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Abstract

In this thesis we study multiple approaches to e ciently accomo-
dating for the future growth of the Internet. The exponential growth of
Internet tra c, reported to be as high as 41% in peak throughput in 2012
alone, continues to pose challenges to all interested parties. Thefare,
to accommodate this growth, smart management and communication
protocols are needed.

The basic protocols of the Internet are point-to-point in nature. How-
ever, the tra c is largely broadcasting, with projections stating that as
much as 80-90% of it will be video by 2016. This discrepancy leads
to an ine ciency, where multiple copies of essentially the same mesages
travel in parallel through the same links. In this thesis we study multiple
approaches to mitigating this ine ciency.

The contributions are organized by layers and phases of the network
life. We look into optimal cache provisioning during network design
Next, we move to managing an existing network. We look into putting
devices to sleep mode, using caching and cooperation with Contenti§
tribution Networks. In the application layer, we look into maintainin g
balanced trees for media broadcasting. Finally, we analyze data survi
ability in a distributed backup system, which can reduce networktra c
by putting the backups closer to the client than if using a data cener.

Our work is based on both theoretical methods, like Markov chains
and linear programming, as well as empirical tools, like simulation and
experimentation.



Abstract

Dans cette tlese, nousetudions divers probemes dont I'objectf est
de cerer la croissance dinternet plus e cacement. En e et celle-ci est
tes vive : 41% pour le pic en 2012. A n de epondre aux & s poses par
cetteevolution aux divers acteurs du eseau, des protocoles de gésn et
de communication plus intelligents sont recessaires.

Les protocoles de I'Internet furent corcus comme des protocoles puf
a point. Or, la part de la di usion de redia dans le tra c est pep oncerante
et en nette hausse, et des projections indiquent qu'en 2016 80-90% du
tra c sera engende par de la di usion viceo. Cette divergence entrane
des ine cacies, car des multiples copies d'un message transitenpar un
lien. Dans cette these, nousetudions comment remedera cette ine -
cacie.

Nos contributions sont organiees selon les couches et les phases de
ceploiement du eseau. Nousetudions le placement de caches lorgle la
conception du eseau. Ensuite, pour la gestion d'un eseau, nous rgar-
dons quand placer des appareils en veille, en utilisant un mecanismde
cache et en cooperation avec des eseaux de distribution. Puis, aniveau
de la couche application, nous etudions un probeme de maintenance
d'arbresequilibes pour la di usion de nmedia. En n, nous analys ons la
probabilie de survie des donrees dans un syseme de sauvegardeist
tribee.

Notre travail se fondea la fois sur des nethodes theoriques (Chénes
de Markov, Programmation Lireaire), mais aussi sur des outils em-
piriques tels que la simulation et I'experimentation.
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CHAPTER

Introduction

In this thesis we study multiple approaches to optimizing th current
and future Internet. In this introduction we motivate theseapproaches,
mention the techniques used and nally enumerate our main atribu-

tions.

1.1 Motivation

The impact of the Internet on our lives has been becoming moaed more
evident in recent years. Nowadays, people are using it in wori free
time and in the commute between them. It is gradually replaog printed
press, radio and television. This results in an exponentiike growth in
network tra c, that is likely to last in the foreseeable future. According
to a report by Cisco [Cis13], the peak global throughput hasicreased by
41% through the year 2012 alone. Sustaining such a growth, fehmin-
imizing investments and energy consumption, requires nevp@oaches
to how the networks comprising the Internet are used and opated.

In parallel to the increase of tra ¢ volume, we see a shift ints nature.
An increasing part of the tra c is media broadcasting. In fact according
to projections in the same Cisco report, video tra c alone wli constitute
69 percent of all consumer tra c in 2017, up from 57 percent ir2012.
Together with le sharing, this should approach 90% of all ta c. These
kind of ows share the property that they are not concerned byvhich
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server serves the client. This motivates the main questioms the thesis,
which are concentrated on the study of content disseminatioand peer-
to-peer systems. Particularly, it is bene cial to all involed parties if
a client is served from a location as close as possible. Wedstuhree
di erent classes of such close locations:

a mirror server located closer in the network, what is the casfor
Content Distribution Networks (CDN),

a cache located at a nearby network device (in-network caclg),

or another client sharing his own resources, as in Peer-t@ét net-
works (P2P).

They are described in more detail in Sectioh 1.4 and studied various
chapters of this thesis, utilizing a set of techniques dedlged in Sec-
tion [.G.

In this thesis | study multiple models of communication oveinter-
net. | also look into multiple phases of the network life, fnm conception
of physical layer, dimensioning, management, to using it ia more dis-
tributed way.

1.2 Network transmission taxonomy

Due to convergence of communications, computer networkstrsmit any
kind of les and streams. Observing the nature of network tra, in
general one can divide the volume into three main categorievideo
streaming, le sharing (includes video les) and everythig else. The
historical and projected tra c amounts are plotted in Figure[1.1. In this
section, we classify the bulk of the tra c into a few more catgories and
brie y describe them in terms of: volume of tra c, delay sen#ivity and
whether they may be cached, relocated or multicasted.

Conversations  First, there is a broad category of communication be-
tween users. This may include emails, instant messages, eadchat as
well as many speci c applications, e.g. computer games. Alleasages
in this category have two given endpoints and are unique, mamitted
only once. All the other characteristics vary from applicabn to applica-
tion. Email is usually low tra ¢ and very tolerable towards transmission
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Figure 1.1: Tra c evolution according to [Cis13], historical data taken from
[Cis09,[Cis10/ Cis11| Cis12].

delays and failures. Computer games are low tra c, but very snsitive
towards delay. Video chat is high tra c and somewhat sensitie towards
delay. Other applications can be any mixture of above. Flowselong-
ing into this category generally cannot be cached nor reldea and they
would not bene t from any form of multicasting.

Web This category contains the huge interlinked collection oflgects,
known as the World Wide Web. While it may be used as a front-end to
the other categories, its main purpose is publishing. Tra aequirements
depend on the type of viewed content, from tiny in case of plaitext
to huge in case of rich multimedia. Delay tolerance is mediymeal
time transmission is not required, but quick delivery is crcial for client
satisfaction. Many objects are static and common across wsltes, like
logos or other images, and can be cached. However, the transsions
connected to a single location are usually relatively smadhd predicting
the next location visited by the user is not a trivial problem This has
led to numerous studies on pre-fetching, surveyed in [Warj99

Live streaming  Live streaming can be seen as television over internet.
A source broadcasts live media and clients display it after ghort delay.
This delay accommodates for bu ering, transmissions and ewtual re-



transmissions. It also serves as @eadline{ it is useless for a client to
receive a fragment of the stream delayed by more, as its pladk time
already passed and it will never be used again. Along this dglhound,
these kind of ows often have very big bandwidth. The fact thawe have
a big number of clients interested in receiving exactly theasne content
at the same time makes a perfect match for multicasting.

On-demand streaming On-demand is another type of streaming, where
user chooses a media le from a previously o ered collectionWhile
transmission requirements are roughly the same as in livesaming, the
user may choose to pause and resume the playback at will. Qpizing
this kind of streaming raises more challenges. The sizes oflections
are usually much larger than number of live channels. Additrally, two
users watching the same le may be too far apart in playback e to
treat them as watching the same thing.

File sharing A big part of Internet's bandwidth is used by le shar-
ing. In this kind of application users typically share sing big les. As
download times are often counter in hours, there is not muchrg@ssure on
delays. However, as the user typically wants to receive theelas soon
as possible, there is demand for practically unlimited bamddth.

Cloud computing One use case for computer networks, that has been
gaining on importance in the recent years, isloud computing This is a
broad category, containing any kind of tasks performed seaxside, con-
trolled by a remote operator. These might be as di erent as nitimedia
editing, distributed computing or simply data storage. Themain moti-
vation is moving computing resources from the client, whicban become
simpler, towards centralized facilities, where economied scale can be
leveraged.

Delay tolerance depends on the actual application and cloutbm-
puting ows rarely refer static data that could be cached. However, as
the operator is already remote to the servers performing thtasks and is
usually oblivious to their location, the servers themselgecan be placed
at a possibly close location to the client.



Category Trac volume Delay tolerance Optimization

Conversations Variable Low |

Web Variable Medium Caching

Live streaming High Low Multicasting

On-demand streaming High Low Caching

File sharing High High Caching,
relocating

Cloud computing Variable Variable Relocating

Table 1.1: Summary of the network ow classes, their properties and natual
optimizations.

Table [1.1 summarizes the above classi cation. Note that thenty
class without a natural way of optimization, from network pespective,
are conversations. On the other hand, there is little redurahcy in this
class. Thus, we can state that in most cases if there is an ineiency, we
can attempt to address it.

1.3 Content popularity and caching

As discussed in previous section, the majority of transmissis over In-
ternet are expected to be video streaming. In both live and esleemand
streaming, the same content is received by multiple users. of~live
streaming this opens the possibility of multicasting, eitar by IP mul-
ticast or peer-to-peer networks, studied in Chapter|4. Forrmedemand
streaming caching can be employed. It plays important roles Chap-
ters[2 and[3.

In general, caching means storing a subset of a collectionalfjects
in another place, from where retrieval is signi cantly cheper than from
said collection. Caches are ubiquitous in all areas of conmmg. A
remarkable example are CPU caches. A small amount of staticARI
located on the CPU, usually a few megabytes, mirrors some pgaf the
main memory, usually a few gigabytes of dynamic RAM. If data @essed
by the processor is present within a cache, we say it iscache hitand
the access takes a few nanoseconds. Otherwise, we fa@ache miss
and the access is directed towards the main memory, what is aseired
hundreds of nanoseconds. Therefore the probability of thequired data



being present in the cache, callecache hit ratio, is crucial for the overall
e ciency of the system. An in-depth explanation of caching irhardware
can be found in[[JNW10].

In networking, a well known usage of caching are web proxieEhey
are servers usually located in the same network as their clts. Proxies
essentially cache any web content. They are either enablexpécitly in
client's browser con guration, or the network is con guredto redirect
requests to a proxy, possibly without client's knowledge. nlthe latter
case we say the proxy igansparent Another notable example of a cache
is a server of a Content Distribution Network, as described iBection1.4.
Such a server is located at a network close to the client, but icase of
a miss it needs to forward the request to the original contergrovider,
which may be very far. In this thesis we look intan-network caches,
also described in Sectioh 11.4.

The interest in caching in networking is to allow many clierd to
obtain some data from a nearby cache, thus saving multipledendant
long-range transmissions. This implies that the e ectiveess of caches
depends on popularity, understood as the number of clientequesting
for an object (web page, song, movie, etc.) over some time. i$t often
stated in the literature that it follows a power-law. This mens that
there are very few objects that are very popular and a lot obg¢s that
are not popular.

Zipf's law is proposed to described popularity of objects ithe Inter-
net. In was proposed in/ [Zip32], in order to study natural laguages. It
states that the frequency of any word is inversely proportiwal to its rank
in the frequency list. More formally, the popularityf of object rankedk

IS:

where is a positive real parameter. A probability distribution of ac-
cessing a given object is obtained by simply dividing the ale by the
sum for all objects. This distribution was found to be a goodt for Web
trac in [BCE_"99], where it was found that the value of falls within
the range [06; 0:8], depending on the collection and viewers population.
More recent studies, specializing on video tra c, tend to corm this,
e.g. [CDL0O8, GHM13]. However, values observed can be as low &60
in [GALMOQ7] and as high as 1.5 in [CKRO7].
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Figure 1.2: Hit rates in function of cache size relative to the size of thecol-
lection it caches, for three dierent values of the distribution's exponent
Computed for n = 107 objects in collection. Note the log-log scales.

Assume that we know the object popularity for a period of timewe
store in the cache the most popular content for that time andhe period
is long enough to make any initial cache misses insigni canfThen, we
obtain the formula for the hit rate of a cache mirrorings objects of a
collection ofn objects:

P

h(s;n; )= P —;

k
; 1.2
= (1.2)

X 3|x u

which is plotted in Figure[1.2. It shows the hit rates obtainedwith
conservative values of , by a single cache that can store up td/200
of the collection. For example, if the collection is 10ABof video clips
100MB each, with = 0:8, we would obtain 22.4% hit ratio with a 10TB
cache, 12.8% with a 1TB and 6.7% with a 10GB one. An important
observation in the plot is that, even within this conservatre range, small
variations of the parameter have a huge e ect on cache e ciency.

1PB=10%TB=10°GB = 10°MB = 10 °B



1.4 Content distribution models

The majority of current internet tra c is delivered using a protocol stack
built on the Internet Protocol (IP), which takes its name from being
the one used to deliver messages between hosts that may bensmted
to di erent networks. Below it we have the link layer, which gverns
communications of devices sharing a link. Above there is theahsport
layer, which ensures continuity of host-to-host communit¢i@an, mainly
by the Transmission Control Protocol (TCP) protocol, and the applica-
tion layer, which engulfs any communication abstracting @ar the layers
below.

The TCP/IP stack is conversational by design. On the other had,
most of the data ows through today's networks are either caent dis-
tribution or, starting recently and gaining momentum, cloud basedser-
vices. This mismatch creates a range of opportunities to imduce more
e cient architectures for the future Internet. In this section we brie 'y
characterize the main ones.

Network

Server WQQV Client )

Figure 1.3: A communication ow between a server and a client, passinga
network comprised of multiple routers.

Client-server

TCP/IP assumes communication between two points. These ually
are a single client and a single server. This is depicted in g [1.3.
Distinction between both endpoints comes down to the facthat it is the
client who initiates the communication. Thus, he must knowhe address
of the server. This re ects how actual users use network séres. Even
if ultimately they want to send a message to another user, ually they
will do so, e.g., by the service provided by email servers.

Ine ciency arises if the communication is one-to-many by nture.
Extreme, but increasingly signi cant, example of such comuonication is



media broadcasting. In this case, multiple copies of essitiyy the same
messages ow in parallel through the network, often sharingnd proba-
bly congesting the same links. This is shown in Figufe 1.4. Rtiermore,
media broadcasting requires high and ever-growing bandwhd There-
fore, mitigating this redundancy is particularly importart.

4

Network

N

Figure 1.4: Multiple communication ows between a server and its clents,
passing in parallel through the same routers in the network.

IP multicast

Network

Serverg O C$~—Client)

N\

Figure 1.5: A single ow is multicasted at IP routers towards all interested
clients using IP multicast.

The rst solution to this ine ciency is IP multicast. It was p roposed
in [DEE88]. It is implemented in standard IP routers. Every lboadcast
channel is assigned anulticast address Clients interested in receiving
it subscribe using thelnternet Group Management Protocglor the Mul-
ticast Listener Discovery component of IPv6. A router, seeing such a
subscription, will forward any messages related to this chael towards
the client. This is illustrated in Figure[I.5. If it is not recaving it yet,
it will also signal to its default route that it has clients interested. The



broadcaster is simply sending single messages to the mast address,
it is not responsible for multicasting or retransmissions.

This solution is obviously limited to live broadcasting. De to lack of
applications, following a mismatch between protocol and paolar needs,
economic reasons and security issues, IP multicast is notlely deployed.
In practice it is restricted to specic services, like prowing traditional
television inside an operator's network. IP multicast traersing multiple
networks is rare.

Content distribution networks

Transit Networks ISP Network /’
O— -

Figure 1.6: Multiple clients request the same content from a ContentProvider.
Only one copy of the content is passed, traversing possibly multi@ transit
networks, to a CDN server. This server, located on an edge of an ISP nebrk,
distributes the content to all the clients connected to it.

One response to aforementioned ine ciency, widely deploglein the
wild, are Content Distribution Networks (CDNSs). This solution leverages
a particular socio-economical phenomena: in case of medisatdbution,
both clients and providers are willing to pay anybody who carnsure
swift transmission, not only to network operators giving tem connectiv-
ity. In fact, clients pay, probably indirectly by watching advertisements,
for the received content to big Content Providers (CPs). CDNsnstall
themselves as a man-in-the-middle. They are paid by the CPacserve
to clients content previously obtained from the CPs. Aggredmg mul-
tiple CPs, they can aord to put their servers in the edges of rny
networks.

When a client wants to access some content of a CP, he is rediest
towards the nearest CDN server. If it is the rst request for his content



in some time, the CDN server obtains a copy from original CPi@es it
and provides to the client. On subsequent requests the coppied by the
server will be used, unless it is deleted due to too long timestween re-
guests, thus eliminating the need for parallel long-haul aamunications.
This is shown in Figure 1.5.

Arguably the most notable CDN is Akamai, founded in 1998. By
their own claim in [Akal3], they servel5-30% of the world's Internet
tra c on a daily basis. This is achieved using alobal network of more
than 85,000 servers in 70 countriesLess is known about other major
CDNs, like Level 3 or Limelight. Some ISPs maintain their own DNs.
These, like IP multicast for live streaming, usually serveheir own on-
demand streaming o erings. The Cisco report [Cis13] estirntes that
CDNs currently account for 34% of Internet tra c. That number should
rise to 51% by the year 2017.

Content Distribution Networks play a major role in Chapter[3.

Peer-to-Peer

Network

Figure 1.7: A source providing a single peer, who then shares with nitiple
local peers.

If the content provider cannot, or is unwilling to, employ a ®N,
then e cient content distribution can be undertaken by the dients. The
basic principle of Peer-to-Peer (P2P) networks is that mostf its users
are clients and servers at the same time. Hence, they are cdligeers.
After receiving a fragment of media, a peer is expected to pagsto
others, as shown in Figuré 1I]7. The obvious exception is theiginal
source of the media, or more generally any peer that is not eresting
in receiving, but has some data to serve.



P2P networks got some popularity in multiple areas. Arguablyhe
one with biggest mindshare is the le sharing network Bit Torent, pro-
posed in [Coh03]. A popular solution for amateur video broadsting
is SopCast, investigated in/[LFK 09]. A commercial success in China
was achieved by the P2P broadcaster PPTV, formerly PPLive, st-
ied in [HLL*07]. As they claim in [PPL13], PPTV has more than
260 million users A number of P2P storage systems have been pro-
posed [DRO1, BTcC 04, KBC" 0C]. However, the only well-known com-
mercial system, Wuala, has switched to a purely client-sexw architec-
ture. According to [MBM12], this was dictated by a signi cantdrop in
data center prices, making this easier design economicaléasible. Ac-
cording to the Cisco report([Cis13], just P2P le sharing costitutes 23%
of current Internet tra c.

Note that many popular P2P networks do not explicitly optimiz for
locality. However, prioritizing peers with high throughput like in Bit
Torrent, indirectly favors peers which are closer networltise. Addition-
ally, many popular clients implement theLocal Peer Discoveryextension,
see([Bit13].

Peer-to-Peer networks are analyzed in Chaptefrs$ 4 apfl 5.

In-network caching and Content Centric Networking

Network

Figure 1.8: Object dissemination over a network of caching routers. Edt
router on a path between a client and source server stores the objechiits
cache. When other clients request the same object, it needs to besseminated
only from the closest router common to their paths to the source server

Finally, network operators can battle the ine ciency by deplying
in-network caches. A scenario, where each router is augmeghtwith a



cache and on a missed request passes it to the next cache ongéth to-
wards a server, is depicted in Figure 1.8. Unlike in IP multicascaching
is not restricted to live streaming. Any popular objects can & stored
in-network, to be accessed at client's convenience. The maition for an
ISP to undertake such an investment is twofold. First, cachegduce the
latency, making its clients happier. Second, they reducerig-haul tra c,
thus saving money to the operator. While both of these are a&hied, to
some extent, by the third-party operation of CDNs (which essially can
be seen as caches themselves), there are some advantagepéeoator's
caches. First, they can be provider-agnostic, therefore aptizing the
savings of the operator, disregarding the nature of the sa of the con-
tent. However, note there may be possible copyright issues jproviders
want to be in control of who and when can access their conterfbecond,
placement and dimensioning can be tailored to benet the péacular
network (Chapter|Z studies this problem). Third, it is the IS who con-
trols the operation, allowing it to respond to current netwok conditions
(studied in Chapter|3).

In-network caching is attracting research interest thankso Content
Centric Networking (CCN), proposed in[[JST 09]. It uses the concept
of nearest replica routing where requests are propagated towards the
nearest cache containing the data, instead of going alongettshortest
route towards a known host. This broadcast-centric approacallows for
massive reuse of media chunks, virtually eliminating reddiant parallel
transfers seen before. CCN's network layer can be used as deralative
to the Internet Protocol, as well as be layered over it (or ovdJDP) for
easier deployment. Also, unlike TCP which concerns connemti, CCN
ensures that the content is received intact and as requested

1.5 Metrics studied

In di erent studies we are interested in optimizing or evalating di erent
metrics. These need to be de ned and modeled in a clear and pimway.
In this section we brie y describe them.

One concern that has been growing throughout the recent yeaibe-
cause of rising prices of electricity and worries about glabwarming,
is energy consumption. According to_[LVHV 12], the Information and
Communication Technology sector already consumes 2% of lgb elec-



tricity and experiences 10% of yearly increase. In ChaptgZsand[3, both
concerned in network layer, we optimize power consumption.

When it comes to telecommunication networks, we see huge impee
ments in energy e ciency achieved by device manufacturersn [LKWG11]
it is shown that power consumed per unit of data transmittedd halved
every four or ve years. However, as we know frorm [Cisl13], thenaunt of
data transmitted is at least tripled over the same period. Fdhermore,
the trend towards decreasing per bit energy e ciency can sto down
signi cantly. As discussed in an ICC 2013 keynote [Winl13], peber
capacities are approaching the Shannon limit computed ih FKWO0S].
On the other hand, there is no clear reason to believe tra ¢ gswth will
come to a standstill. Thus, we arrive at the conclusion thatnproving
network power e ciency is of global importance.

Three ways of achieving this are considered in this thesis.h& rst
is shortening the routes travelled by tra c, either by caching or choos-
ing a server that is closer to the client. The second is puttghunused
components into sleep or low-power modes. This has been mmiposed
in [GS03]. The third way is aggregating the tra c. It has beenshown, in
the in uential paper of Chabarek [CSB 08], that the energy consump-
tion of network equipment is not proportional to the volume btra c.
Thus, using fewer devices with higher load may lead to sigmiant sav-
ings. This may happen both in network deployment, or by putthg more
devices to sleep mode.

For Peer-to-Peer broadcasting in Chaptef|4, we look into théme
between a failure and nishing repair of the tree. The time igxpressed in
number of turns, where a turn is the time needed for each nodethe tree
to perform a single operation. For the simulations we can l&anto other
metrics, like the average delay or fraction of media receivecorrectly.
Both the values are improved by the algorithm. The delay is th time
between the source sending some content and the nodes raongivt. It
depends on the distance of the node from the source; thus batang
the tree minimizes delay. When a node has too many children,aannot
sustain streaming to every one of them. Thus nodes that haveesloaded
ancestors do not receive all the media. Our algorithm impreg this as
well.

In Chapter 5, we look into Peer-to-Peer backup systems. To sure
data survival, such a system employs a continuous self-rép@rocess.



Whenever a fragment of the data is lost, it is being reconstrted from
redundant data in the network. To achieve it, peers need to Upad the
data. Thus, the system continuously uses bandwidth and weauate its
usage. If available bandwidth is too low to accommodate alhé losses,
we arrive at a probability of losing some data. This probalty is the
most important characteristic for such a system.

When solving frequency assignment problem in AppendiX A, we wan
to minimize either the number of radio channels needed or theterfer-
ences between nodes. Radio channels, modeled as the colwuasgraph
colouring, are a monetary cost to obtain. Interference, indted by other
nearby devices using the same channel, has to be kept belovheeshold
to keep transmission reliable.

1.6 Techniques used

Over the course of this thesis we faced di erent problems, liag for
di erent solutions. The main techniques used, ordered frorthe more
theoretical to more empirical, are:

Queueing and Markov chain analysis, in Chapter|5, described
Section[5.1

Integer Linear Programming approaches, in Chaptdr| 3 and Ap-
pendix|[A], described in Sectiofn 3|1

Rounding or fractional relaxations of mixed integer lineaprograms,
in Chapter[3, described in Sectiofi 32

Branch-and-bound methods, in Appendix A
Discrete event simulation, in Chaptef b
Cycle based simulation, in Chaptef |4

Experiments, using commercial softwafeon a testbed platfornf
in Chapter[§

Zhttp://www.ubistorage. fr/
3https://www.grid5000.fr/



A sizeable part of the work presented here does not fall intdis
classi cation. For example the analysis in Chapter]|2 reliesnly on basic
probability and algebra, leading to a straightforward exatcalgorithm.
In Chapter [4 we use a potential function approach, similar téhe ones
used to prove the convergence to a Nash Equilibrium in game trg. In
Appendix[A]it is a case-by-case analysis.

1.7 Contributions

The remainder of this thesis is organized around my contribons. What
follows in this section are their short descriptions. Folleing the cus-
toms in our team, the alphabetic order of authors is employeidr every
paper other than Energy E cient Content Distribution in an ISP Net-
work [MCT " 13].

Chapters begin with preliminary sections, setting up someoatext for
the contribution. The bodies of chapters mainly correspontb research
report versions of the respective publications. These areone detailed
than the published articles.

Chapter J:]Energy E cient Cache Provisioning

We look into saving the energy in the network design phase, byin-
imizing the requirements for deployed devices. The main doibution
itself is lead by some general insights on caching and dengi power
models of networks. Then, we study the problem of reducing wer con-
sumption in an Internet Service Provider (ISP) network by dsigning the
content distribution infrastructure managed by the operabr. We pro-
pose an algorithm to optimally decide where to cache the canit inside
the ISP network. We evaluate our solution over two case stugl driven
by operators feedback. Results show that the energy-e ci¢rdesign of
the content infrastructure brings substantial savings, bih in terms of
energy and in terms of bandwidth required at the peering padirof the
operator. Moreover, we study the impact of the content chaceristics
and the power consumption models. Finally, we derive some iigists for
the design of future energy-aware networks.

The results of this chapter have been accepted for publicati in
GLOBECOM 2013 [MCT" 13].



Chapter 3:]Energy E cient Routing

In this chapter, we move to the management of an already depkxd net-
work. We consider saving the energy by aggregating tra ¢ angbutting
some devices to sleep or low power modes. We study the impatctusing
in-network caches and content delivery network (CDN) coopation on
an energy-e cient routing. We formulate this problem as Enegy E -
cient Content Distribution and propose an integer linear prgram (ILP)
and an e cient heuristic algorithm to solve it. The objective isto nd a
feasible routing, so that the total energy consumption of # network is
minimized subject to satisfying all the demands and link cazity. We
exhibit the range of parameters (size of caches, popularitf content,
demand intensity, etc.) for which caches are useful. Experental re-
sults show that by placing a cache on each backbone router tmie the
most popular content, along with well choosing the best coant provider
server for each demand to a CDN, we can save about 20% of poweth&
backbone, while 16% can be gained solely thanks to the use atles.

The results of this chapter have been accepted for publicati in ICC
2013 [AGL" 13].

Chapter 4:] Maintaining Balanced Trees For Structured
Distributed Streaming Systems

In this chapter, we move to content distribution in the applcation layer.
As discussed before, peer-to-peer networks reduce the broasting re-
dundancy by allowing clients to share the content among theselves. We
deal with some concerns about robustness of such a setup. Wepwse
and analyze a simple localized algorithm to balance a tree.h& moti-
vation comes from live distributed streaming systems in wbl a source
di uses a content to peers via a tree, a node forwarding the tato its
children. Such systems are subject to a high churn, peers dtently
joining and leaving the system. It is thus crucial to be abled repair the
di usion tree to allow an e cient data distribution. In part icular, due to
bandwidth limitations, an e cient di usion tree must ensur e that node
degrees are bounded. Moreover, to minimize the delay of theesaming,
the depth of the di usion tree must also be controlled. We prpose here
a simple distributed repair algorithm in which each node caies out local
operations based on its degree and on the subtree sizes ofch#dren.



In a synchronous setting, we rst prove that starting from aly n-node
tree our process converges to a balanced tree@{n?) turns. We then
describe a more restrictive model, adding a small extra infoation to
each node, under which we adapt our algorithm to converge in(n logn)
turns. Finally, we exhibit by simulation that the convergene is much
faster (logarithmic number of turns in average) for a randontree.

The results of this chapter have been accepted for publicati in
SIROCCO 2013[[GMNP13].

Chapter §:Analysis of the Repair Time in Distributed Storage
Systems

In the nal chapter, we move from content distribution to digributed
applications. One such application, with big bandwidth regirements,
are online backups. A conservative approach to this task emoys data
centers. However, these usually are far away from the usersstead, it
is possible to use storage located at the perimeters of othezarby users
of a distributed system. This, again, raises questions abtoreliability.
To that end, these storage systems introduce redundancy tagserve
the data in case of peer failures or departures. To ensure ¢pterm
fault tolerance, the storage system must have a self-repaervice that
continuously reconstructs lost fragments of redundancy. e speed of
this reconstruction process is crucial for the data surviva This speed
is mainly determined by available bandwidth, a critical resurce of such
systems. We propose a new analytical framework that takes@account
the correlation of concurrent repairs when estimating theapair time and
the probability of data loss. Mainly, we introduce queuing radels in
which reconstructions are served by peers at a rate that dep#s on the
available bandwidth. The models and schemes proposed arédated by
mathematical analysis, extensive set of simulations, andgerimentation
using the Grid'5000 test-bed platform.

The results of this chapter have been published in Globe 20[BGM™ 13].

Appendix A: Weighted Improper Colouring

Appendix[A]contains work that is not concerned by reducing rachdancy
in network tra c. Instead, it is motivated by frequency assignment in
satellite networks. Thus, it concerns link layer. In wirelss networks, a



node interferes with other nodes, the level of interferencepending on
numerous parameters: distance between the nodes, geogreaphtopog-
raphy, obstacles, etc. We model this as a new graph colouripgoblem.
We nd some general bounds and optimal solutions for in nitegrids. We
model the problem using integer linear programming, propesand test
heuristic and exact Branch-and-Bound algorithms on randongell-like
graphs.
The results of this chapter have been published in IWOCA 20JABG ™ 11]

and JDA 2012 [ABG'].
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CHAPTER

Energy E cient Cache
Provisioning

In this chapter we look into saving energy by optimizing the idhension-
ing of the network infrastructure. Dimensioning is the phasef design
after deciding the connection structure, when the numbersnd capac-
ities of deployed devices are decided. The network is augrtezh by
in-router caches. The caches are organized into a hierarchyhat has
been previously discredited in the literature. Thus, in therst prelimi-
nary to the chapter, we discuss why hierarchy of caches canlbene cial,
when taking into account tra ¢ aggregation. In the second peliminary,
we discuss the multiple possible approaches towards constiing power
models. This is relevant both for this and the next chapter.

2.1 Preliminary: modelling content ow over a
network

The real ISP network design that we take into consideratiorsidivided
into the core network, which ensures long-range connectiiand mul-
tiple metropolitan networks, which cover geographical regns to give
access to the clients. The core is a two-connected graph ofrgotens of
nodes. Metropolitan network is comprised of two core routsy that are
its connection to the core network, an optical ring consisig a number
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metro __- content provider

Figure 2.1: Example network comprising a core and three metropolitan net
works, out of which one is displayed. Core routers are depicted withquares,
metropolitan routers with circles and access nodes with solid dots. Arexam-
ple routing from a single content provider towards the visible acces nodes is
overlaid in red dashed lines.

of edge routers and some access nodes connected to each amgery
usually also in some two-connected arrangement. Optical gss is of-
ten used in the metropolitan networks, creating a logical fwology where
nodes that are distant in the physical topology can have a dict connec-
tion in the network layer.

However, the setting becomes much simpler when consideringdiae
coming from a single content provider. Note that most media cees from
big providers and enters the considered network through senpeering
point. By looking at shortest routes between this point and laclients,
we obtain a tree over which the data is disseminated. This isegicted
in Figure [2.1.

Looking at the trees obtained for the networks studied in tis work,
we found some distinctive levels. For example in the Franceelecom
network, we have a level of core routers that connect only t@rce routers,
core routers that are edge to metropolitan networks, some meometropoli-



tan routers and access nodes. The fan-out of nodes within adédoes
not vary too much. Thus, we simplify the network as a rooted &e, where
all nodes that have the same distance from root have the samegiee.
Note that while we have a tree for each possible content prowed all the
trees are independent and have the same structure. Theredpme treat
them as a single aggregated tree, without a ecting the regsl

2.2 Preliminary: modelling energy consumption in
a network

Expressing power consumption of a system as complex as a catep
network in terms simple enough to be an optimization metricsi not a
trivial task. In a study focused on minimizing the number of etive
devices of single kind, it may be abstracted simply as the ndrar of
devices running. One example of such study is [GMM12], whetige
optimization metric is simply the number of links turned on.

However, assuming a device's power usage is constant is a $Hnp
cation, which may be imprecise for some device types. Someodern
electronics are known to switch to lower power consumptionades when
under moderate load. One well known example of such a solutis CPU
Throttling. Some devices may also enter low power mode on shon-
activity. Overall, this promises that in future devices we W see power
consumption approach proportionality to the load.

Nowadays a middle ground model is closer to reality. Wheneverda-
vice is turned on, it consumes #daseline power This power is committed
to spinning disks, fans and overall upkeep of an idle systerfigure [2.2
shows a comparison of these 3 models. Note that if we considerltiple
devices sharing the same load, when the number of devicesnied on is
kept to a minimum, we approach the linear model, as shown onqb[2.2B.
Thus, when considering a provisioning problem like in thishapter, the
linear model can be an acceptable approximation.

Once the model considers multiple device types, or absolugures
on energy consumed are required, a need arises for knowing #ctual
characteristics. This is where databases like Powerlib [VH2] come in
handy. However, the data presented therein contains only cagities and
producer rated peak power consumption. This allows usingtleer con-
stant or linear models, as described in the previous paragta A number
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Figure 2.2: Three power models of a device, shown for one and ve des.
The baseline power consumption is assumed to be half of the peak.

of measurement studies aimed at getting more insight werenzhucted,
e.g. [VHILR" 12] or [VLM™ 09&]. These studies show that baseline power
usages, for a handful of current devices, tend to be over 80% the
maximum.

However, each such study is limited only to devices availabte its
authors; there are methodology di erences between sepagatorks. Fur-
thermore, some of the numbers get outdated quickly. For exaie Solid
State Drives are still in explosive growth phase, where eadext gener-
ation is faster, bigger, cheaper and consumes less power. Whmoking
into total server energy consumption for a unit of transfemumbers found
in the literature [VLM *09b,/GAKG11] are over 208c,. However, for the
results of this chapter we obtained current numbers from amovative
companyﬂ, which turned out to be around 2@¢sp. Therefore it is im-
portant to consider the power model carefully for each sepe problem
and attempt to obtain the most current data possible.

2.3 Preliminary: algorithmic approach

The general problem that underlies this section, Copy Plageent, can
be de ned as follows.

Yhttp:/iwww.cloudflare.com/



Input We are given a digraphG = (V;A) modelling the network, a

set of les F and a set of demand®. Each le can be served from
a source according to a functiors : F ! V. Each demandd 2 D is

characterized by the requesting vertex, a le identi er andrequest rate,

d = (vg;fairg);va 2 V;fqg 2 F;rg 2 R. We are also given the cost
functions for: transmission of a le over an ard : A! R, placement of
acopyofa leinavertexp: V! R and accessto acopy ofa leina
vertexa: V! R.

Output A solution consists of copy placement and routing R. Copy
placement assigns to each Ié 2 F a subset of node€; V in which
copies off are placed. Routing determines for each demarti2 D a
directed path in the digraphRy A, that begins inwg 2 C;, [f S(f4)9
and ends invg.

Metric ~ The solution should minimize the cost, determined by:

(
x X X X X rga(wy) if wy 6 s(f
p(v) + rat(e) + ad(Wq) if wq 6 s(fo)
f2F v2Cy 42D e2Ry pp 0 otherwise

(2.1)

Above problem is, in general digraphs, hard to compute. In fagve
can show inapproximability with a simple reduction from theSet Cover
problem, de ned as follows.

sets ofU, S = fS;;S;;:::;50Q, and a cost functionc: S! R, nd a
minimum cost subcollection ofS that covers all elements olJ.

Now, we show how to transform an instance of the Set Cover prob-
lem into an instance of Copy Placement. Take two sets of ver8s,

elements ofS and U and a source vertexs. Put an arc from any ver-
tex in X to one inY if the corresponding element off belongs to the
corresponding subset fron§ and an arc froms to every vertex in X.
An example of such graph is shown in Figuie 2.3. Let there be agle
le served from the vertexs and ﬁequested once from each vertex v,
with rate equal to one. LetM > oo ¢(S). For the cost functions, let
t(a) = M for every arca from s and O for the other onesa(v) = 0 for



anyv 2 V, and p be equal to the cost of corresponding elements $ffor
vertices inX and M for other vertices.

Consider an optimal solution to the instance of Copy Placeme For
any demandd 2 D, it can be routed either fromvy or s for a cost of
M, or from a vertexx 2 X for a, possibly shared, cost op(x) < M .
Thus, in an optimal solution, each demand is routed from a vix in
X, that is a neighbour of requesting vertex. The solution is dermined
by placing copies of the le in a minimum cost subset oK that domi-
natesY. Choosing the corresponding subsets froBidirectly gives us an
optimal solution of Set Cover with the same cost. Followinghie results
in [AMSO0G6], this can not be approximated within a ratio betterthan
O(logjXj).

As explained in Sectiof 2]1, for content distribution we can odel net-
work as a tree. The data is requested by the leaves and can beved by
any node on the path between requesting leave and root. Thisahbeen
solved in [LGI" 99] using dynamic programming. However, the solution
takes O(jVj3) time to place a single le. Thus, we make an additional
assumption, that is in line with what we observed in Section.?: nodes
on the same level (at the same distance from root) have an edjdagree.
An example of such a tree is shown in Figure 2.4. Data is requaste
according to a static distribution and we statically place dta in the op-
timal levels. If a le i is stored at levelj, the total cost of serving it to
all the leaves is:

njg + rid;; (2.2)
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Figure 2.4:. A tree representing the France Telecom network. All dewies
residing at the same distance from root of the tree have the same degre€or
clarity of presentation, only a subset is drawn. The last level of thetree,
representing consumers' premises, is omitted as there are 5000 suthdes per
DSLAM node (the last level shown).

wheren; is the number of nodes on levgl, o is the overhead cost to place
the data in a node on leve|, r; is the total number of requests for lei
andd is the cost of delivery from a device on levglto a leaf. In practice,
d; is nearly proportional to the distance between and leafs andg is
nearly constant. Thus, as we show in Sectidn 2.8, the optimplacement
depends on a le's popularity. We can e ciently compute for ech level
a request rate interval, such that les with rate within this interval are



optimally stored in each node in this level. This means that & can
optimally place any number of les in time O(h?), where h is height of
the tree. We de ne a simple algorithm to perform that placemat. The
main contribution of this study is determining practical vdues of all the
factors of equatior] 2.2, obtaining the results and sensitty analysis.

2.4 Publication

The remainder of this chapter corresponds t&nergy E cient Content
Distribution in an ISP Network by R. Modrzejewski, L. Chiaraviglio, I.
Tahiri, F. Giroire, E. Le Rouzic, E. Bonetto, F. Musumeci, R. Gozalez
and C. Guerrero, which is accepted for publication in the peeedings of
IEEE Global Communications Conference 2013.

2.5 Introduction

The electricity consumption of the Information and Commurgation Tech-
nology (ICT) sector represents today almost 2% of the worldetricity
ILVHV *12], having observed an annual increase of 10% from 2007 to
2012. In this context, data centers and backbone networks livexpe-
rience the highest energy consumption growth rates in therfbcoming
years [LKWG11], due to the increase of tra c, especially fomultimedia
content. As an example, Cisco estimates that the sum of all fos of
videos will represent 86% of the global consumer tra c by 20 [Cis12].
In order to mitigate this trend, di erent solutions have been proposed
in the literature for the design and the management of energgcient
backbone networks (see¢ [BBDC11] for an overview).

Recently, the problem of reducing power consumption in a bidgone
network by moving the contents accessed by users has attradtattention
of the research community. In particular, in[[CM10] we havetsdied the
problem of reducing power consumption of an Internet SeradProvider
(ISP) and a Content Provider (CP) jointly, showing that consderable
energy savings can be obtained when the CP and the ISP coopera
to minimize the total power consumption. In[[LRH10] authors ppose
an architecture based on Content Centric Networking (CCN) to educe
the power consumption. Additionally, in [VLM*09b] an architecture
based on home gateways forming a distributed data center iabtructure



managed by the ISP is proposed and evaluated. Finally, the egg

trade-o s of an architecture based on immersive video ceitr services
are evaluated in [LGAK12]. All these works prove that a huge anumt

of power is saved when the ISP takes control of the content amdches
it considering the energy consumed to move the informatiorceoss the
network.

In this work we study the problem of reducing power consumptn in
an ISP network by considering the design of a content distriltion infras-
tructure managed by the ISP. Our aim is to study where to cacheontent
inside the network in order to reduce the overall power consption of
the system composed by the network elements and the installstorage.
In current ISP networks a huge amount of tra c is exchanged beveen
the users and the data centers owned by large CPs, such as a@e,
Yahoo, Amazon, and Limelight. Normally, the data centers of Ige CPs
are located close to the peering points of the ISP [GALMO8]. Enefore,
the tra c originated from the data centers has to traverse a mmber of
hops in the ISP network before reaching the users. We theredastudy the
optimal content caching inside the ISP, rather than sendinthe content
from the data centers to the users. In our scenario, we consrda hier-
archical logical topology composed of di erent levels (e.gcore, metro,
and access), and we optimize the energy consumption by chiogsthe
best level where to put each content.

The bene ts of the energy-e cient design of content distritution ar-
chitectures inside the ISP are multiple. First of all, it is pgsible to
reduce jointly the electricity costs of the storage and of # network,
as their energy is explicitly taken into account during the dsign phase.
Secondly, the ISP reduces the amount of tra c that is exchangd across
the network. This in turn may decrease the maintenance costscurred
by the ISP, since network elements are upgraded less freqthgmnd less
new switching devices need to be installed. Third, the moreaty costs for
sending/receiving information from outside the network & also reduced,
since less bandwidth is required.

2.6 Related Work

There have been several works tackling the problem of web ebf e cient
caching. Most of these works were not focusing on energy s@s but



rather reducing the latency, the network tra ¢ and/or the server load.

In [LDGS98], authors studied the optimal placement (for regcing
either latency or network trac) of M multiple web proxies amongN
potential sites under a given tra ¢ pattern. They consideral a simple
path of N +1 nodes where the extremity of it corresponds to the origina
web server and the other nodes correspond to the potentiates. In
case of no data replication, all the requests coming from trai erent
sites would need to go until the main web server before beingl fled.
Dispatching some web proxies e ciently among theN potential sites
can reduce the latency and the tra c load. Authors give an algathm
to nd the best solution in O(N?M) time. In [LGI*99] they extended
this algorithm to the case where the topology is a rooted tre¢he main
server is in the root and potential sites are all the other tee nodes.
Again they show that the best solution can be found using a palgmial
algorithm with time complexity O(N3M 2).

[BRSO08] focuses on a more general case. Instead of havingy amle
web object as in the previously cited papers, several objscshould be
simultaneously taken into account by the optimization. Thg considered
also a set of caches that have a limited capacity and a cost &ioring each
of those objects. Finally they assume a set of clients that haxdemands
for di erent objects and to each client they assign a cost fogetting a
speci c object when it is stored in a speci ¢ cache. For e ciatly solving
this NP-complete problem, on a general topology, they preded a 10-
approximation algorithm.

We want to mention also that some works investigated the pabdity
of managing the caches in a distributed scheme. In [TCO02],thors pro-
pose a novel caching scheme that integrates both object pdaeent and
replacement policies and which makes caching decisions drcandidate
sites in a coordinated fashion.

The closest papers to our work are [SK09, JNWCI11, ML'A1]. In
[SKOQ9] authors detail an analytical model for caching cordgring the cost
for transporting information and the cost for storing the catent. How-
ever, the model is derived for a simple scenario (a metro netk), with
at most three levels in the topology as possible locations ¢ache content.
Moreover, the evaluation of savings in terms of energy is nperformed.
In [INWC11] authors propose a model for caching that integraseen-
ergy costs. The evaluation is performed considering ve psible levels



for caching. Finally, in [MLG™11] an ILP model and two simple heuris-
tics for the energy-e cient content distribution are detailed. However,
authors do not consider the energy consumed for sending thentent to
the possible locations inside the network and a limited nunav of levels
is also assumed.

In contrast to previous work, in this paper we go one step fumer by:
a) de ning a model with a generic number of levels and not onkgstricted
to speci c values or speci c segments of the network, b) praysing an
optimal algorithm to decide where to cache the content and otpute
the total energy consumption, c) evaluating the results ovetwo case
studies. Moreover, we consider the impact of the topology @erties on
the content caching, and we derive some insights for the dgsiof future
energy-aware networks.

The rest of the paper is organized as follows. In Séc.|2.7 wesctébe
the problem. Sec| 2]8 details the algorithm we propose to el the
problem. Results are presented in Sec. A.5. Finally, S¢c. 3.déncludes
our work.

2.7 Problem Description

We assume that the network is organized in a hierarchical stcture com-
posed of di erent levels. In particular, we assume a treeki network to
represent the collection of paths between each user and timdrnet peer-
ing node. Nodes are grouped according to a hierarchy, and eadetel of
the tree corresponds to a di erent level of the hierarchy. Té content
data is delivered towards the clients following a path on théree from
the root, i.e., the Internet peering point. A storage cachean be located
at each node of the network, providing a potential facility ér storing
data. Moreover, caches are organized in a hierarchical stture: if a
requested content is not available in a given cache, the rezgi is for-
warded to the parent cache of the hierarchy, without any caboration
among the caches located in the same level of the tree. Finalye do
not impose a given cache size, i.e., the cache size is an outpluour
approach?|

2|n our scenarios the obtained cache size is always lower than he maximum capacity of
current storage devices.



The content distribution procedure is divided in the folloving steps:
a) the content is fetched from the peering point to the storag caches
located at a given level of the tree, b) the content is cachedrfa xed
amount of time, c¢) during this period the content is retrievd by users,
based on its popularity. We then associate an energy cost taah of
these steps, and we compute the total energy consumption. Oaim is
then to nd the optimal amount of data to cache at each level ofhe tree
in order to minimize the overall energy consumption.

Focusing on power requirements, we consider the cost of kigp
the content stored in the cache, the cost of reading/writinghe content
from/to the cache and the cost of sending the content througbne hop of
the tree. We assume that the cost for traversing one hop is dirent for
each level, due to the di erent switching devices deployed each segment
of the network [LRKH11]. In order to model the power consumptin of
each device, we assume a linear dependency with tra ¢ volum#éllow-
ing the assumptions of previous works [BAHT09, FGK10,/MLG" 11]. In
particular, the cost of transporting information is expresed in terms of
energy per bit, i.e., the total power consumption divided byhe average
throughput.

L = jLj being the number of levels. The peering point is located at
level 1, while the users are connected to level(e.g., the DSLAMs). We
denote the total number of switching devices located at levg¢ 2 L as
NJ. Let us de ne the storage cost for a single cache &s. Cg is the
cost of reading/writing content on one cacheC}, is the cost of traversing
one node located at levej in the network. Moreover, we consider the
characteristics of the content. We assume that the contens represented
by videos watched by users. is the total throughput of videos requested
by users. Let us denote the average video size Aasand the popularity
window duration as|. Thus, the total number of videosVy watched
during the popularity window is:

I

Let us de ne Vs as the total number of videos provided by the CP. We
divide the videos into classes according to their populayitN¢ being the
number of classes. The set of classes is denotedas f 1;::;; Ncg. Class
1 is the most popular while clasdN¢ is the least popular. We assume



that, on average, each class has the same number of videosjctviwe
Vs

denote as\¢ = N
For each clask 2 K we adopt the Zipf-based popularity model of
[CRC™ 08] and compute the number of videos watched per class as
k
k=1 k
being the parameter of the Zipf distribution.
We then compute the energy consumed for disseminating cl&swhen
it is stored on the caches located at level In particular, we rst compute
the energy consumed for fetching the content into the cachemnd to keep

the content stored: |
. '
()= AVeNL, ~ Cf + Cr+ Csl (2.5)
z=1
The rst term inside parentheses is the cost of traversingj ( 1) hops.
The second term is the cost of writing the content on the cacheThe
third term is the cost of keeping the content stored, which isnultiplied
by the popularity window duration | since this cost has to be always
accounted for the whole time period. All the costs are then miiplied
by the amount of information that it is stored in levelj, i.e., A Vo N§.
Note that (j) does not depend directly on the popularity of the class
but only on the levelj chosen for caching.
We then compute the energy consumed for retrieving the comieas:
|
S !
'(ik)= AVy Cr+ G (2.6)
z=]
In particular, we consider the cost of reading the content ahthe cost
of sending the content from the caches at levglto users. The retrieved
information corresponds to the videos that are watched durg the pop-
ularity window duration, i.e, A V. Dierently from (j), ' (j;k)
depends on both the class popularity and the level where thertdent is
cached.
The total energy consumed for disseminating clagson levelj is:

El = (J)k+P L(J:k)z; i>0 2.7)
AVw 221 Chs 1 =0



Note that level O is the special case where the data is servedmt the
original source, i.e., caching is not exploited within theansidered net-
work. In this case, the total energy consumption is the costf @ending
the watched videos directly from the peering point to the uss.

The best level to store the videos of cladsis then:

h, = argmin E} (2.8)
j2L
Note that the best level for each class is computed independgnfrom
the other classes. We therefore repeat this procedure forchaclassk.
The total energy consumption with caching is computed as:

X h
T= EMX (2.9)
k2K

Which we can compare to the energy consumption without cachgn

X
T°= E? (2.10)
k2K

By comparing T with T% we can estimate if caching is e ective or
not in saving energy. However, computing Eq.(2.8) for eachasls is not
feasible, since the iteration over the levels has to be reped for all the
classes, resulting in a time complexity dD(L  N¢). To solve this issue,
we have proposed a new algorithm in order to e ciently compu T.

2.8 GCT Algorithm Description

We rst detail the properties that we have exploited to desig our algo-
rithm. In particular, since there is no limit on the storagewe can choose
the best level for every video class independently from th¢hers. More-
over, for levelj that is optimal for the video classk, we have necessarily
E} E{(O for any j °di erent from j. This implies:

“Gk) TGSk G G): (2.11)

In addition to that, when two video classes are stored in theame level,
less videos will be retrieved from this level for the less polar class.



Namely, if a clask®is less popular than another clask, then: ' (j; k9
"(;k)and' (j%k9 ' (j%k). This leads to the following inequality:

YAk T GSKY T Gk) (k) (2.12)
The two previous equations imply:
“GkY G0k (9 G): (2.13)

And hence we get the following property.

Property 1. Let k and k°be two video classes such thktclass videos

are more popular thank®class onesk®> k) and letj be the optimal level
. . . . i i0

for k. Then for every levelj °lower thanj (j°<j ) we haveE), El..

The intuition of the Green Content Threshold (GCT) algorithm is to
restrict the evaluation of Eq. (2.8) to speci ck, which we call thresholds.
A threshold is de ned as the last class to be stored at levg] before start-
ing storing in another levelx (with x <j ). The rule for deciding when
to pass from one level to another one is based on the energy suamp-
tion E, (recall that level O correspond to the case without caching)in
particular, we nd the class indexk = k(j; x) that veri es, for arbitrary
levelsj and x the following equality:

El = Ef (2.14)

For some classes, the caching of their videos in leyels preferred to
caching them in levelx in term of energy e ciency; and for some other
classes it is the oppositek(j; x ) is the index that separates both set of
classes. In fact, Eq.[(2.14) being veri ed bk implies:

k) TG k= 3G) X (2.15)
On the other sidek kii:
k) TG k)T (gk) (k) (2.16)
And this leads to the following property.

Property 2. Let x andj be two levels such that <j and letk be the
solution to E, = E{. Thenk ki E} Ej.



Algorithm 1  Pseudo-Code of the
best threshold selection procedure.
Input:  threshold matrix K, number of levelsL, number of classedN¢;
Output: array of best thresholdsB
1: curr_level = L;

2: B [0]=N¢- 1;

3: while curr_level =1 do

4:  min_thre=inf;

5. for upper_level = 1:curr_level-1do

6: curr_thre = K [curr_level,upper.level];
7: if curr_thre < min_thre then

8: min_thre=curr _thre;

9: end if

10: end for

11: B [curr_level]=min _thre;
12:  curr_level=curr _level-1;
13: end while

To compute k(j; x ) we solve Eq[(2.14) using Ed.(2]7), obtaining:

8 N .
VW( Jz,'fxcﬁ) . j> O
o CrGx) WSk ’
k(j;x) = 1 (2.17)
§ VW(sz,;fo. Cr) J =0
' FG) oSk ;

-
with f(j)= N, = L, Ci+ Cr+ Csl and ((jx)=f(x) f().

The matrix with elements k(j; x ) is denoted ask . Each element of
this matrix represents a threshold class for moving from onkevel to
another one.

The algorithm that we propose is then divided into three stem a)
computation of the thresholds matrix, b) best threshold sektion, and
c) computation of total power consumption.

The rst step is performed by computingK with Eq.(R.17) for each
j 2L and eachx <j . In the next step, we select the best threshold for
each level, by adopting the procedure reported in Ald.1. Theurfiction
takes as input the matrix K, the number of levelsL, and the number of
classedN¢. The array of best thresholdsB is produced as output. The



algorithm searches the best thresholds from the lower lesefi.e., the
access nodes) to the upper ones. In particular, the minimunhreshold
is selected by evaluating(j; x ) from the current level to each upper level
(lines 5-10): in fact, thanks to property[ 1, we can ignore lels that are
lower than the current level. Moreover, we know, thanks to mperty 2,
that for every video that has a popularity rank lower than theminimum
threshold it is better to cache it in current level than in anyhigher level.
The procedure is repeated until the last level is reachedr{g 3). It is
clear that when the values oK are computed optimally, this algorithm
is optimal.

We then detail how the total energy consumption is computeddm
the best thresholds. We rst derive the energy consumptionomsumed
at level j. This term includes the energy consumption corresponding t
the classes that are assigned to the current levgl i.e., b 1 <k b
(b 1andh being elements of the array of the best thresholds), which
can be expressed &%:

%
EX=[h B 1+1] ()+ " (k) (2.18)
k=(B 1+1) k=(hy 1+1)

In particular, from the de nition of * (j; k) the last term can be expressed
as:

0 1p
X X bJ:(bx+1) K
(k)= AVwNE @Cg+ CRA QM (2.19)
k=(bj 1+1) z=]j k=1 k

The exponential terms can be expressed as:

XC
k = (;a) (;c+1) (2.20)

k=a

being the Hurwitz zeta function [Vor03]. To compute the totalenergy
consumption T, the algorithm solves Eq[(2.18){(2.20) for all the levels,
and the sum of the energy consumption is stored in.
CT has a time complexity that depends on the time needed to alu-
ate __k forO a ¢ Nc. When this time is bounded byT, the

k=a

3A similar expression can be derived for the j = 0 case (with b ; = 0).



complexity isO(L?+ L T ). Since there ap e cient ways to approxi-
mate , we can have a good approximation of ,__k and of GCT with
a low time complexity. In particular, if there exists a -approximation
of which has a time complexityT , then we can get a -approximation
on the optimal solution (the minimum energy consumption indced by
all classes) that have a time complexityO(L?+ L T ) which is better
than the original approach since normallyt << N ¢ and T << N ¢.

2.9 Results

We have implemented the GCT algorithm in Python. In particula,
we have adopted thenpmatHibrary for an e cient computation of the
Hurwitz Zeta function [f| We have then evaluated GCT over two realistic
networks of national ISPs, namely France Telecom (FT) and arSP in
Morocco. The main features of the networks, together with # setting
of the main parameters, are reported in Tabl 2|1. Both netwks are
composed of six levels in total (core, core-regional, metcore, metro,
access-metro, access), and with a di erent number of switicly devices
deployed at each level.

Focusing on power requirements, the cost of storades is taken
from [OCZ]. The cost of reading/writing the cache is provide privately
by CloudFlare Inc [CId], based on their global network of coent caches.
This cost may be a slight overestimation of what the cost in sunodel
should be, as it already accounts for storage energy consuip. Fur-
thermore, computational overhead falls with the size of ob¢ts cached
and we propose to cache videos, which would be in the order ohldreds
of megabytes, whereas for CloudFlare only 0.4% objects exacteeVB.
The costs of network hops are based on equipment datasheet®asure-
ments and operational conditions published in [VHILR12] and provided
by France Telecom.

We then consider the characteristics of the content. In paidular,
we assume that for the FT scenario tra c forecasts are provide for the
year 2020. We refer the reader to [RLB12] for a detailed degition on
how these forecasts are obtained. On the contrary, for the Mmccan
scenario we set values in accordance to the current tra ¢ masared over

4 The complexity of the implemented Hurwitz function is in the ord er of O(p?* ), p
being the precision (the number of signi cant bits) and  a small number.



Table 2.1: Main parameters for the considered scenarios.

Parameter FT Moroccan

L [units] 6 6

NL [units] [1 824216 216 2160] [1 20 20 20 200 10000]

Cs [W/Gb] 9.375 10 4 9.37510 4

Cr [J/GDb] 24.3 24.3

Cl, [J/Gb] [12.5 25 30 35 200 300] [12.5 25 30 35 200 300]
[Gb/s] 8 10° 10°

| [days] 7 7

A [Gb] 15 06
[units] 0.8 0.8

Vs [units] 120 10° 120 10°

Nc [units] Vs Vs

the network. As a consequence, the total video throughput is eight
times higher in the FT scenario compared to the Moroccan one.oThis
extent, we have also considered di erent values for the awage video
sizeA, assuming for the FT scenario a value that corresponds to a hig
de nition video provided today on optical disks. Moreover,we have
assumed a popularity duration of one wedkand a value for the exponent
of the Zipf distribution from [CRC™ 08] for both scenarios. Finally, we
assume a number of videos of a typical video CP, and one video ¢ach
class.

Evaluation Metrics We describe the metrics adopted to evaluate
the performance of our algorithm. We rst derive the energyayving as:

S= — (2.21)

We then compute the percentage of bandwidth that is saved ahé

®Even though the popularity of the watched videos can actually change during this
time period, the popularity of the most viewed videos is almost constant. As an example,
[CRC* 08] shows that the popularity of the 50 most viewed videos does not consistently vary
over the days. In this work, we are interested in the most popular videos, as these contents
are cached inside the ISP network.



Table 2.2: Summary of results for the two network scenarios

Metric FT Moroccan

Energy savings §) 8.7% 11.0%

Yearly monetary savings [ke] 769 122
Bandwidth savings () 18.2% 30.2%

Cache Size [GB] 1 0 0

2 0 0

3 32546 0

4 0 23510

5 35878 5581

6 2041 46

Cache Bandwidth [Mbps] 1 0 0

2 0 0

3 7907 0

4 0 4550

5 2946 721

6 290 6

peering point when caches are exploited:
l i k:fh =OgAVV|\(/ k:fh >OgAVCNBk
= —X I —X (2.22)
In particular, 1 is the total amoyst of information owing through

the peering point without caching; I(:fhkzot_],AV\,‘f, is the amount of
]gyatched videos not stored inside the network in the case wittaching;
~ kifhy> 0g AVcNJ¥ s the total amount of information initially fetched
inside the caches.
Finally, we consider the cache size for a device in leyelde ned as:
_ X
I'= AVc (2.23)
kifhe=jg

General Analysis Tab. 2.2 reports the results for the two scenarios
obtained with the GCT algorithm. We rst consider the energysavings
compared to the case in which caching is not exploited. Engrgavings of
almost 9% and 11% are possible for the FT and the Moroccan sceos,
respectively. By assuming that caches are refreshed once ael for



an entire year, we have estimated monetary savirfysf more than 700
ke for FT, and more than 100 le for the Moroccan network. Moreover,
the savings in terms of bandwidth saved at the peering pointra even
larger, reaching 18% for the FT scenario and 30% for the Moraatone.

The table also reports the cache size! per device for each levgl.
Interestingly, | is at most 36 TB, a value that can be covered by a
commercial array of disk drives. Moreover, the capacity regqements
tend to decrease moving closer to users, with at most 2041 GBstorage
required at the access level for the FT network and only 46 GB rfo
the Moroccan one. This is due to the fact that the number of swahing
devices per level increases when moving from the core to theess, hence
the cost of increasing cache size is much higher than in highevels and
outweighs the gains faster. Finally, the table reports the @rage required
bandwidth per level. In this case, up to 7.9 Gbps and 4.5 Gbpsre
required for the FT and the Moroccan networks, respectively.

To give more insight, Fig[2.5h reports the best levél, for each class
k for the two scenarios.k ranges between 1 anifc. The levels on the left
are the most popular ones and hence, to minimize the costs obving the
information frequently from the cache to users, it is betteto store these
classes in the closest level to users, i.e., the access péarthe network.
Moving from left to right, the popularity decreases, and theefore the
classes are stored in the inner levels of the topology (metamd core).
At last, very unpopular classes are assigned to level 0, j.e¢hey are
not cached at all. Interestingly, the percentage of the totanumber of
stored classes is around 1.7% and 0.5% for the Moroccan ané tRT
networks, respectively. Thus, we can conclude that with theonsidered
power and popularity models, the ISP needs to store a littlenaount of
content information to achieve energy and bandwidth savirsy This is
an encouraging result showing that caching not only has beteeon QoS
and customer experience, but it can also lead to a better magement of
the ISP power consumption.

Impact of Content Characteristics We then consider how much
the characteristics of the content impact the energy and thbandwidth
savings. We rst vary one parameter per time, keeping the o#irs with
the default values reported in Tab[ 2.]1.

®We have assumed an electricty cost of 0.2 /kWh.
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Figure 2.5: Best levels for each clask (a) and impact of the variation of
(b-d).

We start considering the variation of , as reported in Fig[2.5b and
Fig.[2.5¢. With low values of (left part of the gures) all the classes tend
to have a similar popularity. Intuitively, there is not a huge benet in
terms of energy in storing these classes inside the netwoskjce the cost
of storing this amount of information would be huge. On the adrary,
when takes higher values (right part of the gures), the variation on
the popularity also increase. This means that few classesvieaa very
high popularity, while most of the content is seldom accessdy users.
This in turn imposes to store the most popular classes closeusers, and
therefore both the energy and the bandwidth savings steagiincrease.
At last, when =1.6, the bandwidth savings are almost equal to 100%,
while energy savings are more than 90%. This corresponds tetcase
in which the most popular contents are cached in the last leief the



network (i.e., the access part), and the main cost incurredybthe ISP
is to transfer these contents from the caches to the users. U$) we can
conclude that greatly in uences the performance in the network.

To give more insight, Fig.2.5d reports the breakdown of energor
the FT scenario considering: a) the energy consumed to routket con-
tent inside the ISP network, either from the peering point tathe cache
or from the cache to users ('Rout.' label), b) the energy conmed for
reading/writing the content from/to the caches ('1/O' label), c) the en-
ergy consumed for keeping the content stored (‘Stor." label For
=0.4 the caching is not exploited, and therefore the largesimount of
energy is due to the routing, i.e., the cost of moving informi@n inside
the network. However, as increases, the routing energy steadily de-
creases, since caches are more frequently used. This in tumplies that
the energy consumed for reading and writing the content on éhcaches
increases. However, the total energy consumption is alwaysadeased,
producing high energy savings. Finally, we can distinguisitee di erent
zones for characterizing the evolution of the energy consedh by stor-
ing. The rst one ( 0:4) corresponds to the case in which contents
are not stored in the ISP, and therefore their storage costs zero. On
the contrary, when 1.6 most of users watch a very limited number
of videos, whose storing cost is almost zero again. Howeve;, inter-
mediate popularity values ( 1:0) the storing energy is not negligible,
since a greater amount of videos is frequently watched by use

We then consider the impact of the number of videos in the celttion
Vs. Fig. [2.8 reports the energy and bandwidth savings. The refaice
values of Tab[2.1 are reported as vertical lines. Whews decreases, the
savings tend to steadily increase. In this cas&/s is decreasing, while
the actual number of watched videos/y is kept constant. Thus, the
gain introduced by caches increases, i.e., few videos fregily viewed by
users. On the contrary, whernVs increases, the saving tend to decrease,
since the e ciency of adopting the caches is reduced.

In the following, we consider the variation of the total numier of
videos watchedvyy, reported in Fig.[2.7. WhenViy increases (right part
of the gures), both the energy and the bandwidth saving in@ase. This
is due to the fact that asV,y increases the caches are more frequently
accessed by users, and therefore the introduced gain in teyof energy
and bandwidth is higher. Clearly, when the users seldom assethe



18 I I I 1 50 I I 1 I
16| --. — FT b 45—.,. — FT H
14k - Mor. || 40F ... -+ Mor. K
=} B 1 — 35F ]
81 \ 20}k e
6 B _ 15 B \
4 | | | | | lo | | | | |
225 226 227 228 229 225 226 227 228 229
Vs Vs
(a) Energy Saving (b) Bandwidth Saving
Figure 2.6: Impact of the total number of videos Vs.
16 T T T 40 T T T
14 351 d
— 12+ 30
= 10} S o25f
“ gt 20} -
— FT — FT
61/ Mor. || 15 Mor. |1
4 - | | T 10 | | T
0:0 05 1.0 1.5 2.0 0:0 05 1.0 15 2.0
Vi 10° Viw 10°
(a) Energy Saving (b) Bandwidth Saving

Figure 2.7: Impact of the total number of videos watchedWy .

content (left part of the gures) there is no need to put cache

Finally, we have applied a variance-based sensitivity analis [SRA 08]
to precisely characterize the relative impact of the paranters. In par-
ticular, we have considered how much the variance of the eggrsaving
S is impacted by the variation of the content parameters. To tls end,
we have considered the rst order index and the total e ect idex. The
rst order index takes into account how much the variance of a&ingle
parameter in uences the variance of the output. On the conary, the
total e ect index takes into account the e ects of varying the parame-
ter on the model's output, including all the variances fromnteraction
with the other parameters. To compute both indexes, we havedapted



Table 2.3: Variance Decomposition ofS for the Content Parameters (FT
Scenario)

Parameter First Order Index Total E ect Index

0.9950 0.9988
0.0004 0.0007
Vs 0.0001 0.0002
A 0.0000 0.0000
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Figure 2.8: Impact of the cost for reading and writing Cg.

a Monte Carlo method. In particular, we have generated a poalf 18
million samples, in which each parameter take a random valua the
interval [1=2; 2] w.r.t. the standard values reported in Tab[ 2]1.

Tab. [2.3 reports the computed indexes considering the totanergy
savings. The largest contribution to the output variance othe rst order
index is due to , while the other parameters play a minor role. Moreover,
the average video size does not impact the energy savingscsirthis
parameter is simpli ed when computingS. The table also reports the
values of the total e ect index. These values are very simildo the ones
of the rst order index. This shows that simultaneous varyiig multiple
input variables does not have a strongly ampli ed (multiplcative) e ect
on energy savings when compared to varying them separately.

Impact of Power Consumption Models We rst consider the
variation of the cost for reading and writingCr. Fig. [2.§ reports the
saving in terms of energy and bandwidth. As expected, the sags
are increasing wherCyr decreases. Intuitively, the lower is the cost for



Table 2.4: Variance Decomposition ofS for the Power Consumption Parame-
ters (FT Scenario)

First Order Index Total E ect Index

Cs 0.2738 0.2699
Cr 0.0303 0.0265
C} 0.1942 0.2009
o 0.3062 0.3125
(oK 0.0367 0.0436
(o 0.0152 0.0210
C3 0.0066 0.0143
C8 0.1251 0.1259

reading and writing information, the higher is the gain intoduced by
caching. In particular, whenCg 0 energy savings of more than 9% and
12% are possible for the FT and the Moroccan networks, respieetly.
Thus, we can expect that, if the energy e ciency of caches impves
faster than the one of transport equipment, the benet intraluced by
caching will be greater in the future.

Finally, we have performed the variance decomposition analg also
for the power consumption parameters, adopting the same medure as
in the previous subsection. Tab. 2|4 summarizes the main s for the
FT scenario. Interestingly, the energy savings are greatlynpacted by
the cost of storing the contentCs. This is due to the fact this term
has to be counted for all the time periods and for all the cachgethus at
the end its contribution is not negligible. Thus, it is very mportant to
deploy energy e cient storage inside the ISP to obtain enesgsavings.
Moreover, the energy costs in the rst levels are also impang the energy
savings, since most of tra ¢ reduction occurs in these level

Impact of Network Properties To give more insight, we have
considered a network with the same degree for all levels, aneg have
studied the impact of the variation of the degree and the numdy of
levels. In this way, we are able to study the impact of cachingver a set
of topologies. In particular, the degree of levglis de ned as the average
number of links connecting a device in levgl with the devices in level
(j +1). Moreover, we assume a number of video requests proportal to
the degree and the number of levels. Speci cally, we have asged 5000



(a) Energy Saving [%] (b) Bandwidth Saving [%0]

Figure 2.9: Impact of the number of levels and the average degree.

users connected for each device in the last level (i.e., thecass oné)
each of them watching 3 videos of siz& = 15 Gb during a popularity
window duration | of one week. Additionally, we have seVs = 120
10°. Focusing on power requirements, we have s€g = 9:375 10 *
W/Gh, Cr = 24:3 J/IGb,Cy = 25 J/Gb for each level j, respectively.
Fig.[2.9 reports the energy and the bandwidth savings. Inteséngly, the
savings increase with the number of levels and the averagegtee. In
particular, energy savings of more than 20% are possible fegry large
networks. Moreover, bandwidth savings quickly approach 08. The
fact that energy and bandwidth savings increase with the dege and the
number of leveld. is due to two main reasons: i) increased cost of moving
information inside the network when the number of levels iscreased,
and ii) total number of watched video increased, while totahumber of
stored videos kept constant.

2.10 Conclusions

We have studied the energy-e cient design of a content arctecture in
a ISP network, by exploiting caches managed by the ISP. Our selts

indicate that caching brings substantial savings in termsfecenergy and
bandwidth.

"Note that while the number of user per device is constant, the total number of users
scales with the degree and the number of levelsL .



As next steps, we will consider the joint management of the ctamt
distribution architecture. In particular, our aim is to study the trac
variation over time and to compute the best set of caches poree on to
satisfy a given tra ¢ demand, while leaving the remaining cahes pow-
ered o. Another possible direction is to introduce cooperan between
neighboring caches to serve users and to reduce the amountstdred
information. To better t real topologies, we can study the ase where
devices on the same level of the tree have di erent degreesnélly, we
plan to study the impact of considering more than one peeringode and
the impact of introducing realistic tra ¢ matrices inside the ISP.

2.11 Addendum: cache hierarchies and the Iter
e ect

In this chapter we have studied a hierarchy of caches with pofarity
following a power law. Most of the gain is achieved by storingnly the
few most popular objects. When multiple caches are queried arow,
the big gain is achieved in the rst one, leaving the others wh much
less popular objects. This is called thdter e ect and has been studied
in [Wil02]. Figure [2.10 shows results of a trace-based simtiat. Three
caches of the same size have been put one after another, sigrany
passing object and evicting the least recently used one, ask another
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Figure 2.10: Object popularity in a hierarchy of caches, as observed in [Wi02].



cache, or the original source in case of third cache, in caseaocache
miss. What we can see from the gure, is that the rst cache obseed
an order of magnitude more requests for the most popular olsjs. This
is re ected by the hit rates, which were respectively 19.66%2.05% and
0.94%. Intuitively, this can raise doubts if the results preented in this
study do not stand in contradiction.

However, the above example di ers from what we presented in e¢h
study. In the example there are three levels of caches, a dasgource of
tra c and a single receiver. In a more practical setup, cachdierarchy
would not be a path. A cache on a higher level should aggregaegjuests
that were missed by several lower level caches. Thereforleg tra c seen
by a cache grows exponentially with the distance in the hierehy from
the clients.

As explained in Sectior{ 1}4, the hit ratio does not depend on é¢h
volume of tra c. However, as we have seen in this chapter, jughe raw
number of cache hits can be enough to make such an aggregatadhe
bene cial (aggregating overhead costs makes up for the lawt rate).

The same e ect cannot be exploited easily in Chaptér] 3, due tas-
sumption of all-to-all tra c in a core network. Therefore, it is assumed
there that at most one cache is queried for a request and aftemiss the
original source is reached.
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CHAPTER

Energy E cient Routing

This chapter, like the previous one, is also devoted to engrgaving in a
network augmented with caches. However, this time the netwoistruc-

ture is already deployed and the saving is achieved by puttindevices
into sleep mode. To maximize this, we utilize tra ¢ aggregaibn and co-
operation with Content Distribution Networks. Before the sudy itself,

we present a preliminary introduction to Linear programming Then,

we describe how to use it to design heuristic algorithms, intachnique
called Rounding

3.1 Preliminary: Linear programming

For some problems, optimal solutions can be obtained withteger Linear
Programming (ILP) models. It is a general framework that carbe used
to model many combinatorial problems.

A Linear Program (LP) comprises a linearobjective function, a set of
linear inequality constraints and a set ofvariables upon which the ob-
jective and constraints are de ned. The objective functiortan be either
minimized or maximized. It is also possible for a program toave no
objective, where its goal is determining whether the set obastraints is
feasible, i.e. if any assignment of the variables satis edl @onstraints.
The constraints are inequalities stating that a linear comination of vari-
ables must be not greater than a given constant. If all the vables are
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real numbers, we simply call the program linear. A LP can be wien
as:

maxfc'x : Ax b:x 0g: (3.1)

whereA is a matrix and c and b are vectors of known coe cients andx
is the vector of variables. However, if some variables are @gfers, we say
we face aMixed Integer Linear Program (MILP) (ILP if all the variables
are integral). A MILP extends LP:

maxfc'x :Ax  b;x  0;8y21% 2 Zg; (3.2)

wherel is its subset of variables meant to be integer.

An interesting property of linear programs is their duality. For any
LP of the form presented in equationf 3]1, called thprimal problem, its
dual problem is:

minfbTy : ATy ¢y 0Og (3.3)

Notice that the dual of the dual problem is the original primalproblem.
The objective function of the dual problem, at any feasiblecdution, is
always greater than the value of the objective function of # primal, at
any feasible solution. Furthermore, if the primal has an ojpnhal solution
x?, then its dual has an optimal solutiony? given by:

c'x’=Db'y” (3.4)

These properties are often used to nd bounds on the objecéfunction
value. This can be useful for solving algorithms, or as a stping criterion
when a solution that is close enough to optimum is su cient.

Solving MILP is NP-hard. It is trivial to express SAT using ILP:
simply limit the variables to be 0 or 1 and transform each clae into a
constraint saying that the sum of positive variables minusien of negative
variables must be not less than one (e.g.a(_b_: c¢) becomesa+ b+
(1 o© 1). Indeed, binary programming is among the original 21 NP-
complete problems put by Karp inl[Kar72]. Still, due to wide pplication
over practical problems, there is a big interest in solvinghese models.
Many exact methods have been proposed: cutting plane, brdmand
bound, column generation and row generation to name a few. eS&ch93]
for further reading. These methods are usually accesseddhgh solvers
{ software packages which allow nding exact or approximateolutions



of speci ed MILP. A brief overview of currently available sévers can be
found in [LL10Q].

The fundamental problem behind routing, multicommodity ow, is
classically approached in this way, see [MIn06] for a survdy constitutes
a broad body of special cases. Here, we look into a simple intdg
problem. We are given a grapi = (V; E) and a set of single commodity
ow requirements . Each ow requirement 2 has given endpoints
and value, =(s;t;' );s;t 2 V. First, there is a set of constraints
called ow conservation, that basically reads that what ows in must
ow out, unless we're in an endpoint:

8 .
X X 2 . ifv=s
8 2 8v2V fi;v fv;j = >' ifv=t (35)
izv j2v " 0 otherwise

Then, for each link, the sum of values of ows owing throughti cannot
exceedlink capacity c:
X
8fU§V92E (f uv t fv;u) c (3.6)
2

Finally, if our ow requirements come in indivisible units, we set the
variable units:
8U,V2V, 2 fU;V 2 N (3.7)

The program given without an objective tests whether the ows feasible.
If so, for each ow requirement we obtainf., { a matrix determining
the ow itself.

Basing on the above we can obtain a number of useful variant§he
capacity can be a constant (maybe given for each link), whenoithg
routing over a given network, or some cost function, when daj network
provisioning. Depending on the exact problem, there may bearous
optimization goals basing on the costs, some possible redsror even
no goal when the only interest is nding a feasible routing. &ter in
this chapter, we extended this approach by taking into accom Content
Distribution Networks and in-network caches. Solving the IP directly
yields an exact solution, albeit the running time is exponéial in the in-
stance size. Limiting the time given to the solver may yieldub-optimal,
but possibly acceptable solutions.



The usage of Integer Linear Programming is not limited to raing. A
number of various graph problems are solved with it in [Cohl1In Ap-
pendix[A], we look into a graph coloring problem motivated by fquency
assignment in satellite networks. It can be solved by an ILRyhere for
each vertex we limit interferences for a given color (freqoey) up to a
given threshold and minimize the total number of colors used

3.2 Preliminary: rounding

The aforementioned Integer Linear Programs can be used as asls for
heuristics. This approach is generally calledounding. For the mul-
ticommodity ow problem randomized rounding has been introduced
in [RT87]. The ows are of unit value and the optimization go& is
minimizing the uniform link capacity C. Figure[3.] displays two steps of
a solution to a simple example. First, a fractional relaxatio (a version
of the program with integer variables are changed to fractmal) of the
ILP is computed. This can be achieved, using Karmarkar's abgithm
proposed in[[Kar84], in timeO(n®°), wheren is the number of variables
in the ILP. Solving a relaxation leads to some ows being splamong
a number of edges, as shown on Figure 3.1a. The second step ef th
algorithm is decomposing such ows into a set of paths, see big[3.15.
Finally, we choose which path should the ow follow in an integr solu-
tion. The choice is random, weighted by the ow value of eachfdhe
paths. This simple, computable in polynomial time, procede is guar-

(a) Fractional st ow (b) The ow decomposed into trhee paths

Figure 3.1: An example path decomposition of a fractionalst ow



q
anteed to give a solution withC  Co+ 3 C, In with probability
atleast 1 ", whereC, is the optimal value, E is the edge set and a
small positive real number.

A rounding heuristic is proposed for the network managemeirob-
lem dealt with in this chapter. In our specic problem, the rating is
fractional and link capacities are given. Furthermore, fosome ows,
one endpoint can be chosen from among a subset of nodes, madel
demands towards Content Distribution Networks. The problenis NP-
complete because of binary choice of turning devices on or.oOur
rounding approach is greedy, instead of randomized. Havingsalved
relaxation, we turn on the most loaded devices and then itei@ by solv-
ing a fractional relaxation with these additional constraits. As there
is a polynomial number of relaxations to be solved, and a redation is
solved in polynomial time, the whole algorithm has a polynoial time
complexity.

While we formulate an ILP for the improper colouring problemn
Appendix [A] the heuristic is unrelated to it. Instead, it usespotential
interference Whenever a node is being coloured, it is computed what
would be the interference for each possible colour and thelmar with
smallest value is chosen. In contrast to the previously degmed algo-
rithm, this has randomness: the node to be coloured next is asen
randomly (from among the ones with highest interference) agell as the
colour (from among the ones with lowest interference).

3.3 Publication

The remainder of this chapter corresponds t&nergy E cient Content
Distribution by J. Araujo, F. Giroire, Y. Liu, R. Modrzejewski and J.
Moulierac which has been submitted to the journal of ComputeCom-
munications, which is an extended version of the work of sanide and
authors accepted for publication in the proceedings of IEEEternational
Conference on Communications 2013.

3.4 Introduction

Energy e ciency of networking systems is a growing concerlue to both
increasing energy costs and worries about G@missions. In[[Web08] it



is reported that Information and Communication Technologysector is
responsible for up to 10% of global energy consumption. 51%tloat is
attributed to telecommunication infrastructure and data @nters. Thus,
saving power is important. Backbone network operators stydthe de-
ployment of energy-e cient routing solutions. The generalprinciple is
to aggregate tra c in order to be able to turn o a maximum number of
devices|[ZYLZ10[ CMN11, BCMR12, GMM12].

On the other hand, in order to reduce network load and improve
guality of service, content providers and network operatsrtry to disag-
gregate tra c by replicating their data in several points of the networks,
reducing the distance between this data and their users. Rat years
have seen, along the growing popularity of video over Inteety a huge
raise of tra c served by Content Delivery Networks (CDNSs). These kinds
of networks operate by replicating the content among its seers and serv-
ing it to the end users from the nearest one. CDNSs deliver nowayk a
large part of the total Internet tra c: estimation ranges from 15% to
30% of all Web tra ¢ worldwide for the single most popular CDN[Aka].
Chiaraviglio et al. [CM10, CM11] have shown how the choice &DN
servers impacts the backbone energy consumption. More pesty, they
aim at turning o network devices by choosing, for each demahfrom
a client to a content provider, the best server of this CDN wie being
energy aware.

Here, we go further on this idea by also considering the usagé o
caches on each of backbone routers, while still taking intac@ount the
choice of CDN servers. It is important to mention that there lave been
several proposals for developing global caching system&{®], in par-
ticular recently using in-network storage and content-oented routing to
improve the e ciency of content distribution by future Inte rnet archi-
tectures [PYRKOQE, [Dan09,) JST 09]. Among these studies, we mention
that in this paper we do not assume any speci ¢ technology fduture
Internet architectures, nor anything else that would reque major over-
haul of how the Internet works. Thus, there is no content roubhg among
our caches. We assume that a cache serves a single city, takall of
its contents from the original provider. We consider that cehes can be
turned on or o. Thus, there is a trade-0 between the energy avings
they allow, by reducing network load, and their own consumpin.

We propose an Integer Linear Programming (ILP) formulatiorto re-



duce energy consumption by using caches and properly chogscontent
provider servers, for each demand. We implemented this foatation on
the ILP solver CPLEX [CPL] version 12 and made experiments oreal,
taken from SNDIib [SND], and random, Erdds-Renyi [ER60], n&vork
topologies. We study the impact of di erent parameters: s& of caches,
demand intensity, network size, etc. In particular, we foud that almost
maximal energy gain can be achieved, in our scenarios, by ltas of the
order of 1 TB. Larger caches do not lead to signi cantly bettegains.
We discuss the increase of cache usage with network size. &xmental
results show potential energy savings of around 20% by putg devices
to sleep outside peak hours; introducing CDN to the network wout
caches gives 16% savings; introducing caches to networkhemt CDN
also gives around 16% savings. Furthermore, we observedtttiee impact
of caches is more prominent in bigger networks. To be able toantify
this e ect, we propose an e cient heuristic. This heuristic called Span-
ning Tree Heuristic , allows us to obtain acceptable solutions in a
time orders of magnitude shorter than solving the model dioly with
CPLEX. Furthermore, the heuristic accepts a parameter contiling a
speed/quality trade-o . This trade-o is also studied in this paper.

The main take away of our work is thus that, by storing the most
popular content in caches at each router and by choosing the$t content
provider server, we may save around 20% of power in the backieo

The paper is organized as follows. We discuss the related won
Section[3.5. We present the problem and its formulation in $gon [3.6.
Section 3.7 describes how we built the instances used in theperimenta-
tions.Finally, we present the experiments we did and discu$ise results
in Section[A.5.

3.5 Related Work

Reducing energy consumption of the backbone network has heap-
proached before multiple times. A model where it was achievdy shut-
ting down individual links is studied in [GMM12]. An interesing way of
performing this in a distributed manner is shown in([BCMR12]Energy
e cient CDNs have also been studied recently. Authors in [MS&?] pro-
pose to reduce energy consumption in CDN networks by turnirg CDN

servers through considering user SLAS. In order to optimizéné power



consumption of content servers in large-scale content digtution plat-
forms across multiple ISP domains, a strategy is proposed[@WS12] to
put servers into sleep without impact on content service capility. Our
work is di erent from these works, since they do not considen-network
caches.

Network caches have been used in global caching systems [RKO9
In recent years, several Information Centric Networking algtectures,
such as Cache and Forward Network (CNF)_[PYRKG08], Content Cen-
tric Networking (CCN) [JST09] and NetInf [Dan09], have exploited
in-network caching. Their objectives are to explore new n&brk ar-
chitectures and protocols to support future content-oricied services.
Caching schemes have been investigated in these new Intéraechi-
tectures [PYRKOE, LSG12, PCP12]. Similar to our work, these avks
also use in-network caches, however they do not consider rgyesavings.

Energy e ciency in content-oriented architectures with anin-network
caching had been studied recently in [GAKG11, SIW11, CGKA12]n[[GAKG11],
authors analyze the energy bene t of using CCN by comparisdn CDN
networks. A further work [CGKA12] considered the impact of derent
memory technologies on energy consumption. Adding networlaahes
that work transparently with current Internet architectur e has been stud-
ied, with linear power models, in[[MLG 11], where caches are added to
backbone routers and in [JNWC11], where it is found that optinmiglace-
ment during peak hours is in the access network. These worksfis on
the energy e ciency considering data delivery and storagdyowever, they
do not take into account the energy savings by turning on/o mtwork
links. Authors in [SLW11] extend GreenTE[[ZYLZ10] to achieve agwer-
aware tra c engineering in CCN network. It is di erent from o ur work,
since we consider energy consumption of in-network cachéstt could
be turned on or o, as well as a cooperation between network efators
and content providers.

Most closely related to ours is the work from Chiaraviglio edl. [CM10,
CM11], which enables the cooperation between network optyes and
content providers, to optimize the total energy consumptio by an ILP
formulation for both sides. In this paper, we also considehis coopera-
tion to achieve such a total energy saving. Our work is an extsion of
this optimization problem formulation, through considenng in-network
caching.



3.6 Problem Modeling

What follows in this section is a discussion of model paramesg formal
problem de nition and a Mixed Integer Linear formulation usd to solve
it.

However, let us rst informally recall the problem descripton and
some assumptions we consider. Our goal is to save energy oraekbone
network by aggregating tra ¢ and turning o as many devices & possi-
ble. We consider that this network has a set of demands betwepairs
of routers and a set of demands to CDN servers in an overlay big net-
work. A demand to a CDN can be satis ed by any of its servers, vith
are placed in di erent routers of our backbone network. Thusthese
demands have of course a single destination, but several gibsdities of
sources, one for each CDN server. Moreover, we consider thath back-
bone router of our network has a cache, with a limited amountf storage,
that can only be used to satisfy demands to its router. Our gbas to
satisfy all these demands, under the capacity contraints DN servers,
caches and links, while minimizing the number of links and ches that
are turned on.

Parameters

For in-network caches, it is still an open question: if and wothey should
be deployed. Therefore, we avoid making speci ¢ assumpt®about the
details. Once the question is answered, the model we propas@ be up-
dated to answer any possible speci ¢ concerns. However, thenclusions
can change, if the actual parameters vary heavily from our @®ates.

Cache hit rate A cache, located in each router, automatically caches
the most popular content, potentially saving a fraction of ay demand.
Establishing this fraction is a non-trivial task. Accordingto [HH1Q],
content popularity follows a Zipf-like distribution. In their study, they
computed the relation between cache size and hit rate for aare of
tra c towards YouTube. Note that this relation does not depend on the
number of cache accesses, only on the relative size of theheaand all
the content collection. This relation is shown on Figuré 3.2with the
assumption that an average video is 100 megabytes. The gushows
results for two algorithms: least recently useda classic caching algorithm,
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Figure 3.2: Cache hit ratio for YouTube trace, assuming average video siz
100MB, following the results in [HH10].

and static most popular a simple algorithm proposed by the authors. For
example with a cache of around 800GB the expected hit rate isoand
17.7% using LRU and around 32.5% using the static algorithnthus
saving an equivalent fraction of tra c.

As the situation changes frequently, both regarding to the yome of
popular content and available storage, we leave this fraoth as a param-
eter of the model: { the maximal part of any demand that can be
served from a cache. Network operator can establish it emmiaily, by
means of measurements. Typically, we take 2 [0:2; 0:35].

Cache power usage In our model we deal with two types of equipment:
links and caches. In practice, main energy drain of links ageort cards
and ampli ers. As can be seen in Powerlib [VHI12], power requimgents
of single port cards suitable for long haul networks are wetlver 100
Watts, while other backbone cards can be as few as a quartertbét.
For the caches, the main concern is fast mass storage. Thishaproved
recently, with current SSD models o ering 1TB of storage a&ssed at
10Gbps consuming below 10 Watts of power, for example [OCZ].

Again, as the practical values in the time of implementation @ hard
to predict, we make this ratio another parameter of the model { the
power consumption of a cache divided by the power consumpitiof a
link. Typically we take 2 [0:1;1].



Problem de nition

We use a typical model, from the perspective of a backbone pider,
where aggregated tra ¢ between cities is expressed as a demlamatrix.
We augment this matrix to represent not only cities, but alsacontent
providers. This is motivated by the fact that content provicers generate
tra c that can easily be equal to that of a city.

Let us rst formally de ne the optimization problem we are dealing
with. We call it Energy Efficient Content Distribution . In this
problem, we model the network by a graptG = (V;E), for which we
have a link capacity functionc : E ! R, and city to city demands
DL;8s;t 2 V. Moreover, we are given a set of content provideR. For
each content providerp 2 P, the subset of vertices oV (G) containing
its servers is given by the functionL, V(G). Each server placed in
location| 2 L, of a content providerp has a capacityC(s:o). We are also

given demands from cities to content providers given by thefiction D¥,
for everys 2 V;p2 P. We consider that the data is replicated at each
node ofL,. Finally, each nodev 2 V(G) in the network has a cache of
bandwidth capacity b(v).

The goal of our problem is to nd a feasible routing inG satisfying
all the demandsD?, and D? under the capacity constraintsc(u; v), C(S:D)
and b(v) that minimizes the total energy consumption of the network
By total energy consumption, we mean the energy used by thalts plus
the energy used by the caches. For each cache, despite of ad amergy
cost of turning it on, we also consider an increased usage okgyy in
terms of its load.

Mixed Integer Linear Programming Formulation

First recall that our goal is to turn o links and caches in orde to
minimize the amount of energy used in the underlying networkConse-
guently, we use a variablex,, to indicate if the link uv is turned on or
o, for every fu;vg 2 E. The model is normalized as to say that every
link uses 1 unit of energy. We denote this unit;. We use a variabley,
to indicate if the cache at routerv is turned on or o, for everyv 2 V.
We say that a cache uses at most units of energy. Finally, we recognize
that mass memory access can constitute a signi cant energgst. Thus,
we use a variable, to indicate the load (fraction of used bandwidth) of



the cache in routerv. We assume that an idle cache uses fraction of
and its power consumption grows linearly with load to reach once

fully utilized. The objective function is then written formally as:
X X X
min Xuv y vt @a )z
fuvg2E v2V v2V

Denote D and D as the demands posed in the problem instance,
respectively from other cities and content providers. A c&e in a source
router s, when turned on, allows to save a portion of any demand up
to , call these savings respectivel and C. We will considerreduced
demands denoted D and D, which are the input demands with the
caching savings subtracted:

Di=D. C! ;8s;t2V;

G DY ;8s;t2V;
t ,852V;p2P;
D? ;8s2V;p2P:

)
(% e]
1
2L
"o
Q

Then, we record the load of the cache:
X X
G+ =2zbs) ;8s;t2V;8p2P:
t P
Finally, the load cannot exceed the capacity and needs to beraéf cache
ISO:
Zs Ys ;8s2V:
Each possible source 2 V demands from each providep 2 P an
amount of data ow D? 0. The provider has a set of servers o,

located in a subset of nodes of the network2 L, V. Each of those
servers send$ 'F;S oW units, to collectively satisfy the demand:

S;°=D! ;852 V;p2P:
12Lp

Each servers, has a constrained capacityC(s;), which limits the
demands it can satisfy:

l; | . . .
S C(s) :8p2P;l2 Ly

s2V



Popularity Server capacity Server locations

CDN1 40 0.3 Berlin  Hamburg  Duesseldorf
Frankfurt Muenchen Nuernberg

CDN2 20 0.45 Berlin  Duesseldorf  Frankfurt
Muenchen

CDN3 15 0.6 Berlin Frankfurt

CDN4 15 0.5 Hamburg Frankfurt Muenchen

CDN5 10 0.2 Berlin Duesseldorf Frankfurt Ham-
burg Muenchen Nuernberg Os-
nabrueck

Table 3.1: Content Distribution Networks assumed for the germany50 net-
work.

Now we set ow constraints. Byf>, we denote the ow on edge

uv

fu; vg corresponding to demands originating frons.

X X
f\?;u fj;Z =
V2Ny z2Ny
(P , P _—
= s ¢ ey Ds U=S ;8s;u2 V:

Dd+  (ppjuzi,gSp°  Otherwise
Finally we consider capacities of links, denotet{uv). The constraints
involve both kinds of ows and the on/o status of the links:

X
(fov + o)+ cluv)x, ;8fu;vg2 L:
s2V

All variables are non-negative real numbers, except for,, andy,
which admit only values inf 0; 1g.

Spanning tree heuristic

Since CPLEX was not able to solve the ILP model described in ¢hlast
section for bigger instances, we describe here a polynontiaie heuristic
to our problem. For instance, for a random example with 150tes and
300 links, CPLEX was not able to produce any feasible solutiowithin
two hours, while the proposed algorithm can give a good soioih in two
minutes.



Our heuristic is an iterative algorithm that, at each stepi 0, com-
putes an optimal (fractional) solutions; for the relaxation of our model
and x value of some variables of the model corresponding thé usage
of links and caches (i.e. the integral variables,, andy,). When we say
that we x a variablex to a valuec2 f 0; 1g at step i, we mean that we
add a constraintx = c to the model used to computes;, for all j > i .

At the rst step 0, our heuristic computes a solutionsy of relaxation
of the model. Then, by setting the weight of each edge to be thalue
of its corresponding variable insy, @ maximum spanning treeT of the
input network graph G is computed and all the variables,, of all the
edgesuv 2 E(T) are xed to one.

After this initialization step, the heuristic solves, at eah stepi > 0,
the relaxation of the model (which will already have severahriables with
xed values) to get an optimal solutions;. Then, if some other variables
Xuv OrYyy have valuev 2 f 0; 1g in the solution s;, these variables are xed
to this value v. Finally, at least one most loaded device is xed to be
turned on. To speed up the process, the heuristic has a paraereS. At
each stepi, we also x S fraction of the highest value variables«,, or
yy Whose valuew are in 0<v < 1 to one. Once all the integer variables
are xed, the relaxation is solved one last time. This giveswua valid
solution to the Integer Linear Program.

The heuristic has been implemented in Java and it can be dowalded
as open sourd® Note that we use CPLEX to solve the relaxations of the
model at each step of the heuristic. The performance of thigtristic is
analyzed in Sectiorj A.b.

On the complexity of the heuristic algorithm The model we propose
has a polynomial number of constraints on the size of the inpult is
well-known that its relaxation can then be solved in polynonai time.
The number of devices whose variables have to be set to 0 or 1dayr
heuristic isn caches (one at each node) plua edges. The rst iteration
puts n 1 edge variables to 1. When a variable is set to 0 or 1, it is
not reconsidered during the algorithm execution. Hence, theumber of
relaxations solved, i.e. of steps of the heuristic, is boued by m + 1.
Note that we indicated the number of iterations and the execun
times in seconds for varied values & in Section[3.8 and for networks of

Yhttps://github.com/Irem/GreenContentDistribution



varying size in Sectiorj 38.

3.7 Instance generation

The Survivable xed telecommunication Network Design (SND) Lbrary

contains a set of real network topologies, which we use as asbdor most
of our instances. In particular, we have decided to use threetworks
with considerably di erent sizes:

Atlanta { jVj = 15;jE]j = 22, unidenti able cities
Nobel-EU { jV|j = 28;]Ej = 41, major European cities
Germany50{ jVj =50;jEj = 88, major German cities

We added the position of the Content Distribution Network serers. Usu-
ally, Content Distribution Networks locate their servers ininternet Ex-
changes and major Points of Presence, to minimize the netkatistance
to the end users. Locations of such points are publicly knowf hus, for
topologies with clearly identi able cities, we have readyets of candidate
locations for CDN servers. Otherwise (Atlanta network), weut them
manually at cities which minimize the route lengths.

We used a population model to build the tra ¢ matrices of the ce-
mands between cities. Then, we augmented matrices with themhands
towards content providers. Obtaining exact gures about CIN market
shares and operational details is out of scope of this studystill, we
explored the publicly available information, e.g..[Aka], tocome up with
a list of the major providers. Each of the networks is assigdea popu-
larity , which is based on market share either claimed by the compaay
media. The number of servers is heterogeneous and we try toaange it
into distinct classes in regard to popularity/server capaty proportion,
i.e. there can be networks with many small servers, or few strg ones.

Table [3.1 exempli es CDN speci cation used in thegermany50 net-
work. Server capacity means what part of total demand towasla net-
work can be satis ed by the infrastructure in a single locatin. For ex-
ample, just two servers with capacity (b can satisfy all demands towards
CDN4.

A more detailed description of the instance generation carelfound
in the research report [AGL 12].



3.8 Results

In this section, we rst validate our heuristic. We show thatit is able to
nd good solutions for small and medium-sized networks by ogparing
with optimal solutions given by the model. We implemented ta for-
mulation on the ILP solver CPLEX version 12. We then show thathe
heuristic is fast and is able to quickly nd solutions for larg networks
for which CPLEX was not able to nd any feasible solutuion.

Then, we investigate the potential energy savings of our smion on
realistic networks. We exhibit the impact of the cache, CDN1ad network
parameters, such as cache size, number of CDN servers, otedangths.
Note that, as described in Sectiof A]5, energy consumption isvgn in
normalized energy units equal to energy used by one link, dgad ..

When directly solving the ILP, by default we set a limit on the &e-
cution time to ve minutes per instance.

Validation of the Heuristic Algorithm

In order to validate the Spanning Tree Heuristic , we compare its
performance to solving the integer model directly with CPLK. First we

show the di erences in several examples. Then, we focus omsing the
impact of the parameterS, which governs the speed/quality trade-o,
on three chosen examples.

Comparison of the heuristic and the ILP

Table [3.2 displays performance comparison betwe&panning Tree
Heuristic and solving the ILP directly by CPLEX version 12. It com-
pares the values of objective function and wall clock time k&n by the
computation on an Intel i7-powered computer. The columns nean,
respectively, by what percentage the solution found by theeuristic is
worse and how much time is saved by using it. The heuristic pameter
S is set to 0.2. It is discussed in the next section.

First, notice that for very small networks it is feasible to slve the
ILP optimally. This is exempli ed by the 15-node Atlanta network. The
optimal solution is found within two seconds. Interestingl, the running
time grows for lower trac. This is entirely because rising he lower
bound, which has to be equal to the objective value to state ¢hsolution



Topology iVij Total energy]lc]

Model Heuristic
Atlanta (high tra c) 15 18.8 ? 19.0 1%
Atlanta (medium tra c) 15 16.6 ? 18.6 12%
Atlanta (low tra c) 15 141 ? 14.4 2%
Nobel-EU (high tra c) 28 314 7 35.1 12%
Nobel-EU (medium tra c) 28 28.4 32.2 13%
Nobel-EU (low trac) 28 27.9 30.2 8%
Germany50 (high tra c) 50 69.7 69.0 -1%
Germany50 (medium trac) 50 54.2 61.6 14%
Germany50 (low tra c) 50 50.0 56.2 12%
Random 150 No solution 203.7 |
Topology jVj  Computation time[s]

Model Heuristic

Atlanta (high tra c) 15 15 0.6 60%
Atlanta (medium tra c) 15 5.2 0.6 88%
Atlanta (low tra c) 15 34.4 0.6 98%
Nobel-EU (high tra c) 28 1075 1.8 99.8%
Nobel-EU (medium tra c) 28 1800 1.3 99.9%
Nobel-EU (low tra c) 28 1800 1.1 99.9%
Germany50 (high tra c) 50 300 8.5 97%
Germany50 (medium trac) 50 300 5.0 98%
Germany50 (low tra c) 50 300 2.9 99%
Random 150 7200 127.8 |

Table 3.2: Comparison of results given by theSpanning Tree Heuristic

(labelled Heuristic) and by solving the model directly with CPLEX (labelled
Model). The ? symbol denotes optimal solutions.



is optimal, becomes much harder. Solutions given by the héstic are
close to the optimum, while the time needed to nd them is muckhorter.
Still, for networks of this size, we would strongly recommensblving the
model directly.

For networks up to 30 nodes it is still feasible to nd optimalkolutions.
However, the cost of obtaining the solution is rather high, we closing
the gap to the lower bound becomes impractical for low tra c. Thus,
we limited the CPLEX execution time to half an hour. On the otter
hand, Spanning Tree Heuristic provides its solutions in under two
seconds. Again, by choosing the heuristic, we accept only @kt increase
in consumed energy. Precisely, to obtain a solution within2% of the
optimum, we save 99.8% of the computation time.

In medium-sized networks, such as Germany50, nding exaablsition
becomes impractical. Thus, we set a limit of 5 minutes to obita near-
optimal results. This allows Spanning Tree Heuristic to obtain a
slightly better solution than the ILP, while taking only 3% o the running
time, in the case of high trac. In the other cases it is still ot far
guality-wise, while taking negligible time.

Finally, we take a big random instance. The topology is a two-
connected Erdes-Renyi graph, with 150 nodes, an averagegdee of four
and one CDN with fteen servers. Each city issues demands gnto
seven other cities. The overall trac level is medium (demad ratio
4.0), as these kind of instances are prone to bottlenecks, ialh could
render higher tra c levels unrouteable. It is infeasible todirectly obtain
any integer solution of the model. After two hours CPLEX was niable
to propose even a trivial solution (e.g. turning on all the daces). Span-
ning Tree Heuristic , in just above two minutes, gives a solution that
is 35.8% over the trivial lower bound of a minimal connectedetwork.

To conclude, we say that theSpanning Tree Heuristic is clearly
the better choice for big networks. For small to medium-sigeones, its
results are always reasonably good, while its running time very short.
Therefore, it is a viable choice whenever the computationmie is an issue.

Speed/quality trade-o of the Spanning Tree Heuristic

As stated in Sectior] 3.5, the paramete® governs an execution speed vs
quality of solution trade-o for the Spanning Tree Heuristic . We
investigate its in uence in this section.



First, recall that S determines the fraction of undecided variables to
be xed to an integer value within an iteration. Each iteration at least
one variable is set to one, so settin§ to zero means turning on devices
one by one. It is easy to see how increasir® reduces the number of
iterations. To comprehend how it can decrease the quality abtained
solution, imagine a simple example, that represents a fragmt of an
instance. Take two cities with two disjoint paths and one deand be-
tween them. Let the value of that demand be equal to bandwidtlof a
link. One valid solution of the relaxation can be splitting he demand
in half and routing both halves along both paths. The optimainteger
solution for this case is all the ow going through one routethe links of
the other turned o. If S = 0, then after the rst step one link will be
turned on. The only possible solution of the relaxation wilfoute all the
tra ¢ through the path containing this link. Thus, the solut ion found
by Spanning Tree Heuristic will be optimal. However, ifS > 0 and
two links are turned on in the rst step, then it is possible tre two links
will be on di erent paths. Thus, the integer solution will have some un-
necessary links turned on. In the extreme case 8f= 1 all devices will
always be turned on.

Figure [3.3 shows the impact on three examples. In all caseseth
axis determines the value of parametef. The left column plots the
value of the objective function in integer solutions. The ght column
shows computational costs, both in terms of wall clock timeniseconds
(solid blue lines) and number of relaxations solved (dashedd lines).

First, look into an instance based on maximum tra ¢ sustainalbe in
the Germany50 network. Solutions obtained are displayed on plgt 3.Ba.
Recall that the value found by a solver for this instance was967 energy
units. Taking between 24 and 8 second§panning Tree Heuristic
with S 0:3 obtains solutions with 69.0 units. This means it is in this
case both faster by an order of magnitude and gives a margilyabetter
solution. Note that even atS = 1 not all devices are turned on. This
is because, after freezing the spanning tree, some devicestgrned o
before all the undecided ones are turned on. Looking at ploi3®), we see
that the number of relaxations solved and the running time & falling
drastically for S  0:2. Then, they decrease more slowly, with 6 seconds
at S =0:5 and 4 seconds a$ = 1:0.

Second, we assign to the same network a small load, that siles not
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Figure 3.3: Impact of the parameterS, left column plots the energy consump-
tion of obtained designs, while right column plots the computational cost.

allow for routing on a spanning tree (which would be a triviakase for
the heuristic). With model given directly to a solver, we havebtained
in 5 minutes a solution with value 50. Plof_3.3c shows that théest
solution found by Spanning Tree Heuristic is still one unit worse
and can deteriorate by almost eight further units. On the otkr hand, the



maximum time taken by Spanning Tree Heuristic is 10.8 seconds.
For S=0:1itis already 3.3 seconds, reaching 2.8 &= 1.

Finally, we present results for the same random graph as in thee-
vious section. Looking at plof 3.3e, we see that there is sigrant but
steady increase in energy consumption unt® = 0:4. At that point, the
value objective function is nearly saturating, at 1.44 time the value for
S = 0. On the other hand, plot[3.3f shows that there is a sharp degase
in computational cost until S = 0:2. As the objective value at that point
is not far from the best known value, we deduce that this is a asonable
value of S for fast solving of big instances. Note that when solving the
model directly, CPLEX 12 is not able to produce any integer $ation
within reasonable timespan of two hours. The only lower bowanon the
objective value we know comes from the fact, that the networkeeds to
be connected. Thus, there are at least 149 links needed. Theans
that the heuristic, with S = 0, is at most within 20.8% from the optimal
solution.

As we have seen in the above examples, tBpanning Tree Heuris-
tic is a good alternative to solving the model directly for big rtevorks.
Furthermore, even when it is possible to obtain a solution déctly from
the model, it may be possible that the heuristic provides a kdion of
similar quality in a shorter time.

Impact of cache parameters

In this section, we exemplify the impact of parameters of theache. We
look into how the obtained network designs di er on changingalues of
the cache hitrate and of the cache power usage Due to lack of space,
results are given here for thegermany50 network. The demand ratio
is set to 0.3, which represents high trac. Similar results a di erent
networks can be found in/ [AGL 12].

First, we look at the e ects of changing the parameter , shown in
Figure [3.4a. Recall, that it limits what part of any single demand can
be served from a cache. Increasing the signi cance of cachesults in
more being used and energy being saved. However, note that®abtout
15% of tra ¢ can be cached, further gains are highly diminisad. This,
according to Sectiori 36, is equivalent to about 800GB or jus00GB
depending on the cache algorithm used.
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Figure 3.4: Energy consumption in network designs obtained by model wit
di erent parameters.

Figure[3.4b shows the e ects of changing maximum cache powes-u
age, . As we can see, when the caches use no energy, the network uses
60 units of power. Then it raises, through 63.4 for = 0:1, to 69.7 for

= 0:5. After this point, further increases to have little e ect, not
increasing past 74. This is because at this point caches signget turned
0 as they consume too much energy.

Figure[3.4¢ shows combined e ects of both parameters. The dand
ratio in it was increased to 0.33, to make routing without cdees feasible.
Then, a baseline power consumption has been establishedhmiaches
disabled to be 71. For each pair of parameters, energy sawnglative to
that baseline are mapped to a color and displayed in appropte region
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Figure 3.5: Total energy consumption varied by CDN properties.

of the gure. The darker the color the higher the savings.

Impact of CDN parameters

Then, we investigate the impact of the cooperation with CDN,sown on
Figure[3.5. Plot[3.5& shows the evolution of energy consumgtiin func-
tion of what part of all demands are directed towards CDN netarks.
The demand ratio for this plot is set to 0.33, to make routing whout
caches nor cooperating content providers feasible. Resuttoth with and
without caches are compared. As we can see, introducing coxgtieg
content providers to a network without caches is highly bengal. In the

extreme case when all tra ¢ would be served by CDNs, energy ceamp-
tion would decrease by 27.4%. At today's claimed values thmmber is
still 16.4%. Then, introducing caches to a network without ON gives
16.7% savings. There remain 8.0% savings at today's CDN pdgty.

What may be a bit surprising, there are still 6.6% savings by troducing
caches when 100% of tra c is served by the Content Delivery Neforks.
Finally, comparing network without CDN nor caches, to netwdt with

50% of tra c served by CDN and with enabled caches, we save 22%
of energy.

Plot investigates how many location choices are neededchieve
good savings. In this scenario, for the sake of clarity, theris only one
CDN. Its servers are potentially located in: Berlin, Frankfut, Muenchen,
Hamburg, Dortmund, Stuttgart, Leipzig and Aachen. In each da point,
only the rst n servers from this list are enabled. Each server is able to
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Figure 3.6: Comparison of energy consumption with and without caches in
the model.

provide all the demands alone, 50% of all tra c is served by ta CDN. It
is infeasible to route with less than 3 locations. As we can séecreasing
the number of possible choices from 3 to 5 yields around 13%ewfergy
savings. Further increases have little e ect. Thus, in thisietwork of 50
cities, it is optimal to have 5 server locations.

Impact of tra c level

In this section, we look into the potential reduction of engyy con-
sumption of the networks in our model, both with and without sage
of the caches, exploiting the variance in network tra c overtime. The
parameters used throughout this section are: = 0:35, = 0:1 and
cache bandwidth is half of a link.

Figure [3.6 shows energy consumption in function of demand i@yt
that is the inverse of trac level. As we can see, in all the netorks,



Nodes Maximum energy saved Total energy savings

Network

count due to caches (load=50%)
Atlanta 15 8.9% 21.3%
Nobel-EU 28 3.2% 21.7%
Germany 50 16.7% 22.3%

Table 3.3: Potential energy savings

enabling caches makes routing feasible under much higherdesathan
before. For example in the case of Germany, we can accommadan
increase in demands by one third. Then, as tra c decreases,encan
save energy by turning o some devices. The right column of Tée[3.3
states relative di erence between energy consumption of &twork under
highest possible load and half of that load, with caches ened.

For a range of demand values, it is feasible to route withoutaches,
but at a higher total energy cost. Note that half of maximum susinable
load is in all cases within this range. The left column of Takl3.3 shows
the highest di erence of power consumption accommodating ¢hsame
tra ¢ with and without caches.

As can be seen, there is a point after which there are no addiial
savings with falling trac. This is when the routing is feasible on a
spanning tree, using no caches. Turning o any additional déce would
disconnect the network.

What is interesting is the fact that caches have a much higherezt in
the germany50than the smaller instances. We attribute that to longer
routes, which mean higher energy cost to transfer the data ithugh the
network. This e ect is investigated in Sectior] 3.B.

Impact of network size

We have seen varying usage of caches in the studied networAs. expla-
nation for that is the di erence of route lengths in the divese networks.
Energy is saved by serving from a cache close to the user. $gsgi de-
pend on how long would be the route traversed by the data, if #vas
served from content provider. A longer route yields highereductions.
However, in the biggest network we used, thgermany5Q the average
route length is only 4. Furthermore, when looking at a distace traveled
by an average bit of data, this length is only 2.6. We claim than bigger
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networks we could see higher utility of caches.

To estimate the impact of route length, we look into resultso Erd)s-
Renyi graphs. Recall that in these graphs, the route length grow loga-
rithmically in respect to the graph size. As we need many big tveorks to
demonstrate the e ect, obtaining integer solutions diredy from a solver
would be impractical. Therefore, the results presented areomputed
using the Spanning Tree Heuristic .

Figure[3.7a& shows the number of caches used divided by the nuemb
of cities in two-connected Erdys-Renyi graphs of increasg sizes. The
average degree of each graph is 4, each city emits 7 demandsatodom
other cities, cache parameters are =0:35, =0:1and =0:5. Each
data point is an average over at least two thousand instancesrror bars
represent standard deviation.

As we can see, with no other parameters changing, usage of @sch
clearly grows with increasing network sizes. In a network afize 20,
having average route length around 2.3, average number ofchas on is
only 4.47 (22.3%), while in networks of size 220, of averagmite length
around 4.2, there are on average 209.2 (95.1%) caches turnad Caches
see an average usage over 50% for networks of size at leastvdtere
the average route length is only around 3.4. This size can cespond to
small networks comprised of both core and metropolitan past or just
big core networks.

Figure [3.7h displays the computation times. The value of is 0.2.
The execution time grows quickly. This is not due to the numheof
heuristic iterations, between 20 and 220 nodes the numberrefaxations



solved only doubles. However, ah = 220 a single relaxation takes 6
minutes on average. Thus, the time needed to nd the fractia routing
is the critical part of the computational cost.

3.9 Conclusions and further research

In this work, we addressed to the problem of energy saving iratkbone
networks. To the best of our knowledge, this is the rst work® consider
that impact of in-router caches, along with assigning serk& of Content
Delivery Networks to demands, in an energy-e cient routing.

We have proposed a new Integer Linear Programming model favs
ing energy in backbone networks by disabling links and cachef this
network and a polynomial-time heuristic for this problem. V& compared
the performance of the solutions proposed by our heuristigainst those
found by CPLEX. In small to medium-sized instances the soluins given
by the heuristic are close to that of the integer program. Beg faster by
orders of magnitude, it allows to nd good solutions for biggr networks,
where CPLEX was not able to produce any feasible solution irohrs.

We studied instances based on real network topologies takéom
SNDLib. The total energy savings found oscillate around 20%ffrealis-
tic parameters. Part of energy saved solely due to introducin of caches
is up to 16% in our instances.

As a future work, the model could be extended to enable the usag
of a single cache to satisfy the demands of multiple citiesgi to let a
cache satisfy demands to di erent routers and not only to itewn router.
The energy savings will probably grow in this model, howevetr would
be interesting to study how this solution could be deployed.

One could also look at di erent network architectures. Thiswork
considered only the backbone. A next step could be introdung access
networks, leading to larger instances. As the savings due taahes grow
with network size, they should be substantially higher in tls case. This
could also motivate study of new mechanisms, e.g. layerecchang.
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CHAPTER

Maintaining Balanced Trees
For Structured Distributed
Streaming Systems

In this chapter, we move to content distribution in the applcation layer.
Peer-to-peer networks reduce the broadcasting redundanby allowing
clients to share the content among themselves. There are tvmajor
classes of peer-to-peer streaming networks: structureddannstructured.
While structured networks allow for lower overheads and higin band-
width utilization, concerns are raised about their robustass, up to the
point that virtually all deployed solutions are unstructured. In this chap-
ter, we attempt to answer these concerns. We show that repaig the
structure of a generic broadcasting tree, after any failurean happen in
a short time.

4.1 Preliminary: live streaming overlay networks

There are two major classes of peer-to-peer live video stn@iag ap-
proaches. Their names vary among publications, the rst onéeing
named eitherunstructured, mesh-basedgossipingor torrent-like ; the sec-
ond named eitherstructured or tree-based This classi cation was already
used in [ZLLYO5].
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(a) Structured (b) Unstructured

Figure 4.1: A visualization of both major overlay classes

Early systems, like [[nCRZ00], in uenced by IP multicast, atempted
at constructing a multicast tree to stream the media. Battlng all the
possible shortcomings, this simple idea has evolved intcalkbrate al-
gorithms like SplitStream, proposed in [CDK 03]. Throughout all the
possible variations, the signature of this group of systenis active main-
tenance of an overlay structure that clearly de nes the dataow, thus
the namestructured overlays

On the other hand we have systems inspired by the BitTorrenipne
of the best-known peer-to-peer protocols, described by BnaCohen, its
original author, in [Coh03]. The core idea of this class of exlays is
organizing the peers into a random, highly-connected gragnd dissem-
inating the data using a simple, probabilistic algorithm. The rst in-
stance of an unstructured system was proposed in [BLBS03]asvay of
enhancing a single-tree overlay. In [ZLLY05] it was the baserfthe rst
peer-to-peer network that streamed video to a big number oinsultane-
ous clients. The distinguishing characteristic of this grgp of networks
is that they do not have an overlay structure that would de nethe data
ow, thus the name unstructured overlays

Figure[4.] visualizes both concepts. It is important to notethat the
divide is mostly ideological. Watching forwarding historyof any single
packet will give us a tree. In[[MRQ09] the protocol is plainly aostructured,
but an elaborate structure emerges in the analysis. A systeoan start



by random forwarding, but retain good paths e ectively turring into
a structured one, like [LQK 08]. Finally there are systems, which t
neither of the above descriptions. An example of that is AQC$roposed
in [GLLQO9]. Despite that the classi cation is well entrencled, up to the
point of studies comparing both classes, like [MRGD7].

Unstructured systems are widely regarded the better choictg the
extent that, up to our best knowledge, no structured live seaming sys-
tems have been deployed in practice. That is often explainday the
complexity of making a structured system reliable. Howevelin this
chapter we show that reliability can be ensured, for a simpleystem,
e ciently by a simple algorithm.

4.2 Publication

The remainder of this chapter corresponds thaintaining Balanced Trees
For Structured Distributed Streaming Systemsy F. Giroire, R. Modrze-
jewski, N. Nisse and S. Rerennes, which is accepted for pulation in the

proceedings of 20th International Colloquium on Structudanformation

and Communication Complexity.

4.3 Introduction

Trees are inherent structures for data dissemination in geral and par-
ticularly in peer-to-peer live streaming networks. Fundamntally, from
the perspective of a peer, each atomic piece of content hasreceived
from some source and forwarded towards some receivers. Moe¥, most
of the actual streaming mechanisms ensure that a piece ofdanhation
is not transmitted again to a peer that already possesses it.herefore,
this implies that dissemination of a single fragment de nea tree struc-
ture. Even in unstructured networks, whose main characteristic is lack
of de ned structure, many systems look into perpetuating sth under-
lying trees, e.g. the second incarnation of CoolstreamingQK™ 08] or
PRIME [MROQ9].

Unsurprisingly, early e orts into designing peer-to-peer deo stream-
ing concentrated on de ning tree-based structures for datdissemination.
These have been quickly deemed inadequate, due to fragilépd unused
bandwidth at the leaves of the tree. One possible x to theseaaknesses



was introduced in SplitStream [[CDK 03]. The proposed system main-
tains multiple concurrent trees to tolerate failures, andriternal nodes in
a tree are leaf nodes in all other trees to optimize bandwidthrhe con-
struction of intertwined trees can be simpli ed by a randonied process,
as proposed in Chunkyspread [VYF06], leading to a streaming atgbm
performing better over a range of scenarios.

As found in [LQK™ 08], node churn is the main di culty for live
streaming networks, especially those trying to preserveratture. On
the other hand, in [ZSC10] authors embrace change. Their stmstic
optimization approach relies on constant random creatingna break-
ing of relationships. To ensure network connectivity, nodeare said to
keep open connections with hundreds of potential neighb®ur Another
approach, displayed in[[LXHL11], is churn-resiliency by mataining re-
dundancy within the network structure. Although concentratng on a
di erent eld, authors of [PTTQ9] face a similar to our own problem of
maintaining balanced trees, needed for connecting wiretesensors. How-
ever, their solution is periodical rebuilding the whole tre from scratch.
Our solution aims at minimizing the disturbance of nodes, wise an-
cestors were not a ected by recent failures, as well as minimng the
redundancy in the network.

The analysis of these systems focus on the feasibility, ctmstion
time and properties of the established overlay network, sder exam-
ple [CDK™ 03,[VYFO06] and [DECOQ7] for a theoretical analysis. But these
works usually abstract over the issue of tree maintenance.e@erally, in
these works, when some elements (nodes or links) of the natkgofail,
the nodes disconnected from the root execute the same proaexlas for
initial connection. To the best of our knowledge, there aremtheoreti-
cal analysis on the e ciency of tree maintenance in streammsystems,
reliability is estimated by simulations or experiments asni [CDK* 03].

In this paper, we tackle this issue by designing an e cient miate-
nance scheme for trees. Our distributed algorithm ensureldt the tree
recovers fast to a \good shape" after one or multiple failuseoccur. We
give analytic upper bounds of the convergence time. To the &teof our
knowledge, this is the rst theoretical analysis of a repaiprocess for
live streaming systems. While theD(n?) worst case bound seems high,
simulations shown in Sectiof 4|7 suggest that the averageseas closer
to O(logn), which is lower than the conceivable time of rebuilding a &e



from scratch.

The problem setting is as follows. A single source providegd media
to some nodes in the network. This source is the single rellabnode
of the network, all other peers may be subject to failure. Eacnode
may relay the content to further nodes. Due to limited bandwdth, both
source and any other node can provide media to a limited numblke 2
of nodes. The network is organized into a logical tree, roateat the
source of media. If nodex forwards the stream towards nodey, then
x is the parent ofy in the logical tree. Note that the delay between
broadcasting a piece of media by the source and receiving byeer is
given by its distance from the root in the logical tree. Henceuo goal is
to minimize the tree depth, while following degree constnais.

As shown in [LQK" 08], networks of this kind experience high rate of
node joins and leaves. Leaves can be both graceful, where denmforms
about imminent departure and network rearranges itself befe it stops
providing to the children, or abrupt (e.g. due to connectioror hardware
failure). In this work, we assume aeconnection process when a node
leaves, its children reattach to its parent. This can be donbcally if
each node stores the address of its grandfather in the tree. tddhat
this process is performed independently of the bandwidth estraint,
hence after multiple failures, a node may become the parent many
nodes. The case of concurrent failures of father and grantifar can be
handled by reattaching to the root of the tree. Other more sdpsticated
reconnection processes have been proposed, see for exafhhlEB™ 07].

This process can leave the tree in a state where either the laavidth
constraints are violated (the degree of a node is larger thém or the tree
depth is not optimal. Thus, we propose a distributedalancing process
where based on information about its degree and the subtregzes of
its children, a node may perform a local operation at each tar We
show that this balancing process, starting from any tree, overges to a
balanced tree and we evaluate the convergence time.

Related Work. Construction of spanning trees has been studied in the
context of self-stabilizing algorithms. Herault et al. propse in[HLP 07]
a new analytic model for large scale systems. They assumetthay pair
of processes can communicate directly, under condition of dming re-
ceiver's identi er, what is the case in Internet Protocol. They addition-
ally assume a discovery service and a failure detection seev Under this



model they propose and prove correctness of an algorithm structing a
spanning tree over a set of processes. Similar assumptioasénbeen used
by Caron et al. in [CDPTOE] to construct a distributed pre x tree and
by Bosilca et al. in [BCH" Q9] to construct a binomial graph (Chord-like)
overlay.

In this paper we assume the results of these earlier works:des can
reliably communicate, form connections and detect failuse We do not
analyze these operations at message level. Furthermore, avealyze the
overlay assuming it is already a spanning tree. However, it mdave an
arbitrary shape, e.g. be a path or a star (all nodes connecteltectly to
the root). This can be regarded as maintaining the tree afteronnection
or failure of an arbitrary number of nodes.

Our results.  In Section[4.4, we provide a formal de nition of the prob-
lem and propose a distributed algorithm for the balancing prcess. The
process works in a synchronous setting. At each turn, all ned are se-
quentially scheduled by an adversary and must execute theqmess. In
Section 4.5, we show that the balancing process always stezt®inO(n?)
turns. Then, in Section[4.6, we study a restricted version dhe algo-
rithm in which a node performs an operation only when the sulges
of its children are balanced. In this case, we succeeded intabing a
tight bound of ( nlogn) on the number of turns for the worst tree. Fi-
nally, we show that the convergence is in fact a lot faster invarage for
a random tree and takes a logarithmic number of turns.

4.4 Problem and Balancing Process

In this section, we present the main de nitions and settingssed through-
out the paper, then we present our algorithm and prove somengple
properties of it.

Notations

This section is devoted to some basic notations.

Letn2 N. Let T =(V;E) be an-node tree rooted inr 2 V. Let
v 2 V be any node. ThesubtreeT, rooted atv is the subtree consisting
of v and all its descendants. In other words, i¥ = r, then T, = T and,



otherwise, lete be the edge betweewnr and its parent, T, is the subtree
of Tne=(V;Enfeg) containing v. Let n, = jV(T,)j.

Let k 2 be an integer. A nodev 2 V(T) is underloadedif it has
at most k 1 children and at least one of these children is not a leaf.
v is said overloadedif it has at least k + 1 children. Finally, a node v
with k children isimbalancedif there are two childrenx andy of v such
that jny, nyj > 1. A node isbalancedif it is neither underloaded, nor
overloaded nor imbalanced. Note that a leaf is always balartte

A tree is a k-ary tree if it has no nodes that are underloaded or
overloaded, i.e., all nodes have at most children and a node with< k
children has only leaf-children. A rootedk-ary tree T is k-balancedif,
for each nodev 2 V(T), the sizes of the subtrees rooted in the children
of v di er by at most one. In other words, a rooted tree ik-balanced if
and only if all its nodes are balanced.

As formalized by the next claim k-balanced trees are good for our live
streaming purpose since such overlay networkk peing small compared
with n) ensure a low dissemination delay while preserving bandwid
constraints.

Claim 1. Let T be an-node rooted tree. IfT is k-balanced, then each
node of T is at distance at mostlog, nc from r.

Distributed Model and Problem

Nodes are autonomous entities running the same algorithm. &anode
v has a local memory where it stores the sizg, of its subtree, the size
of the subtrees of its children and the size of the subtrees it grand-
children, i.e., for any childx of v and for any childy of x, v knows ny
and ny.

Computations performed by the nodes are based only on the &bc
knowledge, i.e., the information present in the local memgrand that
concerns only nodes at distance at most 2. We consider a syrwious
setting. That is, the time is slotted in turns. At each turn, any node
may run the algorithm based on its knowledge and, depending dhe
computation, may do one of the followingoperations In the algorithm
we present, each operation done by a nodeconsists of rewiring at most
two edges at distance at most 2 fronv. More precisely, letvy, vk and



Vk+1 be children ofv, a be a child ofv; and b be a child ofv, (if any).
The nodev may perform:

Pull operation replace the edgd v;; ag by the edgefv;ag. A grand-
child a of v then becomes a child ofr. This operation is denoted
by pull (a) and illustrated in Figure [4.23;

Push operation replace the edgd v; w.1 g by the edgefvy; w+19. A
child v;1 of v then becomes a child of another child, of v. This
operation is denoted bypush (V41 , ), see Figurd 4.2p;

Swap operation replace the edgedv;;ag and fvg;bg by the edges
fvy;bg and fvg;ag. The children v; and v of v exchange two of
their own childrena and b. This operation is denoted byswap (a,b)
and an example is given in Figurg 4.8c. Hera,or b may not exist,
in which case, one of; and vi \wins" a new child while the other
one \looses" a child. This case is illustrated in Figurg 4.3d.

In all cases, the local memory of the at mosk? + 1, including the
parent of v, nodes that are concerned are updated. Note that each of
these operations may be done using a constant number of megsa of
sizeO(logn).

In this setting, at every turn, all nodes sequentially run tke algorithm.
In order to consider the worst case scenario, the order in vehiall nodes
are scheduled during one turn is given by an adversary. Thegakithm
must ensure that after a nite number of turns, the resultingtree is k-
balanced. We are interested in time complexity of the worstase scenario
of the repair. That is, the performance of the algorithm is mesured by
the maximum number of turns after which the tree becomds-balanced,
starting from any n-node tree.

The Balancing Process

In this section, we present our algorithm, calledalancing process We
prove some basic properties of it. In particular, while theree is notk-
balanced, the balancing process ensures that at least onedagerforms
an operation. In the next sections, we prove that the balaneg process
actually allows to reach ak-balanced tree after a nite number of steps.
At each turn, a nodev executes the algorithm described on Fig-
ure[4.3. To summarize, an underloaded node doespall , an over-



(@) pull (a)

(b) push(vks+1 ;Vk)

Figure 4.2: Operations performed by nodev in the balancing process
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(c) swap (a; b)

i

(d) swap(a;;)

Figure 4.2: Operations performed by nodev in the balancing process



Algorithm executed by a nodev in a tree T. If v is not a leaf, let
(v1; Vo, ;Vg) be thed 1 children of v ordered by subtree-size, i.e.,

Ny, Ny, Ny -

1. If visunderloaded (thend < k), let a be a child ofv; with biggest
subtree size.Then nodev executespull (a). /[ Thatis, a
becomes a child of.

2. Else if v is overloaded (thend >k  2), then nodev executes
push (Vk+1 ; Vk)-
/l Thatis, vk+1 becomes a child ofy.

3. Else if v is imbalanced (thend = k) and if v; and vk are not
overloaded, leta and b be two children of v; and vy respectively
such that jny, na+ np (ny, Np+ Ng)j is minimum (a (resp.
b) may be not de ned, i.e., hy = 0 (resp., np = 0), if vi (resp v)
is underloaded).

Then nodev executeswap(a;b). // Thatis, a and b exchange
their parent.

Figure 4.3: Balancing Process

loaded node does push and an imbalanced node (whose children are
not overloaded) does aswap operation. Note that a swap operation
may exchange a subtree with an empty subtree, but cannot crteaan
overloaded node. Intuitively, the children a ected bypush and pull
are chosen to get probably the least imbalance (reduce thegbest or
merge the two small). It is important to emphasise that the bkancing
process requires no memory of the past operations.

Note that if the tree if k-balanced, no operation are performed, and
that, if the tree is not, at least one operation is performed.

Claim 2. If T is not k-balanced, and all nodes execute the balancing
process, then at least one node will do an operation.

In the next section, we prove that, starting from any tree, tie num-
ber of operations done by the nodes executing the balancingopess is
bounded. Together with the previous claim, it allows to prog



Theorem 1. Starting from any tree T where each node executes the
balancing process, after a nite number of stepsl eventually becomes
k-balanced.

Before proving the above result in next Section, we give a Sihe
lower bound on the number of turns required by the Balancing lcess.
A star is a rooted tree where any non root-node is a leaf.

Lemma 1. If the initial tree is a n-node star, then at least( n) turns
are needed before the resulting tree ksbalanced.

4.5 Worst case analysis

In this Section we obtain an upper bound ofO(n?) turns needed to
balance the tree. We prove it using a potential function, whs® initial
value is bounded, integral and positive, may rise in a boundenumber
of turns and, otherwise, strictly decreases. For clarity giresentation we
assume we want to obtain a 2-balanced tree. The proofs can béemded

to larger k. Due to lack of space, most of them are only sketched here
and can be found in[[GRNP13].

Lemma 2. Starting from any n-node rooted treeT, after having executed
the Balancing Process duringd(n) turns, no node will do apush oper-
ation anymore.

Let Q be the sum over all nodes 2 T of the distance betweemu and
the root.

Lemma 3. Starting from any n-node rooted treeT, there are at most
O(n?) distinct (not necessarily consecutive) turns with gull operation.
More precisely, the sum of the sizes of the subtrees that are pulled during
the whole process does not exceetl

Proof. First, by Lemma [3, there are nopush operations after O(n)
turns. Note that a swap operation does not chang&). Moreover, a
Bull operation of a subtreeT, makesQ decrease byn,. SinceQ =
w2v(r) d(u;r)  n?, the sum of the sizes of the subtrees that are pulled
during the whole process does not exceed. O



Potential function.  To prove the main result of this section, we de ne
a potential function and show that: (1) the initial value of the potential
function is bounded; (2) its value may raise due tpull operations, but
in a limited number of turns and by a bounded amount; (3) aswap
operation may not increase its value; (4) if ng@ush nor pull operation
are done, there exists at least one node doingsaap operation, strictly
decreasing the potential function.

We tried simple potential functions rst. However, they led &her to
an unbounded number of turns with non-decreasing value, oo & larger
upper bound. For example, it would be natural to de ne the pagntial
of a node as the di erence between its subtree sizes. For thgstential
function, (1) (2) and (3) are true, but, unfortunately, for some trees the
potential function does not decrease during a turn. This fwtion can be
patched so that each operation makes the potential decreaseultiplying
the potential of a node by its distance to the root. However, thpotential
in this case can reaclO(n3).

The potential function giving the O(n?) bound is de ned as follows.
Recall that we consider an-node treeT rooted inr such that all nodes
have at most two children. LetEqg = nand, forany 0 i d log(n+1)e,
let Ei = 2Ej+1 + 1. Note that (E;)i g ogn+1) e IS strictly decreasing, and
0 < Egogin+nye 1. Intuitively, E; is the mean-size of a subtree rooted
in a node at distancei from the root in a balanced tree withn nodes.

Let K; be the set of nodes of at distance exactlyi 0 from the
root and jK;j = k;, and, forany 0 i d log(n+1)e letm; =2' k;.
Intuitively, m; represents the number of nodes, at distandefrom the
root, missing compared to a complete binary tree.

Foranyv 2 V(T) at distance 0 i d log(n+ 1)efrom the root, the
default of v, denoted by (v), equalsn, d Ejeif n, >E; andbE;c n,
otherwise. Note that (v) 0 sincen, is an integer.

Let the poteng'al at distancei from r, O i dlog(n+1)e be
Bi = m bEic+ ,,k, (u). Finally, let us de ne thePpotentiaI P =

0 idlogn+1ye Pi- Since (u)  nforanyu2 V(T),and ;4 jogmnenyeMit
ki 2n, then P(T) = O(n?).

Lemma 4. For any n-node rooted treeT, a pull operation of a subtree
T, may increase the potentiaP by at most2n,.

Let v be a node at distancedlog(n +1)e > i 0 from the root r



of T. v is calledi-median if it has one or two childrena and b and
N, > E 41 > ny (possibly v has exactly one child anchy, = 0).

Lemma 5. For any n-node rooted treeT, a swap operation executed by
any nodev does not increase the potentiaP. Moreover, if vis (i 1)-
median thenP strictly decreases by at least one.

This lemma is proved by calculating the new potential, in althe
possible cases of relative sizes of the children aBdbefore and after the
operation.

Let v be a node at distance 0 i< dog(n+1)e 1 from the root
r of T. v is calledi-switchableif it has one or two childrena and b
and n, > Ei+1 > ny (possibly v has only exactly child, andn, = 0),
N N 2 and none of its ancestors can executesavap operation.
Note that, if a node isi-switchable then it is i-median.

Lemma 6. LetT be a tree where ngush nor pull operation is possible.
If a node v is i-switchable, then eitherv can do aswap operation, or
0 i< dog(n+1)e 2andithas a(i+1)-switchable child.

Lemma 7. At each turn when nopull nor push operations are done,
if the tree is not balanced, then there is &switchable node0 i <
dog(n+1)e 1.

Theorem 2. Starting from any n-node rooted tree, the balancing process
reaches a2-balanced tree inO(n?) turns.

Proof. By Lemma|2, afterO(n) turns, no push operations are executed
anymore and all nodes have at most two children. From then, &re may
have only pull or swap operations. Moreover, by Clain{ 2, there is at
least one operation per turn whileT is not balanced. From Lemm4 |3,
there are at mostO(n?) turns with a pull operation. Once nopush
operations are executed anymore, from Lemmafa [3, 4 ahfl 5, pnotial
P can increase by at mosD(n?) in total (over all turns). Moreover, by
Lemma[5, if ai-median node executes awap operation, the potential
P strictly decreases by at least one.

By Lemma[7, at each turn when no pull norpush operations are
done, there is ani-switchable node, 0 i< dog(n+1)e 1. Thus, by
Lemmal6, at each such turn, there is aiswitchable that can execute a



swap operation. Since d-switchable node is-median (0 i< dog(n+
1)e 1), by Lemma[3, the potentialP strictly decreases by at least one.
The result then follows from the fact thatP  n2. O

4.6 Adding an extra global knowledge to the nodes

In this section, we assume an extra global knowledge: eachdednows
whether it has a descendant that is not balanced. This extraformation
is updated after each operation. Then, our algorithm is modid by
adding the condition that any nodev executing the balancing process
can do apull or swap operation only if all its descendants are balanced.
Adding this property allows to prove better upper bounds on te number
of steps, by avoiding con ict between an operation perfornteby a node
and an operation performed by one of its not balanced descamil We
moreover prove that this upper bound for our algorithm is asyptotically
tight, reached when input tree is a path. The approach prestsd in this
section is speci c fork = 2. l.e., the objective of the Balancing Process
is to reach a 2-balanced tree.

First, we de ne a function f used to bound the number of turns
needed to balance a tree consisting of two balanced subtreesl a com-
mon ancestor. Letf : N N! N be the function de ned recursively as
follows.

8a O f(a;a)=0
8a 1, f(a;a 1)=0
8a 2 f(a;0)=1+f( &t ;0)

8a>28l b<a 1 f(a;h=L+max f( &2 ; 51 )f(at; &2
Lemma 8. Foranya O0,a b 0 f(a;bh maxfo;log,ag.

Now, we give a function bounding the number of turns needed to
balance any tree of a given size. Lgg: N! N be the function de ned
recursively as follows.

8n2f0;1g; g(n)=0
8n> 1; g(n) = maxa b oa+b=n 1(Maxfg(a); g(b)g+ f (a; )

Lemma 9. Foranyn 0, g(n) maxf0;nlog,ng.



We now state our main results:

Theorem 3. Starting from any n-node rooted tree, the balancing process
with global knowledge reacheszZabalanced tree inO(nlogn) turns.

Next theorem shows that there are trees starting from which #h
balancing process actually uses a number of turns of the ordef the
above upper bound.

Theorem 4. Starting from an n-node path rooted in one of its ends,
the balancing process with global knowledge reacheztmlanced tree in
( nlogn) turns.

4.7 Simulations

In the previous sections we obtained upper and lower boundsr fthe
maximum number of turns needed to balance a tree of a given &izA
signi cant gap between those bounds raises the question: wh bound
is closer to what happens for random instances? We investigdahe per-
formance of the algorithm running an implementation under aliscrete
event simulation. Scheduling of nodes within a turn is givehy a simple
adversary algorithm. First, it detects which nodes can perfm no opera-
tion. It schedules them to move rst, to ensure that they do noperform
operations enabled by operations of other nodes. Then, ithedules the
remaining nodes in a random order.

The process starts in a random tree. It is obtained by assigg
random weights to a complete graph and building a minimum wgint
spanning tree over it. Figure 4.4 displays the number of turng took
to balance trees of progressing sizes. For each size the nemsbare
aggregated over 10000 di erent starting trees. The solidne marks the
average, dotted lines the minimum and maximum numbers of tas and
error bars show the standard deviation.

What can be seen from this gure, is that the number of turns sp#
to balance a random tree progresses logarithmically in regeto the tree
size. This holds true both for average and the worst cases enaotered.
This is signi cantly less even than the lower bound on maxinm time.
This is because that comes from the particular case of star e starting
tree, which is randomly obtained with probability% and did not occur
in our experiments for bigger values af.
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Figure 4.4: Balancing a random tree

4.8 Conclusions and future research

We have proposed a distributed tree balancing algorithm andhown
following properties. The algorithm does stop only when th&ee is bal-
anced. After at most ( n) turns there are no overloaded nodes in the
tree, what corresponds to a broadcast tree where every nodeceives
content. This bound is reached when the starting tree is a sta Bal-
ancing process after there are no overloaded nodes lasts aistnO(n?)
turns. With the additional restriction that a node acts only if all of its
descendants are balanced, the number of turns to balance atmge is
O(nlogn). This bound is reached when the starting tree is a path.

An obvious, but probably hard, open problem is closing the galpe-
tween the O(n?) upper bound and the (n) lower bound on balancing
time. Another possibility is examination of the algorithm'saverage be-
haviour, which as hinted by simulations should yield(logn) bound on
balancing time.

The algorithm itself can be extended to handle well the casd wees
that are not regular. Furthermore, in order to approach a pretical sys-
tem, moving to multiple trees would be highly bene cial. Allaving the
algorithm to stop with more imbalance, where children are lwed to dif-
fer by a given threshold instead of one, could lead to a fasteonvergence.
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CHAPTER

Analysis of the Repair Time
In Distributed Storage
Systems

In this nal contribution towards reducing network ine cie ncies, we
move from content distribution to distributed applications. One such
application, with big bandwidth requirements, are online hckups. A
conservative approach to this task employs data centers. Hewver, these
usually are far away from the users. Instead, it is possible use storage
located at the perimeters of other nearby users of a distribed system.
This, again, raises questions about reliability. In this chpter, we look
into expected data lifetime in a distributed storage systemwvhere nodes
are subject to faults and departures and are connected with lanited
bandwidth. This work makes use of queuing theory and more genally
Markov chains, which are introduced in the preliminary seabn.

5.1 Preliminary: Queues and Markov chains

When looking into the distributed storage system in this chajer, we
analyze the distribution of data and perform a Markov chain malysis
to deduce the data life time. First, we nd out how the interactons
of various elements of the system can be hidden behind simpelure

119




Figure 5.1: An example Markov chain of aM =D=1 queue, with service rate
A, arrival rate | and batch size . Only states which can transition to or from
state i are shown.

and repair rates. Then, we model the repair process as a smgjueue
of all blocks in the network that are in need of repair. Queuintheory
provides us with tools to deal with such models. A good exanglof
further reading on the subject can be the book [Co081].

The exact type of queue we have 8l =D=1. M means that arrivals
are batch Poissonian. In fact, there are batches of two poska sizes, each
type coming at its own rate of the Poisson distribution.D states that
the service time is deterministic, as we know nearly exactlyow fast the
peers are able to repair blocks. Finally, 1 stands for a singerver, which
Is the whole network. The queue is in fact a simple Markov chaisimilar
to the one exempli ed on gure[5.1. We proceed to nd the steay state
of it. From there, we can infer interesting qualities, like pobability of
losing data or bandwidth requirements.

5.2 Publication

The remainder of this chapter corresponds tBepair Time in Distributed
Storage Systemsy F. Giroire, S. K. Gupta, R. Modrzejewski, J. Mon-
teiro and S. Rerennes, which is accepted for publication ithe proceed-
ings of 6th International Conference on Data Management inleud, Grid
and P2P Systems.

5.3 Introduction

Nano datacenters (NaDa) are highly distributed systems ownezhd con-
trolled by the service provider. This alleviates the need afcentives and
mitigates the risk of malicious users, but otherwise they @ the same



challenges as peer-to-peer systems. The set-top boxesiresd them are
connected using consumer links, which can be relatively wiounreliable
and congested. The devices themselves, compared to servera tra-
ditional datacenter, are prone to failures and temporary dconnections,
e.g. if the user cuts the power supply when not in home. When gnnally
proposed in[[VLM"09], they were assumed to be available no more than
85% of the time, with values as low as 7% possible.

In this paper we concentrate on application of NaDa, or any sihar
peer-to-peersystem, for backup storage. In this application, users want
to store massive amounts of data inde nitely, accessing thevery rarely,
i.e. only when original copies are lost. Due to risk of peeriliaes
or departures, redundancy data is introduced to ensure lortgrm data
survival. To this end, most of the proposed storage systemsaueither
the simple replication or the space e cient erasure codes W], such
as the Reed-Solomon or Regenerating Codes [DGWRO07].

The redundancy needs to be maintained by a self-repair prase Its
speed is crucial to determine the system reliability, as Ignrepairs expo-
nentially increase the probability of losing data. The liming factor, in
this setting, is the upload link capacity.

Imagine a scenario where the system is realized using homerc-
tions, out of which an average 128kbps are allocated to the daup ap-
plication. Furthermore, each device is limited to 300GB, wite average
data stored is 100GB, redundancy is double, 100 devices tadat in each
repair and the algorithms are as described in the followingestions. A
naive back-of-envelope computation gives that the time nded to repair
contents of a failed device is 17 hours (= 108 10°kb=(100 128kbps)).
This translates, by our model, to a probability of data loss er year
(PDLPY) of 10 8. But, taking into account all ndings presented in this
work, the actual time can reach 9 days. This gives a PDLPY of D.
many orders of magnitude more than the naive computation. Hes, it
is important to have models that estimate accurately the repatime for
limited bandwidth.

Our contribution

We propose a new analytical model that precisely estimatekd repair
time and the probability of losing data in distributed storage systems.
This model takes into account the bandwidth constraints andnherent



workload imbalance (young peers inherently store less datzan the old
ones, thus they contribute asymmetrically to the reconstrttion process)
e ect on the e ciency. It allows system designers to obtain a accurate
choice of system parameters to obtain a desired data duratyil

We discuss how far the distribution of the reconstruction the given
by the model is from the exponential, classically used in thigerature.
We exhibit the di erent possible shapes of this distributim in function
of the system parameters. This distribution impacts the dwbility of
the system. We also show a somewhat counter-intuitive resuhat we
can reduce the reconstruction time by using a less bandwid#cient
Regenerating Code. This is due to a degree of freedom givendrgsure
codes to choose which peers participate in the repair proses

To the best of our knowledge, this is the rst detailed model -
posed to estimate the distribution of the reconstruction tne under lim-
ited bandwidth constraints. We validate our model by an extesive set
of simulations and by test-bed experimentation using theGrid’5000
platform, see [[Gn] for its description.

Related Work

Several works related to highly distributed storage systesnhave been
done, and a number of systems have been proposed [CIDi8, BDETOQ,
BTcC* 04, KBC* 00Q], but few theoretical studies exist. In[RP06, ADNQ7,
DAQ6] the authors use a Markov chain model to derive the lifatie of
the system. In these works, the reconstruction times are iegendent
for each fragment. They follow an exponential or geometridstribution,
which is a tunable parameter of the models. However, in pract, a large
number of repairs start at the same time when a disk is lost, oespond-
ing to tens or hundreds of GBs of data. Hence, the reconstructis are
not independent of each other. Furthermore, in these modelsnly the
average analysis are studied and the impact of congestionnist taken
into account.

Dandoush et al. in [DANQ9] perform a simulation study of the don+
load and the repairing process. They use the NS2 simulator toemsure
the distribution of the repair time. They state that a hypo-exponential
distribution is a good t for the block reconstruction time. However,
again, concurrent reconstructions are not considered. [mni et al.
in [PBS07] study the durability of storage systems. Using sumations



they characterize a function to express the repair rate of siems based
on replication. However, they do not study the distribution & the re-
construction time and the case of erasure coding. Venkatesat al.
in [VIH12] study placement strategies for replicated data, dwing a
simple approximation for mean time to data loss by studyingtte ex-
pected behaviour of most damaged data block. The closest tarovork
is [FLP™10] by Ford et al., where authors study reliability of distrbuted
storage in Google, what constitutes a datacenter setting. Mever, they
do not look into load imbalance, their model tracks only onespresenta-
tive data fragment and is not concerned by competition for bandwih.

Organization

The remainder of this paper is organized as follows: in the xtesection
we give some details about the studied system, then in SectiB.5 we
discuss the impact of load imbalance. The queueing model iepented in
the Section[5.6, followed by its mathematical analysis. Thestimations
are then validated via an extensive set of simulations in S&n A5
Lastly, in Section[5.8, we compare the results of the simulahs to the
ones obtained by experimentation.

5.4 System Description

This section outlines the mechanisms of the studied systemdour mod-
elling assumptions.

Storage. In this work we assume usage of the Regenerating Codes, as
described in [DGWROQ7], due to their high storage and bandwilte -
ciency. More discussion of them follows later in this sectio All data
stored in the system is divided intoblocks of uniform size. Each block
is further subdivided into s fragments of sizeL, with r additional frag-
ments of redundancy. All thesen = s+ r fragments are distributed
among random devices. We assume that in practice this didittion
is performed with a Distributed Hash Table overlay like Pasyr [RDO1].
This, due to practical reasons, divides devices into subsetalledneigh-
bourhoodsor leaf sets

Our model does not assume ownership of data. The device analy
introducing a block into the system is not responsible for st storage or



maintenance. We simply deal with a total number oB blocks of data,
which results inF = n B fragments stored inN cooperating devices.
As a measure of fairness, doad balancing each device can store up to
the same amount of data equal t&C fragments. Note thatC can not be
less than average number of fragments per devibe= F=.

In the following we treat a device or peer and its disk as synpms.

Bandwidth. Devices of NaDa are connected using consumer connec-
tions. These, in practice, tend to be asymmetric with relatiely low
upload rates. Furthermore, as the backup application occasally up-
loads at maximum throughput for prolonged times, while the ansumer
expects the application to not interfere with his network uage, we as-
sume it is allocated only a fraction of the actual link capati. Each
device has a maximum upload and download bandwidth, respesly
BW,p, and BWgown. We setBWyown = 10BW,, (in real o erings, this
value is often between 4 and 20). The bottleneck of the systeisicon-
sidered to be the access links (e.g. between a DSLAM and an ADSL
modem) and not the network internal links.

Availability and failures. Mirroring requirements of practical systems,
we assume devices to stay connected at least a few hours per. dllow-
ing the work by Dimakis [DGWRO7] on network coding, we use vaiis
of availability and failure rate from the PlanetLab [Pla] ard Microsoft
PCs traces|[BDETO00]. To distinguish transient unavailabity, which for
some consumers is expected on a daily basis, from permaneiiufes, a
timeout is introduced. Hence, a device is considered as fdilé it leaves
the network for more than 24 hours. In that case, all data sted by it
Is assumed to be lost.

The Mean Time To Failure (MTTF) in the Microsoft PCs and the
PlanetLab scenarios are respectively 30 and 60 days. The wevailures
are then considered as independent, like in [RP06], and Psagian with
mean value given by the traces explained above. We considediacrete
time in the following and the probability to fail at any given time step
is denoted as = Syt .

Repair process. When a failure is detected, neighbours of the failed
device start a reconstruction process, to maintain desiregcdundancy



level. For each fragment stored at the failed disk, a randomesdtice from
the neighbourhood is chosen to be theeconstructor. It is responsible
for downloading necessary data from remaining fragments thfe block,
reconstructing and storing the fragment.

Redundancy schemes.  Minimum Bandwidth Regenerating Codes, as-
sumed in this paper, are very e cient due to not reconstructng the
exact same lost fragment, but creating a new one instead, ihd spirit
of Network Coding. The reconstructor downloads, combines drstores
small subfragmentsrom d devices having other fragments of the repaired
block. We calld the repair degrees d n. Construction of the code
requires some additional redundancy for each fragment. Inh@r words
L., the total amount of data transferred for a repair of a fragmet, is
greater than L by some overhead factor. This factor, the e ciency of
the code, has been given for MBR in [DGWRO07] as:

2d
mer (d) = °d s+1°
The most bandwidth e cient case is clearly whend = n 1. However,

as we will show in following sections, it may be bene cial toes it to a
lower value to give the reconstruction an additional degreef freedom.

The model presented in this work was also successfully aolito
other redundancy schemes. Minimum Storage Regeneratingdes, also
de ned in [DGWROQ7], are more space e cient at the cost of addibnal
transfer overhead. Reed-Solomon codes, more popular in giiee, are
reconstructed by recreating the input data and then codinggain the lost
fragment. In both cases the only di erence for the model arei drent
values ofL,. In practical systems, it may be interesting for RS-based
systems to reconstruct at one device, but store the new fragmt on some
other one. This is especially true fosaddlebased systems, where we wait
until a few fragments of a block are lost, to repair them all abnce. The
model gives good results also for these more complicatedesasWe omit
them due to lack of space, and because this only brings sliphtonger
analysis with little new insight.



5.5 Preliminary: Impact of Disk Asymmetry

In this section we show that the e ciency of the system is a eted by
the imbalanced distribution of data among devices. Then, westimate
analytically this imbalance and its impact. After this preliminary study,
the de nition of the queuing model is given in Sectiop 5]6.

Factor of e ciency. When a device fails, it is replaced by a new de-
vice with an empty disk. Since disks Il up during the systemite, a
recently replaced disk is empty, while an old disk contains any frag-
ments. Hence, at any given time, disks with very heterogeneoaumber
of fragments are present in the system. This heterogeneita$ a strong
impact on the reconstruction process: (1) when a disk died)g number
of block reconstructions that start depends on the number dfagments
present in this disk. A lot of fragments are lost if the disk wa full, but
much less for a young disk. (2) during the repair, the devicdsave to
send fragments to the reconstructors that rebuild the missg fragments.
A device storing more fragments has to send a lot more fragnmsrdur-
ing this phase than a device with fewer fragments. Hence, sudevices
become a bottleneck of the system. On the other hand, the ldssded
devices stay idle during some part of the time.

To estimate the impact of this imbalance on the system, we indduce
a factor of e ciency when the system is under load, de ned as

work

(load) = min(load; throughput)

whereload is the sum, over all devices, of the number of fragments in
gueues at the beginning of the time stepthroughput is the maximum
number of fragments that can be reconstructed by the whole sem in
one time step BW,, N , accounted in time steps of size); and work
Is the number of fragments that were e ectively uploaded bythe devices
during the time step. When = 1, the system works at its maximum
speed, meaning that no device was idle while another one abuabt nish
its work. Note that greatly depends of the load. If the load is very
large, compared to the bandwidth of the system, every deviaeorks at
almost full capacity and the e ciency is close to one. Simildy, when the
load is small, everybody has few fragments to upload and ald work is



Table 5.1: Summary of the main notations.

Total number of devices
Number of initial fragments of a block
Number of redundancy fragments of a block
Number of fragments of a block,n = s+ r
Repair degree of the Regenerating Code,
by defaultd=n 1
mBr E ciency of the Regenerating Codes
L¢ Size of a fragment, in bytes
L, Amount of data to repair a fragment
B Total number of blocks in the system
F Total number of fragments in the system
Peer failure rate ( =1=MTTF)
Ng Number of devices with full disks
' Ratio of full disks, Ng=N
C Capacity of a disk (number of fragments)
D Average number of fragments per disk
X Disk size factor,x = C=D
BW.p Peer upload bandwidth (kbit/s)
v Rate at which a disk lls up (fragments per cycle)
Tmax  Number of time steps to Il up a disk, Tmax = C=v

o> =~ wn Z

done. But, between these two cases, the imbalance betweee tievices
causes a range of ine ciencies.

Estimation of the Imbalance The disk size has in fact a very strong
e ect on the general imbalance of the system. Figuie 5.2 showashis-
togram with the number of fragments in failed disks. These selts are
obtained by simulation ofN = 200 devices withMTTF = 60 days (1440
hours). The amount of data per device is X38B. We sets=r =7, and
the fragment sizel, = 2 MB. Hence we have a total ofF = 7 10° frag-
ments in the system. Then, the average number of fragmentsrpaevice
is D = 7000.

We denote the disk capacity of devices & (humber of fragments).
Hence,x = C=D is the disk size factor i.e., how big is the disk when
compared to the average amount of fragments per disk in the sggm.



When the factor x = 3 (that is, disk capacity C = 21;000 fragments),
the imbalance is very large. At the opposite, wher = 1:1, the disk size
is close to the average number of pieces per disk in the systeRence,
most of the disk Ilings become full, 83% in our example. Theisks that
are not full (17%) have an almost uniform distribution. In the following,
we give a method to calculate that imbalance analytically.

Disk age and disk size distributions can be precisely appimated
for systems with a large number of blocks. The block fragmentre re-
constructed by devices that have free space in their disksd(j, there are
N N such devices, wherdlg is the number of devices with full disks).
Since these devices are chosen at random to reconstruct tHedss, at
each time step the distribution of the rebuilt fragments amog devices
follows a multinomial distribution with parameters: the nunber of re-
built fragments and I=(N  Ng). As the multinomial distribution is very
concentrated around its mean, thelling up process can be approximated
by an a ne process of its age in which, at each time step, each disk gets
the number of reconstructed fragments divided by the numbef non-full
devices, roughly

F
N Ng

where is the device failure rate. This lling process stops when #h
disk is full. That is after a number of time stepsTyax such that C =
T maxF=(N  Ng), whereC is the device disk capacity (maximum num-
ber of fragments per disk). The number of fragments of a diskus
depends on the age of the disk.

At each time step a disk has a probability to experience a failure.
Hence, the dead age of a disk follows a geometric law of paraaret.
That is, Pr[dead age =T]=(1 )T !: Hence the distribution of the
number of fragments in a disk follows a truncated geometriasdribution,
thatis, for 1 T < T

V =

Pr[D = vT]=(1 )T 1 and
PrD=Cl=1 (1 ) (5.1)

Note that here v, Ng, and T are unknown for the moment. The
value ofv depends on the number of full disk&lg, and of T,ox depends
directly of the lling rate v. To nd the value of these variables, we
use the fact that we know the expectation of the geometric dr#ution



Distribution of the number of fragments per disk
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Figure 5.2: Distribution of fragments per failed disk for di erent dis k size fac-
tor x of 1.1, 2, and 3. The number of full disks in each scenario is respectiyel
83%, 18%, and 4%. (y-scales are di erent)



which is just the average number of fragments inside the sgsh. This
number isF=N (we neglect here the fragments that are in reconstruction,
rst order approximation for small ). Hence, we geE[D] = D := F=N.
By de nition, the expectation is also given by

T'XX 1 .
E[D] = vik )t +c@a @ o )tm):
i=1
To obtain T.x, We now have to solve the equation:

11 @ )Tmec+d

X T max

obtained by identifying the two expressions for the expectian, by di-
viding by v, and becauseC = xD. By solving that equation using the
Maple software, we obtain that

X+ X

W Ein@@d )x@ ) Y In(L )x(L )
Tmax = ;
In )
whereW is the Lambert W function. For example, wherMTTF = 1440
hours ( = 1=1440), the number of full disks and the number of time
steps to Il up a disk are displayed in Tablg 5.2a. We verify tht these
values are very close to the ones obtained by simulation (Fig/5.2).

E ects of the Imbalance on the Bandwidth E ciency Since some
devices store less fragments, their load during the reconsttion process
is also smaller. Thus, the overall bandwidth of the system isot fully
utilized.

In a system using Regenerating Codes encoding, to repair agment,
d=n 1 small sub-fragments have to be sent to the device in chargie o
the reconstruction. Simulations show that the speed of theeconstruc-
tion is given by the time that the most loaded devicd¢akes to send the
fragment. This time is in turn given by the number of fragmens stored
by this device. We get this number from the distribution of tle num-
ber of fragments per device previously derived. For a majbriof data
blocks,the most loaded device storing one of its fragment is in fact a full
disk This claim is valid for most systems in practice, that is, fothe
parameters usually found in the literature.



X Ng (in%) Tmax(hours)

11 83 278
15 42 1257
2 20 2293
3 6 4060
@
X 11 15 2 3
X 0.91 0.63 0.4 0.18

Per 1 10 1 105 1 10° 0.92
(b)

Table 5.2: (a) The number of full disks and the number of time steps to Il up
a disk, for MTTF = 1440 hours. (b) Fraction of full disks and the probability
of a block to have at least one fragment on a full disk.

Indeed, recall that Ng denotes the number of full disks (and =
Ng =N the fraction of full disks). We compute the probability for ablock
that one of its fragment is on a full device (withn 1 available fragments
when it is being repaired). Recall also that a full disk stomex times the
average number of fragments per disk in the system. Then, tliaction
of fragments stored on full disks isx . The probability of a block to
have at least one fragment on a full disk is then

Pfu” =1 (1 X' )n 1:

For a system withn = 14 (the value of Ng for di erent values of x is

given above), the probability for di erent disk capacitiesis displayed in

Table [5.2B. We see that for most practical systems, each blobas a

fragment on a full disk. Hence, it is enough to consider the wodone by

the most loaded devices to obtain the reconstrution times. llese devices
have a load greater than the average load by a factor éf

Factor of e ciency. An other way to phrase it: the factor of e ciency
of the system is approximately

1
X



wherex is the fraction between disk capacity and the average numbef
fragments per disk.

More complex models for large disk capacities. We consider that in
practice, as a measure of load balancing, the storage systsets a limit
of disk capacity not too far from the average amount of data sted. A
factor x between 1.1 and 3 seems reasonable. For systems with a very
large disk capacity (for examplex = 10), has to be estimated in a
di erent way. In that case a large number of blocks store no #igments
on full disks. It is thus not enough to only consider the load fothe
full disks. This di culty can be addressed by using amulti-queue model
The devices are partitioned into a numbe€ of classes, depending on the
number of data they store. The model has one queue per class. &ih
a disk fails, we estimate the number of fragments that eachads has to
upload, that is how much work they do, and in this way derive th factor
of eciency . The analysis of this model is beyond the scope of our
study.

5.6 The Queueing Model

We introduce here aMarkovian Model that allows us to estimate the
reconstruction time under bandwidth constraints. The modemakes an
important assumption:

1. The limiting resource is always the upload bandwidth.

Assumption 1 is reasonable as download and upload bandwidthase
strongly asymmetric in common installations. Using this assnption,
we model the storage system with gueue storing the upload load of the
global system

Model De nition

We model the storage system with a Markovian queuing modelostng
the upload needs of the global system. The model has one serRois-
sonian batch arrivals and deterministic time serviceM =D=1, where
is the batch size function). We use a discrete time model. Thaeers in
charge of repairs process blocks in a FIFO order.



Chain States. The state of the chain at a timet is the current number
of fragments in reconstruction, denoted by)(t).

Transitions. At each time step, the system reconstructs blocks as fast as
its bandwidth allows it. The upload bandwidth of the systemBW N,
is the limiting resource. Then, theserviceprovided by the server is

BWy N

L,
which corresponds to the number of fragments that can be retiructed
at each time step . The factor is the bandwidth e ciency as calculated
in the previous section, and., is the number of bytes transferred to repair
one fragment. Hence, the number of fragments repaired durirggtime
steptis (t) =min( ;Q (1)).

The arrival processof the model is caused by peer failures. When a
failure occurs, all the fragments stored in that device ar@$t. Hence, a
large number of block repairs start at the same time. We modtiis with
batch inputs (sometimes also calledbulk arrival in the literature). The
size of an arrival is given by the number of fragments that werstored
on the disk. As explained in Sectioh 5|5, it follows a truncategeometric
distribution.

which represents the number of fragments inside a failed Higsee Equa-
tion (b.1) for the probability distribution function of ). Recall that v
is the speed at which empty disks get lled, and thafl,,.x = C=vis the
elapsed time to Il a disk. Further on, =v is the elapsed time to have a
disk with  fragments.

The arrival process of the model is Poissonian. A batch areg during
a time step with probability f, with f N . For the simplicity of the
exposition, we consider here that only one failure can happealuring
a time step (note that to ensure this, it is su cient to choosea small
enough time step). Formally, the transitions of the chain a, for 8i :

Q ! Q with prob. 1 f
Q ! Q +;8 withprob. f(1 )v?!
Q ! Q .c with prob. f(1 (1 )Tm)

When O i< ,thei blocks in the queue at the beginning of the time
step are reconstructed at the end. Hence, we have transitiomsthout
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Figure 5.3: Transition around state i of the Markovian queuing model.

the term i

Q ! Qo with prob. 1 f
Q ! Q;8 withprob. f(1 )v?
Q ! Qc with prob. f(1 (1 )Tm)

Figure[5.3 presents the transitions for a staté. The following table
summarizes the notation introduced in this section.

Q(t) Number of fragments to be repaired
f Batch arrival rate, f = N
Number of fragments on a failed disk
(i.e., batch size)
Factor of e ciency, 1
Service rate, = BW N =L,
(fragments per time step)

Analysis

Here, we give the expressions to estimate the values of two ianfant sys-
tem metrics: the distribution of the block reconstruction tme and the
probability of data loss. These expressions are derived fincthe station-
ary distribution of the Markovian model, as presented in théollowing.

A Normalized Model. The queuing model has a service ofand an input
process of averagé . To simplify the presentation of the analysis, we
introduce then anormalized modelwith service of 1, hence an input of
mean %= =



Stationary Distribution

We analyze here the stationary state of this normalized quewg model.
As the chain is irreducible and aperiodic, it exists when theesvice rate
is larger than the load. LetP be the probability generating function of
the Markovian model, that isP is de ned as:

X

P(z) = Pz
|

where P; is the probability that the system is in statei, that is, i frag-
ments have to be repaired.

The system reconstructs one block per time step (unless ofucse,
no block is in the queue). It is translated in the generatinguinction
language into a division byz. The e ect of a peer failure is translated
by a multiplication by the probability generating function of the input
I, de ned as

X _
1 (2) = 12
j=0
with | the probability that the batch is of sizej. Hence, we obtain the
functional equation

P—(Z—)Z—'D—"+F>o|(z):F>(z):
It gives
P(z) = —(ZZ 1)F1)°:

1(2)
AsP(1) =1, 1(z) z admits 1 as a root and thus can be written as
1(z) z=(z 1)Q(z). We have
Pol (2)
Qz)
As we have seen in Sectidn 5.5, the size of the input follows artr

cated geometric distribution of parameter . A batch is of sizevj with
probability (1 Yol forj 2 [0;1; 0 Tmax]- It gives

Tidx 1 . .
I(z)=(1 f)+f @ ) lzVa+f@ )T e
j=1

P(z) =

(5.2)



It can be rewritten as
f(z 1)z'm™=@ )'m 1)

l(z)=1+

(1 )zv 1
We factorizel (z) zby(z 1). We get
Qi) = I(2) z |
= (z p( 1+ ClnMETmE T by,

P
The value of Py is obtained by the normalization ilzo P, = 1 which
implies P (1) = 1.
_ Q@) _ 1 Trax .
0= T St (v )™ )
We now have an expression of the three terms of Equation b.2dawe
get a close form of the probability generating functior® (z).

Distribution of the Waiting Time

The distribution of the block reconstruction time is given ly the station-
ary distribution P of the model calculated above. As we have Markovian
(batch) arrivals, the probability for a batch to arrive whenthere aren
blocks in the queue is exactly,, (for the di erence of distribution for an
arriving customer and an outside observer, see for exampleofi81]). If
there areQ fragments in the queue when a batch of sizé’= jv arrives,
the arriving fragments have waiting times ofQ+1, Q+2, Q+ % We
de ne the probability generating functionJ as

e N
J(z) = @a )yt z

j=1 i=1
The probability generating function W of the waiting times then is just
W (z) = P(2)J(2):

The distribution of the waiting times can then be directly oltained
from the generating function by extracting its coe cients

d“W (2)

Pr(W = k) = [ZX]W(2) = KD~ :
) z=0

(5.3)



The rst coe cients can be computed numerically and then a sagularity
analysis gives the asymptotic behavior, see for example [BhOHence,
the value of Pr(W = k) can be computed analytically. However, in the
following, we also use another method and calculate them nenically
by iterating the queuing model.

Number of Dead Blocks

The expected number of dead blocks is indirectly given by themodel
by computing the waiting time in the queue of a block that hasd be
reconstructed.

As a matter of fact, a block dies if it loses, before the end of ¢h
reconstruction, ther 1 fragments of redundancy that it has left when
the repair starts, plus an additional fragment. The probabity for a
device to still be alive after a period of time of time stepis (1 ),
where is the probability for a disk to die during a time step, that is

MTBF

Hence a good approximation of the probability Pdie] to die during a
reconstruction lasting a time is given by

r
+ . .
Pridiew = 1= °TT @ @ )@ )
i=r
For practical systems, the ratio=MTTF is small as the probability to
of data loss should be very low. Hence Riig] is well approximated by

Pridiew = 1 °7 T @ @ ))y@ )t

From this and from the distribution of the waiting time, we gé the
probability to die during a reconstruction, Pp, with

A
Pp = Pr[diejW = i]Pr[W = i]:
i=0
The number of dead blocks during a tim&, D+, is then obtained by the
number of reconstructions duringTl, R+:

Dt = PpRy: (54)



Bandwidth Usage

The bandwidth usage is directly given by the distribution othe number
of reconstructions being processed by the system, which cagrfrom the
stationary distribution of the queuing model.

5.7 Results

To validate our model, we compare its results with the ones pduced by
simulations, and test-bed experimentation. We use a custooycle-based
simulator. The simulator models the evolution of the state®f blocks
during time (number of available fragments and where they arstored)
and the reconstructions being processed. When a disk failwecurs, the
simulator updates the state of all blocks that have lost a fragent, and
starts the reconstruction if necessary. The bandwidth is iplemented
as a queue for each device. The reconstructions are procdsseFIFO
order.

We study the distribution of the reconstruction time and conpare it
with the exponential distribution which is often used in theliterature.
We then discuss the cause of the data losses. Finally, we prassvo
important practical implementation points: (1) when choosg the pa-
rameters of the Regenerating Code, it is important to give tthe device
in charge of the repair a choice between several peers to iete the data;
(2) we show the strong impact of di erent scheduling optionsn the data
loss rate.

Distribution of Reconstruction Time

Figure[5.4 shows the distribution of the reconstruction timend the im-
pact of the peer asymmetry on the reconstruction time for théollowing
scenario: N =100,s=7,r=7,L,=2 MB, B = 50000, MTTF = 60
days, BW,, = 128 kpbs. All parameters are kept constant, except the
disk size factorx (recall that x is the ratio of the maximum capacity over
the average amount of data per device).

First, we see that the model (dark solid line) closely matchethe
simulations (blue dashed line). For example, wher = 1:1 (top plot),
the curves are almost merged. The average reconstructiomes are 3.1
cycles vs 3.2 for the model. We see that there is a small gap whe= 3.
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Figure 5.4: Distribution of reconstruction time for di erent disk cap acities x
of 1.1, 2, and 3 times the average amount. The average reconstruction times
of simulations are respectively 3.2, 9.6, and 21 hours (Note that some axis
scales are di erent).



As a matter of fact, we saw in Sectioh 5|5 that simulating the cgue of
the full disks is an approximation in this case, as only 92% tie blocks
have a fragment on a full disk.

Second, we con rm the strong impact of the disk capacity. Weeg
that for the three values ofx considered, the shape of the reconstruction
times are very di erent. When the disk capacity is close to theverage
number of fragments stored per disk (values of close to 1), almost all
disks store the same number of fragments (83% of full disk$jence, each
time there is a disk failure in the system, the reconstructiotimes span
between 1 andC= , explaining the rectangle shape. The tail is explained
by multiple failures happening when the queue is not empty. Wén x
is larger, disks also are larger, explaining that it takes ahger time to
reconstruct when there is a disk failure (the average recdnsction time
raises from 3.2 to 9.6 and 21. whexgoes from 1.1 to 2. and 3.). As the
number of fragments per disk follows a truncated geometrigsdribution,
we see the rectangle shape is replace by a trapezoidal shapglaened
by the large range of disk llings.

Third, we compare the distributions obtained with the expoential
distribution that is classically used in the literature. Wesee that the
distributions are far from the exponential whenx = 1:1 and x = 2,
but get closer forx = 3. Hence, as we will con rm, the exponential
distribution is only a good choice for some given sets of panaters. To
nish, note that the tails of the distribution are close to exponential.

Figure presents the distribution of a distributed storag system
experiencing three di erent rates of failures: MTTF of 90, 80 and 360
days. We clearly see the evolution of the shape of the distution due to
the larger probability to experience failures when the pegueues are still
loaded. The average reconstruction time increases from Sune when the
MTTF is 360 days to 12 hours when the MTTF is 90 days.

We ran simulations for di erent sets of parameters. We presg in
Table[5.3 a small subset of these experiments.

From Where the Deads Come From?

In this section, we discuss in which circumstances the systehas more
chances to lose some data. First a preliminary remark: backigystems
are conceived to experience basically no data loss. Thusy fealistic
sets of parameters, it would be necessary to simulate the sss for a
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Figure 5.5: Distribution of reconstruction time for di erent MTBF. D ierent
shapes for di erent values.

prohibitive time to see data losses in our simulations. We hee present
here results for scenarios where the redundancy of the datlowered
(r=3andr =5).

We plot in Figure [5.6 the cumulative number of dead blocks that
the system experiences for di erent reconstruction timesWe give this
fraction in function of the time the block spent in the systembefore
dying. For the queuing model, we derive the expected numbef lnlocks
that died at time T from the distribution of the reconstruction time. A
block dies at timeT if its reconstruction process lasts atime T and
that it loses r fragments during timeT with at least one exactly at time
T. This can be expressed as

X
N [die at time T] = Pr[die at time T] NP[W = ]
T

with
Pr[die attime T]= "' (1 (1 )N (1 )Tys t

s @ )T Y@ )Tk

r 1



Table 5.3: Reconstruction time T (in hours) for di erent system parameters

(a) Disk capacity c.
c 1.1 15 20 30

Tsim 3.26 550 9.63 21.12
Tmodel 3.06 534 941 21

(b) Peer Lifetime (MTBF).
MTBF 60 120 180 365

Tsim 3.26 290 2.75 2.65
Tmodel 2.68 2.60 249 2.46

(c) Peer Upload Bandwidth (kbps).
upBW 64 128 256 512

Tsim 89 330 1.70 1.07
Tmode| 8.3 3.10 1.61 1.03

We give the distribution of the reconstruction times as a refence (ver-
tical lines). The model (black solid line) and the simulatia results (blue
dashed line) are compared for two scenarios with di erent maber of
blocks: there is twice more data in Scenario B.

The rst observation is that the queueuing models predict wéthe
number of dead experienced in the simulation, for example) the sce-
nario A the values are 21,555 versus 20,879. The results for expo-
nential reconstruction time with the same mean value are alsplotted
(queue avg.). We see that this model is not close to the simtilan for
both scenarios (almost the double for Scenario A). We alsostea second
exponential model (queue tail): we choose it so that its tais as close as
possible to the tail than the queuing model (see Figurés 5|6ibd/5.6d).
We see that it gives a perfect estimation of the dead for ScemaB, but
not for Scenario A.

In fact, two di erent phenomena appear in these two scenarso In
Scenario B (higher redundancy), thdost blocks are mainly coming from
long reconstructions from 41 to 87 cycles (tail of the gray histogram).
Hence, a good exponential model can be found by tting the panae-
ters to the tail of the queuing model. On the contrary, in Sceario A



Distribution of the Dead Blocks Occurence Time Distribution of the Dead Blocks Occurence Time

T
5000

2000 3000 4000

1000

T
0 5 10 15 20 2 20 0 20 40 60 80 100

Elapsed time of Reconstruction (cycles) Elapsed time of Reconstruction (cycles)

(a) Scenario A (b) Scenario B

Fit of Exponential Distribution to the Tail of Reconstruction Time Fit of Exponential Distribution to the Tail of Reconstruction Time

Fraction of Blocks (Log Scale)

0 5 10 15 20 25 30 0 20 40 60 80

Elapsed time of Reconstruction (cycles) Elapsed time of Reconstruction (cycles)

(c) Scenario A ( tting) (d) Scenario B ( tting)

Figure 5.6: (Top): Distribution of dead blocks reconstruction time for two
di erent scenarios. Scenario A:N =200;s=8;r =3;b=1000;MTTF =60
days. Scenario B:N = 200;s = 8;r = 5;b = 2000;MTTF = 90 days.
(Bottom): Fitting of exponential distribution with the tail of queue ing model
(axis scales are di erent).

(lower redundancy), thedata loss comes from the majority of short re-
constructions from 5.8 to 16.2 cycles (the right side of the rectangular
shape). Hence, in Scenario A, having a good estimate of the tafl the
distribution is not at all su cient to be able to predict the f ailure rate
of the system. It is necessary to have a good model of the coetpl
distribution!

Discussing the Implementation of Regenerating Codes

As presented in Sectiof 5]4, when the redundancy is added usiegen-
erating codesn = s+ r devices store a fragment of the block whenhare
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enough to retrieve the block. When a fragmentisloss d n 1
peers are in charge of repairing the fragments. The largers, the smaller
is the bandwidth needed for the repair. Figurels 5.7 arjd 5.8 shdhe re-
construction time for di erent values of the degreed. We observe an
interesting phenomena: at the opposite of the common intudn, the av-
erage reconstruction time decreases when the degree desgea 10 cycles
for d = 13, and only 6 cycles ford = 12. The bandwidth usage increases
though (because the ygr is higher whend is smaller). The explanation
is that the decrease of the degreimtroduces a degree of freedornm the
choice of the devices that send a sub-fragment to the deviceat will
store the repaired fragment. Hence, the system is able to lawtbe load
of the more loaded disks and tdbalance more evenly the load between
peers

In fact, we can estimate for which degree of freedom, the rexstruc-
tion time is minimum. It happens when the load of the full disk is
the same as the load of the other disks. We dene=n 1 d the
allowed degree of freedom for the choice of which peers upledhe sub-
fragments. The full disks store a proportiorix of the fragments of the
system, with" the fraction of full disks. We simply look at the how much
work we must do on the full disks. The probability to havei fragments
(among then 1 fragments) on full disks is " * ('x )I(1 'x )" 1.
Those blocks sends units of work the full disks (wheneveri ).



So the load of the full disks is
X1 . )
@ )"t eoa oty

We presented here a cut argument for only two classes of pe@al disks
and non full disks). This argument can be generalized to anyumber of
peer classes.

Whgn the load of the full disks becomes equal to the load of théher
disks ( L'd i+ )™P(x)@ 'x)" 1T, itis no more useful to
decreasal. We see that the average reconstruction time increases when
is too small, as the increased usage of bandwidth is no moremensated
by a better balance of the load.

Note that this phenomena exists for other codes like Reed Swion
where the device in charge of the reconstruction has to retsie s frag-

ments among thes+ r 1 remaining fragments.

Scheduling

As peers have a large number of repairs to carry out but very lited
bandwidth, the question of which repairs to do rst is crucid In this
section, we study three di erent scheduling choices:FIFO , Random,
and Most-Damaged data block rst.

The FIFO is the default scheduling in the simulator, as discussed
in Section[5.4, the blocks are processed in the order of aaliv In the
Random scheduling, the simulator processes blocks in a random arde
(at each time step the list of blocks to be reconstructed is gted). In
the Most-Damaged scheduling the blocks are ordered by the level of
redundancy (i.e., blocks with less fragments available cenrst). In case
of tied values, then the FIFO order is assumed.

Figure[5.9 presents the reconstruction time of these threehszlulings.
All strategies give almost the same average reconstructionme, 4.40,
4.43, 4.43 respectively for FIFO , Random and Most-Damaged
We see that their distribution changes slightly. In the Random order
the shape has the form of a geometric distribution, with manylocks
nishing the reconstruction \early". However, as depicted m Figure[5.9,
the di erences in the number of dead blocks are enormous. Whesing
the Random scheduling, the dead increases considerably, as expected.
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Most-Damaged has a reconstruction time very close to the others
but the number of losses is much lower. Hence, this is the stegfy of
choice when implementing such systems.

5.8 Experimentation

Aiming at validating the simulation and the model results, weperformed
a batch of real experimentation using theGrid'5000 platform [Gri]. We
used a prototype of storage system implemented by a privat®@rmpany
(Ubistorage [ubi]).

Our goal is to validate the main behavior of the reconstruadin time in
a real environment with shared and constrained bandwidth,ral measure
how close they are to our results.

Storage System Description

In few words, the system is made of a storage layer (upper layduilt
on top of the DHT layer (lower layer) running Pastry [RDO1]. The lower
layer is in charge of managing the logical topology: ndinggers, routing,
alerting of peer arrivals or departures. The upper layer isnicharge of
storing and monitoring the data.



Storing the data. The system uses Reed-Solomon erasure codes [LNIH
to introduce redundancy. Each data block has a device respile of
monitoring it. This peer keeps a list of the devices storing fiagment of
the block. The fragments of the blocks are stored locally omé¢ Pastry
leafset of the peer in charge [LMSMO09].

Monitoring the system. The storage system uses the information given
by the lower level to discover device failures. InPastry , a peer checks
periodically if the members of its leafset are still up and mning. When
the upper layer receives a message that a peer left, the peercharge
updates its block status.

Monitored metrics. The application monitors and keep statistics on
the amount of data stored on its disks, the number of perforndere-

constructions along with their duration, the number of deadlocks that

cannot be reconstructed. The upload and download bandwidtif devices
can be adjusted.

The Grid'5000 Infrastructure

Grid'5000 is an infrastructure dedicated to the study of large scale pa
allel and distributed systems. It provides a highly recon grable, control-
lable and monitorable experimental platform to scientistsThe platform

contains 1582 machines accounting for 3184 processors aB@dbcores.
The machines are geographically distributed on 9 di erent dsting sites
in France (two additional sites in Luxemburg and Porto AlegreBrazil

are being added). These site are connected to RENATER Educati and
Research Network with a 10Gb/s link.

Results

There exist a lot of di erent storage systems with di erent parameters
and di erent reconstruction processes. The goal of the papés not
to precisely tune a model to a specic one, but to provide a geral
analytical framework to be able to predict any storage syste behavior.
Hence, we are more interested here by the global behavior oétmetrics
than by their absolute values.
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Figure 5.11: Distribution of reconstruction time on a experimentation with
64 nodes during 4 hours compared to simulations.

Studied Scenario. By using simulations we can easily evaluate several
years of a system, however when doing experimentation ths mot the
case. We need to plan our experiments to last a few hours. Henoe
de ne an acceleration factor as the ratio between experiment duration
and the time of real system we want to imitate. Our goal is to arck the
bandwidth congestion in a real environment. Thus, we deciddo shrink
the disk size (e.g., from 10 gigabytes to 100 megabytes, a uetion of
100 ), inducing a much smaller time to repair a failed disk. Thenthe
device failure rate is increased (from months to a few hourg) keep the
ratio between disk failures and repair time proportional. fie bandwidth
limit value, however, is kept close to the one of a \real" sysm. The idea
Is to avoid inducing strange behaviors due to very small paets being
transmitted in the network.

Figure[5.11 presents the distribution of the reconstructiotimes for
two di erent experimentation involving 64 nodes on 2 di eret sites of
Grid'5000 . The amount of data per node is 100 MB (disk capacity
120MB), the upload bandwidth 128 KBps,s = 4, r = 4, L = 128
KB. We con rm that the simulator gives results very close to he one
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Figure 5.12: Timeseries of the queue size during time (top) and the upad
bandwidth ratio (bottom).

obtained by experimentation. The average value of reconsttion time
di ers from some seconds.

Moreover, to have an intuition of the system dynamics overrie, in
Figure[5.12 we present a timeseries of the number of blocks hetqueues
(top plot) and the total upload bandwidth consumption (bottom plot).
We note that the rate of reconstructions (the descending les on the top
plot) follows an almost linear shape. Comforting our claimiat a deter-
minist processing time of blocks could be assumed. In thesgeriments
the disk size factor isx = 1:2, which gives a theoretical e ciency of 083.
We can observe that in practice, the factor of bandwidth utization, ,
is very close to this value (value of = 0:78 in the bottom plot).



5.9 Conclusion

In this paper, we propose and analyze a new Markovian analgél model
to model the repair process of distributed storage system$his model
takes into account the correlation between data repairs thaompete for
the same bandwidth. We bring to light the impact of peer hetergeneity
on the system e ciency. The model is validated by simulationand by
real experiments on the Grid'’5000 platform

We show that the exponential distribution classically taka to model
the reconstruction time is valid for certain sets of paramets, but that
di erent shapes of distribution appear for other parametes. We show
that it is not enough to be able to estimate the tail of the repm time
distribution to obtain a good estimate of the system loss rat

The results provided are for systems using Regenerating Gsdthat
are the best codes known for bandwidth e ciency, but the modeis
general and can be adapted to other codes. We exhibit an inésting
phenomena to keep in mind when choosing the code parametet:isi
useful to keep a degree of freedom on the choice of the usensip@ating
in the repair process so that loaded or de cient users do notosv down
the repair process, even if it means less e cient codes.

In addition, we con rm the strong impact of scheduling on thesystem
loss rate.
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CHAPTER

Conclusions and perspectives

The contributions of this thesis provide tools to assess a mber of po-
tential solutions for making the future Internet more e cient. There
are many approaches to reducing the redundancy in the tra csome of
them well established. We looked into the ones which are noetythe
standard, but are considered as possible future directiankrom a high
level perspective, these are all simple ideas: store a copgse to your
users for further reuse, make the users share among themssland store
their own data as close as possible. Complexity arises whamedries to
implement them. However, we do not look deep into details of gacular
implementations. We try to abstract over the complexity, tolook into the
potential of the ideas themselves, keeping to a realistictseg. Instead
of proposing systems and tweaking their e ciency, we evalta impact of
systems with a given e ciency. Ultimately the questions we a trying
to answer take the form ofwhat would really be the potential bene t of
putting any system of some known properties into realistic conditions?

Two models are devoted to estimating the potential energy @ags
thanks to introductions of caches. First, we studied energyptimization
in network provisioning with in-network caches. We found tht basing on
realistic network and power models, but with some optimistisimplifying
assumptions, up to 11% of energy can be saved by introducirgetcaches.
The most propitious enhancements to the model could be stuidyg the
actual dynamics encountered by caching algorithms, as wek relaxing
the regularity of the network model.
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Then, we looked into energy-aware management of an alreadg-d
ployed core network. This has shown that, over a number of restic
network instances, we can save over 20% of energy exploitofajly traf-
c variations. A palpable way to enhance this result would bamerging
this model with the aforementioned one.

Both studies treat cache as a black box, which performs its woac-
cording to some static properties. Real-life caches are rearomplicated.
Their performance is determined by the interplay of replaceent algo-
rithms and the stream of requests served, which are intrirgslly random.
Exploring how temporal and geographical distributions ofequests a ect
the optimal cache deployment and operation is an interesignresearch
direction. Furthermore, we had to speculate about devicesat are not
available yet, as well as about network structure and tra c, which are
trade secrets of the operators. The best way to fully bene tfahis work
is to apply it from inside an operator, using speci ¢ and acaate data.

Both studies hint that substantial savings are possible. En if the
money saved by reducing energy consumption do not outweiglepoy-
ment cost in a short term, bandwidth savings themselves ardr@ady a
good incentive for augmenting networks with caches. Howeydhe ad-
vantages of in-network caching may be overshadowed by aheatives and
the whole picture may change with next generations of hardwanot yet
revealed to the public. Thus, until a decisive trend arisesiithe industry,
they remain an active research topic.

The next two studies are concentrating on highly distributd systems,
which can be either user ran peer-to-peer or operator conlied (e.g.
nano data centers). First, we analyzed a live streaming netwowith
a tree structure. We proved an upper time limit for repairingthe tree,
after an arbitrary failure, by a simple algorithm. We also fand, by
means of simulation, that on average such a repair takes vesigort time.
The obvious continuations of this work are formal study of th average
behaviour and modelling multiple concurrent trees structie.

Second, we looked into data survivability in distributed bakups sys-
tem. We found that back-of-envelope calculations may oves@mate it
by orders of magnitude, comparing to a model carefully foling data
and workload distributions. The general framework preseetl in this
study can be improved by adjusting the model to closely matca target
system.



Currently, this kind of systems do not play a major role in thein-
dustry. Data backup relies heavily on trust. Delegating it ®© unknown
stranger in a peer-to-peer network is deemed too high risk byany users.
Centralized solutions, especially some recent backup-mted o eringg
are already cost-e ective and ensure the trust by contractsOn the other
hand, peer-to-peer video streaming will probably gain imptance. Raise
of video streaming tra c leads to network congestions. Thisn turn leads
to tensions between content providers and network operatr These have
already escalated up to involving law enforcemefit This raises incen-
tives for p2p video streaming and coincides with new means.edRTC
is being implemented in the major web browsers. It allows reame
browser-to-browser communication. Browser support remes a major
issue, which always was the need to install additional sofase, making
participation in a peer-to-peer streaming network as easysalicking a
YouTube link today. All things considered, design and impleentation
of peer-to-peer streaming networks may be a very interesgperspective
in the coming years.

To answer questions posed in this thesis, | have learnt a nuebof
useful techniqgues. Some of them are theoretical tools, whiallow me
to approach algorithmic challenges in a structured way. O#r are more
empirical, like simulations and experiments. One trick | anparticularly
satis ed with is using simple but revealing implementatios of abstract
systems for a quick peek into their properties. This has alled us to
weed out a number false hypotheses early, in our more theacel forays.
Another lesson is the importance of changing directions as megoromis-
ing ones are appearing. This happened when we explored uostured
streaming networks, to nally concentrate on a structured oe.

1For example http://aws.amazon.com/glacier/
2 |http://www.reuters.com/article/2013/07/11/eu-telecoms-idUSL6NOFH10L20130711
3http://www.webrtc.org/reference/architecture






APPENDIX

Weighted Improper Colouring

This appendix presents a study that is not concerned by reding redun-
dancy in network tra c. Instead, it is motivated by frequency assignment
in satellite networks, what places in it the link layer. Whileenergy sav-
ing in network was not an original motivation of this work, ndice that

reducing radio interference does signi cantly reduce poweonsumption
(and therefore increase battery life) of mobile devices.

A.1 Publication

The remainder of this chapter corresponds t@/eighted Improper Colour-
ing by J. Araujo, J-C. Bermond, F. Giroire, F. Havet, D. Mazauric and
R. Modrzejewski which was published in the Journal of DiscretAlgo-
rithms volume 16, which is an extended version of the work came title
and authors published in the proceedings of 22nd Internatal Workshop
on Combinatorial Algorithms.

A.2 Introduction

Let G = (V;E) be a graph. Ak-colouring of G is a functionc: V !

The chromatic number of G, denoted by (G), is the minimum integer
k such that G admits a properk-colouring. The goal of theVertex
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Colouring  problem is to determine (G) for a given graphG. ltis a
well-known NP-hard problem [[Kar72].

A Kk-colouring c is I-improper if jfv 2 N(u) j c(v) = c(u)gj [
for all u 2 V (as usual in the literature, N (u) stands for the setfv |
uv 2 E(G)g). Given a non-negative integet, the |-improper chromatic
number of a graph G, denoted by (G), is the minimum integerk such
that G admits anl-improperk-colouring. Given a graphG and an integer
I, the Improper Colouring problem consists in determining |(G)
and is also NP-hard [[W0090, CHS09]. Indeed, if= 0, observe that

o(G) = (G). Consequently,Vertex Colouring is a particular case
of Improper Colouring

In this work we de ne and study a new variation of thelmproper
Colouring problem for edge-weighted graphs. An edge-weighted graph
is a pair (G;w) whereG =(V;E)isagraphandw:E! R,. Given an
edge-weighted graph@; w) and a colouringc of G, the interference of a
vertex u in this colouring is de ned by

X
[,(G;w; 0 = w(u;V):
fv2N (u)je(v)=c(u)g

For any non-negative real numbet, called threshold we say thatc is a
weightedt-improper k-colouring of (G;w) if ¢ is ak-colouring of G such
that 1,(G;w;c t,forallu2 V.

Given a thresholdt 2 R,, the minimum integer k such that the
graph G admits a weightedt-improper k-colouring is the weightedt-
improper chromatic numberof (G;w), denoted by (G;w). Given an
edge-weighted graph@; w) and a thresholdt 2 R, , determining (G;w)
is the goal of theWeighted Improper Colouring problem. Note
thatif t =0 then o(G;w)= (G), andifw(e)=1forall e2 E, then

1(G;w) = (G) for any positive integerl. Therefore, the Weighted
Improper Colouring problem is clearly NP-hard since it generalises
Vertex Colouring and Improper Colouring

On the other hand, given a positive integek, we de ne the mini-
mum Kk-threshold of (G; w), denoted by Ty (G; w) as the minimum realt
such that (G;w) admits a weightedt-improper k-colouring. Then, for a
given edge-weighted graphG; w) and a positive integerk, the Thresh-
old Improper Colouring problem consists in determiningl (G; w).
The Threshold Improper colouring problem is also NP-hard. This



fact follows from the observation that determining whether ((G) Kk is
NP-complete, for everyy 2 andk 2 [CCW86,/CGJ95/ CHSO09]. Con-
sequently, in particular, it is a NP-complete problem to dede whether a
graph G admits a weightedt-improper 2-colouring when all the weights
of the edges ofs are equal to one, for every 2.

Motivation

Our initial motivation to these problems was the design of sellite an-
tennas for multi-spot MFTDMA satellites [AAG ™ 05]. In this technology,
satellites transmit signals to areas on the ground calledspots These
spots form a grid-like structure which is modelled by an hexgmnal cell
graph. To each spot is assigned a radio channel or colour. 8pare
interfering with other spots having the same channel and a spcan use
a colour only if the interference level does not exceed a givéhreshold
t. The level of interference between two spots depends on theistance.
The authors of [AAG" 05] introduced a factor of mitigation and the
interference of remote spots are reduced by a factor 1 . When the
interference level is too low, the nodes are considered ta nmaerfere any-
more. Considering such types of interference, where nodesdestance
at most i interfere, leads to the study of thei-th power of the graph
modelling the network and a case of special interest is theer of grid

graphs (see Sectioh Al4).

Related Work

Our problems are particular cases of thérequency Assignment
problem (FAP). FAP has several variations that were already tadied
in the literature (see [AvHK" Q7] for a survey). In most of these varia-
tions, the main constraint to be satis ed is that if two vertices (mobile
phones, antennas, spots, etc.) are close, then the di erenbetween the
frequencies that are assigned to them must be greater thamse function
which usually depends on their distance.

There is a strong relationship between most of these variatis and
the L(py;:::;pg)-labelling  problem [YehQ6]. In this problem, the goal
is to nd a colouring of the vertices of a given graphG, in such a way
that the di erence between the colours assigned to vertices distancei



In some other variants, for each non-satis ed interferenceonstraint
a penalty must be paid. In particular, the goal of theMinimum Inter-
ference Frequency Assignment problem (MI-FAP) is to minimise
the total penalties that must be paid, when the number of fragencies to
be assigned is given. This problem can also be studied foryoob-channel
interference, in which the penalties are applied only if the two vertices
have the same frequency. However, MI-FAP under these constra does
not correspond toWeighted Improper Colouring , because we con-
sider the co-channel interference, i.e. penalties, justtaeen each vertex
and its neighbourhood.

The two closest related works we found in the literature ardVS03
and [FLM*00Q]. However, they both apply penalties over co-channel in-
terference, but also to theadjacent channel interferencei.e. when the
colours of adjacent vertices di er by one unit. Moreover, thir results
are not similar to ours. In [MS03], they propose an enumerag algo-
rithm for the problem, while in [FLM™00Q] a Branch-and-Cut method is
proposed and applied over some instances.

Results

In this article, we study both parameters {(G;w) and T, (G;w). We
rst present general bounds; in particular we show a geneisation of
Lowsz's Theorem for {(G;w). We after show how to transform an
instance of Threshold Improper colouring into an equivalent one
where the weights are either one avl, for a su ciently large M.

Motivated by the original application, we then study a speal in-
terference model on various grids (square, triangular, hagonal) where
a node produces a noise of intensity 1 for its neighbours andnaise
of intensity 1/2 for the nodes that are at distance two. We dave the
weighted t-improper chromatic number for all possible values df

Finally, we propose a heuristic and a Branch-and-Bound algtdmm
to solve Threshold Improper colouring for general graphs. We
compare them to an integer linear programming formulationrorandom
cell-like graphs, namely Voronoi diagrams of random pointsf the plan.
These graphs are classically used in the literature to modelecommu-
nication networks [BKLZ97,/GK00, HAB' 09].



A.3 General Results

In this section, we present some results fd¥eighted Improper colour-
ing and Threshold Improper colouring for general graphs and
general interference models.

Upper bounds

Let (G;w) be an edge-weighted graph with positive real weights given
by w : E(G) ! p Q.. For any vertex v 2 V(G), its weighted de-
greeis dy(V) = N W(U; V). The maximum weighted degreef G
is ( G;w) =max,,y dy(V).

Given a k-colouringc : V ! f 1;:::;kg of G,Fyve de ne, for every
vertex v 2 V(G) and colouri =1;:::;k, d,,.(v) = FU2N (v)jc(u)= ig(u;v).
Note that dSV(;‘Q(v) = I,(G;w;0). We say that a k-colouring c of G is
w-balancedif c satis es the following property:

For any vertexv 2 V(G), 1,(G;w;¢) djW;C(v), foreveryj =1;:::;k.

We denote by gcdfv) the greatest common divisor of the weights of
w (observe that gcd(v) > 0 because we just consider positive weights).
We use here the generalisation of the gcd to non-integer nueis (e.g.
in Q) where a numberx is said to divide a numbery if the fraction y=x
is an integer. The important property of gcd{v) is that the di erence
between two interferences is a multiple of gcd); in particular, if for two
verticesv and u, di,..(v) > dl,..(u), then d,.(v) d,..(u)+gcd(w).

If t is not a multiple of the gcd{w), that is, there exists an integera 2
Z such thata gcd(w) <t< (a+1)gcd(w), then ¥(G)= (G).

w
a gcd(w)

Proposition 1. Let (G;w) be an edge-weighted graph. For arky 2,
there exists aw-balancedk-colouring of G.

Proof. Let us colour G = (V;E) arbitrarily with k colours and then
repeat the following procedure: if there exists a vertex colouredi and

a colourj such that dj,..(v) > di,(v), then recolourv with colour j.
Observe that this procedure neither increases (we just mowe vertex
from one colour to another) nor decreases (a vertex withouteighbour
on its colour is never moved) the number of colours within tkiprocess.
Let W be the sum of the weights of the edges having the same colour



in their end-vertices. In this transformation,W has increased byd,..(v)
(edges incident tov that previously had colourj in its endpoint opposite
to v), but decreased byj{,v;c(v) (edges that previously had colour in both
of their end-vertices). SoW has decreased bgliw;c(v) W;C(V) gcd(w).
As W | Ejmaxe e w(e) is nite, this procedure nishes and produces

a w-balancedk-colouring of G. O

The existence of aw-balanced colouring gives easily some upper
bounds on the weighted-improper chromatic number and the minimum
k-threshold of an edge-weighted graph3; w). It is a folklore result that

(G) ( G)+1, for any graph G. Lowasz [Lov66] extended this result
for Improper Colouring problem using w-balanced colouring. He
proved that (G) d L%*e In what follows, we extend this result to

+1
weighted improper colouring.

Theorem 5. Let (G;w) be an edge-weighted graph wihh: E(G) ! Q. ,
andt a multiple of gcd(w). Then

( G;w) +ged(w)

(Giw) t + gcd(w)

Proof. If t, !, and G are such that (G;!) = 1, then the inequality is
trivially satis ed. Thus, consider that (G;!) > 1.

Observe that, in any w-balanced k-colouring ¢ of a graph G, the
following holds:

X
dw (V) = w(u;v)  kdSld (v): (A.1)
U2N (v)
|

m
- ( G;w)+gcd( w) .
Letk = =S 2 andc be aw-balancedk -colouring of

G. We claim that ¢ is a weightedt-improper k -colouring of G;w).
By contradiction, suppose that there is a vertex in G such that
c (v) = i and that diw;c(v) >t. Sincec is w-balanced,djw;c(v) > t, for

gedWw), it leads to di,..(v) t+gcd(w) forall j =1;:::;k . Combining
this inequality with Inequality (A.1), we obtain:

( Giw) du(v) Kk (t+gcd(w));



giving
( Gw) ( G;w)+gcd(w);
a contradiction. The result follows.
O

Note that when all weights are unit, we obtain the bound for the
improper colouring derived in[[Lov65]. Brooks [Bro41] pred that for
a connected graphG, (G) = ( G) +1 if, and only if, G is complete
or an odd cycle. One could wonder for which edge-weighted ghs the
bound we provided in Theorem5 is tight. However, Correet al. [CHS09]
already showed that it is NP-complete to determine if the impper chro-
matic number of a graphG attains the upper bound of Lowasz, which
is a particular case ofWeighted Improper colouring , i.e. of the
bound of Theoren{b.

We now show that w-balanced colourings also yield upper bounds
for the minimum k-threshold of an edge-weighted graphQ@; w). When
k = 1, then all the vertices must have the same colour, andi,(G;w) =
( G;w). This may be generalised as follows, using-balanced colour-
ings.
Theorem 6. Let (G;w) be an edge-weighted graph with: E(G) ! R, ,
and letk be a positive integer. Then
( Gw)

k

Proof. Let ¢ be aw-balancedk-colouring of G. Then, for every vertex
v2V(G):

X
KT(G;w)  kdS(v)  dw(v) = wu;v)  ( G;w)

u2N (v)

T (G;w)

]

BecauseT1(G;w) = (- G;w), Theorem[6 may be restated akTy(G; w)
T.1(G;w). This inequality may be generalised as follows.

Theorem 7. Let (G;w) be an edge-weighted graph with: E(G) ! R.,
and letk and p be two positive integers. Then
To(G;w).

Tkp (G W) "



Proof. Sett = T,(G;w). Let c be at-improper p-colouring of G;w).

colouredi by c. By de nition of improper colouring ( Gj;w) t for
all i p. By Theorem[8, each G;;w) admits a t=k-improper k-
colouring ¢ with coloursf(i 1)k +1;:::;ikg. The union of theg's is
then at=k-improper kp-colouring of G; w). O

Theorem[T and its proof suggest that to nd &p-colouring with small
impropriety, it may be convenient to rst nd a p-colouring with small
impropriety and then to re ne it. In addition, such a strategy allows to
adapt dynamically the re nement. In the above proof, the vetex set of
each partG; is again partitioned into k parts. However, sometimes, we
shall get a Bgtterkp-colouring by partitioning eachG; into a number ofk;
parts, with I, k; = kp. Doing so, we obtain & -improper kp-colouring
of (G;w), where T = maxf L1 i pg.

One can also nd an upper bound on the minimunk-threshold by
considering rst the k 1 edges of largest weight around each vertex.

of the vertices ofG. The edges ofG may be ordered in increasing order
of their weight. Furthermore, to make sure that the edges indent to
any particular vertex are totally ordered, we break ties aarding to the
label of the second vertex. Formally, we say thatv;  Vivjo if either
w(Vvivj) <w (Vivjo) or w(viv;) = w(vivjo) and j <j ° With such a partial
order on the edge set, the sdEX (v) of minfj N (v)j;k 1g greatest edges
(according to this ordering) around a vertex is uniquely dened. Observe
that every edge incident tov and not in EX(v) is smaller than an edge
of Ex(v) for . S

Let Gy, be the graph with vertex setv (G) and edge set ,,, ) Es (V).
Observe that every vertex oE X (v) has degree at least mifyi N (v)j; k 1g,
but a vertex may have an arbitrarily large degree. For if anydge in-
cident to v has a greater weight than any edge not incident te, the
degree ofv in G is equal to its degree inG. However we now prove that
at least one vertex has degrele 1.

Proposition 2. If (G;w) is an edge-weighted graph, the®, has a vertex
of degree at mosk 1.



u w'(u,v)=w(u,v)-1 v

Figure A.1: Construction of G°from G using edgeuv 2 E(G) and k = 4
colours. Dashed edges represent edges of weigit.

Proof. Suppose for a contradiction, that every vertex has degree laast
k, then for every vertexx there is an edgexy in E(GK) nEX(x), and

that, forall 1 i 1, XiXjs1 2 EX(Xi+1) NEX(X) (With X,41 = Xy).
It follows that X1X>  XoX3 W w XrX1 w X1X2. Hence, by
de nition, w(X1Xz) = W(XpX3) = = W(X;X1) = W(X1X). Let m be
the integer such thatx,, has maximum index in the orderingvy;:::; V,.
Then there existsj and j° such that X, = Vi and Xm+2 = Vjo. By
de nition of m, we havej > j °© But this contradicts the fact that
XmXm+1  w Xm+1 Xm+2 - O

Corollary 1. If (G;w) is an edge-weighted graph, the®X, has a proper
k-colouring.

Proof. By induction on the number of vertices. By PropositiorﬂZ,G\'fv
has a vertexx of degree at mosk 1. Trivially, GX, x is a subgraph
of (G x)X. By the induction hypothesis, G x)X has a properk-
colouring, which is also a propek-colouring of GX  x. This colouring
can be extended in a propek-colouring of GX,, by assigning tox a colour
not assigned to any of itsk 1 neighbours. [

Corollary 2. If (G;w) is an edge-weighted graph, théik(G;w) ( Gn
E(G});w).

Transformation

In this section, we prove that theThreshold Improper Colouring
problem can be transformed into a problem mixing proper andnproper
colouring. More precisely, we prove the following:



Theorem 8. Let (G;w) be an edge-weighted graph whevds an integer-
valued function, and lek be a positive integer. We can construct an edge-
weighted graph(G ;w ) such thatw (e) 2 f 1;M g,for any e 2 E(G),
satisfying Te (G;w) = Tu(G ;w ), whereM =1+ = ¢ g W(e).

Proof. Consider the functionf (G;w) = P te2E(G)jw(e)s Mg(W(E) 1)

If f(G;w) = 0, all edges have weight either one oM and G has
the desired property. In this caseG = G. Otherwise, we construct
a graph G° and a function w° such that T, (G%w9% = T,(G;w), but
f(G:w9 = f(G;w) 1. By repeating this operationf (G;w) times
we get the required edge-weighted graplG(;w ).

In casef (G;w) > 0, there exists an edge = uv 2 E(G) such that
2 w(e) <M. Glis obtained fromG by adding two complete graphs
onk 1 verticesKk"Y and K" and two new verticesu® and v°. We join u
and u®to all the vertices of K! and v and v°to all the vertices ofK .
We assign weightM to all these edges. Note thaty and u® (v and v9)
always have the same colour, namely the remaining colour nosed in
K" (resp. KVY).

We also add two edgesiv® and u% both of weight 1. The edges of
keep their weight inG° except the edgee = uv whose weight is decreased
by one unit, i.e. w{e) = w(e) 1. Thus,f(G%! 9= f(G;!) 1 aswe
added only edges of weights 1 and and we decreased the weight &
by one unit.

Now consider a weightedt-improper k-colouring ¢ of (G;w). We
produce a weightedt-improper k-colouring c® of (G%w?9 as follows: we
keep the colours of all the vertices irfG, we assign tou® (V9 the same
colour asu (resp. v), and we assign toK Y (resp. KV) the k 1 colours
di erent from the one used inu (resp. v).

Conversely, from any weighted impropek-colouring c® of (G%w?9),
we get a weighted impropek-colouring ¢ of (G;w) by just keeping the
colours of the vertices that belong tdG.

For such colouringsc and c® we have thatl,(G;w;c) = 1,(G%w% D,
for any vertex x of G dierent from u and v. For x 2 KY[ KV,
1,(G%W% D = 0. The neighbours of u with the same colour asu
in G° are the same as inG, except possiblyv® which has the same
colour of u if, and only if, v has the same colour ofs. Let =1
if v has the same colour as, otherwise = 0. As the weight of
uv decreases by one and we add the edge® of weight 1 in G% we



get 1,(G%w2 ) = 1,(G;w;0) + WY u; vy = 1,(G;w; ). Similarly,
[W(G2W2 ) = 1,(G;w;0). Finally, 1,o(G%W%) = 1,(G%w%c) = .
But 1,(G%wl%d)  (w(u;v) 1) and solyo(Giwlc)  1,(G%we D
and 1,o(GeW% )  1,(G%w% . In summary, we have

mXaxIX(GQ,WQ, A= max |(G; w; ¢)
and thereforeT,(G; w) = T (G%w?9. O

In the worst case, the number of vertices d& isn+ mM(Wnax 1)2k
and the number of edges o6& ism+ M(Wnax  1)[(k+4)(k 1)+ 2]
with n = jV(G)j, m = JE(G)j and Wmax = MaXezg (c) W(E).

In conclusion, this construction allows to transform theThresh-
old Improper Colouring problem into a problem mixing proper and
improper colouring. Therefore the problem consists in ndig the min-
imum | such that a (non-weighted)l-improper k-colouring of G exists
with the constraint that some subgraphs ofG must admit a proper
colouring. The equivalence of the two problems is proved fepnly for
integers weights, but it is possible to adapt the transformtaon to prove
it for rational weights.

A.4 Squares of Particular Graphs

As mentioned in the introduction, Weighted Improper colouring

is motivated by networks of antennas similar to grids [AAGO0S]. In these
networks, the noise generated by an antenna undergoes aneatiation
with the distance it travels. It is often modelled by a decresing function
of d, typically 1=d or 1=(2¢ 1).

Here we consider a simpli ed model where the noise between two
neighbouring antennas is normalised to 1, between antennaisdistance
two is 1/2 and 0 when the distance is strictly greater than two Study-
ing this model of interference corresponds to study thé/eighted Im-
proper colouring of the square of the graphG, that is the graph
G? obtained from G by joining every pair of vertices at distance two,
and to assign weightswy(e) = 1, if e 2 E(G), and wy(e) = 1=2, if
e 2 E(G? nE(G). Observe that in this case the interesting threshold
values are the non-negative multiples of 1/2.



Figure shows some examples of colouring for the square grid
In Figure [A.20, each vertexx has neither a neighbour nor a vertex at
distance two coloured with its own colour, sd,(G?;w,;c) = 0 and G?
admits a weighted O-improper 5-colouring. In Figurg A.2c, ehovertex
X has no neighbour with its colour and at most one vertex of theame
colour at distance 2. Sd,(G?;w,;c) = 1=2 and G? admits a weighted
0.5-improper 4-colouring.

For any t 2 R., we determine the weightedt-improper chromatic
number for the square of in nite paths, square grids, hexagal grids
and triangular grids under the interference modelv,. We also present
lower and upper bounds for (T?;w,), for any tree T and any threshold
t.

In nite paths and trees

In this section, we characterise the weightetiimproper chromatic num-
ber of the square of an in nite path, for all positive realt. Moreover, we
present lower and upper bounds for(T?;w,), for a given treeT.

Theorem 9. Let P =(V;E) be %n in nite path. Then,

23 if0 t< 1;
(P%wy) = J2 i1 t<3;
1 if 3t
Proof. Let V = fv;ji2 ZgandE = f(v; 1;v;)ji 2 Zg. Each vertex of
P has two neighbours and two vertices at distance two. Consezpily,
the equivalence ((P?;!,) = 1if, and only if, t 3 holds trivially.
There is a 2-colouringe of (P2;w,) with maximum interference 1 by
just colouring v; with colour (i mod 2) + 1. So (P%w,) 2ift 1.
We claim that there is no weighted 0.5-improper 2-colouringf (P?; ws).
By contradiction, suppose thatc is such a colouring. Ifc(v;) = 1, for
somei 2 Z, thenc(v; 1) = ¢(Vi+1) =2 and ¢(v; 2) = ¢(Vi+2) = 1. This
is a contradiction becausey; would have interference 1.
Finally, the colouring c(v;) = (i mod 3) + 1, for everyi 2 Z, is a
feasible weighted O-improper 3-colouring. | ]
m
Theorem 10. LeltT = (YT%E) be a (non-empty) tree. Then, L2t

2t+1
1 t(TZ;WZ) (2;r+)1 : +2.




Proof. The lower bound is obtained by two simple observations. First
t(H;w) t(G;w), forany H G. Let T be a tree andv be a node
of maximum degree inT. Then, observe that the weighted-improper
chromatic number of the subgraph oT ? induced byv and its neighbour-
hood is at leastd 322 ®e+1. Indeed, the colour ofv can be assigned to
at most btc vertices on its neighbourhood. Any other colour used in the
neighbourhood ofv cannot appear in more than 2+ 1 vertices because

each pair of vertices in the neighbourhood of is at distance two.

Let us look now at the upper bound. Choose any node2 V to be
the root of T. Colour r with colour 1. Then, by a breadth- rst traversal
in the tree, for each visited noder colour all the children ofv with the
d(th+)1 Le colours di erent from the ones assigned te and to its parent
in such a way that at most 2 + 1 nodes have the same colour. This is
a feasible weighted-improper k-colouring of T?, with k d (221 le+2,
since each vertex interferes with at mostt2sertices at distance two which
are children of its parent. O

For atreeT and the weighted functionw?, Theorem 10 provides upper
and lower bounds on {(T?2;w,), but we do not know the computational
complexity of determining ((T?2; w,).

Grids

In this section, we show the optimal values of(G?; w,), wheneverG is
an in nite square, hexagonal or triangular grid, for all thepossible values
of t.

Square Grid

The square grid is the grapls in which the vertices are all integer linear
combinationsae, + be of the two vectorse; = (1;0) ande, = (0;1), for
any a; b2 Z. Each vertex (@; b has four neighbours: itsdown neighbour
(a;b 1), its up neighbour(a; b+ 1), its right neighbour(a+1;b) and its
left neighbour(a  1;b) (see Figure A.24).
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5 ift=0;

%4; if t=0:5;
(S%wy)= _ 3 ifl t< 3

gz; if 3 t< 8;

"1, if8

Proof. If t = 0, then the colour of vertex @; b must be di erent from
the ones used on its four neighbours. Moreover, all the nefghurs have
di erent colours, as each pair of neighbours is at distancevb. Con-
sequently, at least ve colours are needed. The following mstruction
provides a weighted O-improper 5-colouring ofS;w,): for0 | 4,
let A; = f(j; 0)+ a(5e;)+ b(2e;+1ey) j8a;b2 Zg. For0 | 4, assign
the colourj +1 to all the vertices in A; (see Figurd A.2b).

Whent = 0:5, we claim that at least four colours are needed to colour
(S?%;w,). The proof is by contradiction. Suppose that there exists a
weighted 0.5-improper 3-colouring of it. Let4;b be a vertex coloured
1. None of its neighbours is coloured 1, otherwise;) has interference
1. If three neighbours have the same colour, then each of thewll have
interference 1. So two of its neighbours have to be coloureaid the two
other ones 3 (see Figurfle A.3a). Now consider the four nodes (1;b 1),
(@ L,b+1),(a+1;b 1)and(a+1;b+1). For all congurations, at
least two of these four vertices have to be coloured 1 (the aniedicated
by a * in Figure [A.3d). But then (a;b) will have interference at least
1, a contradiction. A weighted 0.5-improper 4-colouring ofS ?; w,) can
be obtained as follows (see Figure ARc): for O | 3, let B; =
f(j; 0)+ a(4ey) + b(3e;+2ey) j8a;b2 Zgand B = f(j +1;2)+ a(der) +
b(3e, +2e,) j8a;b2 Zg. For0 | 3, assign the colouj + 1 to all
the vertices inB; and in B).

If t = 1, there exists a weighted 1-improper 3-colouring ofS(?; w,)
given by the following construction: for 0 j 2, letC; = f(j; 0) +
a(3e) + b(eg+ &) j8a;b2 Zg. For0O | 2, assign the colouf +1 to
all the vertices inC;.

Now we prove by contradiction that fort = 2:5 we still need at least
three colours in a weighted 2.5-improper colouring 08¢; w,). Consider
a weighted 2.5-improper 2-colouring of§2;w,) and let (a;b be a ver-



(a,b+1)

€2

(a—1,b) (a+1,0)
€1

Figure A.2: Optimal colourings of (S?;w,): (b) weighted O-improper 5-
colouring of (S?2;ws»), (c) weighted 0.5-improper 4-colouring of §2;ws), and
(d) weighted 3-improper 2-colouring of (S2;ws).
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Figure A.3: Lower bounds for the square grid: (a) ift 0:5andk 3, thereis
no weightedt-improper k-colouring of (S ?;w»); (b) the rstcase whent 25
andk 2, and (c) the second case.

tex coloured 1. Vertex ;b has at most two neighbours of colour 1,
otherwise it will have interference 3. We distinguish threeases:

1. Exactly one of its neighbours is coloured 1; leta( 1;b) be this
vertex. Then, the three other neighbours are coloured 2 (s€&y-
ure[A.3H). Consider the two sets of vertice§(a 1;b 1);(a+
L,b 1)(a;b 2)gandf(a 1;b+1);(a+1;b+1);(ajb+2)g
(these sets are surrounded by dotted lines in Figufe A.Bb); each
of them has at least two vertices coloured 1, otherwise the riex
(a;b 1) or (a; b+ 1) will have interference 3. But then @;b) hav-
ing four vertices at distance two coloured 1 has interfereac3, a
contradiction.

2. Two neighbours of &; b are coloured 1.

a) These two neighbours are opposite, sag ( 1;b) and (a+1;b)
(see Figurg A.3E left). Consider again the two sef{a 1;b
1);(a+tl;b 1);(a;b 2)gandf(a 1;btl);(at+l;b+l);(a;b+



2)g (these sets are surrounded by dotted lines in Figufe Al3c
left); they both contain at least one vertex of colour 1 and
therefore (@; b will have interference 3, a contradiction.

b) The two neighbours of colour 1 are of the forma;b 1) and
(a 1;b) (see Figure[A.3F right). Consider the two sets of
verticesf(a+1;b 1);(a+1;b+1);(a+2;bgandf(a+1;b+
1);(a 1;bt1);(a;bt+2)g (these sets are surrounded by dotted
lines in Figure[A.3¢ right); these two sets contain at most one
vertex of colour 1, otherwise &;b will have interference 3.
Moreover, each of these sets cannot be completely coloured 2
otherwise @+ 1;b) or (a; b+ 1) will have interference at least
3. So verticesé&+1;b 1), (a+2;b), (a;bt2)and (a 1;b+1)
are of colour 2 and the vertexd+ 1;b+ 1) is of colour 1. But
then(a 2;band(a 1;b 1)are of colour 2, otherwised; b
will have interference 3. Thus, vertexd& 1;b) has exactly one
neighbour coloured 1 and we are again in Case 1.

3. All neighbours of @; b are coloured 2. If one of these neighbours
has itself a neighbour (distinct from ;b)) of colour 2, we are in
Case 1 or 2 for this neighbour. Therefore, all vertices at di#gce
two from (a; b have colour 1 and the interference ing; b is 4, a
contradiction.

A weighted 3-improper 2-colouring of $2;w,) can be obtained as
follows: a vertex of the grid @;b is coloured with colour (§ + g
mod 2) + 1, see Figurd A.2H.

Finally, since each vertex has four neighbours and eight venes at
distance two, there is no weighted 7.5-improper 1-colougnof (S2;ws,)
and, whenevert 8, one colour su ces. O

Hexagonal Grid

There are many ways to de ne the system of coordinates of theekag-
onal grid. Here, we use grid coordinates as shown in Figure A.4h&
hexagonal grid graph is then the graptH whose vertex set consists of
pairs of integers @;b) 2 Z2 and where each vertexd; b has three neigh-
bours: @ 1;b, (a+1;b, and (a;b+1)if a+ bis odd, or @b 1)
otherwise.
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Figure A.4: Weighted O-improper 4-colouring of (H2; w,). Left: Graph with
coordinates. Right: Corresponding hexagonal grid in the euclidean space

@t=1 k=3 ) t=2, k=2

Figure A.5: (a) weighted 1-improper 3-colouring of H?; w,) and (b) weighted
2-improper 2-colouring of (H%; w,).

Proof. Note rst, that when t = 0, at least four colours are needed to
colour the grid, because a vertex and its neighbourhood id form a
cligue of size four inH2. The same number of colours are needed if we
allow a thresholdt = 0:5. To prove this fact, letA be a vertex @; b) of H
andB =(a 1,b,C=(a;b 1)andD = (a+1;b) be its neighbours in
H. Denote byG=(a 2;b,E=(a 1,b 1),F=(a 2b 1),H=
(a+l;b 1),1 =(a+2;b 1)andJ =(a+l;b 2)(see Figur¢ A.6h). By
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