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Abstract

In this thesis we study multiple approaches to e�ciently accomo-
dating for the future growth of the Internet. The exponential growth of
Internet tra�c, reported to be as high as 41% in peak throughput in 2012
alone, continues to pose challenges to all interested parties. Therefore,
to accommodate this growth, smart management and communication
protocols are needed.

The basic protocols of the Internet are point-to-point in nature. How-
ever, the tra�c is largely broadcasting, with projections stating that as
much as 80-90% of it will be video by 2016. This discrepancy leads
to an ine�ciency, where multiple copies of essentially the same messages
travel in parallel through the same links. In this thesis we study multiple
approaches to mitigating this ine�ciency.

The contributions are organized by layers and phases of the network
life. We look into optimal cache provisioning during network design.
Next, we move to managing an existing network. We look into putting
devices to sleep mode, using caching and cooperation with Content Dis-
tribution Networks. In the application layer, we look into maintainin g
balanced trees for media broadcasting. Finally, we analyze data surviv-
ability in a distributed backup system, which can reduce network tra�c
by putting the backups closer to the client than if using a data center.

Our work is based on both theoretical methods, like Markov chains
and linear programming, as well as empirical tools, like simulation and
experimentation.



Abstract

Dans cette th�ese, nous �etudions divers probl�emes dont l'objectif est
de g�erer la croissance d'internet plus e�cacement. En e�et celle-ci est
tr�es vive : 41% pour le pic en 2012. A�n de r�epondre aux d�e�s pos�es par
cette �evolution aux divers acteurs du r�eseau, des protocoles de gestion et
de communication plus intelligents sont n�ecessaires.

Les protocoles de l'Internet furent con�cus comme des protocoles point
�a point. Or, la part de la di�usion de m�edia dans le tra�c est pr�ep ond�erante
et en nette hausse, et des projections indiquent qu'en 2016 80-90% du
tra�c sera engendr�e par de la di�usion vid�eo. Cette divergence entrâ�ne
des ine�cacit�es, car des multiples copies d'un message transitent par un
lien. Dans cette th�ese, nous �etudions comment remedi�er �a cette ine�-
cacit�e.

Nos contributions sont organis�ees selon les couches et les phases de
d�eploiement du r�eseau. Nous �etudions le placement de caches lorsde la
conception du r�eseau. Ensuite, pour la gestion d'un r�eseau, nous regar-
dons quand placer des appareils en veille, en utilisant un m�ecanisme de
cache et en coop�eration avec des r�eseaux de distribution. Puis, auniveau
de la couche application, nous �etudions un probl�eme de maintenance
d'arbres �equilibr�es pour la di�usion de m�edia. En�n, nous analys ons la
probabilit�e de survie des donn�ees dans un syst�eme de sauvegarde dis-
tribu�ee.

Notre travail se fonde �a la fois sur des m�ethodes th�eoriques (Châ�nes
de Markov, Programmation Lin�eaire), mais aussi sur des outils em-
piriques tels que la simulation et l'exp�erimentation.
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CHAPTER 1
Introduction

In this thesis we study multiple approaches to optimizing the current
and future Internet. In this introduction we motivate theseapproaches,
mention the techniques used and �nally enumerate our main contribu-
tions.

1.1 Motivation

The impact of the Internet on our lives has been becoming moreand more
evident in recent years. Nowadays, people are using it in work, in free
time and in the commute between them. It is gradually replacing printed
press, radio and television. This results in an exponential-like growth in
network tra�c, that is likely to last in the foreseeable futu re. According
to a report by Cisco [Cis13], the peak global throughput has increased by
41% through the year 2012 alone. Sustaining such a growth, while min-
imizing investments and energy consumption, requires new approaches
to how the networks comprising the Internet are used and operated.

In parallel to the increase of tra�c volume, we see a shift in its nature.
An increasing part of the tra�c is media broadcasting. In fact, according
to projections in the same Cisco report, video tra�c alone will constitute
69 percent of all consumer tra�c in 2017, up from 57 percent in2012.
Together with �le sharing, this should approach 90% of all tra�c. These
kind of ows share the property that they are not concerned bywhich
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server serves the client. This motivates the main questionsof the thesis,
which are concentrated on the study of content dissemination and peer-
to-peer systems. Particularly, it is bene�cial to all involved parties if
a client is served from a location as close as possible. We study three
di�erent classes of such close locations:

� a mirror server located closer in the network, what is the case for
Content Distribution Networks (CDN),

� a cache located at a nearby network device (in-network caching),

� or another client sharing his own resources, as in Peer-to-Peer net-
works (P2P).

They are described in more detail in Section 1.4 and studied in various
chapters of this thesis, utilizing a set of techniques described in Sec-
tion 1.6.

In this thesis I study multiple models of communication overInter-
net. I also look into multiple phases of the network life, from conception
of physical layer, dimensioning, management, to using it ina more dis-
tributed way.

1.2 Network transmission taxonomy

Due to convergence of communications, computer networks transmit any
kind of �les and streams. Observing the nature of network tra�c, in
general one can divide the volume into three main categories: video
streaming, �le sharing (includes video �les) and everything else. The
historical and projected tra�c amounts are plotted in Figure 1.1. In this
section, we classify the bulk of the tra�c into a few more categories and
briey describe them in terms of: volume of tra�c, delay sensitivity and
whether they may be cached, relocated or multicasted.

Conversations First, there is a broad category of communication be-
tween users. This may include emails, instant messages, video chat as
well as many speci�c applications, e.g. computer games. All messages
in this category have two given endpoints and are unique, transmitted
only once. All the other characteristics vary from application to applica-
tion. Email is usually low tra�c and very tolerable towards t ransmission
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Figure 1.1: Tra�c evolution according to [Cis13], historical data taken from
[Cis09, Cis10, Cis11, Cis12].

delays and failures. Computer games are low tra�c, but very sensitive
towards delay. Video chat is high tra�c and somewhat sensitive towards
delay. Other applications can be any mixture of above. Flows belong-
ing into this category generally cannot be cached nor relocated and they
would not bene�t from any form of multicasting.

Web This category contains the huge interlinked collection of objects,
known as the World Wide Web. While it may be used as a front-end to
the other categories, its main purpose is publishing. Tra�crequirements
depend on the type of viewed content, from tiny in case of plain text
to huge in case of rich multimedia. Delay tolerance is medium, real
time transmission is not required, but quick delivery is crucial for client
satisfaction. Many objects are static and common across websites, like
logos or other images, and can be cached. However, the transmissions
connected to a single location are usually relatively smalland predicting
the next location visited by the user is not a trivial problem. This has
led to numerous studies on pre-fetching, surveyed in [Wan99].

Live streaming Live streaming can be seen as television over internet.
A source broadcasts live media and clients display it after ashort delay.
This delay accommodates for bu�ering, transmissions and eventual re-



transmissions. It also serves as adeadline { it is useless for a client to
receive a fragment of the stream delayed by more, as its playback time
already passed and it will never be used again. Along this delay bound,
these kind of ows often have very big bandwidth. The fact that we have
a big number of clients interested in receiving exactly the same content
at the same time makes a perfect match for multicasting.

On-demand streaming On-demand is another type of streaming, where
user chooses a media �le from a previously o�ered collection. While
transmission requirements are roughly the same as in live streaming, the
user may choose to pause and resume the playback at will. Optimizing
this kind of streaming raises more challenges. The sizes of collections
are usually much larger than number of live channels. Additionally, two
users watching the same �le may be too far apart in playback time to
treat them as watching the same thing.

File sharing A big part of Internet's bandwidth is used by �le shar-
ing. In this kind of application users typically share single big �les. As
download times are often counter in hours, there is not much pressure on
delays. However, as the user typically wants to receive the �le as soon
as possible, there is demand for practically unlimited bandwidth.

Cloud computing One use case for computer networks, that has been
gaining on importance in the recent years, iscloud computing. This is a
broad category, containing any kind of tasks performed server-side, con-
trolled by a remote operator. These might be as di�erent as multimedia
editing, distributed computing or simply data storage. Themain moti-
vation is moving computing resources from the client, whichcan become
simpler, towards centralized facilities, where economiesof scale can be
leveraged.

Delay tolerance depends on the actual application and cloudcom-
puting ows rarely refer static data that could be cached. However, as
the operator is already remote to the servers performing thetasks and is
usually oblivious to their location, the servers themselves can be placed
at a possibly close location to the client.



Category Tra�c volume Delay tolerance Optimization

Conversations Variable Low |
Web Variable Medium Caching
Live streaming High Low Multicasting
On-demand streaming High Low Caching
File sharing High High Caching,

relocating
Cloud computing Variable Variable Relocating

Table 1.1: Summary of the network ow classes, their properties and natural
optimizations.

Table 1.1 summarizes the above classi�cation. Note that the only
class without a natural way of optimization, from network perspective,
are conversations. On the other hand, there is little redundancy in this
class. Thus, we can state that in most cases if there is an ine�ciency, we
can attempt to address it.

1.3 Content popularity and caching

As discussed in previous section, the majority of transmissions over In-
ternet are expected to be video streaming. In both live and on-demand
streaming, the same content is received by multiple users. For live
streaming this opens the possibility of multicasting, either by IP mul-
ticast or peer-to-peer networks, studied in Chapter 4. For on-demand
streaming caching can be employed. It plays important rolesin Chap-
ters 2 and 3.

In general, caching means storing a subset of a collection ofobjects
in another place, from where retrieval is signi�cantly cheaper than from
said collection. Caches are ubiquitous in all areas of computing. A
remarkable example are CPU caches. A small amount of static RAM
located on the CPU, usually a few megabytes, mirrors some parts of the
main memory, usually a few gigabytes of dynamic RAM. If data accessed
by the processor is present within a cache, we say it is acache hit and
the access takes a few nanoseconds. Otherwise, we face acache miss
and the access is directed towards the main memory, what is measured
hundreds of nanoseconds. Therefore the probability of the required data



being present in the cache, calledcache hit ratio, is crucial for the overall
e�ciency of the system. An in-depth explanation of caching inhardware
can be found in [JNW10].

In networking, a well known usage of caching are web proxies.They
are servers usually located in the same network as their clients. Proxies
essentially cache any web content. They are either enabled explicitly in
client's browser con�guration, or the network is con�guredto redirect
requests to a proxy, possibly without client's knowledge. In the latter
case we say the proxy istransparent. Another notable example of a cache
is a server of a Content Distribution Network, as described inSection 1.4.
Such a server is located at a network close to the client, but in case of
a miss it needs to forward the request to the original contentprovider,
which may be very far. In this thesis we look intoin-network caches,
also described in Section 1.4.

The interest in caching in networking is to allow many clients to
obtain some data from a nearby cache, thus saving multiple redundant
long-range transmissions. This implies that the e�ectiveness of caches
depends on popularity, understood as the number of clients requesting
for an object (web page, song, movie, etc.) over some time. Itis often
stated in the literature that it follows a power-law. This means that
there are very few objects that are very popular and a lot objects that
are not popular.

Zipf's law is proposed to described popularity of objects inthe Inter-
net. In was proposed in [Zip32], in order to study natural languages. It
states that the frequency of any word is inversely proportional to its rank
in the frequency list. More formally, the popularityf of object rankedk
is:

f (k; � ) =
1
k�

(1.1)

where � is a positive real parameter. A probability distribution of ac-
cessing a given object is obtained by simply dividing the above by the
sum for all objects. This distribution was found to be a good �t for Web
tra�c in [BCF + 99], where it was found that the value of� falls within
the range [0:6; 0:8], depending on the collection and viewers population.
More recent studies, specializing on video tra�c, tend to con�rm this,
e.g. [CDL08, GHM13]. However, values observed can be as low as 0.56
in [GALM07] and as high as 1.5 in [CKR+ 07].
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Assume that we know the object popularity for a period of time,we
store in the cache the most popular content for that time and the period
is long enough to make any initial cache misses insigni�cant. Then, we
obtain the formula for the hit rate of a cache mirrorings objects of a
collection ofn objects:

h(s; n; � ) =
P s

k=1 k� �

P n
k=1 k� �

; (1.2)

which is plotted in Figure 1.2. It shows the hit rates obtained, with
conservative values of� , by a single cache that can store up to1/200

of the collection. For example, if the collection is 10PB1 of video clips
100MB each, with� = 0:8, we would obtain 22.4% hit ratio with a 10TB
cache, 12.8% with a 1TB and 6.7% with a 10GB one. An important
observation in the plot is that, even within this conservative range, small
variations of the � parameter have a huge e�ect on cache e�ciency.

1PB = 10 3TB = 10 6GB = 10 9MB = 10 15 B



1.4 Content distribution models

The majority of current internet tra�c is delivered using a protocol stack
built on the Internet Protocol (IP), which takes its name from being
the one used to deliver messages between hosts that may be connected
to di�erent networks. Below it we have the link layer, which governs
communications of devices sharing a link. Above there is the transport
layer, which ensures continuity of host-to-host communication, mainly
by the Transmission Control Protocol (TCP) protocol, and the applica-
tion layer, which engulfs any communication abstracting over the layers
below.

The TCP/IP stack is conversational by design. On the other hand,
most of the data ows through today's networks are either content dis-
tribution or, starting recently and gaining momentum,cloud basedser-
vices. This mismatch creates a range of opportunities to introduce more
e�cient architectures for the future Internet. In this sect ion we briey
characterize the main ones.

Server . . .

Network

Client

Figure 1.3: A communication ow between a server and a client, passinga
network comprised of multiple routers.

Client-server

TCP/IP assumes communication between two points. These usually
are a single client and a single server. This is depicted in Figure 1.3.
Distinction between both endpoints comes down to the fact, that it is the
client who initiates the communication. Thus, he must know the address
of the server. This reects how actual users use network services. Even
if ultimately they want to send a message to another user, usually they
will do so, e.g., by the service provided by email servers.

Ine�ciency arises if the communication is one-to-many by nature.
Extreme, but increasingly signi�cant, example of such communication is



media broadcasting. In this case, multiple copies of essentially the same
messages ow in parallel through the network, often sharingand proba-
bly congesting the same links. This is shown in Figure 1.4. Furthermore,
media broadcasting requires high and ever-growing bandwidth. There-
fore, mitigating this redundancy is particularly important.

Server . . .

Network
Client

Client

Client

Figure 1.4: Multiple communication ows between a server and its clients,
passing in parallel through the same routers in the network.

IP multicast

Server . . .

Network
Client
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Client

Figure 1.5: A single ow is multicasted at IP routers towards all interested
clients using IP multicast.

The �rst solution to this ine�ciency is IP multicast. It was p roposed
in [DEE88]. It is implemented in standard IP routers. Every broadcast
channel is assigned amulticast address. Clients interested in receiving
it subscribe using theInternet Group Management Protocol, or the Mul-
ticast Listener Discovery component of IPv6. A router, seeing such a
subscription, will forward any messages related to this channel towards
the client. This is illustrated in Figure 1.5. If it is not receiving it yet,
it will also signal to its default route that it has clients interested. The



broadcaster is simply sending single messages to the multicast address,
it is not responsible for multicasting or retransmissions.

This solution is obviously limited to live broadcasting. Due to lack of
applications, following a mismatch between protocol and popular needs,
economic reasons and security issues, IP multicast is not widely deployed.
In practice it is restricted to speci�c services, like providing traditional
television inside an operator's network. IP multicast traversing multiple
networks is rare.

Content distribution networks

Content
Provider

. . .

Transit Networks

CDN . . .

ISP Network
Client

Client

Client

Figure 1.6: Multiple clients request the same content from a ContentProvider.
Only one copy of the content is passed, traversing possibly multiple transit
networks, to a CDN server. This server, located on an edge of an ISP network,
distributes the content to all the clients connected to it.

One response to aforementioned ine�ciency, widely deployed in the
wild, are Content Distribution Networks (CDNs). This solution leverages
a particular socio-economical phenomena: in case of media distribution,
both clients and providers are willing to pay anybody who canensure
swift transmission, not only to network operators giving them connectiv-
ity. In fact, clients pay, probably indirectly by watching advertisements,
for the received content to big Content Providers (CPs). CDNsinstall
themselves as a man-in-the-middle. They are paid by the CPs and serve
to clients content previously obtained from the CPs. Aggregating mul-
tiple CPs, they can a�ord to put their servers in the edges of many
networks.

When a client wants to access some content of a CP, he is redirected
towards the nearest CDN server. If it is the �rst request for this content



in some time, the CDN server obtains a copy from original CP, stores it
and provides to the client. On subsequent requests the copy stored by the
server will be used, unless it is deleted due to too long time between re-
quests, thus eliminating the need for parallel long-haul communications.
This is shown in Figure 1.6.

Arguably the most notable CDN is Akamai, founded in 1998. By
their own claim in [Aka13], they serve15-30% of the world's Internet
tra�c on a daily basis . This is achieved using aglobal network of more
than 85,000 servers in 70 countries. Less is known about other major
CDNs, like Level 3 or Limelight. Some ISPs maintain their own CDNs.
These, like IP multicast for live streaming, usually serve their own on-
demand streaming o�erings. The Cisco report [Cis13] estimates that
CDNs currently account for 34% of Internet tra�c. That number should
rise to 51% by the year 2017.

Content Distribution Networks play a major role in Chapter 3.

Peer-to-Peer

Source . . .

Network
Peer

Peer

Peer

Figure 1.7: A source providing a single peer, who then shares with multiple
local peers.

If the content provider cannot, or is unwilling to, employ a CDN,
then e�cient content distribution can be undertaken by the clients. The
basic principle of Peer-to-Peer (P2P) networks is that mostof its users
are clients and servers at the same time. Hence, they are called peers.
After receiving a fragment of media, a peer is expected to passit to
others, as shown in Figure 1.7. The obvious exception is the original
source of the media, or more generally any peer that is not interesting
in receiving, but has some data to serve.



P2P networks got some popularity in multiple areas. Arguablythe
one with biggest mindshare is the �le sharing network Bit Torrent, pro-
posed in [Coh03]. A popular solution for amateur video broadcasting
is SopCast, investigated in [LFK+ 09]. A commercial success in China
was achieved by the P2P broadcaster PPTV, formerly PPLive, stud-
ied in [HLL+ 07]. As they claim in [PPL13], PPTV has more than
260 million users. A number of P2P storage systems have been pro-
posed [DR01, BTcC+ 04, KBC+ 00]. However, the only well-known com-
mercial system, Wuala, has switched to a purely client-server architec-
ture. According to [MBM12], this was dictated by a signi�cant drop in
data center prices, making this easier design economicallyfeasible. Ac-
cording to the Cisco report [Cis13], just P2P �le sharing constitutes 23%
of current Internet tra�c.

Note that many popular P2P networks do not explicitly optimize for
locality. However, prioritizing peers with high throughput, like in Bit
Torrent, indirectly favors peers which are closer network-wise. Addition-
ally, many popular clients implement theLocal Peer Discoveryextension,
see [Bit13].

Peer-to-Peer networks are analyzed in Chapters 4 and 5.

In-network caching and Content Centric Networking

Server . . .

Network
Client

Client

Client

Figure 1.8: Object dissemination over a network of caching routers. Each
router on a path between a client and source server stores the object in its
cache. When other clients request the same object, it needs to be disseminated
only from the closest router common to their paths to the source server.

Finally, network operators can battle the ine�ciency by deploying
in-network caches. A scenario, where each router is augmented with a



cache and on a missed request passes it to the next cache on thepath to-
wards a server, is depicted in Figure 1.8. Unlike in IP multicast, caching
is not restricted to live streaming. Any popular objects can be stored
in-network, to be accessed at client's convenience. The motivation for an
ISP to undertake such an investment is twofold. First, cachesreduce the
latency, making its clients happier. Second, they reduce long-haul tra�c,
thus saving money to the operator. While both of these are achieved, to
some extent, by the third-party operation of CDNs (which essentially can
be seen as caches themselves), there are some advantages to operator's
caches. First, they can be provider-agnostic, therefore optimizing the
savings of the operator, disregarding the nature of the source of the con-
tent. However, note there may be possible copyright issues, as providers
want to be in control of who and when can access their content.Second,
placement and dimensioning can be tailored to bene�t the particular
network (Chapter 2 studies this problem). Third, it is the ISP who con-
trols the operation, allowing it to respond to current network conditions
(studied in Chapter 3).

In-network caching is attracting research interest thanksto Content
Centric Networking (CCN), proposed in [JST+ 09]. It uses the concept
of nearest replica routing, where requests are propagated towards the
nearest cache containing the data, instead of going along the shortest
route towards a known host. This broadcast-centric approach allows for
massive reuse of media chunks, virtually eliminating redundant parallel
transfers seen before. CCN's network layer can be used as an alternative
to the Internet Protocol, as well as be layered over it (or over UDP) for
easier deployment. Also, unlike TCP which concerns connection, CCN
ensures that the content is received intact and as requested.

1.5 Metrics studied

In di�erent studies we are interested in optimizing or evaluating di�erent
metrics. These need to be de�ned and modeled in a clear and simple way.
In this section we briey describe them.

One concern that has been growing throughout the recent years, be-
cause of rising prices of electricity and worries about global warming,
is energy consumption. According to [LVHV+ 12], the Information and
Communication Technology sector already consumes 2% of global elec-



tricity and experiences 10% of yearly increase. In Chapters2 and 3, both
concerned in network layer, we optimize power consumption.

When it comes to telecommunication networks, we see huge improve-
ments in energy e�ciency achieved by device manufacturers.In [LKWG11]
it is shown that power consumed per unit of data transmitted is halved
every four or �ve years. However, as we know from [Cis13], the amount of
data transmitted is at least tripled over the same period. Furthermore,
the trend towards decreasing per bit energy e�ciency can slow down
signi�cantly. As discussed in an ICC 2013 keynote [Win13], per-�ber
capacities are approaching the Shannon limit computed in [EFKW08].
On the other hand, there is no clear reason to believe tra�c growth will
come to a standstill. Thus, we arrive at the conclusion that improving
network power e�ciency is of global importance.

Three ways of achieving this are considered in this thesis. The �rst
is shortening the routes travelled by tra�c, either by caching or choos-
ing a server that is closer to the client. The second is putting unused
components into sleep or low-power modes. This has been �rstproposed
in [GS03]. The third way is aggregating the tra�c. It has beenshown, in
the inuential paper of Chabarek [CSB+ 08], that the energy consump-
tion of network equipment is not proportional to the volume of tra�c.
Thus, using fewer devices with higher load may lead to signi�cant sav-
ings. This may happen both in network deployment, or by putting more
devices to sleep mode.

For Peer-to-Peer broadcasting in Chapter 4, we look into thetime
between a failure and �nishing repair of the tree. The time isexpressed in
number of turns, where a turn is the time needed for each node in the tree
to perform a single operation. For the simulations we can look into other
metrics, like the average delay or fraction of media received correctly.
Both the values are improved by the algorithm. The delay is the time
between the source sending some content and the nodes receiving it. It
depends on the distance of the node from the source; thus balancing
the tree minimizes delay. When a node has too many children, itcannot
sustain streaming to every one of them. Thus nodes that have overloaded
ancestors do not receive all the media. Our algorithm improves this as
well.

In Chapter 5, we look into Peer-to-Peer backup systems. To ensure
data survival, such a system employs a continuous self-repair process.



Whenever a fragment of the data is lost, it is being reconstructed from
redundant data in the network. To achieve it, peers need to upload the
data. Thus, the system continuously uses bandwidth and we evaluate its
usage. If available bandwidth is too low to accommodate all the losses,
we arrive at a probability of losing some data. This probability is the
most important characteristic for such a system.

When solving frequency assignment problem in Appendix A, we want
to minimize either the number of radio channels needed or theinterfer-
ences between nodes. Radio channels, modeled as the coloursin a graph
colouring, are a monetary cost to obtain. Interference, induced by other
nearby devices using the same channel, has to be kept below a threshold
to keep transmission reliable.

1.6 Techniques used

Over the course of this thesis we faced di�erent problems, calling for
di�erent solutions. The main techniques used, ordered fromthe more
theoretical to more empirical, are:

� Queueing and Markov chain analysis, in Chapter 5, describedin
Section 5.1

� Integer Linear Programming approaches, in Chapter 3 and Ap-
pendix A, described in Section 3.1

� Rounding or fractional relaxations of mixed integer linearprograms,
in Chapter 3, described in Section 3.2

� Branch-and-bound methods, in Appendix A

� Discrete event simulation, in Chapter 5

� Cycle based simulation, in Chapter 4

� Experiments, using commercial software2 on a testbed platform3,
in Chapter 5

2http://www.ubistorage.fr/
3https://www.grid5000.fr/



A sizeable part of the work presented here does not fall into this
classi�cation. For example the analysis in Chapter 2 reliesonly on basic
probability and algebra, leading to a straightforward exact algorithm.
In Chapter 4 we use a potential function approach, similar tothe ones
used to prove the convergence to a Nash Equilibrium in game theory. In
Appendix A it is a case-by-case analysis.

1.7 Contributions

The remainder of this thesis is organized around my contributions. What
follows in this section are their short descriptions. Following the cus-
toms in our team, the alphabetic order of authors is employedfor every
paper other than Energy E�cient Content Distribution in an ISP Net-
work [MCT + 13].

Chapters begin with preliminary sections, setting up some context for
the contribution. The bodies of chapters mainly correspondto research
report versions of the respective publications. These are more detailed
than the published articles.

Chapter 2: Energy E�cient Cache Provisioning

We look into saving the energy in the network design phase, bymin-
imizing the requirements for deployed devices. The main contribution
itself is lead by some general insights on caching and deriving power
models of networks. Then, we study the problem of reducing power con-
sumption in an Internet Service Provider (ISP) network by designing the
content distribution infrastructure managed by the operator. We pro-
pose an algorithm to optimally decide where to cache the content inside
the ISP network. We evaluate our solution over two case studies driven
by operators feedback. Results show that the energy-e�cient design of
the content infrastructure brings substantial savings, both in terms of
energy and in terms of bandwidth required at the peering point of the
operator. Moreover, we study the impact of the content characteristics
and the power consumption models. Finally, we derive some insights for
the design of future energy-aware networks.

The results of this chapter have been accepted for publication in
GLOBECOM 2013 [MCT+ 13].



Chapter 3: Energy E�cient Routing

In this chapter, we move to the management of an already deployed net-
work. We consider saving the energy by aggregating tra�c andputting
some devices to sleep or low power modes. We study the impact of using
in-network caches and content delivery network (CDN) cooperation on
an energy-e�cient routing. We formulate this problem as Energy E�-
cient Content Distribution and propose an integer linear program (ILP)
and an e�cient heuristic algorithm to solve it. The objective is to �nd a
feasible routing, so that the total energy consumption of the network is
minimized subject to satisfying all the demands and link capacity. We
exhibit the range of parameters (size of caches, popularityof content,
demand intensity, etc.) for which caches are useful. Experimental re-
sults show that by placing a cache on each backbone router to store the
most popular content, along with well choosing the best content provider
server for each demand to a CDN, we can save about 20% of power inthe
backbone, while 16% can be gained solely thanks to the use of caches.

The results of this chapter have been accepted for publication in ICC
2013 [AGL+ 13].

Chapter 4: Maintaining Balanced Trees For Structured
Distributed Streaming Systems

In this chapter, we move to content distribution in the application layer.
As discussed before, peer-to-peer networks reduce the broadcasting re-
dundancy by allowing clients to share the content among themselves. We
deal with some concerns about robustness of such a setup. We propose
and analyze a simple localized algorithm to balance a tree. The moti-
vation comes from live distributed streaming systems in which a source
di�uses a content to peers via a tree, a node forwarding the data to its
children. Such systems are subject to a high churn, peers frequently
joining and leaving the system. It is thus crucial to be able to repair the
di�usion tree to allow an e�cient data distribution. In part icular, due to
bandwidth limitations, an e�cient di�usion tree must ensur e that node
degrees are bounded. Moreover, to minimize the delay of the streaming,
the depth of the di�usion tree must also be controlled. We propose here
a simple distributed repair algorithm in which each node carries out local
operations based on its degree and on the subtree sizes of itschildren.



In a synchronous setting, we �rst prove that starting from any n-node
tree our process converges to a balanced tree inO(n2) turns. We then
describe a more restrictive model, adding a small extra information to
each node, under which we adapt our algorithm to converge in �(n logn)
turns. Finally, we exhibit by simulation that the convergence is much
faster (logarithmic number of turns in average) for a randomtree.

The results of this chapter have been accepted for publication in
SIROCCO 2013 [GMNP13].

Chapter 5:Analysis of the Repair Time in Distributed Storage
Systems

In the �nal chapter, we move from content distribution to distributed
applications. One such application, with big bandwidth requirements,
are online backups. A conservative approach to this task employs data
centers. However, these usually are far away from the users. Instead, it
is possible to use storage located at the perimeters of othernearby users
of a distributed system. This, again, raises questions about reliability.
To that end, these storage systems introduce redundancy to preserve
the data in case of peer failures or departures. To ensure long-term
fault tolerance, the storage system must have a self-repairservice that
continuously reconstructs lost fragments of redundancy. The speed of
this reconstruction process is crucial for the data survival. This speed
is mainly determined by available bandwidth, a critical resource of such
systems. We propose a new analytical framework that takes into account
the correlation of concurrent repairs when estimating the repair time and
the probability of data loss. Mainly, we introduce queuing models in
which reconstructions are served by peers at a rate that depends on the
available bandwidth. The models and schemes proposed are validated by
mathematical analysis, extensive set of simulations, and experimentation
using the Grid'5000 test-bed platform.

The results of this chapter have been published in Globe 2013[GGM+ 13].

Appendix A: Weighted Improper Colouring

Appendix A contains work that is not concerned by reducing redundancy
in network tra�c. Instead, it is motivated by frequency assignment in
satellite networks. Thus, it concerns link layer. In wireless networks, a



node interferes with other nodes, the level of interferencedepending on
numerous parameters: distance between the nodes, geographical topog-
raphy, obstacles, etc. We model this as a new graph colouringproblem.
We �nd some general bounds and optimal solutions for in�nitegrids. We
model the problem using integer linear programming, propose and test
heuristic and exact Branch-and-Bound algorithms on randomcell-like
graphs.

The results of this chapter have been published in IWOCA 2011[ABG+ 11]
and JDA 2012 [ABG+ ].
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CHAPTER 2
Energy E�cient Cache

Provisioning

In this chapter we look into saving energy by optimizing the dimension-
ing of the network infrastructure. Dimensioning is the phaseof design
after deciding the connection structure, when the numbers and capac-
ities of deployed devices are decided. The network is augmented by
in-router caches. The caches are organized into a hierarchy, what has
been previously discredited in the literature. Thus, in the�rst prelimi-
nary to the chapter, we discuss why hierarchy of caches can bebene�cial,
when taking into account tra�c aggregation. In the second preliminary,
we discuss the multiple possible approaches towards constructing power
models. This is relevant both for this and the next chapter.

2.1 Preliminary: modelling content ow over a
network

The real ISP network design that we take into consideration is divided
into the core network, which ensures long-range connectivity, and mul-
tiple metropolitan networks, which cover geographical regions to give
access to the clients. The core is a two-connected graph of some tens of
nodes. Metropolitan network is comprised of two core routers, that are
its connection to the core network, an optical ring consisting a number
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metro

metro

content provider

Figure 2.1: Example network comprising a core and three metropolitan net-
works, out of which one is displayed. Core routers are depicted with squares,
metropolitan routers with circles and access nodes with solid dots. Anexam-
ple routing from a single content provider towards the visible access nodes is
overlaid in red dashed lines.

of edge routers and some access nodes connected to each edge router,
usually also in some two-connected arrangement. Optical bypass is of-
ten used in the metropolitan networks, creating a logical topology where
nodes that are distant in the physical topology can have a direct connec-
tion in the network layer.

However, the setting becomes much simpler when considering media
coming from a single content provider. Note that most media comes from
big providers and enters the considered network through some peering
point. By looking at shortest routes between this point and all clients,
we obtain a tree over which the data is disseminated. This is depicted
in Figure 2.1.

Looking at the trees obtained for the networks studied in this work,
we found some distinctive levels. For example in the France Telecom
network, we have a level of core routers that connect only to core routers,
core routers that are edge to metropolitan networks, some more metropoli-



tan routers and access nodes. The fan-out of nodes within a level does
not vary too much. Thus, we simplify the network as a rooted tree, where
all nodes that have the same distance from root have the same degree.
Note that while we have a tree for each possible content provider, all the
trees are independent and have the same structure. Therefore, we treat
them as a single aggregated tree, without a�ecting the results.

2.2 Preliminary: modelling energy consumption in
a network

Expressing power consumption of a system as complex as a computer
network in terms simple enough to be an optimization metric is not a
trivial task. In a study focused on minimizing the number of active
devices of single kind, it may be abstracted simply as the number of
devices running. One example of such study is [GMM12], wherethe
optimization metric is simply the number of links turned on.

However, assuming a device's power usage is constant is a simpli-
�cation, which may be imprecise for some device types. Some modern
electronics are known to switch to lower power consumption modes when
under moderate load. One well known example of such a solution is CPU
Throttling. Some devices may also enter low power mode on short in-
activity. Overall, this promises that in future devices we will see power
consumption approach proportionality to the load.

Nowadays a middle ground model is closer to reality. Whenever ade-
vice is turned on, it consumes abaseline power. This power is committed
to spinning disks, fans and overall upkeep of an idle system.Figure 2.2
shows a comparison of these 3 models. Note that if we consider multiple
devices sharing the same load, when the number of devices turned on is
kept to a minimum, we approach the linear model, as shown on plot 2.2b.
Thus, when considering a provisioning problem like in this chapter, the
linear model can be an acceptable approximation.

Once the model considers multiple device types, or absolute�gures
on energy consumed are required, a need arises for knowing the actual
characteristics. This is where databases like Powerlib [VHI12] come in
handy. However, the data presented therein contains only capacities and
producer rated peak power consumption. This allows using either con-
stant or linear models, as described in the previous paragraph. A number
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Figure 2.2: Three power models of a device, shown for one and �ve devices.
The baseline power consumption is assumed to be half of the peak.

of measurement studies aimed at getting more insight were conducted,
e.g. [VHILR+ 12] or [VLM+ 09a]. These studies show that baseline power
usages, for a handful of current devices, tend to be over 80% of the
maximum.

However, each such study is limited only to devices availableto its
authors; there are methodology di�erences between separate works. Fur-
thermore, some of the numbers get outdated quickly. For example Solid
State Drives are still in explosive growth phase, where eachnext gener-
ation is faster, bigger, cheaper and consumes less power. When looking
into total server energy consumption for a unit of transfer,numbers found
in the literature [VLM + 09b, GAKG11] are over 200J/Gb. However, for the
results of this chapter we obtained current numbers from an innovative
company 1, which turned out to be around 20J/Gb. Therefore it is im-
portant to consider the power model carefully for each separate problem
and attempt to obtain the most current data possible.

2.3 Preliminary: algorithmic approach

The general problem that underlies this section, Copy Placement, can
be de�ned as follows.

1http://www.cloudflare.com/



Input We are given a digraphG = ( V; A) modelling the network, a
set of �les F and a set of demandsD. Each �le can be served from
a source according to a functions : F ! V . Each demandd 2 D is
characterized by the requesting vertex, a �le identi�er andrequest rate,
d = ( vd; f d; rd); vd 2 V; fd 2 F; r d 2 R. We are also given the cost
functions for: transmission of a �le over an arct : A ! R, placement of
a copy of a �le in a vertex p : V ! R and access to a copy of a �le in a
vertex a : V ! R.

Output A solution consists of copy placementC and routing R. Copy
placement assigns to each �lef 2 F a subset of nodesCf � V in which
copies off are placed. Routing determines for each demandd 2 D a
directed path in the digraph Rd � A, that begins in wd 2 Cf d [ f s(f d)g
and ends invd.

Metric The solution should minimize the cost, determined by:

X

f 2 F

X

v2 Cf

p(v) +
X

d2 D

X

e2 Rd

rdt(e) +
X

d2 D

(
rda(wd) if wd 6= s(f d)

0 otherwise
(2.1)

Above problem is, in general digraphs, hard to compute. In fact we
can show inapproximability with a simple reduction from theSet Cover
problem, de�ned as follows.

Set Cover Given an universeU = f u1; u2; : : : ; ung, a collection of sub-
sets ofU, S = f S1; S2; : : : ; Skg, and a cost functionc : S ! R, �nd a
minimum cost subcollection ofS that covers all elements ofU.

Now, we show how to transform an instance of the Set Cover prob-
lem into an instance of Copy Placement. Take two sets of vertices,
X = f x1; : : : ; xkg and Y = f y1; : : : ; ykg, corresponding respectively to
elements ofS and U and a source vertexs. Put an arc from any ver-
tex in X to one in Y if the corresponding element ofY belongs to the
corresponding subset fromS and an arc froms to every vertex in X .
An example of such graph is shown in Figure 2.3. Let there be a single
�le served from the vertex s and requested once from each vertex inY,
with rate equal to one. LetM >

P
S2S c(S). For the cost functions, let

t(a) = M for every arca from s and 0 for the other ones,a(v) = 0 for
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y1 y2 y3 � � � yn

s

Figure 2.3: An example Copy Placement digraph obtained by transforming a
Set Cover instance, whereS = ff u1; u2g; f u1; u2g; f u2; u3g; : : : ; f ungg.

any v 2 V, and p be equal to the cost of corresponding elements ofS for
vertices in X and M for other vertices.

Consider an optimal solution to the instance of Copy Placement. For
any demandd 2 D, it can be routed either fromvd or s for a cost of
M , or from a vertex x 2 X for a, possibly shared, cost ofp(x) < M .
Thus, in an optimal solution, each demand is routed from a vertex in
X , that is a neighbour of requesting vertex. The solution is determined
by placing copies of the �le in a minimum cost subset ofX that domi-
natesY. Choosing the corresponding subsets fromS directly gives us an
optimal solution of Set Cover with the same cost. Following the results
in [AMS06], this can not be approximated within a ratio betterthan
O(log jX j).

As explained in Section 2.1, for content distribution we can model net-
work as a tree. The data is requested by the leaves and can be served by
any node on the path between requesting leave and root. This has been
solved in [LGI+ 99] using dynamic programming. However, the solution
takes O(jV j3) time to place a single �le. Thus, we make an additional
assumption, that is in line with what we observed in Section 2.1: nodes
on the same level (at the same distance from root) have an equal degree.
An example of such a tree is shown in Figure 2.4. Data is requested
according to a static distribution and we statically place data in the op-
timal levels. If a �le i is stored at levelj , the total cost of serving it to
all the leaves is:

nj oj + r i dj ; (2.2)
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Figure 2.4: A tree representing the France Telecom network. All devices
residing at the same distance from root of the tree have the same degree. For
clarity of presentation, only a subset is drawn. The last level of thetree,
representing consumers' premises, is omitted as there are 5000 suchnodes per
DSLAM node (the last level shown).

wherenj is the number of nodes on levelj , oj is the overhead cost to place
the data in a node on levelj , r i is the total number of requests for �lei
and dj is the cost of delivery from a device on levelj to a leaf. In practice,
dj is nearly proportional to the distance betweenj and leafs andoj is
nearly constant. Thus, as we show in Section 2.8, the optimalplacement
depends on a �le's popularity. We can e�ciently compute for each level
a request rate interval, such that �les with rate within this interval are



optimally stored in each node in this level. This means that we can
optimally place any number of �les in time O(h2), where h is height of
the tree. We de�ne a simple algorithm to perform that placement. The
main contribution of this study is determining practical values of all the
factors of equation 2.2, obtaining the results and sensitivity analysis.

2.4 Publication

The remainder of this chapter corresponds toEnergy E�cient Content
Distribution in an ISP Network by R. Modrzejewski, L. Chiaraviglio, I.
Tahiri, F. Giroire, E. Le Rouzic, E. Bonetto, F. Musumeci, R. Gonzalez
and C. Guerrero, which is accepted for publication in the proceedings of
IEEE Global Communications Conference 2013.

2.5 Introduction

The electricity consumption of the Information and Communication Tech-
nology (ICT) sector represents today almost 2% of the world electricity
[LVHV + 12], having observed an annual increase of 10% from 2007 to
2012. In this context, data centers and backbone networks will expe-
rience the highest energy consumption growth rates in the forthcoming
years [LKWG11], due to the increase of tra�c, especially formultimedia
content. As an example, Cisco estimates that the sum of all forms of
videos will represent 86% of the global consumer tra�c by 2016 [Cis12].
In order to mitigate this trend, di�erent solutions have been proposed
in the literature for the design and the management of energy-e�cient
backbone networks (see [BBDC11] for an overview).

Recently, the problem of reducing power consumption in a backbone
network by moving the contents accessed by users has attracted attention
of the research community. In particular, in [CM10] we have studied the
problem of reducing power consumption of an Internet Service Provider
(ISP) and a Content Provider (CP) jointly, showing that considerable
energy savings can be obtained when the CP and the ISP cooperate
to minimize the total power consumption. In [LRH10] authors propose
an architecture based on Content Centric Networking (CCN) to reduce
the power consumption. Additionally, in [VLM+ 09b] an architecture
based on home gateways forming a distributed data center infrastructure



managed by the ISP is proposed and evaluated. Finally, the energy
trade-o�s of an architecture based on immersive video centric services
are evaluated in [LGAK12]. All these works prove that a huge amount
of power is saved when the ISP takes control of the content andcaches
it considering the energy consumed to move the information across the
network.

In this work we study the problem of reducing power consumption in
an ISP network by considering the design of a content distribution infras-
tructure managed by the ISP. Our aim is to study where to cachecontent
inside the network in order to reduce the overall power consumption of
the system composed by the network elements and the installed storage.
In current ISP networks a huge amount of tra�c is exchanged between
the users and the data centers owned by large CPs, such as as Google,
Yahoo, Amazon, and Limelight. Normally, the data centers of large CPs
are located close to the peering points of the ISP [GALM08].Therefore,
the tra�c originated from the data centers has to traverse a number of
hops in the ISP network before reaching the users. We therefore study the
optimal content caching inside the ISP, rather than sendingthe content
from the data centers to the users. In our scenario, we consider a hier-
archical logical topology composed of di�erent levels (e.g. core, metro,
and access), and we optimize the energy consumption by choosing the
best level where to put each content.

The bene�ts of the energy-e�cient design of content distribution ar-
chitectures inside the ISP are multiple. First of all, it is possible to
reduce jointly the electricity costs of the storage and of the network,
as their energy is explicitly taken into account during the design phase.
Secondly, the ISP reduces the amount of tra�c that is exchanged across
the network. This in turn may decrease the maintenance costsincurred
by the ISP, since network elements are upgraded less frequently and less
new switching devices need to be installed. Third, the monetary costs for
sending/receiving information from outside the network are also reduced,
since less bandwidth is required.

2.6 Related Work

There have been several works tackling the problem of web object e�cient
caching. Most of these works were not focusing on energy savings but



rather reducing the latency, the network tra�c and/or the server load.
In [LDGS98], authors studied the optimal placement (for reducing

either latency or network tra�c) of M multiple web proxies amongN
potential sites under a given tra�c pattern. They considered a simple
path of N +1 nodes where the extremity of it corresponds to the original
web server and the other nodes correspond to the potential sites. In
case of no data replication, all the requests coming from thedi�erent
sites would need to go until the main web server before being ful�lled.
Dispatching some web proxies e�ciently among theN potential sites
can reduce the latency and the tra�c load. Authors give an algorithm
to �nd the best solution in O(N 2M ) time. In [LGI + 99] they extended
this algorithm to the case where the topology is a rooted tree, the main
server is in the root and potential sites are all the other tree nodes.
Again they show that the best solution can be found using a polynomial
algorithm with time complexity O(N 3M 2).

[BRS08] focuses on a more general case. Instead of having only one
web object as in the previously cited papers, several objects should be
simultaneously taken into account by the optimization. They considered
also a set of caches that have a limited capacity and a cost forstoring each
of those objects. Finally they assume a set of clients that have demands
for di�erent objects and to each client they assign a cost forgetting a
speci�c object when it is stored in a speci�c cache. For e�ciently solving
this NP-complete problem, on a general topology, they presented a 10-
approximation algorithm.

We want to mention also that some works investigated the possibility
of managing the caches in a distributed scheme. In [TC02], authors pro-
pose a novel caching scheme that integrates both object placement and
replacement policies and which makes caching decisions on all candidate
sites in a coordinated fashion.

The closest papers to our work are [SK09, JNWC11, MLG+ 11]. In
[SK09] authors detail an analytical model for caching considering the cost
for transporting information and the cost for storing the content. How-
ever, the model is derived for a simple scenario (a metro network), with
at most three levels in the topology as possible locations tocache content.
Moreover, the evaluation of savings in terms of energy is notperformed.
In [JNWC11] authors propose a model for caching that integrates en-
ergy costs. The evaluation is performed considering �ve possible levels



for caching. Finally, in [MLG+ 11] an ILP model and two simple heuris-
tics for the energy-e�cient content distribution are detailed. However,
authors do not consider the energy consumed for sending the content to
the possible locations inside the network and a limited number of levels
is also assumed.

In contrast to previous work, in this paper we go one step further by:
a) de�ning a model with a generic number of levels and not onlyrestricted
to speci�c values or speci�c segments of the network, b) proposing an
optimal algorithm to decide where to cache the content and compute
the total energy consumption, c) evaluating the results over two case
studies. Moreover, we consider the impact of the topology properties on
the content caching, and we derive some insights for the design of future
energy-aware networks.

The rest of the paper is organized as follows. In Sec. 2.7 we describe
the problem. Sec. 2.8 details the algorithm we propose to solve the
problem. Results are presented in Sec. A.5. Finally, Sec. 2.10concludes
our work.

2.7 Problem Description

We assume that the network is organized in a hierarchical structure com-
posed of di�erent levels. In particular, we assume a tree-like network to
represent the collection of paths between each user and the Internet peer-
ing node. Nodes are grouped according to a hierarchy, and eachlevel of
the tree corresponds to a di�erent level of the hierarchy. The content
data is delivered towards the clients following a path on thetree from
the root, i.e., the Internet peering point. A storage cache can be located
at each node of the network, providing a potential facility for storing
data. Moreover, caches are organized in a hierarchical structure: if a
requested content is not available in a given cache, the request is for-
warded to the parent cache of the hierarchy, without any collaboration
among the caches located in the same level of the tree. Finally, we do
not impose a given cache size, i.e., the cache size is an output of our
approach.2

2 In our scenarios the obtained cache size is always lower than the maximum capacity of
current storage devices.



The content distribution procedure is divided in the following steps:
a) the content is fetched from the peering point to the storage caches
located at a given level of the tree, b) the content is cached for a �xed
amount of time, c) during this period the content is retrieved by users,
based on its popularity. We then associate an energy cost to each of
these steps, and we compute the total energy consumption. Our aim is
then to �nd the optimal amount of data to cache at each level ofthe tree
in order to minimize the overall energy consumption.

Focusing on power requirements, we consider the cost of keeping
the content stored in the cache, the cost of reading/writingthe content
from/to the cache and the cost of sending the content throughone hop of
the tree. We assume that the cost for traversing one hop is di�erent for
each level, due to the di�erent switching devices deployed in each segment
of the network [LRKH11]. In order to model the power consumption of
each device, we assume a linear dependency with tra�c volume, follow-
ing the assumptions of previous works [BAHT09, FGK+ 10, MLG+ 11]. In
particular, the cost of transporting information is expressed in terms of
energy per bit, i.e., the total power consumption divided bythe average
throughput.

More formally, the set of levels in the network isL = f 1; : : : ; Lg,
L = jLj being the number of levels. The peering point is located at
level 1, while the users are connected to levelL (e.g., the DSLAMs). We
denote the total number of switching devices located at level j 2 L as
N j

D . Let us de�ne the storage cost for a single cache asCS. CR is the
cost of reading/writing content on one cache.C j

H is the cost of traversing
one node located at levelj in the network. Moreover, we consider the
characteristics of the content. We assume that the content is represented
by videos watched by users.� is the total throughput of videos requested
by users. Let us denote the average video size asA and the popularity
window duration as I . Thus, the total number of videosVW watched
during the popularity window is:

VW =
� I
A

(2.3)

Let us de�ne VS as the total number of videos provided by the CP. We
divide the videos into classes according to their popularity, NC being the
number of classes. The set of classes is denoted asK = f 1; :::; NCg. Class
1 is the most popular while classNC is the least popular. We assume



that, on average, each class has the same number of videos, which we
denote asVC = VS

NC
.

For each classk 2 K we adopt the Zipf-based popularity model of
[CRC+ 08] and compute the number of videos watched per class as

V k
W = VW

k� �

P NC
k=1 k� �

(2.4)

� being the parameter of the Zipf distribution.
We then compute the energy consumed for disseminating classk when

it is stored on the caches located at levelj . In particular, we �rst compute
the energy consumed for fetching the content into the caches, and to keep
the content stored:

� (j ) = AVCN j
D

 
j � 1X

z=1

Cz
H + CR + CSI

!

(2.5)

The �rst term inside parentheses is the cost of traversing (j � 1) hops.
The second term is the cost of writing the content on the cache. The
third term is the cost of keeping the content stored, which ismultiplied
by the popularity window duration I since this cost has to be always
accounted for the whole time period. All the costs are then multiplied
by the amount of information that it is stored in levelj , i.e., A � VC � N j

D .
Note that � (j ) does not depend directly on the popularity of the class
but only on the level j chosen for caching.

We then compute the energy consumed for retrieving the content as:

' (j; k ) = AV k
W

 

CR +
LX

z= j

Cz
H

!

(2.6)

In particular, we consider the cost of reading the content and the cost
of sending the content from the caches at levelj to users. The retrieved
information corresponds to the videos that are watched during the pop-
ularity window duration, i.e, A � V k

W . Di�erently from � (j ), ' (j; k )
depends on both the class popularity and the level where the content is
cached.

The total energy consumed for disseminating classk on level j is:

E j
k =

(
� (j ) + ' (j; k ); j > 0

AV k
W

P L
z=1 Cz

H ; j = 0
(2.7)



Note that level 0 is the special case where the data is served from the
original source, i.e., caching is not exploited within the considered net-
work. In this case, the total energy consumption is the cost of sending
the watched videos directly from the peering point to the users.

The best level to store the videos of classk is then:

hk = argmin
j 2L

E j
k (2.8)

Note that the best level for each class is computed independently from
the other classes. We therefore repeat this procedure for each classk.

The total energy consumption with caching is computed as:

T =
X

k2K

E hk
k (2.9)

Which we can compare to the energy consumption without caching:

T0 =
X

k2K

E 0
k (2.10)

By comparing T with T0, we can estimate if caching is e�ective or
not in saving energy. However, computing Eq.(2.8) for each class is not
feasible, since the iteration over the levels has to be repeated for all the
classes, resulting in a time complexity ofO(L � NC ). To solve this issue,
we have proposed a new algorithm in order to e�ciently compute T.

2.8 GCT Algorithm Description

We �rst detail the properties that we have exploited to design our algo-
rithm. In particular, since there is no limit on the storage,we can choose
the best level for every video class independently from the others. More-
over, for levelj that is optimal for the video classk, we have necessarily
E j

k � E j 0

k for any j 0 di�erent from j . This implies:

' (j; k ) � ' (j 0; k) � � (j 0) � � (j ): (2.11)

In addition to that, when two video classes are stored in the same level,
less videos will be retrieved from this level for the less popular class.



Namely, if a classk0 is less popular than another classk, then: ' (j; k 0) �
' (j; k ) and ' (j 0; k0) � ' (j 0; k). This leads to the following inequality:

' (j; k 0) � ' (j 0; k0) � ' (j; k ) � ' (j 0; k): (2.12)

The two previous equations imply:

' (j; k 0) � ' (j 0; k0) � � (j 0) � � (j ): (2.13)

And hence we get the following property.

Property 1. Let k and k0 be two video classes such thatk-class videos
are more popular thank0-class ones (k0 > k ) and let j be the optimal level
for k. Then for every levelj 0 lower than j (j 0 < j ) we haveE j

k0 � E j 0

k0.

The intuition of the Green Content Threshold (GCT) algorithm is to
restrict the evaluation of Eq. (2.8) to speci�ck, which we call thresholds.
A threshold is de�ned as the last class to be stored at levelj , before start-
ing storing in another levelx (with x < j ). The rule for deciding when
to pass from one level to another one is based on the energy consump-
tion E j

k (recall that level 0 correspond to the case without caching). In
particular, we �nd the class indexk = �k(j; x ) that veri�es, for arbitrary
levelsj and x the following equality:

E j
k = E x

k (2.14)

For some classes, the caching of their videos in levelj is preferred to
caching them in levelx in term of energy e�ciency; and for some other
classes it is the opposite.�k(j; x ) is the index that separates both set of
classes. In fact, Eq. (2.14) being veri�ed by�k implies:

' (x; �k) � ' (j; �k) = � (j ) � � (x): (2.15)

On the other sidek � �k i�:

' (x; �k) � ' (j; �k) � ' (x; k) � ' (j; k ): (2.16)

And this leads to the following property.

Property 2. Let x and j be two levels such thatx < j and let �k be the
solution to E j

k = E x
k . Then k � �k i� E x

k � E j
k .



Algorithm 1 Pseudo-Code of the
best threshold selection procedure.
Input: threshold matrix K , number of levelsL , number of classesNC ;
Output: array of best thresholdsB

1: curr level = L ;
2: B [0]=NC - 1;
3: while curr level != 1 do
4: min thre=inf;
5: for upper level = 1:curr level-1 do
6: curr thre = K [curr level,upper level];
7: if curr thre < min thre then
8: min thre=curr thre;
9: end if

10: end for
11: B [curr level]=min thre;
12: curr level=curr level-1;
13: end while

To compute �k(j; x ) we solve Eq.(2.14) using Eq.(2.7), obtaining:

�k(j; x ) =

8
>>><

>>>:

�
VW (

P j
z= x Cz

H )

(� f (j;x ))
P N C

k =1 k � �

� 1
�

; j > 0
�

VW (
P j

z= x Cz
H � CR )

f (j )
P N C

k =1 k � �

� 1
�

; j = 0

(2.17)

with f (j ) = N j
D

� P j
z=1 Cz

H + CR + CSI
�

and � f (j; x ) = f (x) � f (j ).

The matrix with elements �k(j; x ) is denoted asK . Each element of
this matrix represents a threshold class for moving from onelevel to
another one.

The algorithm that we propose is then divided into three steps: a)
computation of the thresholds matrix, b) best threshold selection, and
c) computation of total power consumption.

The �rst step is performed by computingK with Eq.(2.17) for each
j 2 L and eachx < j . In the next step, we select the best threshold for
each level, by adopting the procedure reported in Alg.1. The function
takes as input the matrix K , the number of levelsL, and the number of
classesNC . The array of best thresholdsB is produced as output. The



algorithm searches the best thresholds from the lower levels (i.e., the
access nodes) to the upper ones. In particular, the minimum threshold
is selected by evaluating�k(j; x ) from the current level to each upper level
(lines 5-10): in fact, thanks to property 1, we can ignore levels that are
lower than the current level. Moreover, we know, thanks to property 2,
that for every video that has a popularity rank lower than theminimum
threshold it is better to cache it in current level than in anyhigher level.
The procedure is repeated until the last level is reached (line 3). It is
clear that when the values ofK are computed optimally, this algorithm
is optimal.

We then detail how the total energy consumption is computed from
the best thresholds. We �rst derive the energy consumption consumed
at level j . This term includes the energy consumption corresponding to
the classes that are assigned to the current levelj , i.e., bj � 1 < k � bj

(bj � 1 and bj being elements of the array of the best thresholdsB), which
can be expressed as:3

bjX

k=( bj � 1+1)

E k
j = [ bj � bj � 1 + 1] � (j ) +

bjX

k=( bj � 1+1)

' (j; k ) (2.18)

In particular, from the de�nition of ' (j; k ) the last term can be expressed
as:

bjX

k=( bj � 1 +1)

' (j; k ) = AVW N x
D

0

@CR +
LX

z= j

Cz
H

1

A

P bj

k=( bx +1) k� �

P N C
k=1 k� �

(2.19)

The exponential terms can be expressed as:

cX

k= a

k� � = � (�; a ) � � (�; c + 1) (2.20)

� being the Hurwitz zeta function [Vor03]. To compute the totalenergy
consumption T, the algorithm solves Eq.(2.18)-(2.20) for all the levels,
and the sum of the energy consumption is stored inT.

GCT has a time complexity that depends on the time needed to evalu-
ate

P c
k= a k� � for 0 � a � c � NC . When this time is bounded byT , the

3A similar expression can be derived for the j = 0 case (with b� 1 = 0).



complexity is O(L2 + L � T ). Since there are e�cient ways to approxi-
mate � , we can have a good approximation of

P c
k= a k� � and of GCT with

a low time complexity. In particular, if there exists a� -approximation
of � which has a time complexityT� , then we can get a� -approximation
on the optimal solution (the minimum energy consumption induced by
all classes) that have a time complexityO(L2 + L � T � ) which is better
than the original approach since normallyL << N C and T� << N C .

2.9 Results

We have implemented the GCT algorithm in Python. In particular,
we have adopted thempmathlibrary for an e�cient computation of the
Hurwitz Zeta function � .4 We have then evaluated GCT over two realistic
networks of national ISPs, namely France Telecom (FT) and an ISP in
Morocco. The main features of the networks, together with the setting
of the main parameters, are reported in Tab. 2.1. Both networks are
composed of six levels in total (core, core-regional, metro-core, metro,
access-metro, access), and with a di�erent number of switching devices
deployed at each level.

Focusing on power requirements, the cost of storageCS is taken
from [OCZ]. The cost of reading/writing the cache is provided privately
by CloudFlare Inc [Clo], based on their global network of content caches.
This cost may be a slight overestimation of what the cost in our model
should be, as it already accounts for storage energy consumption. Fur-
thermore, computational overhead falls with the size of objects cached
and we propose to cache videos, which would be in the order of hundreds
of megabytes, whereas for CloudFlare only 0.4% objects exceed 1MB.
The costs of network hops are based on equipment datasheets,measure-
ments and operational conditions published in [VHILR+ 12] and provided
by France Telecom.

We then consider the characteristics of the content. In particular,
we assume that for the FT scenario tra�c forecasts are provided for the
year 2020. We refer the reader to [RLB12] for a detailed description on
how these forecasts are obtained. On the contrary, for the Moroccan
scenario we set values in accordance to the current tra�c measured over

4 The complexity of the implemented Hurwitz function is in the ord er of O(p2+ � ), p
being the precision (the number of signi�cant bits) and � a small number.



Table 2.1: Main parameters for the considered scenarios.

Parameter FT Moroccan

L [units] 6 6
N j

D [units] [1 8 24 216 216 2160] [1 20 20 20 200 10000]
CS [W/Gb] 9.375�10� 4 9.375�10� 4

CR [J/Gb] 24.3 24.3
C j

H [J/Gb] [12.5 25 30 35 200 300] [12.5 25 30 35 200 300]
� [Gb/s] 8 � 103 103

I [days] 7 7
A [Gb] 15 0:6
� [units] 0.8 0.8
VS [units] 120� 106 120� 106

NC [units] VS VS

the network. As a consequence, the total video throughput� is eight
times higher in the FT scenario compared to the Moroccan one. To this
extent, we have also considered di�erent values for the average video
sizeA, assuming for the FT scenario a value that corresponds to a high
de�nition video provided today on optical disks. Moreover,we have
assumed a popularity duration of one week,5 and a value for the exponent
of the Zipf distribution from [CRC+ 08] for both scenarios. Finally, we
assume a number of videos of a typical video CP, and one video for each
class.

Evaluation Metrics We describe the metrics adopted to evaluate
the performance of our algorithm. We �rst derive the energy saving as:

S =
T0 � T

T0
(2.21)

We then compute the percentage of bandwidth that is saved at the

5Even though the popularity of the watched videos can actually change during this
time period, the popularity of the most viewed videos is almost constant. As an example,
[CRC+ 08] shows that the popularity of the 50 most viewed videos doesnot consistently vary
over the days. In this work, we are interested in the most popular videos, as these contents
are cached inside the ISP network.



Table 2.2: Summary of results for the two network scenarios

Metric FT Moroccan

Energy savings (S) 8.7% 11.0%
Yearly monetary savings [ke ] 769 122
Bandwidth savings (	) 18.2% 30.2%

Cache Size [GB] �1 0 0
� 2 0 0
� 3 32546 0
� 4 0 23510
� 5 35878 5581
� 6 2041 46

Cache Bandwidth [Mbps] � 1 0 0
� 2 0 0
� 3 7907 0
� 4 0 4550
� 5 2946 721
� 6 290 6

peering point when caches are exploited:

	 =
� I �

P
k:f hk =0 g AV k

W �
P

k:f hk > 0g AVCN hk
D

� I
(2.22)

In particular, � I is the total amount of information owing through
the peering point without caching;

P
k:f hk =0 g AV k

W is the amount of
watched videos not stored inside the network in the case withcaching;P

k:f hk > 0g AVCN hk
D is the total amount of information initially fetched

inside the caches.
Finally, we consider the cache size for a device in levelj , de�ned as:

� j =
X

k:f hk = j g

AVC (2.23)

General Analysis Tab. 2.2 reports the results for the two scenarios
obtained with the GCT algorithm. We �rst consider the energysavings
compared to the case in which caching is not exploited. Energy savings of
almost 9% and 11% are possible for the FT and the Moroccan scenarios,
respectively. By assuming that caches are refreshed once a week for



an entire year, we have estimated monetary savings6 of more than 700
ke for FT, and more than 100 ke for the Moroccan network. Moreover,
the savings in terms of bandwidth saved at the peering point are even
larger, reaching 18% for the FT scenario and 30% for the Moroccan one.

The table also reports the cache size �j per device for each levelj .
Interestingly, � j is at most 36 TB, a value that can be covered by a
commercial array of disk drives. Moreover, the capacity requirements
tend to decrease moving closer to users, with at most 2041 GB of storage
required at the access level for the FT network and only 46 GB for
the Moroccan one. This is due to the fact that the number of switching
devices per level increases when moving from the core to the access, hence
the cost of increasing cache size is much higher than in higher levels and
outweighs the gains faster. Finally, the table reports the average required
bandwidth � per level. In this case, up to 7.9 Gbps and 4.5 Gbpsare
required for the FT and the Moroccan networks, respectively.

To give more insight, Fig. 2.5a reports the best levelhk for each class
k for the two scenarios.k ranges between 1 andVC . The levels on the left
are the most popular ones and hence, to minimize the costs of moving the
information frequently from the cache to users, it is betterto store these
classes in the closest level to users, i.e., the access part of the network.
Moving from left to right, the popularity decreases, and therefore the
classes are stored in the inner levels of the topology (metroand core).
At last, very unpopular classes are assigned to level 0, i.e., they are
not cached at all. Interestingly, the percentage of the total number of
stored classes is around 1.7% and 0.5% for the Moroccan and the FT
networks, respectively. Thus, we can conclude that with theconsidered
power and popularity models, the ISP needs to store a little amount of
content information to achieve energy and bandwidth savings. This is
an encouraging result showing that caching not only has bene�ts on QoS
and customer experience, but it can also lead to a better management of
the ISP power consumption.

Impact of Content Characteristics We then consider how much
the characteristics of the content impact the energy and thebandwidth
savings. We �rst vary one parameter per time, keeping the others with
the default values reported in Tab. 2.1.

6We have assumed an electricty cost of 0.21e /kWh.
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Figure 2.5: Best levels for each classk (a) and impact of the variation of �
(b-d).

We start considering the variation of� , as reported in Fig. 2.5b and
Fig. 2.5c. With low values of� (left part of the �gures) all the classes tend
to have a similar popularity. Intuitively, there is not a huge bene�t in
terms of energy in storing these classes inside the network,since the cost
of storing this amount of information would be huge. On the contrary,
when � takes higher values (right part of the �gures), the variation on
the popularity also increase. This means that few classes have a very
high popularity, while most of the content is seldom accessed by users.
This in turn imposes to store the most popular classes close to users, and
therefore both the energy and the bandwidth savings steadily increase.
At last, when � =1.6, the bandwidth savings are almost equal to 100%,
while energy savings are more than 90%. This corresponds to the case
in which the most popular contents are cached in the last level of the



network (i.e., the access part), and the main cost incurred by the ISP
is to transfer these contents from the caches to the users. Thus, we can
conclude that � greatly inuences the performance in the network.

To give more insight, Fig.2.5d reports the breakdown of energy for
the FT scenario considering: a) the energy consumed to route the con-
tent inside the ISP network, either from the peering point tothe cache
or from the cache to users ('Rout.' label), b) the energy consumed for
reading/writing the content from/to the caches ('I/O' labe l), c) the en-
ergy consumed for keeping the content stored ('Stor.' label). For �
=0.4 the caching is not exploited, and therefore the largestamount of
energy is due to the routing, i.e., the cost of moving information inside
the network. However, as� increases, the routing energy steadily de-
creases, since caches are more frequently used. This in turnimplies that
the energy consumed for reading and writing the content on the caches
increases. However, the total energy consumption is always decreased,
producing high energy savings. Finally, we can distinguish three di�erent
zones for characterizing the evolution of the energy consumed by stor-
ing. The �rst one (� � 0:4) corresponds to the case in which contents
are not stored in the ISP, and therefore their storage costs is zero. On
the contrary, when � � 1:6 most of users watch a very limited number
of videos, whose storing cost is almost zero again. However, for inter-
mediate popularity values (� � 1:0) the storing energy is not negligible,
since a greater amount of videos is frequently watched by users.

We then consider the impact of the number of videos in the collection
VS. Fig. 2.6 reports the energy and bandwidth savings. The reference
values of Tab. 2.1 are reported as vertical lines. WhenVS decreases, the
savings tend to steadily increase. In this case,VS is decreasing, while
the actual number of watched videosVW is kept constant. Thus, the
gain introduced by caches increases, i.e., few videos frequently viewed by
users. On the contrary, whenVS increases, the saving tend to decrease,
since the e�ciency of adopting the caches is reduced.

In the following, we consider the variation of the total number of
videos watchedVW , reported in Fig. 2.7. WhenVW increases (right part
of the �gures), both the energy and the bandwidth saving increase. This
is due to the fact that asVW increases the caches are more frequently
accessed by users, and therefore the introduced gain in terms of energy
and bandwidth is higher. Clearly, when the users seldom access the
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Figure 2.7: Impact of the total number of videos watchedVW .

content (left part of the �gures) there is no need to put caches.
Finally, we have applied a variance-based sensitivity analysis [SRA+ 08]

to precisely characterize the relative impact of the parameters. In par-
ticular, we have considered how much the variance of the energy saving
S is impacted by the variation of the content parameters. To this end,
we have considered the �rst order index and the total e�ect index. The
�rst order index takes into account how much the variance of asingle
parameter inuences the variance of the output. On the contrary, the
total e�ect index takes into account the e�ects of varying the parame-
ter on the model's output, including all the variances from interaction
with the other parameters. To compute both indexes, we have adopted



Table 2.3: Variance Decomposition ofS for the Content Parameters (FT
Scenario)

Parameter First Order Index Total E�ect Index

� 0.9950 0.9988
� 0.0004 0.0007

VS 0.0001 0.0002
A 0.0000 0.0000
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Figure 2.8: Impact of the cost for reading and writing CR .

a Monte Carlo method. In particular, we have generated a poolof 18
million samples, in which each parameter take a random valuein the
interval [1=2; 2] w.r.t. the standard values reported in Tab. 2.1.

Tab. 2.3 reports the computed indexes considering the totalenergy
savings. The largest contribution to the output variance ofthe �rst order
index is due to� , while the other parameters play a minor role. Moreover,
the average video size does not impact the energy savings since this
parameter is simpli�ed when computingS. The table also reports the
values of the total e�ect index. These values are very similar to the ones
of the �rst order index. This shows that simultaneous varying multiple
input variables does not have a strongly ampli�ed (multiplicative) e�ect
on energy savings when compared to varying them separately.

Impact of Power Consumption Models We �rst consider the
variation of the cost for reading and writingCR . Fig. 2.8 reports the
saving in terms of energy and bandwidth. As expected, the savings
are increasing whenCR decreases. Intuitively, the lower is the cost for



Table 2.4: Variance Decomposition ofS for the Power Consumption Parame-
ters (FT Scenario)

First Order Index Total E�ect Index

CS 0.2738 0.2699
CR 0.0303 0.0265
C1

H 0.1942 0.2009
C2

H 0.3062 0.3125
C3

H 0.0367 0.0436
C4

H 0.0152 0.0210
C5

H 0.0066 0.0143
C6

H 0.1251 0.1259

reading and writing information, the higher is the gain introduced by
caching. In particular, whenCR � 0 energy savings of more than 9% and
12% are possible for the FT and the Moroccan networks, respectively.
Thus, we can expect that, if the energy e�ciency of caches improves
faster than the one of transport equipment, the bene�t introduced by
caching will be greater in the future.

Finally, we have performed the variance decomposition analysis also
for the power consumption parameters, adopting the same procedure as
in the previous subsection. Tab. 2.4 summarizes the main results for the
FT scenario. Interestingly, the energy savings are greatly impacted by
the cost of storing the contentCS. This is due to the fact this term
has to be counted for all the time periods and for all the caches, thus at
the end its contribution is not negligible. Thus, it is very important to
deploy energy e�cient storage inside the ISP to obtain energy savings.
Moreover, the energy costs in the �rst levels are also impacting the energy
savings, since most of tra�c reduction occurs in these levels.

Impact of Network Properties To give more insight, we have
considered a network with the same degree for all levels, andwe have
studied the impact of the variation of the degree and the number of
levels. In this way, we are able to study the impact of cachingover a set
of topologies. In particular, the degree of levelj is de�ned as the average
number of links connecting a device in levelj with the devices in level
(j +1). Moreover, we assume a number of video requests proportional to
the degree and the number of levels. Speci�cally, we have assumed 5000
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Figure 2.9: Impact of the number of levels and the average degree.

users connected for each device in the last level (i.e., the access one)7,
each of them watching 3 videos of sizeA = 15 Gb during a popularity
window duration I of one week. Additionally, we have setVS = 120 �
106. Focusing on power requirements, we have setCS = 9:375� 10� 4

W/Gb, CR = 24:3 J/Gb,CH = 25 J/Gb for each level j , respectively.
Fig. 2.9 reports the energy and the bandwidth savings. Interestingly, the
savings increase with the number of levels and the average degree. In
particular, energy savings of more than 20% are possible forvery large
networks. Moreover, bandwidth savings quickly approach 100%. The
fact that energy and bandwidth savings increase with the degree and the
number of levelsL is due to two main reasons: i) increased cost of moving
information inside the network when the number of levels is increased,
and ii) total number of watched video increased, while totalnumber of
stored videos kept constant.

2.10 Conclusions

We have studied the energy-e�cient design of a content architecture in
a ISP network, by exploiting caches managed by the ISP. Our results
indicate that caching brings substantial savings in terms of energy and
bandwidth.

7Note that while the number of user per device is constant, the total number of users
scales with the degree and the number of levelsL .



As next steps, we will consider the joint management of the content
distribution architecture. In particular, our aim is to study the tra�c
variation over time and to compute the best set of caches powered on to
satisfy a given tra�c demand, while leaving the remaining caches pow-
ered o�. Another possible direction is to introduce cooperation between
neighboring caches to serve users and to reduce the amount ofstored
information. To better �t real topologies, we can study the case where
devices on the same level of the tree have di�erent degrees. Finally, we
plan to study the impact of considering more than one peeringnode and
the impact of introducing realistic tra�c matrices inside t he ISP.

2.11 Addendum: cache hierarchies and the �lter
e�ect

In this chapter we have studied a hierarchy of caches with popularity
following a power law. Most of the gain is achieved by storingonly the
few most popular objects. When multiple caches are queried ina row,
the big gain is achieved in the �rst one, leaving the others with much
less popular objects. This is called the�lter e�ect and has been studied
in [Wil02]. Figure 2.10 shows results of a trace-based simulation. Three
caches of the same size have been put one after another, storing any
passing object and evicting the least recently used one, asking another
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cache, or the original source in case of third cache, in case of a cache
miss. What we can see from the �gure, is that the �rst cache observed
an order of magnitude more requests for the most popular objects. This
is reected by the hit rates, which were respectively 19.66%, 2.05% and
0.94%. Intuitively, this can raise doubts if the results presented in this
study do not stand in contradiction.

However, the above example di�ers from what we presented in the
study. In the example there are three levels of caches, a single source of
tra�c and a single receiver. In a more practical setup, cachehierarchy
would not be a path. A cache on a higher level should aggregaterequests
that were missed by several lower level caches. Therefore, the tra�c seen
by a cache grows exponentially with the distance in the hierarchy from
the clients.

As explained in Section 1.4, the hit ratio does not depend on the
volume of tra�c. However, as we have seen in this chapter, justthe raw
number of cache hits can be enough to make such an aggregated cache
bene�cial (aggregating overhead costs makes up for the lower hit rate).

The same e�ect cannot be exploited easily in Chapter 3, due toas-
sumption of all-to-all tra�c in a core network. Therefore, it is assumed
there that at most one cache is queried for a request and aftera miss the
original source is reached.
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CHAPTER 3
Energy E�cient Routing

This chapter, like the previous one, is also devoted to energy saving in a
network augmented with caches. However, this time the network struc-
ture is already deployed and the saving is achieved by putting devices
into sleep mode. To maximize this, we utilize tra�c aggregation and co-
operation with Content Distribution Networks. Before the study itself,
we present a preliminary introduction to Linear programming. Then,
we describe how to use it to design heuristic algorithms, in atechnique
called Rounding.

3.1 Preliminary: Linear programming

For some problems, optimal solutions can be obtained with Integer Linear
Programming (ILP) models. It is a general framework that canbe used
to model many combinatorial problems.

A Linear Program (LP) comprises a linearobjectivefunction, a set of
linear inequality constraints and a set ofvariables, upon which the ob-
jective and constraints are de�ned. The objective functioncan be either
minimized or maximized. It is also possible for a program to have no
objective, where its goal is determining whether the set of constraints is
feasible, i.e. if any assignment of the variables satis�es all constraints.
The constraints are inequalities stating that a linear combination of vari-
ables must be not greater than a given constant. If all the variables are
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real numbers, we simply call the program linear. A LP can be written
as:

maxf cT x : Ax � b; x � 0g; (3.1)

whereA is a matrix and c and b are vectors of known coe�cients andx
is the vector of variables. However, if some variables are integers, we say
we face aMixed Integer Linear Program(MILP) (ILP if all the variables
are integral). A MILP extends LP:

maxf cT x : Ax � b; x � 0; 8x j 2 I x j 2 Zg; (3.2)

whereI is its subset of variables meant to be integer.
An interesting property of linear programs is their duality. For any

LP of the form presented in equation 3.1, called theprimal problem, its
dual problem is:

minf bT y : AT y � c; y � 0g (3.3)

Notice that the dual of the dual problem is the original primalproblem.
The objective function of the dual problem, at any feasible solution, is
always greater than the value of the objective function of the primal, at
any feasible solution. Furthermore, if the primal has an optimal solution
x?, then its dual has an optimal solutiony? given by:

cT x? = bT y?: (3.4)

These properties are often used to �nd bounds on the objective function
value. This can be useful for solving algorithms, or as a stopping criterion
when a solution that is close enough to optimum is su�cient.

Solving MILP is NP-hard. It is trivial to express SAT using ILP:
simply limit the variables to be 0 or 1 and transform each clause into a
constraint saying that the sum of positive variables minus sum of negative
variables must be not less than one (e.g. (a _ b_ : c) becomesa + b+
(1 � c) � 1). Indeed, binary programming is among the original 21 NP-
complete problems put by Karp in [Kar72]. Still, due to wide application
over practical problems, there is a big interest in solving these models.
Many exact methods have been proposed: cutting plane, branch and
bound, column generation and row generation to name a few. See [Sch98]
for further reading. These methods are usually accessed through solvers
{ software packages which allow �nding exact or approximatesolutions



of speci�ed MILP. A brief overview of currently available solvers can be
found in [LL10].

The fundamental problem behind routing, multicommodity ow, is
classically approached in this way, see [Min06] for a survey. It constitutes
a broad body of special cases. Here, we look into a simple integral
problem. We are given a graphG = ( V; E) and a set of single commodity
ow requirements �. Each ow requirement � 2 � has given endpoints
and value,� = ( s� ; t � ; ' � ); s� ; t � 2 V. First, there is a set of constraints
called ow conservation, that basically reads that what ows in must
ow out, unless we're in an endpoint:

8� 2 � 8v2 V

X

i 2 V

f �
i;v �

X

j 2 V

f �
v;j =

8
><

>:

� ' � if v = s

' � if v = t

0 otherwise

(3.5)

Then, for each link, the sum of values of ows owing through it cannot
exceedlink capacity c:

8f u;vg2E

X

� 2 �

(f �
u;v + f �

v;u ) � c (3.6)

Finally, if our ow requirements come in indivisible units, we set the
variable units:

8u;v2 V;� 2 � f �
u;v 2 N (3.7)

The program given without an objective tests whether the owis feasible.
If so, for each ow requirement� we obtain f �

u;v { a matrix determining
the ow itself.

Basing on the above we can obtain a number of useful variants.The
capacity can be a constant (maybe given for each link), when doing
routing over a given network, or some cost function, when doing network
provisioning. Depending on the exact problem, there may be various
optimization goals basing on the costs, some possible rewards, or even
no goal when the only interest is �nding a feasible routing. Later in
this chapter, we extended this approach by taking into account Content
Distribution Networks and in-network caches. Solving the ILP directly
yields an exact solution, albeit the running time is exponential in the in-
stance size. Limiting the time given to the solver may yield sub-optimal,
but possibly acceptable solutions.



The usage of Integer Linear Programming is not limited to routing. A
number of various graph problems are solved with it in [Coh11]. In Ap-
pendix A, we look into a graph coloring problem motivated by frequency
assignment in satellite networks. It can be solved by an ILP,where for
each vertex we limit interferences for a given color (frequency) up to a
given threshold and minimize the total number of colors used.

3.2 Preliminary: rounding

The aforementioned Integer Linear Programs can be used as a basis for
heuristics. This approach is generally calledrounding. For the mul-
ticommodity ow problem randomized rounding has been introduced
in [RT87]. The ows are of unit value and the optimization goal is
minimizing the uniform link capacity C. Figure 3.1 displays two steps of
a solution to a simple example. First, a fractional relaxation (a version
of the program with integer variables are changed to fractional) of the
ILP is computed. This can be achieved, using Karmarkar's algorithm
proposed in [Kar84], in timeO(n3:5), wheren is the number of variables
in the ILP. Solving a relaxation leads to some ows being split among
a number of edges, as shown on Figure 3.1a. The second step of the
algorithm is decomposing such ows into a set of paths, see Figure 3.1b.
Finally, we choose which path should the ow follow in an integer solu-
tion. The choice is random, weighted by the ow value of each of the
paths. This simple, computable in polynomial time, procedure is guar-
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anteed to give a solution withC � Co +
q

3 � Co � ln jE j
" with probability

at least 1� " , whereCo is the optimal value, E is the edge set and" a
small positive real number.

A rounding heuristic is proposed for the network managementprob-
lem dealt with in this chapter. In our speci�c problem, the routing is
fractional and link capacities are given. Furthermore, forsome ows,
one endpoint can be chosen from among a subset of nodes, modeling
demands towards Content Distribution Networks. The problemis NP-
complete because of binary choice of turning devices on or o�. Our
rounding approach is greedy, instead of randomized. Having asolved
relaxation, we turn on the most loaded devices and then iterate by solv-
ing a fractional relaxation with these additional constraints. As there
is a polynomial number of relaxations to be solved, and a relaxation is
solved in polynomial time, the whole algorithm has a polynomial time
complexity.

While we formulate an ILP for the improper colouring problem in
Appendix A, the heuristic is unrelated to it. Instead, it usespotential
interference. Whenever a node is being coloured, it is computed what
would be the interference for each possible colour and the colour with
smallest value is chosen. In contrast to the previously described algo-
rithm, this has randomness: the node to be coloured next is chosen
randomly (from among the ones with highest interference) aswell as the
colour (from among the ones with lowest interference).

3.3 Publication

The remainder of this chapter corresponds toEnergy E�cient Content
Distribution by J. Araujo, F. Giroire, Y. Liu, R. Modrzejewski and J.
Moulierac which has been submitted to the journal of Computer Com-
munications, which is an extended version of the work of sametitle and
authors accepted for publication in the proceedings of IEEEInternational
Conference on Communications 2013.

3.4 Introduction

Energy e�ciency of networking systems is a growing concern,due to both
increasing energy costs and worries about CO2 emissions. In [Web08] it



is reported that Information and Communication Technologysector is
responsible for up to 10% of global energy consumption. 51% of that is
attributed to telecommunication infrastructure and data centers. Thus,
saving power is important. Backbone network operators study the de-
ployment of energy-e�cient routing solutions. The generalprinciple is
to aggregate tra�c in order to be able to turn o� a maximum number of
devices [ZYLZ10, CMN11, BCMR12, GMM12].

On the other hand, in order to reduce network load and improve
quality of service, content providers and network operators try to disag-
gregate tra�c by replicating their data in several points of the networks,
reducing the distance between this data and their users. Recent years
have seen, along the growing popularity of video over Internet, a huge
raise of tra�c served by Content Delivery Networks (CDNs). These kinds
of networks operate by replicating the content among its servers and serv-
ing it to the end users from the nearest one. CDNs deliver nowadays a
large part of the total Internet tra�c: estimation ranges fr om 15% to
30% of all Web tra�c worldwide for the single most popular CDN[Aka].
Chiaraviglio et al. [CM10, CM11] have shown how the choice ofCDN
servers impacts the backbone energy consumption. More precisely, they
aim at turning o� network devices by choosing, for each demand from
a client to a content provider, the best server of this CDN while being
energy aware.

Here, we go further on this idea by also considering the usage of
caches on each of backbone routers, while still taking into account the
choice of CDN servers. It is important to mention that there have been
several proposals for developing global caching systems [RK09], in par-
ticular recently using in-network storage and content-oriented routing to
improve the e�ciency of content distribution by future Inte rnet archi-
tectures [PYRK08, Dan09, JST+ 09]. Among these studies, we mention
that in this paper we do not assume any speci�c technology forfuture
Internet architectures, nor anything else that would require major over-
haul of how the Internet works. Thus, there is no content routing among
our caches. We assume that a cache serves a single city, taking all of
its contents from the original provider. We consider that caches can be
turned on or o�. Thus, there is a trade-o� between the energy savings
they allow, by reducing network load, and their own consumption.

We propose an Integer Linear Programming (ILP) formulationto re-



duce energy consumption by using caches and properly choosing content
provider servers, for each demand. We implemented this formulation on
the ILP solver CPLEX [CPL] version 12 and made experiments onreal,
taken from SNDlib [SND], and random, Erd}os-R�enyi [ER60], network
topologies. We study the impact of di�erent parameters: size of caches,
demand intensity, network size, etc. In particular, we found that almost
maximal energy gain can be achieved, in our scenarios, by caches of the
order of 1 TB. Larger caches do not lead to signi�cantly better gains.
We discuss the increase of cache usage with network size. Experimental
results show potential energy savings of around 20% by putting devices
to sleep outside peak hours; introducing CDN to the network without
caches gives 16% savings; introducing caches to network without CDN
also gives around 16% savings. Furthermore, we observed that the impact
of caches is more prominent in bigger networks. To be able to quantify
this e�ect, we propose an e�cient heuristic. This heuristic, calledSpan-
ning Tree Heuristic , allows us to obtain acceptable solutions in a
time orders of magnitude shorter than solving the model directly with
CPLEX. Furthermore, the heuristic accepts a parameter controlling a
speed/quality trade-o�. This trade-o� is also studied in this paper.

The main take away of our work is thus that, by storing the most
popular content in caches at each router and by choosing the best content
provider server, we may save around 20% of power in the backbone.

The paper is organized as follows. We discuss the related work in
Section 3.5. We present the problem and its formulation in Section 3.6.
Section 3.7 describes how we built the instances used in the experimenta-
tions.Finally, we present the experiments we did and discussthe results
in Section A.5.

3.5 Related Work

Reducing energy consumption of the backbone network has been ap-
proached before multiple times. A model where it was achieved by shut-
ting down individual links is studied in [GMM12]. An interesting way of
performing this in a distributed manner is shown in [BCMR12]. Energy
e�cient CDNs have also been studied recently. Authors in [MSS12] pro-
pose to reduce energy consumption in CDN networks by turningo� CDN
servers through considering user SLAs. In order to optimize the power



consumption of content servers in large-scale content distribution plat-
forms across multiple ISP domains, a strategy is proposed in[GWS12] to
put servers into sleep without impact on content service capability. Our
work is di�erent from these works, since they do not considerin-network
caches.

Network caches have been used in global caching systems [RK09].
In recent years, several Information Centric Networking architectures,
such as Cache and Forward Network (CNF) [PYRK08], Content Cen-
tric Networking (CCN) [JST + 09] and NetInf [Dan09], have exploited
in-network caching. Their objectives are to explore new network ar-
chitectures and protocols to support future content-oriented services.
Caching schemes have been investigated in these new Internet archi-
tectures [PYRK08, LSG12, PCP12]. Similar to our work, these works
also use in-network caches, however they do not consider energy savings.

Energy e�ciency in content-oriented architectures with anin-network
caching had been studied recently in [GAKG11, SLW11, CGKA12]. In [GAKG11],
authors analyze the energy bene�t of using CCN by comparisonto CDN
networks. A further work [CGKA12] considered the impact of di�erent
memory technologies on energy consumption. Adding network caches
that work transparently with current Internet architectur e has been stud-
ied, with linear power models, in [MLG+ 11], where caches are added to
backbone routers and in [JNWC11], where it is found that optimal place-
ment during peak hours is in the access network. These works focus on
the energy e�ciency considering data delivery and storage,however, they
do not take into account the energy savings by turning on/o� network
links. Authors in [SLW11] extend GreenTE [ZYLZ10] to achieve a power-
aware tra�c engineering in CCN network. It is di�erent from o ur work,
since we consider energy consumption of in-network caches that could
be turned on or o�, as well as a cooperation between network operators
and content providers.

Most closely related to ours is the work from Chiaraviglio etal. [CM10,
CM11], which enables the cooperation between network operators and
content providers, to optimize the total energy consumption by an ILP
formulation for both sides. In this paper, we also consider this coopera-
tion to achieve such a total energy saving. Our work is an extension of
this optimization problem formulation, through considering in-network
caching.



3.6 Problem Modeling

What follows in this section is a discussion of model parameters, formal
problem de�nition and a Mixed Integer Linear formulation used to solve
it.

However, let us �rst informally recall the problem description and
some assumptions we consider. Our goal is to save energy on a backbone
network by aggregating tra�c and turning o� as many devices as possi-
ble. We consider that this network has a set of demands between pairs
of routers and a set of demands to CDN servers in an overlay of this net-
work. A demand to a CDN can be satis�ed by any of its servers, which
are placed in di�erent routers of our backbone network. Thus, these
demands have of course a single destination, but several possibilities of
sources, one for each CDN server. Moreover, we consider thateach back-
bone router of our network has a cache, with a limited amount of storage,
that can only be used to satisfy demands to its router. Our goal is to
satisfy all these demands, under the capacity contraints ofCDN servers,
caches and links, while minimizing the number of links and caches that
are turned on.

Parameters

For in-network caches, it is still an open question: if and how they should
be deployed. Therefore, we avoid making speci�c assumptions about the
details. Once the question is answered, the model we proposecan be up-
dated to answer any possible speci�c concerns. However, the conclusions
can change, if the actual parameters vary heavily from our estimates.

Cache hit rate A cache, located in each router, automatically caches
the most popular content, potentially saving a fraction of any demand.
Establishing this fraction is a non-trivial task. According to [HH10],
content popularity follows a Zipf-like distribution. In th eir study, they
computed the relation between cache size and hit rate for a trace of
tra�c towards YouTube. Note that this relation does not depend on the
number of cache accesses, only on the relative size of the cache and all
the content collection. This relation is shown on Figure 3.2,with the
assumption that an average video is 100 megabytes. The �gureshows
results for two algorithms: least recently used, a classic caching algorithm,
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Figure 3.2: Cache hit ratio for YouTube trace, assuming average video size
100MB, following the results in [HH10].

and static most popular, a simple algorithm proposed by the authors. For
example with a cache of around 800GB the expected hit rate is around
17.7% using LRU and around 32.5% using the static algorithm,thus
saving an equivalent fraction of tra�c.

As the situation changes frequently, both regarding to the volume of
popular content and available storage, we leave this fraction as a param-
eter of the model: � { the maximal part of any demand that can be
served from a cache. Network operator can establish it empirically, by
means of measurements. Typically, we take� 2 [0:2; 0:35].

Cache power usage In our model we deal with two types of equipment:
links and caches. In practice, main energy drain of links areport cards
and ampli�ers. As can be seen in Powerlib [VHI12], power requirements
of single port cards suitable for long haul networks are wellover 100
Watts, while other backbone cards can be as few as a quarter ofthat.
For the caches, the main concern is fast mass storage. This has improved
recently, with current SSD models o�ering 1TB of storage accessed at
10Gbps consuming below 10 Watts of power, for example [OCZ].

Again, as the practical values in the time of implementation are hard
to predict, we make this ratio another parameter of the model: � { the
power consumption of a cache divided by the power consumption of a
link. Typically we take � 2 [0:1; 1].



Problem de�nition

We use a typical model, from the perspective of a backbone provider,
where aggregated tra�c between cities is expressed as a demand matrix.
We augment this matrix to represent not only cities, but alsocontent
providers. This is motivated by the fact that content providers generate
tra�c that can easily be equal to that of a city.

Let us �rst formally de�ne the optimization problem we are dealing
with. We call it Energy Efficient Content Distribution . In this
problem, we model the network by a graphG = ( V; E), for which we
have a link capacity function c : E ! R+ and city to city demands
~D t

s; 8s; t 2 V. Moreover, we are given a set of content providersP. For
each content providerp 2 P, the subset of vertices ofV(G) containing
its servers is given by the functionLp � V (G). Each server placed in
location l 2 Lp of a content providerp has a capacityC(sl

p). We are also
given demands from cities to content providers given by the function ~Dp

s,
for every s 2 V; p 2 P. We consider that the data is replicated at each
node ofLp. Finally, each nodev 2 V(G) in the network has a cache of
bandwidth capacity b(v).

The goal of our problem is to �nd a feasible routing inG satisfying
all the demands ~D t

s and ~Dp
s under the capacity constraintsc(u; v), C(sl

p)
and b(v) that minimizes the total energy consumption of the network.
By total energy consumption, we mean the energy used by the links plus
the energy used by the caches. For each cache, despite of a �xed energy
cost of turning it on, we also consider an increased usage of energy in
terms of its load.

Mixed Integer Linear Programming Formulation

First recall that our goal is to turn o� links and caches in order to
minimize the amount of energy used in the underlying network. Conse-
quently, we use a variablexuv to indicate if the link uv is turned on or
o�, for every f u; vg 2 E. The model is normalized as to say that every
link uses 1 unit of energy. We denote this unitlc. We use a variableyv

to indicate if the cache at routerv is turned on or o�, for every v 2 V.
We say that a cache uses at most� units of energy. Finally, we recognize
that mass memory access can constitute a signi�cant energy cost. Thus,
we use a variablezv to indicate the load (fraction of used bandwidth) of



the cache in routerv. We assume that an idle cache uses fraction of
� and its power consumption grows linearly with load to reach� once
fully utilized. The objective function is then written formally as:

min
X

f u;vg2E

xuv +
X

v2 V

�y v +
X

v2 V

� (1 �  )zv:

Denote ~D and ~D as the demands posed in the problem instance,
respectively from other cities and content providers. A cache in a source
router s, when turned on, allows to save a portion of any demand up
to � , call these savings respectivelyC and C. We will consider reduced
demands, denoted D and D , which are the input demands with the
caching savings subtracted:

D t
s = ~D t

s � C t
s ; 8s; t 2 V;

Ct
s � � ~D t

s ; 8s; t 2 V;

Dp
s = ~Dp

s � Cp
s ; 8s 2 V; p2 P;

Cp
s � � ~Dp

s ; 8s 2 V; p2 P:

Then, we record the load of the cache:
X

t

Ct
s +

X

p

Cp
s = zsb(s) ; 8s; t 2 V;8p 2 P:

Finally, the load cannot exceed the capacity and needs to be zero if cache
is o�:

zs � ys ; 8s 2 V:

Each possible sources 2 V demands from each providerp 2 P an
amount of data ow Dp

s � 0. The provider has a set of servers ofsl
p

located in a subset of nodes of the networkl 2 Lp � V . Each of those
servers sendsS l;s

p ow units, to collectively satisfy the demand:
X

l2 Lp

S l;s
p = Dp

s ; 8s 2 V; p2 P:

Each serversl
p has a constrained capacityC(sl

p), which limits the
demands it can satisfy:

X

s2 V

S l;s
p � C(sl

p) ; 8p 2 P; l 2 Lp:



Popularity Server capacity Server locations

CDN1 40 0.3 Berlin Hamburg Duesseldorf
Frankfurt Muenchen Nuernberg

CDN2 20 0.45 Berlin Duesseldorf Frankfurt
Muenchen

CDN3 15 0.6 Berlin Frankfurt
CDN4 15 0.5 Hamburg Frankfurt Muenchen
CDN5 10 0.2 Berlin Duesseldorf Frankfurt Ham-

burg Muenchen Nuernberg Os-
nabrueck

Table 3.1: Content Distribution Networks assumed for the germany50 net-
work.

Now we set ow constraints. By f s
u;v we denote the ow on edge

f u; vg corresponding to demands originating froms.
X

v2 Nu

f s
v;u �

X

z2 Nu

f s
u;z =

=

(
�

P
p2 P Dp

s �
P

t2 V D t
s u = s

Du
s +

P
f p2 P ju2 Lp g S u;s

p otherwise
; 8s; u 2 V:

Finally we consider capacities of links, denotedc(uv). The constraints
involve both kinds of ows and the on/o� status of the links:

X

s2 V

(f s
u;v + f s

v;u )+ � c(uv)xuv ; 8f u; vg 2 L:

All variables are non-negative real numbers, except forxuv and yv

which admit only values inf 0; 1g.

Spanning tree heuristic

Since CPLEX was not able to solve the ILP model described in the last
section for bigger instances, we describe here a polynomial-time heuristic
to our problem. For instance, for a random example with 150 cities and
300 links, CPLEX was not able to produce any feasible solution within
two hours, while the proposed algorithm can give a good solution in two
minutes.



Our heuristic is an iterative algorithm that, at each stepi � 0, com-
putes an optimal (fractional) solutionsi for the relaxation of our model
and �x value of some variables of the model corresponding to the usage
of links and caches (i.e. the integral variablesxuv and yv). When we say
that we �x a variable x to a value c 2 f 0; 1g at step i , we mean that we
add a constraintx = c to the model used to computesj , for all j > i .

At the �rst step 0, our heuristic computes a solutions0 of relaxation
of the model. Then, by setting the weight of each edge to be thevalue
of its corresponding variable ins0, a maximum spanning treeT of the
input network graph G is computed and all the variablesxuv of all the
edgesuv 2 E(T) are �xed to one.

After this initialization step, the heuristic solves, at each step i > 0,
the relaxation of the model (which will already have severalvariables with
�xed values) to get an optimal solutionsi . Then, if some other variables
xuv or yv have valuev 2 f 0; 1g in the solution si , these variables are �xed
to this value v. Finally, at least one most loaded device is �xed to be
turned on. To speed up the process, the heuristic has a parameter S. At
each stepi , we also �x S fraction of the highest value variablesxuv or
yv whose valuesv are in 0< v < 1 to one. Once all the integer variables
are �xed, the relaxation is solved one last time. This gives us a valid
solution to the Integer Linear Program.

The heuristic has been implemented in Java and it can be downloaded
as open source1. Note that we use CPLEX to solve the relaxations of the
model at each step of the heuristic. The performance of this heuristic is
analyzed in Section A.5.

On the complexity of the heuristic algorithm The model we propose
has a polynomial number of constraints on the size of the input. It is
well-known that its relaxation can then be solved in polynomial time.
The number of devices whose variables have to be set to 0 or 1 byour
heuristic is n caches (one at each node) plusm edges. The �rst iteration
puts n � 1 edge variables to 1. When a variable is set to 0 or 1, it is
not reconsidered during the algorithm execution. Hence, thenumber of
relaxations solved, i.e. of steps of the heuristic, is bounded by m + 1.

Note that we indicated the number of iterations and the execution
times in seconds for varied values ofS in Section 3.8 and for networks of

1https://github.com/lrem/GreenContentDistribution



varying size in Section 3.8.

3.7 Instance generation

The Survivable �xed telecommunication Network Design (SND) Library
contains a set of real network topologies, which we use as a base for most
of our instances. In particular, we have decided to use threenetworks
with considerably di�erent sizes:

� Atlanta { jV j = 15; jE j = 22, unidenti�able cities
� Nobel-EU { jV j = 28; jE j = 41, major European cities
� Germany50 { jV j = 50; jE j = 88, major German cities

We added the position of the Content Distribution Network servers. Usu-
ally, Content Distribution Networks locate their servers inInternet Ex-
changes and major Points of Presence, to minimize the network distance
to the end users. Locations of such points are publicly known. Thus, for
topologies with clearly identi�able cities, we have ready sets of candidate
locations for CDN servers. Otherwise (Atlanta network), weput them
manually at cities which minimize the route lengths.

We used a population model to build the tra�c matrices of the de-
mands between cities. Then, we augmented matrices with the demands
towards content providers. Obtaining exact �gures about CDN market
shares and operational details is out of scope of this study.Still, we
explored the publicly available information, e.g. [Aka], tocome up with
a list of the major providers. Each of the networks is assigned a popu-
larity , which is based on market share either claimed by the companyor
media. The number of servers is heterogeneous and we try to arrange it
into distinct classes in regard to popularity/server capacity proportion,
i.e. there can be networks with many small servers, or few strong ones.

Table 3.1 exempli�es CDN speci�cation used in thegermany50net-
work. Server capacity means what part of total demand towards a net-
work can be satis�ed by the infrastructure in a single location. For ex-
ample, just two servers with capacity 0:5 can satisfy all demands towards
CDN4.

A more detailed description of the instance generation can be found
in the research report [AGL+ 12].



3.8 Results

In this section, we �rst validate our heuristic. We show thatit is able to
�nd good solutions for small and medium-sized networks by comparing
with optimal solutions given by the model. We implemented the for-
mulation on the ILP solver CPLEX version 12. We then show thatthe
heuristic is fast and is able to quickly �nd solutions for large networks
for which CPLEX was not able to �nd any feasible solutuion.

Then, we investigate the potential energy savings of our solution on
realistic networks. We exhibit the impact of the cache, CDN and network
parameters, such as cache size, number of CDN servers, or route lengths.
Note that, as described in Section A.5, energy consumption is given in
normalized energy units equal to energy used by one link, denoted lc.

When directly solving the ILP, by default we set a limit on the exe-
cution time to �ve minutes per instance.

Validation of the Heuristic Algorithm

In order to validate the Spanning Tree Heuristic , we compare its
performance to solving the integer model directly with CPLEX. First we
show the di�erences in several examples. Then, we focus on showing the
impact of the parameterS, which governs the speed/quality trade-o�,
on three chosen examples.

Comparison of the heuristic and the ILP

Table 3.2 displays performance comparison betweenSpanning Tree
Heuristic and solving the ILP directly by CPLEX version 12. It com-
pares the values of objective function and wall clock time taken by the
computation on an Intel i7-powered computer. The � columns mean,
respectively, by what percentage the solution found by the heuristic is
worse and how much time is saved by using it. The heuristic parameter
S is set to 0.2. It is discussed in the next section.

First, notice that for very small networks it is feasible to solve the
ILP optimally. This is exempli�ed by the 15-node Atlanta network. The
optimal solution is found within two seconds. Interestingly, the running
time grows for lower tra�c. This is entirely because rising the lower
bound, which has to be equal to the objective value to state the solution



Topology jV j Total energy[lc] �

Model Heuristic

Atlanta (high tra�c) 15 18.8 ? 19.0 1%
Atlanta (medium tra�c) 15 16.6 ? 18.6 12%
Atlanta (low tra�c) 15 14.1 ? 14.4 2%
Nobel-EU (high tra�c) 28 31.4 ? 35.1 12%
Nobel-EU (medium tra�c) 28 28.4 32.2 13%
Nobel-EU (low tra�c) 28 27.9 30.2 8%
Germany50 (high tra�c) 50 69.7 69.0 -1%
Germany50 (medium tra�c) 50 54.2 61.6 14%
Germany50 (low tra�c) 50 50.0 56.2 12%
Random 150 No solution 203.7 |

Topology jV j Computation time[s] �

Model Heuristic

Atlanta (high tra�c) 15 1.5 0.6 60%
Atlanta (medium tra�c) 15 5.2 0.6 88%
Atlanta (low tra�c) 15 34.4 0.6 98%
Nobel-EU (high tra�c) 28 1075 1.8 99.8%
Nobel-EU (medium tra�c) 28 1800 1.3 99.9%
Nobel-EU (low tra�c) 28 1800 1.1 99.9%
Germany50 (high tra�c) 50 300 8.5 97%
Germany50 (medium tra�c) 50 300 5.0 98%
Germany50 (low tra�c) 50 300 2.9 99%
Random 150 7200 127.8 |

Table 3.2: Comparison of results given by theSpanning Tree Heuristic
(labelled Heuristic ) and by solving the model directly with CPLEX (labelled
Model). The ? symbol denotes optimal solutions.



is optimal, becomes much harder. Solutions given by the heuristic are
close to the optimum, while the time needed to �nd them is muchshorter.
Still, for networks of this size, we would strongly recommendsolving the
model directly.

For networks up to 30 nodes it is still feasible to �nd optimalsolutions.
However, the cost of obtaining the solution is rather high, while closing
the gap to the lower bound becomes impractical for low tra�c. Thus,
we limited the CPLEX execution time to half an hour. On the other
hand, Spanning Tree Heuristic provides its solutions in under two
seconds. Again, by choosing the heuristic, we accept only a slight increase
in consumed energy. Precisely, to obtain a solution within 12% of the
optimum, we save 99.8% of the computation time.

In medium-sized networks, such as Germany50, �nding exact solution
becomes impractical. Thus, we set a limit of 5 minutes to obtain near-
optimal results. This allowsSpanning Tree Heuristic to obtain a
slightly better solution than the ILP, while taking only 3% of the running
time, in the case of high tra�c. In the other cases it is still not far
quality-wise, while taking negligible time.

Finally, we take a big random instance. The topology is a two-
connected Erd•os-Renyi graph, with 150 nodes, an average degree of four
and one CDN with �fteen servers. Each city issues demands only to
seven other cities. The overall tra�c level is medium (demand ratio
4.0), as these kind of instances are prone to bottlenecks, which could
render higher tra�c levels unrouteable. It is infeasible todirectly obtain
any integer solution of the model. After two hours CPLEX was not able
to propose even a trivial solution (e.g. turning on all the devices). Span-
ning Tree Heuristic , in just above two minutes, gives a solution that
is 35.8% over the trivial lower bound of a minimal connected network.

To conclude, we say that theSpanning Tree Heuristic is clearly
the better choice for big networks. For small to medium-sized ones, its
results are always reasonably good, while its running time is very short.
Therefore, it is a viable choice whenever the computation time is an issue.

Speed/quality trade-o� of the Spanning Tree Heuristic

As stated in Section 3.6, the parameterS governs an execution speed vs
quality of solution trade-o� for the Spanning Tree Heuristic . We
investigate its inuence in this section.



First, recall that S determines the fraction of undecided variables to
be �xed to an integer value within an iteration. Each iteration at least
one variable is set to one, so settingS to zero means turning on devices
one by one. It is easy to see how increasingS reduces the number of
iterations. To comprehend how it can decrease the quality ofobtained
solution, imagine a simple example, that represents a fragment of an
instance. Take two cities with two disjoint paths and one demand be-
tween them. Let the value of that demand be equal to bandwidthof a
link. One valid solution of the relaxation can be splitting the demand
in half and routing both halves along both paths. The optimalinteger
solution for this case is all the ow going through one route,the links of
the other turned o�. If S = 0, then after the �rst step one link will be
turned on. The only possible solution of the relaxation willroute all the
tra�c through the path containing this link. Thus, the solut ion found
by Spanning Tree Heuristic will be optimal. However, if S > 0 and
two links are turned on in the �rst step, then it is possible the two links
will be on di�erent paths. Thus, the integer solution will have some un-
necessary links turned on. In the extreme case ofS = 1 all devices will
always be turned on.

Figure 3.3 shows the impact on three examples. In all cases, the x
axis determines the value of parameterS. The left column plots the
value of the objective function in integer solutions. The right column
shows computational costs, both in terms of wall clock time in seconds
(solid blue lines) and number of relaxations solved (dashedred lines).

First, look into an instance based on maximum tra�c sustainable in
the Germany50 network. Solutions obtained are displayed on plot 3.3a.
Recall that the value found by a solver for this instance was 69.7 energy
units. Taking between 24 and 8 seconds,Spanning Tree Heuristic
with S � 0:3 obtains solutions with 69.0 units. This means it is in this
case both faster by an order of magnitude and gives a marginally better
solution. Note that even at S = 1 not all devices are turned on. This
is because, after freezing the spanning tree, some devices get turned o�
before all the undecided ones are turned on. Looking at plot 3.3b, we see
that the number of relaxations solved and the running time are falling
drastically for S � 0:2. Then, they decrease more slowly, with 6 seconds
at S = 0:5 and 4 seconds atS = 1:0.

Second, we assign to the same network a small load, that sill does not
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(b) Germany, demand ratio = 0.25
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(c) Germany, demand ratio = 1.0
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(d) Germany, demand ratio = 1.0
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(e) Random graph, n = 150
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(f) Random graph, n = 150

Figure 3.3: Impact of the parameterS, left column plots the energy consump-
tion of obtained designs, while right column plots the computational cost.

allow for routing on a spanning tree (which would be a trivialcase for
the heuristic). With model given directly to a solver, we haveobtained
in 5 minutes a solution with value 50. Plot 3.3c shows that thebest
solution found by Spanning Tree Heuristic is still one unit worse
and can deteriorate by almost eight further units. On the other hand, the



maximum time taken by Spanning Tree Heuristic is 10.8 seconds.
For S = 0:1 it is already 3.3 seconds, reaching 2.8 atS = 1.

Finally, we present results for the same random graph as in thepre-
vious section. Looking at plot 3.3e, we see that there is signi�cant but
steady increase in energy consumption untilS = 0:4. At that point, the
value objective function is nearly saturating, at 1.44 times the value for
S = 0. On the other hand, plot 3.3f shows that there is a sharp decrease
in computational cost until S = 0:2. As the objective value at that point
is not far from the best known value, we deduce that this is a reasonable
value of S for fast solving of big instances. Note that when solving the
model directly, CPLEX 12 is not able to produce any integer solution
within reasonable timespan of two hours. The only lower bound on the
objective value we know comes from the fact, that the networkneeds to
be connected. Thus, there are at least 149 links needed. Thismeans
that the heuristic, with S = 0, is at most within 20.8% from the optimal
solution.

As we have seen in the above examples, theSpanning Tree Heuris-
tic is a good alternative to solving the model directly for big networks.
Furthermore, even when it is possible to obtain a solution directly from
the model, it may be possible that the heuristic provides a solution of
similar quality in a shorter time.

Impact of cache parameters

In this section, we exemplify the impact of parameters of thecache. We
look into how the obtained network designs di�er on changingvalues of
the cache hit rate� and of the cache power usage� . Due to lack of space,
results are given here for thegermany50 network. The demand ratio
is set to 0.3, which represents high tra�c. Similar results on di�erent
networks can be found in [AGL+ 12].

First, we look at the e�ects of changing the parameter� , shown in
Figure 3.4a. Recall, that it limits what part of any single demand can
be served from a cache. Increasing the signi�cance of cachesresults in
more being used and energy being saved. However, note that once about
15% of tra�c can be cached, further gains are highly diminished. This,
according to Section 3.6, is equivalent to about 800GB or just 100GB
depending on the cache algorithm used.



(a) (b)

(c)

Figure 3.4: Energy consumption in network designs obtained by model with
di�erent parameters.

Figure 3.4b shows the e�ects of changing maximum cache power us-
age,� . As we can see, when the caches use no energy, the network uses
60 units of power. Then it raises, through 63.4 for� = 0:1, to 69.7 for
� = 0:5. After this point, further increases to� have little e�ect, not
increasing past 74. This is because at this point caches simply get turned
o� as they consume too much energy.

Figure 3.4c shows combined e�ects of both parameters. The demand
ratio in it was increased to 0.33, to make routing without caches feasible.
Then, a baseline power consumption has been established with caches
disabled to be 71. For each pair of parameters, energy savings relative to
that baseline are mapped to a color and displayed in appropriate region
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Figure 3.5: Total energy consumption varied by CDN properties.

of the �gure. The darker the color the higher the savings.

Impact of CDN parameters

Then, we investigate the impact of the cooperation with CDN, shown on
Figure 3.5. Plot 3.5a shows the evolution of energy consumption in func-
tion of what part of all demands are directed towards CDN networks.
The demand ratio for this plot is set to 0.33, to make routing without
caches nor cooperating content providers feasible. Results both with and
without caches are compared. As we can see, introducing cooperating
content providers to a network without caches is highly bene�cial. In the
extreme case when all tra�c would be served by CDNs, energy consump-
tion would decrease by 27.4%. At today's claimed values thisnumber is
still 16.4%. Then, introducing caches to a network without CDN gives
16.7% savings. There remain 8.0% savings at today's CDN popularity.
What may be a bit surprising, there are still 6.6% savings by introducing
caches when 100% of tra�c is served by the Content Delivery Networks.
Finally, comparing network without CDN nor caches, to network with
50% of tra�c served by CDN and with enabled caches, we save 23.12%
of energy.

Plot 3.5b investigates how many location choices are neededto achieve
good savings. In this scenario, for the sake of clarity, there is only one
CDN. Its servers are potentially located in: Berlin, Frankfurt, Muenchen,
Hamburg, Dortmund, Stuttgart, Leipzig and Aachen. In each data point,
only the �rst n servers from this list are enabled. Each server is able to
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Figure 3.6: Comparison of energy consumption with and without caches in
the model.

provide all the demands alone, 50% of all tra�c is served by the CDN. It
is infeasible to route with less than 3 locations. As we can see, increasing
the number of possible choices from 3 to 5 yields around 13% ofenergy
savings. Further increases have little e�ect. Thus, in thisnetwork of 50
cities, it is optimal to have 5 server locations.

Impact of tra�c level

In this section, we look into the potential reduction of energy con-
sumption of the networks in our model, both with and without usage
of the caches, exploiting the variance in network tra�c overtime. The
parameters used throughout this section are:� = 0:35, � = 0:1 and
cache bandwidth is half of a link.

Figure 3.6 shows energy consumption in function of demand ratio,
that is the inverse of tra�c level. As we can see, in all the networks,



Network Nodes
count

Maximum energy saved
due to caches

Total energy savings
(load=50%)

Atlanta 15 8.9% 21.3%
Nobel-EU 28 3.2% 21.7%
Germany 50 16.7% 22.3%

Table 3.3: Potential energy savings

enabling caches makes routing feasible under much higher loads than
before. For example in the case of Germany, we can accommodate an
increase in demands by one third. Then, as tra�c decreases, we can
save energy by turning o� some devices. The right column of Table 3.3
states relative di�erence between energy consumption of a network under
highest possible load and half of that load, with caches enabled.

For a range of demand values, it is feasible to route without caches,
but at a higher total energy cost. Note that half of maximum sustainable
load is in all cases within this range. The left column of Table 3.3 shows
the highest di�erence of power consumption accommodating the same
tra�c with and without caches.

As can be seen, there is a point after which there are no additional
savings with falling tra�c. This is when the routing is feasible on a
spanning tree, using no caches. Turning o� any additional device would
disconnect the network.

What is interesting is the fact that caches have a much higher e�ect in
the germany50than the smaller instances. We attribute that to longer
routes, which mean higher energy cost to transfer the data through the
network. This e�ect is investigated in Section 3.8.

Impact of network size

We have seen varying usage of caches in the studied networks.An expla-
nation for that is the di�erence of route lengths in the diverse networks.
Energy is saved by serving from a cache close to the user. Savings de-
pend on how long would be the route traversed by the data, if itwas
served from content provider. A longer route yields higher reductions.
However, in the biggest network we used, thegermany50, the average
route length is only 4. Furthermore, when looking at a distance traveled
by an average bit of data, this length is only 2.6. We claim that in bigger
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Figure 3.7: Spanning Tree Heuristic on Erd}os-R�enyi graphs.

networks we could see higher utility of caches.
To estimate the impact of route length, we look into results on Erd}os-

R�enyi graphs. Recall that in these graphs, the route lengths grow loga-
rithmically in respect to the graph size. As we need many big networks to
demonstrate the e�ect, obtaining integer solutions directly from a solver
would be impractical. Therefore, the results presented arecomputed
using theSpanning Tree Heuristic .

Figure 3.7a shows the number of caches used divided by the number
of cities in two-connected Erd}os-R�enyi graphs of increasing sizes. The
average degree of each graph is 4, each city emits 7 demands torandom
other cities, cache parameters are� = 0:35, � = 0:1 and  = 0:5. Each
data point is an average over at least two thousand instances, error bars
represent standard deviation.

As we can see, with no other parameters changing, usage of caches
clearly grows with increasing network sizes. In a network ofsize 20,
having average route length around 2.3, average number of caches on is
only 4.47 (22.3%), while in networks of size 220, of average route length
around 4.2, there are on average 209.2 (95.1%) caches turnedon. Caches
see an average usage over 50% for networks of size at least 80,where
the average route length is only around 3.4. This size can correspond to
small networks comprised of both core and metropolitan parts, or just
big core networks.

Figure 3.7b displays the computation times. The value ofS is 0.2.
The execution time grows quickly. This is not due to the number of
heuristic iterations, between 20 and 220 nodes the number ofrelaxations



solved only doubles. However, atn = 220 a single relaxation takes 6
minutes on average. Thus, the time needed to �nd the fractional routing
is the critical part of the computational cost.

3.9 Conclusions and further research

In this work, we addressed to the problem of energy saving in backbone
networks. To the best of our knowledge, this is the �rst work to consider
that impact of in-router caches, along with assigning servers of Content
Delivery Networks to demands, in an energy-e�cient routing.

We have proposed a new Integer Linear Programming model for sav-
ing energy in backbone networks by disabling links and caches of this
network and a polynomial-time heuristic for this problem. We compared
the performance of the solutions proposed by our heuristic against those
found by CPLEX. In small to medium-sized instances the solutions given
by the heuristic are close to that of the integer program. Being faster by
orders of magnitude, it allows to �nd good solutions for bigger networks,
where CPLEX was not able to produce any feasible solution in hours.

We studied instances based on real network topologies takenfrom
SNDLib. The total energy savings found oscillate around 20% for realis-
tic parameters. Part of energy saved solely due to introduction of caches
is up to 16% in our instances.

As a future work, the model could be extended to enable the usage
of a single cache to satisfy the demands of multiple cities, i.e. to let a
cache satisfy demands to di�erent routers and not only to itsown router.
The energy savings will probably grow in this model, howeverit would
be interesting to study how this solution could be deployed.

One could also look at di�erent network architectures. Thiswork
considered only the backbone. A next step could be introducing access
networks, leading to larger instances. As the savings due to caches grow
with network size, they should be substantially higher in this case. This
could also motivate study of new mechanisms, e.g. layered caching.
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CHAPTER 4
Maintaining Balanced Trees
For Structured Distributed

Streaming Systems

In this chapter, we move to content distribution in the application layer.
Peer-to-peer networks reduce the broadcasting redundancyby allowing
clients to share the content among themselves. There are twomajor
classes of peer-to-peer streaming networks: structured and unstructured.
While structured networks allow for lower overheads and higher band-
width utilization, concerns are raised about their robustness, up to the
point that virtually all deployed solutions are unstructured. In this chap-
ter, we attempt to answer these concerns. We show that repairing the
structure of a generic broadcasting tree, after any failure, can happen in
a short time.

4.1 Preliminary: live streaming overlay networks

There are two major classes of peer-to-peer live video streaming ap-
proaches. Their names vary among publications, the �rst onebeing
named eitherunstructured, mesh-based, gossipingor torrent-like ; the sec-
ond named eitherstructured or tree-based. This classi�cation was already
used in [ZLLY05].
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(a) Structured (b) Unstructured

Figure 4.1: A visualization of both major overlay classes

Early systems, like [hCRZ00], inuenced by IP multicast, attempted
at constructing a multicast tree to stream the media. Battling all the
possible shortcomings, this simple idea has evolved into elaborate al-
gorithms like SplitStream, proposed in [CDK+ 03]. Throughout all the
possible variations, the signature of this group of systemsis active main-
tenance of an overlay structure that clearly de�nes the dataow, thus
the namestructured overlays.

On the other hand we have systems inspired by the BitTorrent,one
of the best-known peer-to-peer protocols, described by Bram Cohen, its
original author, in [Coh03]. The core idea of this class of overlays is
organizing the peers into a random, highly-connected graphand dissem-
inating the data using a simple, probabilistic algorithm. The �rst in-
stance of an unstructured system was proposed in [BLBS03] asa way of
enhancing a single-tree overlay. In [ZLLY05] it was the base for the �rst
peer-to-peer network that streamed video to a big number of simultane-
ous clients. The distinguishing characteristic of this group of networks
is that they do not have an overlay structure that would de�nethe data
ow, thus the name unstructured overlays.

Figure 4.1 visualizes both concepts. It is important to note,that the
divide is mostly ideological. Watching forwarding historyof any single
packet will give us a tree. In [MR09] the protocol is plainly unstructured,
but an elaborate structure emerges in the analysis. A systemcan start



by random forwarding, but retain good paths e�ectively turning into
a structured one, like [LQK+ 08]. Finally there are systems, which �t
neither of the above descriptions. An example of that is AQCS,proposed
in [GLL09]. Despite that the classi�cation is well entrenched, up to the
point of studies comparing both classes, like [MRG07].

Unstructured systems are widely regarded the better choice,to the
extent that, up to our best knowledge, no structured live streaming sys-
tems have been deployed in practice. That is often explainedby the
complexity of making a structured system reliable. However,in this
chapter we show that reliability can be ensured, for a simple system,
e�ciently by a simple algorithm.

4.2 Publication

The remainder of this chapter corresponds toMaintaining Balanced Trees
For Structured Distributed Streaming Systemsby F. Giroire, R. Modrze-
jewski, N. Nisse and S. P�erennes, which is accepted for publication in the
proceedings of 20th International Colloquium on Structural Information
and Communication Complexity.

4.3 Introduction

Trees are inherent structures for data dissemination in general and par-
ticularly in peer-to-peer live streaming networks. Fundamentally, from
the perspective of a peer, each atomic piece of content has tobe received
from some source and forwarded towards some receivers. Moreover, most
of the actual streaming mechanisms ensure that a piece of information
is not transmitted again to a peer that already possesses it.Therefore,
this implies that dissemination of a single fragment de�nesa tree struc-
ture. Even in unstructured networks, whose main characteristic is lack
of de�ned structure, many systems look into perpetuating such under-
lying trees, e.g. the second incarnation of Coolstreaming [LQK + 08] or
PRIME [MR09].

Unsurprisingly, early e�orts into designing peer-to-peer video stream-
ing concentrated on de�ning tree-based structures for datadissemination.
These have been quickly deemed inadequate, due to fragilityand unused
bandwidth at the leaves of the tree. One possible �x to these weaknesses



was introduced in SplitStream [CDK+ 03]. The proposed system main-
tains multiple concurrent trees to tolerate failures, and internal nodes in
a tree are leaf nodes in all other trees to optimize bandwidth. The con-
struction of intertwined trees can be simpli�ed by a randomized process,
as proposed in Chunkyspread [VYF06], leading to a streaming algorithm
performing better over a range of scenarios.

As found in [LQK+ 08], node churn is the main di�culty for live
streaming networks, especially those trying to preserve structure. On
the other hand, in [ZSC10] authors embrace change. Their stochastic
optimization approach relies on constant random creating and break-
ing of relationships. To ensure network connectivity, nodes are said to
keep open connections with hundreds of potential neighbours. Another
approach, displayed in [LXHL11], is churn-resiliency by maintaining re-
dundancy within the network structure. Although concentrating on a
di�erent �eld, authors of [PTT09] face a similar to our own problem of
maintaining balanced trees, needed for connecting wireless sensors. How-
ever, their solution is periodical rebuilding the whole tree from scratch.
Our solution aims at minimizing the disturbance of nodes, whose an-
cestors were not a�ected by recent failures, as well as minimizing the
redundancy in the network.

The analysis of these systems focus on the feasibility, construction
time and properties of the established overlay network, seefor exam-
ple [CDK+ 03, VYF06] and [DFC07] for a theoretical analysis. But these
works usually abstract over the issue of tree maintenance. Generally, in
these works, when some elements (nodes or links) of the networks fail,
the nodes disconnected from the root execute the same procedure as for
initial connection. To the best of our knowledge, there are no theoreti-
cal analysis on the e�ciency of tree maintenance in streaming systems,
reliability is estimated by simulations or experiments as in [CDK+ 03].

In this paper, we tackle this issue by designing an e�cient mainte-
nance scheme for trees. Our distributed algorithm ensures that the tree
recovers fast to a \good shape" after one or multiple failures occur. We
give analytic upper bounds of the convergence time. To the best of our
knowledge, this is the �rst theoretical analysis of a repairprocess for
live streaming systems. While theO(n2) worst case bound seems high,
simulations shown in Section 4.7 suggest that the average case is closer
to O(log n), which is lower than the conceivable time of rebuilding a tree



from scratch.
The problem setting is as follows. A single source provides live media

to some nodes in the network. This source is the single reliable node
of the network, all other peers may be subject to failure. Each node
may relay the content to further nodes. Due to limited bandwidth, both
source and any other node can provide media to a limited number k � 2
of nodes. The network is organized into a logical tree, rooted at the
source of media. If nodex forwards the stream towards nodey, then
x is the parent of y in the logical tree. Note that the delay between
broadcasting a piece of media by the source and receiving by apeer is
given by its distance from the root in the logical tree. Hence our goal is
to minimize the tree depth, while following degree constraints.

As shown in [LQK+ 08], networks of this kind experience high rate of
node joins and leaves. Leaves can be both graceful, where a node informs
about imminent departure and network rearranges itself before it stops
providing to the children, or abrupt (e.g. due to connectionor hardware
failure). In this work, we assume areconnection process: when a node
leaves, its children reattach to its parent. This can be donelocally if
each node stores the address of its grandfather in the tree. Note that
this process is performed independently of the bandwidth constraint,
hence after multiple failures, a node may become the parent of many
nodes. The case of concurrent failures of father and grandfather can be
handled by reattaching to the root of the tree. Other more sophisticated
reconnection processes have been proposed, see for example[HLP+ 07].

This process can leave the tree in a state where either the bandwidth
constraints are violated (the degree of a node is larger thank) or the tree
depth is not optimal. Thus, we propose a distributedbalancing process,
where based on information about its degree and the subtree sizes of
its children, a node may perform a local operation at each turn. We
show that this balancing process, starting from any tree, converges to a
balanced tree and we evaluate the convergence time.

Related Work. Construction of spanning trees has been studied in the
context of self-stabilizing algorithms. Herault et al. propose in [HLP+ 07]
a new analytic model for large scale systems. They assume that any pair
of processes can communicate directly, under condition of knowing re-
ceiver's identi�er, what is the case in Internet Protocol. They addition-
ally assume a discovery service and a failure detection service. Under this



model they propose and prove correctness of an algorithm constructing a
spanning tree over a set of processes. Similar assumptions have been used
by Caron et al. in [CDPT08] to construct a distributed pre�x t ree and
by Bosilca et al. in [BCH+ 09] to construct a binomial graph (Chord-like)
overlay.

In this paper we assume the results of these earlier works: nodes can
reliably communicate, form connections and detect failures. We do not
analyze these operations at message level. Furthermore, weanalyze the
overlay assuming it is already a spanning tree. However, it mayhave an
arbitrary shape, e.g. be a path or a star (all nodes connecteddirectly to
the root). This can be regarded as maintaining the tree afterconnection
or failure of an arbitrary number of nodes.

Our results. In Section 4.4, we provide a formal de�nition of the prob-
lem and propose a distributed algorithm for the balancing process. The
process works in a synchronous setting. At each turn, all nodes are se-
quentially scheduled by an adversary and must execute the process. In
Section 4.5, we show that the balancing process always succeeds inO(n2)
turns. Then, in Section 4.6, we study a restricted version ofthe algo-
rithm in which a node performs an operation only when the subtrees
of its children are balanced. In this case, we succeeded in obtaining a
tight bound of �( n logn) on the number of turns for the worst tree. Fi-
nally, we show that the convergence is in fact a lot faster in average for
a random tree and takes a logarithmic number of turns.

4.4 Problem and Balancing Process

In this section, we present the main de�nitions and settingsused through-
out the paper, then we present our algorithm and prove some simple
properties of it.

Notations

This section is devoted to some basic notations.
Let n 2 N� . Let T = ( V; E) be a n-node tree rooted inr 2 V. Let

v 2 V be any node. ThesubtreeTv rooted at v is the subtree consisting
of v and all its descendants. In other words, ifv = r , then Tv = T and,



otherwise, lete be the edge betweenv and its parent, Tv is the subtree
of T n e = ( V; E n f eg) containing v. Let nv = jV(Tv)j.

Let k � 2 be an integer. A nodev 2 V(T) is underloadedif it has
at most k � 1 children and at least one of these children is not a leaf.
v is said overloadedif it has at least k + 1 children. Finally, a node v
with k children is imbalancedif there are two childrenx and y of v such
that jnx � ny j > 1. A node isbalancedif it is neither underloaded, nor
overloaded nor imbalanced. Note that a leaf is always balanced.

A tree is a k-ary tree if it has no nodes that are underloaded or
overloaded, i.e., all nodes have at mostk children and a node with< k
children has only leaf-children. A rootedk-ary tree T is k-balancedif,
for each nodev 2 V(T), the sizes of the subtrees rooted in the children
of v di�er by at most one. In other words, a rooted tree isk-balanced if
and only if all its nodes are balanced.

As formalized by the next claim,k-balanced trees are good for our live
streaming purpose since such overlay networks (k being small compared
with n) ensure a low dissemination delay while preserving bandwidth
constraints.

Claim 1. Let T be an-node rooted tree. IfT is k-balanced, then each
node ofT is at distance at mostblogk nc from r .

Distributed Model and Problem

Nodes are autonomous entities running the same algorithm. Each node
v has a local memory where it stores the sizenv of its subtree, the size
of the subtrees of its children and the size of the subtrees ofits grand-
children, i.e., for any childx of v and for any child y of x, v knows nx

and ny.
Computations performed by the nodes are based only on the local

knowledge, i.e., the information present in the local memory and that
concerns only nodes at distance at most 2. We consider a synchronous
setting. That is, the time is slotted in turns. At each turn, any node
may run the algorithm based on its knowledge and, depending on the
computation, may do one of the followingoperations. In the algorithm
we present, each operation done by a nodev consists of rewiring at most
two edges at distance at most 2 fromv. More precisely, letv1, vk and



vk+1 be children ofv, a be a child ofv1 and b be a child ofvk (if any).
The nodev may perform:

Pull operation replace the edgef v1; ag by the edgef v; ag. A grand-
child a of v then becomes a child ofv. This operation is denoted
by pull (a) and illustrated in Figure 4.2a;

Push operation replace the edgef v; vk+1 g by the edgef vk ; vk+1 g. A
child vk+1 of v then becomes a child of another childvk of v. This
operation is denoted bypush (vk+1 ;vk ), see Figure 4.2b;

Swap operation replace the edgesf v1; ag and f vk ; bg by the edges
f v1; bg and f vk ; ag. The children v1 and vk of v exchange two of
their own children a and b. This operation is denoted byswap(a,b)
and an example is given in Figure 4.3c. Here,a or b may not exist,
in which case, one ofv1 and vk \wins" a new child while the other
one \looses" a child. This case is illustrated in Figure 4.3d.

In all cases, the local memory of the at mostk2 + 1, including the
parent of v, nodes that are concerned are updated. Note that each of
these operations may be done using a constant number of messages of
sizeO(log n).

In this setting, at every turn, all nodes sequentially run the algorithm.
In order to consider the worst case scenario, the order in which all nodes
are scheduled during one turn is given by an adversary. The algorithm
must ensure that after a �nite number of turns, the resultingtree is k-
balanced. We are interested in time complexity of the worst case scenario
of the repair. That is, the performance of the algorithm is measured by
the maximum number of turns after which the tree becomesk-balanced,
starting from any n-node tree.

The Balancing Process

In this section, we present our algorithm, calledbalancing process. We
prove some basic properties of it. In particular, while the tree is notk-
balanced, the balancing process ensures that at least one node performs
an operation. In the next sections, we prove that the balancing process
actually allows to reach ak-balanced tree after a �nite number of steps.

At each turn, a node v executes the algorithm described on Fig-
ure 4.3. To summarize, an underloaded node does apull , an over-
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Algorithm executed by a node v in a tree T. If v is not a leaf, let
(v1; v2; � � � ; vd) be the d � 1 children of v ordered by subtree-size, i.e.,
nv1 � nv2 � � � � � nvd .

1. If v is underloaded (thend < k ), let a be a child ofv1 with biggest
subtree size.Then node v executespull (a). // That is, a
becomes a child ofv.

2. Else if v is overloaded (thend > k � 2), then node v executes
push(vk+1 ; vk ).

// That is, vk+1 becomes a child ofvk .

3. Else if v is imbalanced (then d = k) and if v1 and vk are not
overloaded, let a and b be two children of v1 and vk respectively
such that jnv1 � na + nb � (nvk � nb + na)j is minimum (a (resp.
b) may be not de�ned, i.e., na = 0 (resp., nb = 0), if v1 (resp vk )
is underloaded).

Then node v executeswap(a; b). // That is, a and b exchange
their parent.

Figure 4.3: Balancing Process

loaded node does apush and an imbalanced node (whose children are
not overloaded) does aswap operation. Note that a swap operation
may exchange a subtree with an empty subtree, but cannot create an
overloaded node. Intuitively, the children a�ected bypush and pull
are chosen to get probably the least imbalance (reduce the biggest or
merge the two small). It is important to emphasise that the balancing
process requires no memory of the past operations.

Note that if the tree if k-balanced, no operation are performed, and
that, if the tree is not, at least one operation is performed.

Claim 2. If T is not k-balanced, and all nodes execute the balancing
process, then at least one node will do an operation.

In the next section, we prove that, starting from any tree, the num-
ber of operations done by the nodes executing the balancing process is
bounded. Together with the previous claim, it allows to prove



Theorem 1. Starting from any tree T where each node executes the
balancing process, after a �nite number of steps,T eventually becomes
k-balanced.

Before proving the above result in next Section, we give a simple
lower bound on the number of turns required by the Balancing Process.
A star is a rooted tree where any non root-node is a leaf.

Lemma 1. If the initial tree is a n-node star, then at least
( n) turns
are needed before the resulting tree isk-balanced.

4.5 Worst case analysis

In this Section we obtain an upper bound ofO(n2) turns needed to
balance the tree. We prove it using a potential function, whose initial
value is bounded, integral and positive, may rise in a bounded number
of turns and, otherwise, strictly decreases. For clarity ofpresentation we
assume we want to obtain a 2-balanced tree. The proofs can be extended
to larger k. Due to lack of space, most of them are only sketched here
and can be found in [GRNP13].

Lemma 2. Starting from any n-node rooted treeT, after having executed
the Balancing Process duringO(n) turns, no node will do apush oper-
ation anymore.

Let Q be the sum over all nodesu 2 T of the distance betweenu and
the root.

Lemma 3. Starting from any n-node rooted treeT, there are at most
O(n2) distinct (not necessarily consecutive) turns with apull operation.
More precisely, the sum of the sizes of the subtrees that are pulled during
the whole process does not exceedn2.

Proof. First, by Lemma 2, there are nopush operations after O(n)
turns. Note that a swap operation does not changeQ. Moreover, a
pull operation of a subtreeTv makesQ decrease bynv. Since Q =P

u2 V (T ) d(u; r ) � n2, the sum of the sizes of the subtrees that are pulled
during the whole process does not exceedn2.



Potential function. To prove the main result of this section, we de�ne
a potential function and show that: (1) the initial value of the potential
function is bounded; (2) its value may raise due topull operations, but
in a limited number of turns and by a bounded amount; (3) aswap
operation may not increase its value; (4) if nopush nor pull operation
are done, there exists at least one node doing aswap operation, strictly
decreasing the potential function.

We tried simple potential functions �rst. However, they led either to
an unbounded number of turns with non-decreasing value, or to a larger
upper bound. For example, it would be natural to de�ne the potential
of a node as the di�erence between its subtree sizes. For thispotential
function, (1) (2) and (3) are true, but, unfortunately, for some trees the
potential function does not decrease during a turn. This function can be
patched so that each operation makes the potential decrease: multiplying
the potential of a node by its distance to the root. However, the potential
in this case can reachO(n3).

The potential function giving the O(n2) bound is de�ned as follows.
Recall that we consider an-node treeT rooted in r such that all nodes
have at most two children. LetE0 = n and, for any 0� i � d log(n +1) e,
let E i = 2E i +1 + 1. Note that ( E i ) i �d log(n+1) e is strictly decreasing, and
0 < E dlog(n+1) e � 1. Intuitively, E i is the mean-size of a subtree rooted
in a node at distancei from the root in a balanced tree withn nodes.

Let K i be the set of nodes ofT at distance exactly i � 0 from the
root and jK i j = ki , and, for any 0� i � d log(n + 1) e, let mi = 2 i � ki .
Intuitively, mi represents the number of nodes, at distancei from the
root, missing compared to a complete binary tree.

For any v 2 V(T) at distance 0� i � d log(n + 1) e from the root, the
default of v, denoted by� (v), equalsnv � d E i e if nv > E i and bE i c � nv

otherwise. Note that � (v) � 0 sincenv is an integer.
Let the potential at distance i from r , 0 � i � d log(n + 1) e, be

Pi = mi � bE i c +
P

u2 K i
� (u). Finally, let us de�ne the potential P =P

0� i �d log(n+1) e Pi . Since� (u) � n for any u 2 V(T), and
P

0� i �d log(n+1) e mi +
ki � 2n, then P(T) = O(n2).

Lemma 4. For any n-node rooted treeT, a pull operation of a subtree
Tv may increase the potentialP by at most2nv.

Let v be a node at distancedlog(n + 1) e > i � 0 from the root r



of T. v is called i -median if it has one or two children a and b and
na > E i +1 > n b (possibly v has exactly one child andnb = 0).

Lemma 5. For any n-node rooted treeT, a swap operation executed by
any nodev does not increase the potentialP. Moreover, if v is (i � 1)-
median thenP strictly decreases by at least one.

This lemma is proved by calculating the new potential, in allthe
possible cases of relative sizes of the children andE i before and after the
operation.

Let v be a node at distance 0� i < dlog(n + 1) e � 1 from the root
r of T. v is called i -switchable if it has one or two children a and b
and na > E i +1 > n b (possibly v has only exactly child, andnb = 0),
na � nb � 2 and none of its ancestors can execute aswap operation.
Note that, if a node isi -switchable, then it is i -median.

Lemma 6. Let T be a tree where nopush nor pull operation is possible.
If a node v is i -switchable, then eitherv can do a swap operation, or
0 � i < dlog(n + 1) e � 2 and it has a(i + 1) -switchable child.

Lemma 7. At each turn when nopull nor push operations are done,
if the tree is not balanced, then there is ai -switchable node,0 � i <
dlog(n + 1) e � 1.

Theorem 2. Starting from any n-node rooted tree, the balancing process
reaches a2-balanced tree inO(n2) turns.

Proof. By Lemma 2, afterO(n) turns, no push operations are executed
anymore and all nodes have at most two children. From then, there may
have only pull or swap operations. Moreover, by Claim 2, there is at
least one operation per turn whileT is not balanced. From Lemma 3,
there are at mostO(n2) turns with a pull operation. Once nopush
operations are executed anymore, from Lemmata 3, 4 and 5, potential
P can increase by at mostO(n2) in total (over all turns). Moreover, by
Lemma 5, if a i -median node executes aswap operation, the potential
P strictly decreases by at least one.

By Lemma 7, at each turn when no pull norpush operations are
done, there is ani -switchable node, 0� i < dlog(n + 1) e � 1. Thus, by
Lemma 6, at each such turn, there is ani -switchable that can execute a



swap operation. Since ai -switchable node isi -median (0� i < dlog(n +
1)e � 1), by Lemma 5, the potentialP strictly decreases by at least one.

The result then follows from the fact thatP � n2.

4.6 Adding an extra global knowledge to the nodes

In this section, we assume an extra global knowledge: each node knows
whether it has a descendant that is not balanced. This extra information
is updated after each operation. Then, our algorithm is modi�ed by
adding the condition that any nodev executing the balancing process
can do apull or swap operation only if all its descendants are balanced.
Adding this property allows to prove better upper bounds on the number
of steps, by avoiding conict between an operation performed by a node
and an operation performed by one of its not balanced descendant. We
moreover prove that this upper bound for our algorithm is asymptotically
tight, reached when input tree is a path. The approach presented in this
section is speci�c fork = 2. I.e., the objective of the Balancing Process
is to reach a 2-balanced tree.

First, we de�ne a function f used to bound the number of turns
needed to balance a tree consisting of two balanced subtreesand a com-
mon ancestor. Letf : N � N ! N be the function de�ned recursively as
follows.

8a � 0; f (a; a) = 0
8a � 1; f (a; a � 1) = 0
8a � 2; f (a;0) = 1 + f (

�
a� 1

2

�
; 0)

8a > 2; 81 � b < a � 1; f (a; b) = 1 + max
�
f (

�
a� 1

2

�
;
�

b� 1
2

�
); f (

�
a� 1

2

�
;
�

b� 1
2

�
)
�

Lemma 8. For any a � 0, a � b � 0, f (a; b) � maxf 0; log2 ag.

Now, we give a function bounding the number of turns needed to
balance any tree of a given size. Letg : N ! N be the function de�ned
recursively as follows.

8n 2 f 0; 1g; g(n) = 0
8n > 1; g(n) = max a� b� 0;a+ b= n� 1(maxf g(a); g(b)g + f (a; b))

Lemma 9. For any n � 0, g(n) � maxf 0; n log2 ng.



We now state our main results:

Theorem 3. Starting from any n-node rooted tree, the balancing process
with global knowledge reaches a2-balanced tree inO(n logn) turns.

Next theorem shows that there are trees starting from which the
balancing process actually uses a number of turns of the order of the
above upper bound.

Theorem 4. Starting from an n-node path rooted in one of its ends,
the balancing process with global knowledge reaches a2-balanced tree in

( n logn) turns.

4.7 Simulations

In the previous sections we obtained upper and lower bounds for the
maximum number of turns needed to balance a tree of a given size. A
signi�cant gap between those bounds raises the question: which bound
is closer to what happens for random instances? We investigate the per-
formance of the algorithm running an implementation under adiscrete
event simulation. Scheduling of nodes within a turn is givenby a simple
adversary algorithm. First, it detects which nodes can perform no opera-
tion. It schedules them to move �rst, to ensure that they do not perform
operations enabled by operations of other nodes. Then, it schedules the
remaining nodes in a random order.

The process starts in a random tree. It is obtained by assigning
random weights to a complete graph and building a minimum weight
spanning tree over it. Figure 4.4 displays the number of turnsit took
to balance trees of progressing sizes. For each size the numbers are
aggregated over 10000 di�erent starting trees. The solid line marks the
average, dotted lines the minimum and maximum numbers of turns and
error bars show the standard deviation.

What can be seen from this �gure, is that the number of turns spent
to balance a random tree progresses logarithmically in regard to the tree
size. This holds true both for average and the worst cases encountered.
This is signi�cantly less even than the lower bound on maximum time.
This is because that comes from the particular case of star asthe starting
tree, which is randomly obtained with probability 1

n! and did not occur
in our experiments for bigger values ofn.
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Figure 4.4: Balancing a random tree

4.8 Conclusions and future research

We have proposed a distributed tree balancing algorithm andshown
following properties. The algorithm does stop only when thetree is bal-
anced. After at most 
( n) turns there are no overloaded nodes in the
tree, what corresponds to a broadcast tree where every node receives
content. This bound is reached when the starting tree is a star. Bal-
ancing process after there are no overloaded nodes lasts at most O(n2)
turns. With the additional restriction that a node acts only if all of its
descendants are balanced, the number of turns to balance anytree is
O(n logn). This bound is reached when the starting tree is a path.

An obvious, but probably hard, open problem is closing the gapbe-
tween the O(n2) upper bound and the 
( n) lower bound on balancing
time. Another possibility is examination of the algorithm'saverage be-
haviour, which as hinted by simulations should yieldO(log n) bound on
balancing time.

The algorithm itself can be extended to handle well the case of trees
that are not regular. Furthermore, in order to approach a practical sys-
tem, moving to multiple trees would be highly bene�cial. Allowing the
algorithm to stop with more imbalance, where children are allowed to dif-
fer by a given threshold instead of one, could lead to a fasterconvergence.
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CHAPTER 5
Analysis of the Repair Time

in Distributed Storage
Systems

In this �nal contribution towards reducing network ine�cie ncies, we
move from content distribution to distributed applications. One such
application, with big bandwidth requirements, are online backups. A
conservative approach to this task employs data centers. However, these
usually are far away from the users. Instead, it is possible to use storage
located at the perimeters of other nearby users of a distributed system.
This, again, raises questions about reliability. In this chapter, we look
into expected data lifetime in a distributed storage system, where nodes
are subject to faults and departures and are connected with alimited
bandwidth. This work makes use of queuing theory and more generally
Markov chains, which are introduced in the preliminary section.

5.1 Preliminary: Queues and Markov chains

When looking into the distributed storage system in this chapter, we
analyze the distribution of data and perform a Markov chain analysis
to deduce the data life time. First, we �nd out how the interactions
of various elements of the system can be hidden behind simplefailure
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Figure 5.1: An example Markov chain of aM � =D=1 queue, with service rate
A, arrival rate l and batch size� . Only states which can transition to or from
state i are shown.

and repair rates. Then, we model the repair process as a single queue
of all blocks in the network that are in need of repair. Queuing theory
provides us with tools to deal with such models. A good example of
further reading on the subject can be the book [Coo81].

The exact type of queue we have isM � =D=1. M � means that arrivals
are batch Poissonian. In fact, there are batches of two possible sizes, each
type coming at its own rate of the Poisson distribution.D states that
the service time is deterministic, as we know nearly exactlyhow fast the
peers are able to repair blocks. Finally, 1 stands for a singleserver, which
is the whole network. The queue is in fact a simple Markov chain, similar
to the one exempli�ed on �gure 5.1. We proceed to �nd the steady state
of it. From there, we can infer interesting qualities, like probability of
losing data or bandwidth requirements.

5.2 Publication

The remainder of this chapter corresponds toRepair Time in Distributed
Storage Systemsby F. Giroire, S. K. Gupta, R. Modrzejewski, J. Mon-
teiro and S. P�erennes, which is accepted for publication inthe proceed-
ings of 6th International Conference on Data Management in Cloud, Grid
and P2P Systems.

5.3 Introduction

Nano datacenters (NaDa) are highly distributed systems ownedand con-
trolled by the service provider. This alleviates the need ofincentives and
mitigates the risk of malicious users, but otherwise they face the same



challenges as peer-to-peer systems. The set-top boxes realizing them are
connected using consumer links, which can be relatively slow, unreliable
and congested. The devices themselves, compared to serversin a tra-
ditional datacenter, are prone to failures and temporary disconnections,
e.g. if the user cuts the power supply when not in home. When originally
proposed in [VLM+ 09], they were assumed to be available no more than
85% of the time, with values as low as 7% possible.

In this paper we concentrate on application of NaDa, or any similar
peer-to-peersystem, for backup storage. In this application, users want
to store massive amounts of data inde�nitely, accessing them very rarely,
i.e. only when original copies are lost. Due to risk of peer failures
or departures, redundancy data is introduced to ensure longterm data
survival. To this end, most of the proposed storage systems use either
the simple replication or the space e�cient erasure codes [WK02], such
as the Reed-Solomon or Regenerating Codes [DGWR07].

The redundancy needs to be maintained by a self-repair process. Its
speed is crucial to determine the system reliability, as long repairs expo-
nentially increase the probability of losing data. The limiting factor, in
this setting, is the upload link capacity.

Imagine a scenario where the system is realized using home connec-
tions, out of which an average 128kbps are allocated to the backup ap-
plication. Furthermore, each device is limited to 300GB, while average
data stored is 100GB, redundancy is double, 100 devices takepart in each
repair and the algorithms are as described in the following sections. A
naive back-of-envelope computation gives that the time needed to repair
contents of a failed device is 17 hours (= 100� 8 � 109kb=(100� 128kbps)).
This translates, by our model, to a probability of data loss per year
(PDLPY) of 10 � 8. But, taking into account all �ndings presented in this
work, the actual time can reach 9 days. This gives a PDLPY of 0.2,
many orders of magnitude more than the naive computation. Hence, it
is important to have models that estimate accurately the repair time for
limited bandwidth.

Our contribution

We propose a new analytical model that precisely estimates the repair
time and the probability of losing data in distributed storage systems.
This model takes into account the bandwidth constraints andinherent



workload imbalance (young peers inherently store less datathan the old
ones, thus they contribute asymmetrically to the reconstruction process)
e�ect on the e�ciency. It allows system designers to obtain an accurate
choice of system parameters to obtain a desired data durability.

We discuss how far the distribution of the reconstruction time given
by the model is from the exponential, classically used in theliterature.
We exhibit the di�erent possible shapes of this distribution in function
of the system parameters. This distribution impacts the durability of
the system. We also show a somewhat counter-intuitive result that we
can reduce the reconstruction time by using a less bandwidthe�cient
Regenerating Code. This is due to a degree of freedom given byerasure
codes to choose which peers participate in the repair process.

To the best of our knowledge, this is the �rst detailed model pro-
posed to estimate the distribution of the reconstruction time under lim-
ited bandwidth constraints. We validate our model by an extensive set
of simulations and by test-bed experimentation using theGrid'5000
platform, see [Gri] for its description.

Related Work

Several works related to highly distributed storage systems have been
done, and a number of systems have been proposed [CDH+ 06, BDET00,
BTcC+ 04, KBC+ 00], but few theoretical studies exist. In [RP06, ADN07,
DA06] the authors use a Markov chain model to derive the lifetime of
the system. In these works, the reconstruction times are independent
for each fragment. They follow an exponential or geometric distribution,
which is a tunable parameter of the models. However, in practice, a large
number of repairs start at the same time when a disk is lost, correspond-
ing to tens or hundreds of GBs of data. Hence, the reconstructions are
not independent of each other. Furthermore, in these models, only the
average analysis are studied and the impact of congestion isnot taken
into account.

Dandoush et al. in [DAN09] perform a simulation study of the down-
load and the repairing process. They use the NS2 simulator to measure
the distribution of the repair time. They state that a hypo-exponential
distribution is a good �t for the block reconstruction time. However,
again, concurrent reconstructions are not considered. Picconi et al.
in [PBS07] study the durability of storage systems. Using simulations



they characterize a function to express the repair rate of systems based
on replication. However, they do not study the distribution of the re-
construction time and the case of erasure coding. Venkatesan et al.
in [VIH12] study placement strategies for replicated data, deriving a
simple approximation for mean time to data loss by studying the ex-
pected behaviour of most damaged data block. The closest to our work
is [FLP+ 10] by Ford et al., where authors study reliability of distributed
storage in Google, what constitutes a datacenter setting. However, they
do not look into load imbalance, their model tracks only onerepresenta-
tive data fragment and is not concerned by competition for bandwidth.

Organization

The remainder of this paper is organized as follows: in the next section
we give some details about the studied system, then in Section 5.5 we
discuss the impact of load imbalance. The queueing model is presented in
the Section 5.6, followed by its mathematical analysis. Theestimations
are then validated via an extensive set of simulations in Section A.5.
Lastly, in Section 5.8, we compare the results of the simulations to the
ones obtained by experimentation.

5.4 System Description

This section outlines the mechanisms of the studied system and our mod-
elling assumptions.

Storage. In this work we assume usage of the Regenerating Codes, as
described in [DGWR07], due to their high storage and bandwidth e�-
ciency. More discussion of them follows later in this section. All data
stored in the system is divided intoblocksof uniform size. Each block
is further subdivided into s fragments of sizeL f , with r additional frag-
ments of redundancy. All thesen = s + r fragments are distributed
among random devices. We assume that in practice this distribution
is performed with a Distributed Hash Table overlay like Pastry [RD01].
This, due to practical reasons, divides devices into subsets calledneigh-
bourhoodsor leaf sets.

Our model does not assume ownership of data. The device originally
introducing a block into the system is not responsible for its storage or



maintenance. We simply deal with a total number ofB blocks of data,
which results in F = n � B fragments stored inN cooperating devices.
As a measure of fairness, orload balancing, each device can store up to
the same amount of data equal toC fragments. Note thatC can not be
less than average number of fragments per device�D = F=N.

In the following we treat a device or peer and its disk as synonyms.

Bandwidth. Devices of NaDa are connected using consumer connec-
tions. These, in practice, tend to be asymmetric with relatively low
upload rates. Furthermore, as the backup application occasionally up-
loads at maximum throughput for prolonged times, while the consumer
expects the application to not interfere with his network usage, we as-
sume it is allocated only a fraction of the actual link capacity. Each
device has a maximum upload and download bandwidth, respectively
BWup and BWdown . We set BWdown = 10BWup (in real o�erings, this
value is often between 4 and 20). The bottleneck of the systemis con-
sidered to be the access links (e.g. between a DSLAM and an ADSL
modem) and not the network internal links.

Availability and failures. Mirroring requirements of practical systems,
we assume devices to stay connected at least a few hours per day. Follow-
ing the work by Dimakis [DGWR07] on network coding, we use values
of availability and failure rate from the PlanetLab [Pla] and Microsoft
PCs traces [BDET00]. To distinguish transient unavailability, which for
some consumers is expected on a daily basis, from permanent failures, a
timeout is introduced. Hence, a device is considered as failed if it leaves
the network for more than 24 hours. In that case, all data stored by it
is assumed to be lost.

The Mean Time To Failure (MTTF) in the Microsoft PCs and the
PlanetLab scenarios are respectively 30 and 60 days. The device failures
are then considered as independent, like in [RP06], and Poissonian with
mean value given by the traces explained above. We consider adiscrete
time in the following and the probability to fail at any given time step
is denoted as� = 1=MTTF .

Repair process. When a failure is detected, neighbours of the failed
device start a reconstruction process, to maintain desiredredundancy



level. For each fragment stored at the failed disk, a random device from
the neighbourhood is chosen to be thereconstructor. It is responsible
for downloading necessary data from remaining fragments ofthe block,
reconstructing and storing the fragment.

Redundancy schemes. Minimum Bandwidth Regenerating Codes, as-
sumed in this paper, are very e�cient due to not reconstructing the
exact same lost fragment, but creating a new one instead, in the spirit
of Network Coding. The reconstructor downloads, combines and stores
small subfragmentsfrom d devices having other fragments of the repaired
block. We call d the repair degree,s � d � n. Construction of the code
requires some additional redundancy for each fragment. In other words
L r , the total amount of data transferred for a repair of a fragment, is
greater than L f by some overhead factor. This factor, the e�ciency of
the code, has been given for MBR in [DGWR07] as:

� MBR (d) =
2d

2d � s + 1
:

The most bandwidth e�cient case is clearly whend = n � 1. However,
as we will show in following sections, it may be bene�cial to set it to a
lower value to give the reconstruction an additional degreeof freedom.

The model presented in this work was also successfully applied to
other redundancy schemes. Minimum Storage Regenerating Codes, also
de�ned in [DGWR07], are more space e�cient at the cost of additional
transfer overhead. Reed-Solomon codes, more popular in practice, are
reconstructed by recreating the input data and then coding again the lost
fragment. In both cases the only di�erence for the model are di�erent
values ofL r . In practical systems, it may be interesting for RS-based
systems to reconstruct at one device, but store the new fragment on some
other one. This is especially true forsaddle-based systems, where we wait
until a few fragments of a block are lost, to repair them all atonce. The
model gives good results also for these more complicated cases. We omit
them due to lack of space, and because this only brings slightly longer
analysis with little new insight.



5.5 Preliminary: Impact of Disk Asymmetry

In this section we show that the e�ciency of the system is a�ected by
the imbalanced distribution of data among devices. Then, weestimate
analytically this imbalance and its impact. After this preliminary study,
the de�nition of the queuing model is given in Section 5.6.

Factor of e�ciency. When a device fails, it is replaced by a new de-
vice with an empty disk. Since disks �ll up during the system life, a
recently replaced disk is empty, while an old disk contains many frag-
ments. Hence, at any given time, disks with very heterogeneous number
of fragments are present in the system. This heterogeneity has a strong
impact on the reconstruction process: (1) when a disk dies, the number
of block reconstructions that start depends on the number offragments
present in this disk. A lot of fragments are lost if the disk was full, but
much less for a young disk. (2) during the repair, the deviceshave to
send fragments to the reconstructors that rebuild the missing fragments.
A device storing more fragments has to send a lot more fragments dur-
ing this phase than a device with fewer fragments. Hence, such devices
become a bottleneck of the system. On the other hand, the lessloaded
devices stay idle during some part of the time.

To estimate the impact of this imbalance on the system, we introduce
a factor of e�ciency � when the system is under load, de�ned as

� (load) =
work

min(load; throughput)

where load is the sum, over all devices, of the number of fragments in
queues at the beginning of the time step;throughput is the maximum
number of fragments that can be reconstructed by the whole system in
one time step (BWup�N �� , accounted in time steps of size� ); and work
is the number of fragments that were e�ectively uploaded by the devices
during the time step. When� = 1, the system works at its maximum
speed, meaning that no device was idle while another one could not �nish
its work. Note that � greatly depends of the load. If the load is very
large, compared to the bandwidth of the system, every deviceworks at
almost full capacity and the e�ciency is close to one. Similarly, when the
load is small, everybody has few fragments to upload and all the work is



Table 5.1: Summary of the main notations.

N Total number of devices
s Number of initial fragments of a block
r Number of redundancy fragments of a block
n Number of fragments of a block,n = s + r
d Repair degree of the Regenerating Code,

by default d = n � 1
� MBR E�ciency of the Regenerating Codes

L f Size of a fragment, in bytes
L r Amount of data to repair a fragment
B Total number of blocks in the system
F Total number of fragments in the system
� Peer failure rate (� = 1=MT T F )

NF Number of devices with full disks
' Ratio of full disks, NF =N
C Capacity of a disk (number of fragments)
�D Average number of fragments per disk
x Disk size factor, x = C=D

BWup Peer upload bandwidth (kbit/s)
v Rate at which a disk �lls up (fragments per cycle)

Tmax Number of time steps to �ll up a disk, Tmax = C=v

done. But, between these two cases, the imbalance between the devices
causes a range of ine�ciencies.

Estimation of the Imbalance The disk size has in fact a very strong
e�ect on the general imbalance of the system. Figure 5.2 showsa his-
togram with the number of fragments in failed disks. These results are
obtained by simulation ofN = 200 devices withMTTF = 60 days (1440
hours). The amount of data per device is 14GB. We sets = r = 7, and
the fragment sizel r = 2 MB. Hence we have a total ofF = 7�105 frag-
ments in the system. Then, the average number of fragments per device
is �D = 7000.

We denote the disk capacity of devices asC (number of fragments).
Hence,x = C=D is the disk size factor, i.e., how big is the disk when
compared to the average amount of fragments per disk in the system.



When the factor x = 3 (that is, disk capacity C = 21; 000 fragments),
the imbalance is very large. At the opposite, whenx = 1:1, the disk size
is close to the average number of pieces per disk in the system. Hence,
most of the disk �llings become full, 83% in our example. The disks that
are not full (17%) have an almost uniform distribution. In the following,
we give a method to calculate that imbalance analytically.

Disk age and disk size distributions can be precisely approximated
for systems with a large number of blocks. The block fragments are re-
constructed by devices that have free space in their disks (i.e., there are
N � NF such devices, whereNF is the number of devices with full disks).
Since these devices are chosen at random to reconstruct the blocks, at
each time step the distribution of the rebuilt fragments among devices
follows a multinomial distribution with parameters: the number of re-
built fragments and 1=(N � NF ). As the multinomial distribution is very
concentrated around its mean, the�lling up process can be approximated
by an a�ne process of its age, in which, at each time step, each disk gets
the number of reconstructed fragments divided by the numberof non-full
devices, roughly

v =
�F

N � NF

where � is the device failure rate. This �lling process stops when the
disk is full. That is after a number of time stepsTmax such that C =
�T maxF=(N � NF ), whereC is the device disk capacity (maximum num-
ber of fragments per disk). The number of fragments of a disk thus
depends on the age of the disk.

At each time step a disk has a probability� to experience a failure.
Hence, the dead age of a disk follows a geometric law of parameter � .
That is, Pr[dead age =T] = (1 � � )T � 1�: Hence the distribution of the
number of fragments in a disk follows a truncated geometric distribution,
that is, for 1 � T < Tmax

Pr[D = vT] = (1 � � )T � 1�; and
Pr[D = C] = 1 � (1 � � )Tmax :

(5.1)

Note that here v, NF , and Tmax are unknown for the moment. The
value of v depends on the number of full disksNF , and of Tmax depends
directly of the �lling rate v. To �nd the value of these variables, we
use the fact that we know the expectation of the geometric distribution
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which is just the average number of fragments inside the system. This
number isF=N (we neglect here the fragments that are in reconstruction,
�rst order approximation for small � ). Hence, we getE[D] = D := F=N.
By de�nition, the expectation is also given by

E[D] =
Tmax � 1X

i =1

vi(1 � � ) i � 1� + C(1 � (1 � � )Tmax ):

To obtain Tmax , we now have to solve the equation:

1
x

=
1 � � � (1 � � )Tmax +1

�T max
;

obtained by identifying the two expressions for the expectation, by di-
viding by v, and becauseC = xD. By solving that equation using the
Maple software, we obtain that

Tmax =
�W ( 1

� ln(1 � � )x(1 � � )
x + � � x�

� ) � ln(1 � � )x(1 � � )
ln(1 � � )�

;

whereW is the Lambert W function. For example, whenMTTF = 1440
hours (� = 1=1440), the number of full disks and the number of time
steps to �ll up a disk are displayed in Table 5.2a. We verify that these
values are very close to the ones obtained by simulation (Figure 5.2).

E�ects of the Imbalance on the Bandwidth E�ciency Since some
devices store less fragments, their load during the reconstruction process
is also smaller. Thus, the overall bandwidth of the system isnot fully
utilized.

In a system using Regenerating Codes encoding, to repair a fragment,
d = n � 1 small sub-fragments have to be sent to the device in charge of
the reconstruction. Simulations show that the speed of the reconstruc-
tion is given by the time that the most loaded devicetakes to send the
fragment. This time is in turn given by the number of fragments stored
by this device. We get this number from the distribution of the num-
ber of fragments per device previously derived. For a majority of data
blocks,the most loaded device storing one of its fragment is in fact a full
disk. This claim is valid for most systems in practice, that is, for the
parameters usually found in the literature.



x N F (in %) Tmax (hours)

1.1 83 278
1.5 42 1257
2 20 2293
3 6 4060

(a)

x 1.1 1.5 2 3

'x 0.91 0.63 0.4 0.18
Pfull 1 � 10� 14 1 � 10� 5 1 � 10� 3 0.92

(b)

Table 5.2: (a) The number of full disks and the number of time steps to �ll up
a disk, for MT T F = 1440 hours. (b) Fraction of full disks and the probability
of a block to have at least one fragment on a full disk.

Indeed, recall that NF denotes the number of full disks (and' =
NF =N the fraction of full disks). We compute the probability for ablock
that one of its fragment is on a full device (withn � 1 available fragments
when it is being repaired). Recall also that a full disk stores x times the
average number of fragments per disk in the system. Then, thefraction
of fragments stored on full disks is'x . The probability of a block to
have at least one fragment on a full disk is then

Pfull = 1 � (1 � x' )n� 1:

For a system with n = 14 (the value of NF for di�erent values of x is
given above), the probability for di�erent disk capacitiesis displayed in
Table 5.2b. We see that for most practical systems, each block has a
fragment on a full disk. Hence, it is enough to consider the work done by
the most loaded devices to obtain the reconstrution times. These devices
have a load greater than the average load by a factor of1

x .

Factor of e�ciency. An other way to phrase it: the factor of e�ciency
� of the system is approximately

� �
1
x



wherex is the fraction between disk capacity and the average numberof
fragments per disk.

More complex models for large disk capacities. We consider that in
practice, as a measure of load balancing, the storage systemsets a limit
of disk capacity not too far from the average amount of data stored. A
factor x between 1.1 and 3 seems reasonable. For systems with a very
large disk capacity (for examplex = 10), � has to be estimated in a
di�erent way. In that case a large number of blocks store no fragments
on full disks. It is thus not enough to only consider the load of the
full disks. This di�culty can be addressed by using amulti-queue model.
The devices are partitioned into a numberC of classes, depending on the
number of data they store. The model has one queue per class. When
a disk fails, we estimate the number of fragments that each class has to
upload, that is how much work they do, and in this way derive the factor
of e�ciency � . The analysis of this model is beyond the scope of our
study.

5.6 The Queueing Model

We introduce here aMarkovian Model that allows us to estimate the
reconstruction time under bandwidth constraints. The model makes an
important assumption:

1. The limiting resource is always the upload bandwidth.

Assumption 1 is reasonable as download and upload bandwidthsare
strongly asymmetric in common installations. Using this assumption,
we model the storage system with aqueue storing the upload load of the
global system.

Model De�nition

We model the storage system with a Markovian queuing model storing
the upload needs of the global system. The model has one server, Pois-
sonian batch arrivals and deterministic time service (M � =D=1, where�
is the batch size function). We use a discrete time model. Thepeers in
charge of repairs process blocks in a FIFO order.



Chain States. The state of the chain at a timet is the current number
of fragments in reconstruction, denoted byQ(t).

Transitions. At each time step, the system reconstructs blocks as fast as
its bandwidth allows it. The upload bandwidth of the system,BWupN ,
is the limiting resource. Then, theserviceprovided by the server is

� = �
BWupN�

L r
;

which corresponds to the number of fragments that can be reconstructed
at each time step� . The factor � is the bandwidth e�ciency as calculated
in the previous section, andL r is the number of bytes transferred to repair
one fragment. Hence, the number of fragments repaired duringa time
step t is � (t) = min( �; Q (t)).

The arrival processof the model is caused by peer failures. When a
failure occurs, all the fragments stored in that device are lost. Hence, a
large number of block repairs start at the same time. We modelthis with
batch inputs (sometimes also calledbulk arrival in the literature). The
size of an arrival is given by the number of fragments that were stored
on the disk. As explained in Section 5.5, it follows a truncated geometric
distribution.

We de�ne � as a random variable taking values� 2 f 0; v;2v; : : : ; Tmax vg,
which represents the number of fragments inside a failed disk (see Equa-
tion (5.1) for the probability distribution function of � ). Recall that v
is the speed at which empty disks get �lled, and thatTmax = C=v is the
elapsed time to �ll a disk. Further on, �=v is the elapsed time to have a
disk with � fragments.

The arrival process of the model is Poissonian. A batch arrives during
a time step with probability f , with f � �N . For the simplicity of the
exposition, we consider here that only one failure can happen during
a time step (note that to ensure this, it is su�cient to choosea small
enough time step). Formally, the transitions of the chain are, for 8i � � ,

Qi ! Qi � � with prob. 1 � f
Qi ! Qi � � + � ; 8� with prob. f (1 � � )

�
v � 1�

Qi ! Qi � � + C with prob. f (1 � (1 � � )Tmax )

When 0 � i < � , the i blocks in the queue at the beginning of the time
step are reconstructed at the end. Hence, we have transitionswithout



Figure 5.3: Transition around state i of the Markovian queuing model.

the term i � � :

Qi ! Q0 with prob. 1 � f
Qi ! Q� ; 8� with prob. f (1 � � )

�
v � 1�

Qi ! QC with prob. f (1 � (1 � � )Tmax )

Figure 5.3 presents the transitions for a statei . The following table
summarizes the notation introduced in this section.

Q(t) Number of fragments to be repaired
f Batch arrival rate, f = �N
� Number of fragments on a failed disk

(i.e., batch size)
� Factor of e�ciency, � � 1

x
� Service rate,� = �BW upN�=L r

(fragments per time step)

Analysis

Here, we give the expressions to estimate the values of two important sys-
tem metrics: the distribution of the block reconstruction time and the
probability of data loss. These expressions are derived from the station-
ary distribution of the Markovian model, as presented in thefollowing.

A Normalized Model.The queuing model has a service of� and an input
process of averagef � . To simplify the presentation of the analysis, we
introduce then a normalized modelwith service of 1, hence an input of
mean� 0 = �=� .



Stationary Distribution

We analyze here the stationary state of this normalized queuing model.
As the chain is irreducible and aperiodic, it exists when the service rate
is larger than the load. LetP be the probability generating function of
the Markovian model, that is P is de�ned as:

P(z) =
X

i

Pi zi ;

wherePi is the probability that the system is in state i , that is, i frag-
ments have to be repaired.

The system reconstructs one block per time step (unless of course,
no block is in the queue). It is translated in the generating function
language into a division byz. The e�ect of a peer failure is translated
by a multiplication by the probability generating function of the input
I , de�ned as

I (z) =
1X

j =0

I j zj ;

with I j the probability that the batch is of size j . Hence, we obtain the
functional equation

�
P(z) � P0

z
+ P0

�
I (z) = P(z):

It gives

P(z) =
(z � 1)P0

z
I (z) � 1

:

As P(1) = 1, I (z) � z admits 1 as a root and thus can be written as
I (z) � z = ( z � 1)Q(z). We have

P(z) =
P0I (z)
Q(z)

: (5.2)

As we have seen in Section 5.5, the size of the input follows a trun-
cated geometric distribution of parameter� . A batch is of sizevj with
probability (1 � � ) j � 1� , for j 2 [0; 1; :::; Tmax ]. It gives

I (z) = (1 � f ) + f
Tmax � 1X

j =1

(1 � � ) j � 1�z vj + f (1 � � )Tmax � 1zvTmax :



It can be rewritten as

I (z) = 1 +
f (zv � 1)(zTmax (1 � � )Tmax � 1)

(1 � � )zv � 1
:

We factorizeI (z) � z by (z � 1). We get

Q(z) = I (z) � z

= ( z � 1)(� 1 +
f (

P v
j =1 zi )( zvT max (1� � )Tmax � 1)

(1� � )zv � 1 ):

The value of P0 is obtained by the normalization
P 1

i =0 Pi = 1 which
implies P(1) = 1.

P0 =
Q(1)
I (1)

= 1 �
1
�

(fv ((1 � � )Tmax � 1)):

We now have an expression of the three terms of Equation 5.2 and we
get a close form of the probability generating functionP(z).

Distribution of the Waiting Time

The distribution of the block reconstruction time is given by the station-
ary distribution P of the model calculated above. As we have Markovian
(batch) arrivals, the probability for a batch to arrive when there aren
blocks in the queue is exactlyPn (for the di�erence of distribution for an
arriving customer and an outside observer, see for example [Coo81]). If
there areQ fragments in the queue when a batch of size� 0 = jv arrives,
the arriving fragments have waiting times ofQ + 1, Q + 2, Q + � 0. We
de�ne the probability generating function J as

J (z) =
TmaxX

j =1

�
(1 � � ) j � 1�

jvX

i =1

zi
�

:

The probability generating function W of the waiting times then is just

W(z) = P(z)J (z):

The distribution of the waiting times can then be directly obtained
from the generating function by extracting its coe�cients

Pr(W = k) = [ zk ]W(z) =
dkW(z)
k!(dz)k

�
�
�
�
z=0

: (5.3)



The �rst coe�cients can be computed numerically and then a singularity
analysis gives the asymptotic behavior, see for example [FS08]. Hence,
the value of Pr(W = k) can be computed analytically. However, in the
following, we also use another method and calculate them numerically
by iterating the queuing model.

Number of Dead Blocks

The expected number of dead blocks is indirectly given by themodel
by computing the waiting time in the queue of a block that has to be
reconstructed.

As a matter of fact, a block dies if it loses, before the end of the
reconstruction, ther � 1 fragments of redundancy that it has left when
the repair starts, plus an additional fragment. The probability for a
device to still be alive after a period of time of� time step is (1� � )� ,
where� is the probability for a disk to die during a time step, that is

� =
�

MTBF
:

Hence a good approximation of the probability Pr[die] to die during a
reconstruction lasting a time� is given by

Pr[diejW = � ] =
s+ rX

i = r

�
s + r

i

�
(1 � (1 � � )� ) i ((1 � � )� )s+ r � i :

For practical systems, the ratio�=MTTF is small as the probability to
of data loss should be very low. Hence Pr[die] is well approximated by

Pr[diejW = � ] �
�

s + r
r

�
(1 � (1 � � )� )r ((1 � � )� )s� 1:

From this and from the distribution of the waiting time, we get the
probability to die during a reconstruction, PD , with

PD =
1X

i =0

Pr[diejW = i ] Pr[W = i ]:

The number of dead blocks during a timeT, DT , is then obtained by the
number of reconstructions duringT, RT :

DT = PD RT : (5.4)



Bandwidth Usage

The bandwidth usage is directly given by the distribution ofthe number
of reconstructions being processed by the system, which comes from the
stationary distribution of the queuing model.

5.7 Results

To validate our model, we compare its results with the ones produced by
simulations, and test-bed experimentation. We use a customcycle-based
simulator. The simulator models the evolution of the statesof blocks
during time (number of available fragments and where they are stored)
and the reconstructions being processed. When a disk failureoccurs, the
simulator updates the state of all blocks that have lost a fragment, and
starts the reconstruction if necessary. The bandwidth is implemented
as a queue for each device. The reconstructions are processed in FIFO
order.

We study the distribution of the reconstruction time and compare it
with the exponential distribution which is often used in theliterature.
We then discuss the cause of the data losses. Finally, we present two
important practical implementation points: (1) when choosing the pa-
rameters of the Regenerating Code, it is important to give tothe device
in charge of the repair a choice between several peers to retrieve the data;
(2) we show the strong impact of di�erent scheduling optionson the data
loss rate.

Distribution of Reconstruction Time

Figure 5.4 shows the distribution of the reconstruction timeand the im-
pact of the peer asymmetry on the reconstruction time for thefollowing
scenario: N = 100, s = 7, r = 7, L r =2 MB, B = 50000, MTTF = 60
days, BWup = 128 kpbs. All parameters are kept constant, except the
disk size factorx (recall that x is the ratio of the maximum capacity over
the average amount of data per device).

First, we see that the model (dark solid line) closely matchesthe
simulations (blue dashed line). For example, whenx = 1:1 (top plot),
the curves are almost merged. The average reconstruction times are 3.1
cycles vs 3.2 for the model. We see that there is a small gap when x = 3.
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Figure 5.4: Distribution of reconstruction time for di�erent disk cap acities x
of 1.1, 2, and 3 times the average amount. The average reconstruction times
of simulations are respectively 3.2, 9.6, and 21 hours (Note that some axis
scales are di�erent).



As a matter of fact, we saw in Section 5.5 that simulating the queue of
the full disks is an approximation in this case, as only 92% ofthe blocks
have a fragment on a full disk.

Second, we con�rm the strong impact of the disk capacity. We see
that for the three values ofx considered, the shape of the reconstruction
times are very di�erent. When the disk capacity is close to theaverage
number of fragments stored per disk (values ofx close to 1), almost all
disks store the same number of fragments (83% of full disks).Hence, each
time there is a disk failure in the system, the reconstruction times span
between 1 andC=� , explaining the rectangle shape. The tail is explained
by multiple failures happening when the queue is not empty. When x
is larger, disks also are larger, explaining that it takes a longer time to
reconstruct when there is a disk failure (the average reconstruction time
raises from 3.2 to 9.6 and 21. whenx goes from 1.1 to 2. and 3.). As the
number of fragments per disk follows a truncated geometric distribution,
we see the rectangle shape is replace by a trapezoidal shape explained
by the large range of disk �llings.

Third, we compare the distributions obtained with the exponential
distribution that is classically used in the literature. Wesee that the
distributions are far from the exponential whenx = 1:1 and x = 2,
but get closer for x = 3. Hence, as we will con�rm, the exponential
distribution is only a good choice for some given sets of parameters. To
�nish, note that the tails of the distribution are close to exponential.

Figure 5.5 presents the distribution of a distributed storage system
experiencing three di�erent rates of failures: MTTF of 90, 180 and 360
days. We clearly see the evolution of the shape of the distribution due to
the larger probability to experience failures when the peerqueues are still
loaded. The average reconstruction time increases from 5 hours when the
MTTF is 360 days to 12 hours when the MTTF is 90 days.

We ran simulations for di�erent sets of parameters. We present in
Table 5.3 a small subset of these experiments.

From Where the Deads Come From?

In this section, we discuss in which circumstances the system has more
chances to lose some data. First a preliminary remark: backupsystems
are conceived to experience basically no data loss. Thus, for realistic
sets of parameters, it would be necessary to simulate the systems for a
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prohibitive time to see data losses in our simulations. We hence present
here results for scenarios where the redundancy of the data is lowered
(r = 3 and r = 5).

We plot in Figure 5.6 the cumulative number of dead blocks that
the system experiences for di�erent reconstruction times.We give this
fraction in function of the time the block spent in the systembefore
dying. For the queuing model, we derive the expected number of blocks
that died at time T from the distribution of the reconstruction time. A
block dies at timeT if its reconstruction process lasts a time� � T and
that it loses r fragments during timeT with at least one exactly at time
T. This can be expressed as

N [die at time T] = Pr[die at time T]
X

� � T

NP [W = � ]

with

Pr[die at time T] =
� s+ r � 1

r � 1

�
(1 � (1 � � )T )r ((1 � � )T )s� 1�� s+ r � 1

r � 1

�
(1 � (1 � � )T � 1)r ((1 � � )T )s� 1:



Table 5.3: Reconstruction time T (in hours) for di�erent system parameters

(a) Disk capacity c.

c 1.1 1.5 2.0 3.0

Tsim 3.26 5.50 9.63 21.12
Tmodel 3.06 5.34 9.41 21

(b) Peer Lifetime (MTBF).

MT BF 60 120 180 365

Tsim 3.26 2.90 2.75 2.65
Tmodel 2.68 2.60 2.49 2.46

(c) Peer Upload Bandwidth (kbps).

upBW 64 128 256 512

Tsim 8.9 3.30 1.70 1.07
Tmodel 8.3 3.10 1.61 1.03

We give the distribution of the reconstruction times as a reference (ver-
tical lines). The model (black solid line) and the simulation results (blue
dashed line) are compared for two scenarios with di�erent number of
blocks: there is twice more data in Scenario B.

The �rst observation is that the queueuing models predict well the
number of dead experienced in the simulation, for example, in the sce-
nario A the values are 21,555 versus 20,879. The results for an expo-
nential reconstruction time with the same mean value are also plotted
(queue avg.). We see that this model is not close to the simulation for
both scenarios (almost the double for Scenario A). We also test a second
exponential model (queue tail): we choose it so that its tailis as close as
possible to the tail than the queuing model (see Figures 5.6b and 5.6d).
We see that it gives a perfect estimation of the dead for Scenario B, but
not for Scenario A.

In fact, two di�erent phenomena appear in these two scenarios. In
Scenario B (higher redundancy), thelost blocks are mainly coming from
long reconstructions, from 41 to 87 cycles (tail of the gray histogram).
Hence, a good exponential model can be found by �tting the parame-
ters to the tail of the queuing model. On the contrary, in Scenario A
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Figure 5.6: (Top): Distribution of dead blocks reconstruction time for two
di�erent scenarios. Scenario A:N = 200; s = 8 ; r = 3 ; b = 1000; MT TF = 60
days. Scenario B:N = 200; s = 8 ; r = 5 ; b = 2000; MT TF = 90 days.
(Bottom): Fitting of exponential distribution with the tail of queue ing model
(axis scales are di�erent).

(lower redundancy), thedata loss comes from the majority of short re-
constructions, from 5.8 to 16.2 cycles (the right side of the rectangular
shape). Hence, in Scenario A, having a good estimate of the tailof the
distribution is not at all su�cient to be able to predict the f ailure rate
of the system. It is necessary to have a good model of the complete
distribution!

Discussing the Implementation of Regenerating Codes

As presented in Section 5.4, when the redundancy is added using regen-
erating codes,n = s+ r devices store a fragment of the block whens are
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enough to retrieve the block. When a fragment is lost,s � d � n � 1
peers are in charge of repairing the fragments. The largerd is, the smaller
is the bandwidth needed for the repair. Figures 5.7 and 5.8 show the re-
construction time for di�erent values of the degreed. We observe an
interesting phenomena: at the opposite of the common intuition, the av-
erage reconstruction time decreases when the degree decreases: 10 cycles
for d = 13, and only 6 cycles ford = 12. The bandwidth usage increases
though (because the� MBR is higher whend is smaller). The explanation
is that the decrease of the degreeintroduces a degree of freedomin the
choice of the devices that send a sub-fragment to the device that will
store the repaired fragment. Hence, the system is able to lower the load
of the more loaded disks and tobalance more evenly the load between
peers.

In fact, we can estimate for which degree of freedom, the reconstruc-
tion time is minimum. It happens when the load of the full disks is
the same as the load of the other disks. We de�ne� = n � 1 � d the
allowed degree of freedom for the choice of which peers uploads the sub-
fragments. The full disks store a proportion'x of the fragments of the
system, with ' the fraction of full disks. We simply look at the how much
work we must do on the full disks. The probability to havei fragments
(among the n � 1 fragments) on full disks is

� n� 1
i

�
('x ) i (1 � 'x )n� 1� i .

Those blocks sendsi � � units of work the full disks (wheneveri � � ).



So the load of the full disks is

n� 1X

i = �

(i � � )
�

n � 1
i

�
('x ) i (1 � 'x )n� 1� i :

We presented here a cut argument for only two classes of peers(full disks
and non full disks). This argument can be generalized to any number of
peer classes.

When the load of the full disks becomes equal to the load of the other
disks (

P n� 1
i = � (d � i + � )

� n� 1
i

�
('x ) i (1 � 'x )n� 1� i ), it is no more useful to

decreased. We see that the average reconstruction time increases whend
is too small, as the increased usage of bandwidth is no more compensated
by a better balance of the load.

Note that this phenomena exists for other codes like Reed Solomon
where the device in charge of the reconstruction has to retrieve s frag-
ments among thes + r � 1 remaining fragments.

Scheduling

As peers have a large number of repairs to carry out but very limited
bandwidth, the question of which repairs to do �rst is crucial. In this
section, we study three di�erent scheduling choices:FIFO , Random ,
and Most-Damaged data block �rst.

The FIFO is the default scheduling in the simulator, as discussed
in Section 5.4, the blocks are processed in the order of arrival. In the
Random scheduling, the simulator processes blocks in a random order
(at each time step the list of blocks to be reconstructed is shu�ed). In
the Most-Damaged scheduling the blocks are ordered by the level of
redundancy (i.e., blocks with less fragments available come �rst). In case
of tied values, then the FIFO order is assumed.

Figure 5.9 presents the reconstruction time of these three schedulings.
All strategies give almost the same average reconstruction time, 4.40,
4.43, 4.43 respectively for FIFO , Random and Most-Damaged .
We see that their distribution changes slightly. In the Random order
the shape has the form of a geometric distribution, with manyblocks
�nishing the reconstruction \early". However, as depicted in Figure 5.9,
the di�erences in the number of dead blocks are enormous. Whenusing
the Random scheduling, the dead increases considerably, as expected.
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Figure 5.9: Reconstruction time for
di�erent scheduling strategies. The
average reconstruction time is almost
the same (4.4 cycles), but the distri-
bution changes.
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Figure 5.10: Cumulative number of
dead blocks for di�erent scheduling
strategies. Processing the most dam-
aged �rst is the best strategy.

Most-Damaged has a reconstruction time very close to the others
but the number of losses is much lower. Hence, this is the strategy of
choice when implementing such systems.

5.8 Experimentation

Aiming at validating the simulation and the model results, weperformed
a batch of real experimentation using theGrid'5000 platform [Gri]. We
used a prototype of storage system implemented by a private company
(Ubistorage [ubi]).

Our goal is to validate the main behavior of the reconstruction time in
a real environment with shared and constrained bandwidth, and measure
how close they are to our results.

Storage System Description

In few words, the system is made of a storage layer (upper layer) built
on top of the DHT layer (lower layer) running Pastry [RD01]. The lower
layer is in charge of managing the logical topology: �nding peers, routing,
alerting of peer arrivals or departures. The upper layer is in charge of
storing and monitoring the data.



Storing the data. The system uses Reed-Solomon erasure codes [LMS+ 97]
to introduce redundancy. Each data block has a device responsible of
monitoring it. This peer keeps a list of the devices storing afragment of
the block. The fragments of the blocks are stored locally on the Pastry
leafset of the peer in charge [LMSM09].

Monitoring the system. The storage system uses the information given
by the lower level to discover device failures. InPastry , a peer checks
periodically if the members of its leafset are still up and running. When
the upper layer receives a message that a peer left, the peer in charge
updates its block status.

Monitored metrics. The application monitors and keep statistics on
the amount of data stored on its disks, the number of performed re-
constructions along with their duration, the number of deadblocks that
cannot be reconstructed. The upload and download bandwidthof devices
can be adjusted.

The Grid'5000 Infrastructure

Grid'5000 is an infrastructure dedicated to the study of large scale par-
allel and distributed systems. It provides a highly recon�gurable, control-
lable and monitorable experimental platform to scientists. The platform
contains 1582 machines accounting for 3184 processors and 5860 cores.
The machines are geographically distributed on 9 di�erent hosting sites
in France (two additional sites in Luxemburg and Porto Alegre, Brazil
are being added). These site are connected to RENATER Education and
Research Network with a 10Gb/s link.

Results

There exist a lot of di�erent storage systems with di�erent parameters
and di�erent reconstruction processes. The goal of the paper is not
to precisely tune a model to a speci�c one, but to provide a general
analytical framework to be able to predict any storage system behavior.
Hence, we are more interested here by the global behavior of the metrics
than by their absolute values.
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Studied Scenario. By using simulations we can easily evaluate several
years of a system, however when doing experimentation this is not the
case. We need to plan our experiments to last a few hours. Hence, we
de�ne an acceleration factor, as the ratio between experiment duration
and the time of real system we want to imitate. Our goal is to check the
bandwidth congestion in a real environment. Thus, we decided to shrink
the disk size (e.g., from 10 gigabytes to 100 megabytes, a reduction of
100� ), inducing a much smaller time to repair a failed disk. Then,the
device failure rate is increased (from months to a few hours)to keep the
ratio between disk failures and repair time proportional. The bandwidth
limit value, however, is kept close to the one of a \real" system. The idea
is to avoid inducing strange behaviors due to very small packets being
transmitted in the network.

Figure 5.11 presents the distribution of the reconstructiontimes for
two di�erent experimentation involving 64 nodes on 2 di�erent sites of
Grid'5000 . The amount of data per node is 100 MB (disk capacity
120MB), the upload bandwidth 128 KBps,s = 4, r = 4, LF = 128
KB. We con�rm that the simulator gives results very close to the one
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Figure 5.12: Timeseries of the queue size during time (top) and the upload
bandwidth ratio (bottom).

obtained by experimentation. The average value of reconstruction time
di�ers from some seconds.

Moreover, to have an intuition of the system dynamics over time, in
Figure 5.12 we present a timeseries of the number of blocks in the queues
(top plot) and the total upload bandwidth consumption (bottom plot).
We note that the rate of reconstructions (the descending lines on the top
plot) follows an almost linear shape. Comforting our claim that a deter-
minist processing time of blocks could be assumed. In these experiments
the disk size factor isx = 1:2, which gives a theoretical e�ciency of 0:83.
We can observe that in practice, the factor of bandwidth utilization, � ,
is very close to this value (value of� = 0:78 in the bottom plot).



5.9 Conclusion

In this paper, we propose and analyze a new Markovian analytical model
to model the repair process of distributed storage systems.This model
takes into account the correlation between data repairs that compete for
the same bandwidth. We bring to light the impact of peer heterogeneity
on the system e�ciency. The model is validated by simulationand by
real experiments on the Grid'5000 platform .

We show that the exponential distribution classically taken to model
the reconstruction time is valid for certain sets of parameters, but that
di�erent shapes of distribution appear for other parameters. We show
that it is not enough to be able to estimate the tail of the repair time
distribution to obtain a good estimate of the system loss rate.

The results provided are for systems using Regenerating Codes that
are the best codes known for bandwidth e�ciency, but the model is
general and can be adapted to other codes. We exhibit an interesting
phenomena to keep in mind when choosing the code parameter: it is
useful to keep a degree of freedom on the choice of the users participating
in the repair process so that loaded or de�cient users do not slow down
the repair process, even if it means less e�cient codes.

In addition, we con�rm the strong impact of scheduling on thesystem
loss rate.
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CHAPTER 6
Conclusions and perspectives

The contributions of this thesis provide tools to assess a number of po-
tential solutions for making the future Internet more e�cient. There
are many approaches to reducing the redundancy in the tra�c,some of
them well established. We looked into the ones which are not yet the
standard, but are considered as possible future directions. From a high
level perspective, these are all simple ideas: store a copy close to your
users for further reuse, make the users share among themselves and store
their own data as close as possible. Complexity arises when one tries to
implement them. However, we do not look deep into details of particular
implementations. We try to abstract over the complexity, tolook into the
potential of the ideas themselves, keeping to a realistic setting. Instead
of proposing systems and tweaking their e�ciency, we evaluate impact of
systems with a given e�ciency. Ultimately the questions we are trying
to answer take the form ofwhat would really be the potential bene�t of
putting any system of some known properties into realistic conditions?

Two models are devoted to estimating the potential energy savings
thanks to introductions of caches. First, we studied energy optimization
in network provisioning with in-network caches. We found that basing on
realistic network and power models, but with some optimistic simplifying
assumptions, up to 11% of energy can be saved by introducing the caches.
The most propitious enhancements to the model could be studying the
actual dynamics encountered by caching algorithms, as wellas relaxing
the regularity of the network model.

155



Then, we looked into energy-aware management of an already de-
ployed core network. This has shown that, over a number of realistic
network instances, we can save over 20% of energy exploitingdaily traf-
�c variations. A palpable way to enhance this result would bemerging
this model with the aforementioned one.

Both studies treat cache as a black box, which performs its work ac-
cording to some static properties. Real-life caches are more complicated.
Their performance is determined by the interplay of replacement algo-
rithms and the stream of requests served, which are intrinsically random.
Exploring how temporal and geographical distributions of requests a�ect
the optimal cache deployment and operation is an interesting research
direction. Furthermore, we had to speculate about devices that are not
available yet, as well as about network structure and tra�c, which are
trade secrets of the operators. The best way to fully bene�t of this work
is to apply it from inside an operator, using speci�c and accurate data.

Both studies hint that substantial savings are possible. Even if the
money saved by reducing energy consumption do not outweigh deploy-
ment cost in a short term, bandwidth savings themselves are already a
good incentive for augmenting networks with caches. However, the ad-
vantages of in-network caching may be overshadowed by alternatives and
the whole picture may change with next generations of hardware not yet
revealed to the public. Thus, until a decisive trend arises in the industry,
they remain an active research topic.

The next two studies are concentrating on highly distributed systems,
which can be either user ran peer-to-peer or operator controlled (e.g.
nano data centers). First, we analyzed a live streaming network with
a tree structure. We proved an upper time limit for repairingthe tree,
after an arbitrary failure, by a simple algorithm. We also found, by
means of simulation, that on average such a repair takes veryshort time.
The obvious continuations of this work are formal study of the average
behaviour and modelling multiple concurrent trees structure.

Second, we looked into data survivability in distributed backups sys-
tem. We found that back-of-envelope calculations may overestimate it
by orders of magnitude, comparing to a model carefully following data
and workload distributions. The general framework presented in this
study can be improved by adjusting the model to closely matcha target
system.



Currently, this kind of systems do not play a major role in thein-
dustry. Data backup relies heavily on trust. Delegating it to unknown
stranger in a peer-to-peer network is deemed too high risk bymany users.
Centralized solutions, especially some recent backup-oriented o�erings1

are already cost-e�ective and ensure the trust by contracts. On the other
hand, peer-to-peer video streaming will probably gain importance. Raise
of video streaming tra�c leads to network congestions. Thisin turn leads
to tensions between content providers and network operators. These have
already escalated up to involving law enforcement2. This raises incen-
tives for p2p video streaming and coincides with new means. WebRTC3

is being implemented in the major web browsers. It allows real-time
browser-to-browser communication. Browser support removes a major
issue, which always was the need to install additional software, making
participation in a peer-to-peer streaming network as easy as clicking a
YouTube link today. All things considered, design and implementation
of peer-to-peer streaming networks may be a very interesting perspective
in the coming years.

To answer questions posed in this thesis, I have learnt a number of
useful techniques. Some of them are theoretical tools, which allow me
to approach algorithmic challenges in a structured way. Other are more
empirical, like simulations and experiments. One trick I amparticularly
satis�ed with is using simple but revealing implementations of abstract
systems for a quick peek into their properties. This has allowed us to
weed out a number false hypotheses early, in our more theoretical forays.
Another lesson is the importance of changing directions as more promis-
ing ones are appearing. This happened when we explored unstructured
streaming networks, to �nally concentrate on a structured one.

1For example http://aws.amazon.com/glacier/
2 http://www.reuters.com/article/2013/07/11/eu-telecoms-idUSL6N0FH1OL20130711
3http://www.webrtc.org/reference/architecture





APPENDIX A
Weighted Improper Colouring

This appendix presents a study that is not concerned by reducing redun-
dancy in network tra�c. Instead, it is motivated by frequency assignment
in satellite networks, what places in it the link layer. Whileenergy sav-
ing in network was not an original motivation of this work, notice that
reducing radio interference does signi�cantly reduce power consumption
(and therefore increase battery life) of mobile devices.

A.1 Publication

The remainder of this chapter corresponds toWeighted Improper Colour-
ing by J. Araujo, J-C. Bermond, F. Giroire, F. Havet, D. Mazauric and
R. Modrzejewski which was published in the Journal of Discrete Algo-
rithms volume 16, which is an extended version of the work of same title
and authors published in the proceedings of 22nd International Workshop
on Combinatorial Algorithms.

A.2 Introduction

Let G = ( V; E) be a graph. A k-colouring of G is a function c : V !
f 1; : : : ; kg. The colouring c is proper if uv 2 E implies c(u) 6= c(v).
The chromatic number of G, denoted by� (G), is the minimum integer
k such that G admits a proper k-colouring. The goal of theVertex
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Colouring problem is to determine� (G) for a given graphG. It is a
well-known NP-hard problem [Kar72].

A k-colouring c is l-improper if jf v 2 N (u) j c(v) = c(u)gj � l ,
for all u 2 V (as usual in the literature, N (u) stands for the setf v j
uv 2 E(G)g). Given a non-negative integerl , the l-improper chromatic
number of a graphG, denoted by� l (G), is the minimum integer k such
that G admits anl-improperk-colouring. Given a graphG and an integer
l , the Improper Colouring problem consists in determining� l (G)
and is also NP-hard [Woo90, CHS09]. Indeed, ifl = 0, observe that
� 0(G) = � (G). Consequently,Vertex Colouring is a particular case
of Improper Colouring .

In this work we de�ne and study a new variation of theImproper
Colouring problem for edge-weighted graphs. An edge-weighted graph
is a pair (G; w) whereG = ( V; E) is a graph andw : E ! R �

+ . Given an
edge-weighted graph (G; w) and a colouringc of G, the interference of a
vertex u in this colouring is de�ned by

I u(G; w; c) =
X

f v2 N (u)jc(v)= c(u)g

w(u; v):

For any non-negative real numbert, called threshold, we say that c is a
weightedt-improper k-colouring of (G; w) if c is a k-colouring ofG such
that I u(G; w; c) � t, for all u 2 V.

Given a threshold t 2 R �
+ , the minimum integer k such that the

graph G admits a weighted t-improper k-colouring is the weightedt-
improper chromatic number of (G; w), denoted by � t (G; w). Given an
edge-weighted graph (G; w) and a thresholdt 2 R �

+ , determining� t (G; w)
is the goal of theWeighted Improper Colouring problem. Note
that if t = 0 then � 0(G; w) = � (G), and if w(e) = 1 for all e 2 E, then
� l (G; w) = � l (G) for any positive integer l . Therefore, theWeighted
Improper Colouring problem is clearly NP-hard since it generalises
Vertex Colouring and Improper Colouring .

On the other hand, given a positive integerk, we de�ne the mini-
mum k-threshold of (G; w), denoted byTk(G; w) as the minimum real t
such that (G; w) admits a weightedt-improper k-colouring. Then, for a
given edge-weighted graph (G; w) and a positive integerk, the Thresh-
old Improper Colouring problem consists in determiningTk(G; w).
The Threshold Improper colouring problem is also NP-hard. This



fact follows from the observation that determining whether� l (G) � k is
NP-complete, for everyl � 2 andk � 2 [CCW86, CGJ95, CHS09]. Con-
sequently, in particular, it is a NP-complete problem to decide whether a
graph G admits a weightedt-improper 2-colouring when all the weights
of the edges ofG are equal to one, for everyt � 2.

Motivation

Our initial motivation to these problems was the design of satellite an-
tennas for multi-spot MFTDMA satellites [AAG + 05]. In this technology,
satellites transmit signals to areas on the ground calledspots. These
spots form a grid-like structure which is modelled by an hexagonal cell
graph. To each spot is assigned a radio channel or colour. Spots are
interfering with other spots having the same channel and a spot can use
a colour only if the interference level does not exceed a given threshold
t. The level of interference between two spots depends on their distance.
The authors of [AAG+ 05] introduced a factor of mitigation  and the
interference of remote spots are reduced by a factor 1�  . When the
interference level is too low, the nodes are considered to not interfere any-
more. Considering such types of interference, where nodes at distance
at most i interfere, leads to the study of thei -th power of the graph
modelling the network and a case of special interest is the power of grid
graphs (see Section A.4).

Related Work

Our problems are particular cases of theFrequency Assignment
problem (FAP). FAP has several variations that were already studied
in the literature (see [AvHK+ 07] for a survey). In most of these varia-
tions, the main constraint to be satis�ed is that if two vertices (mobile
phones, antennas, spots, etc.) are close, then the di�erence between the
frequencies that are assigned to them must be greater than some function
which usually depends on their distance.

There is a strong relationship between most of these variations and
the L(p1; : : : ; pd)-labelling problem [Yeh06]. In this problem, the goal
is to �nd a colouring of the vertices of a given graphG, in such a way
that the di�erence between the colours assigned to verticesat distancei
is at least pi , for every i = 1; : : : ; d.



In some other variants, for each non-satis�ed interferenceconstraint
a penalty must be paid. In particular, the goal of theMinimum Inter-
ference Frequency Assignment problem (MI-FAP) is to minimise
the total penalties that must be paid, when the number of frequencies to
be assigned is given. This problem can also be studied for only co-channel
interference, in which the penalties are applied only if the two vertices
have the same frequency. However, MI-FAP under these constraints does
not correspond toWeighted Improper Colouring , because we con-
sider the co-channel interference, i.e. penalties, just between each vertex
and its neighbourhood.

The two closest related works we found in the literature are [MS03]
and [FLM+ 00]. However, they both apply penalties over co-channel in-
terference, but also to theadjacent channel interference, i.e. when the
colours of adjacent vertices di�er by one unit. Moreover, their results
are not similar to ours. In [MS03], they propose an enumerative algo-
rithm for the problem, while in [FLM + 00] a Branch-and-Cut method is
proposed and applied over some instances.

Results

In this article, we study both parameters� t (G; w) and Tk(G; w). We
�rst present general bounds; in particular we show a generalisation of
Lov�asz's Theorem for � t (G; w). We after show how to transform an
instance ofThreshold Improper colouring into an equivalent one
where the weights are either one orM , for a su�ciently large M .

Motivated by the original application, we then study a special in-
terference model on various grids (square, triangular, hexagonal) where
a node produces a noise of intensity 1 for its neighbours and anoise
of intensity 1/2 for the nodes that are at distance two. We derive the
weighted t-improper chromatic number for all possible values oft.

Finally, we propose a heuristic and a Branch-and-Bound algorithm
to solve Threshold Improper colouring for general graphs. We
compare them to an integer linear programming formulation on random
cell-like graphs, namely Voronoi diagrams of random pointsof the plan.
These graphs are classically used in the literature to modeltelecommu-
nication networks [BKLZ97, GK00, HAB+ 09].



A.3 General Results

In this section, we present some results forWeighted Improper colour-
ing and Threshold Improper colouring for general graphs and
general interference models.

Upper bounds

Let (G; w) be an edge-weighted graph with positive real weights given
by w : E(G) ! Q�

+ . For any vertex v 2 V(G), its weighted de-
gree is dw(v) =

P
u2 N (v) w(u; v). The maximum weighted degreeof G

is �( G; w) = max v2 V dw(v).
Given a k-colouring c : V ! f 1; : : : ; kg of G, we de�ne, for every

vertex v 2 V(G) and colour i = 1; : : : ; k, di
w;c(v) =

P
f u2 N (v)jc(u)= i g(u; v).

Note that dc(v)
w;c (v) = I v(G; w; c). We say that a k-colouring c of G is

w-balancedif c satis�es the following property:

For any vertex v 2 V(G), I v(G; w; c) � dj
w;c(v), for every j = 1; : : : ; k.

We denote by gcd(w) the greatest common divisor of the weights of
w (observe that gcd(w) > 0 because we just consider positive weights).
We use here the generalisation of the gcd to non-integer numbers (e.g.
in Q) where a numberx is said to divide a numbery if the fraction y=x
is an integer. The important property of gcd(w) is that the di�erence
between two interferences is a multiple of gcd(w); in particular, if for two
verticesv and u, di

w;c(v) > d j
w;c(u), then di

w;c(v) � dj
w;c(u) + gcd(w).

If t is not a multiple of the gcd(w), that is, there exists an integera 2
Z such that a gcd(w) < t < (a + 1)gcd(w), then � w

t (G) = � w
a gcd(w)(G).

Proposition 1. Let (G; w) be an edge-weighted graph. For anyk � 2,
there exists aw-balancedk-colouring of G.

Proof. Let us colour G = ( V; E) arbitrarily with k colours and then
repeat the following procedure: if there exists a vertexv colouredi and
a colour j such that di

w;c(v) > d j
w;c(v), then recolour v with colour j .

Observe that this procedure neither increases (we just movea vertex
from one colour to another) nor decreases (a vertex without neighbour
on its colour is never moved) the number of colours within this process.
Let W be the sum of the weights of the edges having the same colour



in their end-vertices. In this transformation,W has increased bydj
w;c(v)

(edges incident tov that previously had colourj in its endpoint opposite
to v), but decreased bydi

w;c(v) (edges that previously had colouri in both
of their end-vertices). So,W has decreased bydi

w;c(v) � dj
w;c(v) � gcd(w).

As W � j E j maxe2 E w(e) is �nite, this procedure �nishes and produces
a w-balancedk-colouring ofG.

The existence of aw-balanced colouring gives easily some upper
bounds on the weightedt-improper chromatic number and the minimum
k-threshold of an edge-weighted graph (G; w). It is a folklore result that
� (G) � �( G) + 1, for any graph G. Lov�asz [Lov66] extended this result
for Improper Colouring problem using w-balanced colouring. He
proved that � l (G) � d �( G)+1

l+1 e. In what follows, we extend this result to
weighted improper colouring.

Theorem 5. Let (G; w) be an edge-weighted graph withw : E(G) ! Q�
+ ,

and t a multiple of gcd(w). Then

� t (G; w) �
�

�( G; w) + gcd(w)
t + gcd(w)

�
:

Proof. If t, ! , and G are such that � t (G; ! ) = 1, then the inequality is
trivially satis�ed. Thus, consider that � t (G; ! ) > 1.

Observe that, in any w-balanced k-colouring c of a graph G, the
following holds:

dw(v) =
X

u2 N (v)

w(u; v) � kdc(v)
w;c (v): (A.1)

Let k� =
l

�( G;w)+gcd( w)
t+gcd( w)

m
� 2 and c� be aw-balancedk� -colouring of

G. We claim that c� is a weightedt-improper k� -colouring of (G; w).
By contradiction, suppose that there is a vertexv in G such that

c� (v) = i and that di
w;c(v) > t . Sincec� is w-balanced,dj

w;c(v) > t , for
all j = 1; : : : ; k� . By the de�nition of gcd(w) and as t is a multiple of
gcd(w), it leads to dj

w;c(v) � t + gcd(w) for all j = 1; : : : ; k� . Combining
this inequality with Inequality (A.1), we obtain:

�( G; w) � dw(v) � k� (t + gcd(w));



giving
�( G; w) � �( G; w) + gcd(w);

a contradiction. The result follows.

Note that when all weights are unit, we obtain the bound for the
improper colouring derived in [Lov66]. Brooks [Bro41] proved that for
a connected graphG, � (G) = �( G) + 1 if, and only if, G is complete
or an odd cycle. One could wonder for which edge-weighted graphs the
bound we provided in Theorem 5 is tight. However, Correaet al. [CHS09]
already showed that it is NP-complete to determine if the improper chro-
matic number of a graphG attains the upper bound of Lov�asz, which
is a particular case ofWeighted Improper colouring , i.e. of the
bound of Theorem 5.

We now show that w-balanced colourings also yield upper bounds
for the minimum k-threshold of an edge-weighted graph (G; w). When
k = 1, then all the vertices must have the same colour, andT1(G; w) =
�( G; w). This may be generalised as follows, usingw-balanced colour-
ings.

Theorem 6. Let (G; w) be an edge-weighted graph withw : E(G) ! R �
+ ,

and let k be a positive integer. Then

Tk(G; w) �
�( G; w)

k
:

Proof. Let c be a w-balancedk-colouring of G. Then, for every vertex
v 2 V(G):

kTk(G; w) � kdc(v)
w;c (v) � dw(v) =

X

u2 N (v)

w(u; v) � �( G; w)

BecauseT1(G; w) = �( G; w), Theorem 6 may be restated askTk(G; w) �
: : : � T1(G; w). This inequality may be generalised as follows.

Theorem 7. Let (G; w) be an edge-weighted graph withw : E(G) ! R+ ,
and let k and p be two positive integers. Then

Tkp(G; w) �
Tp(G; w)

k
:



Proof. Set t = Tp(G; w). Let c be a t-improper p-colouring of (G; w).
For i = 1; : : : ; p, let Gi be the subgraph ofG induced by the vertices
coloured i by c. By de�nition of improper colouring �( Gi ; w) � t for
all 1 � i � p. By Theorem 6, each (Gi ; w) admits a t=k-improper k-
colouring ci with colours f (i � 1)k + 1; : : : ; ikg. The union of the ci 's is
then a t=k-improper kp-colouring of (G; w).

Theorem 7 and its proof suggest that to �nd akp-colouring with small
impropriety, it may be convenient to �rst �nd a p-colouring with small
impropriety and then to re�ne it. In addition, such a strategy allows to
adapt dynamically the re�nement. In the above proof, the vertex set of
each part Gi is again partitioned into k parts. However, sometimes, we
shall get a betterkp-colouring by partitioning eachGi into a number ofki

parts, with
P p

i =1 ki = kp. Doing so, we obtain aT-improper kp-colouring
of (G; w), where T = maxf �( Gi ;w)

k i
; 1 � i � pg.

One can also �nd an upper bound on the minimumk-threshold by
considering �rst the k � 1 edges of largest weight around each vertex.
Let (G; w) be an edge-weighted graph, and letv1; : : : ; vn be an ordering
of the vertices ofG. The edges ofG may be ordered in increasing order
of their weight. Furthermore, to make sure that the edges incident to
any particular vertex are totally ordered, we break ties according to the
label of the second vertex. Formally, we say thatvi vj � w vi vj 0 if either
w(vi vj ) < w (vi vj 0) or w(vi vj ) = w(vi vj 0) and j < j 0. With such a partial
order on the edge set, the setE k

w(v) of minfj N (v)j; k � 1g greatest edges
(according to this ordering) around a vertex is uniquely de�ned. Observe
that every edge incident tov and not in E k

w(v) is smaller than an edge
of Ek(v) for � w .

Let Gk
w be the graph with vertex setV(G) and edge set

S
v2 V (G) E k

w(v).
Observe that every vertex ofE k

w(v) has degree at least minfj N (v)j; k� 1g,
but a vertex may have an arbitrarily large degree. For if any edge in-
cident to v has a greater weight than any edge not incident tov, the
degree ofv in Gk

w is equal to its degree inG. However we now prove that
at least one vertex has degreek � 1.

Proposition 2. If (G; w) is an edge-weighted graph, thenGk
w has a vertex

of degree at mostk � 1.
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u v

u'K Kv'

w'(u,v)=w(u,v)-1

u v

Figure A.1: Construction of G0 from G using edgeuv 2 E(G) and k = 4
colours. Dashed edges represent edges of weightM .

Proof. Suppose for a contradiction, that every vertex has degree atleast
k, then for every vertexx there is an edgexy in E(Gk

w) n E k
w(x), and

so in E k
w(y) n E k

w(x). Therefore, there must be a cycle (x1; : : : ; xr ) such
that, for all 1 � i � r , x i x i +1 2 E k

w(x i +1 ) n E k
w(x i ) (with xr +1 = x1).

It follows that x1x2 � w x2x3 � w � � � � w xr x1 � w x1x2. Hence, by
de�nition, w(x1x2) = w(x2x3) = � � � = w(xr x1) = w(x1x2). Let m be
the integer such thatxm has maximum index in the orderingv1; : : : ; vn .
Then there exists j and j 0 such that xm = vj and xm+2 = vj 0. By
de�nition of m, we have j > j 0. But this contradicts the fact that
xmxm+1 � w xm+1 xm+2 .

Corollary 1. If (G; w) is an edge-weighted graph, thenGk
w has a proper

k-colouring.

Proof. By induction on the number of vertices. By Proposition 2,Gk
w

has a vertexx of degree at mostk � 1. Trivially, Gk
w � x is a subgraph

of (G � x)k
w . By the induction hypothesis, (G � x)k

w has a properk-
colouring, which is also a properk-colouring of Gk

w � x. This colouring
can be extended in a properk-colouring ofGk

w , by assigning tox a colour
not assigned to any of itsk � 1 neighbours.

Corollary 2. If (G; w) is an edge-weighted graph, thenTk(G; w) � �( Gn
E(Gk

w); w).

Transformation

In this section, we prove that theThreshold Improper Colouring
problem can be transformed into a problem mixing proper and improper
colouring. More precisely, we prove the following:



Theorem 8. Let (G; w) be an edge-weighted graph wherew is an integer-
valued function, and letk be a positive integer. We can construct an edge-
weighted graph(G� ; w� ) such that w� (e) 2 f 1; M g for any e 2 E(G� ),
satisfying Tk(G; w) = Tk(G� ; w� ), whereM = 1 +

P
e2 E (G) w(e).

Proof. Consider the functionf (G; w) =
P

f e2 E (G)jw(e)6= M g(w(e) � 1):
If f (G; w) = 0, all edges have weight either one orM and G has

the desired property. In this case,G� = G. Otherwise, we construct
a graph G0 and a function w0 such that Tk(G0; w0) = Tk(G; w), but
f (G0; w0) = f (G; w) � 1. By repeating this operationf (G; w) times
we get the required edge-weighted graph (G� ; w� ).

In casef (G; w) > 0, there exists an edgee = uv 2 E(G) such that
2 � w(e) < M . G0 is obtained from G by adding two complete graphs
on k � 1 verticesK u and K v and two new verticesu0 and v0. We join u
and u0 to all the vertices of K u and v and v0 to all the vertices of K v.
We assign weightM to all these edges. Note that,u and u0 (v and v0)
always have the same colour, namely the remaining colour notused in
K u (resp. K v).

We also add two edgesuv0 and u0v both of weight 1. The edges ofG
keep their weight inG0, except the edgee = uv whose weight is decreased
by one unit, i.e. w0(e) = w(e) � 1. Thus, f (G0; ! 0) = f (G; ! ) � 1 as we
added only edges of weights 1 andM and we decreased the weight ofe
by one unit.

Now consider a weightedt-improper k-colouring c of (G; w). We
produce a weightedt-improper k-colouring c0 of (G0; w0) as follows: we
keep the colours of all the vertices inG, we assign tou0 (v0) the same
colour asu (resp. v), and we assign toK u (resp. K v) the k � 1 colours
di�erent from the one used inu (resp. v).

Conversely, from any weighted improperk-colouring c0 of (G0; w0),
we get a weighted improperk-colouring c of (G; w) by just keeping the
colours of the vertices that belong toG.

For such colouringsc and c0 we have that I x (G; w; c) = I x (G0; w0; c0),
for any vertex x of G di�erent from u and v. For x 2 K u [ K v,
I x (G0; w0; c0) = 0. The neighbours of u with the same colour asu
in G0 are the same as inG, except possiblyv0 which has the same
colour of u if, and only if, v has the same colour ofu. Let � = 1
if v has the same colour asu, otherwise � = 0. As the weight of
uv decreases by one and we add the edgeuv0 of weight 1 in G0, we



get I u(G0; w0; c0) = I u(G; w; c) � � + w0(u; v0)� = I u(G; w; c). Similarly,
I v(G0; w0; c0) = I v(G; w; c). Finally, I u0(G0; w0; c0) = I v0(G0; w0; c0) = � .
But I u(G0; w0; c0) � (w(u; v) � 1)� and so I u0(G0; w0; c0) � I u(G0; w0; c0)
and I v0(G0; w0; c0) � I v(G0; w0; c0). In summary, we have

max
x

I x (G0; w0; c0) = max
x

I x (G; w; c)

and thereforeTk(G; w) = Tk(G0; w0).

In the worst case, the number of vertices ofG� is n + m(wmax � 1)2k
and the number of edges ofG� is m + m(wmax � 1)[(k + 4)( k � 1) + 2]
with n = jV(G)j, m = jE(G)j and wmax = maxe2 E (G) w(e).

In conclusion, this construction allows to transform theThresh-
old Improper Colouring problem into a problem mixing proper and
improper colouring. Therefore the problem consists in �nding the min-
imum l such that a (non-weighted)l-improper k-colouring of G� exists
with the constraint that some subgraphs ofG� must admit a proper
colouring. The equivalence of the two problems is proved here only for
integers weights, but it is possible to adapt the transformation to prove
it for rational weights.

A.4 Squares of Particular Graphs

As mentioned in the introduction, Weighted Improper colouring
is motivated by networks of antennas similar to grids [AAG+ 05]. In these
networks, the noise generated by an antenna undergoes an attenuation
with the distance it travels. It is often modelled by a decreasing function
of d, typically 1=d� or 1=(2d� 1).

Here we consider a simpli�ed model where the noise between two
neighbouring antennas is normalised to 1, between antennasat distance
two is 1/2 and 0 when the distance is strictly greater than two. Study-
ing this model of interference corresponds to study theWeighted Im-
proper colouring of the square of the graphG, that is the graph
G2 obtained from G by joining every pair of vertices at distance two,
and to assign weightsw2(e) = 1, if e 2 E(G), and w2(e) = 1 =2, if
e 2 E(G2) n E(G). Observe that in this case the interesting threshold
values are the non-negative multiples of 1/2.



Figure A.2 shows some examples of colouring for the square grid.
In Figure A.2b, each vertexx has neither a neighbour nor a vertex at
distance two coloured with its own colour, soI x (G2; w2; c) = 0 and G2

admits a weighted 0-improper 5-colouring. In Figure A.2c, each vertex
x has no neighbour with its colour and at most one vertex of the same
colour at distance 2. SoI x (G2; w2; c) = 1 =2 and G2 admits a weighted
0.5-improper 4-colouring.

For any t 2 R+ , we determine the weightedt-improper chromatic
number for the square of in�nite paths, square grids, hexagonal grids
and triangular grids under the interference modelw2. We also present
lower and upper bounds for� t (T2; w2), for any tree T and any threshold
t.

In�nite paths and trees

In this section, we characterise the weightedt-improper chromatic num-
ber of the square of an in�nite path, for all positive realt. Moreover, we
present lower and upper bounds for� t (T2; w2), for a given treeT.

Theorem 9. Let P = ( V; E) be an in�nite path. Then,

� t (P2; w2) =

8
><

>:

3; if 0 � t < 1;

2; if 1 � t < 3;

1; if 3 � t:

Proof. Let V = f vi j i 2 Zg and E = f (vi � 1; vi ) j i 2 Zg. Each vertex of
P has two neighbours and two vertices at distance two. Consequently,
the equivalence� t (P2; ! 2) = 1 if, and only if, t � 3 holds trivially.

There is a 2-colouringc of (P2; w2) with maximum interference 1 by
just colouring vi with colour (i mod 2) + 1. So � t (P2; w2) � 2 if t � 1.
We claim that there is no weighted 0.5-improper 2-colouringof (P2; w2).
By contradiction, suppose thatc is such a colouring. Ifc(vi ) = 1, for
somei 2 Z, then c(vi � 1) = c(vi +1 ) = 2 and c(vi � 2) = c(vi +2 ) = 1. This
is a contradiction becausevi would have interference 1.

Finally, the colouring c(vi ) = ( i mod 3) + 1, for every i 2 Z , is a
feasible weighted 0-improper 3-colouring.

Theorem 10. Let T = ( V; E) be a (non-empty) tree. Then,
l

�( T )�b tc
2t+1

m
+

1 � � t (T2; w2) �
l

�( T )� 1
2t+1

m
+ 2.



Proof. The lower bound is obtained by two simple observations. First,
� t (H; w) � � t (G; w), for any H � G. Let T be a tree andv be a node
of maximum degree inT. Then, observe that the weightedt-improper
chromatic number of the subgraph ofT2 induced byv and its neighbour-
hood is at leastd�( T )�b tc

2t+1 e+ 1. Indeed, the colour ofv can be assigned to
at most btc vertices on its neighbourhood. Any other colour used in the
neighbourhood ofv cannot appear in more than 2t + 1 vertices because
each pair of vertices in the neighbourhood ofv is at distance two.

Let us look now at the upper bound. Choose any noder 2 V to be
the root of T. Colour r with colour 1. Then, by a breadth-�rst traversal
in the tree, for each visited nodev colour all the children ofv with the
d�( T )� 1

2t+1 e colours di�erent from the ones assigned tov and to its parent
in such a way that at most 2t + 1 nodes have the same colour. This is
a feasible weightedt-improper k-colouring ofT2, with k � d �( T )� 1

2t+1 e+ 2,
since each vertex interferes with at most 2t vertices at distance two which
are children of its parent.

For a treeT and the weighted functionw2, Theorem 10 provides upper
and lower bounds on� t (T2; w2), but we do not know the computational
complexity of determining� t (T2; w2).

Grids

In this section, we show the optimal values of� t (G2; w2), wheneverG is
an in�nite square, hexagonal or triangular grid, for all thepossible values
of t.

Square Grid

The square grid is the graphS in which the vertices are all integer linear
combinationsae1 + be2 of the two vectorse1 = (1 ; 0) and e2 = (0 ; 1), for
any a; b2 Z. Each vertex (a; b) has four neighbours: itsdown neighbour
(a; b� 1), its up neighbour(a; b+ 1), its right neighbour (a+ 1; b) and its
left neighbour(a � 1; b) (see Figure A.2a).



Theorem 11.

� t (S 2; w2) =

8
>>>>>><

>>>>>>:

5; if t = 0;

4; if t = 0:5;

3; if 1 � t < 3;

2; if 3 � t < 8;

1; if 8 � t:

Proof. If t = 0, then the colour of vertex (a; b) must be di�erent from
the ones used on its four neighbours. Moreover, all the neighbours have
di�erent colours, as each pair of neighbours is at distance two. Con-
sequently, at least �ve colours are needed. The following construction
provides a weighted 0-improper 5-colouring of (S 2; w2): for 0 � j � 4,
let A j = f (j; 0)+ a(5e1)+ b(2e1 +1e2) j 8a; b2 Zg. For 0 � j � 4, assign
the colour j + 1 to all the vertices in A j (see Figure A.2b).

When t = 0:5, we claim that at least four colours are needed to colour
(S 2; w2). The proof is by contradiction. Suppose that there exists a
weighted 0.5-improper 3-colouring of it. Let (a; b) be a vertex coloured
1. None of its neighbours is coloured 1, otherwise (a; b) has interference
1. If three neighbours have the same colour, then each of themwill have
interference 1. So two of its neighbours have to be coloured 2and the two
other ones 3 (see Figure A.3a). Now consider the four nodes (a� 1; b� 1),
(a � 1; b+ 1), ( a + 1; b� 1) and (a + 1; b+ 1). For all con�gurations, at
least two of these four vertices have to be coloured 1 (the ones indicated
by a * in Figure A.3a). But then (a; b) will have interference at least
1, a contradiction. A weighted 0.5-improper 4-colouring of(S 2; w2) can
be obtained as follows (see Figure A.2c): for 0� j � 3, let B j =
f (j; 0) + a(4e1) + b(3e1 + 2e2) j 8a; b2 Zg and B 0

j = f (j + 1; 2) + a(4e1) +
b(3e1 + 2e2) j 8a; b 2 Zg. For 0 � j � 3, assign the colourj + 1 to all
the vertices inB j and in B 0

j .
If t = 1, there exists a weighted 1-improper 3-colouring of (S 2; w2)

given by the following construction: for 0� j � 2, let Cj = f (j; 0) +
a(3e1) + b(e1 + e2) j 8a; b2 Zg. For 0 � j � 2, assign the colourj + 1 to
all the vertices in Cj .

Now we prove by contradiction that fort = 2:5 we still need at least
three colours in a weighted 2.5-improper colouring of (S 2; w2). Consider
a weighted 2.5-improper 2-colouring of (S 2; w2) and let (a; b) be a ver-



(a)

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

(b)

��

��

��

��

��

��

��

��

�� �� �� ��

�� �� �� ��

�� ��

�� ��

�� �� �� ��

�� �� �� ��

�� �� �� ��

�� �� ��

�� �� �� ���� �� �� ��

�� �� �� ���� �� �� ���� ��

�� �� ��

�� ��

����

(c)

��

�� ��

���� �� ��

����

�� ��

����

�� ��

�������� ��

���� ����

����

����

����

����

����

����

(d)

Figure A.2: Optimal colourings of (S 2; w2): (b) weighted 0-improper 5-
colouring of (S 2; w2), (c) weighted 0.5-improper 4-colouring of (S 2; w2), and
(d) weighted 3-improper 2-colouring of (S 2; w2).
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Figure A.3: Lower bounds for the square grid: (a) ift � 0:5 and k � 3, there is
no weightedt-improper k-colouring of (S 2; w2); (b) the �rst case when t � 2:5
and k � 2, and (c) the second case.

tex coloured 1. Vertex (a; b) has at most two neighbours of colour 1,
otherwise it will have interference 3. We distinguish threecases:

1. Exactly one of its neighbours is coloured 1; let (a � 1; b) be this
vertex. Then, the three other neighbours are coloured 2 (seeFig-
ure A.3b). Consider the two sets of verticesf (a � 1; b � 1); (a +
1; b � 1); (a; b � 2)g and f (a � 1; b + 1) ; (a + 1; b + 1) ; (a; b+ 2) g
(these sets are surrounded by dotted lines in Figure A.3b); each
of them has at least two vertices coloured 1, otherwise the vertex
(a; b� 1) or (a; b+ 1) will have interference 3. But then (a; b) hav-
ing four vertices at distance two coloured 1 has interference 3, a
contradiction.

2. Two neighbours of (a; b) are coloured 1.

a) These two neighbours are opposite, say (a� 1; b) and (a+ 1; b)
(see Figure A.3c left). Consider again the two setsf (a � 1; b�
1); (a+1; b� 1); (a; b� 2)g and f (a� 1; b+1) ; (a+1; b+1) ; (a; b+



2)g (these sets are surrounded by dotted lines in Figure A.3c
left); they both contain at least one vertex of colour 1 and
therefore (a; b) will have interference 3, a contradiction.

b) The two neighbours of colour 1 are of the form (a; b� 1) and
(a � 1; b) (see Figure A.3c right). Consider the two sets of
verticesf (a+ 1; b� 1); (a+ 1; b+ 1) ; (a+ 2; b)g and f (a+ 1; b+
1); (a� 1; b+1) ; (a; b+2) g (these sets are surrounded by dotted
lines in Figure A.3c right); these two sets contain at most one
vertex of colour 1, otherwise (a; b) will have interference 3.
Moreover, each of these sets cannot be completely coloured 2,
otherwise (a + 1; b) or (a; b+ 1) will have interference at least
3. So vertices (a+1; b� 1), (a+2; b), (a; b+2) and (a� 1; b+1)
are of colour 2 and the vertex (a + 1; b+ 1) is of colour 1. But
then (a� 2; b) and (a� 1; b� 1) are of colour 2, otherwise (a; b)
will have interference 3. Thus, vertex (a� 1; b) has exactly one
neighbour coloured 1 and we are again in Case 1.

3. All neighbours of (a; b) are coloured 2. If one of these neighbours
has itself a neighbour (distinct from (a; b)) of colour 2, we are in
Case 1 or 2 for this neighbour. Therefore, all vertices at distance
two from (a; b) have colour 1 and the interference in (a; b) is 4, a
contradiction.

A weighted 3-improper 2-colouring of (S 2; w2) can be obtained as
follows: a vertex of the grid (a; b) is coloured with colour (

�
a
2

�
+

�
b
2

�

mod 2) + 1, see Figure A.2d.
Finally, since each vertex has four neighbours and eight vertices at

distance two, there is no weighted 7.5-improper 1-colouring of (S 2; w2)
and, whenevert � 8, one colour su�ces.

Hexagonal Grid

There are many ways to de�ne the system of coordinates of the hexag-
onal grid. Here, we use grid coordinates as shown in Figure A.4. The
hexagonal grid graph is then the graphH whose vertex set consists of
pairs of integers (a; b) 2 Z 2 and where each vertex (a; b) has three neigh-
bours: (a � 1; b), (a + 1; b), and (a; b+ 1) if a + b is odd, or (a; b� 1)
otherwise.



Theorem 12.

� t (H2; w2) =

8
>>><

>>>:

4; if 0 � t < 1;

3; if 1 � t < 2;

2; if 2 � t < 6;

1; if 6 � t:

�� �� �� �� �� �� �� ��

�� �� �� �� �� ���� ��

�� �� �� �� �� �� �� ��

�� �� �� �� �� ���� ��
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Figure A.4: Weighted 0-improper 4-colouring of (H2; w2). Left: Graph with
coordinates. Right: Corresponding hexagonal grid in the euclidean space.
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(a) t = 1, k = 3
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(b) t = 2, k = 2

Figure A.5: (a) weighted 1-improper 3-colouring of (H2; w2) and (b) weighted
2-improper 2-colouring of (H2; w2).

Proof. Note �rst, that when t = 0, at least four colours are needed to
colour the grid, because a vertex and its neighbourhood inH form a
clique of size four inH2. The same number of colours are needed if we
allow a thresholdt = 0:5. To prove this fact, let A be a vertex (a; b) of H
and B = ( a � 1; b), C = ( a; b� 1) and D = ( a+ 1; b) be its neighbours in
H. Denote byG = ( a � 2; b), E = ( a � 1; b� 1), F = ( a � 2; b� 1), H =
(a+1; b� 1), I = ( a+2; b� 1) and J = ( a+1; b� 2) (see Figure A.6a). By
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