whose principal
axis is oriented in the direction of drawing. As a consequence, the fact that Rice and
Tracey (1969) criterion does not consider void geometry evolution might explain its poor
accuracy to predict failure during tube drawing.
Brozzo et al. (1972) based their criterion on the fact that ductility decreases with the
hydrostatic stress which is consistent with Rice and Tracey (1969) observations. The choice
they made was to include this phenomenon by subtracting the hydrostatic stress to the
maximum principal stress.
Argon et al. (1975) analysis is based on a local stress criterion of interfacial separation
between inclusions and matrix. The decohesion between the inclusion and the matrix and
thus the cavity formation is expected to occur when a critical decohesion stress is reached.
The decohesion stress is a combination of the hydrostatic stress and the equivalent stress.
The analysis leading to this criterion concerns large particles whose diameter is more than
100 Å. The particles are considered rigid and plastically non deformable. Thus, it can
be seen that their analysis has physical basis. Moreover this criterion is expected to be
more accurate than Freudenthal (1950) as the e�ect of hydrostatic stress is superimposed
to the e�ective stress. Again, the hydrostatic stress was proved to have a direct e�ect on
void growth (Bridgman, 1952). To illustrate this remark, the error of the predicted section
reduction at fracture are equal to 48.6% and 29.1% for Freudenthal (1950) and Argon
et al. (1975) respectively. Thus, as expected, Argonet al. (1975) is more accurate.
Oh et al. (1976) failure criterion derives from the the simpli�cation of McClintock (1968a)
failure criterion. McClintock (1968a) developed its criterion based on physical phenomena
of void growth and coalescence. He analysed the deformation of a hole in a in�nite medium
considering plane strain condition. The hole has an elliptical shape and is inserted into a
cylindrical cell whose dimension is of the order of the mean spacing between holes. The
condition of fracture corresponds to the deformed hole reaching its cell walls. Through his
study, McClintock (1968a) showed that the fracture strain was in�uenced by the transverse
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principal stresses� 2 rather than on � m and the maximum or axial principal stress � 1 only
(� 1> � 2> � 3). Finally, Oh et al. (1976) criterion is obtained from McClintock (1968a) by a
linear transformation of the sinh function. From this transformation, the criterion greatly
simpli�es and the e�ect of transverse principal stresses is neglected. Thus, Ohet al. (1976)
criterion is expected to be less predictive than McClintock (1968a).
Vujovic and Shabaic (1986) is a confusing failure criterion as it reduces to the stress
triaxiality. It was shown that stress triaxiality could in�uence the amount of plastic strain
a material could accumulate before fracture Mirone (2007) but it cannot be a failure
criterion on its own.

5.2.2 My choice

As a conclusion, the most predictive failure criterion is the phenomenological Cockcroft
and Latham (1968). The reasons found to explain such accuracy are the following.
All the damage variables are calibrated on uniaxial tensile tests where the major principal
stress is the tensile stress and the other two are zero. While some of the damage variables
are expressed in terms of hydrostatic stress or equivalent stress, such a calibration results in
a great simpli�cation of the damage variable expression. Thus, some of the failure criteria
are turning equivalent when calibrated on the tensile test e.g. Cockcroft and Latham
(1968) and Freudenthal (1950) or Brozzoet al. (1972) and Oh et al. (1976) (table 2.10).
Moreover, when the criteria are computed during tube drawing, the stress and strain state
is complex and very di�erent from uniaxial tension. As a consequence, some failure criteria
were calibrated on non representative stress and strain states and are unable to predict
failure in drawing. Zadpoor (2009) observed that failure criteria calibration depended
upon the range of stress triaxiality of the test they were calibrated on. Consequently, more
complex failure criteria might give better results provided that they are calibrated on tests
with more complex state of stress.
Concerning Cockcroft and Latham (1968) failure criterion only, it gives good results as it
is expressed in terms of the largest principal stress which is tensile both on calibration
test and on tube drawing. According to the large number of studies about failure criteria,
scientists highlight that failure criteria based on the maximum principal stress are more
reliable in predicting fracture. Venugopal-Rao et al. (2003) also showed that integration of
plastic deformation energy along the deformation path was a better approach compared
to instantaneous path-independent parameters because metal working process are strain
history dependent.
Kim et al. (2007) and Karnezis and Farrugia (1998) can be cited to illustrate Cockcroft
and Latham (1968) predictability. Kim et al. (2007) validated the geometry of a newly
designed mandrel tip to prevent tube tip failure during drawing and Karnezis and Farrugia
(1998) transformed a two passes drawing process into a single one.
Finally, it must be noticed that other failure criteria exist (Bao and Wierzbicki, 2004;
Wierzbicki et al., 2005). As these criteria are expressed as a function of several parameters,
they require to be calibrated on a series of mechanical tests. The purpose of this study
was to select a criterion that could be easily calibrated on a simple uniaxial test. The goal
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was to insert the methodology in the industrial process, thus, it was crucial for the method
to remain easy, fast and accurate.

5.3 Conclusion

Di�erent failure criteria were evaluated for two materials by comparison of the experimental
fracture of tube during conical mandrel drawing test and the corresponding FEM. It appears
from this study that Cockcroft and Latham failure criterion is the most accurate criterion.
Moreover, it is able to capture the e�ect of die semi-angle variation on formability. Indeed,
it was experimentally observed that an increase in die semi-angle caused the formability
limit to be reduced. Cockcroft and Latham failure criterion was able to capture this
geometrical e�ect and predicted an earlier failure with greater die semi-angle.
The uncertainty of material plastic anisotropy was not prejudicial for failure prediction. In
the case of anisotropic model, Cockcroft and Latham again was the most accurate criterion,
prediction error increased but was still satisfactory.
Finally, the prediction accuracy of Cockcroft and Latham criterion when calibrated on
tensile test is satisfactory and can be used in industrial applications. It appears to be a
reliable tool to de�ne the drawing passes. Thus, compared to the criterion of constant
strain which is commonly used at Minitubes and which under-estimates the formability
limit, Cockcroft and Latham can be a tool to de�ne the drawing passes in a more advanced
way and to improve productivity.
To go further, it would be interesting to analyse the e�ect of greater section reductions on
the appearance of surface defects such as cracks or cavities. Moreover, it must be ensured
that the reeling step does not cause additional damage. Finally, as the material gets more
deformed, the annealing conditions might get changed as the amount of stored energy is
greater with increased plastic deformation.
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Chapter

6
Conclusion and outlook

Throughout this thesis, di�erent aspects of the tube drawing process were presented and
analysed. The di�erent issues that were initially introduced were examined. In short:

ˆ the material behaviour was characterised;
ˆ experimental drawing tests up to fracture were performed;
ˆ the �nite element model was built;
ˆ the formability limit was identi�ed.

In the �rst chapter, after an introduction of the industrial context and a presentation
of the tube drawing process, the di�erent phenomena involved in the aforesaid process
were detailed. Plasticity was �rst introduced with a review of the constitutive equations
that enable to describe the plastic behaviour: isotropic and anisotropic yield functions
were presented followed by the �ow rule and the hardening constitutive equations. Vis-
coplastic constitutive equations were also introduced. Then, the friction phenomenon
that is unavoidable in any forming process involving forming tools was addressed. In a
third paragraph, the heat generation phenomenon due to plastic deformation and friction
was presented. Once the constitutive equations, the friction model and the heat equation
were presented, di�erent methods to analyse the process were described. Both analytical
methods and �nite element modelling were presented and their e�ciency was compared by
means of a bibliographic review. Finally, as a tube bulge test was designed in this study,
its principle was also presented.

The second chapter dealt with the materials experimental characterisation which was
necessary to understand the material behaviour and to build the �nite element model. The
di�erent mechanical testing methods that were used were �rst introduced: tube tensile
test, tensile test on oriented samples, tube bulge test. All the tests were presented in a
detailed way, in particular the tube bulge test as this speci�c test was designed for the
purpose of this study.
After the mechanical tests presentation, the material mechanical behaviour was charac-
terised. In a �rst time, tube tensile tests enabled to characterise the work hardening
behaviour and to �t the parameters of the hardening constitutive equations. A Ludwik
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hardening constitutive equation was �rst used and the material viscoplasticity was further
modelled by a Johnson-Cook constitutive equation.
Then, as forming processes induce material deformation in preferred directions and in a
repeated way, the induced plastic anisotropy was investigated. Tube bulge test were the
�rst indicator of an anisotropic behaviour. The parameters of Hill (1948) yield function
were �tted by means of an inverse analysis between experimental results and �nite element
modelling. With the objective of con�rming the identi�ed parameters, tensile tests on
oriented samples cut from �attened tubes in di�erent directions relative to the drawing
direction were performed. Tensile tests were performed in the drawing direction, at 45�

from the drawing direction and in the transverse direction and it was found that the
material exhibited isotropic plastic properties.
Due to the inconsistency between both mechanical tests, di�erent hypotheses were inves-
tigated to explain such di�erent results. The �rst hypothesis was to consider that the
selected anisotropic yield function was not suited for this study. Nevertheless a bibliographic
review discarded this proposition. The second hypothesis was to investigate the material
properties being heterogeneous in the tube thickness. Micro-hardness measurements were
performed in the tube wall thickness and it appeared that the mechanical properties
were non-homogeneous. Such characteristic could not be measured by means of the tube
tensile test as it resulted in the measurement of an average behaviour. On the contrary,
as the tube bulge test caused a gradient of strain in the tube thickness, a di�erent mean
mechanical behaviour was measured. As a last veri�cation, surface and volume X-ray
di�raction measurements were performed to evaluate material texture. Once the material
mechanical behaviour was characterised, the thermo-mechanical properties were identi�ed.
Finally, keeping in mind that one of the principal objective of this study was to predict
tube failure during drawing, di�erent failure criteria were calibrated by means of tube
tensile tests.

The third chapter was devoted to the description and the results of the conical mandrel
drawing test that was designed to identify tube fracture during drawing. The speci�city of
this drawing test was to use a mandrel of conical geometry whose goal was to progressively
increase the section and thickness reductions during drawing and to reach tube failure.
The conical mandrel drawing test was described in detail. The force and temperature
measurements during drawing were presented and the experimental tube section and
thickness reductions at failure were identi�ed. A parametric study involving a set of dies
with di�erent semi-cone angles revealed that the use of dies with lower angles enabled
to increase the section reduction at fracture with little in�uence on the drawing force.
Concerning the thermal measurement by means of an infra-red camera, the protocol for
emissivity calibration as a function of the temperature was described.

In the fourth chapter, the �nite element model was described. The geometry, the
material properties, the boundary conditions, the mesh, the time incrementation and
the contact de�nition were all presented. Three di�erent models were de�ned. First,
considering plastic isotropy, both a mechanical and a thermo-mechanical models were
built with a Johnson-Cook hardening constitutive equation. Second, considering plastic
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anisotropy, a pure mechanical model was built with Hill (1948) yield function and a Ludwik
hardening constitutive equation.
As presented in the previous paragraphs, constitutive equations and thermal properties
were identi�ed by means of experimental tests. Nevertheless the friction condition remained
to be characterised. This �nal step was performed by means of inverse analysis. The friction
coe�cients were identi�ed by comparison of the drawing force that was experimentally
measured and the simulated one. It resulted that a pressure dependent friction coe�cient
had to be identi�ed for the experimental and simulated forces to �t.
Once the �nite element model was complete, the heat generation and exchanges taking
place inside the tube were analysed. Good correlation was found between the experimental
and simulated temperatures. It was found that locally, the temperature of the L605 could
reach 220� .
In the case of pure mechanical analysis, the di�erent stress and strain �elds in the tube
were analysed to improve the process understanding. The evolution of the distribution
and levels of the maximum principal stress, the hydrostatic stress, the stress triaxiality
and the plastic deformation were analysed as a function of the die angle. This analysis
revealed that lowering the die angle caused the maximum principal stress to homogenise
and to decrease. A decrease in die angle caused higher compressive hydrostatic stress to
develop which is favourable to reach higher deformations. Finally, decreasing the die angle
caused the strain to homogenise in the tube thickness which is expected to produce more
homogeneous tubes. Then, the in�uence of the die angle on the drawing force was analysed
in terms of the balance between energies dissipated by friction and plastic deformation.
The energy dissipated by friction decreases with increasing die angle while the energy
dissipated by plastic deformation increases with increasing die angle. Thus, the in�uence
of the die angle on the drawing force can be explained by computing the sum of both
energies.
Di�erent analytical methods were developed in order to compare their e�ciency with the
�nite element modelling. The homogeneous deformation method, the slab method and
the upper-bound methods were applied to estimate drawing forces of di�erent drawing
passes. From this comparison, the �nite element modelling appeared to be the only reliable
method to estimate the drawing force.

The last chapter dealt with the estimation of tube failure by means of all the tools
that were presented in the previous chapters. The experimental tube fracture that was
observed during the conical mandrel drawing was compared with the FEM. The di�erent
failure criteria were evaluated and Cockcroft-Latham failure criterion was found to be the
most accurate to predict tube fracture. Moreover, this criterion enabled to capture the
e�ect of increased formability obtained with decreasing die angle.
The conclusion concerning the selected Cockcroft-Latham failure criterion was that its
predictability when calibrated on tube tensile test was satisfactory. This criterion together
with the use of FEM can be used to de�ne the drawing passes and to optimise the process.

This thesis enabled to built di�erent tools that can be used to improve the process
understanding and optimisation. It was revealed that the section and thickness reductions
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that are currently de�ned in the process can be increased.
Nevertheless, it must be checked that getting closer to the failure limit during drawing does
not introduce internal and non visible damage such as small cracks or cavities. Moreover,
in the case of mandrel drawing, it must be ensured that the reeling step does not induce
additional damage and cause the tube to fracture in this step. The reeling step could be
studied by means on FEM. To do so, it is important to characterise the material mechanical
behaviour during elastic unloading

More generally, di�erent outlooks emerged from this work:

ˆ The thermo-mechanical modelling revealed that temperatures could locally reach 220�

for the L605. Thus, the thermal softening that was neglected in the Johnson-Cook
constitutive equation should be included. Taking into account the thermal e�ects is
relevant due to the fact that a mandrel is successively reused to draw di�erent tubes
belonging to the same pass. The �rst tube of any drawing pass is drawn on a cold
mandrel. The mandrel warms up during drawing and is reused to draw another tube.
Then, the mandrel temperature progressively increases along the process and may
undergo dimensional variations due to thermal expansion. The die is also concerned
by the temperature increase and thermal expansion. As a result, the �nal tube
dimensions might di�er from the �rst drawn tube.

ˆ The material heterogeneous properties in the tube wall should be investigated and
their e�ect on the �nite element modelling accuracy should be evaluated. This point
can be �rst addressed in the case of tube bulge test.

ˆ The FEM concerned the drawing pass of rather big tubes for which the number of
grains in the tube thickness is large. During the process passes, the more the tube is
drawn, the more its dimensions are reduced and the less is the number of grains in
the tube thickness (annealing conditions remain constant throughout the process).
In some cases, only a few grains remain in the tube thickness. In the objective of
modelling all the drawing passes, the e�ects of grain number in the tube thickness
on the mechanical behaviour and on the material formability should be investigated.

ˆ Concentricity and the evolution of surface defects such as holes or scratches could
also be analysed as they are major issues of the industrial process. In this case, a 3D
model should be developed.

Finally, in an industrial point of view, a tool, devoted to the de�nition of the di�erent
drawing passes from the ebauche to the �nal product, can be developed by combination of
the FEM and the failure criteria computation.
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