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Construction de fractions rationnelles

à dynamique prescrite
Résumé

Dans cette thèse, nous nous intéressons aux critères d’existence et à la
construction effective de fractions rationnelles à dynamique prescrite. Nous
commençons par étudier le même problème pour certains revêtements ram-
ifiés post-critiquement finis et nous donnons une méthode de construction
à partir de dynamiques d’arbres. Puis nous présentons un théorème de
Thurston qui fournit une caractérisation combinatoire pour passer du cadre
topologique au cadre analytique. En particulier, nous généralisons aux appli-
cations non post-critiquement finies un résultat de Levy qui simplifie le critère
de Thurston dans le cas polynomial. Nous illustrons cette généralisation par
une condition suffisante d’existence de polynômes ayant un disque de Siegel
fixe de type borné. Ensuite nous détaillons la construction par chirurgie qua-
siconforme d’un exemple de fraction rationnelle non post-critiquement finie
dont la dynamique est décrite par un arbre. Plus généralement, nous mon-
trons qu’un résultat de Cui Guizhen et Tan Lei permet de construire une
famille de fractions rationnelles à ensemble de Julia disconnexe à partir de
certains arbres de Hubbard pondérés.

Construction of rational maps

with prescribed dynamics
Abstract

In this thesis, we are interested in the existence criterions and the effec-
tive construction of rational maps with prescribed dynamics. We start by
studying the same problem for some post-critically finite ramified coverings
and we give a construction method from dynamical trees. Then we present
a Thurston’s theorem which provides a combinatorial characterization to go
from the topological point of view to the analytical one. In particular, we
generalize to non-post-critically finite maps a Levy’s result which simplifies
the Thurston’s criterion in the polynomial case. We illustrate this gener-
alization by a sufficient condition for existence of polynomials with a fixed
Siegel disk of bounded type. Next we detail the construction by quasicon-
formal surgery of an example of non-post-critically finite rational map whose
dynamics is described by a tree. More generally, we show that a result of
Cui Guizhen and Tan Lei allows to construct a family of rational maps with
disconnected Julia sets from some weighted Hubbard trees.
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Chapter 1

Résumé français

1.2 Introduction

Nous commençons par introduire la théorie des systèmes dynamiques holo-
morphes et en particulier la définition des ensembles de Fatou et de Julia
(définition 2.1). Le but n’est pas de refaire une étude systémique des concepts
de base mais plutôt de citer quelques résultats essentiels qui motivent cette
thèse. En particulier nous rappelons que si l’ensemble de Julia d’une fraction
rationnelle de degré plus grand que deux n’est pas connexe alors il possède
une infinité non dénombrable de composantes connexes (théorème 2.2). Nous
nous intéressons ici en particulier à la dynamique d’échange des composantes
de Julia. Par exemple nous rappelons un résultat classique (théorème 2.3) qui
affirme que sous l’hypothèse que tous les points critiques sont capturés par le
bassin immédiat d’attraction d’un même point fixe attractif alors l’ensemble
de Julia est un ensemble de Cantor et la dynamique est celle du shift. Un des
objectifs de cette thèse est d’obtenir un résultat similaire pour des ensembles
de Julia plus compliqués. Nous présentons ainsi un exemple dû à C. T. Mc-
Mullen (figure 2.2) où l’ensemble de Julia est homéomorphe au produit de
l’ensemble triadique de Cantor par des courbes de Jordan et la dynamique
d’échange des composantes de Julia est celle du shift (proposition 2.4). Enfin
nous énonçons un résultat que nous démontrerons dans le chapitre 6 four-
nissant un autre exemple concret d’une fraction rationnelle à ensemble Julia
disconnexe (figure 2.4) dont la dynamique d’échange d’une partie des com-
posantes de Julia (qui sont toutes des courbes de Jordan sauf un nombre
au plus dénombrable de préimages d’une composante fixe quasiconforme à
l’ensemble de Julia connexe d’une autre fraction rationnelle) est conjuguée
à l’action d’un polynôme quadratique sur un ensemble de Cantor formé par
l’intersection de son arbre de Hubbard associé et de son ensemble de Julia.
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1.3 Dynamique prescrite

L’objectif de ce chapitre est d’introduire les portraits de ramifications (déf-
inition 3.1) qui donne un cadre précis à la notion de dynamique prescrite.
L’idée est de conserver l’information dynamique d’un revêtement ramifié (ou
plus généralement d’une fraction rationnelle) sur son ensemble post-critique.
Nous rappelons ensuite des propriétés et des définitions classiques autour de
cette notion. Le concept le plus important est celui de la réalisation d’un
portrait de ramifications (section 3.2) à l’aide de la relation d’équivalence
de similarité (définition 3.9). Une dynamique prescrite sera donc vu comme
la donnée d’une classe d’équivalence pour cette relation. Dans le cas des
ensembles post-critiques infinis, nous introduisons aussi le concept de réal-
isation asymptotique (définition 3.12) qui nous permettra de ne conserver
qu’un nombre fini d’informations dynamiques (celles portées par l’ensemble
d’accumulation supposé fini de l’ensemble post-critique). Enfin nous termi-
nons ce chapitre par la présentation de deux exemples représentatifs des deux
sortes de problèmes (ou d’obstructions) qui peuvent survenir dans la question
de savoir si un portrait de ramification est réalisé par une fraction rationnelle.
Le premier (exemple 3.14) illustre les restrictions topologiques imposées par
la formule de Riemann-Hurwitz (théorème A.12 en appendice) à l’aide d’un
portrait de ramification pour lequel il n’existe même pas de revêtement rami-
fié qui le réalise. En particulier cet exemple motive le chapitre suivant où nous
discuterons de la réalisation de portraits de ramifications par des revêtements
ramifiés (un point de vue purement topologique). Le second exemple (exem-
ple 3.15) présente un portrait de ramification que nous réaliserons par un
revêtement ramifié noté fana au chapitre suivant. Nous ne présentons dans
ce chapitre que la restriction à l’axe réel d’une telle application continue.
D’autre part, nous verrons au chapitre 5 que fana ne pourra être “pertubée”
afin d’obtenir une fraction rationnelle réalisant le même portrait de ramifica-
tion. En particulier cet exemple motive le chapitre 5 où nous discuterons de
la réalisation par des fractions rationnelles de portraits de ramifications déjà
réalisés par des revêtements ramifiés (un point de vue purement analytique).

1.4 Arbres topologiques

L’objectif de ce chapitre est double : introduire les arbres dynamiques et
démontrer le théorème de réalisation 4.12. Nous commençons donc par définir
les arbres planaires (définition 4.1) que nous équipons ensuite de dynamiques
(définition 4.3). Dans la section suivante, nous allons utiliser ces arbres afin
de construire des revêtements ramifiés réalisant des portraits de ramifications
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particuliers : tous les points critiques sont périodiques et un point critique
fixe joue le rôle du point à l’infini pour les polynômes (définition 4.9). Nous
commençons (lemme 4.10) par réaliser les portraits de ramifications n’ayant
qu’un seul cycle de points critiques (autre que le point à l’infini). L’idée
est de partir d’un arbre étoilé dont la dynamique est la rotation autour
de la racine puis de l’étendre en un graphe sur la sphère (le point à l’infini
étant un sommet) dont les composantes connexes du complémentaire sont des
disques topologiques. Nous pouvons alors définir des homéomorphismes au
bord de ces composantes qui prolongent la dynamique de l’arbre initial. Ces
homéomorphismes se prolongent à l’intérieur de chacune de ces composantes
à l’aide du théorème de Schönflies (théorème A.3 en appendice). Il suffit
ensuite de vérifier le dégré à l’infini du revêtement ramifié obtenu afin de
prouver que le portrait de ramification initial est bien réalisé. Le lemme 4.11
est un rafinement du résultat précédent où nous augmentons l’arbre étoilé
afin de construire en plus un point fixe du revêtement ramifié obtenu. Enfin
le théorème 4.12 prouve le résultat pour un nombre quelconque de cycle de
points critiques. La preuve consiste à recoller par leur point fixe les arbres
étoilés de chacun des cycles de points critiques. Nous concluons ce chapitre
en discutant d’une possible généralisation de cette méthode pour d’autres
portraits de ramifications. Nous illustrons cette discussion par la construction
d’un revêtement ramifié fana réalisant le portrait de ramification du dernier
exemple du chapitre précédent (exemple 4.13).

1.5 Obstructions analytiques

Dans ce chapitre nous discutons de la réalisation par des fractions rationnelles
de portraits de ramifications déjà réalisés par des revêtements ramifiés. L’outil
principal est un théorème de Thurston qui charactérise les fractions ra-
tionnelles post-critiquement finies. Tout d’abord nous rapellons la défini-
tion de l’équivalence de Thurston (définition 5.2) qui donne le bon cadre
pour la suite puis celle des obstructions de Thurston (définition 5.8). Nous
énonçons ensuite le théorème de Thurston (théorème 5.9) qui charactérise les
revêtements ramifiés post-critiquement finis dont la classe d’équivalence de
Thurston contient une fraction rationnelle qui réalise donc le même portrait
de ramifications. Nous discutons aussi de la difficulté de vérifier ce critère
combinatoire malgré quelques tentatives de simplifications (proposition 5.12).
Nous nous intéressons dans la section suivante (section 5.3) à la simplification
de ce critère dans le cas polynomial grâce aux cycles de Levy. Nous démon-
trons ainsi une généralisation au cas non post-critiquement fini d’un résultat
de S. V. F. Levy (théorème 5.17) qui nous permet en particulier d’énoncer
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un résultat positif à propos de la réalisation par des polynômes des portraits
de ramifications considérés dans le chapitre précédent (corollaire 5.21). De
plus cette simplification nous permet de montrer que le revêtement ramifié
fana construit au chapitre précédent n’est pas équivalent au sens de Thurston
à un polynôme (exemple 5.19). Nous concluons ce chapitre par une section
indépendante du fil conducteur de cette thèse mais qui illustre l’intérêt du
théorème 5.17. En combinant ce théorème avec un résultat de Zhang Gaofei
(théorème 5.25) nous donnons un critère simple d’existence de polynômes
ayant un disque de Siegel fixe de type borné (théorème 5.26) et dont la dy-
namique peut être prescrite par des dynamiques d’arbres comme au chapitre
précédent (exemple 5.27).

1.6 D’un arbre à un tapis persan

Les deux chapitres suivants sont les plus novateurs de cette thèse. Nous com-
mençons par poursuivre la conversation entamée au chapitre 4 à propos des
arbres dynamiques afin d’introduire la notion d’arbres de Hubbard (défini-
tion 6.5 et exemple 6.6) un outil combinatoire capturant plus d’informations
dynamiques que les portraits de ramifications. Nous définissons ensuite des
arbres de Hubbards pondérés (définition 6.8) qui nous permettrons d’encoder
la dynamique d’échange des composantes de Julia de certaines fractions ra-
tionnelles non post-critiquement finies sous l’hypothèse que ces arbres véri-
fient une condition combinatoire similaire à celle du critère de Thurston (déf-
inition 6.10). Dans la section suivante (section 6.2), nous détaillons minu-
tieusement la construction par chirurgie quasiconforme d’une telle fraction ra-
tionnelle f dont la dynamique est “encodée” par un arbre de Hubbard pondéré
(H, w). L’idée est de partir d’une fraction rationnelle post-critiquement finie

f̂ dont la dynamique respecte celle d’un arbre (T̂ , ŵ) déduit de (H, w) en
supprimant son point de “pliage”. Ensuite nous choisissons avec soin des
equipotentielles dans le bassin immédiat d’attraction de f̂ (lemme 6.12) afin
de découper la sphère en plusieurs morceaux sur lesquels nous allons définir
une application quasirégulière F . Nous procédons pas à pas à cette définition.
Le point le plus crucial est certainement la réalisation du “pliage” (étape 4)
qui s’effectue à l’aide d’une application envoyant un anneau sur un disque
topologique (figure 6.10), entraînant l’apparition d’un nouveau point critique.
Nous prenons soin à ce que l’orbite de ce nouveau point critique accumule le
cycle super-attractif issu de (H, w) afin de ne pas créer d’autre phénomène
dynamique. Finalement (étape finale) nous montrons que la construction
de l’application quasirégulière F suit un principe de chirurgie quasiconforme
(théorème C.13 en appendice) et par conséquent F est quasiconformément
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conjuguée à une fraction rationnelle f comme nous le souhaitons. L’objectif
de la section suivante (section 6.3) est de fournir une formule algébrique de
l’application fp construite précédemment vue comme une famille de frac-
tions rationnelles dépendante d’un paramètre complexe p correspondant à
la position d’un des points du cycle super-attractif (le point de “pliage”).
Nous donnons également l’expression du point critique p′ dont l’orbite accu-
mule le cycle super-attractif. Nous pouvons ainsi produire plusieurs images
numériques : tout d’abord le plan des paramètres (figure 6.14) afin de choisir
p dans une petite composante hyperbolique réalisant la dynamique souhaitée
(figure 6.15) et ensuite l’ensemble de Julia correspondant (figure 6.16) ap-
pelé un tapis persan. Nous en profitons pour citer un résultat de Tan Lei et
K. Pilgrim (théorème 6.14) qui décrit la géométrie d’un grand nombre des
composantes de Julia. Dans la section suivante (section 6.4) nous justifions
la condition combinatoire (similaire à celle du critère de Thurston) vérifiée
par l’arbre de Hubbard pondéré (H, w) en produisant un contre-exemple qui
ne vérifie pas cette condition. Enfin nous concluons ce chapitre en décrivant
comment la dynamique d’échange des composantes de Julia induite par notre
application f construite précédemment est encodé par (H, w). Nous démon-
trons en particulier le théorème 6.19 énoncé en introduction.

1.7 Une collection de tapis persans

Dans ce chapitre nous discutons d’une généralisation possible de la construc-
tion du chapitre précédent. Nous commençons par définir les arbres de Hub-
bard pondérés dont nous allons réaliser le portrait de ramifications associé
(définition 7.1). Ensuite nous construisons de nouveau pas à pas une applica-
tion F . En particulier le lemme 7.2 nous permet de généraliser l’application
réalisant le “pliage” du chapitre précédent. Cependant nous serons moins ex-
igeant ici qu’au chapitre précédent quant à la régularité de F . En effet, au lieu
de conclure par un principe de chirurgie quasiconforme, nous allons utiliser un
résultat de Cui Guizhen et Tan Lei (théorème 7.5) qui généralise le théorème
de Thurston à certains revêtements ramifiés non post-critiquement finis. Fi-
nalement nous obtenons un théorème de réalisation asymptotique de certains
portraits de ramifications par des fractions rationnelles à ensemble de Julia
disconnexe (théorème 7.6). Nous illustrons ce résultat dans la section suiv-
ante (section 7.2) à l’aide de la formule algébrique d’une famille de fractions
rationnelles he à un paramètre complexe e correspondant à une extrémité de
l’arbre de Hubbard pondéré considéré. En choisissant ce paramètre au cen-
tre des composantes hyperboliques d’une copie de l’ensemble de Mandelbrot
(figure 7.5) nous produisons plusieurs exemples d’ensembles de Julia dont la
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dynamique d’échange des composante est encodée par des arbres pondérés
(figure 7.4, figure 7.6 et figure 7.7). Le choix d’un paramètre correspondant
à un point de Misiurewicz de la copie de l’ensemble de Mandelbrot permet
même d’obtenir d’autres exemples qui ne sont pas couverts par notre résultat
(figure 7.8).

1.8 Conclusion

Finalement nous concluons cette thèse par quelques questions soulevées par
ces travaux et par des projets futurs. Tout d’abord nous envisageons un
raffinement du théorème 6.18 afin d’étendre continuement la conjugaison sur
les composantes de Julia à toute la sphère de Riemann. Nous proposons une
méthode à l’aide du résultat de Cui Guizhen et Tan Lei (théorème 7.5) discuté
au chapitre précédent. Cette méthode permet aussi d’espérer un encodage
pour les applications produites par le théorème 7.6. Ensuite nous discutons
d’une généralisation possible de la construction du chapitre précédent à des
arbres de Hubbard pondérés plus généraux que ceux de la définition 7.1.
Enfin nous soulevons des questions à plus long terme à propos de l’unicité
(à conjugaison quasiconforme près) de fractions rationnelles encodées par un
même arbre de Hubbard pondéré et également à propos du problème inverse,
à savoir déduire la structure d’arbre derrière la dynamique d’échange des
composantes de Julia d’une fraction rationnelle donnée.



Chapter 2

Introduction

Let Ĉ be the Riemann sphere. We will use S
2 when we wish to think topo-

logically (that is the one-point compactification of the complex plane C) and

Ĉ when we wish to think analytically (emphasizing the complex structure
as one-dimensional complex manifold). Recall that the set of holomorphic

maps on Ĉ is equal to the set of rational maps, that is the set of ratios of
polynomials with complex coefficients.

Let f : Ĉ → Ĉ be a rational map. The aim of holomorphic dynamical
systems theory is to study the forward orbit under iterations by f of every
starting point z0 ∈ Ĉ:

z0
f
7→ z1

f
7→ z2

f
7→ z3

f
7→ . . .

To do so, the Riemann sphere is divided in two sets of starting points which
lead to two different kinds of behavior. These sets are named after two math-
ematicians whose works flowered the global study of holomorphic dynamical
systems during the early 20th century.

Definition 2.1 (Fatou and Julia sets). Let f : Ĉ → Ĉ be a rational map.
The Fatou set of f , denoted by F(f), is the domain of normality for the

collection of iterates {f ◦n / n > 1}, that is the set of z ∈ Ĉ which admits a

neighbourhood Vz ⊂ Ĉ such that the sequence (f ◦n
|Vz

)n>1 of holomorphic maps
has subsequence which converges uniformly on compact subsets of Vz. The
Julia set of f , denoted by J (f), is the complement in Ĉ of the Fatou set.

J (f) = Ĉ−F(f)

Many authors present the basics to study the geometrical and dynamical
properties of those two sets, see in particular [Bea91], [CG93], [BM01] or
[Mil06]. We would like here to focus on some results which motivate this
thesis.
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Theorem 2.2. For any rational map f : Ĉ → Ĉ of degree two or more,
the Julia set J (f) is a nonempty fully invariant compact set without isolated
point. Furthermore

• either J (f) is connected,

• or else J (f) has uncountably many connected components.

Figure 2.1 illustrates this dichotomy.

Figure 2.1: Two Julia sets of quadratic polynomials:
one connected called the Douady’s rabbit

and one totally disconnected

We are going to discuss the second case and particularly the exchanging
dynamics of Julia components (that is the induced dynamical system on the
set of every connected components of the Julia set).

In this way, we are going to state at first a classical result (see [Bea91]).

Recall that a fixed point z0 ∈ Ĉ of a rational map f : Ĉ → Ĉ is said
attracting if it satisfies |f ′(z0)| < 1 (or | limz→∞

1
f ′(z)

| < 1 if z0 = ∞). In
that case we define the immediate attracting bassin of z0 to be the connected
component containing z0 of the set of points whose forward orbits accumulate
z0. Recall also that a Cantor set is a nonempty compact set which is perfect
(without isolated point) and totally disconnected (each connected component
is a single point). For instance the second Julia set in Figure 2.1 is a Cantor
set (actually it is a consequence of the following result).
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Theorem 2.3. Let f : Ĉ → Ĉ be a rational map of degree d > 2. If
there exists an attracting fixed point z0 of f such that every critical point of
f lies in the immediate attracting bassin of z0 then J (f) is a Cantor set.
More precisely there exists a homeomorphism ϕ : J (f) → Σd such that the
following diagram commutes

J (f)
f

//

ϕ
��

J (f)

ϕ
��

Σd σ
// Σd

where

• Σd = {1, 2, . . . , d}N is a Cantor set for the metric

∀ε, ε′ ∈ Σd, dΣd
(ε, ε′) =

+∞∑

i=0

|εi − ε′i|

(d+ 1)i

• σ : Σd → Σd is the shift map that is ∀ε ∈ Σd, σ(ε0ε1ε2 . . . ) = ε1ε2ε3 . . .

Notice that the assumption is satisfied for quadratic polynomials of the
form z 7→ z2 + c with a sufficiently large value of c (like the second Julia set
in Figure 2.1).

This result allows to understand the entire exchanging dynamics of Julia
components in that case. For instance, if follows easily that the periodic
points are dense in the Julia set or that there is a dense set of points in the
Julia set whose forward orbits are dense in the Julia set.

We would like to obtain a similar result for Julia sets with more compli-
cated components than single points. Unfortunatly we do not know several
examples of such Julia sets. Indeed B. Branner and J. H. Hubbard proved
in [BH92] that in polynomial case, all but countably many Julia components
must be single points. This is certainly not true for arbitrary rational maps
but we will see later (see Theorem 6.14) that Tan Lei and K. Pilgrim proved
in [PT00] that under a certain condition, all but countably many Julia com-
ponents must be either a point or a Jordan curve.

The example in Figure 2.2, due to C. T. McMullen, has uncountably
many connected components which are Jordan curves (see [Bea91] or [Mil06]).
Roughly speaking, this Julia set is a Cantor set of circles (denoted by “CoC”
in shorter) that is like the set

⋃
r∈C{z ∈ C / |z| = r} where C is some Cantor

set on the positive real line.
Actually we can describe the entire exchanging dynamics of Julia com-

ponents for this example (see [Bea91]). We denote by fCoC the rational map



CHAPTER 2. INTRODUCTION 17

Figure 2.2: Example of Julia set which is a Cantor set of circles

whose Julia set is drawn in Figure 2.2 and by JCoC the set of Julia com-
ponents equipped with the Hausdorff topology coming from the following
Hausdorff metric:

∀J, J ′ ∈ JCoC, dH(J, J
′) = max

{
sup
z∈J

inf
z′∈J ′

|z − z′|, sup
z′∈J ′

inf
z∈J

|z − z′|

}

Then fCoC induces on JCoC a continuous dynamical system denoted also by
fCoC : JCoC → JCoC.

Proposition 2.4. There exists a homeomorphism φ : JCoC → Σ2 such that
the following diagram commutes

JCoC

fCoC //

φ
��

JCoC

φ
��

Σ2 σ
// Σ2

Recall that the Cantor ternary set Σ2 may be seen as the non-escaping
set of a continuous dynamical system on the unit segment [0, 1]:

τC : [0, 1] → [0, 1]

x 7→

{
3x if x ∈ [0, 1

2
]

3(1− x) if x ∈ [1
2
, 1]
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Σ2 is homeomorphic to the following non-escaping set

JC =

{
x ∈ [0, 1] / ∀n > 0, τ ◦nC (x) ∈

[
0,

1

3

]
∪

[
2

3
, 1

]}

We may thus reformulate Proposition 2.4 as follows:

Proposition 2.5. There exists a homeomorphism ϕ : JCoC → JC such that
the following diagram commutes

JCoC

fCoC //

ϕ
��

JCoC

ϕ
��

JC τC
// JC

Any Julia component J ∈ JCoC, that is any any preimage by ϕ of a point in
JC, is a Jordan curve.

Figure 2.3: A “thickening” of JC ⊂ [0, 1] →֒ R
3

(compare with Figure 2.2)

Heuristically speaking, we may think of the action of fCoC as that one of
τC on the boundary (homeomorphic to the sphere S

2) of a small “thickening”
of the unit segment [0, 1] embedded in R

3 as it is suggested in Figure 2.3.
Indeed fCoC is of the form z 7→ z2 + λ/z3 where λ is sufficiently small and a
study of Fatou components (see [Bea91]) shows that the immediate attracting
bassin F∞ of ∞ is simply connected (that corresponds to a neighbourhood
of 0 for τC), the preimage F0 of F∞ contains the other critical points and is
also simply connected (that corresponds to a neighbourhood of 1 for τC) and
all other Fatou components are doubly connected.

In this thesis, we would like to construct some other examples of rational
maps with complicated Julia sets and whose dynamics is encoded by some
combinatorial data. To do so, we will discuss the construction of rational
maps with prescribed dynamics. The two main tools in this discussion will
be the quasiconformal surgery method and the Thurston’s characterization
of post-critically finite rational maps.
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In particular, we will get the following concrete example (see Chapter 6).

Theorem 2.6. There exists a rational map f : Ĉ → Ĉ whose Julia set is
drawn in Figure 2.4 and a homeomorphism ϕ from a subset JH(f) of Julia
components of f equipped with a certain topology such that the following
diagram commutes

JH(f)
f

//

ϕ
��

JH(f)

ϕ
��

JH
Pc

// JH

where JH is a Cantor set which is the intersection between the Julia set of
a quadratic polynomial Pc : z 7→ z2 + c (actually c ≈-0.157+1.032i) and the
associated Hubbard tree (see Example 6.6).

Moreover there exists only one fixed Julia component in JH(f) denoted
by Jα (which is quasiconformally mapped onto the connected Julia set of an
other rational map) and any Julia component J ∈ JH(f) which is not mapped
after some iterations of f onto Jα is a Jordan curve.

Figure 2.4: A disconnected Julia set

In particular that proves there are some Julia components of f which
does not meet the boundary of any Fatou components (for instance Jα and
all of their preimages).
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Prescribed dynamics

We are going to give some meanings behind what is prescribed dynamics.
The aim is to impose the action of a rational map, or more generally of a
ramified covering, on its critical and post-critical sets. To do so, we will
introduce the ramification portraits and some related definitions (following
[Koc07] and according to works in [BFH92]). Then we will begin to discuss
the question of finding rational maps of prescribed dynamics. The arising
problems should lead to the two next chapters.

3.1 Ramification portraits

We first establish some standard notations and definitions. To each ramified
covering f : S2 → S

2 we denote by Ωf = {critical points of f} its critical set
and by Pf =

⋃
n>1 f

◦n(Ωf ) its post-critical set. The action of f on Ωf ∪ Pf

is totally encoded by the surjective restriction σf = f|Ωf∪Pf
: Ωf ∪ Pf → Pf

and the local degree νf = degloc(f)|Ωf∪Pf
: Ωf ∪ Pf → N − {0}. That leads

to the following definition (according to [Koc07]).

Definition 3.1 (ramification portrait). A ramification portrait is the data
of

• a finite set Ω ⊂ S
2

• a set (not necessarily finite or disjoint from Ω) P ⊂ S
2

• a surjective map σ : Ω ∪ P → P

• a function ν : Ω ∪ P → N− {0} such that ν−1 ({n ∈ N/n > 2}) = Ω

We denote by R = (Ω, P, σ, ν) such a ramification portrait.
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Remark that the critical set of a ramified covering f : S2 → S
2 is well

finite since the critical points of f are isolated points of the compact set S
2.

In particular, f is of finite degree deg(f) and it has exactly 2 deg(f) − 2
critical points, counted with multiplicity, by the Riemann-Hurwitz formula
(see Theorem A.12 in appendix).

Definition 3.2 (degree of a ramification portrait). The degree of a ramifi-
cation portrait R = (Ω, P, σ, ν), denoted by deg(R), is the number

deg(R) = 1 +
1

2

∑

ω∈Ω

(ν(ω)− 1)

Obviously we have:

Proposition 3.3. If f is a ramified covering of critical set Ωf and post-
critical set Pf then (Ωf , Pf , σf = f|Ωf∪Pf

, νf = degloc(f)|Ωf∪Pf
) is a ramifica-

tion portrait and deg(Rf ) is equal to the degree deg(f) of f .

Definition 3.4 (ramification portrait of a ramified covering). We denote
by Rf = (Ωf , Pf , σf = f|Ωf∪Pf

, νf = degloc(f)|Ωf∪Pf
) the ramification

portrait associated to a ramified covering f : S2 → S
2. In case f : Ĉ → Ĉ

would be a rational map, we identify S
2 with Ĉ as topological manifolds in

order to define the associated ramification portrait of f as well.

Notice that the degree of a ramification portrait R = (Ω, P, σ, ν) is not
necessarily an integer, indeed deg(R) ∈ 1

2
Z. Moreover the number of preim-

ages by σ of a point in P may be larger than the degree deg(R). So we will
restrict our discussion to a special subset of ramification portraits defined
below.

Definition 3.5 (branch compatible ramification portrait). A ramification
portrait R = (Ω, P, σ, ν) is said branch compatible if

∀ω ∈ P,
∑

x∈Ω∪P
σ(x)=ω

ν(x) 6 deg(R)

Definition 3.6 (ramification portrait of polynomial type). R = (Ω, P, σ, ν)
is a ramification portrait of polynomial type if

(i) R is branch compatible

(ii) ∃ω ∈ Ω ∪ P/σ(ω) = ω and ν(ω) = deg(R)
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A point which satisfies the second condition is called an infinity point of
the ramification portrait R.

Remark that an infinity point is necessarily in Ω as soon as deg(R) > 2.
We enlarge the definition of ramification portrait of polynomial type from
[Koc07] to allow ramification portraits similar to those of polynomials z 7→ zd,
d > 2.

Proposition 3.7. Let R = (Ω, P, σ, ν) be a ramification portrait of polyno-
mial type. We have the following properties.

1. If c∞ denotes an infinity point then

deg(R) = 1 +
∑

ω∈Ω−{c∞}

(ν(ω)− 1)

In particular the degree of R is a positive integer.

2. If deg(R) > 2 then there exist at most two infinity points c∞ ∈ Ω.
These points also satisfy σ−1(c∞) = {c∞}.

Proof of Proposition 3.7. The first statement is obvious since ν(c∞) = deg(R).
If there exist at least three points c ∈ Ω such that ν(c) = deg(R) then

deg(R) = 1 +
1

2

∑

ω∈Ω

(ν(ω)− 1) > 1 +
3

2
(deg(R)− 1)

and this inequality is equivalent to deg(R) 6 1. Assume now that there
exists x∞ ∈ Ω∪P −{c∞} such that σ(x∞) = c∞ where c∞ ∈ Ω is an infinity
point. We get

∑

x∈Ω∪P
σ(x)=c∞

ν(x) > ν(x∞) + ν(c∞) > 1 + deg(R)

contradicting the fact that R is branch compatible.
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3.2 Realization

Example 3.8. Let R be a ramification portrait of polynomial type displayed
below.

c0
2 // c1

1 // c2 1gg c∞ 2hh

In this example, Ω = {c0, c∞} and P = {c1, c2, c∞}. The arrows above depict
the map σ : Ω ∪ P → P . To each ω ∈ Ω ∪ P the integer ν(ω) is assigned to
the arrow leaving from ω: ν(c0) = ν(c∞) = 2 and ν(c1) = ν(c2) = 1.

To find a polynomial f (f acts on Ĉ but we identify Ĉ to S
2) such that

Rf = R implies at first that deg(f) = deg(R) = 2 and c∞ = ∞. Hence
f is a quadratic polynomial. From the informations f ′(c0) = 0, f(c0) = c1
and f(c1) = c2 we get that the form of f is f(z) = (c2−c1)

(c1−c0)2
(z − c0)

2 + c1.

The last information f(c2) = c2 gives an algebraic relation linking c0, c1
and c2 that is c0 = c1+c2

2
. Finally there exists a polynomial of associated

ramification portrait R if and only if c∞ = ∞ and c0 = c1+c2
2

. For instance
we get z 7→ z2 − 2 for c0 = 0, c1 = −2 and c2 = 2.

As it is shown in the example above, to find a polynomial of given associ-
ated ramification portrait may be not possible. Fixing the position of critical
and post-critical points on the sphere S

2 is too restrictive.

Definition 3.9 (similar ramification portraits). Two ramification portraits
R = (Ω, P, σ, ν) and R′ = (Ω′, P ′, σ′, ν ′) are said similar if there exists a
bijection β : Ω∪P → Ω′∪P ′ such that the following two diagrams commute:

Ω ∪ P
β

//

σ
��

Ω′ ∪ P ′

σ′

��
P

β|P // P ′

and Ω ∪ P
β

//

ν %%KKKKKKKKKK Ω′ ∪ P ′

ν ′xxrrrrrrrrrr

N− {0}

We will write R ∼sim R′ in this case.

Proposition 3.10. ∼sim is an equivalence relation on the set of all ramifi-
cation portraits.

Proof of Proposition 3.10. Only the symmetry is not trivial. It’s enough to
check that the map β|P1 : P1 → P2 in Definition 3.9 is a bijection. At first
β|P1 is an injective map as a restriction of a bijection. Surjectivity comes
from the commutativity of the diagram: β|P1 ◦ σ1 = σ2 ◦ β where σ2 and β
are surjective maps.
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Definition 3.11 (realization of a ramification portrait). We say that a ram-

ified covering f : S
2 → S

2 (or a rational map f : Ĉ → Ĉ) realizes a
ramification portrait R if Rf ∼sim R.

For instance, the polynomial z 7→ z2− 2 realizes the ramification portrait
of Example 3.8 for any choice of points c0, c1, c2 and c∞ on S

2.

So we may consider a prescribed dynamics as an equivalence class of
∼sim. That does not provide a combinatorial tool which captures the whole
dynamical information about a ramified covering and we will discuss later
some attempts to make the meaning behind prescribed dynamics sharper.
But for the moment, to find a rational map with prescribed dynamics means
to realize a ramification portrait by a rational map.

However we will need a less restrictive definition in case of infinite rami-
fication portrait in order to deal with only a finite number of informations.

Definition 3.12 (asymptotic realization). Let f : S2 → S
2 be a ramified

covering (or more generally let f : Ĉ → Ĉ be a rational map). We denote
by Ω′

f the set of critical points with finite forward orbit under iteration of f
and by R′

f the induced ramification portrait:

• Ω′
f = {ω ∈ Ωf / |

⋃
n>1 f

◦n(ω)| <∞}

• R′
f = (Ω′

f , P
′
f =

⋃
n>1 f

◦n(Ω′
f ), σ

′
f = f|Ω′

f
∪P ′

f
, ν ′f = degloc(f)|Ω′

f
∪P ′

f
)

Then we say that f realizes asymptotically a finite ramification portrait
R if the following conditions hold:

(i) R′
f ∼sim R

(ii) the accumulation set of the post-critical set of f is contained in Ω′
f∪P

′
f ,

in other words the orbit
⋃

n>1 f
◦n(ω) of every critical point ω ∈ Ωf−Ω′

f

accumulates a periodic cycle in Ω′
f ∪ P

′
f

Example 3.13. Consider a quadratic polynomial Pc of the form z 7→ z2 +
c with a sufficiently large value of c. Then Pc realizes asymptotically the
ramification portrait below

∞ 2ff 0
2 ///o/o/o c

where the waved arrow means that the critical point 0 is mapped in the
immediate attracting bassin of ∞.
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3.3 Examples

Unfortunately not every ramification portrait can be realized by rational
maps. We will see two examples of such ramification portraits which are
characteristic of the two kinds of problems (or obstructions) that could arise.

Example 3.14 (Topological obstruction). Let Rtop be the ramification por-
trait below.

c0
2 // c1

1 )) c2
1

ii c∞ 2hh

If a rational map realizes this ramification portrait, this map would be of
degree deg(Rtop) = 2. But there are at least three preimages of c1, counted
with multiplicity (c2 of multiplicity 1 and c0 of multiplicity 2), which is
impossible for a map of degree two. In fact Rtop is not branch compatible.

Indeed the Riemann-Hurwitz formula (see Theorem A.12 in appendix)
provides many restrictions on the ramification portrait of a ramified covering.
If a ramification portrait violates these restrictions, it cannot be realized by
any ramified covering (and in particular by any rational map). Consequently
our first objective will be to discuss the realization of ramification portraits
by ramified coverings (that is a purely topological discussion).

Example 3.15 (Analytical obstruction). Let Rana be the ramification por-
trait of polynomial type below.

c0
2 // c1

1 )) c2
1

ii c∞ 3hh

c′2
1

55 c′1
1uu

c′02
oo

This example seems to have no topological obstruction as the previous exam-
ple. Each point of the post-critical set has less than three preimages, counted
with multiplicity, and deg(Rana) = 3. Indeed we will see in the next chapter
that Rana can be realized by a ramified covering fana. For the moment, iden-
tifying S

2 − {c∞} with the complex plane C and assuming that the critical
and post-critical sets belong to the real line R, we can at least construct the
restriction fana|R on the real axis (see Figure 3.1): c0 and c′0 are the only
points where fana|R is not locally injective (the “critical points”), even where
fana|R is locally two-to-one (of “local degree two”) and the action of fana|R on
the forward orbits of c0 and c′0 is the same, up to composition by a bijection,
as the one of σana.
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Figure 3.1: A continuous and piecewise affine map fana|R which realizes Rana

But we will see (in Chapter 5) that fana cannot be “perturbed” in order
to get a polynomial! In that case the obstruction is not topological (since
Rana can be realized by a ramified covering) but it comes from the analytical
structure we equip the sphere S

2 with. Therefore our second objective will
be to discuss the realization by some rational maps of ramification portraits
already realized by some ramified coverings. We will forget the topological
obstructions to concentrate on the analytical part of the problem.





Chapter 4

Topological trees

In this chapter, we would like to concentrate on the realization of finite
ramification portraits by some ramified coverings. To do so, we introduce
dynamical trees and some related definitions (following [Poi93]) to be also
useful for discussions coming later (Chapter 6). Then we will construct ram-
ified coverings realizing some particular ramification portraits and we will
discuss the general case with an example.

4.1 Dynamical trees

Definition 4.1 (planar tree). A planar tree is a finite connected acyclic
planar graph T = (V,E), that is the data of

• a finite set V ⊂ C of vertices

• a finite set E of pairwise disjoint (except possibly at the ends) Jor-
dan arcs ev1,v2 , called edges, between some unordered pairs of distinct
vertices v1, v2 ∈ V

such that for any pair of distinct vertices v, v′ ∈ V there exists a unique
Jordan arc linking v and v′ as the union of distinct edges:

[v, v′]T = ev0=v,v1 ∪ ev1,v2 ∪ · · · ∪ evn−1,vn=v′

We will not distinguish between the tree T and its planar pattern
⋃

e∈E e ⊂ C.

More precisely planar graph in definition above means a simplicial com-
plex of dimension 1 embedded in the complex plane, and it is a planar tree
if its complement in the complex plane is connected.
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Definition 4.2 (valency). For every vertex v ∈ V of a planar tree T = (V,E),
let Ev⊂ E be the set of edges of T with v as a common endpoint. We call
valency the number of edges in Ev which is equal to the number of connected
components of T − {v}. We say that v is a branching point if |Ev| > 2 and
an end if |Ev| = 1.

Remark that every Ev comes with a cyclic order induced by the usual
counterclockwise orientation on C.

For any integer n ∈ N, denote by Un the cyclicly ordered group of nth

roots of unity.

Definition 4.3 (dynamical tree). A dynamical tree is the data of

• an underlying planar tree T = (V,E)

• a map of vertices dynamics τ : V → V

• a local degree function δ : V → N− {0}

such that

(i) For any edge ev,v′ ∈ E with endpoints v, v′ ∈ V , the two images
τ(v), τ(v′) ∈ V must be distinct.

The assumption above allows us to extend τ continuously to T as follows: for
any edge ev,v′ ∈ E with endpoints v, v′ ∈ V , define τ : ev,v′ → [τ(v), τ(v′)]T
to be a homeomorphism where [τ(v), τ(v′)]T is the unique Jordan arc in T
linking τ(v) to τ(v′). This extension of τ induces naturally a well defined
map τv : Ev → Eτ(v) for any vertex v ∈ V .

(ii) For any vertex v ∈ V , there exist an order preserving bijection βv :
Eτ(v) → Un, where n = |Eτ(v)| is the valency of τ(v), together with an
order preserving injection ιv : Ev → Uδ(v)n where δ(v) is the assigned
degree at v, such that the following diagram commutes

Ev
� � ιv //

τv
��

Uδ(v)n

e2iπθ 7→ e2iπδ(v)θ
��

Eτ(v)
βv

∼ // Un

We denote by T = (T, τ, δ) such a dynamical tree.
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Figure 4.1 shows an example illustrating the second condition. One way
to interpret this condition is that we lift by z 7→ zδ(v) a star of n edges to get
a star of δ(v)n edges, and our map τ near v should behave like z 7→ zδ(v) on
a sub-star of the lifted star. This condition implies in particular

∀v ∈ V, |Ev| 6 δ(v)|Eτ(v)|

Figure 4.1: Example of vertex in dynamical tree with local degree 4

Definition 4.4 (critical and post-critical points of a dynamical tree). We
say that a vertex v ∈ V of a dynamical tree T = (T, τ, δ) is a critical
point if δ(v) > 2 and a post-critical point if there exist an integer n > 1
and a critical point w ∈ V such that v = τ ◦n(w). We denote by ΩT =
{critical points of T } the critical set of T and by PT =

⋃
n>1 τ

◦n(ΩT ) the
post-critical set.

Definition 4.5 (degree of a dynamical tree). The degree of a dynamical
tree T = (T, τ, δ), denoted by deg(T ), is the number

deg(T ) = 1 +
∑

v∈V

(δ(v)− 1)
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Definition 4.6 (extension of a dynamical tree). Let T = (T, τ, δ) and T̃ =

(T̃ , τ̃ , δ̃) be two dynamical trees of same degree deg(T ) = deg(T̃ ). We say

that T̃ is an extension of T if there exists an injective map φ :

{
V → Ṽ

E → Ẽ

such that

(i) the following two diagrams commute

V
φ

//

τ
��

Ṽ

τ̃
��

V
φ

// Ṽ

and V
φ

//

δ ##GGGGGGGGG Ṽ

δ̃{{wwwwwwwww

N− {0}

(ii) for any vertex v ∈ V , φ induces a cyclic order preserving injection of
Ev into Eφ(v)

We will write T � T̃ in this case.

To obtain T̃ from T we may add extra non-critical vertices on the edges
of T and/or extra edges linking vertices of T to extra non-critical vertices
outside of T . Obviously we have:

Proposition 4.7. � is a partial order relation on the set of all dynamical
trees.

Therefore the following definition determines an equivalence relation.

Definition 4.8 (equivalent dynamical trees). Two dynamical trees T =
(T, τ, δ) and T ′ = (T ′, τ ′, δ′) of same degree are said equivalent if T � T ′

and T ′ � T . We will write T ≃ T ′ in this case.

4.2 Stars and surgery

We would like to prove that we may extend (using “topological surgery”)
some dynamical trees to the whole complex plane C by ramified coverings in
order to realize some particular ramification portraits of polynomial type.

Definition 4.9 (N -cyclic ramification portrait of polynomial type). Let R =
(Ω, P, σ, ν) be a ramification portrait of polynomial type and c∞ be an infinity
point. R is said N -cyclic for a positive integer N if every critical point
ω ∈ Ω− {c∞} is periodic under iteration of σ (i.e. Ω ⊂ P ) and P − {c∞} is
the union of exactly N disjoint periodic cycles.
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Remark that this definition does not depend on the choice of infinity
point in case there exist two of them. Moreover if a ramification portrait of
polynomial type R is N -cyclic for a positive integer N then deg(R) > 2.

Lemma 4.10. Let R = (Ω, P, σ, ν) be a 1-cyclic ramification portrait of
polynomial type denoted by

c0
ν(c0) // c1

ν(c1) // . . . // cn−1

ν(cn−1)

jj c∞ deg(R)hh

We identify S
2 − {c∞} with C as topological manifolds. Then there exist a

planar tree T = (V,E) and a ramified covering f : S2 → S
2 such that

(i) T is a starlike tree that is a planar tree formed by the set of vertices
V = {α, c0, c1, . . . , cn−1} where α ∈ C− {c0, c1, . . . , cn−1} is the unique
branching point and by the cyclicly ordered set of edges E = Eα =
{eα,c0 , eα,c1 , . . . , eα,cn−1}

Figure 4.2: A starlike tree associated to a 1-cyclic
ramification portrait of polynomial type

(ii) T is invariant by f , that is f(T ) ⊂ T

(iii) f induces on T a dynamical tree T = (T, τ = f|T , δ = degloc(f)|V ) which
fixes the branching point α and acts as the counterclockwise circular
shift on the ends {c0, c1, . . . , cn−1}

(iv) R is the ramification portrait associated to f
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Proof of Lemma 4.10. From the fact that the complex plane minus a finite
number of points is arcwise connected, we can easily find a planar tree T =
(V,E) which satisfies the condition (i) for any choice of branching point
α ∈ C−{c0, c1, . . . , cn−1}. It is also possible to construct carefully the edges
of T in such a way they are locally connected. Let τ : V → V be the
map which fixes the branching point α and acts as the counterclockwise
circular shift on the ends {c0, c1, . . . , cn−1}. Extend continuously this map
to T as in Definition 4.3 and denote by τ = f|T this extension. Remark
that any extension of f|T to S

2 satisfies the condition (ii). Recall that if
R = (Ω, P, σ, ν) is the ramification portrait associated to such an extension
f (as in condition (iv)), then degloc(f)|V = ν (with the extra definition
ν(α) = 1). Moreover T = (T, τ = f|T , δ = ν) is a well defined dynamical tree
as in condition (iii). Therefore it is sufficient to prove that f|T extends to S

2

as a ramified covering f whose associated ramification portrait is R.
Now consider the extension T̃ = (T̃ , τ̃ , δ̃) of T as follows (see Figure 4.3)

Figure 4.3: The extension T̃ in proof of Lemma 4.10

• for each end ck where k ∈ {0, 1, . . . , n − 1}, add ν(ck) − 1 extra edges

linking ck to extra vertices denoted by α1
k, α

2
k, . . . , α

ν(ck)−1
k such that

Eck = {eck,α, eck,α1
k
, eck,α2

k
, . . . , e

ck,α
ν(ck)−1

k

} is cyclicly ordered

• for each vertex αj
k where j ∈ {1, 2, . . . , ν(ck)−1}, add n−1 extra edges

linking αj
k to extra vertices denoted by cjk,0, . . . , c

j
k,k−1, c

j
k,k+1, . . . , c

j
k,n−1

such that Eαj
k
= {eαj

k
,cj

k,0
, . . . , eαj

k
,cj

k,k−1
, eαj

k
,cj

k,k+1
, . . . , eαj

k
,cj

k,n−1
} is cyclicly

ordered



34 CHAPTER 4. TOPOLOGICAL TREES

• define τ̃ : Ṽ → Ṽ as follows





τ̃(α) = α
τ̃(ck) = ck+1 where k ∈ {0, 1, . . . , n− 1}
τ̃(αj

k) = α where k ∈ {0, 1, . . . , n− 1}, j ∈ {1, 2, . . . , ν(ck)− 1}
τ̃(cjk,ℓ) = cℓ+1 where k 6= ℓ ∈ {0, 1, . . . , n− 1}, j ∈ {1, 2, . . . , ν(ck)− 1}

with the notation cn = c0

• extend continuously τ̃ to T̃ by τ on T and by homeomorphisms on
every extra edge

Remark that we may construct carefully each extra edge in such a way they
are locally connected. Remark also that τ̃(T̃ ) = T and the valency of each

ck where k ∈ {0, 1, . . . , n− 1} is now δ̃(ck) = ν(ck) in T̃ . Therefore

∀k ∈ {0, 1, . . . , n− 1}, |Ẽck | = ν(ck)|Ẽτ̃(ck)| (4.1)

Consider T̃ and its image τ̃(T̃ ) = T as if they belong to two different
copies of S2 (recall that we identify C with S

2 − {c∞}), say respectively S1

and S2 (see Figure 4.4). We are going to construct a ramified covering f
which extends continuously τ̃ by surgery.

Since T is simply connected, we may easily define a cyclicly ordered set
A2 of |A2| = n disjoint (except at c∞) Jordan arcs in S2 − T (except at ck)
linking c∞ to each ck where k ∈ {0, 1, . . . , n− 1} (see Figure 4.4).

Since T is connected, Riemann’s mapping theorem provides a biholo-
morphic map ϕ1 : D → S1 − T̃ such that ϕ1(0) = c∞. Moreover we have

constructed T̃ to be locally connected. By Carathéodory’s theorem we may
thus extend continuously ϕ1 to D. Remark that

• each end cjk,ℓ where k 6= ℓ ∈ {0, 1, . . . , n−1} and j ∈ {1, 2, . . . , ν(ck)−1}
has exactly one preimage in ∂D by ϕ1

• each branching point ck where k ∈ {0, 1, . . . , n − 1} has exactly ν(ck)
preimages in ∂D by ϕ1 (since ν(ck) corresponds to the valency of ck)

Then define a cyclic ordered set A1 of Jordan arcs (see Figure 4.4) as im-
ages by ϕ1 of straight rays in D linking 0 to those preimages in ∂D. Using



CHAPTER 4. TOPOLOGICAL TREES 35

Figure 4.4: The piecewise definition of the ramified
covering f in Lemma 4.10

Proposition 3.7, we get:

|A1| = (n− 1)
n−1∑

k=0

(ν(ck)− 1) +
n−1∑

k=0

ν(ck)

= n

n−1∑

k=0

(ν(ck)− 1) + n

= n(deg(R)− 1) + n

= deg(R)|A2| (4.2)

Now define f|T̃∪A1
: T̃ ∪ A1 → T ∪ A2 to be equal to τ̃ on T̃ and and to

be continuously extended to each Jordan arc in A1 linking a ∈ T̃ to c∞ by
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homeomorphism onto the Jordan arc in A2 linking τ̃(a) to c∞. It remains

deg(R) × n connected components of S1 − (T̃ ∪ A1) which are topological
disks whose boundaries are Jordan curves formed by the union of exactly two
edges of T̃ and two Jordan arcs in A1 (see Figure 4.4). Remark that f|T̃∪A1

is defined as a homeomorphism on each of those Jordan curves. Therefore
we may extend homeomorphically f|T̃∪A1

to every connected component of

S1 − (T̃ ∪ A1) onto a connected component of S2 − (T ∪ A2) by Schönflies’
theorem (see Theorem A.3 in appendix). Finally the equalities (4.1) and (4.2)

together with the cyclic orders on A1, A2 and Ẽck for every k ∈ {0, 1, . . . , n−
1} ensure that we get a ramified covering f : (S1 = S

2) → (S2 = S
2) whose

associated ramification portrait is R as required.

Before doing as well for any N -cyclic ramification portrait of polynomial
type, we need the following sharpening.

Lemma 4.11. Use notations from Lemma 4.10 and assume in addition that
c0 is a critical point. Then we can find a planar tree T = (V,E) and a
ramified covering f : S2 → S

2 which satisfy conditions (i), (ii), (iii), (iv)
together with

(v) there exists an extension T ′ = (T ′, τ ′ = f|T ′ , δ′ = degloc(f)|V ′) of T
which consists in adding one extra vertex β ∈ C − {α, c0, c1, . . . , cn−1}
and one extra edge ec0,β such that f(β) = β and f(ec0,β) ⊂ T ′

Notice that with a suitable indexing of points in Ω ∪ P , we may always
assume that c0 is a critical point. The condition (v) implies in particular (see
Figure 4.5)

f(ec0,β) = [c1, β]T ′ = ec1,α ∪ eα,c0 ∪ ec0,β

Figure 4.5: The beta point
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Proof of Lemma 4.11. Let us come back to the proof of Lemma 4.10. Denote
by D1 the connected component of S1 − (T̃ ∪A1) whose boundary is formed

by the union of two edges of T̃ and two Jordan arcs in A1 linking c′ = c
ν(c0)−1
0,n−1 ,

α′ = α
ν(c0)−1
0 , c0 and c∞ (it exists since ν(c0) > 2). Remark that the proof

of Lemma 4.10 holds for any choice of cyclicly ordered set A2 of n disjoint
(except at c∞) Jordan arcs in S2 − T (except at ck) linking c∞ to each ck
where k ∈ {0, 1, . . . , n−1}. For such a set A2, denote by D2 the image of D1

by f that is the connected component of S2 − (T ∪ A2) whose boundary is
formed by the union of two edges of T and two Jordan arcs in A2 linking c0,
α, c1 and c∞. See Figure 4.5 and compare with Figure 4.3 and Figure 4.4.

Remark that D1 contains no other points in V = {α, c0, c1, . . . , cn−1}
than c0. Therefore there exists a cyclicly ordered set A2 of n disjoint (except
at c∞) Jordan arcs in S2 − T (except at ck) linking c∞ to each ck where
k ∈ {0, 1, . . . , n − 1}, such that D1 is contained in D2. Carry on the proof
of Lemma 4.10 for this choice of A2. Now pick a point β ∈ D1. Let ec′,β be
a Jordan arc in D1 (except at c′) linking c′ to β and eβ,c∞ be a Jordan arc
in D1 − ec′,β (except for its endpoints) linking β to c∞. Redefine f on D1 as
follows

• f(β) = β

• let f|ec′,β : ec′,β → ec0,α′ ∪ eα′,c′ ∪ ec′,β be an homeomorphism

• let f|eβ,c∞ : eβ,c∞ → eβ,c∞ be an homeomorphism

• extend homeomorphically f to the two connected components of D1 −
(ec′,β ∪ eβ,c∞) by Schönflies’ theorem

The result follows with ec0,β = ec0,α′ ∪ eα′,c′ ∪ ec′,β.

Theorem 4.12. Let R = (Ω, P, σ, ν) be a N-cyclic ramification portrait of
polynomial type where N is a positive integer. Then there exists a ramified
covering f : S2 → S

2 whose associated ramification portrait is R.

Clearly the ramified covering f is not unique. Indeed the construction
suggested here depends strongly on the choice of the starlike tree in Lemma
4.10. A different choice of shape for trees would lead to a different rami-
fied covering f with same associated ramification portrait. In particular the
condition starlike is not even necessary.
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Figure 4.6: Example of a 3-cyclic ramification portrait of polynomial type
realized by a ramified covering of degree 9

Proof of Theorem 4.12. The proof is similar to that one of Lemma 4.10 with
another shape of tree. Denote by P − {c∞} =

⋃N
i=1 Pi the union of the

disjoint periodic cycles of R. For every i ∈ {1, 2, . . . , N}, let Ri be the 1-
cyclic ramification portrait of polynomial type induced by the infinity point
c∞ together with Pi and the restrictions σ|Pi

and ν|Pi
. Denote by ni the

number of points in Pi.
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Let Ti = (Ti, τi, δi) be a starlike dynamical tree associated to Ri as in
Lemma 4.10. Construct carefully the edges of Ti in such a way they are
locally connected.

Now consider the extension T̃i of Ti defined in the proof of Lemma 4.10.
Briefly T̃i consists of adding to each end of Ti some little copies of Ti (see
Figure 4.3).

According to Lemma 4.11, extend T̃i by adding an extra locally connected
edge linking a critical point to a picked fixed point β ∈ S

2 − P which is the
same for every i ∈ {1, 2, . . . , N}. Therefore we get a big dynamical tree T̃

formed by the union of planar trees T̃i where i ∈ {1, 2, . . . , N} together with
the extra edges linking them to the fixed point β. Do likewise for the planar
trees Ti to get a big dynamical tree T such that T̃ is an extension of T and
τ̃(T̃ ) = T .

Finally, using notations of the proof of Lemma 4.10, add to T̃i some extra
edges linking the preimages of c0 (that is the critical point of Ti which is
linked to β by an extra edge) to a little copy of T − Ti. More precisely:

• at a vertex cjk,ni−1 where k ∈ {0, 1, . . . , ni− 2}, j ∈ {1, 2, . . . , ν(ck)− 1}

add one extra edge linking cjk,ni−1 to the corresponding β point of a
little copy of T − Ti

• at a vertex cni−1, add ν(cni−1) extra edges inserted between the edges of

T̃ with cni−1 at a common endpoint, linking cni−1 to the corresponding
β points of ν(cni−1) little copies of T − Ti

• extend τ̃ to each little copy of T − Ti according to the definition of τ̃
on T − Ti

An example of such a construction is drawn in Figure 4.6. We call again T̃
this extension. Notice that we still have τ̃(T̃ ) = T . Consider T̃ and its image
T as if they belong to two different copies of S2, say respectively S1 and S2.

We may carry on the construction of a ramified covering f which extends
continuously τ̃ as in Lemma 4.10. Define a cyclicly ordered set A2 of disjoint
(except at c∞) Jordan arcs in S2 − T (except at endpoints) linking c∞ to
each endpoint in T (see Figure 4.6). Furthermore, by Riemann’s mapping
theorem and Carathéodory’s theorem, define a cyclicly ordered set A1 of
disjoint (except at c∞) Jordan arcs in S1−T̃ (except at endpoints) linking c∞
to each preimage by τ̃ of endpoint in T (see Figure 4.6). Now extend τ̃ to each
Jordan arc in A1 by homeomorphism, and then to each connected component
of S1 − (T̃ ∪ A1) (which is a topological disk) by Schönflies’ theorem.
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The cyclic orders on A1, A2 and around each branching point ensure
that we get a ramified covering f : (S1 = S

2) → (S2 = S
2). Moreover the

associated ramification portrait of f is R except possibly for the local degree
at c∞. Actually it remains to prove that |A1| = deg(R)|A2|.

Since the number of Jordan arcs in A2 is equal to the number of endpoints
in T and every endpoint in Ti except one (the point c0) is an endpoint of T
we have:

|A2| = (n1 − 1) + (n2 − 1) + · · ·+ (nN − 1)

= n−N (4.3)

where n = n1 + n2 + · · ·+ nN is the number of points in P −{c∞} (compare
with Figure 4.6 where N = 3, n = 3 + 4 + 3 and |A2| = 7).

Now for every i ∈ {1, 2, . . . , N}, consider the subset Ai
1 of Jordan arcs in

A1 linking c∞ to a vertex in Ti or a vertex in a little copy of T −Ti. Remark
that for every such a little copy of T −Ti, there are exactly |A2| − (ni − 1) =
n−N − ni +1 Jordan arcs linking c∞ to a vertex of this little copy. Use the
notations from the proof of Lemma 4.10 to denote the vertices of Ti.

(a) a vertex cj0,ℓ where ℓ ∈ {1, 2, . . . , ni − 1} and j ∈ {1, 2, . . . , ν(c0) − 1}
is an endpoint of exactly one Jordan arc in A1 if and only if ℓ 6= ni − 1
(since τ̃(cj0,ℓ) = cℓ+1 with the notation cni

= c0)

(a’) a vertex cj0,ni−1 where j ∈ {1, 2, . . . , ν(c0)−1} is an endpoint of exactly

one little copy of T − Ti if and only if j 6= ν(c0)− 1 (since c
ν(c0)−1
0,ni−1 is an

endpoint of the original T − Ti)

(b) a vertex cjk,ℓ where k ∈ {1, 2, . . . , ni − 2}, ℓ ∈ {0, 1, . . . , ni − 1} − {k}
and j ∈ {1, 2, . . . , ν(ck) − 1} is an endpoint of exactly one Jordan arc
in A1 if and only if ℓ 6= ni − 1

(b’) a vertex cjk,ni−1 where k ∈ {1, 2, . . . , ni−2} and j ∈ {1, 2, . . . , ν(c0)−1}
is an endpoint of exactly one little copy of T − Ti

(c) a vertex cjni−1,ℓ where ℓ ∈ {0, 1, . . . , ni − 2}, j ∈ {1, 2, . . . , ν(cni−1)− 1}
is an endpoint of exactly one Jordan arc in A1

(d) a vertex ck where k ∈ {0, 1, . . . , ni − 2} is an endpoint of exactly ν(ck)
Jordan arcs in A1

(e) the vertex cni−1 is an endpoint of exactly ν(cni−1) little copies of T −Ti
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Using Proposition 3.7, we deduces

|Ai
1| = (ni − 2)(ν(c0)− 1)︸ ︷︷ ︸

(a)

+(ν(c0)− 2)(n−N − ni + 1)︸ ︷︷ ︸
(a’)

+

ni−2∑

k=1


(ni − 2)(ν(ck)− 1)︸ ︷︷ ︸

(b)

+(ν(ck)− 1)(n−N − ni + 1)︸ ︷︷ ︸
(b’)




+(ni − 1)(ν(cni−1)− 1)︸ ︷︷ ︸
(c)

+

ni−2∑

k=0

ν(ck)︸ ︷︷ ︸
(d)

+ ν(cni−1)(n−N − ni + 1)︸ ︷︷ ︸
(e)

= (ni − 1)

ni−1∑

k=0

(ν(ck)− 1) +

ni−1∑

k=0

(ν(ck)− 1)(n−N − ni + 1)

+(ni − 1)

= (n−N)(deg(Ri)− 1) + (ni − 1)

Remark that Proposition 3.7 implies

N∑

i=1

(deg(Ri)− 1) = deg(R)− 1

It follows from (4.3):

|A1| =
N∑

i=1

|Ai
1|

= (n−N)
N∑

i=1

(deg(Ri)− 1) +
N∑

i=1

(ni − 1)

= (n−N)(deg(R)− 1) + (n−N)

= deg(R)|A2|

Consequently the local degree of the ramified covering f at c∞ is deg(R) as
required (compare with Figure 4.6 where |A1| = 63 = 9 × 7 = deg(R)|A2|).
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4.3 Generalization

We will not need a result more general than Theorem 4.12 in this thesis.
However we may easily adapt our construction to ramified covering realizing
more complicated ramification portrait as it is suggested in the following
example.

Example 4.13. Consider the continuous and piecewise affine map fana|R de-
fined in Example 3.15. Let Tana be the planar tree formed by the set of ver-
tices Vana = {c′2, c1, c0, c

′
0, c2, c

′
1} and the real segments linking them together

as edges. fana|R induces on Tana a dynamical tree Tana whose local degree
function on vertices is given by that one of Rana. Recall this ramification
portrait:

c0
2 // c1

1 )) c2
1

ii c∞ 3hh

c′2
1

55 c′1
1uu

c′02
oo

Notice that the post-critical points c1 and c′1 each have three preimages
counted with multiplicity whereas c2 and c′2 each have only one. So we

consider the extension T̃ana = (T̃ana, τ̃ana, δ̃ana) of Tana defined as follows (see
Figure 4.7)

Figure 4.7: The extension T̃ana

• add two extra vertices a1 ∈ [c0, c
′
0] and b1 ∈ [c′0, b2] corresponding to

two preimages of c2 by fana (see Figure 3.1)

• add two extra edges ec0,a′1 and ec0,b′1 linking c0 to two extra vertices a′1
in the lower half plane and b′1 in the upper half plane

• define τ̃ana : ec0,a′1 → ec1,c′2 = [c′2, c1] and τ̃ana : ec0,b′1 → ec1,c′2 = [c′2, c1] to
be homeomorphisms, in particular τ̃ana(a

′
1) = τ̃ana(b

′
1) = c′2
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Now consider T̃ana and its image by τ̃ana as if they belong to two different
copies of S2 (recall that we identify C with S

2 − {c∞}), say respectively S1

and S2 (see Figure 4.8).

Figure 4.8: The construction of fana

We may define six Jordan arcs in S2−τ̃ana(T̃ana) (except for the endpoints)
linking c∞ to each post-critical points c′2, c1, c2 and c′1 as in the proof of
Lemma 4.10 (by Riemann’s mapping theorem and Carathéodory’s theorem).
In this way, S2 is divided into six topological disks. We may do likewise in
S1−T̃ana in order to get eighteen (deg(Rana)×6) topological disks (see Figure

4.8). Now define fana to be equal to τ̃ana on T̃ana and to be an homeomorphism

from each Jordan arc in S1 linking c∞ to v ∈ Ṽana to the corresponding Jordan
arc in S2 linking c∞ to τ̃ana(v) = fana|R(v) (do it carefully in order to respect
the cyclic order of Jordan arcs around c∞). Finally extend homeomorphically
fana on each topological disk by Schönflies’ theorem.

Such a construction provides a ramified covering fana which realizes the
ramification portrait Rana as required.



Chapter 5

Analytical obstructions

Now we would like to discuss the realization by some rational maps of ramifi-
cation portrait already realized by some ramified coverings. The main tool is
the Thurston’s characterization of post-critically finite rational maps stated
by W. P. Thurston in 1982. We will present this very powerful theorem
in holomorphic dynamical systems after some required definitions and the
readers are referred to [DH93] for a proof. Then we will discuss how we
may simplify this criterion in polynomial case with Levy cycles (according
to works in [Lev85]). In particular we will extend a result from [Lev85] to
non-post-critically finite rational maps providing to simplify many Thurson-
like characterization. For instance we will give a criterion about polynomials
with one fixed bounded-type Siegel disk by using a result from [Zha08].

5.1 Thurston equivalence

At first we establish some standard notations to write up the aim of this
chapter.

Definition 5.1 (Thurston map). A Thurston map is an orientation-preserving
ramified covering f : S2 → S

2 whose post-critical set Pf is finite: |Pf | <∞.

Remark that every ramified covering considered in the previous chapter
is actually a Thurston map.

Definition 5.2 (Thurston equivalence). Two Thurston maps f and g are
said Thurston equivalent, or combinatorially equivalent, if there exist
two orientation-preserving homeomorphisms ϕ0 and ϕ1 of S2 such that
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(i) the following diagram commutes

S
2

ϕ1 //

f
��

S
2

g
��

S
2

ϕ0
//
S
2

(ii) ϕ0(Pf ) = ϕ1(Pf ) = Pg

(ii) ϕ0 is isotopic to ϕ1 relative to Pf , that is there exists an isotopy Φ :
[0, 1] × S

2 → S
2, (t, .) 7→ Φ(t, .) = ϕt from ϕ0 to ϕ1 such that its

restriction on Pf is constant with respect to t (in particular, ϕ0|Pf
=

ϕ1|Pf
)

We will write f ∼T g in this case.

Proposition 5.3. We have the following properties

1. ∼T is an equivalence relation on the set of Thurston maps.

2. If two Thurston maps are Thurston equivalent then their associated
ramification portraits are similar.

In particular if a Thurston equivalence class of a Thurston map contains a
rational map then the associated ramification portrait of the given Thurston
map is realized by the rational map as required. The Thurston theorem
(Theorem 5.9) characterizes these classes by a topological criterion.

Proof of Proposition 5.3. There is no difficulty for the first statement. For
the second one, let f and g be two Thurston maps and assume they are
Thurston equivalent. Using the notations of Definition 5.2, call β the restric-
tion of the homeomorphism ϕ1 to the set Ωf ∪Pf , that is β = ϕ1|Ωf∪Pf

. Then
β is a bijection starting from Ωf ∪ Pf and β(Pf ) = Pg. Since ϕ0 ◦ f = g ◦ ϕ1

and ϕ0, ϕ1 are homeomorphisms we get

∀x ∈ S
2, degloc(f)(x) = degloc(g)(ϕ1(x))

As a consequence β(Ωf ) = ϕ1(Ωf ) = Ωg proving that β is a bijection from
Ωf∪Pf to Ωg∪Pg. Finally, β satisfies exactly Definition 3.9 for the associated
ramification portraits Rf and Rg since β|Pf

= ϕ1|Pf
= ϕ0|Pf

.

Nevertheless the converse of the second statement of Proposition 5.3 is
false as we will see in the following example.
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Example 5.4. Consider the ramification portrait of polynomial type below.

c0
2 // c1

1 // c2

1

gg c∞ 2hh

If this ramification portrait is associated to a polynomial of the form z 7→
z2 + c (we fix c∞ = ∞, c0 = 0 and c1 = c) then the complex parameter c is a
root of the equation (c2+c)2+c = 0. This equation has four roots: one trivial
root c = 0 which does not correspond to the ramification portrait above (oth-
erwise c0 = c1 = c2), one real negative root called cairplane ≈ −1.755 and two
complex conjugated roots called crabbit ≈ −0.123+0.745i and ccorabbit = crabbit.
We denote by fairplane, frabbit and fcorabbit the corresponding quadratic poly-
nomials. Hence we get three ramification portraits associated, all similar to
the ramification portrait above. But we will see from the unicity part of
Thurston’s theorem 5.9 that those three quadratic polynomials cannot be
Thurston equivalent to each other since they are not conjugated by Möbius
transformations (every quadratic polynomial is conjugated by Möbius trans-
formations to a unique map of the form z 7→ z2 + c).

In fact, fairplane, frabbit and fcorabbit are the only polynomials, up to con-
jugation by Möbius transformations, which realize the ramification portrait
above. Moreover applying the Levy’s theorem 5.17, any Thurston map which
realizes the ramification portrait above is Thurston equivalent to one of those
three quadratic polynomials. For instance taking a Dehn twist T around the
two non-critical points c1 and c2 of frabbit (i.e. a homeomorphism which is
the identity map outside an annulus A surrounding c1 and c2 and is conju-
gated on A to the map (r, z) 7→ (r, ze2iπr) on [0, 1]× S

1), we get a Thurston
map Tm ◦ f for every m ∈ Z which is Thurston equivalent to one of fairplane,
frabbit and fcorabbit. The question of which one was asked by J. H. Hubbard
(see the Hubbard’s twisted rabbit problem in [Pil03]) and was answered by L.
Bartholdi and V. Nekrashevych in [BN06] using iterated monodromy groups.

In [Kam01] the author uses an orientation-preserving argument in order
to give another example of two polynomials with the same associated rami-
fication portrait but which are not Thurston equivalent.

Those examples lead to discuss how to make ramification portraits more
restrictive in order to precise the meaning behind prescribed dynamics. We
postpone this discussion to the next chapter (see Definition 6.5 and following
remarks) where we will define combinatorial data which catch more informa-
tion about dynamical properties.
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5.2 Thurston obstructions

We follow the definitions and notations from [DH93]. For every ramified
covering, we denote by Pf = Pf the closure of its post-critical set but we
keep the notation Pf in case f is a Thurston map.

Definition 5.5 (multi-curve). Let f be a ramified covering. A Jordan curve
γ is called non-peripheral if each connected component of S2 − γ contains at
least two points of Pf . A multi-curve Γ = {γ1, γ2, . . . , γn} is a finite set of
disjoint, non-homotopic and non-peripheral Jordan curves in S

2 − Pf .

Notice that there exist an infinite number of multi-curves as soon as
|Pf | > 4 but:

Lemma 5.6. Any multi-curve of a Thurston map f contains at most |Pf |−3
curves.

Proof of Lemma 5.6. The result is clearly true for small values of |Pf |. As-
sume by induction that it is true for every post-critical set of cardinality
smaller than a fixed integer p > 6. Let Γ be a multi-curve of a Thurston
map f satisfying |Pf | = p. We may assume that there exists a curve γ0 ∈ Γ
such that each connected component of S2−γ0 contains at least three points
of Pf (adding such a curve in Γ if necessary). We denote by D1 and D2

the two distinct connected components of S
2 − γ0 and by x2, y2, z2 three

points in Pf ∩ D2. Γ is the union of {γ0} together with two disjoint multi-
curves Γ1 = {γ ∈ Γ / γ ⊂ D1} and Γ2 = {γ ∈ Γ / γ ⊂ D2}. Remark
now that (Pf ∩ D1) ∪ {x2, y2} may be seen as a new post-critical set Pg

of a Thurston map g (existence of g is ensured by discussions in Chap-
ter 4). Moreover |Pg| < |Pf | (since z2 ∈ Pf − Pg) and {γ0} ∪ Γ1 is a
multi-curve associated to the post-critical set Pg. By induction hypothe-
sis we get 1 + |Γ1| 6 (|Pf ∩ D1| + 2) − 3. We may likewise prove that
1 + |Γ2| 6 (|Pf ∩D2|+ 2)− 3. Finally

|Γ| = 1 + |Γ1|+ |Γ2| 6 |Pf ∩D1|+ |Pf ∩D2| − 3 = |Pf | − 3

Since every ramified covering f : S2 → S
2 is of finite degree and f(Pf ) ⊂

Pf , each connected component δ of the preimage of a Jordan curve γ in
S
2−Pf is still a Jordan curve in S2−Pf and the degree of the map f|δ : δ → γ

is finite. That justifies the following definition.
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Definition 5.7 (Thurston linear transformation). Let f be a ramified cov-
ering and Γ = {γ1, γ2, . . . , γn} be a multi-curve. For every pair of integers
i, j ∈ {1, 2, . . . , n} denote by δαi,j the connected components of f−1(γj) ho-
motopic to γi in S

2 −Pf (where we index the components by α) and dαi,j the
degree of the map f|δαi,j : δ

α
i,j → γj. The Thurston linear transformation

fΓ : RΓ → R
Γ is defined as follows

fΓ(γj) =
∑

i,α

1

dαi,j
γi

with the convention that the value of the empty sum is zero. We denote by
FΓ = (

∑
α

1
dαi,j

) its associated n-square matrix called the transition matrix.

Notice that there is only a finite number of possible transition matrices
for a Thurston map f of given number of post-critical points |Pf | and given
degree d since the order of a transition matrix is less than |Pf |−3 (see Lemma
5.6) and the number of terms in the sum for each entry and every degree dαi,j
are less than d.

Since transition matrix has non-negative entries, there is an eigenvalue of
largest modulus which is real and non-negative (see Perron-Frobenius theo-
rem B.7 and Corollary B.8 in appendix).

Definition 5.8 (Thurston obstruction). Let f be a ramified covering. For
every multi-curve Γ, we denote by λ(fΓ) the largest non-negative eigenvalue
of the associated Thurston linear transformation. Any multi-curve Γ with
λ(fΓ) > 1 is called a Thurston obstruction.

The Thurston’s topological characterization of rational maps is the fol-
lowing.

Theorem 5.9 (Thurston’s topological characterization). A Thurston map
with hyperbolic orbifold is Thurston equivalent to a rational map if and only
if it has no Thurston obstruction. In that case, the rational map is unique
up to conjugation by a Möbius transformation.

Some remarks:

• The notion of orbifold can be found in [DH93]. We just mention that
if a Thurston map f has a non-hyperbolic orbifold then |Pf | 6 4 and
every example in this thesis has a hyperbolic orbifold.

• We refer the readers to [DH93] for a proof.
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• Initially Thurston obstructions are defined for stable multi-curves (see
Definition 5.10). But we will see in Proposition 5.12 that the two
definitions are equivalent.

• The Thurston’s criterion does not give an algorithm to decide if a
Thurston map is equivalent to a rational function, nor to construct
the rational map. Many attempts were made in this direction, see in
particular [Tan92], [ST00], [Kam01], [Pil03] and [BN06].

• Even if there is only a finite number of computations to do and con-
ditions to check, the Thurston’s criterion is difficult to implement nu-
merically. Indeed the action of the Thurston map f on a subset of the
fundamental group of S2 −Pf (the free group of |Pf | − 1 generators) is
needed.

• The Thurston’s criterion deals only with the post-critically finite case
but we refer the readers to [CT07] where the authors extend the Thurston’s
theorem to the sub-hyperbolic semi-rational maps (see Theorem 7.5).

We are going to show that we may restrict the criterion to special subsets
of obstructions. Recall that a n-square matrix M is reducible if there exists
a permutation matrix P (i.e. a n-square matrix that has exactly one entry 1
in each row and each column and 0’s elsewhere) such that

P−1MP =

(
A 0
∗ B

)

where A is a k-square block with 1 6 k < n.

Definition 5.10 (irreducible and stable multi-curves). Let Γ be a multi-
curve associated to a ramified covering f .

• Γ is said irreducible if the transition matrix FΓ of its associated
Thurston linear transformation is not reducible.

• Γ is said stable if for each curve γ ∈ Γ, every non-peripheral connected
component of f−1(γ) is homotopic in S

2 − Pf to a curve in Γ.

The following combinatorial characterization will be useful later.

Lemma 5.11. A multi-curve Γ = {γ1, γ2, . . . , γn} associated to a ramified
covering f is irreducible if and only if

∀i, j ∈ {1, 2, . . . , n}, ∃r > 1 and i0 = i, i1, i2, . . . , ir−1, ir = j ∈ {1, 2, . . . , n}/
∀k ∈ {1, 2, . . . , r}, ∃δik−1,ik connected component of f−1(γik)

homotopic to γik−1
in S

2 − Pf
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As a consequence for any curve γ in an irreducible multi-curve Γ there exists
at least one connected component of the preimage f−1(Γ) which is homotopic
to γ in S

2 − Pf .

Proof of Lemma 5.11. By definition of the Thurston linear transformation fΓ
(Definition 5.7), the existence of a connected component δik−1,ik is equivalent
to the fact that the (ik−1, ik)

th entry of the transition matrix FΓ, say mik−1,ik ,
is not zero. Therefore the contrapositive claims that FΓ is reducible if and
only if there exists a pair of indices i0, j0 ∈ {1, 2, . . . , n} such that for every
integer r > 1 the (i0, j0)

th entry of the matrix F r
Γ, saymr

i0,j0
, is zero. Necessity

follows from

P−1F r
ΓP =

(
Ar 0
∗ Br

)

where A is a k-square block with 1 6 k < n and P is a transition matrix
associated with a permutation σ ∈ Sn. Thus for every integer r > 1, the
entry mr

σ(1),σ(n) is zero. To prove sufficiency, let I be the set of integers

i ∈ {1, 2, . . . , n} such that there exists r > 1 with mr
i0,i

> 0. We may assume
that I is not empty, otherwise each entry of the ith0 row of FΓ is zero and then
FΓ is reducible (choosing P as the permutation matrix of the transposition
exchanging 1 and i0). Moreover the complement of I in {1, 2, . . . , n} is not
empty since j /∈ I. Hence with a suitable choice of a permutation matrix
P , we may assume that I = {1, 2, . . . , k} where 1 6 k < n. Now for any
i ∈ I, that is mr

i0,i
> 0 for r > 1, and any j /∈ I, if ms

i,j > 0 for s > 1 then

m
(r+s)
i0,j

> mr
i0,i
ms

i,j > 0 (because FΓ has non-negative entries) contradicting
j /∈ I. In particular we get mi,j = 0 for every i ∈ {1, 2, . . . , k} and j ∈
{k + 1, k + 2, . . . , n} proving that FΓ is reducible. For the consequence, just
take γi = γj = γ then δi0,i1 is a suitable connected component.

The following result was stated in [ST00].

Proposition 5.12. The following holds.

1. If f is a ramified covering then any Thurston obstruction contains an
irreducible Thurston obstruction.

2. If f is a Thurston map, then any irreducible Thurston obstruction is
homotopically (in S

2 −Pf) contained in a stable Thurston obstruction.

In particular a Thurston map with hyperbolic orbifold is Thurston equiv-
alent to a rational map if and only if it has no stable Thurston obstruction.

Proof of Proposition 5.12. 1. Let FΓ be the transition matrix of a Thurston
obstruction Γ = {γ1, γ2, . . . , γn}. By induction we can find a permu-
tation matrix P such that P−1FΓP is a lower block triangular matrix
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whose all blocks are irreducible. Remark that P−1FΓP is the transi-
tion matrix associated to the multi-curve Γσ = {γσ(1), γσ(2), . . . , γσ(n)}
for a certain permutation σ ∈ Sn. Therefore Γ can be considered
as a disjoint union of sub-multi-curves (Γk) such that each associated
transition matrix FΓk

is an irreducible block of P−1FΓP . Moreover
λ(fΓ) = maxk{λ(fΓk

)}, thus any Γk with λ(fΓk
) > 1 is an irreducible

Thurston obstruction.

2. Assume that Γ0 is an irreducible Thurston obstruction. Let Γ1 be the
set of all non-peripheral connected components in f−1(Γ0) quotiented
by the equivalent relation of homotopy in S

2 − Pf (keeping only non-
homotopic and non-peripheral Jordan curves). Since the curves in Γ0

are disjoint from each other, so are the curves in f−1(Γ0). Hence Γ1 is a
multi-curve. Moreover the consequence of Lemma 5.11 proves that Γ0

is homotopically contained in Γ1. By induction we can construct for ev-
ery integer k > 1 a multi-curve (Γk) as the set of non-peripheral curves
in f−1(Γk−1) up to homotopy in S

2−Pf such that Γk−1 is homotopically
contained in Γk. In particular (|Γk|) is an increasing sequence of integers
which is bounded by |Pf | − 3 as we noticed in Lemma 5.6. Thus there
exists an integer k > 1 such that |Γk| = |Γk−1| proving that Γk−1 is a
stable multi-curve which contains homotopically the Thurston obstruc-
tion Γ0. The conclusion follows with Proposition B.5 and Proposition
B.6 in appendix.

5.3 Levy cycles

Fortunately the Thurston’s criterion may be simplified in polynomial case as
we will see in this section.

Definition 5.13 (topological polynomial). A ramified covering f is a topo-
logical polynomial if there exists a critical point ω ∈ Ωf , called infinity
point, such that f−1(ω) = {ω}.

The infinity point is not necessarily unique but we can prove that there
exist at most two infinity points as soon as the degree of the ramified covering
is greater than two (the proof is similar as that one of Proposition 3.7).

Remark that the ramification portrait associated to a topological poly-
nomial is of polynomial type.
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Lemma 5.14. Let f be a topological polynomial. For any Jordan curve γ
in S

2 − Pf , if D denote the connected component of S2 − γ which does not
contain the infinity point of f then every connected component of f−1(D) is
a topological disk.

In order to simplify the Thurston’s criterion in polynomial case, the
lemma above is a key result. It will allow us to study preimages of topo-
logical disks instead of Jordan curves.

Proof of Lemma 5.14. Denote by ω the infinity point of f . At first notice
that D is well defined since ω ∈ Pf . Let W be a connected component
of f−1(S2 − D). f is a ramified covering of finite degree and S

2 − D is
a connected compact set, therefore f(W ) = S

2 − D (see Proposition A.11
in appendix). Furthermore ω ∈ S

2 − D and f−1(ω) = {ω} thus ω ∈ W .
Consequently f−1(S2 − D) has only one connected component and every
connected component of the set f−1(D) which is equal to S

2 − f−1(S2 −D)
(because of surjectivity of f) is simply connected.

Definition 5.15 (Levy cycle). Let f be a ramified covering. A multi-
curve Γ = {γ1, γ2, . . . , γn} is called a Levy cycle if for every integer j ∈
{1, 2, . . . , n}, f−1(γj) has a connected component δj−1,j homotopic to γj−1 in
S
2 − Pf (with the notation γ0 = γn) and the map f|δj−1,j

: δj−1,j → γj is of
degree one.

Proposition 5.16. Any Levy cycle is an irreducible Thurston obstruction.

Proof of Proposition 5.16. At first remark that a Levy cycle satisfies easily
the characterization of irreducible multi-curve from Lemma 5.11 (choose by
induction ik = ik−1 + 1). Let FΓ be the transition matrix associated to a
Levy cycle Γ. By definition of Levy cycle, we have FΓ > M where M is the
following non-negative permutation matrix

M =




0 1 0 . . . 0
... 0 1

. . .
...

...
...

. . . . . . 0
0 0 . . . 0 1
1 0 . . . . . . 0




The conclusion follows from the fact that the spectral radius of M is 1 and
from the monotonicity of spectral radius on the set of non-negative matrices
(see Proposition B.5 in appendix).

Initially Levy cycles are introduced to reduce the Thurston’s criterion
for quadratic ramified coverings (see [Lev85]). But they may also used to
simplify the polynomial case as we are going to see now.
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Theorem 5.17. If a topological polynomial f has a Thurston obstruction
then

1. f has a Levy cycle Γ contained in the Thurston obstruction

2. Denote by D the union over every γ ∈ Γ of connected components of
S
2−γ which do not contain the infinity point of f . The following holds

(a) D ∩ Pf 6= ∅

(b) f(D ∩ Pf ) ⊂ D ∩ Pf

(c) D ∩ Pf does not contain any critical point of f

As a consequence, there exist some post-critical points of f whose iter-
ations do not accumulate a critical point.

The following proof was inspired by discussions in [ST00] in order to make
that one from [Lev85] sharper and shorter. Actually we prove in addition
that the result holds for non-post-critically finite maps whereas the works in
[Lev85] deal only with post-critically finite maps.

Proof of Theorem 5.17. Let Γ = {γ1, γ2, . . . , γn} be a Thurston obstruction
associated to a topological polynomial f . By Proposition 5.12, we may as-
sume that Γ is irreducible. Let ω be the infinity point of f . For every integer
i ∈ {1, 2, . . . , n} denote by Di the connected component of S

2 − γi which
does not contain ω. Our first goal is to show that every topological disk Di

is disjoint from each other. For that we use the following key lemma.

Lemma 5.18. We say that a topological disk Di for a certain i ∈ {1, 2, . . . , n}
is innermost if it contains no other topological disk Di′ where i′ 6= i.

1. Assume there exist a pair of integers i, j ∈ {1, 2, . . . , n} such that

(i) Dj is innermost

(ii) there exists a connected component δi,j of f−1(γj) homotopic to γi
in S

2 − Pf

Then Di is innermost

2. For every i ∈ {1, 2, . . . , n}, Di is innermost. As a consequence the
topological disks D1, D2, . . . , Dn are pairwise disjoint.
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Proof of Lemma 5.18. 1. By contradiction assume there exists i′ 6= i such
that Di′ ⊂ Di. The consequence of Lemma 5.11 proves the existence
of an integer j′ ∈ {1, 2, . . . , n} and a connected component δi′,j′ of
f−1(γj′) which is homotopic to γi′ in S

2 − Pf . By Lemma 5.14, δi,j
(respectively δi′,j′) is boundary of a topological disk Bi,j (respectively
Bi′,j′) such that f(Bi,j) = Dj (respectively f(Bi′,j′) = Dj′). Now we
are going to use some results from planar topology (see Appendix A.1)
as it is suggested in Figure 5.1.

Figure 5.1: Nested Jordan curves in proof of Lemma 5.18

Since γi′ is non-peripheral and homotopic to δi′,j′ in S
2−Pf , there exists

at least one point x ∈ Pf which belongs to Di′∩Bi′,j′ (see Lemma A.6).
But Di′ ⊂ Di and γi is homotopic to δi,j, therefore x is also in Bi,j. In
particular we get j 6= j′ (otherwise Bi,j and Bi′,j would be disjoint as
connected components of f−1(Dj)). So δi,j and δi′,j′ are disjoint since
their images γj and γj′ are disjoint. Applying Lemma A.4, we get either
Bi,j ⊂ Bi′,j′ or Bi′,j′ ⊂ Bi,j. Furthermore γi and γi′ are not homotopic
in S

2−Pf so there exists a point y ∈ Pf which belongs to Di−Di′ . By
Lemma A.6, y belongs also to Bi,j − Bi′,j′ . Consequently Bi′,j′ ⊂ Bi,j

and, pulling forward by f , Dj′ ⊂ Dj that is a contradiction.

2. Since Γ is a finite set (here is the key argument so that the proof
still holds for the non-post-critically finite case), we may prove by in-
duction that there exists an innermost disk, say Dj. Fix an integer
i ∈ {1, 2, . . . , n}. The irreducibility of Γ implies the existence of a path
of r+1 curves γi0 = γi, γi1 , γi2 ,. . . , γir−1 and γir = γj such that for ev-
ery integer k ∈ {1, 2, . . . , r} there exists a connected component δik−1,ik

of f−1(γik) homotopic to γik−1
in S

2 − Pf (see Lemma 5.11). Apply-
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ing successively the first point, we get that Di is innermost. Finally it
follows from Lemma A.4 that every Di is disjoint from each other.

Let us come back to the proof of Theorem 5.17. Now we will discuss the
form of the transition matrix FΓ = (

∑
α

1
dαi,j

).

1. Let δαi,j and δβi,j be two distinct connected components of f−1(γj) ho-

motopic to γi in S
2 − Pf . By Lemma 5.14, δαi,j (respectively δβi,j) is

boundary of a topological disk Bα
i,j (respectively Bβ

i,j) where Bα
i,j and

Bβ
i,j are two disjoint connected components of f−1(Dj). Let x be a

point of Pf ∩Di (it exists because γi is non-peripheral). Since δαi,j and

δβi,j are homotopic to γi, x is also in the intersection Bα
i,j ∩ Bβ

i,j (see
Lemma A.6) that is impossible. Consequently, for every pair of inte-
gers i, j ∈ {1, 2, . . . , n}, there exists at most one connected component
of f−1(γj) homotopic to γi in S

2−Pf . In other words, the sum in each
entry of FΓ contains at most one term.

2. Let δi,j be a connected component of f−1(γj) and δi,k be a connected
component of f−1(γk) such that j 6= k and they are both homotopic
to γi in S

2 −Pf . By Lemma 5.14, δi,j (respectively δi,k) is boundary of
a topological disk Bi,j (respectively Bi,k) where Bi,j (respectively Bi,k)
is a connected component of f−1(Dj) (respectively f−1(Dk)). Let x be
a point of Pf ∩ Di (it exists because γi is non-peripheral). Since δi,j
and δi,k are homotopic to γi, x is also in the intersection Bi,j ∩ Bi,k

(see Lemma A.6). Hence f(x) ∈ Dj ∩ Dk but recall that Dj and
Dk are disjoints (by Lemma 5.18). Consequently, for every integer
i ∈ {1, 2, . . . , n}, there exists at most one curve γj such that f−1(γj)
has a connected component homotopic to γi in S

2−Pf . In other words,
each row of FΓ contains at most one non-zero entry.

3. Furthermore it follows from the consequence of Lemma 5.11 that each
column of FΓ contains at least one non-zero entry.

Finally, up to conjugation by a permutation matrix (that is with a suitable
choice of an order for curves in Γ), we get from the results above:

FΓ =




0 1
d1,2

0 . . . 0
... 0 1

d2,3

. . .
...

...
...

. . . . . . 0
0 0 . . . 0 1

dn−1,n
1

dn,1
0 . . . . . . 0
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Therefore λ(fΓ) = (d1,2d2,3 . . . dn−1,ndn,1)
−1 > 1. Since each dk−1,k is an

integer, they are all equal to 1 concluding the proof of the first point.
For the second one, it follows from Lemma A.6 that

∀j ∈ {1, 2, . . . , n}, f(Dj−1 ∩ Pf ) = f(Bj−1,j ∩ Pf ) ⊂ Dj ∩ Pf

with the notations D0 = Dn and B0,1 = Bn,1. Since each Dj∩Pf is not empty
(because γj is non-peripheral), the union of these sets is a nonempty set of
post-critical points which is stable after iteration of f . If one element of this
set is a critical point, say c ∈ Dj0−1, then the map f|Bj0−1,j0

: Bj0−1,j0 → Dj0

is of degree at least two (e.g. by Riemann-Hurwitz formula, see Theorem
A.12). That is a contradiction since the map f|δj0−1,j0

: δj0−1,j0 → γj0 is of
degree one.

Example 5.19. Come back to fana defined in Example 4.13. Now we are
able to prove what we claimed in Example 3.15, that is fana is not Thurston
equivalent to a polynomial. Let γ1 be a Jordan curve surrounding the edge
of Tana with endpoints c′2, c1 and γ2 be a Jordan curve surrounding the edge
of Tana with endpoints c2, c

′
1 (see Figure 5.2).

Figure 5.2: Example of a Levy cycle

If we pullback γ1, we get two preimages: one, say δ2,1, is homotopic to γ2
and the other one, say δ×,1 is not homotopic to either γ2 or γ1. We get likewise
for preimages of γ2: δ1,2 which is homotopic to γ1 and δ×,2. Furthermore, if
γ1 and γ2 are chosen small enough then they do not surround any critical
points of fana (i.e. neither c0 nor c′0). It follows that the restriction maps
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f|δ1,2 : δ1,2 → γ2 and f|δ2,1 : δ2,1 → γ1 are of degree one. Finally, the multi-
curve {γ1, γ2} is a Levy cycle for the ramified covering fana and Theorem 5.17
and Theorem 5.9 imply that fana is not Thurston equivalent to a polynomial.

The following result due to [Lev85] simplifies the Thurston’s criterion
in polynomial case. In particular that allows us to show that the maps
constructed in Theorem 4.12 are Thurston equivalent to polynomials.

Theorem 5.20 (Levy). Let f be Thurston map. Assume that f is a topolog-
ical polynomial and that every critical point of f falls after some iterations
into a periodic cycle containing a critical point. Then f is Thurston equiva-
lent to a polynomial.

Of course this condition is easier to check than to find a Thurston ob-
struction.

Proof of Theorem 5.20. The result follows from the consequence of the sec-
ond point of Theorem 5.17 in the post-critically finite case and from Theorem
5.9.

Corollary 5.21. Any N-cyclic ramification portrait of polynomial type where
N is a positive integer is realized by a polynomial.

Proof of Corollary 5.21. Apply Theorem 4.12 and then Theorem 5.20.

For a given N -cyclic ramification portrait of polynomial type R, the
Thurston class of a polynomial which realizes R is not necessarily unique.
The same remark as for Theorem 4.12 holds: two different shapes for trees
which extend as ramified coverings with associated ramification portrait R
would lead to two polynomials which are not necessarily Thurston equivalent.

5.4 Siegel rational maps

We conclude this chapter by illustrating how Levy cycles are useful in order to
give an easy to check criterion from a Thurston-like characterization. More
precisely we present a result from [Zha08] and we would like to merge it
with Theorem 5.17 to get a simple condition ensuring the existence of Siegel
rational maps with prescribed dynamics.
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We follow the notations from [Zha08].

Definition 5.22 (Siegel rational map). A Siegel rational map is a rational

map g : Ĉ → Ĉ such that

(i) g has a Siegel disk Dg with rotation number θ ∈ R, that is there exist
a topological disk Dg and a biholomorphic map φ : Dg → D such that
the following diagram is commutative

Dg
φ

//

g
��

D

z 7→ e2iπθz
��

Dg
φ

// D

(ii) ∂Dg is a quasicircle (i.e. the image of ∂D by a quasiconformal map)

(iii) Pg −Dg is a finite set

If a Siegel rational map g has a rotation number θ of bounded type (i.e.
whose associated sequence of its infinite continued fraction representation is
bounded) then ∂Dg must contain at least one critical point of g (by a result of
J. Graczyck and G. Swiatek, see [Zha08]). That justifies the second condition
in definition below.

Definition 5.23 (Siegel ramified covering of bounded type). A Siegel ram-
ified covering of bounded type is an orientation-preserving ramified cov-
ering f : Ĉ → Ĉ such that

(i) f|∆f
: z 7→ e2iπθz where ∆f is the unit disk and θ ∈ R, called the

rotation number of f , is of bounded type

(ii) ∂∆f ∩ Ωf 6= ∅

(iii) Pf −∆f is a finite set

Notice that a Siegel rational map with rotation number of bounded type
is a Siegel ramified covering of bounded type.
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Definition 5.24 (combinatorially equivalence). Two Siegel ramified cover-
ings of bounded type f and g are said combinatorially equivalent if there
exist two orientation-preserving homeomorphisms ϕ0 and ϕ1 of Ĉ such that

(i) the following diagram commutes

Ĉ

ϕ1 //

f
��

Ĉ

g
��

Ĉ

ϕ0 //
Ĉ

(ii) ϕ0(Pf ) = ϕ1(Pf ) = Pg

(iii) ϕ0 is isotopic to ϕ1 relative to Pf

(iv) ϕ0|∆f
= ϕ1|∆f

: ∆f → ∆g is holomorphic

Compare the definition above with Definition 5.2. As Thurston theorem
for the Thurston equivalence classes (see Theorem 5.9), the following result
characterizes the combinatorially equivalence classes containing a Siegel ra-
tional map.

Theorem 5.25 (Zhang Gaofei). A Siegel ramified covering of bounded type

f : Ĉ → Ĉ is combinatorially equivalent to a Siegel rational map if and only
if it has no Thurston obstruction on the outside of the rotation disk, that is
no Thurston obstruction Γ such that every curve γ ∈ Γ lies in Ĉ− (∆f ∪Pf ).

Unfortunatly this Thurston-like characterization is difficult to check in
pratical since we already remarked that we have no algorithm to decide if
there exists a Thurston obstruction.

However Theorem 5.17 allows to simplify the criterion as follows.

Theorem 5.26. Let f be a Siegel topological polynomial of bounded type.
Assume that every periodic cycles in Pf −∆f contains a critical point. Then
f is combinatorially equivalent to a Siegel polynomial.

Notice that we need the statement of Theorem 5.17 in the non-post-
critically finite case since the post-critical set of a Siegel rational map is not
finite. Actually if f is a Siegel ramified covering of bounded type then it
follows from conditions (i) and (ii) of Definition 5.23 that Pf contains ∂∆f .

Proof of Theorem 5.26. Assume by contradiction that there exists a Thurston
obstruction on the outside of the rotation disk of f . It follows from the first
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point of Theorem 5.17 that f has a Levy cycle Γ on the outside of the rota-
tion disk of f . For every γi ∈ Γ, denote by Di the connected component of
Ĉ− γi which does not contain the infinity point of f .

Assume that there exists a curve γi ∈ Γ such that Di contains the rotation
disk ∆f . Recall that ∂∆f is contained in Pf and ∂∆f contains a critical point.
Therefore Di∩Pf contains a critical point which is not possible by the second
point of Theorem 5.17.

Consequently the union D of topological disks Di over every curve γi ∈ Γ
is contained in Ĉ −∆f . Since Pf −∆f is finite, every post-critical point in
D falls after some iterations into a periodic cycle which contains a critical
point by assumption. That contredicts the second point of Theorem 5.17.

Finally there is no Thurston obstruction on the outside of the rotation
disk of f . The conclusion follows with Theorem 5.25.

Example 5.27. In order to produce Siegel topological polynomials of bounded
type which satisfy the assumption of Theorem 5.26, we may use a construc-
tion similar to that one explained in Chapter 4. For instance, Figure 5.3
shows the Julia set of a cubic Siegel polynomial coming from the gluing at
the beta point (see Lemma 4.11) of a starlike tree (see Lemma 4.10) cor-
responding to the ramification portrait of the quadratic polynomial frabbit
(see Example 5.4) together with another combinatorial data associated to
a quadratic polynomial with one fixed Siegel disk ∆ which has a rotation
number equals to the golden ratio (we may take the union of a dynamical
tree with the rotation disk as combinatorial data).

Figure 5.3: Example of cubic Siegel polynomial





Chapter 6

From a tree to a Persian carpet

We have presented different kind of obstructions occuring in realization of
prescribed dynamics by post-critically rational map. In accordance with
previous discussions, we would like now to construct a concrete example of
non-post-critically rational map whose dynamics is encoded by a sharpening
of a dynamical tree.

6.1 Weighted Hubbard trees

We will push further the discussion began in Section 4.1.

Definition 6.1 (restriction of a planar tree). Let T = (V,E) be a planar
tree and let W ⊂ V be a subset of vertices. The restriction of T determined
by W is the planar tree T [W ] = (V [W ], E[W ]) where

• V [W ] ⊂ V is the union of vertices in W together with the vertices of V
which are in the intersection of at least two Jordan arcs [v, v′]T between
vertices in W

• E[W ] is the set of Jordan arcs [v, v′]T between vertices in V [W ]

In some sense, the restriction T [W ] is the convex hull of W in T . Recall
that for every dynamical tree T = (T, τ, δ), the dynamical map τ : V → V
can be extended continuously to T (see Definition 4.3).

Proposition 6.2. Let T = (T, τ, δ) be a dynamical tree. We have:

1. For any Jordan arc [v, v′]T between vertices v, v′ ∈ V containing no
critical point of T except possibly for its endpoints,

τ([v, v′]T ) = [τ(v), τ(v′)]T
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2. For any subset of vertices W ⊂ V ,

T [τ(W )] ⊂ τ(T [W ]) ⊂ T [τ(W ∪ ΩT )]

Proof of Proposition 6.2. 1. Clearly [τ(v), τ(v′)]T ⊂ τ([v, v′]T ). Now as-
sume by contradiction that the previous inclusion is strict. Therefore
there exists an edge outside of [τ(v), τ(v′)]T which belongs to the images
of at least two edges in [v, v′]T , thus τ|[v,v′]T is not injective. Consider the
nonempty set K = {(z1, z2) ∈ ([v, v′]T )

2 / z1 6= z2 and τ(z1) = τ(z2)}.
Since τ|[v,v′]T is locally injective by assumption (see Definition 4.3), K is
a compact set. Take (z1, z2) ∈ K such that |z1 − z2| is minimal and let
z be a point in the Jordan arc [z1, z2]T distinct from z1 and z2. Notice
that τ(z) is necessarily distinct from τ(z1) = τ(z2) since |z1 − z2| is
minimal. Moreover

[τ(z1), τ(z)]T = [τ(z), τ(z2)]T ⊂ τ([z1, z]T ) ∩ τ([z, z2]T )

Hence we can find z′1 ∈ [z1, z]T distinct from z1 and z′2 ∈ [z, z2]T distinct
from z2 such that τ(z′1) = τ(z′2) contradicting the minimality of |z1−z2|.

2. Since τ is a continuous map, τ(T [W ]) is a convex subset of T containing
τ(W ), and so the convex hull T [τ(W )]. Furthermore T [W ] is the union
of Jordan arcs of the form [v, v′]T between endpoints v, v′ ∈ W∪ΩT con-
taining no critical point of T except possibly for its endpoints. There-
fore the second inclusion follows from the first part.

The proposition above justifies the following definition.

Definition 6.3 (restriction of a dynamical tree). Let T = (T, τ, δ) be a
dynamical tree and letW ⊂ V such that τ(W )∪ΩT ⊂ W . The restriction of
T determined by W is the dynamical tree T [W ] = (T [W ], τ|T [W ], δ|V [W ])
where

• T [W ] = (V [W ], E[W ]) is the restriction of the planar tree T = (V,E)
determined by W

• τ|T [W ] : T [W ] → τ(T [W ]) = T [τ(W )] ⊂ T [W ] is the restriction of the
map τ on T [W ]

• δ|V [W ] : V [W ] → N− {0} is the restriction of the map δ on V [W ]
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Actually the restriction may be seen as the inverse operation of extension
(see Definition 4.6) in the sense that T̃ is an extension of T = (T, τ, δ) where

T = (V,E) if and only if T ≃ T̃ [V ].
Recall that the set of all dynamical trees is partially ordered by � (Propo-

sition 4.7)

Theorem 6.4. Any dynamical tree has a unique minimal restriction. More-
over this dynamical tree is the restriction determined by the union of the
critical and post-critical points.

Proof of Theorem 6.4. Clearly T [ΩT ∪ PT ] is the least element in the set of
all restrictions of T .

Definition 6.5 (abstract Hubbard tree). An abstract Hubbard tree is
a minimal restriction H = T [ΩH ∪ PH] of a dynamical tree T of degree
deg(T ) = deg(H) > 2.

Example 6.6. A. Douady and J. H. Hubbard introduced Hubbard tree as-
sociated to post-critically finite polynomial in [DH84] as follows. In the filled
Julia set K(P ) of a post-critically finite polynomial P , consider Jordan arcs
such that their intersections with any Fatou component (which is necessary
associated to a super-attracting cycle) consist of the union of finitely many
internal rays. Then the Hubbard tree associated to P is the smallest closed
connected infinite union of those particular Jordan arcs which contains the
union of critical and post-critical sets of P . A. Douady an J. H. Hubbard
proved that this construction is unique and defines a topological tree, called
the Hubbard tree of P . The action of any post-critically finite polynomial
on its associated Hubbard tree provides a family of examples of abstract
Hubbard trees.

Observe that Hubbard trees of post-critically finite polynomials encode
more informations about dynamical properties than ramification portraits.
Actually A. Douady and J. H. Hubbard showed in [DH84] that two non-
conformally conjugate post-critically finite polynomials provide two different
tree structures (a Hubbard tree, a dynamics on it coming from the polynomial
and a bit of extra information) but they did not give criterion for realization.
That was done by A. Poirier in [Poi93] who considered abstract Hubbard trees
close to those of Definition 6.5 but with two more assumptions: one “angled”
dynamical property around a certain type of vertices and one expanding
condition. See also [AF00] where the authors study how much of dynamical
information about a quadratic Misiurewicz polynomial (whose critical point
is preperiodic) is captured by the Hubbard tree.
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The following particular points play important role in dynamics of ab-
stract Hubbard trees.

Definition 6.7 (Misiurewicz points of an abstract Hubbard tree). Let H =
(T, τ, δ) be an abstract Hubbard tree. A point in T =

⋃
e∈E e is said of

Misiurewicz type if it is mapped after a finite number of iterations of τ
to a periodic vertex whose corresponding cycle does not contain any critical
point.

Now we are going to equip abstract Hubbard trees with more informations
in order to encode the dynamics of some rational maps.

Definition 6.8 (weighted Hubbard tree). A weighted Hubbard tree is
the data of

• an abstract Hubbard tree H = (T, τ, δ) where T = (V,E)

• a weight function w : E → N− {0}

We denote by (H, w) such a weighted Hubbard tree.

In the following, the tree T of a weighted Hubbard tree H = (T, τ, δ) will
be considered to be embedded in R

3. So we may forget the cyclic order of
edges at a common endpoint.

Definition 6.9 (transition matrix of a weighted Hubbard tree). Let (H, w)
be a weighted Hubbard tree and E = {e1, e2, . . . , en} be the set of edges
of the associated planar tree. For every pair of integers i, j ∈ {1, 2, . . . , n}
define the following non-negative entries

hi,j =

{ 1
wH(ei)

if ej ⊂ τH(ei)

0 otherwise

The n-square matrix M = (hi,j) is called a transition matrix of (H, w).

Compare this definition with Definition 5.7. Remark that two distinct
ordering of the edges in E lead to two transition matrices that are conjugated
by a permutation matrix. Therefore the largest non-negative eigenvalue (see
Corollary B.8 in appendix) of the transition matrix is well defined and is
independent on the edge ordering. We may thus define:

Definition 6.10 (unobstructed weighted Hubbard tree). Let (H, w) be a
weighted Hubbard tree. We denote by λ(H) the largest non-negative eigen-
value of an associated transition matrix. If λ(H) < 1, we say that (H, w) is
unobstructed.



66 CHAPTER 6. FROM A TREE TO A PERSIAN CARPET

Example 6.11. Consider the weighted Hubbard tree (H, w) displayed in
Figure 6.1. The arrows depict the dynamics of the map τ , and the numbers
depict the weight function w. Hence





τ(eα,c1) = eα,c2
τ(eα,c2) = eα,c3
τ(eα,c3) = eα,c1

and





w(eα,c1) = 2
w(eα,c2) = 2
w(eα,c3) = 1

Figure 6.1: Example of unobstructed weighted Hubbard tree

Using the same order of the edges as above, we get the following transition
matrix of (H, w)

M =




0 1
2

0
0 0 1

2

1 0 0




It follows that λ(H) is the largest non-negative root of 4X3 − 1, that is
2−2/3 < 1. Therefore (H, w) is unobstructed.

6.2 Weaving by quasiconformal surgery

Consider the weighted Hubbard tree (H, w) displayed in Figure 6.2.
The abstract Hubbard tree H = (T, τ, δ) has one fixed branching point

α of Misiurewicz type and one periodic cycle of four vertices {c0, c1, c2, c3}
containing a critical point c0 of local degree δ(c0) = 2. Actually H is the
Hubbard tree associated to a quadratic polynomial of the form z 7→ z2 + c
where c ≈ −0.157+1.032i (see Example 6.6). The Julia set of this quadratic
polynomial is drawn in Figure 6.3.

We have




τ(eα,c0) = eα,c1
τ(eα,c1) = eα,c2
τ(eα,c2) = eα,c0 ∪ ec0,c3
τ(ec0,c3) = eα,c1 ∪ eα,c0

and





w(eα,c0) = 1
w(eα,c1) = 2
w(eα,c2) = 2
w(ec0,c3) = 1
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Figure 6.2: The weighted Hubbard tree (H, w)

Figure 6.3: Hubbard tree of z 7→ z2 − 0.157 + 1.032i

Using the same order for the edges of H as above, we get the following
transition matrix of (H, w)

M =




0 1 0 0
0 0 1

2
0

1
2

0 0 1
2

1 1 0 0




An easy computation shows that λ(H) is the largest non-negative root of
4X4 − 2X − 1 that is λ(H) ≈ 0.918 < 1. Thus the weighted Hubbard



68 CHAPTER 6. FROM A TREE TO A PERSIAN CARPET

tree (H, w) is unobstructed. We will discuss in Section 6.4 what it happens
for a different choice of weight function w in order that (H, w) is no longer
unobstructed.

Now consider the dynamical tree T̂ = (T̂ , τ̂ , δ̂) deduced from H by re-
moving the critical point c0 and by sending c3 to c1 instead of c0, as displayed
in Figure 6.4. In some sense, we have deleted the folding point of H.

Figure 6.4: The dynamical tree T̂ deduced from H

We equip T̂ with a weight function ŵ : Ê → N−{0} deduced from w by
removing the weight on ec0,c3 and by keeping that one on eα,c0





ŵ(eα,c3) = 1
ŵ(eα,c1) = 2
ŵ(eα,c2) = 2

In this way, we get the weighted Hubbard tree of Example 6.11. In particular
(Ĥ, ŵ) is still unobstructed.

We can easily find a rational map “encoded” by (T̂ , ŵ), that is a rational

mal which realizes the ramification portrait R̂ below where the degrees come
from the weight function ŵ on the corresponding edges.

c1
2 // c2

2 // c3

1

gg

Indeed choosing c1 = 1, c2 = ∞ and c3 = 0, this ramification portrait is
realized by the map z 7→ z2 precomposed with a Möbius transformation



CHAPTER 6. FROM A TREE TO A PERSIAN CARPET 69

which acts as a circular permutation on {0, 1,∞}:

f̂ =
(
z 7→ z2

)
◦

(
z 7→

1

1− z

)
=

(
z 7→

1

(1− z)2

)

The Julia set of f̂ is drawn in Figure 6.5. This Julia set plays an important
role in the Hubbard’s twisted rabbit problem disccussed in Example 5.4.

Figure 6.5: The Julia set of f̂

Now we are going to explain more precisely how f̂ is “encoded” by (T̂ , ŵ).

To do so, for any point c in the attracting cycle {0, 1,∞} of f̂ , consider B(c)
the connected component containing c of the immediate attracting bassin
(i.e. the set of points whose forward orbits accumulate the super-attracting
cycle containing c). A classical result in holomorphic dynamical systems

claims that f̂ ◦3
|B(c) : B(c) → B(c) is conjugated to (z 7→ z4) : D → D by a

biholomorphic map φc, called the Böttcher coordinates (the φc are unique up
to multiplication by a third root of unity), with φc(c) = 0. Furthermore the
φc together for c ∈ {0, 1,∞} make the following diagram commutative:

B(0)
φ0 //

f̂
��

D

z 7→ z
��

B(1)
φ1 //

f̂
��

D

z 7→ z2
��

B(∞)
φ∞ //

f̂
��

D

z 7→ z2
��

B(0)
φ0 // D
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Then define a map π̂ : Ĉ → T̂ = eα,c3 ∪ eα,c1 ∪ eα,c2 ⊂ C as follows

π̂ : z 7→





|φ0(z)|α + (1− |φ0(z)|)c3 ∈ eα,c3 if z ∈ B(0)
|φ1(z)|α + (1− |φ1(z)|)c1 ∈ eα,c1 if z ∈ B(1)
|φ∞(z)|α + (1− |φ∞(z)|)c2 ∈ eα,c2 if z ∈ B(∞)

α otherwise

In this way, π̂ is a continuous and surjective map such that the preimage
of each point of T̂ − {α} is an equipotential (i.e. a preimage of a circle
centered at the origin by the Böttcher coordinates). Moreover we may find

a suitable continuous extension of τ̂ : V̂ → V̂ to T̂ in Definition 4.3 in order
to make the following diagram commutative (see Figure 6.6)

⋃
B(c)

π̂ //

f̂
��

T̂

τ̂
��⋃

B(c)
π̂

// T̂

Figure 6.6: f̂ is encoded by (T̂ , ŵ)

Actually define τ̂ as follows

τ̂ : x 7→





µα + (1− µ)c1 ∈ eα,c1 if x = µα + (1− µ)c3 ∈ eα,c3
µ2α + (1− µ2)c2 ∈ eα,c2 if x = µα + (1− µ)c1 ∈ eα,c1
µ2α + (1− µ2)c3 ∈ eα,c3 if x = µα + (1− µ)c2 ∈ eα,c2

α otherwise
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Heuristically speaking, we may think of the action of f̂ on
⋃
B(c) as that

one of τ̂ on the boundary of a small “thickening” of the tree T̂ embedded in
R

3 as it is suggested in Figure 6.6.

Now we would like to construct a rational map f whose dynamics is en-
coded by the weighted Hubbard tree (H, w). To do so, we start with the

rational map f̂ and we create a kind of “folding” point c0 inside B(0) (which
corresponds to the edge eα,c3) by a surgery process. More precisely, we are

going to divide the Riemann sphere Ĉ into several pieces whose boundaries
are equipotentials, and then we will define a continuous and sufficiently reg-
ular map F : Ĉ → Ĉ which is encoded by (H, w) as a piecewise map. Finally
the quasiconformal surgery principle (see Theorem C.13 in appendix) will
provide us a rational map f as required.

Step 1 - Cutting off For every c ∈ {0, 1,∞}, denote by αc the boundary
of B(c) (recall that B(c) is a topological disk since it is biholomorphically
mapped onto the unit disk D).

We follow the notations of Definition C.4 in appendix: for any pair of
disjoint continua γ and γ′, we denote by A(γ, γ′) the unique doubly connected

component of Ĉ− (γ ∪ γ′) and by mod(γ, γ′) > 0 its modulus. In particular
if γ and γ′ are two equipotentials of levels |φc(γ

′)| < |φc(γ)| in B(c) for any
c ∈ {0, 1,∞}, then

mod(γ, γ′) =
1

2π
log

(
|φc(γ)|

|φc(γ′)|

)

Lemma 6.12. Given any positive constant C > 0, there exist five equipoten-
tials β0, β1, β2, γ−3 and γ+3 such that

(i) β0 ⊂ B(0), β1 ⊂ B(1) and β2 ⊂ B(2)

(ii) γ−3, γ+3 ⊂ B(0) and |φ0(β0)| > |φ0(γ−3)| > |φ0(γ+3)|

(iii) the following inequalities hold





mod(α1, β1) < mod(α0, β0)
1
2
mod(α2, β2) < mod(α1, β1)

1
2
mod(α0, β0) +

1
2
mod(γ−3, γ+3) < mod(α2, β2)

mod(α0, β0) + mod(α1, β1) + C < mod(γ−3, γ+3)

(6.1)

1
2
mod(α0, γ+3) < mod(α2, β2) (6.2)
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If β′
2,0, β

′
0,1, β

′
1,2, γ

′
2,−3 and γ′2,+3 denote the equipotentials which are the

respective preimages by g of β0, β1, β2, γ−3 and γ+3 then the previous in-
equalities implies (see Proposition C.5 in appendix)





|φ0(β
′
0,1)| > |φ0(β0)| > |φ0(γ−3)| > |φ0(γ+3)|

|φ1(β
′
1,2)| > |φ1(β1)|

|φ∞(β′
2,0)| > |φ∞(γ′2,−3)| > |φ∞(γ′2,+3)| > |φ∞(β2)|

The pattern of those equipotentials on Ĉ are displayed in Figure 6.7.

Figure 6.7: Equipotentials in Lemma 6.12

Proof of Lemma 6.12. Compare the inequalities (6.1) with the transition ma-
trix of the weighted Hubbard tree (H, w):

M =




0 1 0 0
0 0 1

2
0

1
2

0 0 1
2

1 1 0 0




By Corollary B.8 in appendix and since λ(H) < 1, there exists a vector
x ∈ R

4 with positive entries such that Mx < x. Let µ > 0 be large enough
such that

Mµx+




0
0
0
C


 < µx (6.3)

Let β0 ⊂ B(0), β1 ⊂ B(1) and β2 ⊂ B(2) be three equipotentials such that



CHAPTER 6. FROM A TREE TO A PERSIAN CARPET 73




mod(α0, β0)
mod(α1, β1)
mod(α2, β2)

∗


 = µx

In this way, the equipotentials β0, β1 and β2 are uniquely defined. Denote by
m > 0 the last entry of µx. The third row of the linear system of simultaneous
inequations (6.3) is 1

2
mod(α0, β0) +

1
2
m < mod(α2, β2). So, let γ−3 ⊂ B(0)

be an equipotential such that |φ0(β0)| > |φ0(γ−3)| and

1

2
mod(β0, γ−3) < mod(α2, β2)−

(
1

2
mod(α0, β0) +

1

2
m

)
(6.4)

Then mod(γ−3, γ+3) = m defines uniquely an equipotential γ+3 ⊂ B(0) such
that |φ0(γ−3)| > |φ0(γ+3)|. Now (6.3) is exactly the linear system of simulta-
neous inequations (6.1). It remains to prove (6.2) which follows from (6.4):

1

2
mod(α0, γ+3) =

1

2

(
mod(α0, β0) + mod(β0, γ−3) + mod(γ−3, γ+3)

)

< mod(α2, β2)

Step 2 - The branching piece Let D(0, β′
0,1) be the topological disk

bounded by β′
0,1 which contains 0 (see Figure 6.8).

Then define F as a holomorphic map on Ĉ−D(0, β′
0,1) by

F|Ĉ−D(0,β′
0,1)

= f̂|Ĉ−D(0,β′
0,1)

Figure 6.8: Definition of F on the branching piece
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Step 3 - Preimage of the branching piece Recall the last inequality of
the system of simultaneous inequations (6.1)

mod(α0, β0) + mod(α1, β1) + C < mod(γ−3, γ+3)

We have not fixed the value of the positive constant C yet. By a result of Cui
Guizhen and Tan Lei in [CT07] (see Lemma C.7 in appendix) there exists
C > 0 such that for every pair of equipotentials β0 ⊂ B(0) and β1 ⊂ B(1),

mod(β1, β0) < mod(α0, β0) + mod(α1, β1) + C

For this C, apply the Lemma 6.12. We get as a consequence

mod(β1, β0) < mod(γ−3, γ+3)

Therefore we can find two equipotentials β′
−3,1 and β′

+3,0 in B(0) such
that 




|φ0(γ−3)| > |φ0(β
′
−3,1)| > |φ0(β

′
+3,0)| > |φ0(γ+3)|

mod(β′
−3,1, β

′
+3,0) = mod(β1, β0)

These two equipotentials are displayed in Figure 6.9.

Figure 6.9: Realization of a preimage of the branching piece

Now define F on A(β′
−3,1, β

′
+3,0) to be any biholomorphic map such that

• F maps A(β′
−3,1, β

′
+3,0) onto A(β1, β0)

• F extends diffeomorphically to A(β′
−3,1, β

′
+3,0) mapping β′

−3,1 onto β1
and β′

+3,0 onto β0
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Step 4 - Folding We are going to realize the folding point c0 of H by
creating some critical points of F in A(β′

0,1, β
′
−3,1).

Lemma 6.13. There exists a biholomorphic map ϕ mapping A(β0, γ−3) onto
an annulus of the form Ar = {z ∈ C / r < |z| < 1

r
} where r ∈]0, 1[ and having

a diffeomorphical extension to A(β0, γ−3).

Proof of Lemma 6.13. Consider the composition map below

ϕ̃ = (z 7→ µz)◦φ0 : A(β
′
0,1, β

′
−3,1) → {z ∈ D / µ|φ0(β

′
−3,1)| < |z| < µ|φ0(β

′
0,1)|}

with µ = 1/
√

|φ0(β0)||φ0(γ−3)| and take ϕ = ϕ̃|A(β0,γ−3).

The aim is now to map the annulus Ar onto a topological disk.

Figure 6.10: Creation of some critical points

Consider the rational map (z 7→ z + 1
z
) on Ar. It has two simply critical

points 1 and -1 and it maps Ar onto an ellipse denoted by εr. Denote by p
(respectively p′) the unique preimage of the critical point 1 (respectively -1)
by ϕ.

Now let ξ be an equipotential in B(1) such that |φ1(β1)| > |φ1(ξ)| and
denote D(1, ξ) the topological disk bounded by ξ which contains 1. Let ψ be
any biholomorphic map such that ψ(εr) = D(1, ξ), ψ(2) = 1 and ψ extends
diffeomorphically to εr. All the process is resumed in Figure 6.10.

Finally define F as a holomorphic map on A(β0, γ−3) by

F|A(β0,γ−3) = ψ ◦ (z 7→ z +
1

z
) ◦ ϕ

Notice that F extends diffeomorphically to the boundary ∂A(β0, γ−3). More-
over F has now two new critical points p and p′. The first one c0 = p is sent
exactly to c1 = 1 (in the future super-attracting cycle) and the second one
p′ is sent near 1 (more precisely in D(1, ξ) ⊂ B(1)).
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Figure 6.11: Realization of the folding

On the remaining annuliA(β′
0,1, β0) andA(γ−3, β′

−3,1), just extend quasireg-

ularly F mapping A(β′
0,1, β0) and A(γ−3, β′

−3,1) onto A(β1, ξ) (see Proposition
C.12 in appendix). Figure 6.11 illustrates how F realizes a folding point at
the new critical point c0 = p.

Step 5 - End with an end It remains to define F on the topological
disk D(0, β′

+3,0) (see Figure 6.12). The main difficulty is that this domain
must contain a preimage of itself in order for F to be encoded by (H, w) as
required.

Figure 6.12: Realization of a preimage of an end

Let δ′+3,−3 be a smooth curve (i.e. the image of the unit circle S
1 by a

diffeomorphism) in A(β′
+3,0, γ+3) which does not separate β′

+3,0 and γ+3 (i.e.

they are both in the same connected component of Ĉ − δ′+3,−3). Denote by

D(δ′+3,−3) the connected component of Ĉ− δ′+3,−3 disjoint with β′
+3,0 ∪ γ+3.
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Define F on D(δ′+3,−3) to be any biholomorphic map such that

• F maps D(δ′+3,−3) onto D(0, γ−3)

• F extends diffeomorphically to D(δ′+3,−3) mapping δ′+3,−3 onto γ−3

In this way, we have realized a preimage of D(0, γ−3) (see Figure 6.12). Now
we are going to realize the mapping of the end c3 = 0 to the folding point
c0 = p.

Figure 6.13: The map F on the whole Riemann sphere

Let ζ be a smooth curve in A(β0, γ−3) which does not separate β0 and γ−3

such that the connected component of Ĉ− ζ disjoint with β0 ∪ γ−3, denoted
by D(p, ζ), contain the critical point p but not the critical point p′ (see Figure
6.13).

Define F on D(0, γ+3) to be any biholomorphic map such that

• F maps D(0, γ+3) onto D(p, ζ)

• F (0) = p

• F extends diffeomorphically to D(0, γ+3) mapping γ+3 onto ζ

Finally let P (β′
+3,0, δ

′
+3,−3, γ+3) be the remaining pair of pants bounded by

β′
+3,0, δ

′
+3,−3 and γ+3 and let P (β0, γ−3, ζ) be as well. Extend quasiregularly F

to P (β′
+3,0, δ

′
+3,−3, γ+3) mapping P (β′

+3,0, δ
′
+3,−3, γ+3) onto P (β0, γ−3, ζ) (see

Proposition C.12).

Figure 6.13 shows the entire piecewise definition of F on Ĉ.
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Final Step To sum up, we have defined piecewisely a quasiregular map
F : Ĉ → Ĉ such that

• F is holomorphic on an open subset H ⊂ Ĉ

H =
(
Ĉ−D(0, β′

0,1)
)

︸ ︷︷ ︸
Step 2

⋃
A(β′

−3,1, β
′
+3,0)︸ ︷︷ ︸

Step 3

⋃
A(β0, γ−3)︸ ︷︷ ︸

Step 4

⋃
D(δ′+3,−3) ∪D(0, γ+3)︸ ︷︷ ︸

Step 5

• F extends quasiregularly to the complement Q = Ĉ−H

Q = A(β′
0,1, β0) ∪ A(γ−3, β′

−3,1)︸ ︷︷ ︸
Step 4

⋃
P (β′

+3,0, δ
′
+3,−3, γ+3)︸ ︷︷ ︸

Step 5

• There exists an open set A ⊂ H such that F (A) ⊂ A and F ◦2(Q) ⊂ A

A = A(β0, γ−3) ∪D(1, β1) ∪D(∞, β2) ∪D(0, γ+3)

The last point is justified by the following diagram

P (β′
+3,0, δ

′
+3,−3, γ+3)

F
��

A(β′
0,1, β0) ∪ A(γ−3, β

′
−3,1)� _

��

P (β0, γ−3, ζ)� _

��

A(β0, γ−3)
� � +3 A(β′

0,1, β
′
−3,1)

F
��

D(1, β1)
� � +3 D(1, β′

1,2)

F
��

D(∞, β2)
� � +3 D(∞, γ′2,+3)

F
��

D(0, γ+3)

F

��
D(p, ζ)> ^

RZ

where the first row is the interior of Q, the framed sets are in A, fletched ar-
rows depict inclusions and doubly fletched arrows depict compact inclusions.
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We may thus apply the Shishikura’s principle on quasiconformal surgery
(see Theorem C.13 in appendix) to get a F -invariant almost complex struc-
ture. Therefore F is conjugated by a quasiconformal map (coming from the

measurable Riemann’s mapping theorem C.10) to a rational map f on Ĉ.
In particular f is still “encoded” by the weighted Hubbard tree (H, w) as
required. Notice that f is non-post-critically finite since the forward orbit of
the new critical point p′ is infinite.

6.3 Pictures

In general such a construction does not provide an algebraic formula for
the rational map we obtain. Since we add critical points by quasiconformal
surgery to some rational map, the degree increases quickly as soon as we
require a sufficiently interesting tree structure. So the algebraic relations
behind such examples are complicated to study. However the particular
weighted Hubbard tree (H, w) of the previous section is simple enough to
provide an algebraic formula for such a rational map fp depending on the
critical point p ∈ C.

Recall at first that fp realizes asymptotically (see Definition 3.12) the
ramification portrait below.

p 2 // 1
2 // ∞ 2 // 0

1

ii p′
2 ///o/o/o 1

The last arrow means that the critical point p′ is mapped in the connected
component containing 1 of the immediate attracting bassin of fp. Remark
that fp has four critical points of multiplicity one and then deg(fp) = 3 (by
Riemann-Hurwitz formula). In particular fp is of the form

fp : z 7→
az3 + bz2 + cz + d

Az3 +Bz2 + Cz +D

Since 1 is mapped to ∞ with a local degree two, the denominator may factor
as

fp : z 7→
az3 + bz2 + cz + d

(z − 1)2(C ′z +D′)

We do likewise for ∞ which is mapped to 0 with a local degree two

fp : z 7→
cz + d

(z − 1)2(C ′z +D′)



80 CHAPTER 6. FROM A TREE TO A PERSIAN CARPET

Now use the fact that fp(0) = p to get

fp : z 7→
cz + p

(z − 1)2(C ′z + 1)

It remains two informations fp(p) = 1 and f ′
p(p) = 0 which lead to two

equations satisfied by c and C ′





(1− p)2(pC ′ + 1) = p(c+ 1)

c(1− p)2(pC ′ + 1) = p(c+ 1)((1− 4p+ 3p2)C ′ − 2 + 2p)

Remark that we may easily simplify the second equation by using the first
one (luckily). Then we get the following linear system of two equations





pc− p(1− p)2C ′ = 1− 3p+ p2

c− (1− p)(1− 3p)C ′ = −2 + 2p

Finally we obtain 



c =
−1 + 4p− 6p2 + p3

2p2

C ′ =
−1 + p+ p2

2p2(1− p)

and

fp : z 7→
(1− p)

[
(−1 + 4p− 6p2 + p3)z + 2p3

]

(z − 1)2
[
(−1 + p+ p2)z + 2p2(1− p)

]

Some more computations provide an algebraic formula for the last critical
point depending on the position of the first one

p′ =
−p

(
5p4 − 10p3 + 11p2 − 6p+ 1

)
(
p2 + p− 1

)(
p3 − 6p2 + 4p− 1

)

We have proved in the previous section that there exist some choices of p
(in order to make fp(p

′) close to 1) such that fp is “encoded” by the weighted
Hubbard tree (H, w). Indeed for p ≈ −0.0005 we get the bifurcation locus
in Figure 6.14.
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Figure 6.14: The hyperbolic component of the family (fp)p∈C
inside a disk of center −0.0005 and radius 0.005

Picking a parameter p inside the big hyperbolic component, we obtain
the Julia set J (fp) in Figure 6.16 called a Persian carpet.

Observe that the Julia set of f̂ is displayed as a “watermark” or more
precisely as a buried Julia component inside J (fp) (compare with Figure
6.5). Actually this Julia component is fixed, and it’s the only one periodic
Julia component with a complicated topology. More precisely Tan Lei and
K. Pilgrim proved in [PT00] that except for this fixed Julia component and
its countable collection of preimages, every Julia component of J (fp) is a
point or a Jordan curve (see Theorem 6.14).
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Figure 6.15: The weighted Hubbard tree (H, w) which encodes fp

Figure 6.16: The Julia set of f−0.0005 which is encoded by (H, w)
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Theorem 6.14 (Tan Lei-Pilgrim). Let f : Ĉ → Ĉ be a rational map with
disconnected Julia set J (f). Denote by P ′

f the accumulation set of its post-
critical set. The following holds.

1. If P ′
f ∩J (f) is finite then every wandering Julia component is a point

or a Jordan curve.

2. If P ′
f ∩J (f) is contained in finitely many Julia components then every

wandering Julia component is either simply or doubly connected.

See also [CPT09] for a sharpening of this result.

With regards to the Fatou components, they are preimages of the imme-
diate attracting bassin of fp shown in Figure 6.17.

Figure 6.17: Some details of a Persian carpet
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6.4 Counterexample

Let us come back to the beginning of the construction in Section 6.2. Now
equip the abstract Hubbard tree H with the following weight function:





w′(eα,c0) = 1
w′(eα,c1) = 1
w′(eα,c2) = 2
w′(ec0,c3) = 1

We deduce the following transition matrix of (H, w′)

M ′ =




0 1 0 0
0 0 1 0
1
2

0 0 1
2

1 1 0 0




λ′(H) is the largest non-negative root of 2X4−2X−1 that is λ′(H) ≈ 1.130.
Thus the new weighted Hubbard tree (H, w′) is no longer unobstructed.

However we may try to carry out the same construction. The first diffi-
culty comes from Lemma 6.12 but we may overcome it. For instance, define
five equipotentials which satisfy the conditions (i), (ii) together with the
linear system of simultaneous inequations (6.1) but not the inequation (6.2)
(see Proof of Lemma 6.12).

After that all is right until the final step. There the big diagram is no
longer true. Indeed the compact inclusion D(∞, ζ2) ⊂ D(∞, δ2) which came
from the inequation (6.2) does not hold any more. So we cannot apply
the Shishikura’s principle on quasiconformal surgery and the construction
provides only a quasiregular map which is not necessarily quasiconformally
conjugated to a rational map.

Actually a result of C. T. McMullen from [McM94] implies that such a
rational map does not exist.

Theorem 6.15 (McMullen). Let f be a rational map which is not a Lattès
example (i.e. whose Fatou set F(f) is nonempty). Assume that there exists
a Thurston obstruction Γ. Then λ(fΓ) = 1 and at least one curve in the
multi-curve Γ is contained in the union of Fatou components where f is
biholomorphically conjugated to a rotation.

In our case, every critical points accumulate a super-attracting cycle and
consequently every Fatou component is a preimage of a connected component
of the immediate attracting bassin. In particular there is no rotation domain
in the Fatou set.
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Therefore the assumption of unobstructed weighted Hubbard tree is re-
quired in order to complete the construction of Section 6.2 successfully.

In particular, remark that the choice of weight function w in Section 6.2
is the simplest possible to make the abstract Hubbard tree H unobstructed.

6.5 Encoding

We conclude this section by showing how the exchanging dynamics of Julia
components induced by the rational map f constructed in Section 6.2 is
“encoded” by the weighted Hubbard tree (H, w).

Figure 6.18: Some annuli

We follow the notations from Section 6.2. We consider the following
annuli (see Figure 6.18):

• For every k ∈ {0, 1, 2}, A′
k = A(αk, β

′
k,k+1) (with the notation β′

2,3 =
β′
2,0) and Ak = A(αk, βk)

• A′
3 = A(β′

−3,1, β
′
+3,0) and A3 = A(γ−3, γ+3)

• A′
γ = A(γ′2,−3, γ

′
2,+3)

We have:

1. (topology) For every k ∈ {0, 1, 2, 3}, A′
k ⊂ Ak and A′

γ ⊂ A2.

2. (dynamics) The following restrictions are unbranched coverings:

F|A′
0
: A′

0 → A1 , F|A′
1
: A′

1 → A2 , F|A′
2
: A′

2 → A0

F|A′
γ
: A′

γ → A3 , F|A′
3
: A′

3 → A(β1, β0) ⊃ A1 ∪ A0
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Now we consider as well open sets on the associated Hubbard tree H =
(T, τ, δ). Recall that T is the union of four edges which are isometric to
four segments denoted by eα,c0 = [α, c0], eα,c1 = [α, c1], eα,c2 = [α, c2] and
ec0,c3 = [c0, c3] (see Figure 6.3).

Lemma 6.16. There exist open segments in T of the form

• For every k ∈ {0, 1, 2}, I ′k =]α, b′k,k+1[⊂ eα,ck (with the notation b′2,3 =
b′2,0) and Ik =]α, bk[⊂ eα,ck

• I ′3 =]b′−3,1, c0] ∪ [c0, b
′
+3,0[⊂ eα,c0 ∪ ec0,c3 and I3 =]g−3, c0] ∪ [c0, g+3[⊂

eα,c0 ∪ ec0,c3

• I ′γ =]g2,−3, g2,+3[⊂]b′2,0, c2[⊂ eα,c2 − I ′2

and a suitable continuous extension of τ : V → V to T in Definition 4.3 such
that

1. (topology) For every k ∈ {0, 1, 2, 3}, I ′k ⊂ Ik and I ′γ ⊂ I2.

2. (dynamics) The following restrictions are surjective affine maps:

τ|I′0 : I
′
0 → I1 , τ|I′1 : I

′
1 → I2 , τ|I′2 : I

′
2 → I0

τ|I′γ : I ′γ → I3 , τ|I′3 : I
′
3 → I1 ∪ {α} ∪ I0

3. (expansion) the set

JH = {x ∈ T / (τ ◦n(x))n>1 does not accumulate {c0, c1, c2, c3}}

is a Cantor set which is equal to

JH = {x ∈ T / ∀n > 1, τ ◦n(x) ∈ {α} ∪ I ′0 ∪ I
′
1 ∪ I

′
2 ∪ I

′
γ ∪ I

′
3}

Remark that the intersection between the Hubbard tree and the Julia set
of the quadratic polynomial in Figure 6.3 is well a Cantor set. Actually this
intersection is homeomorphic to JH and the dynamics is conjugated to τ .

Proof of Lemma 6.16. At first, we may easily consider open segments satis-
fying the assumptions together with the first condition (topology). Moreover
we may require that every new picked points on boundaries of the segments
are not in V = {α, c0, c1, c2, c3} and every inclusions in the first condition are
compact. Define τ on the new picked points by





τ(b′0,1) = b1, τ(b
′
1,2) = b2, τ(b

′
2,0) = b0

τ(b′−3,1) = b1, τ(b
′
+3,0) = b0

τ(g2,−3) = g−3, τ(g2,+3) = g+3
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Recall the definition of τ on V

τ(c0) = c1, τ(c1) = c2, τ(c2) = c3, τ(c3) = c0 and τ(α) = α

Now extend continuously τ on T by linear interpolation. We get easily the
second condition (dynamics) and we may classically check the third one (ex-
pansion) (see for instance [Bea91] or [Mil06]).

Given a point x ∈ JH, we may look at its itinerary that is the iterative
address relative to the set of intervals {I ′0, I

′
1, I

′
2, I

′
γ, I

′
3}. This motivates the

association of the following symbolic dynamical system (Σ, σ):

• Σ = {ε ∈ {0, 1, 2, γ, 3}N / ∀i ∈ N, εiεi+1 ∈ {01, 12, 20, γ3, 30, 31}}

• σ : Σ → Σ is the shift map that is ∀ε ∈ Σ, σ(ε0ε1ε2 . . . ) = ε1ε2ε3 . . .

More precisely (Σ, σ) is a subshift of finite type. Classically we may equip Σ
with a metric dΣ so that Σ is a Cantor set and σ is continuous (see [Bea91]
or Chapter 2).

Lemma 6.17. There is a continuous semi-conjugacy ψ : (Σ, σ) → (JH, τ)
that is a continuous and surjective map making the following diagram com-
mutative

Σ
σ //

ψ
��

Σ

ψ
��

JH τ
// JH

such that

(i) for every ε = ε0ε1ε2 · · · ∈ Σ we have





ψ(ε) ∈ I ′ε0 ∪ {α} if ε0 ∈ {0, 1, 2}
ψ(ε) ∈ I ′γ if ε0 = γ
ψ(ε) ∈ I ′3 if ε0 = 3

(ii) ψ−1(α) = {012, 120, 201}

(iii) for any inverse image x ∈
⋃

n>1 τ
−n(α),

ψ−1(x) = {µ3012, µ3120, µ3201}

where µ ∈ {0, 1, 2, γ, 3}N is a finite word of length N > 0

(iv) for any other x ∈ JH −
⋃

n>0 τ
−n(α), ψ−1(x) is a unique point in Σ
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Proof of Lemma 6.17. We give only the main ideas of the proof. Consider
the following inverse branches (by Lemma 6.16):

(τ|I′0
)−1 : I1 → I ′0 , (τ|I′1

)−1 : I2 → I ′1 , (τ|I′2
)−1 : I0 → I ′2

(τ|I′γ )
−1 : I3 → I ′γ , (τ|I′3

)−1 : I1 ∪ I0 → I ′3

Then given any ε ∈ Σ the following intersection

+∞⋂

i=0

[
(τ|I′ε0

)−1 ◦ (τ|I′ε1
)−1 ◦ · · · ◦ (τ|I′εi−1

)−1
]
(I ′εi)

is reduced to exactly one point x in JH as decreasing sequence of nonempty
compact subsets with diameters tending to zero. Now define ψ(ε) = x and
the remaining follows.

Similarly define JH(F ) to be the set of connected components of the
following non-escaping set

{z ∈ Ĉ / ∀n > 0, F ◦n(x) ∈ Jα ∪ A′
0 ∪ A

′
1 ∪ A

′
2 ∪ A

′
γ ∪ A

′
3 −D′

3,2}

where Jα is the Julia set of f̂ (see Figure 6.5) and D′
3,2 is the unique topo-

logical disk which is mapped by F onto the connected component of the
complement of Jα containing c2 = ∞ (denoted by D(∞, α2) according to our
notations). D′

3,2 is shown in Figure 6.18.
We equip JH(F ) −

⋃
n>0 F

−n(Jα) with the Hausdorff topology coming
from the following Hausdorff metric:

∀J, J ′ ∈ JH(F )−
⋃

n>0

F−n(Jα),

dH(J, J
′) = max

{
sup
z∈J

inf
z′∈J ′

|z − z′|, sup
z′∈J ′

inf
z∈J

|z − z′|

}

We add to this topology some neighbourhoods of each component J ∈ JH(F )
mapped onto Jα after some iterations of F defined as follows

∀k > 1, V1/k(J) =

{
J ′ ∈ JH(F ) , inf

z∈J,z′∈J ′
|z − z′| <

1

k

}

In this way, JH(F ) is a topological space on where F induces a continuous
dynamical system denoted also by F : JH(F ) → JH(F ).
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Remark that the forward orbit of every component J ∈ JH(F ) does not
accumulate the attracting cycle {c0 = p, c1 = 1, c2 = ∞, c3 = 0}. But

there exist some more points in Ĉ with this property. For instance, some
components in JH(F ) have preimages by F in the forgotten topological disk
D′

3,2 or in the topological disk D(δ′+3,−3) (see Step 5 in Section 6.2). We will
not discuss the dynamics of such points in D′

3,2 ∪D(δ′+3,−3) and all of their
preimages.

Nevertheless we have the following result whose proof is similar to that
one of Lemma 6.17.

Lemma 6.18. There is a continuous semi-conjugacy φ : (Σ, σ) → (JH(F ), F )
such that

(i) for every ε = ε0ε1ε2 · · · ∈ Σ we have





φ(ε) ⊂ A′
ε0
∪ Jα if ε0 ∈ {0, 1, 2}

φ(ε) ⊂ A′
γ if ε0 = γ

φ(ε) ⊂ A′
3 if ε0 = 3

(ii) φ−1(Jα) = {012, 120, 201}

(iii) for any component J ∈ JH(F ) mapped onto Jα after some iterations
of F ,

φ−1(J) = {µ3012, µ3120, µ3201}

where µ ∈ {0, 1, 2, γ, 3}N is a finite word of length N > 0

(iv) for any other component J ∈ JH(F ), φ
−1(J) is a unique point in Σ

Recall that F is conjugated by a quasiconformal map to the rational
map f on Ĉ. Therefore the same result holds for the subset JH(f) of Julia
components of f which correspond quasiconformally to the components in
JH(F ). JH(f) is equipped with a topology induced from that one of JH(F ).
Hence we get a semi-conjugacy ϕ : Σ → JH(f) which is quasiconformally
conjugated to φ. That allows to encode every Julia components in JH(f) as
in Lemma 6.18.
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Finally the following result about the encoding of a subset of Julia com-
ponents of f folllows easily from Lemma 6.17 and Lemma 6.18 together with
Theorem 6.14.

Theorem 6.19. There is a continuous semi-conjugacy ϕ : (Σ, σ) → (JH(f), f)
such that

(i) ψ ◦ϕ−1 : (JH(f), f) → (JH, τ) is a conjugacy that is a continuous and
bijective map making the following diagram commutative

JH(f)
f

//

ψ ◦ ϕ−1

��

JH(f)

ψ ◦ ϕ−1

��
JH τ

// JH

(ii) for any Julia component J ∈ JH(f), it is a Jordan curve if and only
if ϕ−1(J) is a unique point in Σ, in other words if and only if it is not
mapped after some iterations of f onto the fixed Julia component which
corresponds quasiconformally to Jα







Chapter 7

A collection of Persian carpets

Now we would like to generalize the construction of the previous chapter
in order to get a large family of non-post-critically rational maps encoded
by weighted Hubbard trees. As a consequence, we obtain a result about
realization of some particular infinite ramification portraits. We will conclude
by some computable examples.

7.1 General construction

As the particular construction in Section 6.2, we would like to construct
piecewisely a map F . But we will use a result of Cui Guizhen and Tan Lei
instead of a quasiconformal surgery method to conclude. That allows us to
construct a map F which is required to be less regular than a quasiregular
map. Nevertheless we keep in head that the aim (the final rational map f)
is similar to that one in Section 6.2.

Step 0 - The starting data At first we need a post-critically map f̂
“encoded” by a particular weighted Hubbard tree (T̂ , ŵ) deduced from a
weighted Hubbard tree (H, w) by removing some critical points as in the
beginning of the construction in Section 6.2. In other words, we would like
to start the construction by a rational map f̂ which realizes a given finite
ramification portrait R̂. But it is not a so easy task. Actually we have
already discussed in Chapter 4 and Chapter 5 the obstructions that could
arise. In particular Corollary 5.21 ensures that we may find such a post-
critically rational map f̂ if the ramification portrait R̂ is N -cyclic where N
is a positive integer.

This assumption is not necessary. Although we have seen in Section 4.3
that we may find another sufficient condition for a larger class of ramification
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portraits which are realized by ramified coverings, the discussions in Chapter
5 showed that the analytical part of the problem does not provide an easy
to check criterion in general. Therefore we restrict here the issue to N -cyclic
ramification portraits. That will lead to a large enough family of rational
maps.

Let N be a positive integer and let R̂ be a N -cyclic ramification portrait
denoted by

c11
ν̂(c11) // c12

ν̂(c12) // . . .
ν̂(c1n1−1) // c1n1

ν̂(c1n1
)

ll

c21
ν̂(c21) // c22

ν̂(c22) // . . .
ν̂(c2n2−1) // c2n2

ν̂(c2n2
)

ll

...
...

cN1
ν̂(cN1 )

// cN2
ν̂(cN2 )

// . . .
ν̂(cNnN−1) // cNnN

ν̂(cNnN
)

ll

c∞ deg(R̂)hh

Without loss of generality, we may write the last cycle like the previous ones
with notations nN+1 = 1, cN+1

1 = c∞ and ν̂(cN+1
1 ) = deg(R̂). Notice that

(1) ∀i ∈ {1, 2, . . . , N}, ∃k ∈ {1, 2, . . . , ni} / ν̂(c
i
k) > 2

(2) ν̂(cN+1
1 ) = 1 +

∑
i∈{1,2,...,N}

(∑
k∈{1,2,...,ni}

(ν̂(cik)− 1)
)

Let f̂ be a rational map realizing the ramification portrait R̂. We follow
notations from Section 6.2: for every integers i ∈ {1, 2, . . . , N + 1} and
k ∈ {1, 2, . . . , ni} denote by B(cik) the connected component containing cik
of the immediate attracting bassin of the ith cycle and by φci

k
the associated

Böttcher coordinates. We may show as in Section 6.2 that the action of f̂ is
encoded by a weighted Hubbard tree (T̂ , ŵ), that is there exist a continuous

and surjective map π̂ : Ĉ → T̂ and a suitable continuous extension of τ̂ :
V̂ → V̂ to T̂ in Definition 4.3 such that the following diagram is commutative

⋃
B(cik)

π̂ //

f̂
��

T̂

τ̂
��⋃

B(cik) π̂
// T̂
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Indeed the weighted Hubbard tree (T̂ , ŵ) is a starlike tree, that is a tree

formed by the set of vertices V̂ = {α} ∪ (
⋃
{cik}) where α is the unique

branching point and by the set of edges E = Eα =
⋃
{eα,ci

k
} (recall that a

weighted Hubbard tree is considered to be embedded in R
3 and thus without

cyclic order of edges at a common endpoint), whose dynamics τ̂ fixes the

branching point α and acts as the dynamics σ̂ of R̂ on the ends {cik} and

whose weight function ŵ is deduced from the local degrees function ν̂ of R̂:

∀i ∈ {1, 2, . . . , N + 1}, ∀k ∈ {1, 2, . . . , ni}, ŵ(eα,ci
k
) = ν̂(cik)

Recall that we would like to construct a rational map f from f̂ which has
two new critical points inside some B(cini

), say pi and p′i. In other words, up

to relabelling the cycles in R̂, we would like to construct a rational map f
which realizes asymptotically the big ramification portrait R below

p1
ν(p1)=ν̂(c1n1

)
// c11

ν̂(c11) // . . .
ν̂(c1n1−1) // c1n1

ν(c1n1
)

ll p′1
ν(p′1)=ν(c1n1

)
///o/o/o/o/o/o/o c11

...
...

...
...

pm
ν(pm)=ν̂(cmnm

)
// cm1

ν̂(cm1 )
// . . .

ν̂(cmnm−1) // cmnm

ν(cmnm
)

ll p′m
ν(p′m)=ν(cmnm

)
///o/o/o/o/o/o/o cm1

cm+1
1

ν̂(cm+1
1 )

// . . .
ν̂(cm+1

nm+1−1)
// cm+1

nm+1

ν̂(cm+1
nm+1

)

kk

...
...

cN+1
1

ν̂(cN+1
1 )

// . . .
ν̂(cN+1

nN+1−1)
// cN+1

nN+1

ν̂(cN+1
nN+1

)

kk

where m is an integer in {1, 2, . . . , N + 1} and the waved arrows means
that the critical points p′i are mapped near ci1 (in the connected component
containing ci1 of the immediate attracting bassin of the ith cycle). We will
discuss later the new local degrees ν(pi) and ν(p′i). We should think of the
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ramification portrait R as it comes from a starting weighted Hubbard tree
(H, w) as in the beginning of the construction in Section 6.2.

This discussion leads naturally to the following definition.

Definition 7.1 (admissible weighted Hubbard tree). A weighted Hubbard
tree (H, w) is said admissible if the following conditions are satisfied.

(i) (tree shape condition) the tree T is formed by the set of vertices

V = {α} ∪




⋃

i∈{1,2,...,N+1}
k∈{1,2,...,ni}

{cik}


 ∪


 ⋃

i∈{1,2,...,m}

{pi}




and by the set of edges

E =


 ⋃

i∈{1,2,...,N+1}

Ei
α


 ∪


 ⋃

i∈{1,2,...,m}

{epi,cini
}




where Ei
α =


 ⋃

k∈{1,2,...,ni−1}

{eα,ci
k
}


 ∪ {eα,xi

}

with the notation xi =

{
pi if i ∈ {1, 2, . . . ,m}
cini

otherwise

moreover the dynamics τ on T is given by





τ(α) = α
τ(cik) = cik+1 if i ∈ {1, 2, . . . , N + 1}, k ∈ {1, 2, . . . , ni − 1}
τ(cini

) = pi if i ∈ {1, 2, . . . ,m}
τ(xi) = ci1 if i ∈ {1, 2, . . . , N + 1}

(ii) (realization condition) there exists an integer i∞ ∈ {1, 2, . . . , N+1}
such that

(0) ni∞ = 1

(1) ∀i ∈ {1, 2, . . . , N + 1} − {i∞}, ∃e ∈ Ei
α /w(e) > 2

(2) w(eα,xi∞
) = 1 +

∑
i∈{1,2,...,N+1}−{i∞}

(∑
e∈Ei

α
(w(e)− 1)

)

(iii) (Thurston condition) (H, w) is unobstructed
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Notice that we have already discussed the necessity of the Thurston con-
dition (iii) in Section 6.4.

Finally let (H, w) be an admissible weighted Hubbard tree. We consider

another weighted Hubbard tree (Ĥ, ŵ) deduced from (H, w) by removing the
critical points pi where i ∈ {1, 2, . . . ,m} according to the previous discus-

sions. We associate likewise a ramification portrait R̂ whose local degrees
function ν̂ is deduced from the weight function ŵ. Remark that the realiza-
tion condition (ii) implies that R̂ is N -cyclic. As a consequence, Corollary

5.21 provides a rational map f̂ realizing the ramification portrait R̂ as re-
quired.

Step 1 - The preexisting post-critical points At first we define a
neighbourhood of the post-critical set Pf̂ =

⋃
{cik} of f̂ as follows. For

every i ∈ {1, 2, . . . , N + 1} and every k ∈ {1, 2, . . . , ni}, let U(cik) be a small

topological disk containing cik in the immediate attracting bassin of f̂ such
that

• U(cik) are pairwise disjoint

• ∀i ∈ {1, 2, . . . , N + 1}, ∀k ∈ {1, 2, . . . , ni}, f̂
(
U(cik)

)
⊂ U(cik+1)

with the notation cini+1 = ci1. Such a collection of neighbourhoods exists
since every periodic cycle in Pf̂ is super-attracting (it contains at least one

critical point because R̂ is N -cyclic).
Now for every i ∈ {1, 2, . . . ,m} and every k ∈ {1, 2, . . . , ni}, define F on

U(cik) as a holomorphic map by the restriction map f̂|U(ci
k
). Remark that F

maps cik to cik+1 with a local degree

ν̂(cik) = ŵ(eα,ci
k
) = w(eα,ci

k
)

Do as well for every i ∈ {m+1, . . . , N,N+1} and every k ∈ {1, 2, . . . , ni}.
There are hence two kinds of remaining post-critical points:

• the folding points pi where i ∈ {1, 2, . . . ,m}

• the ending points cini
where i ∈ {1, 2, . . . ,m}

Step 2 - Foldings Now we would like to realize the folding points of H by
creating some critical points pi and p′i whose multiplicities are deduced from
the weight function w. The aim is to map an annulus onto a topological disk
(compare with Step 4 in Section 6.2). However the map (z 7→ z+ 1

z
) does no

longer realize what it is required since the degrees on the boundaries are not
necessary equal to one any more. So we need some sharpenings of that map.
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Lemma 7.2. For every pair of positive integers d, d′ ∈ N− {0}, there exists
a ramified covering G of degree d+ d′ such that

(i) G is defined on a neighbourhood of a closed annulus A(η, η′) between
two Jordan curves η and η′

(ii) G maps A(η, η′) onto a topological disk D(ξ) with a Jordan curve ξ as
boundary and η ∪ η′ onto ξ

(iii) the restriction maps G|η : η → ξ and G|η′ : η
′ → ξ are respectively of

degree d and d′

(iv) G has exactly two critical points, say q, q′, which belong to A(η, η′) and
which are respectively of multiplicity d and d′

(v) G is holomorphic on two disjoint small topological disks U(q), U(q′) ⊂
A(η, η′) containing respectively q and q′

Notice that we may then produce a rational map g which is quasicon-
formally conjugated to G (see Theorem C.13) whereas it is not so easy to
find a required algebraic formula generalizing (z 7→ z + 1

z
) with classical

methods of calculus. Furthermore this process provides in addition a better
understanding of the action of such a rational map g.

Proof of Lemma 7.2. We do not give a detailed proof, we only sketch the
construction with Figure 7.1 illustrating the piecewise definition of the map
G in the particular case where d = 3 and d′ = 2. There is no difficulty to
guess a generalization of this example for any pair of degrees.

Figure 7.1: A map G satisfying Lemma 7.2 for d = 3 and d′ = 2
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Now we may define F on a neighbourhood of every “folding” as a ramified
covering given by Lemma 7.2. More precisely, for every i ∈ {1, 2, . . . ,m}, let

A(γi, γ
′
i) ⊂ Ĉ be a small annulus between two Jordan curves γi and γ′i such

that

• A(γi, γ
′
i) is disjoint from the post-critical set Pf̂ =

⋃
{cik} of f̂

• ifD(γ′i) denote the topological disks in Ĉ−A(γi, γ
′
i) with γ′i as boundary,

then U(cini
) ⊂ D(γ′i)

• A(γi, γ
′
i) is biholomorphically conjugated to an annulus A(ηi, η

′
i) asso-

ciated to a ramified covering Gi given by Lemma 7.2 with





di = w(eα,pi) = ν̂(cini
) = ŵ(eα,cini

)

d′i = w(epi,cini
) = ν(cini

)

(7.1)

We denote by ϕi a biholomorphic map from A(γi, γi′) onto A(ηi, ηi′)
and by pi (respectively p′i) the preimage by ϕi of the critical point qi
(respectively q′i) of Gi.

Let ψi
1 be any biholomorphic map from the topological disk U(ci1) onto D(ξi)

such that ψi
1(c

i
1) = Gi(qi). Finally define F on A(γi, γ

′
i) as a ramified covering

by the following commutative diagram

A(γi, γ
′
i)

ϕi //

F|A(γi,γ′
i)

��

A(ηi, η
′
i)

Gi
��

U(ci1)
ψi
1

// D(ξi)

In particular, remark that F maps pi to ci1 with a local degree

di = w(eα,pi) = ν̂(cini
) = ŵ(eα,cini

)

and F is holomorphic in the neighbourhood of pi and p′i.

Step 3 - Endings For every i ∈ {1, 2, . . . ,m}, consider the small topo-
logical disk U(pi) = ϕ−1

i (U(qi)) ⊂ A(γi, γ
′
i) − {p′i} containing pi and let

φi : U(pi) → D be any biholomorphic map such that φi(pi) = 0. Likewise,
let ψi

ni
: U(cini

) → D be a biholomorphic map such that ψi
ni
(cini

) = 0.
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Then define F on U(cini
) by the following commutative diagram

U(cini
)

ψi
ni //

F|U(cini
)

��

D

z 7→ zd
′
i

��
U(pi)

φi // D

In particular, remark that F maps cini
to pi with a local degree

d′i = w(epi,cini
) = ν(cini

)

Step 4 - Extension Observe that we may easily improve Step 1 and Step 3
in order to extend F to the complement of a neighbourhood of

⋃
A(γi, γ′i). It

remains to define F on small annuli of the form A(βi, γi) and A(γ′i, β
′
i) where

i ∈ {1, 2, . . . ,m} and βi, β
′
i are two Jordan curves. The equalities (7.1) imply

that 



deg(F|βi
) = ν̂(cini

) = di = deg(F|γi)

deg(F|γ′
i
) = d′i = deg(F|β′

i
)

Therefore F may be extended onto every A(βi, γi) and every A(γ′i, β
′
i) as a

ramified covering without extra critical point.
To sum up, we finally obtain a ramified covering F : Ĉ → Ĉ such that

• F is holomorphic on

U =




⋃

i∈{1,2,...,N+1}
k∈{1,2,...,ni}

U(cik)


 ∪


 ⋃

i∈{1,2,...,m}

U(pi) ∪ U(p
′
i)




• the closure of the post-critical set of F is

PF =




⋃

i∈{1,2,...,N+1}
k∈{1,2,...,ni}

{cik}


 ∪


 ⋃

i∈{1,2,...,m}

{pi}




∪


 ⋃

i∈{1,2,...,m}

{F ◦n(p′i) / n > 1}




• PF ⊂ U

The third point follows from the construction since the forward orbit
of each critical point p′i where i ∈ {1, 2, . . . ,m} accumulates the super-
attracting periodic cycle pi, c

i
1, p

i
2, . . . , p

i
ni

.
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Step 5- A powerful theorem We are going to conclude the construction
(that is to get a rational map f from the ramified covering F ) by using a
Thurston-like characterization which generalizes Theorem 5.9 for a larger set
of ramified coverings which contains F . We follow the notations from [CT07].

Definition 7.3 (sub-hyperbolic semi-rational map). Let F : Ĉ → Ĉ be an
orientation-preserving ramified covering. Denote by P ′

F the accumulation set
of its post-critical set. We say that F is a sub-hyperbolic semi-rational
map if the following conditions hold

(i) P ′
F is finite

(ii) F is holomorphic in a neighbourhood of P ′
F

(iii) every periodic points in P ′
F are either attracting or super-attracting

Definition 7.4 (combinatorially equivalence). Two sub-hyperbolic semi-rational
maps F and G are said combinatorially equivalent if there exist two
orientation-preserving homeomorphisms ϕ0 and ϕ1 of Ĉ such that

(i) the following diagram commutes

Ĉ

ϕ1 //

F
��

Ĉ

G
��

Ĉ

ϕ0 //
Ĉ

(ii) ϕ0(PF ) = ϕ1(PF ) = PG

(iii) ϕ0 is isotopic to ϕ1 relative to PF

(iv) ϕ0 is holomorphic on a neighbourhood of P ′
F

Compare the definition above with Definition 5.2. Notice that ϕ0 and ϕ1

are actually equal on a neighbourhood of P ′
F (by the isolated zero theorem)

and then realize a local conformal conjugacy.
The Thurston-like characterization for sub-hyperbolic semi-rational map

is the following.

Theorem 7.5 (Cui Guizhen-Tan Lei). A sub-hyperbolic semi-rational map
F with P ′

F 6= ∅ is combinatorially equivalent to a rational map if and only if
it has no Thurston obstruction. In that case, the rational map is unique up
to conjugation by a Möbius transformation.

Compare this result with Theorem 5.9. We refer the readers to [CT07]
for a proof.
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Final Step Let us come back to our construction. Remark at first that the
map F we have constructed is well a sub-hyperbolic semi-rational map as we
noticed in Step 4. By Theorem 7.5, it is thus enough to check that F has
no Thurston obstruction in order to prove the existence of a rational map as
required. Indeed if follows from a Corollary of Theorem 7.5 in [CT07] that
the Thurston condition (iii) in Definition 7.1 ensures that F has no Thurston
obstruction.

Finally, we have proved in particular:

Theorem 7.6. For every admissible weighted Hubbard tree (H, w) there ex-
ists a rational map f such that

(i) f realizes asymptotically the big ramification portrait below

p1
w(eα,p1 ) // c11

w(e
α,c11

)
// . . .

w(e
α,c1

n1−1
)

// c1n1

w(e
p1,c

1
n1

)

ii p′1

w(e
p1,c

1
n1

)
///o/o/o/o/o/o/o c11

...
...

...
...

pm
w(eα,pm ) // cm1

w(eα,cm1
)

// . . .
w(eα,cm

nm−1
)

// cmnm

w(epm,cmn1
)

ii p′m
w(epm,cmnm

)
///o/o/o/o/o/o/o cm1

cm+1
1

w(e
α,c

m+1
1

)
// . . .

w(e
α,c

m+1
nm+1−1

)

// cm+1
nm+1

w(e
α,c

m+1
nm+1

)

gg

...
...

cN+1
1

w(e
α,c

N+1
1

)

// . . .
w(e

α,c
N+1
nN+1−1

)

// cN+1
nN+1

w(e
α,c

N+1
nN+1

)

gg

where the waved arrows mean that the critical points p′i are mapped
near ci1 (in the connected component containing ci1 of the immediate
attracting bassin of the ith cycle)

(ii) the Julia set J (f) is disconnected
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7.2 Mandelbrotesque carpets

Consider the abstract Hubbard tree H = (T, τ, δ) displayed in Figure 7.2.

Figure 7.2: The abstract Hubbard tree H

It has one fixed branching point α of Misiurewicz type and two periodic
cycle of vertices: one fixed end c0 and one periodic cycle {c′0, c

′
1} of period

two containing a critical point c′0. We have




τ(eα,c0) = eα,c0
τ(eα,c′0) = eα,c′0 ∪ ec′0,c′1
τ(ec′0,c′1) = ec′0,c′1

Equip H with a weight function w. Using the same order for the edges
of H as above, we get the following transition matrix of (H, w)

M =




w(eα,c0)
−1 0 0

0 w(eα,c′0)
−1 w(eα,c′0)

−1

0 0 w(ec′0,c′1)
−1




In particular λ(H) is the largest reciprocal of the weights. Therefore the
weighted Hubbard tree (H, w) is unobstructed if and only if every weight is
at least two.

For instance consider the weight function w which is equal to two on each
edge. Then the weighted Hubbard tree (H, w) is admissible and consequently
there exist a rational map hp depending on the parameter p ∈ C realizing
asymptotically the ramification portrait below.

0 2ee 1
4 // ∞

2

bb p 2 ///o/o/o ∞
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The last arrow means that the critical point p is mapped in the connected
component containing ∞ of the immediate attracting bassin of hp. Remark
that hp has three critical points of multiplicity one and one critical point
of multiplicity three, so deg(hp) = 4 (by Riemann-Hurwitz formula). In
particular hp is of the form

hp : z 7→
az4 + bz3 + cz2 + dz + e

Az4 +Bz3 + Cz2 +Dz + E

Since 1 is mapped to ∞ with a local degree four, the denominator may factor
as

hp : z 7→
az4 + bz3 + cz2 + dz + e

(z − 1)4

In particular

hp :
1

z
7→

(a− 1) + (b+ 4)z + (c− 6)z2 + (d+ 4)z3 + ez4

(1− z)4
+ 1

Since ∞ is mapped to 1 with a local degree two, it follows a = 1 and b = −4

hp : z 7→
z4 − 4z3 + cz2 + dz + e

(z − 1)4

An easy computation gives the derivative function of hp

f ′
p : z 7→ −

2(c− 6)z2 + (2c+ 3d)z + (d+ 4e)

(z − 1)5

Since 0 and p are critical points of hp we get the following two equations





d+ 4e = 0

−
2c+ 3d

2(c− 6)
= p

⇒





d = −4e

c =
12p− 3d

2p+ 2
= 6

(
p+ e

p+ 1

)

hp : z 7→
z4 − 4z3 + 6

(
p+e
p+1

)
z2 − 4ez + e

(z − 1)4
(7.2)

It remains the information hp(0) = 0 which lead to e = 0

hp : z 7→
z2

[
z2 − 4z + 6

(
p

p+1

)]

(z − 1)4
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We know that there exist some choices of p (in order to make hp(p) close
to ∞) such that hp is encoded by the weighted Hubbard tree (H, w). Indeed
for p ≈ −1 we get the bifurcation locus in Figure 7.3. Picking a parameter p
inside the big hyperbolic component, we obtain the Julia set J (hp) in Figure
7.4.

Observe that every Julia component of J (hp) is a point or a Jordan curve
(by the result of Tan Lei and K. Pilgrim, see Theorem 6.14).

Figure 7.3: The hyperbolic component of the family (hp)p∈C
inside a disk of center −1 and radius 0.15

Figure 7.4: A Persian carpet with a disk motif
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Now fixing such a value for the critical point p, we may vary the image of
the critical point 0 in order that 0 is no longer fixed. Denote by e the image
of 0. The asymptotic ramification portrait is now

0
2 // e 1

4 // ∞

2

bb p 2 ///o/o/o ∞

Actually we have already computed an algebraic formula for the rational map
he seen now as depending on the parameter e ∈ C (see (7.2)):

he : z 7→
z4 − 4z3 + 6

(
p+e
p+1

)
z2 − 4ez + e

(z − 1)4

For e ≈ 0 we get the bifurcation locus in Figure 7.5. The big hyperbolic
component containing the parameter e = 0 is the main cardioid of a copy
of the Mandelbrot set. Then this copy provides several different kind of
rational maps with disconnected Julia sets, encoded by different admissible
weighted Hubbard tree (see Figure 7.6 and Figure 7.7). Actually we may
find parameter such that the associated rational map is still “encoded” by a
weighted Hubbard tree which is no longer admissible (see Figure 7.8).

Figure 7.5: The hyperbolic component of the family (he)e∈C (p = −1.001)
inside a disk of center 0 and radius 0.0005
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Figure 7.6: A Persian carpet with a rabbit motif

Figure 7.7: Another Persian carpet with a quadratic motif
(compare with Figure 6.3)

Figure 7.8: A Persian carpet with a dendrite motif



Chapter 8

Concluding remarks: future works

Theorem 6.18 gives a conjugacy of the rational map f on a subset JH(f) of
Julia components. But it seems that the induced continuous and surjective
map, say π, from

⋃
J∈JH(f) J onto the Hubbard tree H may be continuously

extended to the whole Riemann sphere Ĉ (compare with the map π̂ defined
in Section 6.2). Unfortunatly, it is difficult to define precisely π on each piece
constructed in Section 6.2, especially on D′

3,2 and D(δ′+3,−3) which contains
some Julia components as we explained in Section 6.5. Another possible way
to show this is to begin a new construction in a abstract way in order to get a
sub-hyperbolic semi-rational map which is already “encoded” by the weighted
Hubbard tree (H, w). Nevertheless, Theorem 7.5 provides only a combinato-
rially equivalence, not a topological equivalence as required. Therefore that
will remain some works to conclude. This issue is linked to a question occur-
ring naturally at the end of Chapter 7: how to encode precisely the dynamics
of the constructed rational maps by the weighted Hubbard tree behind ?

We have also to generalize the construction from Chapter 7 to more com-
plicated tree than those of Definition 7.1. More precisely, we may at first try
to enlarge the realization condition (ii) by extending Theorem 5.21. To do
so, we have to generalize Theorem 4.12 as we already discussed in Section
4.3 (topological part) and to consider only the ramified coverings without
Thurston obstruction (analytical part). Such a generalization seems reason-
able and it is suggested by Figure 7.8. We may also try to enlarge the tree
shape condition (i). That would be done by using Theorem 7.5 in a more
general situation.
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Furthermore several question occurs naturally in the way of studying the
dynamics of rational maps with disconnected Julia set. In order to know how
much of dynamical informations is captured by the weighted Hubbard tree,
here is a list of issues:

• What about the unicity ? More precisely, if two rational maps are
encoded by a same weighted Hubbard tree, are they quasiconformally
conjugated ?

• What about the converse problem ? If a rational map has a discon-
nected Julia set, is it always possible to find a weighted Hubbard tree
structure behind ?

The second guess seems to be true at least for sub-hyperbolic semi-rational
map.



Appendix A

Topological tools

This appendix gathers all the topological facts required.

A.1 Plane Topology

We would like to prove two lemmas which were used several times in this
thesis. As many other results in plane topology, both are consequence of the
powerful Jordan’s theorem. We will also recall some classical definitions and
results.

Definition A.1 (Jordan arc and Jordan curve). Let X be a topological
space. A Jordan arc between two points a, b ∈ X is the image of the unit
segment [0, 1] by a homeomorphism ℓ : [0, 1] → X such that ℓ(0) = a and
ℓ(1) = b. A Jordan curve in X is the image of the unit circle S

1 by a
homeomorphism γ : S1 → X. We will write only ℓ (respectively γ) to denote
a Jordan arc (respectively a Jordan curve) when there is no ambiguity.

Theorem A.2 (Jordan’s curve theorem). The complement of any Jordan
curve γ in S

2 consists of two distinct connected components and γ is the
boundary of each component.

There exist several proofs of this fundamental result in plane topology
(using complex analysis, or Brouwer’s fixed point theorem, or graph the-
ory,...). The following classical sharpening discuss the topological nature of
connected components in the complement of a Jordan curve.

Theorem A.3 (Schönflies’ theorem). Let γ : S1 → S
2 be a Jordan curve

in S
2 and denote by D a connected component of S

2 − γ. Then there is a
homeomorphism γ̃ : D → D which extends γ on the whole unit disk.
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Lemma A.4. Fix a point ω in S
2. Let γ (respectively γ′) be a Jordan curve

in S
2 and denote by D (respectively by D′) the connected component of S2−γ

(respectively S
2 − γ′) which does not contain ω. Then

{
γ ∩ γ′ = ∅
D ∩D′ 6= ∅

⇒ D ⊂ D′ or D′ ⊂ D

Proof of Lemma A.4. Let x be in the intersection D ∩ D′. Since γ is con-
nected and disjoint from γ′, the Jordan’s curve theorem applied to γ′ implies
either γ ⊂ D′ or γ ⊂ S

2 − D′. In the second case, we get γ ∩ D′ = ∅ and
then the connected set D′ is necessarily in the connected component of S2−γ
which contains x, that is D′ ⊂ D. So we may assume γ ⊂ D′ and γ′ ⊂ D
by symmetry. In particular γ and γ′ are not contained in the boundary of
D ∪D′. Furthermore this boundary is contained in ∂D ∪ ∂D′ which is equal
to γ ∪ γ′ by the Jordan’s curve theorem. Finally D ∪ D′ = S

2, that is a
contradiction with the existence of the point ω.

Definition A.5 (homotopic Jordan curves). Let P ⊂ S
2 be a finite set. Two

Jordan curves γ0 and γ1 in S
2 − P are said homotopic in S

2 − P if there
exists a homotopy ϕ : [0, 1]× S

1 → S
2 − P, (t, .) 7→ ϕ(t, .) from ϕ(0, S1) = γ0

to ϕ(1, S1) = γ1 where ϕ(0, .) and ϕ(1, .) are homeomorphisms.

Notice that the distinction between a homeomorphism and its image to
define a Jordan curve is important in definition above. For instance, the
homeomorphisms e2iπθ 7→ e2iπθ and e2iπθ 7→ e−2iπθ are not homotopic in
Ĉ−{0,∞} (with identification of S2 and Ĉ as topologic manifolds) but they
define the same Jordan curve.

Lemma A.6. Let P be a subset of S2. Let γ (respectively γ′) be a Jordan
curve in S

2 − P and let D (respectively D′) be a connected component of
S
2−γ (respectively S

2−γ′). If γ and γ′ are homotopic in S
2−P then D∩P

is equal to either D′ ∩ P or (S2 −D′) ∩ P .

In order to prove the lemma above, we will need the following useful tool.

Definition A.7 (winding number). Let φ : S1 → C be a continuous function
and a be a point in C − φ(S1). We can rewrite φ : e2iπt 7→ a + r(t)e2iπθ(t)

where r : [0, 1] →]0,+∞[ and θ : [0, 1] → R are required to be continuous.
The winding number of φ around a, denoted by Indφ(a), is the integer

Indφ(a) = θ(1)− θ(0)

and it does not depend on choice of continuous function θ : [0, 1] → R.
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Recall some results about the winding number.

Proposition A.8. We have the following properties.

1. The winding number is continuous: for every continuous function φ :
S
1 → C, Indφ is constant on each connected component of C− φ(S1).

2. The winding number is constant on the homotopy classes: for every
continuous functions φ0, φ1 : S

1 → C, and every point a ∈ C−(φ0(S
1)∪

φ1(S
1)), if there exists a homotopy ϕ : [0, 1] × S

1 → C − {a}, (t, .) 7→
ϕ(t, .) from ϕ(0, .) = φ0 to ϕ(1, .) = φ1 then Indφ0(a) = Indφ1(a).

3. The winding number of a Jordan curve γ on C is equal to 1 or -1 on
the bounded connected component of C − γ and 0 on the unbounded
connected component.

Let us come back to the Lemma A.6.

Proof of Lemma A.6. We may assume that P 6= ∅ and, by Jordan’s curve
theorem, (S2−D)∩(S2−D′)∩P 6= ∅ (exchanging D with S

2−D and D′ with
S
2−D′ if necessary). We have thus to prove that D∩P = D′∩P . Let ω be a

point in the intersection (S2−D)∩(S2−D′)∩P and identify S
2−{ω} with C

as topological manifolds. Now compare Indγ and Indγ′ at every point a ∈ P−
{ω}. Since γ and γ′ are homotopic in S

2 − {a}, if follows Indγ(a) = Indγ′(a)
from the second point of Proposition A.8. Moreover Indγ(a) (respectively
Indγ′(a)) is not equal to 0 if and only if a ∈ D (respectively a ∈ D′) by the
third point of Proposition A.8. The conclusion follows.

A.2 Ramified coverings

We would like to recall the definition of ramified coverings together with some
classical results. We refer the readers to [Dou05] for deeper discussions.

Definition A.9 (ramified covering). Let U1 and U2 be two toplogical mani-
folds of real dimension two (not necessarily equipped with a Riemann surface
structure). A continuous function f : U1 → U2 is a ramified covering if for
every y ∈ U2 there exists a connected neighbourhood D(y) such that

• f−1(D(y)) is a nonempty union (possibly finite) of pairwise disjoints
connected open sets

f−1(D(y)) =
⋃

k>1

B(xk)
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• for every integer k > 1, there exist a positive integer dk > 1 and two
charts (i.e. homeomorphisms) ϕk : B(xk) → D and ϕ : D(y) → D such
that ϕk(xk) = 0, ϕ(y) = 0 and the following diagram commutes

B(xk)
ϕk //

f
��

D

z 7→ zdk
��

D(y)
ϕ

// D

The integer dk is called the local degree of f at xk and it is denoted by
degloc(f)(xk). Furthermore if degloc(f)(xk) > 1, we say that xk is a criti-
cal point of f of multiplicity degloc(f)(xk) − 1. Finally an unbranched
covering is a ramified covering without critical point.

Definition A.10 (orientation-preserving ramified covering). Let f : U1 →
U2 be a ramified covering between two orientable topological manifolds of
real dimension two. f is said orientation-preserving if for every pair of
charts ϕ1 : V1 → D and ϕ2 : V2 → D in Definition A.9 where V1 ∩ V2 is
nonempty, the transition map

ϕ1,2 = (ϕ2 ◦ ϕ
−1
1 )|ϕ1(V1∩V2) : ϕ1(V1 ∩ V2) → ϕ2(V1 ∩ V2)

is orientation-preserving (where D ⊂ C comes with the usual counterclock-
wise orientation).

Proposition A.11. Let f : U1 → U2 be a ramified covering between two
topological manifolds of real dimension two. The following holds.

1. The critical points of f are isolated points in U1.

2. There exists d ∈ N ∪ {∞}, called the degree of f , such that

∀y ∈ U2,
∑

x∈U1
f(x)=y

degloc(f)(x) = d

In particular f is a surjective map.

3. For every connected open set V2 ⊂ U2 and every V1 connected compo-
nent of f−1(V2), f|V1 : V1 → V2 is a ramified covering.

4. In case d <∞, for every connected compact set K2 ⊂ U2 and every K1

connected component of f−1(K2), f(K1) = K2.
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The following powerful result makes a link between ramification and al-
gebraic topology.

Theorem A.12 (Riemann-Hurwitz formula). Let V1 and V2 be two connected
open sets in S

2. Denote by m1 (respectively m2) the number of connected
components in S

2 − V1 (respectively S
2 − U2). If f : U1 → U2 is a ramified

covering of degree d ∈ N then

m1 − 2 = d(m2 − 2) + r where r =
∑

x∈V1

(degloc(f)(x)− 1)

As a consequence, a rational map R : Ĉ → Ĉ of degree d > 1 has exactly
2d− 2 critical points counted with multiplicity.
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Linear algebra

We would like to recall in this appendix some classical definitions and results
in linear algebra, notably the Perron-Frobenius theorem. All these results
are needed in the discussion around the Thurston’s theorem (Chapter 5).
We will not give proofs, except for the last corollary which justifies crucial
Definition 5.8 and Definition 6.10.

Definition B.1 (spectral radius). The spectral radius of a matrix M ∈
Mn(C), denoted by ρ(M) is the largest modulus of its eigenvalues.

ρ(M) = max{|λ| / λ ∈ Sp(M)}

In other words, the spectral radius is the largest modulus of roots of the
characteristic polynomial: χM(X) = det(M −XIn) ∈ Cn[X]. From the fact
that polynomial roots depend continuously on coefficients, we get:

Proposition B.2. For any matrix norm ‖.‖ on Mn(C), the spectral radius
is a continuous function from (Mn(C), ‖.‖) to (R, |.|).

Theorem B.3 (Gelfand’s formula). For any matrix norm ‖.‖ on Mn(C),
we have:

∀M ∈ Mn(C), ρ(M) = lim
k→∞

‖Mk‖
1
k

Definition B.4 (positive or non-negative matrices). A matrix is said pos-
itive, respectively non-negative, if all its coefficients are positive, respec-
tively non-negative. For two matrices A,B ∈ Mn(C) we write A 6 B if the
matrix B − A is non-negative.

Proposition B.5. The spectral radius is increasing on the set of non-negative
matrices.

∀A,B ∈ Mn(R+), A 6 B ⇒ ρ(A) 6 ρ(B)
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Proposition B.6. Let M ∈ Mn(R+) be a non-negative matrix. The spectral
radius of any square sub-block Mi,j ∈ Mk(R+) is less than the spectral radius
of M .

ρ(Mi,j) 6 ρ(M) where M =




∗ ∗ ∗
∗ Mi,j ∗
∗ ∗ ∗




Theorem B.7 (Perron-Frobenius theorem). Let M be a positive matrix.
Then ρ(M) is an eigenvalue of M and it is the only one with the largest
modulus. Moreover there exists an associated eigenvector with positive en-
tries.

Corollary B.8. Let M be a non-negative matrix. Then ρ(M) is an eigen-
value of M . Moreover for every ε > 0 there exists a vector y with positive
entries such that My 6 (ρ(M) + ε)y.

Proof of Corollary B.8. Denote by (mi,j) the entries of M . For every integer
k > 1, let Mk be the positive matrix of coefficients (mi,j+

1
k
). By the Perron-

Frobenius theorem, there exists a positive eigenvector vk associated to the
eigenvalue ρ(Mk). Denote by xk =

vk
‖vk‖

the normalized vector for any vector

norm ‖.‖ on R
n. Since the set S = {x ∈ R

n / ‖x‖ = 1} is compact, we can
extract a sub-sequence (xϕ(k)) which tends to a non-negative vector x ∈ S.
Moreover limk→∞Mk =M and limk→∞ ρ(Mk) = ρ(M) because of continuity
of spectral radius (Proposition B.2). Finally we get

Mx = lim
k→∞

Mϕ(k)xϕ(k) = lim
k→∞

ρ(Mϕ(k))xϕ(k) = ρ(M)x

Now let k > 1 be large enough such that the inequality ρ(Mϕ(k)) 6 ρ(M)+ ε
holds. The result follows with y = xϕ(x).
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Complex analysis

This last appendix gathers some classical results in complex analysis which
were often used in this thesis.

C.1 Riemann’s mapping theorem

Theorem C.1 (Riemann’s mapping theorem). If U is a topological disk in

the Riemann sphere, that is a nonempty simply connected open subset of Ĉ
whose complement contains at least two points, then there exists a biholo-
morphic map ϕ : D → U from the unit disk onto U .

We refer the readers to [Ahl79] or any other lecture about complex anal-
ysis for a proof. Notice that up to precomposition by an automorphism of
D, that is a map of the form

D → D, z 7→ eiθ
z − a

1− |a|z
where eiθ ∈ ∂D and a ∈ D

we may always prescribe the image of 0 and the argument of ϕ′(0) (actually

the map ϕ is unique for given (ϕ(0), ϕ′(0)
|ϕ′(0)|

) ∈ U × ∂D).
This powerful result has several consequences in many fields of mathe-

matics. In particular it provides a classification of all the simply connected
open subsets of Ĉ (and likewise for any Riemann surface). There are some
kinds of generalization. We are going to present two of them. At first the
question of extension on the boundary of the unit disk as in the following
result.

Theorem C.2 (Carathéodory’s theorem). Let U be a topological disk in Ĉ

with a locally connected boundary ∂U . Then any biholomorphic map ϕ : D →
U extends continuously to the unit circle: ϕ̃ : D → U .
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Secondly consider the same problem for doubly connected domains. We
have the following classical results.

Theorem C.3. Let U be a topological disk in Ĉ and let K be a connected and
relatively compact subset of U which contains at least two points. Then there
exists a unique r ∈]0, 1[ such that U −K is biholomorphically conjugated to
the annulus {z ∈ C / r < |z| < 1}.

That justifies the following definition.

Definition C.4 (modulus of annulus). Let γ and γ′ be two disjoint continua
in the Riemann sphere, that is two nonempty compact connected subsets
of Ĉ. We denote by A(γ, γ′) the unique doubly connected component of

Ĉ − (γ ∪ γ′). The modulus of the annulus A(γ, γ′) is the unique positive
number mod(γ, γ′)> 0 such that A(γ, γ′) is biholomorphically conjugated
to the annulus

{z ∈ C / r < |z| < 1} where r = e−2πmod(γ,γ′) ⇔ mod(γ, γ′) =
1

2π
log

(
1

r

)

By extension we write mod(A) for every annulus A.

Proposition C.5. Let f : A1 → A2 be a conformal map of degree d > 1
between two annuli A1, A2 ⊂ Ĉ. Then

mod(A1) =
1

d
mod(A2)

Theorem C.6 (Grötzsch’s inequality). Let A ⊂ Ĉ be an annulus and A1, A2 ⊂
A be two disjoint annulli such that the two connected components of the
boundary of A are neither in the same connected component of Ĉ − A1 nor
in the same connected component of Ĉ− A2. Then

mod(A1) + mod(A2) 6 mod(A)

The following useful result is due to Cui Guizhen and Tan Lei. An
equipotential in a topological disk U ⊂ Ĉ is the image of a round circle
{z ∈ D / |z| = r} where r ∈]0, 1[ by any biholomorphic map ϕ : D → U .

Lemma C.7 (Inverse Grötzsch’s inequality). Let U1 and U2 be two disjoint

topological disks in Ĉ whose boundary are respectively denoted by α1 and
α2. Then there exists a positive constant C > 0 such that for every pair of
equipotentials γ1 ⊂ U1 and γ2 ⊂ U2 the following inequalities hold

mod(α1, γ1) + mod(α2, γ2) 6 mod(γ1, γ2) 6 mod(α1, γ1) + mod(α2, γ2) + C

The left hand side is the classical Grötzsch’s inequality. The right hand
side is a consequence of Koebe 1/4-theorem. We refer the readers to [CT07]
for a complete proof.



APPENDIX C. COMPLEX ANALYSIS 119

C.2 Quasiconformal surgery

A. Douady, J. H. Hubbard and D. Sullivan were the first to understand the
power of quasiconformal maps in holomorphic dynamical systems. These
maps allowed in particular to prove the Sullivan’s non-wandering domains
theorem or the sharpest value of the number of non-repelling cycles by M.
Shishikura. It is now a standard tool. We would like to present a brief
overview of this theory, especially the quasiconformal surgery method. The
readers are refered to [Ahl06] for more overall presentation of quasiconformal
maps and to [Bea91], [CG93] or [BM01] for proofs of classical results in
holomorphic dynamical systems using the quasiconformal surgery method.

If a map ϕ : C → C is differentiable, we denote by ϕx and ϕy its partial
derivatives and we use the following standard differential operators:

{
ϕz =

1
2
(ϕx − iϕy)

ϕz =
1
2
(ϕx + iϕy)

Observe that if ϕ is holomorphic then

{
ϕz = ϕ′(z)
ϕz = 0

The generalization of these equations is the Beltrami equation:

ϕz = µ(z)ϕz (C.1)

where µ is some suitable complex function.

Definition C.8 (almost complex structure). Let U be a domain in the Rie-

mann sphere, that is a nonempty open connected subset of Ĉ. An almost
complex structure on U is a Lebesgue measurable function µ: U → C such
that ‖µ‖∞ < 1.

Definition C.9 (quasiconformal map). Let U be a domain in Ĉ. A home-

omorphism ϕ : U → Ĉ is a quasiconformal map if ϕ is a solution of the
Beltrami equation (C.1) for an almost complex structure µ on U , called the
dilatation or the Beltrami coefficient of ϕ. Moreover if

‖µ‖∞ 6 k < 1

then ϕ is said to be a k-quasiconformal map.

If ϕ is differentiable at z ∈ U , the preimage of a circle by the differential
dϕ(z) = ϕzdz + ϕzdz is an ellipse whose the argument of the major axis is
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1
2
(π+arg(µ)) and the ratio of major to minor axis is 1+|µ|

1−|µ|
. So the dilatation

µ of a quasiconformal map ϕ may be seen as an infinitesimal ellipse field.
Moreover ϕ is k-quasiconformal means that the “stretching” (i.e. the ratio of
major to minor axis of infinitesimal ellipse) of ϕ is uniformally bounded:

1 6
1 + |µ|

1− |µ|
6

1 + k

1− k

The following result provides a positive answer for the question of the
existence of solutions for Beltrami equation (C.1).

Theorem C.10 (measurable Riemann’s mapping theorem). Let µ be an

almost complex structure on a domain U in Ĉ. Then there exists a quasicon-
formal map ϕ : U → Ĉ with dilatation µ.

Moreover it is shown that there is uniqueness up to postcomposing by
a biholomorphic map. Notice that for U simply connected (whose comple-
ment contains at least two points) and µ identically zero we get the classical
Riemann’s mapping theorem (see Theorem C.1).

Definition C.11 (quasiregular map). Let U be a domain in Ĉ. A map

F : U → Ĉ is said quasiregular on V ⊂ U if for every z ∈ V , F is
holomorphic or quasiconformal on a neighbourhood of z.

Notice that if F is quasiregular on a compact set K then there exists
a positive number k < 1 such that for every z ∈ K, F is holomorphic or
k-quasiconformal on a neighbourhood of z.

Proposition C.12. Let U be a domain in Ĉ and let K be a connected and
relatively compact subset of U whose boundary is the union of a finite number
of disjoint smooth curves (i.e. the image of the unit circle S

1 by a diffeomor-

phism). Let f : U −K → Ĉ be a holomorphic map which extends diffeomor-
phically to the boundary ∂K. Then f extends to U by a quasiregular map
without critical points in K.

The proposition above was used in this thesis in order to define piecewisely
some quasiregular maps. That is not the most general statement, but we did
not require more.

The very useful following result was stated by M. Shishikura in [Shi87]
and it is the basic principle of the quasiconformal surgery method.
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Theorem C.13 (Shishikura’s principle on quasiconformal surgery). Assume

that a map F : Ĉ → Ĉ satisfies the following points:

• F|H : H → Ĉ is holomorphic on an open set H ⊂ Ĉ

• F extends quasiregularly to the complement Q = Ĉ−H

• there exists an open set A ⊂ H such that F (A) ⊂ A and

∃N ∈ N /F ◦N(Q) ⊂ A

Then there exists an almost complex structure µ on Ĉ which is F -invariant
(i.e. such that every infinitesimal ellipse associated to µ at z is mapped by
dF (z) to the infinitesimal ellipse associated to µ at F (z) for almost every

z ∈ Ĉ).

In particular, if ϕ : Ĉ → Ĉ is the quasiconformal map of dilatation µ given
by measurable Riemann’s mapping theorem then the map f = ϕ ◦ F ◦ ϕ−1 is
holomorphic.

The main idea of the proof of this result is to pullback infinite number
of times an infinitesimal circle field by F . Then we get an F -invariant in-
finitesimal ellipse field which is well defined since we go only a finite number
of times through Q where the “stretching” of F is uniformally bounded (it is
null elsewhere since F is holomorphic).
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