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Analyse de sensibilité de modèles spatialisés :
application à l'analyse coût-béné�ce de projets de prévention des inondations

L'analyse de sensibilité globale basée sur la variance permet de hiérarchiser les sources d'incertitude présentes dans un
modèle numérique et d'identi�er celles qui contribuent le plus à la variabilité de la sortie du modèle. Ce type d'analyse
peine à se développer dans les sciences de la Terre et de l'Environnement, en partie à cause de la dimension spatiale
de nombreux modèles numériques, dont les variables d'entrée et/ou de sortie peuvent être des données distribuées
dans l'espace. Le travail de thèse réalisé a pour ambition de montrer comment l'analyse de sensibilité globale peut
être adaptée pour tenir compte des spéci�cités de ces modèles numériques spatialisés, notamment la dépendance
spatiale dans les données d'entrée et les questions liées au changement d'échelle spatiale. Ce travail s'appuie sur une
étude de cas approfondie du code NOE, qui est un modèle numérique spatialisé d'analyse coût-béné�ce de projets
de prévention du risque d'inondation. On s'intéresse dans un premier temps à l'estimation d'indices de sensibilité
associés à des variables d'entrée spatialisées. L'approche retenue du «map labelling» permet de rendre compte de
l'auto-corrélation spatiale de ces variables et d'étudier son impact sur la sortie du modèle. On explore ensuite le lien
entre la notion d'«échelle» et l'analyse de sensibilité de modèles spatialisés. On propose de dé�nir les indices de
sensibilité «zonaux» et «ponctuels» pour mettre en évidence l'impact du support spatial de la sortie d'un modèle sur
la hiérarchisation des sources d'incertitude. On établit ensuite, sous certaines conditions, des propriétés formelles de
ces indices de sensibilité. Ces résultats montrent notamment que l'indice de sensibilité zonal d'une variable d'entrée
spatialisée diminue à mesure que s'agrandit le support spatial sur lequel est agrégée la sortie du modèle. L'application
au modèle NOE des méthodologies développées se révèle riche en enseignements pour une meilleure prise en compte
des incertitudes dans les modèles d'analyse coût-béné�ce des projets de prévention du risque d'inondation.

Mots clés : Modèle Spatialisé ; Analyse de Sensibilité ; Incertitude ; Échelle ; Géostatistique ; ACB ; Inondations ;
Dommages.

Sensitivity analysis of spatial models:
application to cost-bene�t analysis of �ood risk management plans

Variance-based global sensitivity analysis is used to study how the variability of the output of a numerical model can
be apportioned to different sources of uncertainty in its inputs. It is an essential component of model building as it
helps to identify model inputs that account for most of the model output variance. However, this approach is seldom
applied in Earth and Environmental Sciences, partly because most of the numerical models developed in this �eld
include spatially distributed inputs or outputs . Our research work aims to show how global sensitivity analysis can
be adapted to such spatial models, and more precisely how to cope with the following two issues: i) the presence of
spatial auto-correlation in the model inputs, and ii) the scaling issues. We base our research on the detailed study of
the numerical code NOE, which is a spatial model for cost-bene�t analysis of �ood risk management plans. We �rst
investigate how variance-based sensitivity indices can be computed for spatially distributed model inputs. We focus
on the “map labelling” approach, which allows to handle any complex spatial structure of uncertainty in the model
inputs and to assess its effect on the model output. Next, we offer to explore how scaling issues interact with the
sensitivity analysis of a spatial model. We de�ne “block sensitivity indices” and “site sensitivity indices” to account
for the role of the spatial support of model output. We establish the properties of these sensitivity indices under some
speci�c conditions. In particular, we show that the relative contribution of an uncertain spatially distributed model
input to the variance of the model output increases with its correlation length and decreases with the size of the spatial
support considered for model output aggregation. By applying our results to the NOE modelling chain, we also draw
a number of lessons to better deal with uncertainties in �ood damage modelling and cost-bene�t analysis of �ood risk
management plans.

Key words: Spatially distributed model; Sensitivity analysis; Uncertainty; Scale; Geostatistics; CBA; Flood; Damage.
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Ì vii

Notes au lecteur

Franglais - Frenchglish

A�n d'en permettre la lecture à l'ensemble des membres du jury, la majeure partie de ce manuscrit de
thèse a été rédigée en anglais. L'introduction est présente en deux versions, en français et en anglais.
Seuls le préambule et certaines des annexes sont uniquement rédigés en français.

Most of this thesis manuscript is written in English, so that all the thesis committee members can read it.
Only the preamble and some of the appendices are written in French.

Publications

Ce manuscrit de thèse est pour partie composé de publications dont une est parue dans « Mathematical
Geosciences » (section §4.1) et une autre est en cours d'évaluation par « Journal of Flood Risk Manage-
ment » (section §3.3). Un papier court publié dans les actes de la conférence « Accuracy 2010 » est aussi
intégré au manuscrit (section §3.2.4). D'autres publications, non intégrées au corps du document, ont été
en revanche insérées en annexe pour information. Pour vous procurer les versions �nales de ces diverses
publications, vous pouvez m'envoyer un courriel.

This thesis manuscript contains two publications, one of which has already been published in « Mathe-
matical Geosciences » (section §4.1), and the second one is currently being reviewed by « Journal of
Flood Risk Management » (section §3.3). A short paper published in the proceedings of the « Accuracy
2010 » international conference is also included (section §3.2.4). Other publications were inserted in the
Appendices for information. If you want a copy of the �nal versions of these papers, please send me an
email and I will keep you updated on the publication progress.
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Ì 2 INTRODUCTION (FRANCAIS)

Analyses d'incertitude et de sensibilité

Cependant, à mesure que la modélisation numérique prend une place prépondérante dans de nombreux
champs de la Science, un discours critique se construit et souligne les défauts et limites de cette dé-
marche (Oreskes et al. 1994). Parmi les points soulevés, ces critiques soulignent l'importance des incer-
titudes qui interviennent dans tout processus de modélisation. Ces incertitudes peuvent être liées à un
manque de connaissance sur certains des phénomènes étudiés, à la variabilité naturelle des grandeurs
représentées, à des erreurs de mesure, à des choix de modélisation simpli�cateurs ou encore à des ap-
proximations numériques (Walker et al. 2003). Elles se combinent et se propagent à travers le modèle et
entraînent une incertitude sur les résultats et indicateurs fournis par celui-ci. Lorsqu'un modèle est utilisé
comme appui à des décisions de nature opérationnelle ou stratégique, il faut alors s'interroger, comme le
soulignent Vasseure et al. (2005), sur «la valeur d'une décision basée sur des données dont la qualité est
mal connue ou mal comprise par le décideur». Les modèles spatialisés n'échappent pas à ce questionne-
ment et «quiconque utilise une information incertaine (c'est-à-dire l'écrasante majorité des utilisateurs
de données cartographiées) doit ré�échir avec attention aux sources possibles de l'incertitude et à la
manière de s'en occuper» (Fisher et al. 2005).

A�n de répondre au moins partiellement à ces dif�cultés, la communauté scienti�que a développé des mé-
thodes qualitatives et quantitatives qui permettent d'étudier comment réagissent les sorties d'un modèle à
des perturbations sur ses variables d'entrée : ce sont des méthodes regroupées sous les termes d'«analyse
de sensibilité» et d'«analyse d'incertitude». L'analyse d'incertitude se concentre sur la propagation des
incertitudes à travers le modèle, et vise à quanti�er l'incertitude résultante qui existe sur la sortie. Elle per-
met typiquement d'associer un intervalle de con�ance aux résultats fournis par un modèle. L'analyse de
sensibilité va plus loin : elle cherche à mesurer l'in�uence de l'incertitude de chacune des variables d'en-
trée sur la précision du résultat du modèle. Elle permet de hiérarchiser les variables d'entrée en fonction
de leur contribution à la variabilité de la sortie du modèle. Elle vise ainsi à identi�er les variables d'entrée
critiques, celles qui conditionnent la décision �nale de l'utilisateur du modèle, et sur lesquelles il faut
orienter les efforts de recherche futurs. Les méthodes d'analyse d'incertitude et d'analyse de sensibilité
ont peu à peu été adoptées par les modélisateurs dans différents champs disciplinaires, notamment dans
la recherche environnementale (Cariboni et al. 2007; Tarantola et al. 2002), et sont aujourd'hui recon-
nues comme des étapes essentielles dans la construction d'un modèle numérique (European Commission
2009a; CREM 2009).

Pourtant, ces méthodes d'analyse de sensibilité sont peu souvent appliquées à l'étude de modèles numé-
riques spatialisés. Parmi les raisons qui freinent leur utilisation dans ce domaine, on peut citer l'explosion
des problèmes de dimensionnalité, ainsi que le manque de maturité de certains modèles. Nous nous in-
téresserons plus particulièrement aux deux autres limites que voici : i) les données d'entrée des modèles
spatialisés présentent généralement une auto-corrélation spatiale, alors que les méthodes classiques d'ana-
lyse de sensibilité ne considèrent que des variables scalaires indépendantes ; ii) les notions d'échelle, de
support ou de résolution, qui jouent un rôle prépondérant dans les modèles spatialisés, sont ignorées dans
les cadres formels des méthodes d'analyse de sensibilité classiques. Le besoin d'adaptation des méthodes
d'analyse de sensibilité au contexte spéci�que des modèles spatialisés apparaît donc important. Naturel-
lement, des éléments de réponse ont déjà été apportés à ce problème. Ainsi on trouve dans la littérature
dédiée à l'analyse de sensibilité des travaux portant sur les variables d'entrées corrélées, mais ces études
ne s'intéressent que rarement au cas particulier de la dépendance spatiale. Par ailleurs les statistiques spa-
tiales, et plus particulièrement la géostatistique, proposent des cadres théoriques pour décrire l'incertitude
pesant sur des variables spatialisées et pour appréhender les notions d'échelle, de support ou de résolu-
tion. Elles fournissent aussi des outils pour simuler ces incertitudes. Cependant, ce corpus théorique n'a
jamais été rapproché de celui de l'analyse de sensibilité de modèles numériques.
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Un exemple : l'analyse coût-béné�ce des projets de prévention du
risque d'inondation

Nous nous sommes intéressés dans cette thèse à un exemple particulier de situation où il est fait appel
à des modèles numériques spatialisés : ce contexte est celui de l'évaluation économique des projets de
prévention du risque d'inondation.a Plus précisément, notre travail a porté sur les démarches d'analyse
coût-béné�ce (ACB) qui visent à caractériser, au moyen d'un indicateur synthétique ou spatialisé, la per-
tinence économique de projets d'aménagement de protection contre les crues (barrages, digues, etc.).
La mise en œuvre ce type d'analyse passe généralement par le développement d'un modèle numérique,
qui fait intervenir divers modules à même de décrire l'ensemble de la chaîne menant au risque d'inon-
dation (modules hydrologiques, hydrauliques, d'occupation des sols, fonctions d'endommagement). Ces
modèles numériques ont généralement une forte composante spatiale, de part la nature de leurs données
d'entrée (topographie du terrain, réseau hydrographique, carte d'occupation du sol, etc.), la nature de leurs
sorties (indicateurs de risque spatialisés), et les traitements qu'ils mobilisent (notamment des opérations
d'analyse spatiale à l'aide de logiciels SIG).

La nécessité de mieux prendre en compte les incertitudes dans les modèles d'analyse économique du
risque d'inondation, et plus particulièrement dans les études ACB appliquées aux projets de prévention
des crues, fait consensus au sein de la communauté scienti�que qui développe ces modèles (Apel et al.
2004). Les motivations pour une étude approfondie de ces incertitudes sont multiples. Dans une première
phase de développement d'un modèle, une telle étude permet au modélisateur de mieux comprendre le
comportement de l'outil qu'il construit, de faire émerger de nouvelles questions ou des pistes d'amélio-
ration. Dans une phase d'utilisation du modèle, l'analyse d'incertitude et de sensibilité peut permettre
d'améliorer la robustesse des indicateurs économiques qui sont produits, notamment en identi�ant les va-
riables d'entrée clés dont il faut au mieux préciser la valeur. En�n, dans une phase opérationnelle, la prise
en compte explicite des incertitudes permet de fournir aux utilisateurs �naux du modèle (pouvoirs pu-
blics, gestionnaires de territoire) une information plus complète pour les aider dans leur prise de décision
(Ascough et al. 2008).

On compte ainsi de nombreux travaux récents qui visent à appliquer des analyses d'incertitude et/ou
de sensibilité à tout ou partie de modèles numériques d'évaluation économique des crues. La plupart
de ces travaux se limitent à une analyse d'incertitude, dont le périmètre peut varier d'un unique «mo-
dule» du modèle complet—par exemple, l'occupation du sol (Te Linde et al. 2011), la simulation hy-
draulique (Bales and Wagner 2009), l'estimation des dommages (Merz et al. 2004)— jusqu'à la chaîne
de modélisation dans son intégralité (Apel et al. 2008). Quelques publications plus rares abordent aussi
le problème de la hiérarchisation des différentes sources d'incertitude dans ces modèles, en les soumet-
tant à une analyse de sensibilité (Koivumäki et al. 2010; de Moel and Aerts 2011; de Moel et al. 2012;
Pappenberger et al. 2008).

Cependant, trois remarques générales peuvent être formulées à l'encontre de ces études. Tout d'abord,
la majorité d'entre elles s'intéressent à la précision de l'estimation des dommages dus aux crues sur un
territoire, mais peu examinent l'incertitude qui en résulte sur les indicateurs de performance économique
des projets de prévention des crues produits dans le cadre d'une ACB. De plus, ces études ne s'appuient
que rarement sur les dernières avancées faites dans le domaine de l'analyse de sensibilité des modèles

aPour comprendre ce choix, il est nécessaire d'expliquer que ce travail de recherche a gravité autour de trois unités de recherche :
l'UMR TETIS, dont les compétences portent sur la maîtrise de la chaîne de l'information géographique ; l'UMR G-EAU, où sont
notamment développés des modèles spatialisés sur des problématiques liées à la gestion de l'eau à l'échelle des territoires ; l'Institut
de Mathématiques et de Modélisation de Montpellier (I3M), au sein duquel plusieurs travaux ont déjà été menés sur les méthodes
d'analyse de sensibilité.
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numériques, et ont le plus souvent recours à des approches naïves dont les limites sont connues—ainsi, à
notre connaissance, seuls de Moel et al. (2012) utilisent dans leurs travaux l'analyse de sensibilité globale
basée sur la décomposition de la variance du modèle, qui est pourtant largement utilisée dans d'autres
champs thématiques. En�n, elles font généralement peu de cas du caractère spatial des modèles étudiés,
et des problèmes spéci�ques que ce caractère pose pour mener une analyse de sensibilité. Deux points
sont notamment passés sous silence, à savoir les problèmes liés à la dépendance spatiale dans les données
d'entrée, et les questions relatives à l'échelle spatiale à laquelle ces modèles sont construits. Ainsi, il
apparaît possible et souhaitable de progresser encore dans la prise en compte des incertitudes dans ces
modèles dédiés à l'analyse économique du risque d'inondation, et plus particulièrement dans les études
ACB appliquées aux projets de prévention des crues.

Objectifs de la thèse

Le but de ce travail de recherche est double. Un premier objectif est de nature méthodologique : il s'agit de
proposer des méthodes d'analyse de sensibilité adaptées à l'étude de modèles numériques dont les entrées
et/ou les sorties sont spatialisées. Ces méthodes doivent permettre d'appréhender les spéci�cités de ces
modèles spatialisés, notamment la présence de dépendance spatiale dans les données et les questions liées
aux notions d'échelle. Le second objectif est de nature appliquée : il s'agit, après avoir proposé un modèle
pour décrire les études ACB appliquées aux projets de prévention du risque d'inondation, d'étudier la
propagation des incertitudes dans ce modèle, et plus précisément d'identi�er les sources d'incertitude
principales, à l'aide de méthodes d'analyse de sensibilité adaptées.

Méthode de recherche Pour tenter d'atteindre simultanément ces deux objectifs méthodologique et
appliqué, nous avons opté pour une approche essentiellement inductive. Nous nous sommes appuyés
sur l'examen approfondi d'une situation particulière : l'analyse de sensibilité d'une ACB d'un projet de
prévention des inondations dans la basse vallée de l'Orb (Hérault, France). Une première étape de notre
travail a ainsi consisté à proposer un cadre formel, baptisé NOE, pour modéliser les ACB appliquées aux
projets de prévention des crues, puis à implémenter un code numérique pour mettre en œuvre une analyse
coût-béné�ce sur le terrain d'étude de l'Orb. À partir de l'étude de ce modèle singulier, nous avons
tenté de faire émerger des questionnements, des méthodes et des énoncés plus généraux sur l'analyse de
sensibilité de modèles spatialisés. Ainsi, plus qu'un simple cas d'étude, le modèle NOE et son application
à la basse vallée de l'Orb ont servi de base à notre ré�exion : ils occupent donc une large place dans ce
mémoire de thèse.

Limites Nous avons fait le choix de restreindre notre recherche à une unique famille de méthodes d'ana-
lyse de sensibilité, celles basées sur la décomposition de la variance de la sortie du modèle («variance
based global sensitivity analysis» ou VB-GSA). Ces méthodes produisent des indices de sensibilité qui
mesurent la contribution de chaque entrée du modèle à la variabilité de la sortie, en tenant compte à la
fois de la structure (ou des équations) du modèle étudié, mais aussi de la plage de variabilité des entréesb.
Trois raisons principales motivent notre choix : i) ces méthodes ne nécessitent aucune hypothèse préa-
lable sur la nature du modèle étudié (linéarité, régularité), qui est considéré comme une simple «boîte
noire» ; ii) elles explorent largement l'espace des incertitudes sur les variables d'entrée du modèle (ca-
ractère global) ; et iii) elles décrivent non seulement l'impact des variables d'entrée incertaines prises

bElles diffèrent en ce sens des notions de sensibilité usuellement utilisées en physique, qui s'appuient uniquement sur le calcul
de dérivées partielles locales.
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une à une, mais aussi l'impact des interactions entre ces variables d'entrée. Ensuite, nous nous sommes
intéressés uniquement au cas où le modèle étudié présente des temps de calcul faibles, qui permettent
notamment de recourir à un très grand nombre de simulations dans des approches de type Monte Carlo.
Les méthodes d'analyse de sensibilité s'appuyant sur la construction d'émulateurs ou de méta-modèles
ne seront donc pas abordées dans ce mémoire. En�n, les caractéristiques du modèle NOE nous ont amené
à examiner plus particulièrement les modèles spatialisés dit «ponctuels» et «spatialement additifs» (ces
termes seront dé�nis plus loin dans ce document).

Questions de recherche Dans ce cadre restreint, des questions plus précises émergent : comment peut-
on dé�nir et estimer des indices de sensibilité basés sur la variance pour des variables d'entrées présentant
une auto-corrélation spatiale ? Quelles sont les stratégies d'échantillonnage et de simulation de ces va-
riables spatialisées les plus appropriées pour estimer leurs indices de sensibilité ? L'analyse de sensibilité
basée sur la variance permet-elle de rendre compte de manière pertinente des questions d'échelle spatiale
pour des modèles ponctuels et spatialement additifs ? Voilà les questions auxquelles nous tenterons de
répondre dans ce document.

Structure du document

Ce mémoire est composé de quatre chapitres. Nous avons pris le parti de mêler dans ces chapitres des
développements d'ordre théorique ou méthodologique et des résultats numériques obtenus sur le modèle
NOE. Deux raisons motivent ce choix : d'une part, cette articulation re�ète le déroulement réel de notre
travail de recherche, où les développements méthodologiques et appliqués se sont nourris mutuellement ;
d'autre part, cette présentation croisée permet d'enrichir la discussion en �n de chaque chapitre sur les
questions de recherche abordées. La Figure 1 en page 7 résume la structure du document.

Dans un premier chapitre, nous posons un certain nombre de dé�nitions et de notations pour mieux cerner
notre objet de recherche méthodologique que sont les modèles numériques spatialisés. Nous y présentons
également une brève revue sur les méthodes d'analyse de sensibilité en général et l'analyse de sensibilité
basée sur la variance en particulier. Une fois ces bases posées, nous formulons de manière plus détaillée
nos questions de recherche dans la conclusion de ce chapitre.

Dans un second chapitre, nous présentons le travail de modélisation qui a conduit à la constitution de notre
cas d'étude. Nous proposons d'abord un cadre de modélisation baptisé NOE pour décrire les études ACB
des projets de prévention des crues basée sur l'approche des dommages évités. Nous précisons ensuite
comment ce cadre de modélisation a été décliné sur le site d'étude particulier de la basse vallée de l'Orb.

L'objet du troisième chapitre est de proposer des méthodes pour intégrer des variables d'entrée spatiali-
sées dans l'analyse de sensibilité basée sur la variance. Une revue des approches existantes y est complétée
par une étude numérique de ces approches, par des développements sur les problèmes d'échantillonnage
des variables spatialisées dans ces approches et par l'application d'une des méthodes présentées au mo-
dèle NOE sur le terrain d'étude de l'Orb.

Le quatrième chapitre est quant à lui dédié à l'étude des liens entre les notions d'échelle spatiale (telles que
dé�nies par Blöschl and Sivapalan (1995)) et l'analyse de sensibilité basée sur la variance. On s'intéresse
plus spéci�quement à l'in�uence du support de la sortie d'un modèle spatialisé sur la hiérarchisation des
sources d'incertitude. Les développements théoriques proposés se limitent au cas des modèles ponctuels
et spatialement additifs ; ils sont illustrés par une application au modèle NOE sur le terrain d'étude de
l'Orb.
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Introduction

Spatially distributed models

According to Armatte and Dalmedico (2004), the terms “model” and “modelling” can cover diverse prac-
tices that aim “to represent a real system by a formal object allowing one to both consider and act on
this system”. In this thesis, we will use the term “model” in a very restrictive way to designate a numer-
ical code, which is considered as a “black box”, that calculates output variables based on a set of input
variables. More precisely, we limit ourselves to models that are based on a mechanistic description of
the processes under study, as opposed to those which are empirical or data-based, and of these models,
we focus solely on deterministic ones (non-stochastic). With the dramatic rise of computer performances
over the last decades, numerical modelling has expanded steadily and has now established itself as a
key activity in earth and environmental sciences. Numerical models are widely recognized as valuable
tools to describe complex physical, biological, ecological, economic or social systems, to understand
their drivers (diagnostic models), to simulate and predict their future behaviour (prognostic models), to
make informed management decisions (decision-support models), and even to defend positions during
international negotiations (on the climate or the future of world agriculture, for example). As Bouleau
et al. (2004) clearly state it, modelling has now won recognition as the main bridge between Science and
Society.

Among the numerical models used to explore environmental issues, many rely on spatially distributed
data, such as Digital Terrain Models, soil maps, land use maps, etc. (Ostendorf 2011). These models,
which we will refer to as “spatial models”, have bene�ted from the recent development of tools and
methods allowing the acquisition, structuring, exploitation and diffusion of geographic information. Sci-
entists today, like citizen and policy makers, have at their disposal a continually expanding set of spatial
environmental data, as well as an ever rising number of increasingly ef�cient tools to use these data: Ge-
ographic Information Systems (GIS), satellite images, webmapping, on-board geolocation technologies,
etc. Modellers have quickly learnt how to master these new data and tools, and now build spatial models
that allow an explicit description of the spatial structures, inter-dependencies, and dynamics involved in
the physical, biological, and anthropogenic processes under study.

Uncertainty and sensitivity analysis

However, as numerical modelling assumes a leading role in numerous scienti�c �elds, criticism highlight-
ing the weaknesses and limits of this approach has arisen (Oreskes et al. 1994). Among the points raised
is the importance of the uncertainties involved in any modelling process. These uncertainties may stem
from a lack of knowledge about some of the phenomena studied, the natural variability of the quantities
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of interest, measurement errors, model assumptions, or numerical approximations (Walker et al. 2003).
These combine together and propagate throughout the model, leading to uncertainty regarding the outputs
and indicators produced by it. When a model is used as a support tool for operational or strategic decision-
making, one must then question, as emphasized by Vasseure et al. (2005), “the value of a decision based
on data, the quality of which is unknown or poorly understood by the decision-maker”. Spatial models are
not exempt from these questions and “anyone using uncertain information—meaning the overwhelming
majority of mapped data users—should consider carefully the possible sources of uncertainty and how to
deal with them” (Fisher et al. 2005).

To adress this issue, the scienti�c community has developed qualitative and quantitative methods that
allow the study of how model outputs react when input variables are uncertain; they are usually refered
to as “uncertainty and sensitivity analysis” methods. Uncertainty analysis focuses on the propagation
of uncertainties throughout the model and aims to quantify the resulting uncertainty on the output. It
typically allows a con�dence interval to be associated with model outputs. Sensitivity analysis goes one
step further: it seeks to study how the uncertainty in a model output can be apportioned to the uncertainties
in each of the model inputs. It allows input variables to be ranked according to their contribution to the
variability of model outputs. Sensitivity analysis thus helps to identify the key input variables, those
that determine the �nal decision of the model end-user, and on which further research should be carried
out. Uncertainty analysis and sensitivity analysis methods have been gradually adopted by modellers
in different disciplinary �elds, notably in environmental research (Cariboni et al. 2007; Tarantola et al.
2002), and today are widely recognized as essential steps in model building (European Commission
2009a; CREM 2009).

However, these sensitivity analysis methods have not been applied frequently to the study of spatial mod-
els. Among the factors hindering their use in this domain are the explosion of dimensionality problems
and the lack of maturity of certain models. We will examine in special detail two other limits: i) spatial
model input data generally exhibit some auto-correlation, yet conventional sensitivity analysis methods
only consider independent scalar variables; ii) notions of scale, support, and resolution, which play a
prominent role in spatial modelling, are ignored in the formal frameworks of conventional sensitivity
analysis methods. Hence, there appears to be a great need to adapt sensitivity analysis methods to the
speci�c context of spatially distributed modelling. Some ideas have already been provided in the liter-
ature to adress this issue. First, in existing research related to sensitivity analysis, one may �nd some
publications that deal with correlated input variables, but these studies rarely examine the particular case
of spatial dependence. In addition, spatial statistics, and more speci�cally geostatistics, offer theoretical
frameworks to describe the uncertainty weighing on spatially distributed data and to grasp the notions of
spatial scale, support, or resolution. Geostatistics also provide tools to simulate these spatial uncertain-
ties. However, this theoretical corpus has never been linked to that of sensitivity analysis of numerical
models.

An example: cost-bene�t analysis of �ood risk management plans

In this thesis, we look into a particular situation where spatial models are used: the economic assessment
of �ood risk management plans.c More precisely, our work focuses on cost-bene�t analysis (CBA) ap-
proaches that aim to characterize, using a scalar or spatially distributed indicator, the economic relevance
of �ood mitigation plans (dams, dikes, etc.). Such CBA studies usually require the development of a
numerical model, which combines a number of modules (hydrological module, hydraulic module, land
use module, damage functions) able to describe the entire chain leading to �ood risk. These numerical
models generally have a strong spatial component owing to the nature of their input data (topography,
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map of water system, land use map, etc.), the nature of their outputs (spatial risk indicators), and the
calculations that they use (notably spatial analysis operations with the help of GIS software).

Meanwhile, there is a growing consensus (Apel et al. 2004) that �ood economic assessment models, and
more particularly CBA studies applied to �ood risk management plans, are fraught with uncertainties.
There are numerous motivations for an in-depth study of these uncertainties. In the �rst stage of model
development, such a study allows the modeller to better understand the behaviour of the tool that s/he
is building, and to bring to light new questions or paths for improvement. During the model use stage,
uncertainty and sensitivity analyses can lead to increase the robustness of the economic indicators pro-
duced, notably by identifying the key input variables whose values should be better speci�ed. Lastly,
during the operational stage, explicitly taking into account uncertainties allows the provision of more
complete information to the model end-users (public authorities, water managers) to help them in their
decision making (Ascough et al. 2008).

A number of recent studies aim to apply uncertainty and/or sensitivity analyses to all or parts of �ood
economic assessment models. Most of these studies are limited to the forward propagation of uncertainty
(uncertainty analysis), the perimeter of which can vary from a single module of the complete model—e.g.,
land use (Te Linde et al. 2011), hydraulic simulation (Bales and Wagner 2009), estimation of damages
(Merz et al. 2004)—up to the entire modelling chain (Apel et al. 2008). Fewer publications address the
issue of ranking the various sources of uncertainty in these models by performing sensitivity analysis
(Koivumäki et al. 2010; de Moel and Aerts 2011; de Moel et al. 2012; Pappenberger et al. 2008).

However, we can make three general comments regarding these studies. First, the majority of these
studies are interested in the accuracy of the �ood damage estimates on an area, but few examine the
resulting uncertainty on the economic performance indicators of �ood mitigation plans produced in a
CBA. Next, these studies only rarely make use of the most recent advances in the �eld of sensitivity
analysis, turning more frequently to naive approaches whose limits are well known—e.g., only de Moel
et al. (2012) use a variance-based global sensitivity analysis in their research, although this approach
is widely used in other �elds. Finally, these studies generally disregard the spatial nature of the model
they scrutinize, and the speci�c problems that this nature raises when performing sensitivity analysis. In
particular, the following two points are ignored: i) the issue of spatial dependence in the input data, and
ii) the issues related to the spatial scale at which these models are built. It thus appears both possible and
desirable to further improve the treatment of uncertainties in numerical models dedicated to the economic
assessment of �ood risk, and more particularly in CBA studies applied to �ood risk management plans.

Objectives of the thesis

This research work has two goals. The �rst objective is methodological: we want to investigate the use of
sensitivity analysis methods in spatially distributed modelling. These methods should allow to grasp the
speci�c features of spatial models, notably the presence of spatial dependence in the data and the scaling
issues. The second objective is of an applied nature: after proposing a modelling framework to describe
CBA studies applied to �ood risk management plans, it involves studying the propagation of uncertainties
in this model, and, more precisely, identifying the main sources of uncertainty with the help of suitable
sensitivity analysis methods.

cThe main reason for this choice lies in the fact that this research work revolved around three different research units: the joint
research unit TETIS, that undertakes research on the use of geospatial data for the monitoring and modelling of environmental
systems; the joint research unit G-EAU, which deals with the modelling of hydrosystems; and the Institute of Mathematics and
Modelling in Montpellier (I3M).
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Research method In an attempt to simultaneously achieve both our methodological and applied objec-
tives, we chose an essentially inductive approach. We worked from the in-depth examination of a speci�c
situation: the sensitivity analysis of a CBA of a �ood risk management plan in the Orb Delta (Hérault,
France). The �rst step of our work involved designing a modelling framework, named NOE, to describe
CBA studies applied to �ood risk management plans, followed by the implementation of a numerical code
to carry out a CBA study on the Orb Delta. Based on the sensitivity analysis of this single model, we
attempted to bring to light more general questions, methods, and statements regarding sensitivity analysis
of spatial models. Rather than being a simple case study, the NOE model and its application to the Orb
Delta thus served as a basis for our discussion: hence, they take up a large part of this thesis.

Limits We chose to focus our research on a single family of sensitivity analysis methods, namely
variance-based global sensitivity analysis (VB-GSA). These methods produce sensitivity indices that
measure the contribution of each model input to the variance of the model output, taking into account
both the structure (or the equations) of the model under study and the uncertainty range of inputs. Three
main arguments motivated our choice: i) these methods do not require any preliminary hypothesis re-
garding the nature of the model under study (linearity, regularity), which is considered as a simple “black
box”; ii) they widely explore the space of input uncertainties (global methods); and iii) they describe not
only the impact of uncertain input variables considered one at a time, but also the impact of interactions
between these input variables. We also focused our attention on models with low CPU cost, which allow
a large number of simulations to be run in Monte Carlo approaches. Therefore, we do not adress in this
thesis the sensitivity analysis methods based on emulators or meta-models. Finally, the characteristics of
the NOE model led us to look more speci�cally at “point-based” and “spatially additive” models—we
will de�ne these terms later in the document.

Research questions Within this restricted framework, more speci�c questions emerge: how can one
de�ne and estimate variance-based sensitivity indices for spatially distributed model inputs that exhibit
spatial auto-correlation? What are the most appropriate simulation and sampling strategies for these
spatially distributed inputs to estimate their sensitivity indices? Can variance-based global sensitivity
analysis account for scaling issues, in particular for point-based and spatially additive models? These are
the research items that we will try to adress in this thesis.

Outline of the thesis

This thesis is divided into four chapters. In these chapters, we intentionaly mixed methodological or
theoretical developments with the numerical results obtained on the NOE case study. The reasons for
this choice are twofolds: �rst, this articulation mirrors the actual unfolding of our research, in which
methodological and applied work mutually enriched each other; next, this intertwined presentation allows
us to discuss both sides of our work at the end of each chapter. Figure 2 on page 14 displays the outline
of this document.

Chapter 1 starts with some relevant background information. We �rst give a number of de�nitions and
notations on spatial models. We also display a brief introduction to the concepts of sensitivity analysis,
and portray into more details the mathematical basics of variance-based global sensitivity analysis (VB-
GSA). Once these foundations have been established, we articulate in greater detail our research questions
in the conclusion of the chapter.
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Chapter 2 presents the modelling process that led to the constitution of our case study: the cost-bene�t
analysis of a �ood risk management plan on the Orb Delta. We �rst design a modelling framework named
NOE to describe CBA studies of �ood risk management plans based on the “avoided damage” approach.
We then specify how the NOE modelling framework was implemented for the Orb Delta case study.

Chapter 3 concentrates on the �rst research question:“how to handle spatially distributed inputs in VB-
GSA?”. We survey the existing approaches to compute variance-based sensitivity indices for spatially
distributed inputs, then compare these approaches on some analytical test cases. This review is completed
by some developments on the sampling of spatially distributed inputs, and by the application of VB-GSA
to the NOE model on the Orb Delta case study.

Chapter 4 puts forward the second research question, by investigating the links between the spatial scale—
as de�ned by Blöschl and Sivapalan (1995)—and variance-based global sensitivity analysis. We discuss
how the ranking of the uncertain model inputs may depend on the “support” and the “spacing” of the
spatially distributed model output. The theoretical developments are restricted to point-based and spa-
tially additive models only; they are illustrated by an application to the NOE model on the Orb Delta case
study.

Finally, this document is concluded by: i) general comments on the signi�cance of our theoretical re-
sults and the possible use of our methodological contributions for sensitivity analysis of spatial models;
ii) some lessons not only on the NOE modelling framework, but more generally on uncertainties in
cost-bene�t analyses applied to �ood risk management plans; and iii) some feedback on the practice of
sensitivity analysis in environmental modelling.



Ì 14 INTRODUCTION (ENGLISH)

F
ig

ur
e

2:
O

ut
lin

e
of

th
e

th
es

is
:

m
et

ho
do

lo
gi

ca
lo

bj
ec

tiv
e

(le
ft)

,a
pp

lie
d

ob
je

ct
iv

e
(r

ig
ht

),
ou

tli
ne

of
th

e
do

cu
m

en
t(

ce
nt

er
)



Ì 15

Chapter 1

Theoretical background



Ì 16 CHAP 1. THEORETICAL BACKGROUND

THE goal of this �rst chapter is to de�ne a number of notions that will be used throughout the
thesis. In a �rst section §1.1, we clarify the term “spatial models”, giving a number of notations
(§1.1.1), discussing how space is represented in numerical models (§1.1.2) and presenting the

various meanings of “scale” in this context (§1.1.3). We then focus on two speci�c families of spatial
models that are often encountered in the literature: i) “spatially additive models”, in which the model end
user is interested in the spatial linear average or the sum of some quantity of interest over a given spatial
unit (§1.1.4), and ii) “point-based models”, in which spatial interactions in the physical processes under
study can be neglected in a �rst approximation (§1.1.5).

In the second section §1.2, we give an overview of sensitivity analysis (SA) of numerical models. We
�rst display the general �owchart of most SA methods (§1.2.1). We then focus on variance-based global
sensitivity analysis (VB-GSA), introduce the mathematical basis of this approach and explain how to
estimate variance-based sensitivity indices (§1.2.2).
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1.1 Spatial models

1.1.1 De�nitions and notations

Our work is devoted to the study of numerical models where some of the model inputs and/or some of
the model outputs are spatially distributed: we will use the term “spatial model” to refer to such models.
They are encountered in many disciplines related to earth and environmental sciences. These models
allow for a spatially explicit description of the physical or anthropogenic processes under study. Their
development over the last decade is partly due to the increasing availability of spatially distributed data, to
the boom of GIS tools and to the overall growth of available computing power. Here are a few examples
of �elds in which spatial models are often used: �ood modelling (e.g., LISFLOOD, Van Der Knijff et al.
(2010)), groundwater quality modelling (e.g., AquiferSim, Landcare Research (2011)), crop modelling
(e.g., GLAM, Challinor et al. (2004)), air pollution modelling (e.g., AirGIS, Jensen (1998)), habitat
modelling in ecology (e.g., HABITAT, Haasnoot and Van Dewolfshaar (2009)), global change modelling
(Global Circulation Models), traf�c modelling, etc.

In our work, we will only consider models that are: i) process-based models, i.e. models that describe
the behaviour of a system in terms of lower-level mechanisms in a bottom-up approach, as opposed
to empirical models, which are often based on statistical relationships extracted from observed data;
ii) deterministic models, as opposed to stochastic models; and iii) models that are de�ned on a two-
dimensional spatial domaina. We give here some notations that will be used throughout the document.

Numerical model For the sake of clarity, we will use in this document the term “model” in a very
restrictive way, to denote a numerical code, considered as a black-box, which calculates a number of
outputs (response variables) as a deterministic function of a given set of inputs. We will use the following
general notation:

Y � F ˆU1; : : : ; UK • (1.1)

whereK denotes the total number of model inputs,Uj denotes a given input of the model,Y denotes the
model output andF denotes the deterministic computer code. When the numerical codeF is based on a
mathematical function, we will use the notationf to refer to this function.

Spatial domain: 
 ` R2 denotes a spatial domain,x > 
 is a point of the spatial domain (or a “lo-
cation”), and v ` 
 is a connected subset, or “block”, “ support”, “ spatial unit”, “ zone” or “ region”, of
spatial domain
 (Figure 1.1 on the facing page).SvSdenotes the surface area of blockv.

Spatially distributed model inputs: When a model input is spatially distributed over a spatial domain

 , we will often denote it byZ i instead ofUi — in order to stick to classical notations used in geostatisics.
The overall model input is denoted by˜ Z i ˆx• � x >
 • or simplyZ i , while Z i ˆx• denotes the value of
the model input at a particular pointx > 
 . Nevertheless, for sake of simplicity, we will sometimes
imprecisely use the notationZ i ˆx• to refer to the overall model input. Non spatially distributed inputs
will be refered to as “scalar inputs”, numbered fromU1 to Uk , while spatially distributed inputs will be
numbered fromZk � 1 to ZK . U � ˆU1; : : : ; Uk • will denote the set of non spatially distributed inputs
only.

aWe will later discuss in §2.4 on page 72 how our case study, the NOE modelling chain, �ts or not in these different categories.
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Figure 1.1: Spatial domain


Spatially distributed model output: When a model output is spatially distributed over a spatial domain

 , we will denote the overall model output by˜ Y ˆx• � x >
 • or simplyY , while Y ˆx• will denote the
value of the model output at a particular pointx > 
 . Nevertheless, for sake of simplicity, we will
sometimes imprecisely use the notationYˆx• to refer to the overall model output.

A spatial model with both spatially distributed inputs and output will thus be represented by the equa-
tion (Figure 1.2):

Y � F �U1; : : : ; Uk ; Zk � 1; : : : ; ZK �

� F �U ; Zk � 1; : : : ; ZK �

Figure 1.2: A spatial model with both spatially distributed inputs and output

1.1.2 Representing space in numerical models

In spatial models, spatially distributed data (model inputs or output) can be represented in various ways.
The choice of a space representation depends on the nature of the data handled. The two most common
types of representation are (Bordin 2002):

X a regular grid of cells often refered to as a “mesh” or “ grid”, denoted byG. Data are given or
computed at each centre pointx i of cell ci of the mesh. This grid representation is mostly chosen
for continuous physical quantities of interest, such as temperature, rainfall or soil properties. Data
represented on a grid are usually stored as so-called “raster data” or simply “raster” in a GIS
software (Figure 1.3 on the following page, left);

X a continuous and object-oriented representation, where objects under study are located in the usual
2D Euclidian space endowed with a Cartesian coordinate system. Objects can be point-shaped,
linear, polygonal or have a more complex shape. This representation is usually chosen for discrete
objects, such as trees, buildings, roads, plots of land. A convenient storage format for this type of
representation is a vector layer in a GIS software (Figure 1.3 on the next page, right).
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Figure 1.3: Representation of spatially distributed data: raster data (left: a zoom on the Digital Terrain Model of the
Orb Delta, cell size 5 m by 5 m); vector data (right: a zoom on the map of �ood-exposed buildings and plots of land
on the Orb Delta)

In a single numerical model, these two ways of representing space (raster/vector) may be combined. It
is not in the scope of this document to describe other types of more complex space representations, in
which ad-hoc topologies are designed based on the properties of the system and processes under studyb.

1.1.3 Scale issues

A key notion in spatially distributed modelling is that of “scale”, and more speci�cally “scale in space”.
This vague term can refer to a number of characteristic lengths related to a process, a set of observations,
or a model. We offer to clarify this notion based on the work of Blöschl and Sivapalan (1995), who wrote
an exhaustive review on scale issues in hydrology and Wu et al. (2006) who discuss scaling in ecology.

Types of scale Blöschl and Sivapalan (1995) make a �rst distinction between i) the “process scale” or
“ intrinsic scale”, which is the scale at which the phenomenon of interest operates, it cannot be chosen or
modi�ed by the modeller; ii) the “observational scale”, “ measurement scale” or “ sampling scale” which
is the scale at which measurements are taken; and iii) the “modelling scale” or “ analysis scale” which
is the scale at which a model is built. These various types of scales are of course related in some ways;
generally speaking, they must be commensurate with each other in order to build a relevant spatial model:
processes should ideally be observed and modelled at the scale they occur.

Components of scale: the scale triplet In addition, Blöschl and Sivapalan (1995) also suggest to
distinguish between three components of scale, which they refer to as the “scale triplet”. The components
of this triplet depend on the type of scale considered (process, observational or model scale). The scale
triplet related to the “process scale” is composed of:

bFor example, such ad-hoc topologies can be found in many 1D hydraulic models, in which the river stream is used as a spatial
reference and side storage cells are only positionned by a scalar distance away from the origin of the stream.
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X the “spatial extent” of the process, that is, the overall spatial expanse of the phenomenon under
study (e.g., the total surface area of a �oodplain);

X the “space period” of the process, if it is periodic (e.g., the distance between dunes in the desert);

X the “correlation length” for a stochastic process that exhibits some spatial correlation (e.g., the
range parameter of a Gaussian Random Field).

The scale triplet for the “observational scale” and the “modelling scale” is slightly different; it is com-
posed of (Figure 1.4):

X the “spatial extent”, that is, the overall spatial expanse of a dataset or the study area covered by a
model;

X the “support” (or “ resolution”, “ grain”), which is the �nest resolution in space of a dataset within
which homogeneity is assumed. When data is represented on a regular grid (raster data), spatial
support is governed by the sizeScSof cells ci . When data is represented in a continuous space
with an object-oriented approach (vector data), spatial support is related to the size of the smallest
resolvable objects (the minimum mapping units);

X the “spacing”, that is, the characteristic spatial gap between two data points. For raster data,
the spacing coincides with the notion of support, and is governed by the sizeScSof cells ci . For
vector data, the notion of spacing is relevant only if the objects do not entirely cover the 2D space:
spacing is then the characteristic distance between two objects.

All these notions are different but are often named with the same term “scale” in the literature. In this
thesis, we will try to clarify the meaning of “scale” anytime we use it.

Scaling “Scaling” is a major issue in spatially distributed modelling. This term is used to refer to
the problem of translating knowledge from one scale to another scale (Heuvelink 1998). For example,
numerical models are sometimes developed at small spatial scale (e.g., the scale of a single plant) but are
expected to produce indicators at a larger scale (e.g., a plot of cultivated land): this problem is known
as “upscaling”. The opposite issue (translating information from large scale to smaller) is known as
“downscaling”. In this thesis, we will focus on the procedure of “upscaling”; Blöschl and Sivapalan
(1995) suggest to split this procedure into two steps (Figure 1.5 on the next page): �rst step consists of

Figure 1.4: Three alternative de�nitions of scale in space: spatial extent (a), support (b), and spacing (c)
Source : Blöschl and Sivapalan (1995)
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Figure 1.5: Upscaling as a two-steps procedure
Source : Blöschl and Sivapalan (1995)

“distributing” a number of small scale values to cover a large spatial extent with many small scale values
(e.g., producing a regular grid of harvestable yield across a plot of cultivated land from a small set of
point values); second step consists of “aggregating” these small scale values to produce a single large
scale value (e.g., calculating the total yield of a plot of cultivated land). We will use these notions of
“upscaling” and “aggregating” in the following chapters.

1.1.4 Spatially additive models

A family of spatial models will receive a particular attention in our research: the “spatially additive
models”.

In the case where model outputY ˆx• is spatially distributed, an important issue is the choice of the spatial
support over which it is observed. Model end-users may be interested in the overall spatially distributed
output˜ Y ˆx• � x >
 • over spatial domain
 (e.g., a map of annual rainfall over a catchment, a �ood risk
map or a pollution map). But they may also want to study a single scalar property of the output over a
given spatial unitv ` 
 : for example, the sum ofY ˆx• overv (e.g., total rainfall over a catchment), the
average value ofY ˆx• overv (e.g., the average porosity of a geological block), the maximum value of
Y ˆx• overv (e.g., the maximal pollutant concentration over a study area), some quantile ofY ˆx• over
v, or the percentage ofv for which Yˆx• exceeds a certain threshold, etc. As mentioned in §1.1.3 on the
preceding page, moving from spatially distributedYˆx• to a single scalar property over a given spatial
support� is known as “aggregating”, which is one of the two steps of the “upscaling” procedure.

Aggregating many small scale values into a single large scale value may be very complicated, especially
when non-linearities are involved: for example, computing the hydraulic conductivity of a large support
v from many values of conductivity on smaller supports is not straightforward. Nevertheless, in many
environmental models, the physical quantities considered are spatially additive, that is, their large-scale
properties derive from small-scale properties by simple linear averaging (Chilès and Del�ner 1999). For
example, porosity, evapotranspiration or the daily amount of rainfall are spatially additive variables.

In this document, we will say that a spatial modelF is “spatially additive” when two conditions are met,
as shown in Figure 1.6 on the next page:
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Figure 1.6: A spatially additive model

X it has a spatially distributed output˜ Y ˆx• � x >
 • ;

X the model end user is interested in the spatial linear average or the sum of the model output
˜ Y ˆx• � x >
 • over a given spatial unitv ` 
 .

We will denote byYv the spatial average of the model output over a zonev ` 
 :

Yv �
1
SvSS

x >v

Yˆx•dx (1.2)

When the spatially distributed outputY ˆx• is only computed at a number of pointx i of the domain
 ,
then the output of interest is a weighted sum of the formP

i
wi Yˆx i • .

1.1.5 Point-based models

In our work, particular attention will also be paid to another limited class of spatial models, in which
(Figure 1.7 on the following page):

X at least some of the model inputs are spatially distributed;

X model output is spatially distributed;

X the value of model outputY ˆx• at a given location pointx >
 depends on the set of scalar inputs
U � ˆU1; : : : ; Uk • and on the value of spatially distributed inputsZk � 1ˆx•; : : : ; ZK ˆx• at that
same locationx only.

Following Heuvelink et al. (2010a), we will use the term “point-based models” to refer to this class of
models. They are encountered in various �elds of environmental and earth sciences, whenever spatial in-
teractions in the physical processes under study can be neglected in a �rst approximation. Some examples
of point-based models are: models that predict crop growth, evapotranspiration, pesticide leaching (Geo-
PEARL model, Tiktak et al. (2002)) or greenhouse gas emission. On the contrary, non point-based models
involve some spatial interactions in the description of the physical processes under study: for example,
models that simulate river �ow routing are usually not point-based, as the water �ow at a locationx > 

depends on the �ow at other locationsxœ>
 upstream.
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Figure 1.7: A point-based model

In a point-based model, the model outputY ˆx• at a given pointx >
 is a deterministic function of scalar
inputsU and of the values of spatially distributed inputsZk � 1ˆx•; : : : ; ZK ˆx• at that same locationx;
we will use the terms “local code” or “ local model”, denoted byF loc, to refer to this function. Hence, we
will say that a numerical modelF is “point-based” if there exists a local codeF loc such that:

§F loc � RK � R; ¦ x >
 ; Y ˆx• � F loc �U ; Zk � 1ˆx•; : : : ; ZK ˆx•� (1.3)

We insist on the fact thatF andF loc are not the same functions:F is a function that takes as inputs the
overall spatially distributed inputs̃Z i ˆx• � x >
 • and the scalar inputsU and gives as an output the
overall �eld ˜ Y ˆx• � x >
 • . F loc is a function fromRK to R that computesYˆx• at a single pointx >

from the scalar inputsU and from the valuesZ i ˆx• of spatially distributed inputs at that same pointx.

1.2 Sensitivity analysis

This second section aims to brie�y introduce the reader to sensitivity analysis (SA) and to describe into
more details one speci�c family of sensitivity analysis methods, on which we focused in our work: the
variance-based global sensitivity analysis (VB-GSA). This section is a literature review without any inno-
vative content. We give a broad overview rather than an exhaustive review of SA and VB-GSA methods:
the interested reader will �nd more details in Saltelli et al. (2008) or de Rocquigny et al. (2008).

1.2.1 An overview of sensitivity analysis methods

“Sensitivity analysis” (SA) is better de�ned in relation to “uncertainty analysis” (UA). Both terms are
closely related but refer to distinct approaches. They gather a number of methods that aim at understand-
ing how sensitive models are to uncertain knowledge of inputs. “Uncertainty analysis” focuses on the
propagation of uncertainty sources through the model, and tries to quantify the resulting uncertainty on
model output. It allows robustness of model results to be checked. “Sensitivity analysis” goes one step
further: it is used to study how the uncertainty of a model output can be apportioned to different sources of
uncertainty in the model inputs. Sensitivity analysis aims at ranking sources of uncertainty according to
their in�uence on the variability of the model output. This ranking helps to identify inputs that should be
better scrutinized in order to reduce the variability of the model output. More generally, SA is also useful
to explore the response surface of a numerical model and to prioritize the possibly numerous processes
that are involved in it.
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Figure 1.8: General �owchart for sensitivity analysis
Source : adapted from de Rocquigny et al. (2008)

SA is now recognized as an essential component of model building (European Commission 2009b;
CREM 2009) and is widely used in different �elds of environmental and earth sciences (Tarantola et al.
2002; Cariboni et al. 2007). Over the last �fteen years, a wide range of sensitivity analysis techniques have
been developed, and a number of guidelines have been suggested to choose the appropriate SA method
for a given problem (Saltelli et al. 2008; de Rocquigny et al. 2008; Iooss 2011; Helton and Davis 2006;
Pappenberger et al. 2006; Cariboni et al. 2007). Most SA methods follow a similar �owchart composed
of four steps (Figure 1.8):

1. description of the modelF under study and choice of a measure of model output variability

2. modelling of uncertainty sources

3. uncertainty propagation

4. ranking of uncertainty sources

We give below some details on each step. For the sake of clarity, we consider a numerical modelY �
F ˆU1; : : : ; UK • where both model inputsUi and model outputY are all scalar variables (non spatially
distributed).

1.2.1.1 Measure of model output variability

In order to study the variability of the model outputY , one must choose a measure of this variability.
Various measures can be considered, such as: the variance of model output varˆY •; the derivative of
model output@Y~@Ui at a given point in the input space; the probabilityPˆY CYmax• that model output
exceeds a given threshold; the overall pdf or cdf of the model output, etc. One can also consider the
overall variability of the model outputY in a qualitative way, using graphical methods.
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1.2.1.2 Modelling uncertainty sources

Model inputsUi are almost always fraught with uncertainties, which arise from inaccuracy or lack of
data, model assumptions, measurement errors, incomplete knowledge, etc. One main distinction can be
made between aleatory uncertainty, which is related to the natural variability of the quantities of interest
and which can not be reduced, and epistemic uncertainty, which stems from a lack of knowledge and can
often be reduced—see Walker et al. (2003) and Refsgaard et al. (2007) for an enlightening discussion
on the nature of uncertainty, which is not in the scope of this document. Numerous frameworks can
be chosen to model these various types of uncertainty on model inputsUi (de Rocquigny et al. 2008):
deterministic frameworks, in which a set of alternative discrete values are associated with each inputUi ;
probabilistic frameworks, in which inputsUi are considered as random variables with an identi�ed pdf
pi (O'Hagan 2012); second-order probabilistic frameworks, in which parameters of pdfpi are themselves
uncertain; fuzzy logic frameworks, etc.

1.2.1.3 Uncertainty propagation

Once input uncertainties have been identi�ed and modelled, they must be propagated through the numer-
ical modelF , in order to assess their impact on the variability of the model outputY . For that purpose,
it is necessary to choose a method to “explore” the numerical modelF . Broadly speaking, we suggest to
distinguish four families of methods for model exploration:

X intrusive methods: analytical study of mathematical functionf or modi�cation of the numerical
codeF ;

X screening methods: exploration of numerical codeF based on a relatively small number of
simulations (typically@1000), by varying the value of inputsUi in a deterministic way; this
family of approaches is described in the Design of Experiments (DOE) literature;

X intensive sampling-based methods:these methods resort to extensive exploration of the space of
possible model inputs with ensuing multiple runs (typicallyA1000) of numerical codeF , usually
using some sort of random or quasi-random sampling in the space of input factorsUi ;

X meta-modelling: approximation of numerical codeF by a surrogate modelF œwith smaller CPU
cost, using a small number of simulations of the original codeF (typically @1000). Meta-
modelling (also know as “emulation”) is not really a method for model exploration on its own:
it is a way to get a simpli�ed (less CPU intensive) numerical code that mimics the initial codeF .
Surrogate modelF œmust then be explored by one of the above methods (intrusive, screening or
intensive sampling). Ratto et al. (2012) present some applications of meta-modelling techniques
to sensitivity analysis of environmental models.

1.2.1.4 Ranking model inputs

Once uncertainty propagation is completed (§1.2.1.3), sensitivity analysis aims at ranking uncertain
model inputsUi based on their impact on the variability of model outputY—which is measured as
discussed in §1.2.1.1 on the previous page. Some SA methods produce a qualitative ranking of model in-
puts, usually separating them into two groups: those inputsUi that have a large in�uence on the variability
of Y , and those that do not. Other SA approaches are quantitative: they are based on the calculation of
so-called “importance measures” for each model inputUi with respect to the measure of variability of
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model outputY . These importance measures are often refered to as “sensitivity indices”. They depend
not only on the equation of the modelF under study, but also on the uncertainty range of each model
inputUi .c

1.2.1.5 Local/global sensitivity analysis

SA techniques are also often divided into “local” or “ global” methods. Local methods only consider the
variation of model outputY when model inputsUi vary locally around their nominal values at a single
base-point in the input space; they are related to the partial derivatives of the modelF with respect to each
input Ui . On the contrary, global methods study the variation ofY when model inputsUi explore more
widely the space of input uncertainties, with all inputsUi varying at the same time. Global methods are
generally more costly than local methods in term of computational burden, but they give a more complete
information.

1.2.1.6 Choice of an appropriate SA method

We display in Table 1.1 on the following page the main methods of sensitivity analysis discussed in the
literature, classi�ed according to: i) their measure of model output variability, and ii) their approach for
uncertainty propagation. In an operational context, Iooss (2011) suggests to use three criteria to choose
an appropriate SA method to study a given numerical modelF :

X the type of information needed—qualitative or quantitative ranking of model inputs, identi�cation
of the most/least in�uent inputs, etc. Saltelli et al. (2008) use the term “SA setting” to refer to the
various objectives of a sensitivity analysis (factor �xing FF, factor prioritizing FP);

X possible hypotheses on model complexity—linearity, monotonicity, regularity, etc.;

X the CPU cost of the method—it usually depends on the cost of a single simulation of modelF , on
the number of simulations ofF needed, and on the numberK of model inputs.

cIn that sense, they differ from other “sensitivity” meaures which are only related to the partial derivatives of the equations of a
model and which do not depend on the uncertainty range or pdf of the inputs.
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1.2.2 Variance-based global sensitivity analysis

We focus in this thesis on a speci�c family of sensitivity analysis methods: the variance-based global
sensitivity analysis (VB-GSA). This choice was made at the very beginning of our research in order to
narrow down the scope of the work. VB-GSA was chosen because it is one of the most common and
popular SA methods. It explores widely the space of uncertain input variables and is suitable for complex
models with non-linear effects and interactions among inputs. Other methods of sensitivity analysis (one-
at-a-time, adjoint SA . . . ) are not considered nor discussed in this thesis. In this section, we give a broad
presentation of the mathematical basis of VB-GSA. Please refer to Saltelli et al. (2008); Lamboni (2009);
Da-Veiga (2007); Lavergne (2006) for more details.

1.2.2.1 Overview

In VB-GSA, the measure of variability of model outputY is its variance var̂Y •. Uncertainty on model
inputs Ui is described in a probabilistic framework, by identifying a pdfpi for each model inputUi .
Besides, inputsUi are supposed to be independent—Kucherenko et al. (2012), Li et al. (2010) or Mara
and Tarantola (2012) suggest ways to overcome this restrictive hypothesis. Uncertainty is propagated
through the modelF either with an intensive sampling-based approach, or using a meta-model. Finally,
VB-GSA is quantitative, and leads to the computation of importance measures named “variance-based
sensitivity indices” of various orders—in most cases, only “�rst ” and “total” order sensitivity indices are
considered.

1.2.2.2 A decomposition of functional variance

In order to introduce the VB-GSA approach, let us �rst describe the space of model inputsUi as aK -
dimensional unit cube. We consider a square-integrable functionf � � 0; 1� K � R. VB-GSA is based on
the expansion off into a sum of elementary functionsf � of increasing dimensionality:

¦ ˆU1; � ; UK • >� 0; 1� K ; f ˆU1; � ; UK • � Q
� b˜ 1;:::;K •

f � ˆU � • (1.4)

whereU � � ˆUi • i >� denotes a subset of the set of model inputsˆU1; � ; UK • , the empty set is denoted by
U g andf g is a constant. The expansion given in Eqn. (1.4) always exists but is not necessarily unique. It
is sometimes refered to as a High-Dimensional Model Representation (HDMR) (Saltelli et al. 2008), and
was initially proposed by Hoeffding (1948).

A particular HDMR expansion is obtained when the condition Eqn. (1.5) is met:

¦ � b ˜ 1; : : : ; K • ; ¦ i >�; S
1

0
f � � dUi � 0 (1.5)

Under condition Eqn. (1.5), the expansion given in Eqn. (1.4) exists and is unique. Elementary functions
f � are then orthogonal:

¦ �; � b ˜ 1; : : : ; K • 2 with � x �; S
U >� 0;1� K

f � � f � � dU � 0 (1.6)

To understand this particular and unique HDMR decomposition in terms of sensitivity analysis, let us
now switch to a different framework. We now study a modelY � f ˆU1; : : : ; UK • , in whichUi are i.i.d.
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scalar random variables with uniform pdf in� 0; 1� , such thatEY 2 @�ª . From Eqn. (1.4) on the previous
page and from the property of orthogonality [Eqn. (1.6)], one can derive an expansion of the variance of
f as a sum of the variances of elementary functionsf � :

var̂ f • � Q
� b˜ 1;� ;K •

var̂ f � • (1.7)

Besides, by integrating Eqn. (1.4) with respect to each model inputUi , under condition Eqn. (1.5), we
can get an expression of elementary functionsf � :

f g � S
� 0;1� K

f ˆU1; : : : ; UK • dU1 : : : dUK [Eqn. (1.4) & Eqn. (1.5)]

� E ˆY • (by de�nition of E ˆY •)

f 1ˆU1• � S
� 0;1� K � 1

f ˆU1; : : : ; UK • dU2 : : : dUK � f g [Eqn. (1.4) & Eqn. (1.5)]

� E ˆY SU1• � EˆY • (by de�nition of E ˆY SU1•)

f 1;2ˆU1; U2• � S
� 0;1� K � 2

f ˆU1; : : : ; UK • dU3 : : : dUK � f 1ˆU1• � f 2ˆU2• � f g

� EˆY SU1; U2• � E ˆY SU1• � E ˆY SU2• � EˆY •

Elementary functionsf � can thus be written as a linear combination of conditional expectations of model
outputY given model inputsUi . A general expression of elementary functionf � is (see Appendix §A on
page 200 for a proof):

¦ � b ˜ 1; � ; K • ; f � � Q
� b�

ˆ � 1•S� S� S� S� EˆY SU � • (1.8)

in whichS� SandS� Sdenote the cardinal of subsets� and� , respectively.

It must be noted that the unique HDMR decomposition we obtain is very similar to the ANOVA decom-
position scheme (Archer et al. 1997).

1.2.2.3 De�nition and properties of variance-based sensitivity indices

Sobol' (1993) used the functional variance decomposition off given in Eqn. (1.7) to de�ne importance
measures named “variance-based sensitivity indices”—sometimes now found in the literature as “Sobol'
sensitivity indices” or simply “sensitivity indices”.

De�nition (First-order sensitivity indices). Sobol' (1993) de�nes �rst-order sensitivity index of model
inputUi with respect to model outputY , denoted bySi or SU i , as the following ratio:

¦ i >˜ 1; � ; K • ; Si �
var̂ f i •
var̂ Y •

�
var�EˆY SUi •�

var̂ Y •
(1.9)

First-order sensitivity indexSi >�0; 1� measures the main effect contribution of the uncertain model input
Ui to the variance of model outputY . It is the expected part of output variance that could be reduced by
�xing the value of the uncertain inputUi .
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De�nition (Higher order sensitivity indices). For any subsetU � � ˆUi • i >� of model inputs, with� b
˜ 1; : : : ; K • , high order sensitivity indexS� is de�ned as:

¦ � b ˜ 1; : : : ; K • ; S� �
var̂ f � •
var̂ f •

(1.10)

The “order” of sensitivity indexS� is equal to the cardinalS� Sof subset� , that is, the number of inputs
Ui included in subsetU � .

It follows from variance decomposition [Eqn. (1.7) on the facing page] that sensitivity indicesS� of all
orders sum up to1:

Q
� b˜ 1;:::;K •

S� � 1 (1.11)

As a consequence, sum of �rst-order sensitivity indicesSi is always equal or smaller than 1:

Q
i >̃ 1;:::;K •

Si B1 (1.12)

The difference1 � P i Si accounts for the contribution of all interactions between model inputsUi to the
model output variance varˆY •.

De�nition (Total-order sensitivity indices). Finally, Homma and Saltelli (1996) suggest to de�ne another
importance measure named “total-order sensitivity indices”, denoted bySTi or STU i , as the sum of all
sensitivity indices in which model inputUi is involved:

¦ i >˜ 1; : : : ; K • ; STi � Q
� b˜ 1;:::;K • ; i >�

S� (1.13)

STi >�0; 1� represents the part of output variance that is explained by model inputUi and all its interac-
tions with other inputsUj . It is the expected residual part of output variance if all model inputs butUi

were �xed. It was shown (Saltelli et al. 2008) that total-order sensitivity indicesSTi can also be written
as:

STi �
E � var̂ Y SU � i •�

var̂ Y •
(1.14)

in whichU � i � ˆUj • j x i denotes all model inputs butUi . It follows from Eqn. (1.11) and Eqn. (1.13) that
the sum of total-order sensitivity indices always sum up to more than 1:

Q
i >̃ 1;:::;K •

STi C1 (1.15)

Sensitivity indices can be used to identify the model inputs that account for most of the model output
variability (Ui with high �rst-order indicesSi ); they may lead to model simpli�cation by identifying
model inputs that have little in�uence on the model output variance (Ui with low total-order sensitivity
indicesSTi ); they also allow discussing the contribution of interactions between model inputs to the
model output variance (comparison between �rst and total-order sensitivity indices).
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1.2.2.4 Grouping model inputs

VB-GSA offers the possibility to de�ne �rst and total-order variance-based sensitivity indices associated
with a “group of model inputs”. Let consider a groupU � � ˆUi • i >� of model inputs with� a subset of
˜ 1; : : : ; K • . First and total-order indices of the group, which we denote bySgr.

� andSTgr.
� , are de�ned by:

Sgr.
� � Q

� b�
S� and STgr.

� � Q
� b˜ 1;:::;K •

� 9� xg

S� (1.16)

Grouping model inputs is often used to lower the CPU cost of the estimation of sensitivity indices when
the numberK of inputs is too large (typicallyK C20). Besides, grouping is useful to cope with correlated
inputs (such inputs can be gathered into a single group). Finally, we suggest that grouping can also be
helpful to perform VB-GSA in a sequential way: �rst, a small number of input groups is identifed—
usually, the composition of the groups has some physical meaning for the modeller, e.g., in a crop model
a parameter describing clay content of a soil horizon will be grouped with other model inputs describing
soil properties, while an input related to daily rainfall will be grouped with other climate variables. Then,
a �rst VB-GSA is performed to estimate sensitivity indices associated with each group of inputs. If a
group appears to have a large in�uence on the variance of model output (high group indicesSgr.

� and
STgr.

� ), then it will be split into a number of smaller groups. A second VB-GSA will be performed
to identify which of these smaller groups are the most in�uential, and so on, until the most in�uential
individual inputsUi are identi�ed.

1.2.2.5 Estimation of variance-based sensitivity indices

Reminder:we only brie�y present here the estimation of variance-based sensitivity indices for a numer-
ical modelY � F ˆU1; : : : ; UK • where all model inputsUi are scalar random variables (non spatially
distributed). The case of spatially distributed inputs is one of our research items and will be discussed in
Chapter 3.

The calculation of variance-based sensitivity indices is closely related to the choice of a method for the
exploration of numerical modelF (§1.2.1.3 on page 26): intrusive methods, screening methods, intensive
sampling-based methods or meta-modelling. First, for some modelsF , it may possible to derive the exact
analytical expression of sensitivity indices from the equations of the model (intrusive approach). Regard-
ing non-intensive screening methods, there is, to our knowledge, no speci�c design of experiments nor
any ad-hoc estimators to calculate variance-based sensitivity indicesd. On the contrary, a large body of
scienti�c literature is available on various intensive sampling strategies and associated estimators to cal-
culate variance-based �rst-order and total-order sensitivity indices from a large number of simulations of
a numerical codeF . These techniques follow a similar three steps procedure: i) generate an input matrix
through an appropriate random sampling method, usually some Quasi Monte Carlo sampling scheme or
other space-�lling design (Pronzato and Mueller 2012); ii) calculate an output vector by evaluating the
numerical codeF at each line of the input matrix ; iii) estimate variance-based sensitivity indices from the
output vector. Here are some of the most popular methods encountered in the literature: Sobol' estimators
using LP-� samples (Sobol' 1993), Winding Stairs approach (Jansen et al. 1994; Chan et al. 2000), FAST
sampling (Cukier et al. 1978; Saltelli et al. 1999), Random Balance Design (Tarantola et al. 2006), use of
replicated Latin Hypercube Sampling (Tong 2010), etc. It is not in the scope of this document to make a

dCampolongo et al. (2011) shows the similarity between the Elementary Effects approach and VB-GSA and suggest to use a
“radial one-at-a-time” design of experiment to estimate total-order sensitivity indices.
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complete review of these sampling strategies and estimators: the interested reader will �nd more details
in Saltelli et al. (2008); de Rocquigny et al. (2008); Lilburne and Tarantola (2009); Gatelli et al. (2009).

In our research, we have always used the same algorithm to estimate �rst and total-order variance-based
sensitivity indices, using the estimation procedure suggested by Saltelli et al. (2010):

X generate two input samplesM 1 andM 2 of sizeK � N in the space of model inputs, whereK is the
number of model inputs (or groups of model inputs) andN will be refered to as the “base sample
size”. The two samples areLP � � sequences where each inputUi is sampled from its pdfpi . The
choice of a base sample sizeN depends on the accuracy needed for sensitivity indices estimates;
it has to be of the form2m to ensure that the desired properties of theLP � � sequences hold;

X combine these two samplesM 1 andM 2 to generate a new, longer sampleM tot of sizeK � N tot

whereN tot will be refered to as the “total sample size”. N tot depends on the base sample size and
on the number of model inputs (or groups of model inputs):N tot � ˆK � 2• � N . Details on the
combination procedure are given in Appendix §A on page 200;

X calculate an output vector by evaluating the numerical codeF at each line of the total sampleM tot;

X estimate sensitivity indices for each model inputUi (or each group of model inputs) from the
output vector. The estimators are those suggested by Saltelli et al. (2010); they are given in
Appendix §A on page 200.

1.3 Chapter conclusion

In this chapter, we have given some elements of theoretical background, de�nitions and notations to better
specify the subject of our research.

First we have clari�ed the notion of “spatial model”: for us, this term will refer to a numerical model in
which some of the inputs and/or some of the outputs are spatially dsitributed over a 2D spatial domain. In
such numerical models, spatially distributed inputs/output can be stored as raster or vector data. Besides,
the notion of “spatial scale” can be better grasped through the scale triplet of “extent”, “ support” and
“spacing”. We have also given the de�nitions of two subclasses of spatial models that we will focus on:
i) the spatially additive models, in which the model end user is interested in the spatial linear average or
the sum of some quantity of interest over a given spatial unit, and ii) the point-based models, in which
spatial interactions in the physical processes under study can be neglected in a �rst approximation.

Then, we have displayed a brief overview of sensitivity analysis techniques and presented the four steps
they are composed of: i) de�nition of the model under study and choice of measure of model output
variability; ii) modelling of uncertainty sources; iii) uncertainty propagation; and iv) ranking of model
inputs. We �nally portrayed into more details the theoretical basis of variance-based global sensitivity
analysis (VB-GSA). We de�ned the �rst and total-order variance-based sensivity indices, and explained
which estimation procedure will be used throughout our work.

From this material, we are now able to give a more detailed description of the two methodological ques-
tions that we will try to answer in the following chapters (Figure 2 on page 14):

(1) handling spatially distributed inputs in VB-GSA: the estimation procedure presented in §1.2.2.5
on the preceding page to compute variance-based sensitivity indices is only appropriate for scalar
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and independent model inputsUi . A �rst question is: how to compute variance-based sensitivity
indicesSZ andSTZ for a spatially distributed model input˜ Z ˆx• � x >
 • , that may exhibit spatial
auto-correlation?We will try to adress this issue in Chapter 3 with a very pragmatic perspective, by
exploring the various numerical tricks that can be used to computeSZ andSTZ . Besides, we will
focus our research on intensive sampling-based methods to estimateSZ andSTZ , thus ignoring
a number of other possibilities discussed in §1.2.1.3 on page 26 (intrusive methods, screening or
meta-modelling);

(2) scale issues in VB-GSA:the theoretical background of VB-GSA presented in this chapter does not
account for the notion of “scale”, which is of utmost importance in spatial modelling (§1.1.3 on
page 20). We will try to adress this issue in Chapter 4 by using the concepts, notations and results
from the geostatistics theory. More speci�cally, we will focus our research on the speci�c case
of spatially additive and point-based models. We will try to answer the following question:in
a spatially additive and point-based model, how do variance-based sensitivity indices depend on
the scale of the model outputY , and more precisely on the three components of the scale triplet:
support, spacing and extent?
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Chapter 2

Building a modelling framework for
cost-bene�t analysis of �ood
management plans
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FLOOD risk research makes intensive use of numerical modelling. Over the last decades, many
numerical models have been developed in order to i) forecast �ooding events, ii) assess the impacts
of potential �ooding events in terms of human well-being, economic and social development,

and iii) design ef�cient �ood management policies. These models simulate hydrological, hydraulic and
economic processes over a given study area. They are usually spatially distributed and often make use of
GIS tools.

In this thesis, we look into one speci�c family of �ood-related models, which are based on a common
approach for the economic appraisal of �ood risk management plans: the “cost-bene�t analysis based on
avoided damages” approach (CBA-AD). As mentioned in the general introduction, the applied objective
of the thesis is to investigate the propagation of uncertainty through this CBA-AD approach. For that
purpose, we �rst had to design a general modelling framework to describe the CBA-AD approach, in
order to perform its uncertainty and sensitivity analysis. This modelling framework, named NOE, was
then implemented into a computer code and applied on a number of case studies, including the Orb Delta
study site, which will be used as a real-world test case for VB-GSA of spatial models throughout this
document.

The goal of this chapter is to present both the NOE modelling framework and its application to the Orb
Delta study site. It is divided into three sections. The �rst section §2.1 starts with some elements of
context on �ood risk management and the economic appraisal of �ood mitigation projects. It introduces
the reader to the CBA-AD approach and surveys the literature on the subject. Next, the second section
§2.2 explains why and how we built a modelling framework named NOE to describe the CBA-AD ap-
proach. As we will detail it, the NOE modelling framework does not pretend to cover the entire variety of
CBA-AD studies, but rather to clarify the structure, inputs and outputs of the CBA-AD �owchart, in the
view toward performing its uncertainty and sensitivity analysis. Then, section §2.3 brie�y mentions how
we implemented the NOE modelling chain into an ef�cient computer code, and presents the various case
studies on which the NOE code has been applied. In particular, it portrays the Orb Delta study site, which
will be used as the main case study in the thesis. Finally, in the chapter conclusion (§2.4), we make some
general comments on the scope and limitations of the NOE modelling framework, and stress a few key
points that will prove important to carry out its sensitivity analysis.
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2.1 Cost-bene�t analysis of �ood risk management plans

2.1.1 Flood risk and �ood management policies

Flooding is one of the most damaging natural hazards in Europe. In France, �oods threaten around
two millions people, one third of municipalities and cost over 250Me per year—approximately 80% of
economic losses due to natural hazards (MEDD 2004). These �gures are worryingly likely to rise in
the next decades, as �ood-prone areas continue to be developed under the pressure of demographic and
economic growth. In addition, climate change may result in more extreme meteorological events and
increase �ood frequencies and magnitudes (Parry et al. 2007).

In order to prevent �oods, protect people and assets from �ood damage and prepare our societies to
face such extreme events, public authorities implement various �ood risk management policies. In the
past, these policies were mainly concerned with structural measures designed to prevent �ood hazard
(e.g., levees, dams, channel improvement, etc.). Nowadays, �ood risk management policies also include
non-structural measures that aim at i) reducing vulnerability of �ood-exposed assets; ii) controlling land
planning in �ood-prone areas; and iii) improving crisis management (Ledoux 2006). In Europe, since
the approval of the EU Flood Directive (2007/60/EC) in 2007, member states have to establish �ood risk
management plans combining prevention, protection and prepardness, in all �ood-prone river basins and
coastal areas. In France, a similar framework was adopted in 2003, when integrated �ood management
plans named PAPI (“Programmes d'Actions de Prévention des Inondations”) were introduced (MEDDTL
2011).

2.1.2 Economic appraisal of �ood management policies

For project prioritisation, planning and monitoring, the assessment of �ood risk management plans is
needed. These appraisals must consider the various aspects of a �ood management plan, including its
economic ef�ciency, its technical feasibility, its environmental and social impacts, etc. They require a
good understanding of the components of �ood risk (�ood hazard, vulnerability, resilience, etc.), and use
knowledge from numerous �elds of Science such as hydrology, hydraulic, economy (Messner et al. 2007;
Hubert and Ledoux 1999; Ledoux et al. 2003).

One of the most common methods for the appraisal of �ood risk management plans is the “cost-bene�t
analysis” approach (CBA). CBA assesses the economic ef�ciency of a policy by comparing its costs and
bene�ts, both converted to a monetary unit, over a conventional length of time (European Commission
2008). This approach is recommended for the economic appraisal of �ood risk management plans in the
EU Flood Directive. In France, it is compulsory for local authorities and water managers to produce a
CBA of their PAPI �ood management plan when they claim national subsidies (MEDDTL 2011).

2.1.3 Cost-bene�t analysis based on avoided damages (CBA-AD)

Generally speaking, all costs related to a �ood management policy should be included in a CBA: direct
investment and maintenance costs, but also monetized negative social impacts or environmental impacts
of the policy, such as landscape deterioration. In the same way, all bene�ts of the policy should be
considered, including possible social bene�ts such as the recreational use of a lake resulting from a dam
construction. However, for practical reasons, most CBA studies only account for the “main”—in terms
on monetary amount—costs and bene�ts of the policy. Hence, assessing policy costs often comes down
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to the estimation of the direct investment and maintenance costs. In addition, it is most often assumed
that the largest share of the bene�ts can be measured by the monetized amount of �ood damages that
will be spared thanks to the �ood risk management policy. We will use the term “Cost-Bene�t Analysis
based on Avoided Damages” (CBA-AD) to refer to this somehow restrictive framework for CBA of �ood
risk management policies (Erdlenbruch et al. 2008). CBA-AD is almost the only approach encountered
in French case studies for the appraisal of structural �ood management plans, and is also widely used in
other European countries.

In the literature, CBA-AD studies vary in their aim, their scope, their scale and the data used. In order
to propose a general modelling framework for CBA-AD studies—as we will explain it later in §2.2 on
the following page—we surveyed a number of academic papers and reports that discuss the use of this
approach for the economic assessment of �ood risk management policies. Messner et al. (2007) dis-
play guidance and recommendations for the economic appraisal of �ood risk, based on the outcomes of
the European project FLOODsitea; they propose a �owchart for cost-bene�t analysis based on avoided
damages (Messner et al. 2007 p.21), give a clear overview of the best practices in Europe and survey a
number of CBA-AD studies and other guidelines across Europe (Messner et al. 2007 p. 63). Merz et al.
(2010) extensively discuss the issue of �ood damage assessment. The Flood Hazard Reseach Centerb

published a handbook on assessment techniques to evaluate the bene�ts of a �ood risk management pol-
icy, known as the Multi-Coloured Manual (Penning-Rowsell et al. 2005). The Queensland Government
also issued guidance for �ood damage assessment (DNRM 2002), as well as the US Army Corps of En-
gineers (Baecher et al. 2000). Bournot (2008) reviewed thirty French projects of �ood risk management
and presented how their economic relevance was assessed. Jonkman et al. (2004) discussed the use of
cost-bene�t analysis for �ood damage mitigation policies in the Netherlands. Erdlenbruch et al. (2008)
presented a CBA-AD study on the Orb river (Hérault, France). Finally, Achleitner et al. (2010) studied
the �ood protection structures in the Ötztal valley (Tyrol, Austria).

We also looked into technical reports that describe into details how cost-bene�t analyses were carried out
for four different �ood risk management plans in France. A �rst group of three case studies are located
along the Rhône River.c These studies include: a project of dike strengthening and heightening on the
river reach between Fourques and Beaucaire; a project to improve the water storage capacity of the two
small islands of La Motte and L'Oiselet, upstream of Avignon; a larger project that aims at renovating old
�oodplains along the lower reaches of the Rhône river. A last case study was considered in Bretagne in
the Vilaine �oodplain close to the city of Redon.d

Finally, we also read the existing guidelines that French national or local authorities have published on the
CBA-AD approach for the economic appraisal of �ood risk management plans. These guidelines aim to
help experts in environmental consultancy �rms produce relevant and rigorous CBA-AD assessments, and
assist the local contracting authorities in their claim for public subsidies. We surveyed four guidelines,
published respectively by: the Plan Rhône, a public water management body along the Rhône river
(Ledoux Consultants 2010); the European Center for Flood Risk Preventione (CEPRI 2011); the Gard
Water Committee (GERI 2012); and the Ministry of Ecology (MEDDTL 2011 Appendix 4).

This literature review does not pretend to be exhaustive. Its main objective was to give us the foundations
to build a general modelling framework that could depict the CBA-AD studies. This modelling framework
named NOE is presented in next subsection §2.2 on the following page.

ahttp://www.�oodsite.net
bAn interdisciplinary centre based at Middlesex University, http://www.mdx.ac.uk/research/areas/geography/�ood-hazard
cWe worked on these case studies as part of a larger project on uncertainties in cost-bene�t analysis of �ood risk management

plans, funded by the Plan Rhône (http://www.planrhone.fr).
dThese four case studies will be further described in §2.3.3 on page 70.
eCEPRI, http://www.cepri.net
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2.2 NOE modelling framework for cost-bene�t analysis based on
avoided damages

In this section, we give a detailed description of the NOE modelling framework, whose purpose is to
depict cost-bene�t analyses of �ood risk management plans based on the “avoided damages” approach
(CBA-AD studies, §2.1.3 on page 38). The motivations and methods of this modelling work are given
in §2.2.1. They are followed by some important de�nitions in §2.2.2, and by a detailed description of
the NOE modelling chain from §2.2.3 to §2.2.8. The aspects related to the numerical implementation of
the NOE model and its application to different case studies will be discussed in the next section §2.3 on
page 58.

2.2.1 Motivations & methods

As mentioned in the chapter introduction, the applied goal of this thesis is to carry out an uncertainty and
sensitivity analysis of the CBA-AD studies. As a preliminary step, we had to design and implement a
modelling framework to describe these CBA-AD studies. We brie�y expound here our motivations and
objectives for this modelling work.

Motivations Two reasons motivated our need to design a modelling framework for CBA-AD studies.
First, as explained by Saltelli et al. (2008) or de Rocquigny et al. (2008), the very �rst step of an un-
certainty and sensitivity analysis is to properly de�ne the system under study: one needs to specify the
boundary of the model, its inputs, its outputs. Second, as mentioned in §1.2.2.5, most sensitivity anal-
ysis techniques require to run many simulations of the model under study (e.g., more than thousands
simulations are needed in the sensitivity analysis methods based on intensive sampling). Hence, another
preliminary step of uncertainty/sensitivity analysis is to implement the model into a convenient computer
code, that can be run a thousand times or more with reasonable effort from the modeller. To meet these
two requirements for sensitivity analysis, it thus appeared necessary to design a modelling framework for
CBA-AD studies and to develop an ef�cient computer code for it.

Methods CBA-AD studies broadly consist of a comparison of the costs of a �ood management plan
with its bene�ts, which are measured by the monetized amount of �ood damages that will be avoided,
each year on average, thanks to the plan. In the academic papers, technical reports and guidelines we
surveyed, the CBA-AD studies vary in their aim, their scope, their scale and the data used (§2.1.3 on
page 38). Nevertheless, most of them follow a similar �owchart that combines hydrological, hydraulic
and economic modelling as well as GIS-based spatial analysis. Our method here is to propose a general
modelling framework, named NOE, that could depict this common �owchart. We insist on the fact that
our work is by no means an attempt to make an exhaustive review of cost-bene�t analyses applied to
�ood management policies. Instead, the NOE modelling framework aims to give a clear description of
the CBA-AD studies in order to:

X de�ne a number of terms that will be used throughout this thesis;

X cleary de�ne the boundaries, the inputs and the outputs of the system under study, which is a
requirement to carry out sensitivity analysis.
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We built the NOE model so that it could account for the various practices that we encountered in our
literature review. We will describe how well these various practices �t into the modelling framework we
suggest to adopt. However, we do not pretend to cover entirely the variety of CBA-AD studies applied to
�ood risk assessments: hence, we will also discuss the limitations of the NOE framework when needed.

2.2.2 Some de�nitions �rst

Before describing the �owchart of the NOE model, we give de�nitions of some important terms. It is not
the scope of this manuscript to de�ne general and widely used notions such as “�ood risk”, “ �ood hazard”,
“exposure” or “ vulnerability”. The interested reader will �nd such de�nitions in European Commission
(2010) or Ledoux (2006).

Study area We will use the term “study area” to refer to a well-identi�ed and limited �oodplain, char-
acterised by its geophysical attributes, but also its landuse and all man-made infrastructures, buildings
and activities. Typical size of �oodplains considered in CBA-AD studies ranges from10to 1 000sq. km.

Flood management policy We will equally use the terms “�ood management plan” or “ �ood manage-
ment policy” to refer to a set of structural and non-structural measures designed to reduce �ood risk on a
study area, by preventing �ood hazard and/or reducing vulnerability of assets. We will more precisely use
the term “�ood-control measures” to refer to structural measures only, such as levee and dam construction
or channel improvement.

Present/future situation We will use the terms “present situation” and “future situation” to describe
the state of a study area in relation to a given �ood management plan: “present situation” (resp. “future
situation”) will refer to the state of the area before (resp. after) the implementation of the �ood risk
management plan (Figure 2.1).

2.2.3 Overview of the NOE modelling framework

We choose to describe the NOE model as a combination of “steps” or “ modules” (Figure 2.2 on page 43).
These steps may be not be clearly separated in all the CBA-AD studies we reviewed, but they will prove
useful to clarify the description of input data, intermediate outputs and �nal outputs. The very last step of

Figure 2.1: Flood-prone study area: present situation (left); future situation after levee construction (right)
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the NOE �owchart is the comparison of the costs and bene�ts of a �ood management policy, that leads
to the computation of performance indicators such as the Net Present Value (NPV [e ]). The expected
bene�ts of a �ood management policy are partly based on the estimation of the so-called “Average An-
nual Avoided Damages” ( � AAD) [ e /year]), which is the amount of annual expected �ood losses that is
reduced thanks to the policy. The computation of the� AAD indicator requires to estimate �ood damages
and probabilities of occurence for a range a �ood scenarios of various magnitudes. All these steps are
described into more details in §2.2.4 to §2.2.8 on pages 42–51. We made the deliberate choice to start the
description from the end (bottom) of the NOE modelling �owchart.

2.2.4 Comparison of costs and bene�ts

The ultimate goal of CBA-AD studies is to produce an indicator measuring the economic ef�ciency of
a �ood management plan, by comparing its bene�ts with its costs. Both �ow of bene�ts and �ow of
costs are observed over a given length of timeR (usuallyR ranges from 30 to 50 years).B i (resp.Ci )
denotes the expected bene�ts (resp. costs) of the plan at yeari . Bene�ts and costs are adjusted for the
time value of money and converted into present value amounts using a discount rate, denoted by� i at year
i . Both R and discount rates� i have conventional values that are usually �xed by national or European
authorities (European Commission 2008). Two main ef�ciency indicators are met in the literature to
compare discounted costs and bene�ts:f

X the Net Present Value of the policy (NPV [e ]), de�ned as:

NPV �
R

Q
i � 0

� i � ˆB i � Ci • (2.1)

X the Hicks ratio (H [dimensionless]), de�ned as:

H �

R
P
i � 0

� i � B i

R
P
i � 0

� i � Ci

(2.2)

A positive NPV—or a Hicks ratio greater than1—indicates that the bene�ts generated by the �ood risk
management plan outweigh its costs. The larger the NPV value is, the more ef�cient the policy is.

Costs of the policy The costs of a �ood management plan usually include at least the initial investment
costsCI and the maintenance costsCM —CEPRI (2011) details the various components of these two
costs. A common assumption found in CBA-AD studies is to attribute investment costsCI to time step
i � 0, and to consider that maintenance costsCM are constant over the length of timeR. This is just
an average view of reality; if detailed data are available on these costs—e.g., if successive phases of
the �ood management plan are scheduled— investment and maintenance costs can be assumed to take
different valuesCI i andCM i at each time stepi .

Other costs related to the �ood management plan, such as environmental impacts or landscape degra-
dation, are most often neglected. One notable exception is the CBA-AD study carried out on the ZEC

fOther indicators that will not be discussed in this thesis include the return on investment and the internal rate of return (Bournot
2008).
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Figure 2.2: General �owchart of the NOE modelling framework
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Figure 2.3: Flood-prone study area: reduction of total �ood damages thanks to a �ood risk management plan. Present
situation (left) and future situation (right)

project (§2.3.3 on page 70): in this study, the subsidies received by some farmers in compensation for the
over�ooding of their agricultural parcels was included as an additional cost in the analysis.

However, in the NOE modelling framework, we suggest to stick to the most common case, in which only
investment costsCI and maintenance costsCM are considered, with the following assumptions:

¦ i >B0;RG; Ci �
¢̈
¨
¦
¨̈
¤

CI if i � 0

CM if i A0
(2.3)

Bene�ts of the policy In the CBA-AD approach, the bene�ts of a �ood management plan are measured
by the amount of �ood damages that it can avoid yearly on average. We will use the term “Average Annual
Avoided Damages” and the notation� AAD [ e /year] to refer to this amount. Bene�ts are supposed to be
equal to the� AAD indicator at each time stepi :

¦ i >B0;RG; B i � � AAD (2.4)

The� AAD indicator is an algebraic value: it may be positive when �ood damages are spared thanks to
the �ood management plan, or negative if extra damages are caused by the policy. We explain in the next
subsection how to rigorously de�ne and compute it.

To sum up, in the NOE modelling framework, under the assumptions we made on the costs and the
bene�ts of the �ood risk management plan, the NPV indicator is equal to:

NPV � � CI �
R

Q
i � 1

� i � ˆ � AAD � CM • (2.5)

2.2.5 Average Annual Avoided Damages

The � AAD indicator is obtained by comparing the amount of expected annual �ood damages between
the present and the future situation (Figure 2.3). We will denote by AAD [e /year] (resp. AAD') the
average annual damages in present (resp. future) situation. The� AAD indicator is de�ned as:

� AAD � AAD � AAD œ (2.6)

The notion of “average annual damages” has been used for a long time as a quantitative indicator for
the assessment of �ood risk. Early works on this subject were notably initiated in the late 1950ies in the



2.2 DESCRIPTION OF THENOE MODELLING FRAMEWORK Ì 45

Netherlands by Van Dantzig (1956) who carried out a probabilistic analysis of Dutch �ood defences and
tried to estimate the expectation of the �ood damage per year. In the literature, the same notion is also
refered to as “expected annual damages” (NRC 2000), the “annual average �ood losses” (Messner et al.
2007) or the “Weighted Annual Average Damages” (WAAD) (Messner et al. 2007).g

The AAD indicator is used in almost all the CBA-AD studies we reviewed. Some of these studies cast
doubt on its relevance as a synthetic risk indicator, or question its de�nition. Indeed, de�ning rigorously
the “average annual �ood damages” proves to be a challenging issue. One contribution of the NOE mod-
elling framework is to propose a clear frame to de�ne the AAD indicator. This de�nition proves useful to
better identify the underlying assumptions that are hidden in the notion of average annual damages, and to
highlight its limitations. This de�nition is summarized in the following subsections §2.2.5.2 to §2.2.5.4;
the interested reader will �nd an extended description of our contribution on this subject in Appendix §C
on page 206.

2.2.5.1 Modelling �ooding events as random variables

A �ood can be de�ned as an over�ow or inundation that comes from a river or other body of water onto
normally dry land and causes or threatens damage (Figure 2.4 on the following page). In our research
work, we only considered �uvial �oods, as opposed to coastal �oods, groundwater �oods or surface water
�oodsh. In the NOE modelling framework, we assume that a “�ooding event” can be entirely described
by a �nite number� >N of scalar parameters. These parameters usually include:

X a set of parameters describing the hydrological load associated with the �ooding event, such as the
discretised hydrogram at a reference gauging station, the peak discharge or the in�ow volume;

X a set of parameters describing the state and behaviour of hydraulic infrastructures along the river
stream during the �ooding event: e.g., water level beyond dams, failure or not failure of levees;

X the season of occurence of the event (summer, autumn, etc.).

It is of course impossible to predict if and which �ooding events will occur during one given year on a
study area. This uncertainty related to �ooding events can be classi�ed as “aleatory uncertainty”, that is,
natural variability which is associated with the phenomenon under study and which cannot be reduced
(Refsgaard et al. 2007). To represent this aleatory uncertainty, we suggest to identify each �ooding
event with a single realisatione of a random vectorE � ˆE1; : : : ; E � • with values inR� . We assume that
random vectorE has a probability density functionpE . For a given year,pE ˆe• represents the probability
that �ooding evente >R� occurs this year.

All CBA-AD studies and guidelines use a similar probabilistic framework. One speci�c feature of the
NOE modelling framework is that �ooding events are not reduced to a real-valued random variable de-
scribing their peak dischargeq, but are modelled as a random vectorE of dimension� C1. This enlarged
framework makes it possible to account for complex situations in a uni�ed manner. For example, in the
Fourques-Beaucaire case study (§2.3.3 on page 70), �ooding events can be modelled by a 4-dimensional
random vector, which describes: the peak discharge of the scenario, the season of �ood occurence, the
state of levee (failure/no failure), and the location of the possible levee failure.

gJonkman et al. (2004) do not use the average annual damages as a risk indicator, but rather compute the (discounted) present
value of �ood damages for some �ooding events.

hHowever, most of the material displayed in the following sections could be adapted to other types of �oods with small efforts.
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Figure 2.4: Flood-prone study area: a �ooding event

2.2.5.2 De�nition of average annual damages: multidimensional case

We assume that, on a given study area, the monetized damages associated with �ooding events can be
represented by a continuous functionD � R� � R. For a given �ooding evente >R� , D ˆe• is the amount
of damage costs [e ] induced by this event:

D � R� � R

e ( Dˆe•
(2.7)

The Average Annual Damages (AAD) are de�ned as the expectation of damageD over the space of
random �ooding eventse with pdf pE ˆ �• :

AAD � EˆD • � S
R�

Dˆe• pE ˆe• de (2.8)

This de�nition of the AAD indicator is based on at least two restrictive assumptions.

First, we assume that �ood damages can be represented as a deterministic functionDˆe• of a �ooding
evente characterised by a �nite number of scalar descriptors: its hydrological load, the state of hydraulic
infrastructures along the stream (dam, levees, etc.), its season of occurence (§2.2.5.1 on the preceding
page). FunctionD must include knowledge about the assets that are exposed to �oods in the study area
and their vulnerability. This function is supposed to be “�xed” over time. Nevertheless, in the real world,
total �ood damages related to a single �ood evente > R� also depend on a number of other random
characteristics that are not taken into account in our de�nition, such as the quality of crisis management
or the proximity (in space or time) of other �ooding events that may result in a greater vulnerability of
the exposed assets, etc. A possible extension would be to include these characteristics as extra scalar
descriptors of a �ooding event.

Next, we also assume that random variableDˆe• has a �nite expectation: this assumption requires �ood
damages not to grow “too quickly” for extreme �ooding eventse with very small probabilitiespE ˆe•, so
that the integral Eqn. (2.8) is well de�ned. In most of the CBA-AD studies we reviewed, the functionDˆ �•
is simply assumed to be bounded: this assumption is fully justi�ed when �ood damages are measured
with repair costs only.
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2.2.5.3 Unidimensional case

In most of the CBA-AD studies we surveyed, the probability of occurence of a �ooding evente is de�ned
with respect to a single scalar descriptor: its peak dischargeq at a reference gauging station. In this case,
the dimension� of the set of �ood event descriptors is reduced to1. Somewhat imprecisely, we will then
equally use the notationsE or Q to denote the scalar random variable representing �ooding events, the
notationse or q to denote a single �ooding event and its associated peak discharge, and the notations
pE ˆ �• or pQ ˆ �• to denote its pdf. The AAD indicator is then equal to:

AAD � EˆD • � S
R

Dˆq• pQ ˆq• dq (2.9)

Hydrologists usually prefer to consider the cumulative distribution function of random variableQ, or

more precisely the functionFQ � q (
ª

R
q

pQ ˆx•dx. FQ ˆq• is refered to as the “annual exceedance

probability” of peak dischargeq. Using this function, Eqn. (2.9) can be written as:

AAD �
1

S
0

D XF � 1
Q ˆu• du (2.10)

Eqn. (2.10) was notably used by Arnell (1989) to de�ne the Average Annual Damages. It can be under-
stood as the area under the damage-frequency curve, which is the graph of �ood damageDˆq• against
discharge exceedance probabilityFQ ˆq• (Figure 2.5).

We will use this presentation in some parts of this thesis, when �ooding eventsewill simply be described
by their peak dischargeq, notably on the Orb Delta study site. Nevertheless, we insist on the fact that
in our broader de�nition of the AAD indicator [Eqn. (2.8) on the preceding page], a �ooding event is
de�ned both by a set of hydrological descriptors and a set of parameters describing the state of hydraulic
infrastructures along the river, and is represented by a vectore >R� with � C1.

Figure 2.5: Average Annual Damages (AAD [e /year]) in unidimensional case: the AAD indicator is equal to the
(shaded) area under the damage-frequency curve



Ì 48 CHAP 2. THE NOE MODELLING FRAMEWORK

2.2.5.4 Approximation

The various CBA-AD studies and guidelines we surveyed do not exactly use the same calculation method
to approximate the AAD indicator. However, these various methods all �t in a common frame: for each
situation (present and future), the computation of the AAD indicator is based on the approximation of
a unidimensional or multi-dimensional integral [Eqn. (2.8) on page 46 and Eqn. (2.10) on the previous
page]. Flood damage estimates are evaluated for a �nite set of pointsej that we suggest to call “�ooding
scenarios”. A weighted sum of these values is then used to approximate the integral:

AAD � Q
j

! ˆej • � D ˆej • (2.11)

whereDˆej • denotes the estimated damage for �ood scenarioej and! ˆej • denotes the weight of this
scenario. For each situation (present and future), the computation of the AAD indicator thus requires:

X a set a �ood scenariosej (that may be different from present to future situation);

X the estimation of scenario weights! ˆej • ;

X the estimation of �ood damagesDˆej • for each scenario.

The �rst element may be considered as part of the model itself: it will be discussed in §2.2.6. The
computation of weights! ˆej • will be discussed in §2.2.7 on the next page. The computation of �ood
damage estimatesDˆej • will be detailed in §2.2.8 on page 51.

2.2.6 Choice of �ood scenarios

As mentioned in §2.2.5.4, the calculation of the AAD indicator requires damage estimation for a number
of relevant �ood scenariosej . The �rst step of the NOE modelling framework is thus to choose two sets
of potential �ooding events of various magnitudes: one set ofm scenarios, denoted bye1 to em , for the
present situation, and one set ofmœscenarios, denoted byeœ

1 to eœ
m œ, for the future situation (Figure 2.6

on the facing page).

In the NOE modelling framework, we suggest to characterise each �ood scenarioej (or eœ
j for future

situation) by i) a complete description of the hydrological load (hydrogram, peak dischargeqj , in�ow
volume); ii) a description of the state and behaviour of hydraulic infrastructures along the river reach
(failure or not failure of levees, water level in dam reservoir); and iii) its season of occurence. For each
situation (present and future), at least two �ood scenarios must be considered:e1 (resp.eœ

1) is supposed
to be the “smallest” �ooding event that induces damage in present (resp. future) situation—“smallest” is
taken here in the sense “with the smallest peak discharge”; em (resp.eœ

m œ) is supposed to be an extreme
�ood, which would result in an over-topping of all �ood-control infrastructures.

This framework �ts well to all the CBA-AD studies and guidelines we reviewed, except for the work of
Achleitner et al. (2010) (see below). In all studies, the �ood scenarios usually include i) some “historical
�oods” that are modelled from ex-post data collected after past �ooding events, and ii) some “synthetic
�oods” that are usually related to construction and safety standards of �ood-control infrastructures (for
example, a synthetic 100-year or 1 000-year �ood). The number of scenarios for present and future
situation usually falls between 3 and 20i . This initial choice (number and characteristics of scenarios) can
be considered as part of the model structure; results of a CBA-AD study heavily depend on it.

iThe guidelines published by the French Ministry of Ecology for the economic appraisal of PAPI management plans requires at
least three �ood scenarios to be considered (MEDDTL 2011 Appendix 4).
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Figure 2.6: Flood-prone study area: set of �ood scenarios for the present (left) and future (right) situations

A notable exception: continuous scenarios. It can be noted that a very different framework could be
chosen to estimate the AAD indicator and represent the aleatory uncertainty associated with �ood hazard.
Flood scenariosej could be randomly generated over a very large length of time (� 1 000years), in order
to build a plausible chronicle of �ooding events over time. This kind of continuous simulation of �ooding
events over time may for example be obtained from rainfall simulations. The number of �ood scenarios
considered would then be very large (m; mœ� 1 000). We will use the term “continuous scenarios” to
denote this approach, which is seldom encountered in the literature—Achleitner et al. (2010) use a similar
approach over a short period of 100 years and call it “stochastic �ood and loss modelling framework”.

2.2.7 Weights of �ood scenarios

As mentioned in §2.2.5.4 on the preceding page, the calculation of the AAD indicator is based, for
each situation (present and future), on a weighted sum of damage estimatesDˆe1• ; : : : ; D ˆem • for a
set of �ood scenariose1; : : : ; em (resp. Dˆeœ

1• ; : : : ; D ˆeœ
m œ• andeœ

1; : : : ; eœ
m œ for future situation). The

weights associated with each �ood scenarioej , denoted by! ˆej • , have to be determined according to the
approximation technique chosen to calculate the unidimensional or multi-dimensional integral de�ning
the AAD indicator [Eqn. (2.8) on page 46 and Eqn. (2.10) on page 47].

2.2.7.1 Unidimensional case: �ood frequency analysis

In the unidimensional case, a �ood scenarioej is only described by its peak dischargeqj . In this case,
weights! ˆej • are obtained from a hydrological frequency analysis. A discharge-frequency curve (Q-f)
is �rst �tted to observedQ-f data (annual maximum �ow serie on a given gauging station) with a chosen
extreme value distribution (Gumbel, gev, etc.) (Figure 2.17 on page 62). Then, each peak dischargeqj

is associated with an estimated annual exceedance probabilityFQ ˆqj • and corresponding return interval
Tj � 1~FQ ˆqj • . Weights! ˆej • are then computed from non-exceedance probabilitiesFQ ˆqj • in order to
approximate the unidimensional integral [Eqn. (2.10) on page 47]. In the NOE modelling framework, we
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suggest to use a classical trapezoïdal rule (Figure 2.7):j

ADD �
1
2

� �D ˆe1• � D ˆe2•� � � FQ ˆe1• � FQ ˆe2•� � : : :

�
1
2

� �D ˆem � 1• � D ˆem •� � � FQ ˆem � 1• � FQ ˆem •� � D ˆem • � FQ ˆem •

which can be written as:

ADD � Q
j

! ˆej • � D ˆej • (2.12)

in which weights! ˆej • are equal to:

¢̈
¨̈̈
¨̈̈
¨̈
¦
¨̈̈
¨̈̈
¨̈̈
¤

! ˆej • �
FQ ˆej � 1• � FQ ˆej � 1•

2
; ¦ i >˜ 2; : : : ; m � 1•

! ˆe1• �
1
2

� � FQ ˆe1• � FQ ˆe2•�

! ˆem • �
1
2

� � FQ ˆem � 1• � FQ ˆem •�

(2.13)

Figure 2.7: Approximation of the AAD indicator [e /year] with trapezoidal rule (unidimensional case)

2.2.7.2 Multi-dimensional case

In the broader de�nition we suggest to use in the NOE modelling framework, the AAD indicator is equal
to a � -dimensional integral [Eqn. (2.8) on page 46]. We give in Appendix §C on page 206 a rigorous
presentation of the way this� -dimensional integral can be approximated. In short, it can be turned into
a unidimensional integral based only on �ood exceedance probabilitiesFQ ˆq•, but then it requires to

jThis unidimensional case is by far the most often encountered in the CBA-AD studies we reviewed. However, we observed
slight variations in the formula chosen to approximate the unidimensional integral Eqn. (2.10) on page 47. For example, the
Weighted Annual Average Damages de�ned in Messner et al. (2007) approximate the integral with a Riemann sum (rectangle
method). This is also the method chosen in the Fourques-Beaucaire case study (ISL 2011). Erdlenbruch et al. (2008) use a
different weight! ˆ em • for the largest �ooding event:! ˆ em • � 1~2 � � FQ ˆ em � 1• � dª � FQ ˆ em • � in which dª is an ad-hoc
coef�cient which is assumed to represent the ratio between the �ood damagesD ˆ em • associated with �ood scenarioem and the
�ood damagesD ª associated with a virtual �ood event with an exceedance probability equal to 0; they suggest to use a value of
dª � 2. MEDDTL (2011 Appendix 4) recommends to use the same computation scheme withdª � 1:5.
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estimate the conditional expectation of �ood damagesD given a �xed peak dischargeq, while other
� � 1 �ood descriptors vary. From a practical perspective, in this case, hydrological �ood frequency
analysis based onQ-f data analysis has to be completed to calculate the overall weight! ˆej • of each
�ood scenarioej . This overall weight! ˆej • must account not only for the exceedance probability of the
�ood peak dischargeqˆej • , but also for the probabilities associated with the other scalar descriptors of
the �ooding scenarioej , such as the state of hydraulic infrastructures along the river, or the season.

In the various CBA-AD studies we reviewed, we found only one example in which such multi-dimensional
weights! ˆej • were computed: the Fourques-Beaucaire study (§2.3.3 on page 70). In this study, the sim-
ple weights! ˆej • based on �ood frequency analysis were completed by: i) a probabilistic levee reliability
assessment to estimate probabilities of levee failure for each �ood scenarioej ; ii) a seasonal hydrological
analysis to estimate the probability that a �ood scenario occurs at a given season (Allamano et al. 2011).
In an extended framework, it would also be possible to further describe and weigh �ooding eventsej with
other aleatory characteristics that are not strictly related to �ood hazard but that have an impact on the
monetary amount of �ood damages, such as the quality of crisis management or the state of �ood-exposed
assets.

2.2.7.3 Two comments

Continuous scenarios If “ continuous scenarios” framework is chosen to design �ood scenariosej in a
CBA-AD study, then in the unidimensional case the Average Annual Damages is simply the non-weighted
average of �ood damage estimates for all randomly generated �ood scenarios—scenario weights! ˆej •
are all equal to1~m wherem is the number of scenarios.

Spatially heterogeneous scenario weightsIn some studies, it is not possible to rigorously de�ne a
spatially homogeneous weight! ˆej • for each �ood scenarioej over a large study area, because hydro-
logical return intervalsTj may spatially depend on the contribution of various river tributaries and lateral
in�ows. It is then necessary to divide the study area into a number of homogeneous zones where scenario
weights will be separately computed. This is the case in the CBA-AD study that was carried out on the
ZEC project (§2.3.3 on page 70).

2.2.8 Flood damage estimation

We brie�y describe in this subsection the data and �owchart used to calculate �ood damage estimates
Dˆej • (resp. Dˆeœ

j •) for the set of �ood scenariose1; : : : ; em (resp. eœ
1; : : : ; eœ

m œ) in the present (resp.
future) situation. Once again, our purpose is not to give an exhaustive view of the approaches encountered
in the literature for �ood damage estimation, but rather to clarify a number of terms and notions in
order to perform sensitivity analysis of the NOE modelling chain. Generally speaking, the �ood damage
estimation process for a given �ood scenarioej can be divided into three steps shown in Figure 2.8 on the
following page: i) �ood hazard modelling; ii) �ood exposure modelling; and iii) damage costs estimation.
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2.2.8.1 Flood hazard modelling

For a given �ood scenarioej (present or future situation), �ood hazard modelling consists of using an
hydraulic model to simulate the �ood inundation process (Figure 2.9) based on the scenario characteristics
(hydrological load and state of hydraulic infrastructures). A wide range of hydraulic models can be used
for that purpose: 1D models, 2D models, storage cells models, with steady or unsteady �ow conditions.
These models solve various versions of free-surface �ow equations. Input data used by hydraulic models
fall into the following categories: i) a set of �ow boundary conditions, including an hydrogramQˆt• at a
reference gauge, ii) a Digital Terrain Model with a precise description of natural and man-made structural
elements that control water �ow, and iii) a set of spatially distributed friction coef�cients used for model
calibration (Strickler coef�cients). It is not in the scope of this thesis to describe these hydraulic models
into more details. The interested reader will �nd further explanations in Novak et al. (2010).

Flow simulations are then usually combined with a high resolution Digital Terrain Model (DTM), to
produce maps giving spatially explicit values of the main �ood intensity parameters: water depth [m],
water velocity [m/s] and �ood duration [h] over the study area.k We will use the general term “hazard
maps” to refer to these maps of �ood intensity parameters. The notationsHˆej • (resp. Hˆeœ

j •) will
denote the hazard maps associated with �ood scenarioej (resp. eœ

j for future situation). These maps
can be produced as GIS vector layers with polygonal features representing small storage cells or �nite
elements, or can be transformed into raster data (Figure 2.18 on page 63).

Note: in the NOE modelling framework, we will consider the hazard mapsHˆej • as inputs. The
hydraulic model that produces them will not be considered as a part of the NOE model. This restrictive
choice was made to reduce the CPU cost of sensitivity analysis and to narrow down the scope of our
research.

kIn some case studies, maps od �ood intensity parameters are real-valued, but in other cases they just give intervals—e.g., the
maps of water depth used by Erdlenbruch et al. (2008) show classes of water depths in centimeters:� 0; 50� , � 50; 100� , etc.

Figure 2.9: Flood-prone study area: inundation process for a given �ood scenario
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2.2.8.2 Flood exposure modelling

For a given �ood scenarioej (present or future situation), �ood exposure modelling consists of: i) de-
scribing the assets which are exposed to the �ood on the study area; ii) determining for each identi�ed
asset the intensity of �ood hazard, in terms of water depth, velocity and �ood duration.

Description of assets Many types of assets are exposed to �oods and may be considered in a CBA-AD
study: private housing, agricultural land, economic activities, road network, power supply networks, etc.
(Figure 2.10)l . In order to derive �ood exposure from hazard maps, the description of assets has to be
spatially explicit. In this thesis, we will use the term “assets map” to refer to this description. In most
cases, the assets map is a GIS vector layer, each asset being represented by a point, a line or a polygonal
feature. These assets maps are usually created from a combination of data sources, including land use
maps, cadastral maps, �eld surveys, national statistics, etc. From one CBA-AD study to another, assets
maps may differ with respect to the following criteria:

X scale (support): �ood exposure may be assessed at the scale (here understood as the spatial sup-
port, see §1.1.3 on page 20) of individual assets (buildings, plots of cultivated land), or at a coarser
level (e.g., district level or regional level). The choice of a spatial support for the description of
assets usually depends on the size of the area under investigation and on the available data. As
developed into details by Messner et al. (2007 Figure 3.5), the �nest spatial supports for the de-
scription of assets are often restricted to study areas of local size (e.g., municipalities or single
�oodplains). On the contrary, studies for areas of regional size (e.g., a part of a big river or the
catchment of a smaller river) or even national size (e.g., a national coastline or a river basin of
a transboundary river) have to rely on approaches which require less effort per unit of area and,
consequently, consider a larger spatial support to describe the elements at risk;

Figure 2.10: Flood-prone study area: spatially explicit description of assets

l the guidelines published by the French Ministry of Ecology for the economic appraisal of PAPI management plans requires to
consider at least the following types of assets: private housing, economic activities, agricultural land and public buildings (MEDDTL
2011 Appendix 4)



2.2 DESCRIPTION OF THENOE MODELLING FRAMEWORK Ì 55

X nomenclature of assets:a more or less detailed nomenclature may be used to classify assets
according to their type. Nomenclature can range from very coarse (e.g., distinguishing only from
housing, agricultural land and economic activities) to very detailed (using various subtypes to
further describe crops, types of buildings, types of industry, shops, etc.). The nomenclature has to
be chosen in accordance with damage functions (§2.2.8.3 on the next page);

X attribute data: each asset is usually characterised by a number of attributes, generally including
its ground �oor elevation, its monetized value, its number of levels (for a building), its surface area,
etc. These attribute data have to be chosen in accordance with their subsequent use in damage cost
estimation (§2.2.8.3 on the following page). From one CBA-AD study to one another, assets maps
may vary in the presence, completeness and quality of attribute data.

A more complete discussion on the characterisation of �ood-exposed assets is given by Merz et al.
(2010). Figure 2.11 shows two different examples of assets maps. On the left is an extract of the as-
sets map used for a CBA-AD on the ZEC case study (Gilbert and Ledoux 2012): assets are identi�ed
by points (economic activities) or polygonal features (private housing units, agricultural land) on a GIS
vector layer built from Corine Land Cover land use map completed with �eld data; typical surface area
of polygonal features is approximately 30 ha. On the right is an extract of the assets map used for a
CBA-AD on the Orb Delta case study (SMVOL 2011): assets are all identi�ed by polygonal features, of
smaller spatial support—typical surface area of assets is approximately 100 sq. m. for private housing, 3
ha. for agricultural land and 0.1 ha. for other economic activities. The choice of a description of assets
will of course in�uence the subsequent computation of �ood damages: Eleuterio et al. (2008) discuss this
issue by investigating a case study in Bas-Rhin, France.

Figure 2.11: Two assets maps with different spatial support on two study sites: ZEC (left), Orb Delta (right)
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Exposure assessment For a given �ood scenarioej (present or future situation), exposure is measured
by confronting the assets map with �ood hazard mapsHˆej • . For each exposed asset (usually represented
by a point or a polygonal feature in a GIS layer), the �ood caracteristics (water depth, water velocity, �ood
duration) are extracted by an overlay analysis using GIS tools (Figure 2.12). Depending on the nature
of the data used, various GIS techniques can be considered to perform this overlay analysis between the
assets map and the hazard maps: extraction of mean or maximum values of �ood characteristics over the
asset, preliminary clipping of polygonal features to the �ood extent, etc. All these techniques will result
in the computation of �ood intensity characteristics for each �ood-exposed asset, but important variations
may be observed from one technique to one another. However, in spite of this variety of techniques, none
of the CBA-AD studies or guidelines we surveyed provide the reader with a detailed description of the
overlay procedure that was used, or should be used, to assess �ood exposure.

One contribution of this thesis is to investigate this weak point of CBA-AD studies. We supervised the
master's thesis of Thibaud Langer (Langer 2011), who listed ten techniques that can be considered to
perform the overlay analysis for �ood exposure assessment, depending on: i) the nature of the assets
(point, line or polygonal features in a GIS vector layer); and ii) the nature of the hazard maps (point
vector data, polygonal vector data, raster data). These different overlay procedures were then applied to
the same case study (Fourques Beaucaire case study, §2.3.3 on page 70): we found relative differences in
exposure data that could rise up to 10%. The interested reader will �nd a brief discussion on this issue in
appendix §D on page 212.

Figure 2.12: Flood-prone study area: �ood exposure

2.2.8.3 Damage costs estimation

Damage costs estimation is the last step of �ood damage assessment (Figure 2.8 on page 52): it consists
of estimating damage costs for each �ood scenarioej and for each asset within the study area, from �ood
exposure assessment (Figure 2.14 on the facing page).m Generally speaking, damage estimates should
include both direct and indirect, tangible and intangible damages—Merz et al. (2010) or DNRM (2002)
explain these notions into details. Nevertheless, in most of the CBA-AD studies we surveyed, only di-
rect and tangible monetary losses are taken into account because of lack of data and/or lack of suitable

mIn the NOE modelling framework, �ood damages are always assumed to be equal to zero for �ood scenarioe1 (resp.eœ
1 ) that

is de�ned as the “smallest” �ood event that induces damage in present (resp. future) situation (§2.2.6 on page 48).
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Figure 2.13: Absolute and surface-dependent depth-damage curve used for wheat crop on the Orb Delta case study
Source : Grelot et al. (2012)

Figure 2.14: Flood-prone study area: damage costs estimation for a given �ood scenario

methodology. So-called “damage functions” are then used to model the relation between �ood intensity
characteristics (water depth, velocity, �ood duration), asset characteristics (type, surface area, ground
�oor elevation, value, etc.) and direct monetary losses (Figure 2.13). These damage functions are either
built from i) statistical analysis of ex-post data collected after �ood events (e.g., from insurance compa-
nies), or ii) by a synthetic approach where the elementary effects of �ood on the various components of
the asset are modelled (e.g., damage on furniture, walls and doors of a house). Damage functions can be:

X absolute/relative: absolute damage functions give absolute values of monetary losses in euros;
relative damage functions give monetary losses as a percentage of the total value of the asset;

X surface-dependent/surface-independent:surface-dependent damage functions give monetary
losses per surface area unit [e /m2], while surface-independent damage functions give monetary
losses for the whole asset regardless of its surface area.

The interested reader can refer to Merz et al. (2010) for more information on damage functions. Bournot
(2008) also gives a list of references related to the main damage functions used in French CBA-AD
studies. For a given �ood scenarioej , damages are estimated individually for each asset identi�ed on the
assets map. Hence, �ood damages can be mapped to give a spatially explicit portray of �ood risk on the
study area. We will use the term “damage map” and the notationDˆej • to refer to it. Damages can also
be summed up over the study area to give total damage estimateDˆej • . This total amount is then used in
the computation of the� AAD indicator (§2.2.5 on page 44).
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2.3 Case studies

The NOE modelling framework that we described in §2.2 has been applied to a number of different case
studies. The purpose of this section is to: i) brie�y explain how we implemented the NOE modelling
framework into a convenient computer code (§2.3.1); and ii) present the study sites on which the NOE
code has been applied (§2.3.2 and §2.3.3). Among these study sites, we will focus on the application
of the NOE code to the Orb Delta (§2.3.2). This case study will be used as a real-world test case for
variance-based global sensitivity analysis of spatial models throughout this document. The other case
studies are shortly portrayed in §2.3.3.

2.3.1 Development of the NOE code

Most sensitivity analysis techniques require to run many simulations (hundreds or thousands) of the model
under study. To carry out a sensitivity analysis of the NOE modelling framework, it was thus necessary
to implement it into a convenient and ef�cient computer code. We will refer to this code as the “NOE
code”. This code development is not at the core of our research, hence we only present it very brie�y in
the following paragraphs.

Structure of the NOE code A �rst part of the NOE code consists of a set of tools that perform spatial
analysis operations to produce �ood exposure maps from the assets map and the hazard maps, as de-
scribed in §2.2.8.2 on page 56. These tools were coded inPython TM , an interpreted and object-oriented
programming languagen. They make use of theArcPy library, which provides access to the geopro-
cessing functions available inArcGis ®, a commercial GIS softwareo. These tools were packaged into
a single toolbox namedgeonoe , which can easily be loaded and used from a standardArcGis ® user
session.

A second part of the NOE code consists of a set of scripts coded in theopen-source programming
languagep. These scripts code for: the computation of �ood damages based on exposure data and damage
functions, as described in §2.2.8.3 on page 56; the calculation of the average annual avoided damages
(� AAD indicator) from a set of �ood scenariosej and associated weights! i , as explained in §2.2.5
to §2.2.7 on pages 44–49; the computation of the Net Present Value of a �ood risk management plan
(§2.2.4 on page 42). These scripts were packaged into a single library namednoe .

Note: it must be noted that no hydraulic model is included in the NOE code. The hazard mapsHˆej •
associated to each �ood scenarioej (§2.2.8.1 on page 53) are considered as initial inputs of the NOE
code.

Computing time The computing time associated with one run of the NOE code depends on the char-
acteristics of the input data (spatial extent, resolution, etc.). On the Orb Delta case study, which will
be used as the main test-case in our thesis, one single run costs around 30 seconds on a computer with
average performances. This duration may be considered as “short” with respect to the requirements of
most sensitivity analysis techniques. It allows lauching many simulations of the NOE code in any pseudo
Monte Carlo approach: for example, running the NOE code a thousand times would last slightly more

nhttp://www.python.org
ohttp://www.esri.com/software/arcgis
phttp://cran.r-project.org/
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than height hours. However, in order to lower the CPU cost even more, we used the NOE code on a grid
computing cluster: calculation times were divided by six.

2.3.2 The Orb Delta case study

In this section, we describe the application of the NOE code on the Orb Delta (Hérault, France). This
case study will be used as a real-world test case for VB-GSA of spatial models throughout this document.

2.3.2.1 Study site

As a study area, we selected the lower Orb river �uvial plain, known as the Orb Delta, located in the
south of France. We focused on a 15 km reach from Béziers to the Mediterranean sea that is bounded by
an area of 63 sq. km and includes the cities of Béziers, Portiragnes, Sauvian, Sérignan, Valras-Plage and
Villeneuve-lès-Béziers (Figure 2.15). The Orb catchment has a typical Mediterranean subhumid regime.
The annual maximum discharge in Béziers (Tabarka gauge) varies from year to year between 100 and
1 500 m3/s (BCEOM 2000). The �ood prone area in the Orb Delta is home to approximately 16 290
permanent people (total population of the six localities: 90 000 people), 774 companies and 30 seaside
campgrounds (which attract up to 100 000 tourists in summertime). Approximately one-third of the area
is devoted to agriculture. The �ood of December 1995 - January 1996, with a peak discharge of 1 700
m3/s at the Tabarka gauge, caused a total amount of damage of 53 Me (SMVOL 2011).

Figure 2.15: The Orb Delta study site is located in Hérault département, south of France. The Orb River �ows
southward.
Source : www.geoportail.fr
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Flood risk management plan In 2001, local authorities launched a �ood risk management plan on the
Orb Delta, mainly based on various structural mitigation measures, including levee strengthening around
urban areas, restoration of sea outfalls and channel improvement (Figure 2.16). In 2011, to claim national
subsidies, they completed a cost-bene�t analysis of their project (Grelot et al. 2012).

This study site was mainly chosen because it is a “real” case study, with a �ood risk management plan
under construction and a cost-bene�t analysis produced by the local authorities. Moreover, the area
was already documented with numerous available data. These data included aerial photographs, a high-
resolution Digital Terrain Model (DTM) built from photogrammetry, the annual maximum �ow series
from 1967 to 2009 at the Tabarka gauge, and various spatial datasets on buildings, agricultural land and
economic activities in the area (Erdlenbruch et al. 2008).

Figure 2.16: Orb Delta case study: structural �ood-control measures
Source : Erdlenbruch et al. (2007)

2.3.2.2 Model �owchart

The application of the NOE code to the Orb Delta case study follows the general �owchart that we
described in Figure 2.2 on page 43. We give here, when needed, more details on the data used and the
realisation of each step of the �owchart.

Comparison of costs and bene�ts In the NOE modelling framework, Net Present Value (NPV) is
chosen to compare costs and bene�ts of the �ood risk management plan. On the Orb Delta case study,
it is computed over a period ofR � 30 years. Only investment and maintenance costs are considered
(CI � 35:2Me , CM � 1:6Me /year), and project bene�ts only include avoided damages.
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Choice of �ood scenarios Six �ood scenariose1 to e6 were selected to describe �ood hazard in the
present situation, and other six similar scenarioseœ

1 to eœ
6 for the future situation. They are only charac-

terised by their peak dischargeqˆej • at the Tabarka gauging station (Table 2.1) and by an hydrogram.
For eachj � 1; : : : ; 6, present and future scenariosej andeœ

j have the same values of peak discharge and
same hydrograms. Besides, the state of hydraulic infrastructures is assumed to be the same for all �ood
scenarios: according to a previous hydraulic and civil engineering survey, �ood-control levees on the Orb
river can be overtopped in case of an extreme �ooding event, but are never supposed to break (BCEOM
2000).

Weights of �ood scenarios — �ood frequency analysis In this case study, �ood scenarios are only
characterised by their peak dischargeqˆej • . Hence, their weigths! ˆej • are completely characterised by
a classical �ood frequency analysis, based on the annual maximum �ow series at Tabarka gauging station
from 1967 to 2009 (Figure 2.17 on the following page). Estimated exceedance probabilitiesFQ ˆqj • ,
return intervalsTˆqj • and associated scenario weights! ˆej • are given in Table 2.1q.

Table 2.1: Orb Delta case study: �ood scenarios

Scenario description Peak discharge
q [m3 /s]

Exceedance
frequencyf

Return interval
T � 1~f [years]

Weight!

e1 or eœ
1

Smallest �ooding event that
induces damage

1 018 0.2 5 0.05

e2 or eœ
2 10-year synthetic �ood 1 287 0.1 10 0.08333

e3 or eœ
3

Historical �ood (December,
1987)

1 696 0.0333 30 0.04

e4 or eœ
4 Historical �ood (January, 1996) 1 882 0.02 50 0.01165

e5 or eœ
5 Large synthetic �ood 2 133 0.01 100 0.0095

e6 or eœ
6

Probable maximum �ood
(over-topping dykes)

3 000 0.001 1 000 0.006

Flood hazard modelling The hydraulic model used for the Orb Delta case study is the 1D step-
backwater model ISIS Flow. ISIS Flow computes �ow levels and discharges using a method based on the
Saint-Venant equations (ISIS 2012). The rough outputs produced by the hydraulic model are GIS vector
layers that give water levels, water velocity and �ood duration along the river stream and on a number
of storage cells represented by polygonal features, with a typical surface area of 1 sq. km. Water depth
maps were obtained from these rough outputs through a simple substraction of water levels with a high-
resolution DTM of 5 m cell size. This DTM (raster data) was initially built from stereophotogrammetry.
In the end, for each �ood scenarioej , the hazard mapsHˆej • consist of a set a three rasters of 5 m cell
size giving respectively water depths, water velocity and �ood duration over the study area (Figure 2.18
on page 63). It should be noted that we do not consider the ISIS Flow computer code as part of the NOE
code; water depth maps are considered as inputs.

qThe �gures given in Table 2.1 are slightly different from the �gures used in previous studies on the Orb Delta (Erdlenbruch
et al. 2007; Grelot et al. 2012). The difference lies in the estimation of �ood return intervals from the annual maximum �ow series
at Tabarka gauging station: the serie used in this document is longer than the one used in previous studies, and the �tted Q-f curve
is different.
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Figure 2.17: Orb Delta case study: observedQ-f data and �tted discharge-frequency curve

Flood exposure analysis In the application of the NOE code to Orb Delta case study, four economic
sectors were considered for the exposure analysis: private housing, agricultural land, campgrounds and
other economic activities (industry, shops, etc.). Flood exposure was assessed at the scale of small individ-
ual assets (buildings, plots of cultivated land, etc.). Data from various sources was collected to build the
assets map: digital cadastral maps, a dataset of the regional Chamber of Commerce and Industry (2009),
and the national agricultural land use statistics (RPG dataset, 2009). An extensive �eld survey was also
conducted to collect additional data on assets, such as ground �oor elevation of buildings. In the end, the
assets map describes private housing units (individual buildings), plots of cultivated land, campgrounds
and other economic activities by individual polygonal features in a single GIS vector layer (Table 2.2, Fig-
ure 2.19 on page 64). Plots of cultivated land were further characterised by a subtype (wheat, vineyard,
etc.), while economic activities were classi�ed into sixty categories following the French classi�cation of
economic activities NAF2008 (INSEE 2008).

Table 2.2: Orb Delta case study: content of the assets map

Type of assets Data source Number of
objects

Total surface
[sq. km]

Average surface
[sq. m]

Private housing Cadastral map + �eld survey 16 436 1.37 83

Agricultural land National agricultural land use statistics
(2009)

707 23.36 33 044

Campgrounds Cadastral map + �eld survey 111 1.02 9 203

Other economic
activities

Cadastral map + CCI dataset (2009) 691 0.62 904

Flood exposure of assets was then assessed by confronting the assets map with water depth mapsHˆe1•
to Hˆe6• andHˆeœ

1• to Hˆeœ
6• . The water depth associated with each �ood-exposed asset for each �ood

scenarioej was calculated with the following overlay procedure:

1. in order to handle very large assets (e.g., large plots of cultivated land), we �rst divided all objects
of the assets map into small pieces, by intersecting the assets map with a regular square grid of
200 m cell size. After this operation, all the polygonal objects of the assets map have a maximum
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Figure 2.19: Orb Delta case study: assets map

surface area of 200 m by 200 m;

2. for each polygonal object of the assets map, the average water depth over the object was computed
from the raster hazard mapHˆej • using theZonal Statistics tool provided inArcGis ®;

3. the average water depth associated with each asset was then extracted as a new attribute data in the
original assets map (vector layer).

Flood damage estimation For damage costs estimation, we used absolute damage functions (§2.2.8.3
on page 56) which depend on the following parameters: type and �oor surface area of the exposed asset,
average water depth. Damage functions for private housing, campground and cultivated land are surface-
dependent, while the damage functions used for other economic activities are surface-independent. Flood
velocity and �ood duration were considered as homogeneous. These damage functions were taken from
the recommendations of French Ministry of Ecology, Sustainable Development and Energy (MEDDTL
2011), for a complete description see the original study (Grelot et al. 2012). In the end, a total of 94
depth-damage relations were used, one for each land use type and subtype (Table 2.3 on the next page).

2.3.2.3 Model inputs

As mentioned in §2.2.1 on page 40, a preliminary step to carry out sensitivity analysis of the NOE code
on the Orb Delta case study is to describe properly its inputs and its outputs. In order to cope with the
large number of input data involved in the NOE code, we decided to group them into �ve groups that can
be considered as independent (Table 2.4 on the facing page). We will somehow imprecisely use the term
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Table 2.3: Orb Delta case study: damage functions

Type of assets Type of approach Sub-types
number

Parameters

Private housing Empirical (data collected after �ood events) 1 water depth; �oor surface area

Agricultural
land

Synthetic approach (based on
questionnaires)

15 water depth; surface area

Campgrounds Synthetic approach (based on
questionnaires)

18 water depth; surface area

Other economic
activities

Synthetic approach 60 water depth

Table 2.4: Orb Delta case study: model inputs of the NOE code

Notation Name Nature Details

U1 Scenario weights Group of scalar inputs Set of scenario weights! ˆ e1 • to ! ˆ e6 • and ! ˆ eœ
1 • to ! ˆ eœ

6 • for all
�ooding scenarios in present and future situations (Table 2.1 on page 61).

U2 Damage functions Group of scalar inputs Group of parameters describing depth-damage functions for all types of
assets.

U3 Project costs Group of scalar inputs Investment costsCI and maintenance costsCE related to the �ood risk
management plan

Z 4 Assets map GIS vector layer Spatially explicit description of assets exposed to �oods on the study area.
Each asset is represented by a polygonal feature with the following at-
tributes: type (qualitative); surface area [m2 ]; ground�oor elevation [m].

Z 5 Hazard maps Group of GIS raster
data

Set of water depth mapsH ˆ e1 • to H ˆ e6 • andH ˆ eœ
1 • to H ˆ eœ

6 • (5 m
cell size) for all �ooding scenarios in present and future situations.

“model inputs” to refer to these �ve groups. Their composition was chosen in accordance with the general
�owchart of the NOE modelling frameworkr. Three groups (damage functions, project costs and scenario
weights) are composed of scalar inputs. The two other groups include spatially distributed inputs (hazard
maps, assets map).

2.3.2.4 Model outputs

As developed in §2.2, the main intermediate and �nal outputs of the NOE modelling framework are: i)
the damage estimatesDˆej • for each �ood scenarioej ; ii) the Average Annual Damages for the present
and future situation: AAD and AAD' indicators; iii) the� AAD indicator; and iv) the Net Present Value
of the �ood risk management plan under study. A key point is that, except for the NPV indicator, all
these outputs can be aggregated on different spatial supports: individual assets (vector map), regular grid
(raster map), or the entire �oodplain (scalar).

Vector map of �ood damages First, �ood damage estimates are initially computed for each �ood-
exposed asset over the study area. Hence, they can be mapped as a GIS vector layer (Figure 2.20 on the
next page).

rWe will later discuss in the conclusion of Chapter 3 how the composition of these groups may in�uence the results of sensitivity
analysis of the NOE code.
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Figure 2.22: Raster maps of the AAD indicator in present (left) and future (right) situations, cell sizeScS� 0:04 sq.
km

Table 2.5: Orb Delta case study: nominal output values of the AAD, AAD',� AAD and NPV indicators over the
entire �oodplain. Subtotals are also given for each economic sector considered.

AAD [M e /year] AAD' [M e /year] � AAD [M e /year] NPV [M e ]

Private housing 2.678930 1.12995 1.54899000 -

Agricultural land 0.177004 0.18182 -0.00481636 -

Campgrounds 1.739160 1.66792 0.07124420 -

Other economic activities 7.634780 2.72724 4.90754000 -

Total 12.229874 5.70693 6.52295784 49.92795

Total damages over the entire �oodplain Finally, the various outputs produced by the NOE code can
also be aggregated over the entire �oodplain to produce scalar outputs. Figure 2.24 on page 69 shows the
nominal estimates of total �ood damagesDˆej • over the Orb Delta for each �ood scenarioej . Nomi-
nal output values of the AAD, AAD',� AAD and NPV indicators over the entire �oodplain are given
in Table 2.5.

To perform the sensitivity analysis of the NOE code on the Orb Delta case study, we will alternatively
consider the model outputs over different spatial supports. In Chapter 3 we will pay attention to the model
outputs aggregated over the entire �oodplain. Next in Chapter 4 we will study raster maps of the� AAD
indicator for increasing cell sizesScS.

2.3.2.5 Model scales

Table 2.6 on page 69 displays the spatial scales at which the NOE code operate, for the Orb Delta case
study. This description is based on the “scale triplet” discussed in §1.1.3 on page 20.
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Figure 2.24: Orb Delta case study: nominal results for total �ood damage estimatesD ˆej • . Present situation (dark
grey bars) ad future situation (light grey bars)

Table 2.6: Orb Delta case study: spatial scales in the NOE modelling chain

Data Role Format Spatial extent Support Spacing

Project costs input scalar non spatially distributed

Scenario weights input scalar non spatially distributed

Flood hazard modelling

hydraulic model outputs input vector �oodplain storage cells� 1 sq. km. –

DTM input raster �oodplain point 5 m

water depth maps input raster �oodplain cell (5 m) –

Flood exposure modelling

Assets map input vector �oodplain smallest resolvable units� 100 sq. m. –

Flood damage estimation: output indicatorsD ˆ ej • , AAD, AAD' and� AAD on different spatial supports

Vector map of damages output vector �oodplain smallest resolvable units� 100 sq. m. –

Raster maps of damages output raster �oodplain cells of increasing sizes:ScS� 0:04, 0:16,
0:64 and2:56 sq. km

–

Aggregated damages over the �oodplain output scalar non spatially distributed

Net Present Value output scalar non spatially distributed
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2.3.3 Other case studies

Apart from the Orb Delta, the NOE modelling framework was also applied to another three case studies.
We only display here the main characteristics of these extra studies, which are summarized in Table 2.7
on the next page. A more complete description can be found in Appendix §E on page 215. We will
use these extra case studies in various parts of this thesis to make comparative analyses with the results
obtained on the Orb Delta.

The Vilaine �oodplain The �rst extra case study is the Vilaine �oodplain (Île-et-Vilaine, France). This
study area lies around the city of Redon, and has a small extent of only17 sq. km. This case study was
investigated as part of the RDT research program (Grelot 2009).

The Rhône river from Fourques to Beaucaire The second extra case study investigates the economic
relevance of a project of dike strengthening and heightening on the Rhône river reach between the cities
of Fourques and Beaucaire (ISL 2011). The total extent of the study area is125sq. km. We worked on
this case study as part of a larger expert mission on uncertainties in cost-bene�t analysis of �ood risk
management plans, funded by the Plan Rhônes.

The ZEC case study The third extra case study looks into a larger �ood risk management plan, which
we will refer to as the “ZEC project”, that aims at renovating old �oodplains along the lower reaches of
the Rhône river (Gilbert and Ledoux 2012). The total extent of the study area is650 sq. km. We also
worked on this case study as part of a larger expert mission for the Plan Rhône.

The main characteristics of each case study are summarized in Table 2.7 on the next page.

shttp://www.planrhone.fr
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Table 2.7: Main characteristics of the extra case studies

Vilaine �oodplain Fourques - Beaucaire ZEC

Extent 17 sq. km 125 sq. km 650 sq. km

Flood scenarios

Number of scenarios 6 14 12

Descriptors of scenarios peak dischargeq (� � 1) peak dischargeq, levee
failure/not failure, position

of levee failure, season
(� � 4)

peak discharge, season
(� � 2)

Computation of scenario weights hydrological frequency
analysis

hydrological frequency
analysis + seasonal

analysis + probabilistic
levee reliability assessment

hydrological frequency
analysis + seasonal

analysis

Approximation of AAD indicator trapezoidal rule Riemann sum (rectangle
method)

trapezoidal rule

Flood hazard modelling

Type of hydraulic model 1D model (InfoWorks) 2D model (RUBAR 20) hybrid 1D model with
storage cells

Flood exposure modelling

Types of assets private housing (points),
economic activities

(points)

private housing (points),
economic activities

(points), agricultural land
(polygons), farm buidlings

(points)

private housing
(polygons), agricultural

land (polygons), economic
activities (points)

Number of assets � 500 � 5 000 � 10 000

Flood damage functions

Intensity parameters water depth water depth, velocity (for
agricultural assets only)

and �ood duration (idem)

water depth, velocity (for
agricultural assets only)

and �ood duration (idem)



Ì 72 CHAP 2. THE NOE MODELLING FRAMEWORK

2.4 Chapter conclusion

The goal of this chapter was to present the NOE modelling framework for cost-bene�t analysis of �ood
risk management plans based on the “avoided damages” approach (CBA-AD approach), and to describe
its application to the Orb Delta case study. To conclude this chapter, we will �rst display a brief summary
of our contributions, then enumerate the main characteristics of the NOE modelling framework, and
�nally stress its key limits.

2.4.1 A brief summary

We started in §2.1 with some elements of context on �ood risk and economic appraisal of �ood manage-
ment policies, and surveyed the literature on CBA-AD studies, mostly in Europe and more particularly in
France. Next, we explained our need for a general modelling framework that could describe the CBA-AD
studies: such a modelling framework is necessary to clarify the boundaries, the inputs and the outputs of
these studies; it is an essential preliminary step in order to carry out a proper sensitivity analysis of the
CBA-AD approach, which is the applied objective of this thesis.

We gave in §2.2 a detailed description of the steps composing the NOE modelling framework, which in-
volves hydraulic, hydrological and economic modelling as well as spatial analysis using GIS tools. These
steps are: i) choice of �ood scenarios; ii) estimation of scenario weights; iii) �ood hazard modelling; iv)
�ood exposure modelling; v) damage costs estimation; vi) computation of the Average Annual Avoided
Damages; and vii) comparison of the costs and bene�ts of the plan.

In the NOE modelling framework, we brought two original contributions compared to the existing litera-
ture on cost-bene�t analysis applied to �ood risk management plans. The �rst contribution is an attempt
to extend the de�nition of the average annual damages, by modelling �ooding events as random vectors
rather than just real-valued random variables: this attempt proved useful to better identify and discuss the
assumptions and limitations that are hidden when average annual damages are used as a risk indicator.
Our second contribution is the investigation of the various spatial overlay techniques that can be used to
compute the �ood exposure map from the assets map and the hazard maps.

Finally, we brie�y explained in §2.3 how we developed a computer code to implement the NOE modelling
framework, and how we applied this NOE code to different case studies. The NOE code may be released
for public use in the near future. We focused on the Orb Delta case study, which we will use as a real-
world test case for VB-GSA of spatial models throughout this thesis.

2.4.2 Main features of the NOE modelling framework

We give here a list of the main features of the NOE modelling framework, especially of those character-
istics that matter most to carry out an uncertainty and sensitivity analysis. We use the terms and notions
that were de�ned in Chapter 1.

A deterministic model The NOE modelling framework is deterministic. Even if some of the quantities
of interest are modelled as random variables (e.g., the �ooding eventse and their associated peak dis-
chargeq), the way this randomness is treated is totally deterministic. In particular, the de�nition of the
average annual damages (� AAD indicator, §2.2.5 on page 44) and its approximation from a set of �xed
�ood scenariosej is a way to reduce the aleatory uncertainty related to �ooding events and to summarize
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it into a single deterministic indicator. We have brie�y mentioned in §2.2.6 on page 49 the possibility to
estimate the AAD indicator from a plausible random chronicle of �ooding events over a very large length
of time. In that case, the computer code that calculates the AAD indicator would be stochastic. This
particular situation will not be considered in our research.

A spatial model The NOE modelling framework has both spatially distributed inputs and outputs. Spa-
tially distributed inputs include the assets map and the hazard maps, which are usually vector and raster
GIS data, respectively. These input data are expected to show some sort of spatial auto-correlation—the
error on water depth at sitex is necessarily correlated to the error on water depth at a neigbouring sitexœ.
Besides, most output quantities of interest (damage per �ood scenarioDˆej • , AAD, AAD', and � AAD
indicators) can also be spatially distributed (vector or raster data), as it was developed in §2.3.2.4 on
page 65.

A spatially additive model with different supports for the model output The NOE modelling chain
is a “spatially additive model” as de�ned in §1.1.4 on page 22: the aggregation of an output damage
indicator (�ood damage estimatesDˆej • , AAD, AAD', or � AAD indicators) over a given spatial support
v is simply the sum of this damage indicator over all �ood-exposed assets included in the support. As
mentioned in §2.3.2.4 on page 65, we will consider in our analysis various spatial supports for the NOE
model outputs: �rst the �oodplain
 as a whole, but also a number of raster maps with different cell sizes.

A point-based model The NOE modelling chain is also a “point-based” model, according to the def-
inition given in §1.1.5 on page 23. Indeed, �ood damage estimates at a given pointx > 
 only depend
on: i) �ood intensity parameters at the same pointx >
 ; ii) the asset description at the same pointx >
 ;
and iii) damage functions. It can be noted that some authors developed more complex frameworks, in
which �ood damage assessments are not point-based because they consider �ood-exposed assets as spa-
tially connected systems and take into account a number of induced damages; in such frameworks, �ood
damage on an asset located at pointx > 
 (e.g., a factory) may depend on �ood intensity parameters at
other locationsxœ(e.g., water depth on a distant warehouse). See Brémond (2011) for an example on
�ood damages to farms.

A code with low CPU cost As detailed in §2.3.1 on page 58, one simulation of the NOE code on the
Orb Delta case study costs around 4 seconds on a grid computing cluster. Hence, it is possible to run the
code more than a thousand times, and to use intensive sampling techniques for sensitivity analysis.

2.4.3 Key limitations of the NOE modelling framework

As mentioned in §2.2.1 on page 40, the NOE modelling framework does not pretend to cover the entire
variety and complexity of cost-bene�t analyses applied to �ood risk management plans. In particular, we
must highlight the following limitations.

Hydraulic model The hydraulic model, which is used to produce hazard maps associated with �ood
scenarios, is not considered as a part of the NOE modelling framework. It is an external module, whose
outputs (the hazard maps) are the inputs of the NOE code. Hence, the uncertainty and sensitivity anal-
ysis we will perform on the NOE code in the following chapters will not look into the hydraulic model
uncertainties, but will only try to describe the resulting uncertainty on the hazard maps.
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Evolution of landuse over time An important hypothesis in our framework is that all the input data
are assumed to keep a �xed value over the time intervalR over which the �ood risk management plan
is evaluated. In particular, the assets map is not supposed to change over the next 30 to 50 years. This
strong assumption may seem indefensible, yet it is a common hypothesis in all cost-bene�t analyses
applied to �od risk management plans. We will discuss later how this hypothesis might be relaxed in
further research.

Fluvial �oods As mentioned in §2.2.5.1 on page 45, we designed the NOE modelling framework to
deal with �uvial �oods. However, this framework could be easily adapted to other types of inundation,
such as groundwater �oods, coastal �oods, surface water �oods, etc. It would just be necessary to add new
descriptors for �ooding events (e.g., the sea level for a coastal �ood), and to compute scenario weights
that would take these new descriptors into account.
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Chapter 3

Spatially distributed inputs in
variance-based global sensitivity
analysis
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A S mentioned in Chapter 1, VB-GSA is initially designed for models with independent and scalar
random inputs only: this is a �rst obstacle that limits its extension to spatial models. Indeed, in
a spatial model, some model inputs are not scalar values but 2D raster or vector data, and may

exhibit some sort of spatial auto-correlation; the original framework of VB-GSA does not �t any longer
in this case. In this chapter, we explore this issue and investigate how variance-based sensitivity indices
can be calculated in numerical models with spatially distributed inputs. Only models with scalar outputs
are considered here (spatially distributed outputs will be studied in Chapter 4).

This chapter is composed of three sections. The �rst section §3.1 is a review of the methods encountered
in the literature for VB-GSA of models with spatially distributed inputs. It is completed by a numerical
study of some of these methods and by a discussion on their pros and cons. In the second section §3.2,
we offer to discuss the issue of sampling of spatially distributed inputs in VB-GSA. We start with a
brief overview of the main strategies to model uncertainty in a spatially distributed input and sample
random realisations of it. We then explore the impact of sampling size and technique on the estimation
of variance-based sensivity indices, with two numerical studies of analytical test cases, one of which was
published in theProceedings of the ninth International Symposium on Spatial Accuracy Assessment in
Natural Resources and Environmental Sciences(Saint-Geours et al. 2010). Next, the third section §3.3
is dedicated to an application of VB-GSA with spatial inputs to the NOE code on the Orb Delta case
study. It was submitted in July 2012 to theJournal of Flood Risk Management. It starts with a review
on uncertainty treatment in �ood damage assessment studies. Finally, in the chapter conclusion (§2.4),
we give some insights on i) how to extend the methods discussed in this chapter to other types of model
inputs; and ii) how to extend the results observed on the NOE code for the Orb Delta case study to other
CBA-AD studies.
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3.1 State of the art and comparison of the available methods

3.1.1 Introduction

In its initial form summarized in §1.2 on page 24, variance-based global sensitivity analysis (VB-GSA)
is designed to deal with scalar inputsUi only, which are modelled as independent random variables.
However, some recent research aim to extend the de�nition of variance-based sensitivity indices to cor-
related inputs (Li et al. 2010; Mara and Tarantola 2012; Kucherenko et al. 2012). Besides, a number
of authors have recently introduced methods to compute variance-based sensitivity indices associated to
one or several spatially distributed inputsZ i ˆx•, that possibly exhibit spatial auto-correlation. Lilburne
and Tarantola (2009), Iooss and Ribatet (2009), or Iooss (2008) make a partial state of the art of these
approaches. In this section, we offer to:

X make an updated state of the art of these methods (§3.1.2);

X compare these methods on some analytical test cases (§3.1.3 on page 88) ;

X discuss their pros and cons and give practice-oriented criteria to choose the appropriate method
for a given problem (§3.1.4 on page 92).

We consider in this whole section a numerical modelF with a single spatially distributed inputZ ˆx• and
a scalar outputY , as it was described in §1.1.1 on page 18:

Y � F ˆU1; : : : ; Uk ; Z • (3.1)

Besides, in some parts of this section, we will assume that the uncertainty on the spatially distributed input
˜ Z ˆx• � x >
 • can be simulated by a stochastic process, which will be denoted byP (e.g., a geostatistical
algorithm). This stochastic processP may account for spatial auto-correlation or any complex structure
of variability in Z ˆx•. This point will be further discussed in §3.2.2 on page 98.

3.1.2 A review

We found in the SA literature a number of papers dealing with VB-GSA applied to models with spatially
distributed inputs. They display various methods that intend to de�ne variance-based sensitivity indices
that could measure the in�uence of an uncertain spatially distributed inputZ ˆx• on the variance of model
output Y . These methods can be classi�ed into six categories, which we describe into details in the
following paragraphs §3.1.2.1 to §3.1.2.6 on pages 79–86.

3.1.2.1 Macro-parameter

A �rst approach (Figure 3.1 on the next page) is to consider a spatially distributed input˜ Z ˆx• � x >
 • ,
or more precisely its numerical representation, as a �nite set ofd scalar parameters� 1 : : : � d. When
˜ Z ˆx• � x >
 • is stored as a GIS raster, scalar parametersˆ � j • j >B1;dGare simply the valuesZ ˆc1• ; : : : ;
Z ˆcd• at the centers of cellsci andd is the total number of cells. When˜ Z ˆx• � x >
 • is represented by
a GIS vector layer, scalar parameters� j are the values of the attributes of each spatial object in the layer,
andd is a multiple of the number of objects. Following Iooss and Ribatet (2009), we will use the term
“macro-parameter” to refer to this method.
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In some applications, it may possible to consider that the� i are independent random variables. Spa-
tial correlation of uncertainty in model input˜ Z ˆx• � x >
 • is then neglected. In other applications,
random variableŝ� j • j >B1;dG are not statistically independent, because there is spatial auto-correlation
in ˜ Z ˆx• � x >
 • . In the �rst case (parameters� i independent), variance-based sensitivity indices can
be computed either for each scalar parameter� j , or for the whole input group̂� j • j >B1;dG (see §1.2.2.4
on page 32 for a discussion on grouping in VB-GSA). We will refer to these two options as “macro-
parameter without grouping” and “macro-parameter with grouping”. When scalar parametersˆ � j • j >B1;dG
are correlated, only the “with grouping” option is appropriate. The steps of these two options are as fol-
lows:

Macro-parameter without grouping

Step 1 represent spatially distributed input˜ Z ˆx• � x >
 • as a �nite set ofd scalar parameters� 1 : : : � d;

Step 2 identify a pdfp� i for each scalar input� i (assumed to be independent);

Step 3 consider the new codeF † (modi�ed version ofF ):

Y � F †ˆU1; : : : ; Uk ; � 1; : : : ; � d• (3.2)

Step 4 create an input sampleM tot with inputsˆ � j • j >B1;dGalong with other scalar model inputsUi (fol-
lowing the pseudo-Monte Carlo procedure described in §1.2.2.5 on page 32) and evaluate codeF †

for each line of the sample;

Step 4 estimate �rst and total-order sensitivity indices for each scalar parameter� j (§1.2.2.5 on page 32).

Macro-parameter with grouping

Step 1 represent spatially distributed input˜ Z ˆx• � x >
 • as a �nite set ofd scalar parameters� 1 : : : � d;

Step 2 identify a joint pdf p� for the set of parameterŝ� j • j >B1;dG; if the parameterŝ � j • j >B1;dG are
assumed to be independent, joint pdfp� is simply the product of the marginal pdfsp� i ; if not, the
joint pdf p� will describe the correlated structure of these parameters;

Figure 3.1: Macro-parameter method
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Step 3 consider the new codeF † (modi�ed version ofF ):

Y � F †ˆU1; : : : ; Uk ; � 1; : : : ; � d• (3.3)

Step 4 create an input sampleM tot with the group of inputŝ � j • j >B1;dG along with other scalar model
inputs Ui (following the pseudo-Monte Carlo procedure described in §1.2.2.5 on page 32) and
evaluate codeF † for each line of the sample;

Step 5 compute the �rst and total-order sensitivity indices of the whole group of inputsˆ � j • j >B1;dG
(§1.2.2.5 on page 32).

The “macro-parameter with grouping” approach was recently used by Heuvelink et al. (2010b) to carry
out a sensitivity analysis of the GeoPEARL pesticide leaching model. In this work, each spatially dis-
tributed soil property (soil horizon thickness, clay or organic matter content, etc.) was represented on a
spatial grid by a set of 258 scalar parameters� i that were assumed to be statistically independent. Hence,
spatial auto-correlation of uncertainty was neglected. For each soil property, sensitivity indices were
estimated for the whole groupˆ � j • j >B1;dGby a pseudo Monte Carlo procedure.

The main drawback of the macro-parameter approach is its computational burden. The number of scalar
parameters that must be sampled to estimate sensitivity indices is equal tok � d wherek is the number of
non-spatially distributed model inputsU1; : : : ; Uk andd is the “dimension” of spatially distributed input
˜ Z ˆx• � x >
 • —number of cells in a grid or number of spatial objects in a GIS vector layer. As soon as
the dimensiond gets too large (d Q 100), the large samples required to estimate sensitivity indices may
be dif�cult to handle.

3.1.2.2 Dimension reduction

The “dimension reduction” approach is similar to the “macro-parameter” method, except that it results in
a reduction of the total information contained in the initial spatially distributed dataZ ˆx• (Figure 3.2 on
the next page). Its idea is to �nd some way to approximate a spatially distributed input˜ Z ˆx• � x >
 •
by a deterministic function� of a small number of scalar inputs� 1; : : : ; � d, with d small (typically
d B 100, much less than the dimension of the initial spatially distributed data). As in the “macro-
parameter” method, scalar parameters� 1; : : : ; � d may be assumed statistically independent or not, and
may be grouped for sensitivity analysis or not (see §1.2.2.4 on page 32 for a discussion on grouping in
VB-GSA). The steps of these two options are as follows:

Dimension reduction without grouping

Step 1 approximate spatially distributed input˜ Z ˆx• � x >
 • by a deterministic function� of a small
number of scalar inputs� 1; : : : ; � d:

Z ˆx• � � ˆ � 1; : : : ; � d; x• (3.4)

Step 2 identify a pdfp� i for each scalar input� i (assumed to be independent);
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Figure 3.2: Dimension reduction method

Step 3 consider the new codeF † (modi�ed version ofF ):

Y � F †ˆU1; : : : ; Uk ; � 1; : : : ; � d• (3.5)

Step 4 create an input sampleM tot of inputsˆ � j • j >B1;dGalong with other scalar model inputsUi (follow-
ing the pseudo-Monte Carlo procedure described in §1.2.2.5 on page 32) and evaluate codeF † for
each line of the sample;

Step 4 estimate �rst and total-order sensitivity indices for each scalar parameter� j (§1.2.2.5 on page 32).

Dimension reduction with grouping

Step 1 approximate spatially distributed input˜ Z ˆx• � x >
 • by a deterministic function� of a small
number of scalar inputs� 1; : : : ; � d:

Z ˆx• � � ˆ � 1; : : : ; � d; x• (3.6)

Step 2 identify a joint pdf p� for the set of parameterŝ� j • j >B1;dG; if the parameterŝ � j • j >B1;dG are
assumed to be independent, joint pdfp� is simply the product of the marginal pdfsp� i ; if not, the
joint pdf p� will describe the correlated structure of these parameters;

Step 3 consider the new codeF † (modi�ed version ofF ):

Y � F †ˆU1; : : : ; Uk ; � 1; : : : ; � d• (3.7)

Step 4 create an input sampleM tot with the group of inputŝ � j • j >B1;dG along with other scalar model
inputs Ui (following the pseudo-Monte Carlo procedure described in §1.2.2.5 on page 32) and
evaluate codeF † for each line of the sample;

Step 5 compute the �rst and total-order sensitivity indices of the whole group of inputsˆ � j • j >B1;dG
(§1.2.2.5 on page 32).
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Here are some examples of works based on this approach. Volkova et al. (2008) carried out sensitivity
analysis of a model of groundwater transport for radionuclide migration on a radwaste disposal site.
To represent spatially distributed soil properties such as the hydraulic conductivity or in�ltration, they
divided up the spatial domain
 into four zones� 1 to � 4 (d � 4); each soil property was then described
by a single scalar random variable� i on each zonevi , which was assumed to represent the average value
of the soil property over the zone. All these random variables were assumed independent, and �rst and
total-order sensitivity indices were estimated for each of them. Busby et al. (2010) also use a “dimension
reduction” approach to perform the sensitivity analysis of an oil reservoir model in which one of the
model inputs is a spatially distributed permeability �eld˜ Z ˆx• � x >
 • . This input �eld is �rst expanded
on an orthogonal basis (Karhunen-Loève expansion); the main coef�cients� i of this expansion are then
considered as new, uncorrelated inputs, and sensitivity indices are estimated for each of them by a pseudo
Monte Carlo procedure. A last example of the “dimension reduction” approach is given by Francos et al.
(2003), who performed the variance-based sensitivity analysis of the SWAT computer model (Soil and
Water Assessment Tool). In the original SWAT model, the study area
 was divided into 11 topographical
sub-basins and further into 156 hydrological response units, and 15 soil properties where given for each
of these units. For sensitivity analysis, the spatial variability of soil properties was reduced and each
spatially distributed input variable was considered homogeneous over supports of larger size (either sub-
basins, or region composed of many hydrological response units grouped by soil types, land use types or
growing crops). This dimension reduction resulted in a downsizing of the total number of input variables,
from more than 1 000 in the initial model to only 82 in the reduced setting.

3.1.2.3 Switch or trigger input

The “switch input” or “ trigger input” approach was �rst suggested by Crosetto and Tarantola (2001). In
this approach, we assume that the uncertainty on the spatially distributed input˜ Z ˆx• � x >
 • can be
simulated by a stochastic processP. The idea of the “switch input” method is to modify the original
numerical modelF by introducing a so-called “trigger” variable, denoted by� , which is assumed to be
a boolean random variable. When� � 0, the spatially distributed inputZ ˆx• is kept �xed to its nominal
value; when� � 1, the stochastic processP is used to generate a random realisation ofZ ˆx•. The trigger
variable� is a switch between two situations (Figure 3.3 on the next page). Using this stratagem, the
sensitivity indices estimated for the trigger variable� are used as a measure of the sensitivity of the model
outputY to the variability ofZ ˆx•. The steps are as follows:

Trigger method

Step 1 choose a nominal valueZ 0ˆx• for the spatially distributed input;

Step 2 de�ne a “trigger input”, denoted by� , which is assumed to be a boolean random variable such
thatPˆ � � 0• � Pˆ � � 1• � 1~2;

Step 3 sample trigger input� along with other scalar inputsUi to generate an input matrix, following the
sampling procedure described in §1.2.2.5 on page 32;

Step 4 evaluate modelF for each linei of the input matrix:

• if � ˆ i • � 0, use nominal valueZ 0ˆx• to evaluate modelF ;

• if � ˆ i • � 1, use stochastic processP to generate a random realisation ofZ ˆx• to evaluate
modelF ;
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Step 2 label each realisation with a unique integerl >B1;nG; the random realisation associated with label
l is denoted byZ ˆ l • ;

Step 3 consider a random labelL , which is assumed to follow a discrete uniform pdf inB1;nG;

Step 4 sample random labelL along with other scalar inputsUi to generate an input matrix, following
the sampling procedure described in §1.2.2.5 on page 32;

Step 5 evaluate the modelF for each line of the input matrix; spatially distributed inputZ ˆx• is replaced
by a reference to the random labelL : on line i , the sampled valuel ˆ i • of the label indicates that
random realisationZ ˆ l ˆ i • • of the spatially distributed input must be considered to evaluate model
F for this sample line;

Step 6 from the output vector, calculate the �rst and total-order sensitivity indicesSL andSTL of random
labelL (§1.2.2.5 on page 32). These indicesSL andSTL are taken as a measure of the in�uence
of ˜ Z ˆx• � x >
 • on the variance of model outputY .

Figure 3.4: Map labelling method

Lilburne and Tarantola (2009) applied the “map labelling” approach (Figure 3.4) to a spatial model for
simulating nitrate transport from paddock to groundwater (AquiferSim). Four spatially distributed inputs
were considered (soil map, land use map, river recharge map and aquifer transmissivity map) and a small
set of up ton � 4 random realisations was generated for each of them. The “map labelling” approach
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was also used by Ruffo et al. (2006) to perform sensitivity analysis of a model for oil reservoir production
forecasting. Two spatially distributed inputs were considered (basin geometry and heat �ow map) and a
small set ofn � 8 (basin geometry) orn � 4 (heat �ow) random realisations was generated for each of
them.

3.1.2.5 Joint meta-models

The “joint meta-models” method was introduced by Iooss and Ribatet (2009). In this approach, we
also assume that the uncertainty on the spatially distributed input˜ Z ˆx• � x >
 • can be simulated by a
stochastic process denoted byP. Iooss and Ribatet (2009) suggest to considerZ ˆx• as an “uncontrol-
lable” input, that is, an input variable whose random values cannot be reproduced or �xed. Two different
meta-models— generalized linear models, GLM—are used to approximate the conditional expectation
EˆY SU • and the conditional variance var�Y SU � of model output. These meta-models are linked and
are built from a small set of model simulations, in which the value of the uncertain spatially distributed
input Z ˆx• is randomly sampled for each model run. We will not give a detailed description of the steps
involved to build these two meta-models. First meta-model on the conditionnal expectationEˆY SU •
(“mean model”) is used to estimate �rst-order sensitivity indices of scalar inputsU1; : : : ; Uk . The second
meta-model on conditional variance var�Y SU � (“dispersion model”) is used to estimate total sensitivity
indexSTZ of the spatially distributed input˜ Z ˆx• � x >
 • . Iooss and Ribatet (2009) apply this method
on a model for simulation of nuclear fuel irradiation. Marrel et al. (2012) also apply it on an oil reservoir
model, and use geostatistical simulation to obtain random realisations of a porosity map.

If there are several spatially distributed inputsZk � 1ˆx•; : : : ; ZK ˆx•, they can be considered as a whole
as a single “uncontrollable” group of inputs. A couple of �rst-order and total-order sensitivity indices
can then be calculated for the whole group, but not separately for each spatially distributed inputZ i ˆx•.

3.1.2.6 Second level uncertainty modelling

The last method, named “second level uncertainty modelling” or simply “second level”, is not really
comparable to the others, because it does not measure the same quantity of interest (see below). However,
we think that it is necessary to discuss it, because: i) this method has been encountered in the literature
on sensitivity analysis of spatial models; and ii) it is helpful to better understand the difference between
this approach and the previous ones.

In this last method, we also assume that the uncertainty on spatially distributed input˜ Z ˆx• � x >
 • can
be simulated by a stochastic processP. More precisely, we consider the case in which this stochastic
processP is controlled by some scalar parameters, denoted by� 1 to � d. These parameters usually aim
at controlling some features of the random realisations ofZ ˆx•. We can use the term “second level
parameters” to refer to these parameters� i , because they are used to model uncertainty on the �rst-level
model inputZ ˆx•. For example, ifZ ˆx• was modelled by a Gaussian Random Field, second level
parameters� i could be the range, nugget and sill of the variogram. IfZ ˆx• was a vector layer in a GIS
software, second level parameters� i could control a number of characteristics of the generated maps, such
as the number, shape or surface area of the polygonal features. The idea of the “second level” approach is
to consider that second level parameters� i are themselves uncertain, and to estimate their variance-based
sensitivity indices with respect to the model outputY a (Figure 3.5 on the next page). These parameters

aThis approach is for example suggested by Bonin (2006) when he says that “a common practice [. . . ] is to substitute to the
input variables the parameters of the errors models designed for these variables.”
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can be grouped for sensitivity analysis or not (see §1.2.2.4 on page 32 for a discussion on grouping in
VB-GSA). The steps are as follows:

Second level method

Step 1 identify a number of scalar parameters� i that control the stochastic processP

Step 2 identify a pdf p� i for each parameter� i , or a joint pdfp� for the whole group of parameters
ˆ � j • j >B1;dG

Step 3 sample random parameters� i (grouped or not grouped) along with other scalar inputsUi to gen-
erate an input matrix, following the sampling procedure described in §1.2.2.5 on page 32;

Step 4 for each linei of the sample matrix:

• generate a new random realisation ofZ ˆx• with the stochastic processP, using parameter
valueŝ � ˆ i •

1 ; : : : ; � ˆ i •
d • ;

• evaluate the codeF using scalar inputsUˆ i •
1 ; : : : ; Uˆ i •

k and the new random realisation of
Z ˆx•;

Step 5 (with grouping) from the output vector, calculate the �rst and total-order sensitivity indicesS�

andST� of the group of parametersˆ � j • j >B1;dG(§1.2.2.5 on page 32);

Step 5 (without grouping) from the output vector, calculate the �rst and total-order sensitivity indices
S� i andST� i for each parameter� j (§1.2.2.5 on page 32).

Figure 3.5: Second level method

In fact, it is not the effect of �rst-level uncertainty ofZ ˆx• on the variance of model outputY that is
assessed here, but rather the effect of the uncertainty of the second level parameters� i . The modelF
under study is modi�ed and becomes a stochastic numerical code: the stochastic processP which is
used to generate random realisations of the spatially distributed inputZ is now included in the initial
deterministic modelF .

The “second level” approach is the one chosen by Gumiere (2009) to carry out sensitivity analysis of
the MHYDAS water erosion model (Gumiere et al. 2011). They consider a single spatially distributed
inputZ , which is a map of the locations of vegetative �lters that in�uence sedimentological connectivity,
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represented by an oriented tree. To account for the uncertainty in the location of these vegetative �lters,
they use a stochastic processP to generate random realisations ofZ . This stochastic process is controlled
by three “second level” scalar parameters� 1, � 2 and� 3 that in�uence the properties of random treesZ :
upstream-dowstream gradient� 1, density parameter� 2, contrast parameter� 3. Finally, they estimate
variance-based sensitivity indices of second level parameters� 1, � 2 and� 3 with respect to the MHYDAS-
Erosion model outputs, using a procedure based on LHS sampling.

Another example of the “second level” approach is curently developed by Monod (2012). They investigate
the behaviour of a spatially distributed model that simulates the dispersion of modi�ed genes across plots
of cultivated land. One of the model inputs is a map of the landscape which gives the position and
geometry of each plot of cultivated land (vector data). To account for the uncertainty on this spatially
distrbuted input, they developed an ad-hoc stochastic algorithmP, which can generate any number of
random realisations of the landscape, while controlling a number of important features� 1 to � d, such
as the level of aggregation of parcels growing the same crops, the empirical distribution of the parcels
surface areas, or the shape of parcels (angles). Then, they compute variance-based sensitivity indices
associated with each of these scalar parameters� i , based on a factorial design of experiments. These
sensitivity indices are a measure of the contribution of each feature� i of the landscape to the variance of
model outputY .

3.1.3 Numerical study

In order to illustrate the various methods presented in §3.1.2 on page 79, we compared them on three
analytical test cases. We only give here a brief summary of the settings and results of this numerical
study, which is detailed in Appendix §F on page 219.

3.1.3.1 Analytical test cases

Three different numerical models, denoted byF1 to F3, were studied. They all have two independent
scalar inputsU1 andU2, a single spatially distributed inputZ and a scalar outputY . We made a restrictive
choice by considering only point-based and spatially additive models (see §1.1.4 to §1.1.5 on pages 22–
23 for a de�nition). This choice is justi�ed by the facts that: i) our case study model (NOE model) is
point-based and spatially additive; and ii) most theoretical developments presented in this document are
related to point-based and spatially additive models only.

The output of interest for all modelsF1 to F3 is the spatial averageYv of a spatially distributed output of
some local codeF1;loc to F3;loc over a diskv ` 
 of radiusr � 10:

Yv �
1
SvSS

x >v

F i; loc �U1; U2; Z ˆx•� dx (3.8)

U1 andU2 are independent scalar inputs with a different uniform pdf for each test case.˜ Z ˆx• � x >
 • is
a 2D random �eld generated by a deterministic function denoted by� camp.. This function was introduced
by Campbell et al. (2006) and then modi�ed by Marrel et al. (2011). We use this latter modi�ed version
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Figure 3.6: Three random realisations of the� camp. function

in our work [Eqn. (3.9)]:

Z ˆx• � � camp.̂ � 1; � 2; � 3; � 4; � 5; � 6; � 7; � 8; x•

� � 1 exp�
ˆ0:8x � � 0:2x ' � 10� 2•2

60� 2
1

� ˆ � 2 � � 4• exp
ˆ0:5x � � 0:5x ' • � 1

500

� � 5ˆ � 3 � 2• exp
� ˆ0:4x � � 0:6x ' � 20� 6•2

40� 2
5

� ˆ � 6 � � 8• exp
ˆ0:3x � � 0:7x ' • � 7

250

(3.9)

wherex � andx ' are the polar coordinates of pointx > 
 . Parameters� 1 to � 8 are assumed to be i.i.d.
random variables of uniform pdfU� � 1; 5� . Function� camp.was designed to produce a random �eld with
strong spatial heterogeneity and spatial patterns depending on the values of� i parameters (Figure 3.6).
In this test case, we can describe the stochastic processP, which is used to generate random realisations
of the uncertain spatially distributed input˜ Z ˆx• � x >
 • , as a two step process: �rst step consists of
drawing one random value for each scalar parameter� 1 to � 8 from its pdf; and second step is to use the
function� camp. to generate a realisation of˜ Z ˆx• � x >
 • from the sampled values of� i .

Finally, local codeF i; loc is different for each test case. Local codeF1;loc is the usual Ishigami function
with parametersA � 7 andB � 0:1 (Homma and Saltelli 1996).F2;loc is the usual SobolG function with
parametersa0 � 0, a1 � 1 anda2 � 4:5 (Archer et al. 1997). Local codeF3;loc is a simple linear function:
F3;loc � u1; u2; z� � u1 � z � u2.
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3.1.3.2 Methods under study

Sensitivity indices of model inputsU1, U2 andZ are computed for each test caseF1 to F3, using the
various methods discussed in §3.1.2 on page 79—except for the “joint meta-modelling” method. The
same pseudo Monte Carlo procedure described in §1.2.2.5 on page 32 was used for each method, with a
base sampling sizeN � 2 048. We give here some explanations on the procedures, for more details see
Appendix §F on page 219.

Dimension reduction/ macro-parameter (with or without grouping) In our test cases, the spatially
distributed model inputZ ˆx• is generated with the deterministic function� camp.. Here, dimension reduc-
tion is easy to perform: we just have to consider the eight scalar parameters� 1 to � 8, which are assumed
to be independent. In this speci�c case, dimension reduction does not result in a reduction of the infor-
mation contained in the spatially distributed input˜ Z ˆx• � x >
 • : hence, dimension reduction approach
is here similar to the macro-parameter approach. Both “with grouping” and “without grouping” options
are implemented.

Map labelling A set ofn � 1 000random realisations of the spatially distributed input˜ Z ˆx• � x >
 •
was generated using function� camp.on a random sample of scalar parameters� 1 to � 8. Sensitivity indices
were estimated for test casesF1 to F3 following the method described in §3.1.2.4 on page 84.

Trigger method Trigger method was used to estimate sensitivity indices on test casesF1 to F3, with
the following setting: i) when trigger input� � 0, then spatially distributed input̃Z ˆx• � x >
 • is
�xed to its nominal value, obtained with the� camp. function for the following values of� i parameters:
ˆ5; 3; 1; � 1; 5; 3; 1; � 1•; ii) when trigger input� � 1, then spatially distributed inputZ ˆx• is generated
with function� camp. from a random set of parametersˆ � 1; : : : ; � 8• .

Second level Here, the stochastic processP used to generate random realisations ofZ ˆx• is controlled
by the pdf of scalar parameters� i , which are initially supposed to follow a uniform distributionU� � 1; 5� .
To apply the “second level” approach described in §3.1.2.6 on page 86, we considered that the two
boundaries of the interval� � 1; 5� were themselves uncertain. We denoted these two boundaries by� 1 and
� 2, and assumed they were random variables with the following laws:� 1 � U� � 2; 0� and� 2 � U� 4; 6� ,
respectively. We then computed �rst and total-order sensitivity indices for the groupˆ � 1; � 2• as explained
in §3.1.2.6 on page 86.

3.1.3.3 Results

Table 3.1 on the facing page gives sensitivity indices estimates of model inputs with respect to the outputs
of modelsF1, F2 andF3. NotationsSZ andSTZ denote the measure of sensitivity related to the spatially
distributed input̃ Z ˆx• � x >
 • . This measure depends on the method considered:

• for “dimension reduction with grouping” method,SZ andSTZ are the sensitivity indices of the
group of scalar inputs (� 1, . . . ,� 8);
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Table 3.1: Sensitivity indices estimates for each test case and each method (base sample sizeN � 2 048)

Méthode SU1 SU2 SZ STU1 STU2 STZ

F 1

Map
labelling

0.85029021 -0.00240045 0.08615907 0.85400421 0.06653359 0.14921352

Dim. red. (no
groups)

0.83122767 -0.00732305 -0.02939551 0.82528089 0.07106520 0.7841338

Dim. red.
(groups)

0.83122767 -0.00732305 0.09104848 0.82528090 0.07106520 0.1714519

Trigger 0.90419686 -0.00668187 0.00597127 0.98693707 0.09534858 0.09948201

Second level 0.41921743 0.0412273 0.351084231 0.48971827 0.08128145 0.36249868

F 2

Map
labelling

0.39106100 0.16071710 0.26105662 0.54440171 0.2550799 0.4013758

Dim. red. (no
groups)

0.40854115 0.15463054 0.16372373 0.54443509 0.24548002 0.4202739

Dim. red.
(groups)

0.40854121 0.15463054 0.25502153 0.54443517 0.24548001 0.3775389

Trigger 0.36150243 0.14331481 0.11839480 0.71237405 0.47894579 0.43113721

Second level 0.21557175 0.08716610 0.53112684 0.36419231 0.19001217 0.62068430

F 3

Map
labelling

0.16185561 0.51015161 0.36420441 0.16981867 0.4657908 0.3632460

Dim. red. (no
groups)

0.15610543 0.46926415 0.31304476 0.17798195 0.47171151 0.4054459

Dim. red.
(groups)

0.15610543 0.46926415 0.34933227 0.17798203 0.47171151 0.3750211

Trigger 0.11714831 0.55745845 0.11311281 0.35444583 0.77012715 0.32716394

Second level 0.13164180 0.62611001 0.03006099 0.18131888 0.67992681 0.03550100

• for “dimension reduction without grouping” method, we obtain individual sensitivity indices of
scalar inputs� 1; : : : ; � 8, which are given in Appendix §F on page 219; a naive way to build sensi-
tivity indicesSZ andSTZ is to compute the sum of �rst-order indicesS� 1 , . . . ,S� 8 of scalar inputs
� 1; : : : ; � 8 as well as the sum of their total-order indicesST� 1 , . . . , ST� 8 ; we thus indicate these
two sums, but we will explain in the discussion why they are misleading (§3.1.4.1 on the following
page);

• for “map labbeling” method,SZ andSTZ are the sensitivity indices of random label inputL ;

• for “ trigger” method,SZ andSTZ are the sensitivity indices of trigger input� ;

• for the sake of comparison and though we know that it does not measure the same quantity of
interest as discussed in §3.1.2.6 on page 86, we also indicate the measure obtained with the “second
level” method: in this case,SZ andSTZ are the sensitivity indices of the group of inputs (� 1, � 2).

In this speci�c case study, sensitivity indices estimates obtained with the “dimension reduction with
grouping” approach can be taken as reference values. Indeed, for all test casesF1 to F3, the spatially dis-
tributed input̃ Z ˆx• � x >
 • is completely represented by the set of scalar inputs� 1 to � 8, and thus the
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�rst and total-order sensitivity indices of the groupˆ � 1; : : : ; � 8• are a perfect measure of the contribution
of ˜ Z ˆx• � x >
 • to the variance of model outputY .

It �rst appears in Table 3.1 on the preceding page that the “map labelling” method gives the same values
of sensitivity indices as the “dimension reduction with grouping” approach, for all sensitivity indices and
all test cases—max bias is lesser than5 � 10� 2. We can interpret these results as an empirical validation
of the “map labelling” method.

Next, it can be noted that “dimension reduction without grouping” and “dimension reduction with group-
ing” methods yield identical estimates for sensitivity indicesSU1 , SU2 , STU1 andSTU2 —max bias is
lesser than10� 2. On the contrary, the two methods differ in the information they bring on the spatially
distributed input̃ Z ˆx• � x >
 • . The “dimension reduction without grouping” method gives sensitivity

indices estimates for each scalar parameter� i . The sum of �rst-order sensitivity indices
8
P
i � 1

S� i could be

chosen as a measure of the main effect of spatially distributed input˜ Z ˆx• � x >
 • on the variance of
model outputY . Yet, this sum does not account for the contribution of the interactions between scalar

inputs� i to the variance ofY . Hence sum
8
P
i � 1

S� i is always smaller than or equal to �rst-order sensitivity

index SZ . In a similar way, the sum of total-order sensitivity indicesST� 1 to ST� 8 could be seen as
a good indication of the total contribution of spatially distributed input˜ Z ˆx• � x >
 • to the variance
of model ouputY . Nevertheless, in this sum, the interactions between scalar parameter� i and other
parameters� j are counted multiples times (once for each parameter), while they are only counted once

in total-order sensitivity indexSZ . Hence, the sum
8
P
i � 1

ST� i is always larger than or equal to total-order

sensitivity indexSTZ .

Finally, Table 3.1 on the previous page clearly suggests that the “trigger” method and the “second level”
method do not yield correct estimates of sensitivity indices, as they are far from the reference values ob-
tained with “dimension reduction with grouping”. In particular, with the “trigger” method, �rst-order in-
dexSZ is always over-estimated while total-order sensitivity indicesSTU1 andSTU2 are under-estimated.
This point will be further discussed in §3.1.4.1 on the facing page.

3.1.4 Discussion

We discuss here the pros and cons of the various methods displayed in §3.1.2 along with the results of
the numerical study described in §3.1.3. The content of this discussion is summarized in Table 3.2 on
page 97.

3.1.4.1 Methods do not produce the same information

All the methods displayed in §3.1.2 intend to de�ne variance-based sensitivity indices that could measure
the in�uence of an uncertain spatially distributed input˜ Z ˆx• � x >
 • on the variance of model output
Y . However, they do not produce exactly the same information.

In�uence of Z ˆx• with �xed description of uncertainty A �rst group of a methods intend to mea-
sure the contribution of the spatially distributed inputZ ˆx• to the variance of model outputY , with a
“ �xed” description of uncertainty onZ ˆx•. This group includes the “macro-parameter”, the “dimension
reduction”, the “map labelling” and the “joint meta-models” techniques.
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The “macro-parameter with grouping”, “ dimension reduction with grouping”, “ map labelling” and “joint
meta-modelling” methods all result in the estimation of variance-based sensitivity indicesSZ andSTZ

that describe the contribution of the whole spatially distributed model input˜ Z ˆx• � x >
 • to the vari-
ance of model outputY . It should be noted that in the “joint meta-modelling” method, only total-order
sensitivity indexSTZ can be estimated but �rst-order indexSZ remains unknown. Besides, the “dimen-
sion reduction with grouping” method only yields an approximation of sensitivity indices ofZ ˆx•, as the
total information initially contained inZ ˆx• is reduced to a small set of scalar parameters.

The information brought by the “macro-parameter without grouping” or “ dimension reduction without
grouping” methods is slightly different. They give separate estimates of the �rst and total-order sensitivity
indicesS� j , ST� j for each scalar parameter� j , j > ˜ 1; : : : ; d• . As mentioned in §3.1.3 on page 88, the
set of �rst-order indices‰S� j Ž

j >B1;dG
does not bring the same information as the �rst-order sensitivity

index SZ of the whole spatially distributed input˜ Z ˆx• � x >
 • , becauseSZ accounts for the role of
the interactions between̂� j • j >B1;dG while �rst-order indicesS� j do not. In the same way, the set of

total-order indices‰ST� j Ž
j >B1;dG

does not bring the same information as the total-order sensitivity index
STZ , because interactions between scalar parameters� j are counted multiple times in the set of indices
‰ST� j Ž

j >B1;dG
while it is counted just once inSTZ . Hence the set of sensitivity indices‰S� j ; ST� j Ž

j >B1;dG

does not yield a good measure of the main and total contributions ofZ ˆx• to the variance of model output
Y .

Discarding the trigger method Results of the numerical study (Table 3.1 on page 91) also clearly
suggest that the “trigger” method does not produce the same information as other methods displayed in
§3.1.2. Sensitivity index of the “trigger” parameter� proved to be always smaller than the measureSZ

brought by the “macro-parameter” or “ map labelling” methods. One possible explanation is that, in the
“ trigger” method, uncertainty inZ ˆx• is taken into account only when the sampled value of the trigger
input is equal to� � 1, that is, one out of every two model runs in average (Pˆ � � 0• � Pˆ � � 1• � 1~2).
Hence, the effect of uncertain model inputZ ˆx• on the variance of model outputY is systematically
under-estimated. This result leads us to believe that the “trigger” method is not appropriate to deal with
spatially distributed inputs in VB-GSA.

In�uence of second level uncertainty As mentionned in §3.1.2.6 on page 86 and corroborated by the
numerical study (Table 3.1 on page 91), the “second level” method does not produce the same measures
of importance as other techniques. In this approach, random realisations of the spatially distributed input
Z ˆx• are generated by a stochastic processP. This stochastic process is controlled by a number of
scalar parameters� i that are themselves considered as uncertain. What is measured in this method is the
contribution of these uncertain “second level” parameters� i to the variance of the model outputY . This
measure is by de�nition different from the contribution of the uncertain spatially distributed inputZ ˆx•
to the variance ofY for a “�xed” stochastic processP (i.e., a stochastic process with constant values of
parameters� i ). Hence, the “second level” method cannot really be compared to other techniques, as they
do not aim at measuring the same effects.

In�uence of map attributes Finally, we can mention another possible situation, which is not handled
by any of the techniques that were described in §3.1.2, and which does not measure the same quantity
of interest either. Let consider the case in which a “�xed” stochastic processP is used to generate
random realisations of the uncertain spatially distributed inputZ ˆx•. As explained earlier, most of the
methods described in §3.1.2 measure the entire contribution ofZ ˆx• to the variance of the model output
Y . However, ifZ ˆx• appears to be an in�uential model input, then the modeller may want to know
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more precisely which “map attributes” contribute the most to the variability of the model output. A “map
attribute” can be any scalar descriptor of the spatially distributed input˜ Z ˆx• � x >
 • . For example,
if Z ˆx• is modelled as a Stationary Random Field, some scalar descriptors are the valueZ ˆx‡• at a
speci�c location, the average value ofZ ˆx• over some spatial support, the proportion of the spatial
domain
 for which Z ˆx• exceeds a certain threshold, etc. If the spatially distributed input is a map of
plots of cultivated land (vector data), then the following scalar descriptors could be chosen: number of
plots of land, average surface area of the plots, indicator of aggregation, etc. Two key characteristics of
these “map attributes” must be highlighted. First, they cannot be sampled in a controlled way: when
the “�xed” stochastic processP is used to generate random realisations ofZ ˆx•, the map attributes
associated to each random realisation ofZ ˆx• will usually have different and uncontrolled values. These
“map attributes” are thus different from the “second level” parameters� i presented earlier. Second, if the
modeller considers several different “map attributes” at the same time, they will most often be correlated.
To assess how much the selected scalar map attributes ofZ ˆx• contribute to the variance of model output
Y , a possible way is to proceed in two steps: i) �rst, carry out VB-GSA of the model using for example the
“map labelling” approach to estimate the sensitivity indexSZ associated toZ ˆx•; ii) then, using the same
set of model runs, perform a complementary graphical analysis to discuss qualitatively the in�uence of the
different map attributes. This graphical analysis may for example make use of scatterplots or Contribution
to the Sample Mean plot (Bolado-Lavin et al. 2009). Up to our knowledge, this approach has never been
used in the literature.

3.1.4.2 Computational cost

The methods displayed in §3.1.2 also differ in their computational cost. The cost of a method depends
on: i) the number of model simulations it requires, and ii) the number of random realisations of spatially
distributed inputZ ˆx• is needed. We compare these costs with the hypothesis that the same sampling
procedure (described in §1.2.2.5 on page 32) is used for all methods in which sensitivity indices are
estimated from a pseudo Monte Carlo sample, with a base sample sizeN and a total sample sizeN tot �
ˆK � 2• � N whereK is the number of model inputs or groups of model inputs. Computational costs
associated with each method are given in Table 3.2 on page 97. It appears that the least CPU-intensive
approaches are the “map labelling” and the “joint meta-modelling” methods.

3.1.4.3 Spatial structure of uncertainty

Some methods displayed in §3.1.2 enable a complex correlated description of the spatial structure of un-
certainty in˜ Z ˆx• � x >
 • , others do not. In the “map labelling”, “ trigger” and “joint meta-modelling”
methods, the random realisations ofZ ˆx• can be generated using any stochastic processP, based on any
algorithm and any software, allowing complex spatial descriptions of variability to be simulated. Spatial
auto-correlation can be taken into account and modelled (e.g., using Random Fields and geostatistical
simulation). On the contrary, in the “macro-parameter” or “ dimension reduction” methods, modelling
the spatial structure of uncertainty in˜ Z ˆx• � x >
 • is more complicated: it requires to be able to char-
acterise the joint pdfp� of the scalar parametersˆ � j • j >̃ 1;:::d • that represent spatially distributed input
Z ˆx•, which is often impossible.
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3.1.4.4 Coupling with a meta-model

When the CPU cost of a single run of modelF is too high (typically more than one minute), estimating
sensitivity indices with an intensive sampling-based approach becomes computationally intractable. In
this case, all the methods described in §3.1.2 are inapropriate, except for the “joint meta-modelling”
method which only requires a small set of model runs. Nevertheless, some of the other methods reviewed
can be coupled with meta-modelling to estimate sensitivity indices at a lower CPU cost. This is the case
for the “dimension reduction” method: a meta-model can be built from a small set of runs of the modi�ed
numerical modelF † to estimate model outputY from the set of scalar inputsUi and the set of parameters
ˆ � j • j >B1;dG. Sensitivity indices can then be estimated at a low cost from the meta-model through any
intensive sampling-based procedure. It is also the case for the “second level” approach, in which only
scalar inputs are considered (scalar inputsUi and second level parameters� i ). On the contrary, it does not
seem possible to build meta-models coupled with the “macro-parameter”, “ trigger” or “ map labelling”
methods. In the “macro-parameter” approach, the number of scalar inputs� j that should be included
in the meta-model is usually too large (A 1 000). In the “trigger” and “meta-modelling” methods, the
trouble comes from the nature of model inputs: trigger variable� is a boolean variable, “map label” input
L is a random integer. These inputs can not be included, up to our knowledge, in the usual meta-models
(Gaussian Processes, MARS, etc.) that only cope with scalar random variables with continuous pdf.

3.1.4.5 Decision tree to choose the appropriate method

For a given modelF with spatially distributed inputsZ i ˆx•, one may look at the following criteria to
choose from the methods for VB-GSA displayed in §3.1.2: i) the number of spatially distributed inputs
Z i ˆx•; ii) the dimension of spatially distributed inputsZ i ˆx• (number of cells or number of spatial
objects); iii) the possibility to describeZ i ˆx• with a small number of scalar parameters; and iv) the cost
of the generation and storage of each random realisation ofZ i ˆx•. We suggest to use a decision tree
(Figure 3.7 on the following page) to choose among the various methods based on these criteria.

It must be noted that this decision tree is suitable for the case of a modelF with a low CPU cost, for which
intensive simulation is possible. When the cost of one run of modelF is too high, then meta-modelling
must be used to lower the computational burden of the analysis. As discussed in §3.1.4.4, some of the
methods for VB-GSA with spatial inputs can be coupled with a meta-model: they are identi�ed by a
dashed box in Figure 3.7. Others cannot: in particular, there is no available solution to apply VB-GSA to
a model with high CPU-cost and several spatially distributed inputsZ i ˆx• when these inputs cannot be
reduced to a small set of scalar parameters.
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Figure 3.7: Decision tree for VB-GSA with spatially distributed inputs; dashed boxes indicate that the method can
be coupled with meta-modelling
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3.2 Sampling issues

3.2.1 Introduction

We displayed in §3.1 on page 79 a number of methods to compute variance-based sensitivity indices for
a spatially distributed model input˜ Z ˆx• � x >
 • . Most of these methods require sampling a number
of random realisations of̃Z ˆx• � x >
 • , that can be generated by any stochastic processP. The size
and quality of this sampling will in�uence the precision and accuracy of sensitivity indices estimates,
but also the CPU cost of the analysis. With time consuming models and large input data, using an
effective sampling scheme is necessary to get the most accurate sensitivity indices with the fewest model
runs and/or the fewest random realisations ofZ ˆx•. This issue of input sampling has been extensively
discussed when model inputs are scalar random variablesUi ; some papers (Kucherenko et al. 2011) are
devoted to the comparison of various sampling techniques such as Latin Hypercube Sampling (LHS) or
LP � � sequences and discuss their in�uence on the quality of sensitivity indices estimates (accuracy,
precision and convergence).

In our work, we focused on the “map labelling” approach to estimate sensitivity indices of spatially
distributed inputs in VB-GSA (§3.1.2.4 on page 84). The “map labelling” approach uses a numbern
of random realisations of the spatially distributed inputZ ˆx• that may be smaller than the base sample
sizeN of the samples used to estimate sensitivity indices. The choice of sizen is usually driven by
constraints of time (generating random realisations ofZ ˆx• using stochastic processP may be CPU-
intensive) and constraints of disk space (storing a too large number of spatially distributed data with high
spatial resolution may be intractable). Ef�cient spatial sampling techniques are thus needed to generate
random realisations of spatially distributed inputsZ i ˆx• and get accurate sensitivity indices estimates at
low cost.

We start this section in §3.2.2 by a brief review on the various strategies to model uncertainty on a
spatially distributed inputZ ˆx•, describing the main stochastic processesP that can be used to generate
random realisations ofZ ˆx•. Next, we investigate the issue of spatial sampling for VB-GSA with the
“map labelling” method in two ways. In §3.2.3 on page 100, we observe the convergence of sensitivity
indices estimates provided by the “map labelling” method on analytical test casesF1, F2 andF3 for
increasing numbern of random realisations ofZ ˆx•. Then, in a work presented at the Accuracy 2010
conference (Saint-Geours et al. 2010) and reproduced here in §3.2.4 on page 101, we study a simple point-
based and spatially additive analytical test case in which spatially distributed inputZ ˆx• is modelled as
a Gaussian Random Field, and we compare two geostatistical simulation algorithms to generate random
realisations ofZ ˆx•: Simple Random Sampling (SRS) and spatial Latin Hypercube Sampling (LHS).
The purpose of this work is to assess whether spatial LHS yield better sensitivity indices estimates (better
accuracy, precision or convergence with increasingn) than SRS. We �nally brie�y discuss the outcomes
of both numerical studies in §3.2.5 on page 110.

3.2.2 Modelling uncertainty on spatially distributed inputs: a review

In this section, we very brie�y survey the various methods by which uncertainty can be modeled and
simulated for spatially distributed data. Our motivation for this survey is the following: in §3.1, we dis-
played methods to handle a spatially distributed inputZ ˆx• in variance-based global sensitivity analysis;
in most of these methodsb, we assume that the uncertainty onZ ˆx• can be simulated using a stochastic

bNamely, the map labelling, trigger, joint meta-model and second level methods.
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process or any ad-hoc algorithm, which is denoted byP. This stochastic processP is supposed to be able
to generate any number of random realisations ofZ ˆx•. Our goal here is to give an quick overview of the
main algorithmsP that can be used for that purpose, depending on the nature of the spatially distributed
input Z ˆx•. We know that the issue of modelling uncertainty for geospatial data has been extensively
discussed in the literature: it is by no means the scope of this section to display an exhaustive review
on this question. The interested reader will �nd more material in Fisher et al. (2005) or Hunsaker et al.
(2001).

We offer to distinguish between uncertainty modelling for raster spatial data and vector spatial data.

3.2.2.1 Uncertainty models for raster data

Up to our knowledge, the vast majority of methods given in the literature to model uncertainty for spatial
raster data is based on geostatistics (Chilès and Del�ner 1999).

Quantitative raster data For quantitative raster data (e.g., a Digital Terrain Model), the usual mod-
els found in the literature consist of perturbing the nominal raster data with some spatially distributed
error �eld, which is most often modelled as a Stationary Random Field (Bonin 2006). A wide range
of geostatistical simulation algorithmsP are available to simulate random realisations of the error �eld,
such as Sequential Gaussian Simulation, Turning Bands or Cholesky decomposition (Lantuéjoul 2002).
These simulations algorithms may be conditional if they take into account some known data—e.g., the
value of the error �eld at some speci�c locations, the average value over a block, etc.—or unconditional
if they don't. They may be exact or approximated. A number of open-source packages and softwares
are available to easily implement these simulation algorithms, such as SGeMS (Remy et al. 2009) or the
RandomFields package on statistical software (Schlather 2001).

Aerts et al. (2003) give an example of how to use geostatistical simulation to account for uncertainty on
the raster input of a spatial model. They consider a model which aims at �nding an optimal location
for a ski run, using a slope map which is derived from a Digital Terrain Model of the study area. They
model the uncertainty on the input DTM with a stationary error random �eld, whose characteristics—i.e.,
variogram parameters—are determined from a set of ground control points. Then, they use Sequential
Gaussian Simulation to generate a set of 500 random realisations of the error �eld which is added to the
inital DTM. The whole procedure results in 500 equally probable DEMs, which are subsequently used to
propagate uncertainty through the ski run allocation model.

Categorical raster data For categorical raster data (e.g., land use determined by classi�cation on a
satellite image), the usual uncertainty models are based on the indicator kriging theory. Hession et al.
(2006) display a review of the various geostatistical simulation algorithmsP that have been developed
in this framework. Besides, another option to simulate uncertainty on categorical data is based on the
information given by a “confusion matrix”. The confusion matrix is mostly used to assess the accuracy of
land use classi�cations: each valuepi;j of the confusion matrix is the proportion of raster cells classi�ed
as members of the land use classi but actually belonging to land use classj according to ground control
data. From the information contained in the confusion matrix, it is possible to simulate random confusions
between land use labels, and thus to generate random realisations of land use maps from a nominal land
use raster data. This method named “confusion frequency simulation” was initially suggested by Fisher
(1991). Finally, there are also some non-standard methods to model uncertainty in categorical raster data,
such as neural networks or Markov chains, which are brie�y reviewed by Hession et al. (2006).
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3.2.2.2 Uncertainty models for vector data

As clearly stated by Bonin (2006), “things are much more complicated when dealing with vector data”.
Indeed, modelling uncertainty for GIS vector layers is quite dif�cult and this issue has been paid less
attention in the literature than questions related to uncertainty in raster data. Brown et al. (2005) suggest
to divide uncertainty in spatial vector data into “positional uncertainty” and “attribute uncertainty”.

Positional uncertainty “Positional uncertainty” refers to the error on the position and shape of the ob-
jects in space. The basic geometric components of a GIS vector layer are points, lines and polygons. Gir-
res and Julien (2010) exhaustively list the various sources of positional uncertainty in a GIS vector layer,
including projections, georeferencing, generalization of object boundaries, digitalization, etc. Brown
et al. (2005) further suggest to distinguish point objects, rigid objects and deformable objects which be-
have differently with respect to positional uncertainty. However, despite extensive research on the �eld,
Bonin (2006) observes that very few statistical models exist to describe uncertainties in the position and
shape of GIS geometrical features, and even fewer stochastic processesP have ever been designed to
simulate such uncertainties. This is an open research question, which is in particular investigated in the
�eld of image segmentation evaluation (Neubert et al. 2008).

Attribute uncertainty “Attribute uncertainty” refers to the errors on the various descriptive data asso-
ciated with each object in a GIS vector layer. These attribute data can be quantitative (e.g., the density of
a country), categorical (e.g., the crop cultivated on a plot of land) or even textual (e.g., the name of a city).
Many typologies of attribute data uncertainty are offered in the literature (Radoux et al. 2011). For exam-
ple, MacEachren et al. (2005) build a typology based on the following nine components: accuracy/error,
completeness, consistency, credibility, currency, interrelatedness, lineage, precision/resolution, and sub-
jectivity. However, these typologies of uncertainty are almost never associated with any stochastic process
P or ad-hoc algorithm that could simulate random realisations of uncertain attribute data. One notable
exception is vector landuse maps—in which land use class is a categorical attribute—for wich the “con-
fusion frequency simulation” described for raster data in §3.2.2.1 on the preceding page can be applied
(Lilburne et al. 2006). This latter method will be used to model uncertainty on the assets map in the NOE
code.

3.2.3 Convergence of sensitivity indices estimates with map labelling method

3.2.3.1 Introduction

This subsection is devoted to a numerical study of the convergence of sensitivity indices estimates with
the “map labelling” approach described in §3.1.2.4 on page 84. The “map labelling” approach requires
to generate a set ofn random realisations of spatially distributed input˜ Z ˆx• � x >
 • before launching
sensitivity analysis. The accuracy of sensitivity indices estimates depends on the numbern of these
random realisations. We assess the effect ofn on sensitivity indices estimates for the three analytical test
cases which we already studied in §3.1.3 on page 88.

3.2.3.2 Method

We considere the test casesF1, F2 andF3 that were already studied in §3.1.3 on page 88. In these test
cases,Z ˆx• is a random �eld generated by the function� camp.. For each test case, we compute sensitivity
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indices estimates with the “map labelling” approach for an increasing numbern of random realisations
of spatially distributed inputZ ˆx•. The following procedure is used forn � 3; 10; 25; 50; 100; 500and
1 000:

Step 1 generate a set ofn random realisations of spatially distributed input˜ Z ˆx• � x >
 • , using the
stochastic processP described in §3.1.3.1 on page 88;

Step 2 estimate sensitivity indices from this set of random realisations with the “map labelling” ap-
proach, for a base sample sizeN � 2 048(§3.1.2.4 on page 84);

Step 3 repeat the steps 1 and 2 a hundred times;

Step 4 compute for each sensitivity index its empirical mean and its empiral standard deviation over the
100 replicas.

In order to assess the accuracy of the sensitivity indices estimates, we compare them to the reference
values obtained with the “dimension reduction with grouping” approach, given in Table 3.1 on page 91.

3.2.3.3 Results

Results (Figure 3.8 on the next page) show that, in the “map labelling” approach, the accuracy of sensi-
tivity indices estimates increases with the numbern of random realisations of spatially distributed input
Z ˆx•. For all analytical test casesF1 to F3 and all sensitivity indices, the standard deviation of estimates
over 100 replicas is less than 0.05 whenn C50. Besides, it can be noted that whenn is to small (n @50),
sensitivity indices estimates are biased: there seems to be a trend of under-estimation ofSZ andSTZ ,
while SU1 , STU1 , SU2 and STU2 are over-estimated, compared to reference values obtained with the
“dimension reduction with grouping” approach. This bias gets smaller for larger values ofn.

3.2.4 Comparing SRS and LHS to generate random realisations ofZ ˆx•

In this subsection, we study a simple point-based and spatially additive analytical test case in which
spatially distributed inputZ ˆx• is modelled as a Gaussian Random Field. We compare two geostatistical
simulation algorithmsP1 andP2 to generate random realisations ofZ ˆx•: Simple Random Sampling
(SRS) and spatial Latin Hypercube Sampling (LHS). Our purpose is to assess whether spatial LHS yield
better sensitivity indices estimates (better accuracy, precision or convergence with increasingn) than
SRS.

ä Note to the reader: This section was published in the proceedings of the ninth International Sympo-
sium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences (Saint-Geours
et al. 2010) with the following title: “Latin Hypercube Sampling of Gaussian random �eld for Sobol'
global sensitivity analysis of models with spatial inputs and scalar output”. Some extra explanations
were added to the published material: they are identi�ed by a grey box. Moreover, in order to keep a
general consistency of notations throughout this document, the original notations given in the published
paper were changed.
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3.2.4.1 Introduction

Sensitivity analysis (SA) techniques are increasingly recognized as useful tools for the modeller: they
allow robustness of model predictions to be checked and help identifying the input factors that account
for most of model output variability (Saltelli et al. 2008). Among the various available SA techniques
(see Helton and Davis (2006) for a review), variance-based Sobol' global sensitivity analysis (VB-GSA)
has several advantages: it explores widely the space of uncertain input factors and is suitable for complex
models with non-linear effects and interactions. It can be applied to models with spatial inputs by asso-
ciating randomly generated map realisations to scalar values (Lilburne and Tarantola 2009). This allows
complex description of spatial uncertainty to be used: when model inputs are continuous 2D �elds (e.g.,
a digital elevation model built from some limited terrain points), random map realisations can be gener-
ated through geostatistical simulation (Chilès and Del�ner 1999). Yet VB-GSA approach needs a large
number of model runs to compute sensitivity indices. With time consuming models, using an effective
sampling scheme is necessary to get the most accurate sensitivity indices with the fewest model runs.
This issue has been widely discussed in the case of models with scalar inputs. But in many models used
for environmental risk assessment (e.g., a �ood damage model), inputs are maps (e.g., a water level map)
rather than scalars. In such a case, it is also of great importance to generate a relatively small set of map
realisations capturing most of the variability of the spatial inputs. Latin Hypercube Sampling (LHS) of
Gaussian random �elds (Pebesma and Heuvelink 1999) may be a way to reach better ef�ciency in the
computation of sensitivity indices on spatial models. The purpose of this paper is thus to discuss the
in�uence of LHS sampling design when used to generate geostatistical simulations for VB-GSA of mod-
els with spatial inputs and a single scalar output. Sensitivity indices are estimated on an arti�cial model
(a simpli�cation of a real �ood damage model) with a 2D spatial input (a Gaussian random �eld), with
a) two different sampling designs of geostatistical simulations (Simple Random Sampling and LHS), b)
increasing sample size. Relative bias and standard deviation are used to compare exactness and precision
of sensitivity indices estimates.

3.2.4.2 A simple spatial model

Flood damage model description Let Y � F ˆU ; Z • be a spatial �ood damage model with two inputs.
Z is a map of the maximal water levels reached during a �ood event on a study area. The water levels
Z ˆx• are given at each locationx of the area, represented by a regular gridG as shown in Figure 3.9 on
the following page (total number of pixels:G � 2 500). U � ˆU1; U2• is a vector ofR2. It describes a
linear damage functionF loc: the surfacic damage due to submersion under a water levelz is F locˆU ; z• �
U1 � z � U2. The model outputY is the total damage due to the �ood on the study area [Eqn. (3.10)].

Y � Q
x >G

F locˆU ; Z ˆx•• (3.10)

ä Extra comment: according to the de�nitions given in §1.1 on page 18, the analytical test case under
study is a point-based, spatially additive and linear model.

Uncertainties in input factors The two input factors of modelF are considered uncertain. MapZ is
described as a Gaussian random �eld of mean� � 7 and variance� 2 � 121. Spatial correlation follows
an exponential covariance modelCˆh•, with range parametera � 10 and a nugget effect parameter
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Figure 3.9: Study area represented by a discrete gridG

� � 0:3 (h being the Euclidian distance between two points) [Eqn. (3.11)]. Parameter values were chosen
arbitrarily.

Cˆh• �
¢̈
¨
¦
¨̈
¤

� 2 if h � 0

ˆ1 � � • � � 2 ¦ h A0
(3.11)

The two componentsU1 and U2 of vector U are independent and follow normal distributions, of re-
spective means� 1 � 6, � 2 � 1, and variances� 2

1 � 16, � 2
2 � 1. The two input factorsZ andU are

independent.

3.2.4.3 Spatial global sensitivity analysis: method

Through Sobol' global sensitivity analysis (VB-GSA), we can discuss the relative in�uence of uncertainty
in mapZ and uncertainty inU on the model output variability. The simple form ofY makes it possible
to give analytical expression of Sobol' sensitivity indices for each input factor. These exact values are
then compared with estimates, which are computed with a sampling-based method, using a set of random
geostatistical simulations of mapZ .

Analytical expression of sensitivity indices

ä Note to the reader: A proper de�nition of variance-based sensitivity indices can be found
in §1.2.2.3 on page 30.

Sobol' sensitivity indices are based on the decomposition of the output variance in conditional variances.
First-order sensitivity index of input factorU is de�ned as var�EˆY SU •�~var̂ Y •. It represents the main
effect contribution of input factorU to the variance of outputY . For more details on VB-GSA basics,
see Saltelli et al. (2008). Let� be the average of water levels over the study area, and� the average of
local damage functionF loc over the grid:

� �
1
G

Q
x >G

Z ˆx• and � �
1
G

Q
x >G

F locˆU ; Z ˆx•• (3.12)

� and� are random variables depending onZ andU . Let � 2
� and� 2

� be the respective variances of�
and� . Total variance of model outputY is var̂ Y • � G2 � � 2

� where� 2
� is given by Eqn. (3.13):

� 2
� � � � 2

1 � � 2
� � � � � 2 � � 2

1 � � 2
2 � � � � 2

1 � � 2
� � (3.13)
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Table 3.3: Sensitivity indices exact values

Sensitivity index Notation Value

First-order index of mapZ SZ 0.309

First-order index ofU SU 0.554

Total-order index of mapZ STZ 0.446

Total-order index ofU STU 0.691

Second-order index SZ; U 0.137

Variance� 2
� depends on the modelCˆh• of spatial correlation in mapZ [Eqn. (3.14)]. hx ;x œ is the

Euclidian distance between two pointsx andxœon gridG.

� 2
� �

1
G2 Q

ˆ x ;x œ• >G2

Cˆhx ;x œ• (3.14)

The conditional expectationEˆY SZ •s is given by:

Q
x >G

E �U1 � Z ˆx• � U2 SZ ˆx•� � G � ˆ � 1 � � � � 2• (3.15)

First-order sensitivity index ofZ is then:

SZ � � 2
1 �

� 2
�

� 2
�

(3.16)

The conditional expectationEˆYSU • is given by:

Q
x >G

E �U1 � Z ˆx• � U2 SU1; U2� � G � ˆU1 � � � U2• (3.17)

First-order sensitivity index ofU is then:

SU �
� 2 � � 2

1 � � 2
2

� 2
�

(3.18)

Interactions between input factorsZ andU are accounted for by the second order sensitivity indexSU ;Z :

SU ;Z � 1 � SZ � SU � � 2
1 �

� 2
�

� 2
�

(3.19)

Total-order sensitivity indices account for the total contribution toY variation due to an input factor. In
this case of a model with two input factors, total-order sensitivity indexSTZ is simply the sum of �rst-
order indexSZ and second order indexSU ;Z (and accordingly forSTU ). Table 3.3 gives the exact values
for �rst-order, second order and total-order sensitivity indices, derived from Eqn. (3.11) on the facing
page, Eqn. (3.13) on the preceding page, Eqn. (3.14), Eqn. (3.16), Eqn. (3.18) and Eqn. (3.19).

Generating map realisations In order to estimate sensitivity indices, a set ofn random realisations of
Gaussian �eldZ must be sampled. Two methods are considered to generate this set: Simple Random
Sampling (“SRS set”) and Latin Hypercube Sampling (“LHS set”). First a SRS set is generated using
LU decomposition of the covariance matrix (Chilès and Del�ner 1999). From this set, following the
procedure described in Pebesma and Heuvelink (1999), a LHS set of maps is drawn (Figure 3.10 on the
following page). This procedure works by repeating the following steps at each locationx of grid G:
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Figure 3.10: Three simulations of Gaussian random �eldZ by Simple Random Sampling along a line of grid
G. Water levels simulated by Simple Random Sampling (X) and Latin Hypercube Sampling (Q) are given for two
locationsx et x œ. Vertical lines indicate the shift for individual sample elements; dotted horizontal lines indicate
stratum boundaries.

X Let sˆx• be the vector of then sampled values at locationx from the SRS set:sˆx• � ˆs1ˆx•; : : : ;
sn ˆx•• .

X Let r ˆx• be the vector with the ranks ofsˆx•: r i ˆx• is the rank ofsi ˆx• in the ordered list of
ˆsj ˆx•• . r ˆx• is a permutation of̃ 1;: : : ; n• .

X Let F � 1 be the inverse marginal distribution ofN ˆ �; � • . Divide the pdf ofZ ˆx• into n equally
probable strataI i according to Eqn. (3.20):

I i � � F � 1 ‹
i � 1

n
• ; F � 1 ‹

i
n

•� for i >˜ 1; : : : ; n• (3.20)

X The new valuezi ˆx• of thei th simulation at pointx is obtained by randomly sampling a value in
U ‰I r i ˆ x • Ž.

At each locationx, the ranking of then simulations from the SRS set is preserved in the LHS set: a
spatial correlation is thus maintained in each realisation of mapZ (Figure 3.10).

Estimating sensitivity indices First-order and total-order sensitivity indices are estimated using “map
labelling” approach (Lilburne and Tarantola 2009), which is a generalisation of the methods of Sobol' and
Saltelli to spatially dependent models. It uses two quasi-random samples of sizeN , combined through
several permutations, to explore the uncertainty domain of input factorsZ andU and estimate sensitivity
indices. Spatial inputZ is handled by sampling2 � N scalar values from a discrete uniform distribution
in ˜ 1;: : : ; n• : each discrete level is associated with a single simulation ofZ from the set ofn maps
previously generated. Input factorU is treated as a “group of factors”; componentsU1 andU2 are sampled
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Table 3.4: Exactness (relative bias in %) and precision (� standard deviation) of sensitivity indices, for different
sizesn of the set of generated maps

n � 10 generated maps n � 250 generated maps

Index SRS LHS SRS LHS

SZ -7.71%� 0.097 -11.51%� 0.080 +1.12%� 0.047 +1.05%� 0.042

SU +9.26%� 0.126 +11.85%� 0.107 +2.12%� 0.043 +1.80%� 0.038

SZ; U -17.13%� 0.062 -19.30%� 0.061 -8.06%� 0.049 -6.60%� 0.049

STZ -9.81%� 0.124 -13.10%� 0.105 -1.23%� 0.042 -0.70%� 0.038

STU +4.02%� 0.096 +5.66%� 0.079 +0.10%� 0.047 +0.13%� 0.042

independently from their pdf, but sensitivity indices are estimated globally for the groupU � ˆU1; U2• .
Total number of model runs isN tot � 2�N � ˆK � 1• whereN is the size of the quasi-random samples and
K is the number of (groups of) input factors. HereN is �xed (N � 512), K � 2 andN tot � 3 072.

Sensitivity indices estimates are computed using either SRS or LHS set of maps, for an increasing number
n of generated maps. The whole process is replicated 1 000 times. Mean values with� standard deviation
bars for each estimate are shown on Figure 3.11 on the next page. while Table 3.4. gives for each estimate
its standard deviation over the 1 000 replicas, and the relative bias compared to its analytical value, for
n � 10andn � 250.

3.2.4.4 Results and discussion

Exactness and precision of sensitivity indices estimatesFigure 3.11 on the next page and Table 3.4
show that for smalln, SZ estimate has a negative bias, whileSU has a positive one. Whenn is low,
the small set of map simulations fails to capture the overall variability of Gaussian random �eldZ : thus
the in�uence ofZ variability on model outputY is underestimated; conversely the in�uence ofU is
overestimated. This bias decreases whenn increases. LHS sampling of Gaussian random �eldZ doesn't
bring improvement to estimates bias. For smalln (n B10), LHS estimates have an additional bias which
will be discussed in §3.2.4.4. For larger sets of simulated maps (n C25), LHS procedure yields estimates
whose relative biases are not signi�cantly different from SRS estimates (signi�cance tested with a Welch's
t-test for each value ofn).

Table 3.4 also shows that LHS estimates have a slightly smaller standard deviation than SRS estimates:
this gain is signi�cant for manŷ Si ; n• couples (Levene's test). This �nding is consistent with more
general results on variance reduction associated with LHS, in the case of sampling of scalar random
variables (Helton and Davis 2003).

Disturbance of spatial correlation by LHS For small numbern of generated maps (n � 3; 10), esti-
mates computed with an LHS set of maps have an additional bias (underestimation ofSZ , overestimation
of SU ) compared to SRS estimates. This additional bias can be explained by the fact that spatial cor-
relation is disturbed by the LHS procedure. Figure 3.12 on page 109 shows that maps from a LHS set
have smaller spatial correlations than those from a SRS set, as discussed in Pebesma and Heuvelink
(1999). But spatial correlation in mapZ in�uences the value of� 2

� and thus the values of sensitivity
indices. Eqn. (3.11) on page 104 and Eqn. (3.14) on page 105 show that� 2

� decreases when spatial cor-
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Figure 3.11: First-order (top) and total-order (bottom) sensitivity indices of input factorsZ (X) andU (� ), depending
on numbern of generated maps and sampling strategy (SRS, LHS). Mean values with� s.d interval over 1 000
replicas. The dashed lines show the analytical results from Table 3.3 on page 105.
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Table 3.5: Exactness (relative bias in %) of the estimates ofE � (expectation of� ) and� 2
� , using either LHS or SRS

simulation strategy, for different numbern of generated maps

n � 10 n � 100 n � 200

Bias SRS LHS SRS LHS SRS LHS

� ˆ Ê � • -0.20a -0.014 -0.54 -2.10� 3 -0.13 -4.10� 5

� ˆ �̂ 2
� • -0.74 -0.28 -1.10 0.46 -0.59 -0.21

a . Mean value of relative bias over 100 replicas

Figure 3.12: Average semivariograms for exponential model, SRS set of maps and LHS set of maps,n = 10 maps.

relation in mapZ decreases (smaller range parametera). This results in an additional underestimation of
sensitivity indexSZ when estimated with a LHS set of maps.

Discussion LHS sampling of Gaussian random �eldZ yields some improvement to the variability
of sensitivity indices estimates but no signi�cant improvement to estimates bias. These results can be
explained by a general property of LHS: the more the target quantity (here the sensitivity indices) is
additive in the variables sampled, the more LHS improves on SRS (Pebesma and Heuvelink 1999). Here
the values of sensitivity indices depend heavily on the variance� 2

� of � , the average water level over the
study area [Eqn. (3.14) on page 105, Eqn. (3.16) on page 105 and Eqn. (3.18) on page 105]. But� 2

� is
not additive in sampled water levelsZ ˆx•: as a result, the ef�ciency gain brought by LHS procedure is
small.

As an illustration, Table 3.5. gives relative bias of estimates of expectationE � and variance� 2
� , computed

on SRS and LHS sets of maps. LHS brings a tremendous gain in estimate bias for the expectationE �

(additive in sampled water levels).

3.2.4.5 Conclusion

Sobol' sensitivity indices were estimated on an arti�cial spatial model (derived from a complex model for
�ood risk economic assessment) with a 2D spatial input (a Gaussian random �eld), and compared to their
analytical values. Two sampling strategies were used to generate realisations of input Gaussian random
�eld: Simple Random Sampling and Latin Hypercube Sampling (higher CPU cost). Results show that
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(1) LHS sensitivity indices estimates have a signi�cantly smaller variance (2) LHS sampling brings no
signi�cant improvement in estimates bias (3) for small sample size, disturbance of spatial correlation by
LHS procedure yields an additional bias in estimates. The poor improvement brought by LHS sampling
comes from sensitivity indices not being additive in the variables sampled. Other ways should be sought
to select input map realisations to perform sensitivity analysis of spatial models. These conclusions would
be different if SA was computed “locally”, i.e. with a spatially distributed output (e.g., a map of damage).
In this latter case, the spatial dimension of the problem would be reduced, and we could expect LHS to
bring the same improvement as in a nonspatial context.

ä Note to the reader: End of the section that was published in the proceedings of the ninth
International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental
Sciences (Saint-Geours et al. 2010) with the following title: “Latin Hypercube Sampling of Gaussian
random �eld for Sobol' global sensitivity analysis of models with spatial inputs and scalar output”.

3.2.5 Discussion

This section aimed at exploring the issue of sampling random realisations of a spatially distributed input
Z ˆx• for VB-GSA.

First, the numerical study performed on the analytical tests casesF1 to F3 bring some insights on the
impact of sampling sizen on the convergence of sensitivity indices estimates in the “map labelling”
approach. On these test cases, where the spatially distributed input is generated by function� camp., we
found that a numbern C 50 of random realisations ofZ ˆx• is enough to get accurate estimates of
sensitivity indices. We also observed a trend for under-estimation of sensitivity indexSZ for small values
of n. A possible explanation is the following: for small values ofn the set of random realisations of
Z ˆx• is too small to represent reasonably well the overall uncertainty on the spatially distributed input,
and its in�uence on the variance of model outputY is under-estimated. These results are corroborated by
the numerical study performed for theAccuracy2010conference, in which the spatially distributed input
Z ˆx• is a Gaussian Random Field. Unfortunately, these conclusions cannot be generalised immediately
to other test cases or real-world numerical models. Hence, �gures showing the convergence of sensitivity
indices estimates with increasing numbern of random realisations ofZ ˆx• (e.g., Figure 3.11 on page 108)
should be drawn for each case study to determine the minimum sampling sizen.

We also partly investigated the issue of choosing an ef�cient stochastic processP to generate random
realisations of the spatially distributed inputZ ˆx• in the “map labelling” approach. In the speci�c case
in which Z ˆx• is a Gaussian Random Field, we compared the performances of two different sampling
techniques, LHS and SRS. The results show that even if LHS brings small improvement on sensitivity
indices estimates, it also disturbs spatial correlation for small values ofn, resulting in an additional bias
in sensitivity indices estimates. This study could have been completed by considering other sampling
methods to generate random realisations of Gaussian Random Fields, such as “sequential spatial sim-
ulation using LHS” developed by Kyriakidis (2005). Another path of research is opened by the work
of Scheidt and Caers (2009) who suggest to draw optimal samples of random realisations ofZ ˆx• based
on the de�nition of a distance between realisations. Unfortunately, time was too short to explore these
points more deeply.
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3.3 Application to the NOE code on the Orb Delta case study

In this section, we carry out a �rst variance-based sensitivity analysis of the NOE code on the Orb Delta
case study. As mentioned in Chapter 2 (§2.3.2.3 on page 64), two groups of spatially distributed inputs
must be handled: the assets map (2D vector data) and the hazard maps (2D raster data). To cope with
these inputs in VB-GSA of the NOE code, we chose a method based on the NOE characteristics described
in §2.4 on page 72 and on the decision-tree given in Figure 3.7 on page 96. First, a run of the NOE code
on the Orb Delta case study only lasts 30 seconds on a computer of average performance: intensive
simulation is thus possible. Second, the computational burden related to the simulation and storage of
spatially distributed model inputs is rather high but not limitative—the weight of a set of water depth maps
Hˆej • is approximately 500 Mo and that of the assets map is 50 Mo. Third, both the number of objects
in the assets map (� 20 000) and the dimension of water depth maps (3 500� 3 500) are large: hence, the
“macro-parameter” approach appeared to be intractable. Fourth, reducing the total information contained
in the hazard and assets map was impossible, so the “dimension reduction” method was discarded. Fifth,
there are more than one single spatially distributed input in the NOE modelling framework, which makes
the “joint meta-modelling” approach developed by Iooss and Ribatet (2009) inappropriate. Finally, we
chose to use the “map labelling” approach to perform VB-GSA of the NOE modelling framework.

We only paid attention in this analysis to the NOE scalar outputs aggregated over the entire �oodplain:
total �ood damagesDˆej • , AAD, AAD', � AAD, and NPV indicators. Spatially distributed outputs will
be considered in Chapter 4.

ä Note to the reader: The following paragraphs §3.3.1 to §3.3.6 on pages 111–130 are extracted from
a draft paper submitted to theJournal of Flood Risk Managementin July 2012 with the following title:
“Ranking sources of uncertainty in �ood damage modelling: a case study on the cost-bene�t analysis of a
�ood mitigation project in the Orb Delta, France”. Some extra explanations were added to the submitted
material: they are identi�ed by a grey box. In addition, some sections of this paper are developed into
more details in Chapter 1 or Chapter 2 and can safely be skipped by the reader: a speci�c note is added
on top of them.

3.3.1 Introduction

Flooding is recognised as one of the most damaging natural hazards, responsible for approximately one-
third of the total economic losses due to natural hazards in Europe (EEA et al. 2008). Following the
approval of the EU �ood directive (2007/60/EC) in 2007, EU member states now have to establish �ood
risk management plans focused on prevention, protection and preparedness in all �ood-prone river basins
and coastal areas. To evaluate these plans, �ood risk managers are advised to use cost-bene�t analysis
(CBA) as part of the appraisal (European Commission 2008). In France since 2011, using CBA is manda-
tory for local managers who claim national subsidies. Despite known limitations (European Commission
2009a), CBA is a useful tool that provides signi�cant rational information to the decision makers. To con-
sider the expected bene�ts related to �ood management, CBA requires an accurate estimate of the amount
of �ood damage that will be reduced yearly by the appraised measures. We will use the term CBA-AD
to refer to this implementation of CBA based on avoided damage. This estimate relies on a complex
modelling chain, including hydrological, hydraulic and economic modelling as well as GIS-based spa-
tial analysis (Messner et al. 2007). Two output indicators are commonly produced in such studies: the
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reduction of the expected annual �ood damage costs (Arnell 1989) and the net present value of the ap-
praised measures (Erdlenbruch et al. 2008). These two indicators may also take into account the bene�ts
and costs that are not directly related to �ood management, such as environmental impacts or landscape
modi�cation, but this issue is not in the scope of the present paper.

Meanwhile, there is a growing consensus (Apel et al. 2004) that �ood damage assessments are fraught
with uncertainties, which arise from innacurate or missing data, model assumptions, measurement errors,
incomplete knowledge, etc.—see Refsgaard et al. (2007) and Walker et al. (2003) for an enlightening dis-
cussion on the nature of uncertainty. Uncertainty analysis is thus required to identify and quantify the im-
pacts of uncertainties in the modelling chain to i) increase the reliability of �ood damage assessments and
related CBA-AD (Mostert and Junier 2009) and ii) inform relevant stakeholders with the best information
possible for decision making (Ascough et al. 2008). Over the last few years, various methods of quantita-
tive uncertainty analysis have been used in �ood damage assessment research (Pappenberger et al. 2006;
Pappenberger and Beven 2006). Nevertheless, many authors �rst focused on the uncertainty in a single
component of the �ood damage assessment chain: hydraulic modelling (e.g., Bernardara et al. (2010);
Gouldby et al. (2010); de Rocquigny (2010), inundation mapping (Bales and Wagner 2009; Stephens
et al. 2012), damage functions (Kutschera 2009; Merz et al. 2004; Merz and Thieken 2009; Merz et al.
2010) or land use (Te Linde et al. 2011). To go further, a number of recent studies investigated how com-
binations of these uncertainty sources interact and propagate through �ood damage assessments. They
differ by the components under study (extreme value statistics, hydraulic model, potential dyke breach,
inundation mapping, exposure assessment, damage functions) and by the uncertainty analysis method
used. In some studies (Koivumäki et al. 2010; Merz and Thieken 2009; de Moel and Aerts 2011; Briant
2001), the various components of the modelling chain were varied manually in a “one-factor-at-a-time”
(OAT) approach (Saltelli et al. 2008) to estimate the con�dence bounds around the �ood damage esti-
mates. Other authors described uncertainty sources in a probabilistic setting and explored the space of
input uncertainty within a Monte Carlo framework (Helton and Davis 2006), which requires a large num-
ber of model evaluations (Apel et al. 2008; de Kort and Booij 2007; de Moel et al. 2012; Weichel et al.
2007).

Another related but distinct issue is to identify, in the �ood damage assessment process, the main sources
of uncertainty that contribute the most to the variability of damage estimates and CBA-AD outcomes,
which is the role of sensitivity analysis methods (SA). These methods aim to study how the uncertainty of
a model output can be apportioned to different sources of uncertainty in its inputs (Saltelli et al. 2008). SA
is recognised as an essential component of model building (European Commission 2009a; CREM 2009)
and is widely used in different �elds (Cariboni et al. 2007; Tarantola et al. 2002). Ranking uncertainty
sources, usually by so-called “sensitivity indices” or “ importance measures” is useful to orientate further
research, collect additional data on most in�uential inputs but also simplify the model under study by
�xing non-in�uential inputs. While many quantitative SA approaches are available, most studies in the
�eld of �ood damage assessment used a “one-at-a-time” and qualitative SA approach, manually compar-
ing the separate effects of each uncertainty source on the damage estimates. They used the large number
of model evaluations produced from uncertainty analysis either in a probabilistic setting or using various
versions of input data (Apel et al. 2004; Koivumäki et al. 2010; de Moel and Aerts 2011; Pappenberger
et al. 2008). To our knowledge, only the work of de Moel et al. (2012) was based on a quantitative global
sensitivity analysis method (GSA), in which i) quantitative sensitivity indices are estimated for each un-
certainty source and ii) all uncertain model inputs are varied at the same time, which allows the effect of
their interactions on the overall output variability to be discussed.

Nevertheless, to date, only the uncertainty on the �ood damage assessments have been studied without
questioning how this uncertainty may impact the robustness of the CBA-AD of �ood management poli-
cies nor how to improve this robustness. Our paper is an attempt in this direction. We try to answer
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the following questions: how does uncertainty propagate through the CBA-AD of a �ood management
policy? What is the ranking of the uncertainty sources in such a CBA-AD?

We discuss these questions through a case study of a CBA-AD applied to a �ood risk management plan
on the Orb River delta, France, where only structural �ood-control measures are considered. Our goal
is to check the robustness of the CBA-AD results and assess the contribution of uncertainty sources to
the overall output variability. A modelling chain named NOE (§3.3.2 on the following page) is used to
estimate the potential �ood damages at the scale of individual assets and perform a cost-bene�t analy-
sis of the �ood control measures. Uncertainty sources are then described in a probabilistic framework,
propagated through the NOE model with pseudo Monte Carlo simulations, and variance-based sensitivity
indices are computed for each of them (§3.3.3 on page 117). Only epistemic uncertainty (Refsgaard et al.
2007) is considered here because aleatory uncertainty is already accounted for in the de�nition of output
CBA-AD indicators (average annual �ood damages). The description of uncertainty sources is based on
the literature, expert opinion or measurements using univariate or bivariate probability density functions
or more complex models for spatially distributed uncertainty. The results (§3.3.4 on page 125) include
con�dence bounds and empirical pdf of CBA-AD outputs and a ranking of the uncertainty sources based
on their sensitivity indices. We discuss the outcomes of our approach and its limits in §3.3.5 on page 128.

3.3.1.1 Study site

$ Note to the reader: The Orb Delta study site is already presented in §2.3.2.1 on page 59 and the
following paragraph can safely be skipped.

As a study area, we selected the Lower Orb River �uvial plain, known as the Orb Delta, located in the
south of France. We focused on a 15 km reach from Béziers to the Mediterranean sea that is bounded
by an area of 63 sq. km and includes the cities of Béziers, Portiragnes, Sauvian, Sérignan, Valras-Plage
and Villeneuve-lès-Béziers (Figure 2.15 on page 59). The Orb catchment has a typical Mediterranean
subhumid regime. The annual maximum discharge in Béziers (Tabarka gauge) varies from year to year
between 100 and 1 500 m3/s (BCEOM 2000). The �ood prone area in the Orb delta is home to approxi-
mately 16 290 permanent people (total population of the six localities: 90 000 people), 774 companies and
30 seaside campgrounds (which attract up to 100 000 tourists in summertime). Approximately one-third
of the area is devoted to agriculture. The �ood of December 1995 - January 1996, with a peak discharge
of 1 700 m3/s at the Tabarka gauge, caused a total amount of damage of 53 Me (SMVOL 2011).

In 2001, local authorities launched a �ood risk management project, mainly based on various structural
mitigation measures, including dyke strengthening around urban areas, restoration of sea outfalls and
channel improvement. In 2011, to claim national subsidies, they completed a cost-bene�t analysis of
their project (Grelot et al. 2012).

This study site was mainly chosen because it was a “real” case study, with a �ood risk management
plan under construction and a cost-bene�t analysis produced by the local authorities. Moreover, the area
was already documented with numerous available data. These data included aerial photographs, a high-
resolution Digital Terrain Model (DTM) built from photogrammetry, the annual maximum �ow series
from 1967 to 2009 at the Tabarka gauge, and various spatial datasets on buildings, agricultural land and
economic activities in the area (Erdlenbruch et al. 2008).
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3.3.2 Description of the NOE modelling framework

$ Note to the reader: The �owchart of the NOE modelling framework and its application on the Orb
Delta case study are presented into more details in Chapter 2. This section is a simpli�ed and shorten
version of §2.2 (for the purpose of publication) and it can safely be skipped.

Cost-bene�t analysis based on avoided damages (CBA-AD) was used to evaluate the �ood risk manage-
ment project launched on the Orb River. In the literature, �ood damage assessments and related CBA-AD
vary in their scope and scale as well as the data used and their outputs. Here, a complex modelling chain
named NOE (Erdlenbruch et al. 2008) combines hydrological, hydraulic, GIS and economic modelling
to estimate the �ood damages on individual assets and compute two output indicators: i) the Average
Annual Avoided Damage (� AAD [ e /year]) over the study area, which is de�ned as the amount of an-
nual expected damage costs that are reduced due to the �ood mitigation measures; and ii) the Net Present
Value (NPV [e ]) of the �ood mitigation measures. The modelling chain consists of seven steps that are
further described in this section (Figure 3.13).

3.3.2.1 Flood scenarios

The calculation of the Average Annual Avoided Damage requires damage estimation for a number of
relevant �ood scenarios with different characteristics to represent the aleatory uncertainty associated with
�ood hazard in the study area. The �rst step of the NOE modelling chain is thus to choose a range of
potential �ood events of various magnitudes. Six �ood scenariose1 to e6 were selected, characterised by
a maximum dischargeqi at Tabarka gauge (Table 2.1 on page 61).e1 is supposed to be the smallest �ood
event that induces damage (q1 � 1 000m3/s).

Scenariose2 to e5 include historical �oods and design �oods. Scenarioe6 is an extreme �ood, which
would result in an over-topping of all existing �ood-control dykes.

Figure 3.13: Simpli�ed �owchart of the NOE model
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3.3.2.2 Flood frequency analysis

The return intervalsT1 to T6 and exceedance frequenciesf 1 to f 6 associated with �ood scenariose1 to
e6 were deduced (Table 2.1 on page 61) from the discharge-frequency Gumbel curve (Q � f ), which was
�tted on the annual maximum �ow series at the Tabarka gauging station available from 1967 to 2009
(AMFS 1967-2009).

3.3.2.3 Flood hazard modelling

For each �ood scenario, a typical �ood hydrograph was �rst generated based on expert opinion (BCEOM
2000). The 1D, step-backwater hydraulic ISIS Flow model (unsteady �ow) was then used to propagate the
hydrographs within the �oodplain. The ISIS Flow model solves the full 2D, depth-averaged momentum
and continuity equations for free-surface �ow (ISIS 2012). Two different �oodplain �ow simulations were
produced for each �ood scenarioe2 to e6: one describing the present situation and the other describing
future situation with enforced mitigation measures. The �oodplain �ow simulations were then combined
with a high-resolution DTM, to produce two sets of raster data with a 5 m cell size, giving spatially
explicit maximum water depths (WD) for each �ood event over the study area:Hˆe1• to Hˆe6• (present
situation) andHˆeœ

1• to Hˆeœ
6• (future situation).

3.3.2.4 Flood exposure modelling

Four economic sectors were considered in the exposure analysis: private housing, agricultural land, camp-
grounds and other economic activities. Flood exposure was assessed at the scale of small individual assets
(buildings, plots of cultivated land, etc.). Data from various sources were collected to build a land use
geo-database (LU-GDB) over the study area, including digital cadastral maps, a dataset of the regional
Chamber of Commerce and Industry (2009), and the national agricultural land use statistics (RPG dataset,
2009). An extensive �eld survey was also conducted to collect additional data on assets, such as ground
�oor elevation of buildings. In the end, the LU-GDB dataset describes private housing units (individual
buildings), plots of cultivated land, campgrounds and other economic activities by individual polygonal
features in a single GIS vector layer (Table 2.2 on page 62). Plots of cultivated land were further charac-
terised by a subtype (wheat, vineyard, etc.), while economic activities were classi�ed into sixty categories
following the French classi�cation of economic activities NAF2008 (INSEE 2008).

The �ood exposure of assets was then assessed by confronting the LU-GDB dataset with water depth
mapsHˆe1• to Hˆe6• andHˆeœ

1• to Hˆeœ
6• . For each exposed object (represented by a polygonal feature

in LU-GDB dataset) and each inundation map, the average water depth over the object was extracted as
an attribute column by a simple overlay analysis. To compute meaningful average water depths for very
large objects (e.g., large plots of cultivated land), we �rst divided all features into pieces of40 000sq. m
max by intersecting features of the LU-GDB dataset with a regular square grid of200m cell size.

3.3.2.5 Damage estimation

The following module of the NOE modelling chain estimates the total damage costs (D ) within the study
area for each �ood scenarioe1 to e6, for the present (D ˆe1• to Dˆe6•) and future (Dˆeœ

1• to Dˆeœ
6•)

situations. We will denote by� D1 to � D6 the damage reduction brought by the mitigation measures for
each �ood scenario:� D i � D ˆei • � D ˆeœ

i • . As scenarioe1 was de�ned as the “�ood event where damage
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to property begins”, the damage estimatesDˆe1• andDˆeœ
1• are both assumed to be equal to zero. For

scenariose2 to e6, as a coarse estimation, only direct and tangible monetary losses were considered—
Merz et al. (2010) present the other types of damages that should be estimated for a more complete
analysis.

Damage functions were used (Table 2.3 on page 65), which depend mainly on the following parameters:
type and �oor surface area of the exposed object, average water depth, and season of occurrence (camp-
grounds and agriculture). Flood velocity and �ood duration were considered to be homogeneous. These
damage functions were taken from the recommendations of the French State (MEDDTL 2011). For a
complete description, see the original study (Grelot et al. 2012). In the end, a total of 94 depth-damage
relationships were used, one for each land use type and subtype.

3.3.2.6 Average Annual Avoided Damages

The average annual damage cost from �ooding (AAD [e /year]) is a common performance indicator
used to measure potential �ood damages over a given territory (Arnell 1989; Messner et al. 2007). It is
equal to the area under the damage-frequency curve, which is the graph of damageD against exceedance
frequencyf � 1~T:

AAD �
1

S
0

Dˆf •df (3.21)

To assess the bene�ts of the �ood risk management project launched on the Orb River in 2001, we
computed the potential reduction of the average annual damage costs brought by the mitigation measures,
i.e., the variation� AAD � AAD � AAD œfrom the present to the future situation. This Average Annual
Avoided Damage (� AAD [ e /year]) is also equal to:

� AAD �
1

S
0

� D ˆ f •df (3.22)

It can be computed from the range of �ood scenariose1 to e6 and corresponding avoided damages� D1

to � D6 by estimating the integral [Eqn. (3.22)] with a simple trapezoidal rule (Figure 3.14 on the facing
page).

ä Note to the reader: For a more general de�nition of the Average Annual Avoided Damages,
see §2.2.5 on page 44.

3.3.2.7 Net Present Value of the mitigation measures

The last step of the NOE modelling chain is the cost-bene�t analysis, which evaluates the ef�ciency
of the �ood mitigation measures by comparing their costs with their expected bene�ts. The costs of
the mitigation measures include the initial investment (CI � 35:2Me ) and maintenance costs (CM �
1:6Me /year). The bene�ts of the project are measured by the� AAD indicator. The Net Present Value
(NPV [e ]) of the �ood mitigation measures is then calculated by comparing the discounted costs and
bene�ts over a period ofR � 30years [Eqn. (3.23)].

NPV � � CI �
R

Q
i � 0

ˆ � AAD � CM • � � i (3.23)
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Figure 3.14: Computation of the Average Annual Avoided Damages

where� i is the discount coef�cient for yeari . A positive NPV value means that the bene�ts generated by
the �ood risk management project outweigh its costs. The larger the NPV value, the more ef�cient the
�ood mitigation measures are.

3.3.3 Uncertainty and sensitivity analysis

Uncertainty and sensitivity analyses of the NOE modelling chain (Figure 3.15 on page 119) were per-
formed using variance-based global sensitivity analysis approach (Saltelli et al. 2008). In the �rst step
of the analysis, sources of uncertainty in the NOE modelling chain were identi�ed and modelled in a
probabilistic framework, and a set of random realisations was sampled for each uncertain modelled input.
Next, pseudo-Monte Carlo simulations were used to explore the space of input uncertainty and assess
the resulting variance of model outputs (� AAD and NPV indicators). Finally, sensitivity indices were
computed to rank the sources of uncertainty, depending on their contribution to the variance of outputs.

ä Sensitivity indices with respect to the NPV indicator: In addition to the complete sensitivity
analysis of the NOE modelling framework that we want to perform, we observed that it was possible to
calculate variance-based sensitivity indices analytically in Eqn. (3.23) on the facing page that de�nes the
Net Present Value indicator. The exact formulae of these sensitivity indices are given in Appendix §B on
page 203. Besides, we also proved that there is a relation between sensitivity indices with respect to the
� AAD indicator and the sensitivity indices with respect to the NPV indicator. This point is developed in
Appendix §B on page 203.

3.3.3.1 Modelling sources of uncertainty

Table 3.6 on the next page lists the epistemic uncertainty sources that we took into account in the uncer-
tainty and sensitivity analyses of the NOE modelling chain. Each source of uncertainty was modelled in
a probabilistic framework using measurement or expert opinion.
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Figure 3.15: Flowchart for uncertainty and sensitivity analysis

Flood frequency analysis Uncertainty in the �ood frequency analysis may arise from i) stream gauge
measurement errors (Neppel et al. 2010); ii) possible non-stationarity of the series due to climate change
(Khaliq et al. 2006) and iii) uncertain �tting of a discharge-frequency (Q � f ) relationship to the AMFS
1967-2009 dataset (Countryman and Tustison 2008). Here, only the latter uncertainty was modelled
and simulated. After a log transformation leading to the usual linear regression context, standard joint
distributions (Maidment 1993) for the parameters of the �tted Gumbel curve were calculated (Figure 3.16
on the following page). A set ofn1 � 103 Gumbel curves was then randomly sampled from the parameter
joint distribution. From this set of curves,103 exceedance frequenciesf i and according return intervals
Ti � 1~f i (Figure 3.17 on the next page) were generated for each discharge valueqi ˆ i � 1 to 6•.

Flood hazard modelling Another major source of uncertainty in the NOE modelling chain is the in-
undation mapping process, which includes hydraulic modelling and combination with a high resolution
DTM, to derive water depth mapsHˆe1• to Hˆe6• andHˆeœ

1• to Hˆeœ
6• . For the sake of simplicity, a re-

strictive choice was assumed in considering the error on the high-resolution Digital Terrain Model as the
single uncertainty source in water depth maps. Including more detailed descriptions of the hydraulic un-
certainties in this study was impossible as the ISIS hydraulic model used for initial �ow simulations was
not available to us. This choice may be partly justi�ed by the �ndings of both Bales and Wagner (2009)
and Koivumäki et al. (2010), who investigated the various sources of error encountered in this process
and conclude that high-resolution topographic data is the most important factor required for accurate in-
undation maps. The DTM—a raster data of 5 m cell size—was initially built by stereo-photogrammetry.
Both measurement errors and interpolation errors affect the quality of this input data (Wechsler 2007).
These errors were modelled by a Gaussian noise without spatial correlation, whose characteristics were
determined from a set of500control �eld points (mean = 0 cm, s.d. = 17 cm). A set ofn2 � 100random
realisations of the Gaussian random error �eld was generated and added as “noise” to the initial water
depth mapsHˆe1• to Hˆe6• andHˆeœ

1• to Hˆeœ
6• . We may note that this procedure induces independent

variations of the water levels for each exposed assets; it differs from the study of de Moel and Aerts
(2011), who described uncertainty in the water levels with a spatially uniform bias.
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Figure 3.16: Annual maximum �ow series AMFS 1967-2009 and �tted Gumbel distribution (red solid line) with
95% con�dence bounds (dotted blue lines)

Figure 3.17: Empirical distributions of return intervalsT for �ood scenariose1 to e6
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ä Extra comment: We also investigated how to model and simulate the auto-correlated structure
of uncertainty in the DTM. In a previous sensitivity analysis of the NOE modelling chain on the Orb
Delta, published in Journal de la Société Française de Statistiques (Saint-Geours et al. 2011a reproduced
in Appendices), we modelled the measurement errors and interpolation errors on the initial DTM by a
Gaussian Random Field with an exponential variogram model, whose characteristics were determined
from a set of 500 control �eld points.

Flood exposure modelling The third source of uncertainty is the location and attribute data errors in
the LU-GDB dataset (Koivumäki et al. 2010). The error in the land use GIS layer may stem from the
following: i) misclassi�cation of polygonal features representing assets; ii) error on the ground �oor
elevation of buildings; and iii) error on the surface area of features. Other sources of uncertainty were
identi�ed: geometric errors (Bonin 2006; Girres and Julien 2010), errors in the asset locations, and the
evolution of land use over time (Te Linde et al. 2011). Although in some studies (de Moel and Aerts
2011) the uncertainty of the land use data was represented by using a small number of different datasets,
here each uncertainty source was modelled in a probabilistic setting. To describe the misclassi�cation
of polygonal features, which may arise in the process of photo-interpretation, a confusion matrix (Fisher
1991) was built based on expert opinion, giving a confusion probabilitypi;j for each pair of land use types
ˆ i; j • (Table 3.7). Then, to model the variability of the ground �oor elevation of buildings, measurements
were taken during a �eld survey on a sample of 100 buildings. The study area was divided into �ve
homogeneous zones; in each zone, the distribution of ground �oor elevation was described by an empirical
histogram (Figure 3.18 on page 123). Random ground �oor elevation was also attributed to campgrounds,
plots of agricultural land and other economic activities (Table 3.6 on page 118). Next, the surface area
of the buildings was also randomised, as the features area extracted from cadastral maps differ from
the effective surface area of buildings that should be taken into account for �ood damage estimation
(e.g., wall width should be subtracted). To cope with this issue, the nominal surface of each building
was multiplied by a corrective random coef�cient drawn independently in a uniform pdf in [0.75; 0.85],
considering a digitalising error of 0.3 mm at the map scale (Hengl 2006). Finally, from this probabilistic
description of the uncertainty in the LU-GDB dataset (confusion matrix, empirical distribution of ground
�oor elevations, corrective coef�cient for surface areas), a set ofn3 � 1 000random LU-GDB datasets
was sampled.

Table 3.7: Confusion matrix of LU-GDB dataset

Land use type Number of sub-types Probability of confusion between sub-types

Private housing 1 No confusion.

Agricultural land 15 25% chance of confusion between durum wheat and bread wheat; 10%
chance of confusion between colza, maize, barley and sun�ower; 25%
chance of confusion between permanent and temporary grassland.

Campgrounds 18 No confusion.

Other economic
activities

60 0.17% chance of belonging to each other class of economic activities.
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ä Extra comment: As mentioned in §2.2.8.2 on page 56, there are various ways to assess the
exposure of assets to a �ooding event, for example using the maximum values or the mean values of
�ood caracteristics (water height, velocity, �ood duration) over the object. This modelling choice results
in an additional uncertainty, which is not related to the inaccuracy of model inputs. It was not considered
in the sensitivity analysis of the NOE modelling framework on the Orb Delta case study. This issue is
further discussed in Appendix §D on page 212.

ä Extra comment: The evolution of land use over time was identi�ed as an extra source of uncertainty
in �ood exposure assessment, but was not taken into account in this study. In the future, a possible way
to explore this issue would be to simulate land use changes (with uncertainty) over the next 30 years on
the study area. Flood exposure and �ood damages would be computed at each time step, and the average
ammount of damages over time would be considered. One likely problem would be that the spatial scale
of models that simulate land use change (e.g., MOLAND or CLUE-s) may not be commensurate with
the scale needed for exposure assessment in �ood damage modelling.

Damage estimation The fourth uncertain model input is the set of 94 depth-damage curves (one for
each land use type and subtype) used for the damage estimation. Uncertainty about the damage func-
tions has been extensively discussed in previous studies (Koivumäki et al. 2010; Kutschera 2009; Merz
et al. 2004, 2010; Merz and Thieken 2009; de Moel and Aerts 2011). In these papers, uncertainty was
mainly represented by using two or three different sets of damage functions coming from various studies.
Only de Moel and Aerts (2011) used a parametric uncertainty model (beta pdf) derived from Egorova
et al. (2008). Here, to treat all uncertainty sources in a probabilistic framework, we made the choice
to use a single set of depth-damage curves and represent their uncertainty by a uniform pdf, de�ning a
� 50%to � 50%uncertainty range around nominal curves (Figure 3.19 on the next page). Depth-damage
curves associated with each land use type and subtype were assumed to vary independently—contrary
to de Moel and Aerts (2011), where they were sampled collectively from a single p-value. A total of
n4 � 1 000random sets of depth-damage relations was sampled this way.

ä Extra comment: The � � 50%; � 50%� uncertainty range was chosen based on expert opinion.
Torterotot (1993) studied the uncertainty on depth-damage curves for private building and displayed
coef�cients of variation associated with average annual avoided damages around 40%. Other authors
could choose a much larger range (Merz et al. 2010)—in particular, Merz et al. (2004) quanti�ed
the uncertainty which is associated with damage estimates to buildings using statistical information
and found that damages could differ by more than one order of magnitude for similar �ood intensity
parameters.

Project costs Finally, the last source of uncertainty in the NOE modelling chain is related to the costs
of the �ood risk management project. Based on expert opinion, investment costsCI and maintenance
costsCM were assumed to follow a triangular pdf with the parameters shown in Table 3.6 on page 118.
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Figure 3.18: Empirical distribution of the elevation of ground �oor of buildings over zones A (top) to E (bottom)

Figure 3.19: Nominal depth-damage curve for private housing (red solid line) with a� � 50%;� 50%� uncertainty
range (blue dotted lines)

ä Extra comment on discount rate and time horizon: Two parameters were considered constant is
this analysis: the discount rates� i and the length of timeR over which the Net Present Value of the �ood
mitigation project is calculated. Both have conventional values that are used in most CBA-AD studies,
hence it did not seem appropriate to consider them as uncertain. Yet these conventional values are
constantly discussed in the literature devoted to CBA theory—for example, Almansa and Martínez-Paz
(2011) discusses the value of discount rates� i for the CBA of projects with long term environmental
impacts.
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3.3.3.2 Propagating uncertainty

$ Note to the reader: The computational aspects of uncertainty propragation in VB-GSA are
presented into more details in §1.2.2.5 on page 32 and the following paragraph can safely be skipped.

Once uncertainty had been modelled for each source of uncertainty, it was propagated through the NOE
modelling chain using Monte Carlo simulation and a speci�c sampling scheme following Lilburne and
Tarantola (2009). It uses two independent quasi-random LP-� matricesM 1 andM 2 (Sobol' 1967), here
of lengthN � 4096—this sampling size was chosen to �ll the necessary conditions for the LP-� samples
(N must be a power of 2) and large enough to obtain a satisfactory level of accuracy for the sensitivity
indices estimates. These two matrices were combined through several permutations to explore the un-
certainty domain of the �ve model inputs considered, respectively: exceedance frequencies, inundation
maps, LU-GDB dataset, depth-damage curves, and project costs. Thei th line of sampleM 1 or M 2 is a
setˆ l ˆ i •

1 ; l ˆ i •
2 ; l ˆ i •

3 ; l ˆ i •
4 ; l ˆ i •

5 • where eachl ˆ i •
i is a random integer label sampled from1; : : : ; nj associated

with a single random realisation of thej th model input (from the set ofnj random realisations that was
previously generated). One can note that the numbernj of random realisations is not the same for each
model input: these numbers were chosen under the constraints of CPU time and storage space. Next, the
NOE modelling chain was run for each line of samplesM 1, M 2 and a number of combinations ofM 1

andM 2—more details on the procedure can be found in Lilburne and Tarantola (2009). The total number
of model runs wasN tot � 28 672(this number depends on the base sample sizeN and the number of
uncertain model inputs considered) for a total CPU time of 24 hours on a 6-nodes cluster computer.

3.3.3.3 Variance-based sensitivity indices

$ Note to the reader: The mathematical basis and computational aspects of VB-GSA are presented
into more details in §1.2.2 on page 29 and the following paragraph can safely be skipped.

Uncertainty propagation results in a set ofN tot � 28 672values for the following outputs of interest:

X avoided �ood damages per scenario (� D1 to � D6)

X Average Annual Avoided Damages (� AAD)

X Average Annual Avoided Damages per type of assets

X Net Present Value of mitigation measures (NPV)

Then, the variance-based total-order sensitivity indices of each source of uncertainty with respect to each
output of interest were estimated using the expressions given by Lilburne and Tarantola (2009). These
sensitivity indices, denoted bySTi , measure the contribution of a given source of uncertainty, denoted by
Ui , and all its interactions with other sources of uncertainty, denoted byU� i , to the variance of a given
model output, denoted byY :

STi �
E � varˆY SU� i •�

var̂ Y •
(3.24)
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STi is the expected part of output variance varˆY • that would remain if all sources of uncertainty but
Ui were �xed. Please refer to Saltelli et al. (2008) for more details on global sensitivity analysis and the
estimation of sensitivity indices.

ä Extra comment: Only total-order sensitivity indices were considered in this case study, because
estimates of �rst-order indices displayed too large con�dence intervals—these con�dence intervals were
computed by bootstrap using 100 replicas.

3.3.4 Results

3.3.4.1 Uncertainty analysis

Table 3.8 on the next page summarises the outcome of the uncertainty analysis. For each output of inter-
est, it gives descriptive statistics over theN tot � 28 672model runs. It displays mean values of avoided
damages per �ood scenario, ranging from9:593Me to 111:5 Me . The largest avoided damage is reached
for scenarioe5 (100-year design �ood), with a total reduction� D5 � 111:5 Me , whereas the mitigation
measures performed worst for the extreme �ood scenarioe6, with a mean avoided damage� D6 � 9:593
Me and a negative minimum value of� 4:695Me , meaning that the damage costs might increase from
the present to the future situation for this scenario. The Average Annual Avoided Damage indicator shows
a mean value of� AAD � 5:459Me /year. Table 3.8 on the following page clearly suggests that the con-
tribution of the four types of assets to this total indicator is uneven: while the economic activities and
private housing account respectively for 64% and 34% of the total� AAD, the share of campgrounds and
cultivated land is only equal to 1.3% and 0.7%, respectively. Finally the effect of the �ood mitigation
measures appears to be heavily dependent on the type of assets considered.

Despite all input uncertainties, the� AAD indicator on private housing and economic activities (other
than agriculture and campgrounds) proves to be always positive in this uncertainty analysis. In contrast,
the mitigation measures will most likely result in an increase in the average annual damage for agricultural
land as� AAD is negative in this sector for all model runs. Regarding campgrounds, no conclusion can
be drawn from the study as� AAD is positive in this sector for only 72.6% of the model runs. It can
also be noted that all �ood damage indicators display a coef�cient of variation ranging from 11.76% to
44.80%.

Finally, Figure 3.20 on the next page shows the empirical distribution of the Net Present Value of the
�ood mitigation measures overN tot � 28 672simulations. With a mean value of� 34:29 Me , the �ood
risk management project seems to be a sound investment. The NPV indicator also appears to be positive
for 96% of model runs, which we interpret to mean that despite all the uncertainty sources that were
considered in the NOE modelling chain, the bene�ts of the �ood mitigation measures still prove to almost
certainly outweigh their costs.

3.3.4.2 Sensitivity analysis

The total-order variance-based sensitivity indices were computed for each uncertain model input with
respect to each output of interest (Table 3.9 on page 128). First, the variance of the total� AAD indicator
can be observed to be almost equally explained by the uncertainty in the exceedance frequencies, water
depth maps, depth-damage curves and LU-GDB dataset, with sensitivity indices ranging from0:18 to
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Table 3.8: Descriptive statistics for each output of interest overN tot � 28 672simulations

Output mean s.d. 2.5% perc. 97.5% perc. c.var.

Avoided damage per �ood scenario (� D [Me ])

� D 1 0 0 0 0 —

� D 2 20.21 7.796 11.164 40.6443 38.57%

� D 3 48.84 8.972 29.307 65.927 18.37%

� D 4 58.28 10.63 39.491 84.334 18.24%

� D 5 111.5 13.11 84.410 136.405 11.76%

� D 6 9.593 4.298 1.967 20.149 44.80%

Average Annual Avoided Damage (� AAD [M e /year])

Total 5.459 1.11 3.6109 7.9816 20.33%

Eco. activities 3.506 0.9406 2.0995 5.77331 26.83%

Private housing 1.887 0.4465 1.1002 2.8317 23.66%

Campgrounds 0.071 0.129 -0.213 0.3116 18.23%

Agricultural land -5.274.10� 3 1.912.10� 3 -9.25.10� 3 -1.965.10� 3 36.25%

Net Present Value (NPV [Me ])

NPV 34.29 21.01 -40.83 106.5 61.27%

Figure 3.20: Empirical distribution of the NPV indicator overN tot � 28 672simulations and mean value (solid line)
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Figure 3.21: Avoided damages against exceedance frequency: nominal curve (solid line), �rst 500 simulations (dots),
curves associated with minimum and maximum� AAD (dashed lines)

0:33. No main source of uncertainty can be identi�ed, meaning that they are in a sense “well-balanced”.
However, sensitivity indices with respect to the partial� AAD indicator for each economic sector give a
very different picture. The variance of� AAD on private housing appears to be mainly explained by the
uncertainty of the depth-damage curves (sensitivity index:0:78). For campgrounds and agricultural land,
the depth-damage curves also prove to be the most important source of uncertainty (sensitivity index:
0:6 and0:4, respectively), followed by the uncertainty of the LU-GDB dataset (sensitivity index:0:38
for both sectors). In addition, for private housing, agricultural land and campgrounds, the uncertainty
in the water depth maps is almost non-in�uential (sensitivity index@0:02), while it is the second most
important source of uncertainty for other economic activities (sensitivity index:0:38). Finally, Table 3.9
on the next page also indicates that the variance of the Net Present Value of �ood mitigation project is
mainly due to the uncertainty on its bene�ts (measured by total� AAD) rather than the uncertainty on its
costs, which contribute to only 12% of the NPV variance.

To further identify the factors that explain the variance of� AAD indicator, sensitivity analysis can
also be based on a graphical analysis. Figure 3.21 displays the sampled �ood exceedance frequenciesf 1

to f 6 against the estimated avoided damages� D1 to � D6 for all N tot � 28 672model runs, along with
the curves associated with the nominal, minimum and maximum value of the� AAD indicator, which is
equal to the area under the curve. It may be noted that as the damage and frequency estimates of each
�ood scenario are correlated, the extremum values of the� AAD indicator do not always correspond to
the extremum points in the damage-frequency graph for all �ood scenarios. Figure 3.20 on the preceding
page supports the conclusion that the variance of the� AAD indicator is mainly due to the uncertain
position of scenariose1 (�rst �ood event where the damage to property begins) ande2 (10-year design
�ood) on this damage-frequency graph. Flood scenariose3 to e5 show a larger dispersion of estimated
avoided damages, but their position on the x-axis (exceedance frequency) is less spread; hence their
contribution to the total variance of the� AAD indicator is small.
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Table 3.9: Total-order sensitivity indices with respect to the different outputs of interest. Grey cases indicate the
most important sources of uncertainty

Total-order sensitivity index of:

Exceed. Prob. Water depths Depth damage
curves

LU-GDB dataset Project costs

Average Annual Avoided Damage (per economic sector)

Total 0.33 0.18 0.29 0.21 0

Eco. activities 0.4 0.38 0.2 0.3 0

Private housing 0.22 0.005 0.78 0.03 0

Campgrounds 0.2 0.01 0.6 0.38 0

Agricultural land 0.27 0.02 0.4 0.38 0

NPV 0.25 0.18 0.23 0.21 0.12

3.3.5 Discussion

Assessing robustness of a �ood risk CBA study Our �rst goal was to assess the robustness of the
cost-bene�t analysis of the structural �ood mitigation measures on the Orb River through an uncertainty
analysis of the NOE modelling chain. Our approach was strongly motivated by prior publications in which
uncertainty analysis was used to evaluate the robustness of �ood damage assessments. We completed
these works by propagating uncertainty up to the cost-bene�t analysis of the �ood mitigation measures,
which had not been performed before. We obtained empirical descriptive statistics for the two CBA-AD
outcomes, the Average Annual Avoided Damages and the Net Present Value of �ood mitigation measures,
displaying quite large coef�cients of variation of 20.33% and 61.27%, respectively. The visualisation of
the Monte Carlo simulations on a damage-frequency graph (Figure 3.21 on the preceding page) gave us a
new insight on the robustness of the� AAD indicator, proving that its variance is mainly explained by the
uncertain characterisation (in terms of exceedance frequency and estimated damages) of �ood scenarios
with small return intervals (5 and 10-year �oods). We also found (Figure 3.20 on page 126) that the
probability of the project costs outweighing the project bene�ts appears to be lower than 5%. We are
convinced that these results may prove useful to provide water managers and stakeholders with a more
complete picture on the cost-bene�t analysis and the associated uncertainty, even though we know that
they are usually untrained in coping with the uncertainty related to scienti�c information in �ood risk
studies (Morss et al. 2005).

3.3.5.1 Improving the NOE modelling framework

Our research also sought to identify the main sources of uncertainty in the NOE modelling chain to
�nd ways to improve it. Although variance-based sensitivity analysis is widely used for that purpose in
many disciplines, it had never been applied, to our knowledge, to a CBA of �ood control measures. We
demonstrated the use of Sobol' sensitivity indices (Table 3.9) to rank the sources of uncertainty, depending
on their contribution to the variance of the� AAD and NPV indicators. A �rst conclusion is that, on a
global scale, sources of uncertainty are well-balanced, meaning that they all explain a signi�cant share
of the variance of the� AAD and NPV indicators. Yet, more useful lessons can be learnt from looking
at each economic sector separately. The uncertainty on the depth-damage curves proved to be the key
factor that explains the variance of the average annual damages on private housing, campgrounds and



3.3 APPLICATION TO THENOE CODE ON THEORB DELTA CASE STUDY Ì 129

agricultural land. This result is in line with those of Apel et al. (2008) and de Moel and Aerts (2011),
who found that in damage assessment of a single �ood event, the choice of damage functions is a much
more important factor than the choice of a hazard model. It thus supports the conclusion that improving
the depth-damage curves and more generally the damage functions are priorities to make more robust
�ood damage assessments in these sectors. Our results also indicate that there is almost a third of the
variance of the� AAD and NPV indicators that cannot be reduced as it stems from the variance of
the �ood return interval estimates. This observation corroborates the conclusions of Apel et al. (2004),
who stated that reliable extreme value statistics were crucially important for reducing the uncertainty of
the risk assessment. Unfortunately, reducing this input uncertainty would require longer time series of
maximum discharges at Tabarka gauging station, which are not available. Finally, the uncertainty on
the �oor elevation of buildings proved to have a negligible contribution to the variability of the annual
damage estimates for private housing. This �nding �ts well with the results of Koivumäki et al. (2010),
who showed that adding a single elevation value per building was inadequate to obtain more accurate
damage estimates. Of course, these �ndings are speci�c to the Orb River study site: in a different case
study, ranking of the various uncertainty sources may be signi�cantly different.

3.3.5.2 Averaging-out effects

The sensitivity analysis also provided an interesting insight on how the uncertainty on inundation maps
in�uence the variance of damage estimation. Our results offer evidence that improving water depth esti-
mation would be of almost no use in reducing variance of� AAD estimates for campgrounds, agricultural
land and private housing, while it is the second most important source of uncertainty for other economic
activities. This �nding is in apparent con�ict with the conclusions of Apel et al. (2004, 2008) or de Moel
and Aerts (2011), who reported that uncertainty in the water depths is less important than other uncer-
tainty sources without distinction of the economic sector considered. This discrepancy may be explained
by two different “averaging-out effects”: one based on the surface area of assets and the other based on
the number of assets. On one hand, campgrounds and agricultural land have a large surface area compared
with other types of assets (33 000and9 000sq. m. in average, Table 2.2 on page 62): as a result, the error
on water depths, if unbiased, is reduced when it is averaged over the large surface area of these assets.
Hence, for both sectors, the contribution of the water depth maps to the variance of the� AAD indicator
is low. On the other hand, the polygonal features classi�ed asprivate housingor economic activitieshave
a rather small surface area (83sq. m. and904sq. m. on average, respectively), and the uncertainty in the
average water depth for each individual asset is thus large. Nevertheless, the number of features classi�ed
asprivate housing(16436) is much larger than the number of assets classi�ed asother economic activities
(691), which results in a “number averaging-out effect”: the dispersion of water depth errors is averaged
over the large number of housing polygons scattered across the study area. A similar “number averaging-
out effect” may partly explain why the uncertainty on depth-damage curves appears to be more in�uential
on the private housing sector, which is described with only one depth-damage curve, than for the other
economic activities, which are described by 60 damage curves that are assumed to vary independently.
These �ndings support the conclusion that various averaging-out effects (related not only to the surface
area of assets and the number of assets but also to the number of land use types considered, the number
of damage functions used, etc.) control the ranking of the uncertainty sources in the NOE modelling
chain. Saint-Geours et al. (2012) discussed this issue from a theoretical point of view and showed that
the ranking of the uncertainty sources is closely related to the spatial support (and thus to the scale) of
the model output. This result is in agreement with the call of Koivumäki et al. (2010) for further research
on what constitutes a reasonable scale-accuracy relationship in �ood damage assessments: our results
suggest that the scale-accuracy-sensitivity relationship must be further investigated.
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3.3.5.3 Limits

It should be noted that our work is based on hypotheses that may limit the strength of some of its results.
First, some sources of uncertainty were identi�ed in the NOE modelling chain but not taken into account
in the uncertainty and sensitivity analysis: the evolution of land use over the next thirty years, errors
arising from uncertainty on friction coef�cients in hydraulic modelling, errors on the location and shape
of polygonal features in the LU-GDB dataset, etc. Why were they ignored? Because the data required
to rigorously characterise them in a probabilistic framework were not available. Even if we can assume
that some of these uncertainty sources would prove to be negligible in the NOE modelling chain, (e.g.,
errors on the location of assets in the LU-GDB dataset), others are de�nitely not (e.g., biased errors in
hydraulic modelling). Moreover, even for those sources of uncertainty that were included in the study,
the models of uncertainty are sometimes only based on expert opinion. The results of our study heavily
depend on such uncertainty parameters. To cope with this issue, a second level uncertainty analysis could
be performed by exploring how the output uncertainty and the sensitivity indices change for given sets of
uncertainty parameters.

3.3.6 Conclusion

This work was performed with a view toward promoting the use of Monte Carlo uncertainty analysis
and variance-based sensitivity analysis in �ood damage assessments and related CBA-AD through a case
study on the Orb Delta, France. For this case study, we derive the following main conclusions:

1. Monte Carlo uncertainty analysis allows empirical pdf and con�dence bounds on the economic
indicators of a cost-bene�t analysis applied to �ood mitigation measures to be computed.

2. The variance of the Average Annual Avoided Damages is mainly due to the uncertain characterisa-
tion of �ood scenarios with small return intervals.

3. Approximately one-third of the variance of the� AAD and NPV indicators cannot be reduced as it
stems from a �ood frequency analysis based on short time series.

4. The ranking of uncertainty sources depend on the economic sector considered (private housing,
agricultural land, economic activities)

5. Uncertainty in the depth-damage curves is a prominent factor for computing the� AAD for private
housing and agricultural land.

6. The ranking of uncertainty sources is in�uenced by various averaging-out effects that depend on
the number and surface area of the assets considered, the number of land use types, the number of
damage functions, etc.

Further research is now needed to extend the reach of our study by trying to reduce the uncertainty in the
input data identi�ed as being in�uential in the study and including in the analysis uncertainty sources that
were ignored so far.

ä Note to the reader: End of the draft paper submitted to theJournal of Flood Risk Management.
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3.3.7 Extra comments: results on other case studies

This subsection aims at giving some extra comments to enrich the results and the discussion presented in
the submitted paper.

An important question is what general conclusions can be drawn on the NOE modelling framework from
the single Orb Delta case study. Would these results hold for other study sites as well? To try and answer
this question, we carried out a sensitivity analysis of the NOE modelling framework on two other study
sites that were presented in Chapter 2 (§2.3.3 on page 70):

X the Vilaine �oodplain (total extent of17sq. km.)

X the ZEC project on the Rhône river (650sq. km.)

On these two case studies, we followed the same general sensitivity analysis �owchart as on the Orb
Delta. The models chosen to describe uncertainty on each model input were similar, even though there
were some small differences from one case study to one another. We will not present into details the
results obtained on these two study sites, but here is a summary of the most important observations.

Ranking of model inputs First, it can be stated that the ranking of uncertainty sources obtained on the
Orb Delta does not necessarily hold for other case studies. For example, here are the �rst-order sensitivity
indices computed on the Redon �oodplain with respect to the total AAD indicator:

depth-damage curves 0.15
�ood exceedance probabilities 0.17
assets map 0.29
water depths 0.36

It appears that the most in�uential inputs with respect to the variance of the total average annual damages
on this �oodplain are the assets map and the water depths, whereas the same inputs were the less in�u-
ential on the Orb Delta case study (Table 3.9 on page 128). We will discuss one possible explanation for
this difference in the Chapter conclusion on page 134.

In�uence of economic sector Next, these two extra studies corroborate the observation that the sen-
sitivity indices of the NOE model inputs depend on the economic sector considered (private housing,
agriculture, industry, etc.). For example, here are the �rst-order sensitivity indices obtained on the ZEC
study site with respect to the total AAD indicator for: i) cultivated land only; ii) business and industrial
assets only; and iii) private housing only:

agriculture industry private housing
depth-damage curves0.66 0.2 0.74
�ood return intervals 0.08 0.13 0.06
assets map 0.00 0.00 0.00
hazard maps 0.16 0.54 0.01

This table suggests in particular that depth-damage curves are much more in�uential for agricultural
assets and private housing assets than they are for business or industrial assets. This observation is in line
with the results obtained on the Orb Delta (Table 3.9 on page 128).
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Figure 3.22: ZEC case study. Damages against annual exceedance probabilities: �rst 100 simulations (dots), three
random simulations (solid lines)

In�uence of �ood scenarios with small return intervals Finally, we also observe on these two extra
study sites that the �ood scenarios with small return intervals contribute more to the variance of the AAD
and� AAD indicators than scenarios with large return intervals, which is line with the results obtained
on the Orb Delta. This observation is not based on the computation of sensitivity indices, but on the same
graphical analysis as the one realized on the Orb Delta (§3.3.4.2 on page 127), in which uncertain damage
estimates for each �ood scenario are plotted against its uncertain exceedance probability— Figure 3.22
displays a similar plot for the ZEC study site. However, it is important to underline that this observation is
most probably linked to the fact that, for all the case studies, uncertainty on �ood exceedance probabilities
was modelled in the same way, using empirical con�dence bounds on the discharge-frequency curve
(§3.3.3.1 on page 119). If another uncertainty model had been chosen for �ood exceedance probabilities,
then we may not have found that �ood scenarios with small return intervals are the most in�uential.

We will try to draw some lessons from these comparative observations in the Chapter conclusion on
page 134.
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3.4 Chapter conclusion

3.4.1 On VB-GSA with spatially distributed inputs

The goal of this chapter was to investigate how VB-GSA could be extended to models with one or several
spatially distributed inputsZ i ˆx•.

State of the art of the available methods We established a state of the art of the available techniques
to handle a spatially distributed model inputZ ˆx• in VB-GSA. We applied these techniques to a number
of analytical test cases and discussed the outcomes of this numerical study.

A �rst key point is to clarify what measure of importance the modeller is interested in. The “macro-
parameter”, “ dimension reduction”,“ map labelling” and “joint meta-models” aim at measuring the con-
tribution of the entire uncertain spatially distributed input˜ Z ˆx• � x >
 • to the variance of the model
outputY . In these methods, the characterisation of the uncertainty onZ ˆx• is �xed—�xed pdf of scalar
parameters� i or �xed stochastic processP that generates random realisations ofZ ˆx•. What is mea-
sured is the contribution of the overall uncertainty ofZ ˆx• to the variance of model output. On the
contrary, in the “second level” approach, the description of uncertainty inZ ˆx• is itself uncertain. What
is measured is the contribution to varˆY • of the uncertain “second level” parameters� i that control the
stochastic processP. Finally, in the “trigger” method, the sensitivity indices that are computed do not
properly measure the contribution ofZ ˆx• to the variance of model outputY : we recommend no to use
this approach. In our research, we focused on the �rst group of techniques, that measure the contribution
of the entire uncertain spatially distributed input˜ Z ˆx• � x >
 • to the variance of the model outputY ,
with a �xed description of uncertainty.

Next, we systematically described the available techniques for a number of criteria and suggested to use
a decision-tree (Figure 3.7 on page 96) to choose among them for a given spatial model. In our opinion,
the most appropriate technique to handle spatially distributed inputs in VB-GSA of a numerical modelF
with low CPU cost is the “map labelling” approach. It is a convenient approach, easy to implement and
to explain to model end-users. An important feature is that it allows a complex description of the spatial
structure of uncertainty inZ ˆx•: random realisations of the spatially distributed input can be generated by
any stochastic processP and ad-hoc algorithm. For all these reasons, we chose to use the “map labelling”
technique to carry out VB-GSA of the NOE modelling framework on the Orb Delta case study. On the
other hand, for time consuming models, the “joint meta-model” appears to be a good solution, except that
it can only handle a single spatially distributed input.

Sampling issues in the “map labelling” approach As developed in §3.2 on page 98, the “map-
labelling” approach requires sampling a numbern of random realisations of the spatially distributed
input Z ˆx• to estimate its variance-based sensitivity indices. The choice of sizen is usually driven by
constraints of time and disk space. We carried out two numerical studies to investigate how sampling
technique and size may in�uence the estimation of sensitivity indices: i) one to study the convergence
of sensitivity indices estimates for increasing numbern of random realisations ofZ ˆx•; ii) the other
one to compare two geostatistical simulation algorithms (SRS and LHS) to generate random realisations
of Z ˆx• when it is modelled as a Gaussian Random Field. Due to their exploratory nature, we cannot
draw any �rm conclusion from these experiments, neither on the minimum sampling sizen in a general
case, nor on the optimal sampling technique whenZ ˆx• is a Gaussian Random Field. However, there
are two humble lessons to be learnt from these numerical studies: i) for small values ofn the set of ran-
dom realisations ofZ ˆx• is too small to represent reasonably well the overall uncertainty on the spatially
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distributed input; hence, �gures showing the convergence of sensitivity indices estimates with increasing
numbern of random realisations ofZ ˆx• should be drawn for each case study to determine the minimum
sampling sizen; ii) when Z ˆx• is modelled as a Gaussian Random Field, spatial LHS does not yield
much better sensitivity indices estimates than SRS, because it disturbs spatial correlation for small values
of n.

Further research needed We have shown in this chapter that the available techniques to handle spa-
tially distributed inputs in VB-GSA are in some respects limited. Further research is thus needed to
improve these techniques, and design new methods to deal with unresolved situations. We will discuss
these directions for future work in the general conclusion on page 174. We will also display in this general
conclusion some ideas to extend the reach of our study.

3.4.2 On the NOE modelling framework and CBA-AD studies

Sensitivity analysis of the NOE modelling framework on the Orb Delta case study We successfully
used the “map labelling” approach to perform VB-GSA of the NOE code on the Orb Delta case study.
This approach allowed us to consider the uncertainty on two spatially distributed inputs: the assets and
the hazard maps. Results show that the uncertainty on �ood scenario annual exceedance probabilities is
the main contributor to the variance of the� AAD and NPV output indicators. Unfortunately, this source
of uncertainty cannot be easily reduced, because improving �ood frequency estimates would require a
longer time serie of annual maximum �ows at the reference gauging station. In addition, we highlighted
the major role of uncertain annual exceedance probabilities associated to the �ood scenarios with small
return intervals.

Next, we found that the ranking of uncertainty sources with respect to their contribution to the variance of
the � AAD indicator depends on the economic sector considered (private housing, agriculture, industry,
etc.). In particular, uncertainty in the depth-damage curves is a prominent source of uncertainty when
computing the� AAD indicator for private housing and agricultural land.

An underlying explanation is that the structure of input data heavily depends on the economic sector
considered: number of assets, average surface area of assets, nomenclature of assets, number of damage
functions considered, shape of damage functions (linear/non linear, with/without threshold, etc.). For all
these caracteristics, an “averaging-out” effect may occur, that is, many independent uncertainty sources
may compensate each other when they are combined. This point will be further discussed in Chapter 4.

Generalizing the results obtained on the Orb Delta case study As mentioned earlier in §3.3.7 on
page 131, an important question is what general conclusions can be drawn on the NOE modelling frame-
work from the single Orb Delta case study. To adress this issue, we carried out sensitivity analysis on two
other study sites: the Vilaine �oodplain and the ZEC project along the Rhône river.

A �rst key result is that the speci�c ranking of uncertainty sources obtained on the Orb Delta does not
hold for other case studies. One possible explanation lies in the difference of spatial extent between
these study sites: the Orb Delta study site has a total extent of63 sq. km., whereas the other two sites
we investigated have a total extent of17 sq. km. (Vilaine �oodplain) and650 sq. km. (ZEC project),
respectively. The outcomes of sensitivity analysis may depend on a “spatial averaging-out effect” related
to the total surface area of the �oodplain. This point will be further investigated in Chapter 4.
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Chapter 4

Scale issues in variance-based global
sensitivity analysis
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THIS chapter is devoted to the exploration of “scale issues” in VB-GSA of spatial models. Our
interest in this question arised when comparing the results of sensitivity analysis of the NOE
modelling framework obtained on different case studies (§3.3.7 on page 131). We observed that

the ranking of the uncertainty sources was different on each investigated case study, for which the extent
of the study area ranged from approximately 10 km2 to more than 100 km2. We made the hypothesis that
these variations could be partly explained by some “averaging-out effect” of local uncertainties related to
the scale of each study site. To clarify our question, we will use the notion of the “scale triplet” introduced
by Blöschl and Sivapalan (1995) and presented in Chapter 1 (§1.1.3 on page 20). We offer to study how
the results of VB-GSA of a spatial model depend on two components of the scale triplet: the “support”
and the “spacing”. The third component (“extent”) will only be discussed in the Chapter conclusion.

We limit our study to the speci�c class of point-based and spatially additive models, as de�ned in Chap-
ter 1. We consider a modelF with a single spatially distributed inputZ ˆx•, which is modelled as a
Stationary Random Field (SRF). The output of interest is the average valueYv of Y ˆx• over a given sup-
port v ` 
 . This limitative framework is partly justi�ed by the fact that our case study model (the NOE
code) is itself point-based and spatially additive. The other reason is that a number of nice properties
can be obtained analytically for this class of models, which can approximate a number of “real-world”
applications.

This chapter is composed of three sections. The �rst section §4.1 on page 140 was published inMath-
ematical Geoscienceswith the following title: “Change of support in spatial variance-based sensitivity
analysis” (Saint-Geours et al. 2012). In this publication, we �rst survey the few existing papers that dis-
cuss scale issues in sensitivity analysis. Next, we de�ne “site” and “block” sensitivity indices to account
for the role of spatial supportv over which the model output is aggregated. We then explain how block
sensitivity indices depend not only on the size of supportv, but also on the covariance structure of the
spatially distributed inputZ ˆx•. These theoretical developments on change of support are illustrated by a
simple analytical test case. Then, in section §4.2 on page 153, we investigate how the results of VB-GSA
of modelF may be in�uenced by another component of the scale triplet: the spacing. We consider the
case in which the aggregated outputY
 is approximated by a weighted sum of the output valuesYˆx i •
computed at a �nite number of pointsx i >
 . We give an expression of the resulting approximation error
on sensitivity indices, and show that this error depends on the spacing of the set of pointsx i . Next, sec-
tion §4.3 on page 156 illustrates the effect of spatial support on VB-GSA results for the NOE modelling
framework on the Orb Delta case study. Sensitivity indices of the NOE model inputs are computed with
respect to the aggregated values of the� AAD indicator over varying spatial supportsv, to investigate the
relationship between the ranking of uncertainty sources and the area over which the� AAD indicator is
summed up. Finally, we close this chapter with some concluding remarks in §4.4 on page 169.
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4.1 In�uence of support

The purpose of this section is to analyse how the sensitivity indices in a point-based and spatially additive
model depend on the supportv over which the model outputYv is aggregated. As mentioned in the
chapter introduction, our interest in this question stems from the comparative analyses of the NOE code on
different case studies (§3.3.7 on page 131). We observed that the ranking of the uncertainty sources was
different on each investigated case study, for which the extent of the study area ranged from approximately
10 km2 to more than 100 km2. We made the hypothesis that these variations could be related to the surface
area of each study site. Intuitively, one possible explanation is the folllowing: the “local” uncertainty
of spatially distributed inputs (i.e., the assets map and the hazard maps) may compensate each other
and �nally average out when the output of interestY ˆx• is aggregated over a large area. Hence, the
contribution of the spatially distributed inputs to the variance of the aggregated model output is smaller
on large areas, and larger on small areas. In this section, we intend to give a theoretical presentation of
this effect.

ä Note to the reader: This section is a reproduction of a paper published inMathematical
Geosciences, with the following title: “Change of support in spatial variance-based sensitivity analy-
sis” (Saint-Geours et al. 2012). Some parts of this paper are redundant with explanations that were given
in previous chapters: they can safely be skipped by the reader. Besides, some extra comments were
added to the published paper and its appendices: they are identi�ed by a grey box. Finally, in order to
keep a general consistency of notations throughout this document, some of the original notations given
in the published paper were changed.

4.1.1 Introduction

Variance-based global sensitivity analysis (VB-GSA) is used to study how the variance of the output of
a model can be apportioned to different sources of uncertainty in its inputs. Here, the term “model”
denotes any computer code in which a response variable is calculated as a deterministic function of input
variables. Originally developed in the 1990s (Sobol' 1993), VB-GSA is now recognized as an essential
component of model building (European Commission 2009a; CREM 2009) and is widely used in different
�elds (Cariboni et al. 2007; Tarantola et al. 2002). VB-GSA is based on the decomposition of a model
output variance into conditional variances. So-called “�rst-order sensitivity indices” measure the main
effect contribution of each uncertain model input to the model output variance. Based on these sensitivity
indices, ranking the model inputs helps to identify inputs that should be better scrutinized �rst. Reducing
the uncertainty on the inputs with the largest sensitivity indices (e.g., by collecting additional data or
changing the geographical pattern of data locations) will often result in a reduction in the variance of the
model output. More generally, VB-GSA helps to explore the response surface of a “black box” computer
code and to prioritize the possibly numerous processes that are involved in it.

Although VB-GSA was initially designed for models where both inputs and output can be described
as real valued random variables, some recent work has extended VB-GSA to environmental models for
which both the inputs and output are spatially distributed over a two-dimensional domain and can be
described as random �elds (Lilburne and Tarantola 2009 for a review). In these works, the computer
code under study uses maps derived from �eld data (e.g., digital elevation models and land use maps).
These maps are uncertain due to measurement errors, lack of knowledge or aleatory variability (Refs-
gaard et al. 2007; Brown and Heuvelink 2007). The uncertainty of these spatial inputs is usually modeled
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using random �elds. Model output is also spatially distributed (e.g., a �ood map or a pollution map).
Authors use geostatistical simulation to incorporate spatially distributed model inputs into the VB-GSA
approach (Ruffo et al. 2006; Saint-Geours et al. 2010) and they display estimation procedures to compute
sensitivity indices in a spatial context, either with respect to the spatial average of the model output (Lil-
burne and Tarantola 2009) or with respect to the values of the model output at each site of a study
area (Marrel et al. 2011; Pettit and Wilson 2010; Heuvelink et al. 2010b).

Nevertheless, to date, none of these studies has reported on a key issue: the link between uncertainty prop-
agation and model upscaling/downscaling. “Model upscaling” is the problem of translating knowledge
from smaller scales to larger (Heuvelink 1998). In many environmental models, the physical quantities
considered are spatially additive (e.g., porosity or evapotranspiration), i.e., their large-scale properties
derive from small-scale properties by simple averaging (Chilès and Del�ner 1999 p.593). In this case, the
model end user is usually interested in the spatial linear average or the sum of spatial output over a given
spatial unit (e.g., the average porosity of a block or the total evapotranspiration over a plot of land) and
model upscaling is thus reduced to a “change of support” problem (namely, a change of support of the end
user's output of interest). Heuvelink (1998) observed that under a change of spatial support of the model
output, the relative contribution of uncertain model inputs to the variance of the aggregated model output
may change. Exploring how sensitivity analysis results interact with such a change of support is thus
of great importance. It would allow the modeller to check the robustness of model-based environmental
impact assessment studies and better assess the con�dence of their results. Knowledge of this interaction
would also allow the modeller to answer the following questions: What are the model inputs that explain
the largest fraction of the variance of the output over a given spatial support? For which output support
size does a given spatially distributed model input contribute to the largest fraction of the variance of the
model output? How does the contribution of a spatially distributed input to the variance of the model
output depend on the parameters of its covariance function?

The change of support effect has been extensively discussed in geostatistics in the context of regulariza-
tion theory (Journel and Huijbregts 1978 p.77). Hence, we attempt in this paper to integrate regularization
theory with VB-GSA framework. Our idea is to de�ne “site sensitivity indices” and “block sensitivity in-
dices” to i) provide a simple formalism that extends VB-GSA to spatial models when the modeller's
interest is in the spatial average or the sum of model output over a given spatial support (§4.1.2) and ii)
discuss how the relative contribution of uncertain model inputs to the variance of model output changes
under model upscaling (§4.1.3 on page 144). We limit our study to point-based models, i.e., models for
which the computation of the model output at some location uses the values of spatial inputs at that same
location only (Heuvelink et al. 2010a). An example is used throughout this paper to illustrate formal
de�nitions and properties. Finally, we discuss the limits of our approach and its connections to related
works in §4.1.4 on page 147.

4.1.2 VB-GSA for a point-based and spatially additive model

4.1.2.1 Description of spatial modelF

We want to study a computer codeF whose output is a map and whose inputs are a map and a set ofk real
valued variables. Both inputs and output are “uncertain” and are described as random variables or random
�elds. More precisely, we use the following notations: let
 ` R2 denote a 2D spatial domain,x > 

a site,h the lag vector between two sitesx andxœ, andv ` 
 some spatial support (block) of areaSvS.
We consider the modelY � F ˆU ; Z • whereU � ˆU1; : : : ; Uk • is a random vector and̃Z ˆx• � x >
 •
is a second-order stationary random �eld (SRF) — that we will often simply denote byZ ˆx•. U and
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Figure 4.1: Point-based and spatially additive model with uncertain inputsU andZ ˆx • and spatial outputY ˆx • .
The modeller is interested in the block average ofY ˆx • over some spatial unitv

Z ˆx• are supposed to be independent. Covariance functionCˆ �• of Z ˆx• is assumed to be isotropic,
characterized by correlation lengtha >R, nugget parameter� >� 0; 1� and of the form:

Cˆh• �

¢̈
¨̈̈
¦
¨̈̈
¤̈

Cˆ0• if h � 0

ˆ1 � � • � Cˆ0• � � a ˆYhY• if h x 0
(4.1)

where� aˆ �• is some valid correlogram (Cressie 1993 p.67). The model output is a 2D random �eld
˜ Y ˆx• � x >
 • that we will simply denote byYˆx•. We assume that the �rst two moments ofY ˆx•
exist. Finally, as discussed in the introduction, we limit our study to “point-based” models; hence, we
assume that there exists a mappingF loc � Rk � R � R such that:

¦ x >
 ; Y ˆx• � F loc �U ; Z ˆx•� (4.2)

A sensitivity analysis of the modelF must be performed with respect to a scalar quantity of interest
derived from spatially distributed model outputY ˆx•. Here, we consider two different outputs of interest:
the valueYˆx‡• at some speci�c sitex‡ >
 and the aggregated valueYv � 1~SvSRv Yˆx• dx over support
v. Because model inputsU and Z ˆx• are uncertain,Y ˆx‡• and Yv are both random variables; the
sensitivity analysis will describe the relative contribution of uncertain model inputsU andZ ˆx• to their
respective variances.

ä Extra comment: according to the de�nitions given in §1.1 on page 18, the analytical test case under
study is a point-based and spatially additive model (Figure 4.1). A complete analytical study has been
written for the speci�c case in which modelF is linear: it is given in Appendix §I on page 237.

4.1.2.2 Site sensitivity indices and block sensitivity indices

Before de�ning sensitivity indices for spatial modelF , we brie�y review the mathematical basis of VB-
GSA. Let us consider a modelY � f ˆU1; : : : ; Uk • , whereUi are independent random variables and where
the �rst two moments ofY exist. The �rst-order sensitivity indexSi of model inputUi is de�ned by:

Si �
var�EˆYSUi •�

var̂ Y •
(4.3)
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Si >�0; 1� measures the main effect contribution of the uncertain model inputUi to the variance of model
outputY . Sensitivity indices can be used to identify the model inputs that account for most of the variance
of the model output (model inputsUi with high �rst-order indicesSi ). Sum ofSi is always less than 1
and the difference1 � P i Si accounts for the contribution of the interactions between model inputsUi to
model output variance varˆY •. Please refer to Saltelli et al. (2008) for more details on VB-GSA theory
and on the estimation of sensitivity indices.

ä Note to the reader: Variance-based global sensitivity analysis and variance-based sensitivity
indices are described into more details in §1.2.2 on page 29.

To extend VB-GSA to spatial modelF , we propose to use different types of sensitivity indices to describe
the relative contribution of the uncertain model inputsU andZ ˆx• to the variance of the model output:
an index on a point support (i.e., with respect to output of interestY ˆx‡•) and an index on a larger support
(i.e., with respect to output of interestYv ). First-order sensitivity indices of model inputs with respect to
Y ˆx‡• are called “site sensitivity indices”. Under the stationary hypothesis on SRFZ ˆx•, these indices
do not depend on sitex‡ and thus will simply be denoted bySU andSZ :

SU �
var�EˆY ˆx‡• SU •�

var�Y ˆx‡•�
; SZ �

var�EˆY ˆx‡• S Z̃ ˆx• � x >
 ••�
var�Y ˆx‡•�

(4.4)

First-order sensitivity indices of model inputs with respect to the block averageYv are called “block
sensitivity indices” and are denoted bySU ˆv• andSZ ˆv•:

SU ˆv• �
var�EˆYv SU •�

var�Yv �
; SZ ˆv• �

var�EˆYv S Z̃ ˆx• � x >
 ••�
var�Yv �

(4.5)

The ratioSZ ˆv•~SU ˆv• gives the relative contribution of model inputsZ ˆx• andU to the variance of
the output of interestYv . WhenSZ ˆv•~SU ˆv• is greater than1, the variance ofYv is mainly explained
by the variability of the 2D input �eldZ ˆx•; whenSZ ˆv•~SU ˆv• is less than1, it is the non spatial input
U that accounts for most of varˆYv • .

4.1.2.3 Illustrative example

The proposed formalism for spatial VB-GSA is illustrated by the following example. A modelY �
F ˆU ; Z • is used for the economic assessment of �ood risk over a given �oodplain
 . Z ˆx• is the map
of maximal water levels reached during a �ood event.Z ˆx• is assumed to be a Gaussian random �eld
with mean� � 50 and exponential covarianceCˆh• with Cˆ0• � 100, correlation lengtha � 5 and
nugget parameter� � 0:1. U is a set of three economic parametersU1, U2 andU3 that determine a
so-called “damage function” that links water levels to monetary costs.U1, U2 andU3 are assumed to be
independent random variables following Gaussian distributionsN ˆ1:5; 0:5•, N ˆ55; 5• andN ˆ10; 10•,
respectively. Random �eldZ ˆx• and random vectorU are supposed to be independent. Model output
Y ˆx• is the map of expected economic damages due to the �ood over the area; these damages depend on
U andZ ˆx• through the mappingF loc:

¦ x >
 ; Y ˆx• � F loc �U ; Z ˆx•� � U1 � Z ˆx• � U2 � e� 0:036�Z ˆ x • � U3 (4.6)

Stakeholders are interested in two outputs: the �ood damageYˆx‡• on a speci�c buildingx‡ >
 and the
total damageSvS� Yv over a districtv (here, a disc of radiusr � 50). Here, the expression of mappingF loc
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Table 4.1: Sensitivity analysis results overN tot � 4 096model runs with respect to the outputs of interestY ˆx ‡ • and
SvS� Yv . Mean values with� s.d. computed by bootstrapping (100 replicas).

Support Sitex ‡ Block v

Output of interest Y ˆ x ‡ • SvS� Yv

Mean of output 66:5 � 4:2 539� 103 � 3:6 � 103

Variance of output 1 393� 188 9� 109 � 0:2 � 109

Site indices: Block indices:

Sensitivity indices SU � 0:09 � 0:03 SU ˆ v• � 0:86 � 0:02

SZ � 0:89 � 0:02 SZ ˆ v• � 0:12 � 0:02

and the statistical characterisation of model inputs may be simple enough that exact values of sensitivity
indices could be derived, but this is usually not the case in real applications in which the model is very
complex. A usual alternative is to consider modelF as a “black box” and estimate sensivity indices
with Monte-Carlo simulation. We chose to use the estimators and the computational procedure described
by Lilburne and Tarantola (2009 §3.2), based on a quasi-random sampling design, usingN tot � 4 096
model runs (Table 4.1). It appears that on a given sitex‡ , the variability of the water level map explains
most of the variance ofY ˆx‡• : SZ � 0:89. On a larger spatial support, the variance of the total �ood
damageSvS�Yv is mainly due to the economic parametersU1, U2 andU3: SU ˆv• � 0:86. Thus, to improve
the accuracy of damage estimation for a speci�c building, the uncertainty should �rst be reduced on the
water level mapZ ˆx•; however, to improve the accuracy of total damage estimation over a large district
v, the modeller should focus on reducing the uncertainty of economic parametersU1, U2 andU3.

ä Another illustrative example: we also studied a second analytical test case to illustrate change
of support effect in VB-GSA. This test case was published in the proceedings of theMathematical
Geosciences at the Crossroads of Theory and Practice, IAMG 2011conference with the following title:
“Sensitivity analysis of spatial models using geostatistical simulation” (Saint-Geours et al. 2011b). It is
reproduced in Appendices.

4.1.3 Change of support effect on block sensitivity indices

In this section, we assess how the ranking of uncertain model inputs based on their block sensitivity
indices vary under a change of supportv of model output.

4.1.3.1 Relation between site sensitivity indices and block sensitivity indices

Site sensitivity indices and block sensitivity indices are related. LetEZ Yˆx• denote the conditional
expectation ofY ˆx• givenZ ˆx•, that is:

¦ x >
 ; EZ Yˆx• � E �Y ˆx• SZ ˆx•� (4.7)

EZ Yˆx• is the transform of the input SRFZ ˆx• via the function �F locˆz• � RRk F locˆu; z•pU ˆu•du
[Eqn. (4.2) on page 142] wherepU ˆ �• is the multivariate pdf of random vectorU . Under our as-



4.1 INFLUENCE OF SUPPORT Ì 145

sumptions concerningYˆx•, EZ Yˆx• is a second-order SRF. LetC‡ˆ �• denote its covariance func-
tion, V ‡ � C‡ˆ0• its variance andV ‡

v its block variance over supportv, that is, the variance of block
average1~SvSRv EZ Yˆx•dx. Block varianceV ‡

v is equal to the mean value ofC‡ˆh• when the two ex-
tremities of lag vectorh describe supportv, which we denote byC‡ˆv; v• (Journel and Huijbregts 1978
p.78) Note: see Appendix H.5 on page 232 for a proof . Using these notations, it follows from Eqn. (4.4)
to Eqn. (4.5) on page 143 that site sensitivity indices and block sensitivity indices are related by (see §4.1.6
on page 151 for a proof):

SZ ˆv•
SU ˆv•

�
SZ

SU
�
V ‡

v

V ‡
�

SZ

SU
�
C‡ˆv; v•
C‡ˆ0•

(4.8)

4.1.3.2 Change of support effect

Consider now that modelF was initially developed to study the spatial averageYv over the supportv,
and that after model upscaling the modeller is interested in the spatial averageYV over the supportV,
whereV Q v. We know from Krige's relation (Journel and Huijbregts 1978 p.67) that the block variance
V ‡

v decreases with increasing size of support:V ‡
V BV ‡

v . It follows from Eqn. (4.8) that:

SZ ˆV•
SU ˆV•

B
SZ ˆv•
SU ˆv•

(4.9)

The fraction of the variance of the aggregated model output explained by the input random �eldZ ˆx•—
compared to the fraction explained byU —is thus smaller on supportV than on supportv. More speci�-
cally, let us suppose that the covariance functionC‡ˆ �• of the random �eldEZ Yˆx• has a �nite effective
range and that the supportv is large with respect to this range. To a �rst approximation, the block variance
V ‡

v is of the formV ‡
v � V ‡A‡~SvS, whereA‡ is the so-called “integral range” of C‡ˆ �• and is de�ned by

A‡ � 1~V ‡
R C‡ˆh•dh (Chilès and Del�ner 1999 p.73). It follows from Eqn. (4.8) that:

SZ ˆv•
SU ˆv•

�
SvSc
SvS

with SvSc � A‡ �
SZ

SU
(4.10)

Eqn. (4.10) shows that the ratioSvSc~SvSdetermines the relative contribution of the model inputsZ ˆx• and
U to the output variance varˆYv • . The larger that this ratio is, the larger the part of the output variance
var̂ Yv • is that is explained by the input random �eldZ ˆx•. For a small ratio (i.e., when the area of the
supportv is large compared with the critical sizeSvSc), the variability ofZ ˆx• is mainly “local”, and the
spatial correlation ofZ ˆx• overv is weak. This local variability averages over the supportv when the
aggregated model outputYv is computed; hence, input 2D random �eldZ ˆx• explains a small fraction
of the output variance varˆYv • . However, for a greater ratio (i.e., when the area of the supportv is small
compared with the critical sizeSvSc), the spatial correlation ofZ ˆx• overv is strong. The averaging-out
effect is weaker; hence, model inputZ ˆx• explains a larger fraction of the output variance varˆYv • .

ä Extra comment: the ratioSZ ˆV•~SU ˆV• of block sensitivity indices on zoneV can also be written
as a function of i) the ratioSZ ˆv•~SU ˆv• on zonev, and ii) the dispersion varianceD 2ˆv SV• of v within
V for EZ Yˆx• random �eld:

SZ ˆV•
SU ˆV•

�
SZ ˆv•
SU ˆv•

�
SZ

SU
�
D 2ˆv SV•

V ‡
(4.11)

See Appendix H.6 on page 233 for details.
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4.1.3.3 Link between covariance function and block sensitivity indices

Critical sizeSvSc � A‡ � SZ
SU

depends on the covariance functionC‡ˆ �• of the random �eldEZ Yˆx•, which
is itself driven by the covariance functionCˆ �• of the input SRFZ ˆx•. Let us now assume thatZ ˆx• is
a Gaussian random �eld (GRF).EZ Yˆx• is then square-integrable with respect to the standard normal
density. It can be decomposed into an Hermitian expansion and its covariance functionC‡ˆ �• can be
written as (Chilès and Del�ner 1999 p.396-399; see §4.1.7 on page 152 for a proof):

C‡ˆh• �
ª

Q
j � 0

 2
j � �Cˆh•� j (4.12)

For most of the usual transition covariance functions (e.g., spherical, exponential and Gaussian models),
the covarianceCˆh• is a monotically increasing function of correlation lengtha. In this case, it follows
from Eqn. (4.12) that the integral rangeA‡ � 1~V ‡

R C‡ˆh•dh also increases with correlation lengtha.
An increase in correlation lengtha thus leads to an increase in the critical sizeSvSc, and the ratio of block
sensitivity indicesSZ ˆv• andSU ˆv• satis�es [Eqn. (4.10) on the previous page]:

@
@a

�
SZ ˆv•
SU ˆv•

	 C0 (4.13)

The relative contribution of the uncertain model inputZ ˆx• to the variance of the output of interestYv

increases when the correlation length ofZ ˆx• increases. Indeed, when correlation lengtha increases,
the averaging-out effect that occurs when the model output is aggregated over spatial supportv weakens;
thus, the fraction of the output variance varˆYv • which is explained by the input random �eldZ ˆx•
increases.

Nugget parameter's impact on the block sensitivity indices can be interpreted in the same manner. The
nugget parameter� controls the relative part of “pure noise” in the input random �eldZ ˆx• [Eqn. (4.1)
on page 142]. The smaller� is, the weaker the averaging-out effect will be when the block averageYv is
computed over the supportv, and the larger the part of output variance varˆYv • will be that is explained
by Z ˆx•. The critical sizeSvSc is thus a decreasing function of nugget parameter� , and the ratio of block
sensitivity indicesSZ ˆv• andSU ˆv• satis�es [Eqn. (4.1) on page 142, Eqn. (4.8), Eqn. (4.12)]:

@
@�

�
SZ ˆv•
SU ˆv•

	 B0 (4.14)

ä Extra comment (limits): Based on Eqn. (4.8) on the previous page, we can also write the ratio of
block sensitivity indicesSZ ˆv• andSU ˆv• for two limit situations. First, when the covariance function
Cˆ �• of random �eldZ ˆx• is constant over
 and non-null, then the ratio satis�es:

SZ ˆv•
SU ˆv•

�
SZ

SU
(4.15)

Next, whenZ ˆx• is a random �eld without spatial auto-correlation, that is, when its covariance function
Cˆh• is null except forh � 0, then the ratio of block sensitivity indices veri�es:

SZ ˆv•
SU ˆv•

� 0 (4.16)

See Appendix H.9 on page 234 and H.10 on page 234 for proofs and details.
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4.1.3.4 Illustrative example

To illustrate the change of support effects on sensitivity analysis results, we performed spatial VB-GSA
on our numerical example in the following settings: varying disc-shaped supportv of increasing size
(Figure 4.2 on the following page); varying correlation length froma � 1 to a � 10 (Figure 4.3 on
page 149); varying nugget parameter from� � 0 to � � 0:9 (Figure 4.4 on page 149). For each setting,
we computed estimates of the output variance varˆYv • , the block sensitivity indicesSU ˆv•, SZ ˆv• and
the ratioSZ ˆv•~SU ˆv• over N tot � 4 096 model runs. Mean values with a95% con�dence interval
were then computed for each estimate using bootstrapping (100 replicas). In accordance with Eqn. (4.9)
to Eqn. (4.14) on pages 145–146, it appears that the block sensitivity indexSZ ˆv• (i) decreases when the
supportv increases (Figure 4.2 (b)), (ii) increases with the correlation lengtha (Figure 4.3 (b)), and (iii)
decreases with the nugget parameter� (Figure 4.4 (b)). The opposite trends are observed for sensitivity
indexSU ˆv•. The change of support effect is clearly highlighted in Figure 4.2 (b): the contribution of the
economic parametersU1, U2 andU3 to the variance of total �ood damageSvS�Yv exceeds the contribution
of the water level mapZ ˆx• when the radiusr of v is greater thanr c � 18; for radiusr @r c, the variance
of total �ood damage over the supportv is mainly explained by the variability of the water levelsZ ˆx•.
Finally, Figure 4.2 on the next page(c) shows that the ratioSZ ˆv•~SU ˆv• is proportional to1~SvSwhen
the supportv is large enough. The theoretical curveSZ ˆv•~SU ˆv• � SvSc~SvS[Eqn. (4.10) on page 145]
was �tted (least squares -R2 � 0:99) on data points (forr C20 only), yielding an estimate of the critical
sizeSvSc � 1; 068. All calculations and �gures were realized in R (R Development Core Team 2009):
random realisations ofZ ˆx• were generated with theGaussRF() function from theRandomFields
package (Schlather 2001), while computation of sensitivity indices was based on a modi�ed version of
thesobol() function from thesensitivity package.

ä Another illustrative example: these results are corroborated by the outcomes of the second
analytical test case we investigated (published in the proceedings of theIAMG 2011conference). In
addition, we also observed in that test case that the block sensitivity indexSZ ˆv• increased with the
varianceCˆ0• of Gaussian Random FieldZ ˆx•. Indeed, in the expression of the critical sizeSvSc
[Eqn. (4.10) on page 145], the integral rangeA‡ does not depend on the varianceCˆ0•, but the site
sensitivity indexSZ does. See Appendices for details.

4.1.4 Discussion

Our �rst goal was to provide a formalism that extends the VB-GSA approach to spatial models when
the modeller is mainly interested in the linear average or the sum of a point-based model outputY ˆx•
over some spatial unitv. Our approach is strongly motivated by various prior publications. Other authors
had already computed site sensitivity indices (Marrel et al. 2011; Pettit and Wilson 2010) and block
sensitivity indices (Lilburne and Tarantola 2009), but did so without naming them or exploring their
analytical properties or their relationship. Our work is an attempt to do so. Eqn. (4.8) on page 145
provides an exact relation between the site and block sensitivity indices, it may prove useful in the case
of a model with a simple enough analytical expression.

Our research also sought to account for the change of support effects in the propagation of uncertainty
through spatial models, within a VB-GSA framework. We proved that the fraction of the variance of
the model output that is explained by a spatially distributed model inputZ ˆx• decreases under model
upscaling; when the supportv is large enough, the ratio of the block sensitivity index of spatially dis-
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Figure 4.2: VB-GSA results depending on the size of disc-shaped support� (with radiusr and areaS� S� �r 2), for
a � 5, � � 0:1: (a) total variance ofYv , (b) block sensitivity indicesSU ˆv• (solid line) andSZ ˆv• (dashed line),
(c) ratio SZ ˆv•~SU ˆv• with �tted curve SZ ˆv•~SU ˆv• � SvSc~SvS(dashed line). Error bars show 95 % con�dence
interval computed by bootstrapping (100 replicas)
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Figure 4.3: VB-GSA results depending on correlation lengtha, for � � 0:1 and a disc-shaped supportv of radius
r � 50: (a) total variance ofYv , (b) block sensitivity indicesSU ˆv• (solid line) andSZ ˆv• (dashed line). Error bars
show 95 % con�dence interval computed by bootstrapping (100 replicas)

Figure 4.4: VB-GSA results depending on covariance nugget parameter� , for a � 5 and a disc-shaped supportv
of radiusr � 50: (a) total variance ofYv , (b) block sensitivity indicesSU ˆv• (solid line) andSZ ˆv• (dashed line).
Error bars show 95 % con�dence interval computed by bootstrapping (100 replicas)
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tributed input to the block sensitivity index of non-spatial inputs is proportional toSvSc~SvS. The critical
sizeSvSc depends on the covariance function of the input SRFZ ˆx•; it usually increases with an increase
of the correlation lengtha or a decrease of the nugget parameter� . These �ndings are a translation into
VB-GSA formalism of the averaging-out effect clearly exhibited by Journel and Huijbregts (1978) in
the regularization theory. Our contribution is to discuss this issue from the point of view of VB-GSA
practitioners. Formalizing the effect of a change of support on sensitivity analysis results may help mod-
ellers when they consider model upscaling; it will orientate future data gathering by identifying model
inputs that will explain the largest fraction of the variance of the model output over a new spatial support.
Our contribution also promotes an increased awareness of the issue of sharing out ef�ciently, among the
various inputs used by a complex computer code, the cost of collecting �eld data. At some point of the
model building process, the modeller will usually aim at reducing the variance of the output below a given
threshold, that will depend on the model use. To do so, the modeller may have to improve his knowledge
on the “real” value of some of the model inputs, usually by collecting extra data. In this case, gathering
extra �eld data on inputs maps that have small sensitivity indices (SZ ˆv• @0:1) would be unef�cient, as
it would be costly but could not reduce the variance of the model output by a large fraction. Saint-Geours
et al. (2011a) discuss this issue on a �ood risk assessment case study.

It should be noted that our approach is based on conditions that may not be met in some practical cases.
First, we considered a modelF with a single spatially distributed inputZ ˆx•. In real applications, mod-
ellers may have to deal with several spatial inputsZ1ˆx•; : : : ; Zpˆx•, with different covariance functions
Ci ˆ �• , correlation lengthsai and nugget parameters� i . In this case, it can be shown that Eqn. (4.8) on
page 145 still holds separately for each spatial inputZ i ˆx•. However, no conclusion can be drawn “a
priori ” regarding how a change of support affects the relative ranking of two spatial inputsZ i ˆx• and
Z j ˆx•; the ratio of their block sensitivity indicesSZ i ˆv•~SZ j ˆv• will depend on the ratio of block vari-
ancesVv;i ~Vv;j . Second, some environmental models are not point-based and involve spatial interactions
(e.g., erosion and groundwater �ow models). In this case, it still may be possible to build a point-based
surrogate model as a coarse approximation of the original model; if not, then the change of support prop-
erties discussed in §4.1.3 may not hold. Third, we assumed the input random �eldZ ˆx• to be stationary;
if it is not, site sensitivity indices depend on sitex‡ [Eqn. (4.4) on page 143]. It is then possible to com-
pute maps of these indices (Marrel et al. 2011; Pettit and Wilson 2010) to discuss the spatial variability
of model inputs sensitivities.

Finally, we focused on the case in which the modeller's interest is in the spatial linear average or the sum
of model outputY ˆx• over the supportv. As discussed by Lilburne and Tarantola (2009), other outputs
of interest may be considered, such as the maximum value ofY ˆx• over v (e.g., maximal pollutant
concentration over a zone), some quantile ofY ˆx• overv (Heuvelink et al. 2010b), or the percentage of
v for whichYˆx• exceeds a certain threshold. To our knowledge, no study has investigated the properties
of sensitivity indices computed with respect to such outputs of interest.

4.1.5 Conclusion

This paper provides a formalism to apply variance-based global sensitivity analysis to spatial models
when the modeller's interest is in the average or the sum of the model outputY ˆx• over a given spatial
unit v. Site sensitivity indices and block sensitivity indices allow us to discuss how a change of support
modi�es the relative contribution of uncertain model inputs to the variance of the output of interest. We
demonstrate an analytical relationship between these two types of sensitivity indices. Our results show
that the block sensitivity index of an input random �eldZ ˆx• increases with the ratioSvSc~SvS, whereSvSis
the area of the spatial supportv and the critical sizeSvSc depends on the covariance function ofZ ˆx•. Our
formalization is made with a view toward promoting the use of sensitivity analysis in model-based spatial
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decision support systems. Nevertheless, further research is needed to explore the case of non-point-based
models and extend our study to outputs of interest other than the average value of model output over
supportv.

4.1.6 Appendix A: Proof of the relation between site sensitivity indices and block
sensitivity indices

ä Note to the reader: This subsection was published in (Saint-Geours et al. 2012) as an appendix.

As mentioned in §4.1.2.1 on page 141, we assume that the �rst two moments ofY ˆx• exist. The ratio of
block sensitivity indices gives [Eqn. (4.5) on page 143]:

SZ ˆv•
SU ˆv•

�
varˆE �Yv S Z̃ ˆx• � x >
 •�•

varˆE �Yv SU �•
(4.17)

The conditional expectation of block averageYv givenZ ˆx• gives:

E �Yv SZ � � E �‹ 1~SvSS
v

Yˆx•dx• S Z̃ ˆx• � x >
 •� (de�nition of Yv )

� 1~SvSS
v

E �Y ˆx• SZ ˆx•� dx (for a point-based model)

� 1~SvSS
v

EZ Yˆx•dx (de�nition of EZ Yˆx•)

(4.18)

Thus we have var̂E �Yv SZ �• � var‰1~SvSRv EZ Yˆx•dxŽ � V ‡
v (de�nition of V ‡

v ). Moreover, the con-
ditional expectation of block averageYv given inputU gives:

E �Yv SU � � E �‹ 1~SvSS
v

Yˆx• dx• SU � (de�nition of Yv )

� 1~SvSS
v

E �Y ˆx• SU � dx (Fubini's theorem)
(4.19)

E �Y ˆx• SU � does not depend on sitex under the stationarity of SRFZ ˆx•; thus, we have in particular
E �Yv SU � � E �Y ˆx‡• SU � , and var̂ E �Yv SU �• � varˆE �Y ˆx‡• SU �• . Combining these expressions
with Eqn. (4.17) yields:

SZ ˆv•
SU ˆv•

�
V ‡

v

var̂ E �Y ˆx‡• SU �•
(4.20)

The ratio of site sensitivity indices gives [Eqn. (4.4) on page 143]:

:
SZ

SU
�

var̂ E �Y ˆx‡• S Z̃ ˆx• � x >
 •�•
var̂ E �Y ˆx‡• SU �•

(4.21)

We notice that for point-based models var�EˆY ˆx‡• S Z̃ ˆx• � x >
 •� � var�EZ Yˆx‡•� � V ‡ (de�ni-
tion of EZ Yˆx• [Eqn. (4.7) on page 144)]). Finally, it follows from Eqn. (4.20) and Eqn. (4.21) that:

SZ ˆv•
SU ˆv•

�
SZ

SU
�
V ‡

v

V ‡
(4.22)
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4.1.7 Appendix B: Hermitian expansion of random �eld EZ Yˆx•

ä Note to the reader: This subsection was published in (Saint-Geours et al. 2012) as an appendix.

The random �eldEZ Yˆx• can be written [Eqn. (4.2) on page 142, Eqn. (4.7) on page 144] as a transfor-
mation of the Gaussian random �eldZ ˆx• through the function�F loc � z ( RRk F locˆu; z• � pU ˆu• du:

EZ Y � �F loc ˆZ •

wherepU ˆ �• is the multivariate pdf of random vectorU . Under the hypothesis that the �rst two moments
of Y ˆx• exist, random �eldEZ Yˆx• has �nite expected value and �nite variance. Thus,�F loc belongs to
the Hilbert spaceL 2ˆN • of functionsF loc � R � R, which are square-integrable with respect to Gaussian
densitynˆ :• . Hence,�F loc can be expanded on the sequence of Hermite polynomialsˆ � j • j >N, which forms
an orthonormal basis ofL 2ˆN • (Chilès and Del�ner 1999 p.399):

�F loc �
ª

Q
j � 0

� j � � j with � j ˆz• �
1

º
j !

�
1

nˆz•
�

@j

@zj
nˆz•

where coef�cients� j are given by:� j � RR � j ˆz• �F locˆz•nˆz• dz.

ä Note to the reader: See Appendix §H on page 230, properties H.2 and H.3 for a more detailed proof.

It follows thatEZ Yˆx• can be written as an in�nite expansion of polynomials ofZ ˆx•:

¦ x >
 ; EZ Yˆx• �
ª

Q
j � 0

� j � � j � Z ˆx•�

Its covariance then gives (Chilès and Del�ner 1999 p.396, Eqn.(6.23) and p.399, Eqn.(6.25)):

covˆEZ Yˆx•; EZ Yˆx � h•• �
ª

Q
j � 0

� 2
j � �

Cˆh•
Cˆ0•

	
j

�
ª

Q
j � 0

 2
j � �Cˆh•� j (4.23)

whereCˆh• is the covariance function of GRFZ ˆx• and j � � j � Cˆ0• � j ~2.

ä Note to the reader: See Appendix H.4 on page 231 for a more detailed proof.
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4.2 In�uence of spacing

4.2.1 Introduction

In this section, we investigate how the results of VB-GSA of a spatial model may be in�uenced by another
component of the “scale triplet”: the “spacing”. As discussed in the introduction of this chapter, we limit
our study to the case of point-based and spatially additive models only.

Let consider a modelF , in which the quantity of interest is the aggregated value of model outputY ˆx•
over the entire spatial domain
 . In many applications, this aggregated outputY
 is approximated by a
weighted sum of the output valuesYˆx i • computed at a �nite number of pointsx i > 
 . This approx-
imation may result in errors when estimating sensitivity indices of the model inputs with respect to the
aggregated output of interest. The caracteristic distance between the data pointsx i is related to the notion
of “spacing” as presented in Chapter 1 (§1.1.3 on page 20). Intuitively, we understand that the approx-
imation error on sensitivity indices will be smaller when the number of data pointsx i is large (small
spacing), and on the contrary will be larger when there are few data pointsx i (large spacing) (Skøien and
Blöschl 2006).

The purpose of this section is to give an expression of these approximation errors. We investigate this
issue using the same analytical test case as the one described in the previous section §4.1, in which
the spatially distributed inputZ ˆx• is modelled as a stationary random �eld. Besides, we consider the
limitative case in which data pointsx i are uniformly positioned on a regular square grid.

4.2.2 Model description

Let consider the same point-based and spatially additive modelF that was already presented in the pre-
vious section §4.1.2.1 on page 141:

¦ x >
 ; Y ˆx• � F loc �U ; Z ˆx•� (4.24)

in whichU � ˆU1; : : : ; Uk • is a random vector,̃Z ˆx• � x >
 • is a second-order stationary random �eld
with covariance functionCˆ �•, andF loc is a mapping fromRk � R to R.

In addition, we will assume that
 >R2 is a �xed square-shaped domain and denote byS
 Sits surface area.
We also assume that
 is covered by a set of pointsx i , uniformly positioned on the nodes of a regular
square grid as shown in Figure 4.5 on the following page. The distance between two neighbouring points
x i andx j is denoted bys and refered to as the “spacing” of the set of points, according to the de�nitions
discussed in §1.1.3 on page 20. We denote byG the total number of pointsx i : it is equal toG � S
 S~s2.

Finally, we will consider as an output of interest the average valueY
 of the output random �eldY ˆx•
over the entire spatial domain
 :

Y
 �
1

S
 SS
x >


Yˆx• dx (4.25)
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Figure 4.5: Spatial domain
 , regularly positionned pointsx i , spacings (total number of points:G � S
 S~s2)

4.2.3 Approximation on a grid of points

The aggregated output of interestY
 can be approximated by the empirical mean of valuesYˆx i • at each
point x i of the grid. We denote by~Y
 andEZ ~Y
 the random variables de�ned by:

~Y
 �
1
G

G

Q
i � 1

Yˆx i • and EZ ~Y
 �
1
G

G

Q
i � 1

EZ Yˆx i • (4.26)

Let also denote by~V ‡

 the variance ofEZ ~Y
 : ~V ‡


 can be used as an approximation of block varianceV ‡



of random �eldEZ Yˆx• (see §4.1.3.1 on page 144 for a de�nition ofV ‡

 ). To obtain an approximation

of block sensitivity indicesSU ˆ 
 • andSZ ˆ 
 • de�ned with respect to the output of interestY
 , we can
calculate the �rst-order sensitivity indices of model inputsU andZ with respect to the approximated
output of interest~Y
 : let denote by~SU ˆ 
 • and ~SZ ˆ 
 • these indices. We can show that the ratio of these
proxies for block sensitivity indices writes (see Appendix §J on page 242 for a proof):

~SZ ˆ 
 •
~SU ˆ 
 •

�
SZ

SU
�

~V ‡



V ‡
(4.27)

in which SZ and SU are site sensitivity indices andV ‡ is the variance ofEZ Yˆx•. This relation is
similar to Eqn. (4.8) on page 145, except thatV ‡


 and block sensitivity indicesSZ ˆ 
 • andSU ˆ 
 • have
been replaced by their gridded approximation.

4.2.4 Expression of the approximation error and convergence

We want to study the difference between: i) the true valuesSU ˆ 
 • andSZ ˆ 
 • of block sensitivity indices
de�ned with respect to the aggregated output of interestY
 , and ii) the approximated values~SU ˆ 
 • and
~SZ ˆ 
 • de�ned with respect to the proxi output~Y
 . Using Eqn. (4.27) and the expression of the ratio of
sensitivity indicesSU ˆ 
 • andSU ˆ 
 • given in the previous section [Eqn. (4.8) on page 145], we obtain
an expression of the approximation error:

SZ ˆ 
 •
SU ˆ 
 •

�
~SZ ˆ 
 •
~SU ˆ 
 •

�
SZ

SU
�
V ‡


 � ~V ‡



V ‡
(4.28)

Let denote by� the error made when approximating block varianceV ‡

 with ~V ‡


 :

� � V ‡

 � ~V ‡


 (4.29)
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The error� depends on the spacings of the set of pointx i . It can be expressed as a function of the
total number of pointsG � S
 S~s2 and of the covariance structureC‡ˆ �• of random �eld EZ Yˆx• (see
Appendix J.2 on page 243 for a proof):

� � �
C‡;� ˆ0• � C‡ˆ0•

G
	 �

<@@@>
C‡ˆ 
 ; 
 • �

1
G2

G

Q
i;j � 1

C‡;� ˆx i � x j •
=AAA?

(4.30)

whereC‡;� ˆ �• is a modi�ed version of the covariance functionC‡ˆ �• of random �eldEZ Yˆx•, continu-
ous at the originh � 0:

C‡;� ˆh• �
¢̈
¨
¦
¨̈
¤

C‡ˆh• ¦ h A0

lim
h� 0�

C‡ˆh• if h � 0
(4.31)

The �rst part of the approximation error� is known as the “zero-effect” described by Journel and Hui-
jbregts (1978 p.96). For most usual spatial covariance structures of random �elds, the inequalityC‡ˆ0• C
lim

h� 0�
C‡ˆh• holds (nugget effect). Hence, the �rst part of the approximation error� is negative and the

“zero-effect” results in an over-estimation of block varianceV ‡

 . The second part of� is the error made

when approximating the double integralC‡ˆ 
 ; 
 • � 1~S
 S2 T
x ;x œ>v2

C‡ˆx � xœ• dx dxœwith a double Rie-

mann sum over the set of pointsx i . Generally speaking, it is not possible to know whether� is positive
or negative, that is, if block varianceV ‡


 is under-estimated or over-estimated by proxy~V ‡

 .

Nevertheless, from Eqn. (4.28) on the facing page and the expression of error� [Eqn. (4.30)], we can
show that the ratio of proxies of sensitivity indices~SZ ˆ 
 •~~SU ˆ 
 • converges toward the ratio of exact
sensitivity indices when the number of pointsx i grows, that is, when the spacings of the set of points
tends to zero (see Appendix J.3 on page 244 for a proof):

~SZ ˆ 
 •
~SU ˆ 
 •

�
s� 0

SZ ˆ 
 •
SU ˆ 
 •

� O ˆs• (4.32)

In the particular case in which there is no spatial correlation in the spatially distributed inputZ ˆx•, that
is, if the covariance functionC‡ˆh• is null except forh � 0, then the approximation error� is equal to
� � � s2 � C‡ˆ0•~S
 S.

4.2.5 Conclusion

As mentioned in the introduction, this study is only valid for the point-based and spatially additive model
F described in §4.1.2.1 on page 141, in which the spatially distributed inputZ ˆx• is modelled as a
stationary random �eld. We investigated the case in which the aggregated output of interestY
 is approx-
imated over a set of pointsx i regularly positionned on a square grid. This results in an approximation
error on block sensitivity indicesSU ˆ 
 • andSZ ˆ 
 • . This error converges to0 when the number of
points grows. The speed of convergence isOˆs• wheres is the “spacing” of the set of pointsx i , that is,
the distance between two neighbouring pointsx i andx j on the grid.
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4.3 Application to the NOE code on the Orb Delta case study

4.3.1 Introduction

In this section, we offer to illustrate on the NOE modelling framework on the Orb Delta case study some
of the scale issues related to VB-GSA of spatially additive and point-based models. We will focus on the
in�uence of “support”, which we theoretically described in §4.1. As mentioned in Chapter 2, the NOE
code is a point-based and spatially additive model with two spatially distributed inputs: the assets map
and the set of hazard maps (water depths). Our purpose in this section is to answer the following question
on the Orb Delta case study:how do the results of the uncertainty and sensitivity analysis depend on the
spatial supportv over which the NOE model outputs (damage estimates, AAD and� AAD indicators) are
aggregated?

This study is a supplement to the �rst sensitivity analysis of the NOE modelling framework on the Orb
Delta presented in Chapter 3 (§3.3 on page 111). This extra study only differs from the previous one
by the set of outputs of interest, which is detailed in the next subsection §4.3.2: sensitivity indices of
the NOE model inputs are now computed with respect to the sum of the� AAD indicator over different
spatial supportsv of increasing sizes. Besides, we also build maps of� AAD uncertainty as well as maps
of sensitivity indices at different cell sizes. The results (§4.3.3) show that i) uncertainty on the� AAD
indicator is not spatially homogeneous; ii) the maps of sensitivity indices give a new insight on the spatial
distribution of the in�uence of each model input on the variance of model output; and iii) the sensitivity
indices of spatially distributed inputs (assets map, hazard maps) decrease with the size of supportv. We
discuss the main outcomes of this case study and its limits in §4.3.4.

4.3.2 Methods

4.3.2.1 Overview

Our goal is to investigate the sensitivity of the NOE model inputs with respect to the aggregated value of
the NOE output indicators over various spatial supportsv. For the sake of clarity, we limit our study to
the � AAD indicator (average annual avoided damages, §2.2.5 on page 44). To perform this sensitivity
analysis, we follow the same general procedure as the one used in the �rst analysis of the NOE code
presented in §3.3 on page 111. We consider the same sources of uncertainty and their modelling remains
unchanged (§3.3.3.1 on page 117), except for the uncertain costs of the �ood management plan, which
are ignored here because they are not used in the computation of the� AAD indicator. The pseudo
Monte Carlo procedure for the estimation of sensitivity indices is also the same, with a total sample size
N tot � 28 672(§3.3.3.2 on page 124). Sensitivity indices of spatially distributed inputs (the hazard maps
and the assets map) are computed following the “map labelling” method (§3.1.2.4 on page 84).

The only difference with the �rst analysis presented in Chapter 3 is the set of outputs of interest we
consider: we will use two different settings in our analysis, which will be refered to as “setting A” and
“setting B”. Both settings A and B aim at answering the same question, in a different way:how does the
uncertainty on the� AAD indicator, and the associated sensitivity indices, depend on the spatial support
v over which it is aggregated?

Setting A is meant only to beillustrative: we consider three individual spatial supports randomly se-
lected, of increasing surface area, and show how uncertainty on the� AAD indicator and related
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sensitivity indices vary from one support to another. This setting A is just a simpli�ed example that
aim at making our point more understandable;

Setting B. The goal of Setting B is to carry out a more rigorous analysis. The output of interest we
consider is the map of the� AAD indicator, �rst transformed into a number of grids (raster data)
of increasing cell sizes (i.e., of increasing spatial support). For each cell size, we compute maps
of � AAD uncertainty as well as maps of associated sensitivity indices. We then study how these
maps vary for increasing cell size (i.e., for increasing spatial support).

In the following subsections §4.3.2.2 and §4.3.2.3 we give a detailed description of settings A and B.

4.3.2.2 Setting A:� AAD indicator on individual supports

In a �rst setting, we consider three individual spatial supportsv1, v2 andv3 of increasing surface area
(Figure 4.6 on the next page). These three supports were selected at random, and their study is only meant
to be illustrative. By way of example, we chose to consider spatial supports that are related to real-world
entities: �rst supportv1 is a single house located on the western bank of the Orb Delta (Sv1SB 1 ha),
second supportv2 is the administrative district of Sauvian (Sv2S� 13 sq. km), and third supportv3 is the
entire �oodplain (Sv3S � 63 sq. km). For each spatial support, the output of interest is the sum of the
� AAD indicator over this support, denoted by� AAD v1 , � AAD v2 and� AAD v3 , respectively. These
“ local” indicators can be used to assess whether a given areav (a house, a district, etc.) will bene�t or
suffer from the �ood control measures on the Orb Delta: if� AAD v is positive (resp. negative), the �ood
risk management plan under study will result in a decrease (resp. increase) of the average annual damages
on the investigated supportv. The nominal values of the� AAD v indicator—produced using the nominal
values of the NOE model inputs—aggregated over spatial supportsv1, v2 andv3 are as follows:

� AAD v1 1.725 ke /year
� AAD v2 221.3 ke /year
� AAD v3 6 523 ke /year

Total-order sensitivity indices are then computed with respect to each of these three outputs of in-
terest � AAD v1 , � AAD v2 and � AAD v3 . They will be denoted bySTi ˆhouse•, STi ˆdistrict• and
STi ˆ �oodplain•, respectively.a

4.3.2.3 Setting B: raster maps of the� AAD indicator

Raster maps of the� AAD indicator In a second setting, the output of interest we consider is the map
of the� AAD indicator. This map is �rst transformed into a number of grids (raster maps) of increasing
cell sizes: as previously explained in §2.3.2.4 on page 65, an� AAD grid is obtained by computing at
each cellci the sum of the Average Annual Avoided Damages over all assets (or parts of assets) contained
in the cell.b We consider four different grids with cells of200m by 200m, 400m by 400m, 800m by
800m and1 600m by 1 600m, with corresponding cell sizesScS� 0:04, 0:16, 0:64 and 2:56 sq. km,
respectively. Figure 4.7 on page 159 shows two� AAD raster maps produced using the nominal values
of the NOE model inputs, for cell sizeScS� 0:04sq. km andScS� 2:56sq. km, respectively.

aWe chose to calculate total-order rather than �rst-order sensitivity indices because their con�dence bounds computed by boot-
strap proved to be narrower.

bIf an asset has a large surface area and overlaps many cells of the grid, then the value of the� AAD indicator over this asset is
shared out among the cells in proportion to the overlaped areas.
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Maps of sensitivity indices In this second setting, maps of sensitivity indices are then produced by
computing total-order sensitivity indices with respect to the value of the� AAD indicator at each cell of
the various� AAD raster maps considered. More precisely, for each cell sizeScS� 0:04, 0:16, 0:64, and
2:56sq. km, and for thei th model input, we use the following procedure:

1. at each cellcj of the � AAD grid of cell size ScS, we compute the total-order sensitivity index
STi; ScŜ cj • of thei th model input with respect to the sum of the� AAD indicator over this cell;

2. the set of sensitivity indices™STi; ScŜ cj •ž over all the cellscj builds a grid (raster map) that we will
denote byS i; ScSand call “map of sensitivity indices of thei th model input of cell sizeScS”;

Following this procedure, we obtain4 � 4 � 16maps of sensitivity indicesS i; ScS, one for each of the four
model inputs and each cell sizeScS� 0:04, 0:16, 0:64, and2:56sq. km.

Average values of the maps of sensitivity indices In order to compare the maps of sensitivity indices
obtained for various cell sizesScS, we need to summarize these maps by a single scalar measure. Hence,
for each cell sizeScS� 0:04, 0:16, 0:64, and2:56 sq. km., and for thei th model input, we calculate the
average value of the map of sensitivity indicesS i; ScS: we denote this average value byST i; ScS. If GScS

denotes the number of cells in the raster map of cell sizeScS, ST i; ScSis de�ned by:

ST i; ScS�
1

GScS

GSc S

Q
j � 1

STi; ScŜ cj • (4.33)

The average indexST i; ScSis a scalar measure that summarises the average contribution of thei th model
input to the variance of the� AAD indicator aggregated over small cellscj of areaScS. It is by no means
a measure of importance of thei th model input with respect to the� AAD indicator aggregated over the
entire �oodplain. We will further explain this point in the discussion.

4.3.3 Results

4.3.3.1 Setting A:� AAD indicator on individual supports

Uncertainty analysisTable 4.2 on the facing page summarises the outcome of the uncertainty analysis in
setting A: it gives descriptive statistics of the� AAD v indicator for each of the three spatial supportsv1

to v3 (single house, district, �oodplain), overN tot � 28 672model runs. The mean value and the standard
deviation of the� AAD v indicator naturally increase with the surface area of the supportv over which
it is aggregated (house, district or total �oodplain), ranging from 2.060� 1.21 ke /year for supportv1 to
5 459� 1 110 ke /year for supportv3. However, if we consider a dimensionless measure of variability
such as the coef�cient of variation, we observe a different behaviour: the coef�cient of variation of the
� AAD v indicator decreases with the surface area of the supportv.c This �nding corroborates the idea
that some spatial “averaging-out effects” result in a reduction of the relative uncertainty when the� AAD
indicator is aggregated over a large surface area.

cWe would get an identical result if we looked at the coef�cients of variations computed with respect to the aggregated value
� AADv normalized by the surface areaSvS.
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Table 4.2: Descriptive statistics overN tot � 28 672simulations; setting A: mean, s.d. and coef�cient of variation of
the aggregated value of� AAD on spatial supportsv1 to v3 ; setting B: average values (over non-zero cells) of mean,
s.d. and coef�cient of variation of� AAD at each cell

Setting A
support area [sq. km] mean [ke /year] s.d. [ke /year] c.var. [%]
v1 (house) 0.03 2.060 1.210 58.74
v2 (district) 13 183.7 47.62 25.92
v3 (�oodplain) 63 5 459 1 110 20.33

Setting B
support cell area average mean average s.d. average c.var.

[sq. km] [ke /year] [ke /year] [%]
200 m cells (1 463‡) 0.04 3.731 1.380 385
400 m cells (416‡) 0.16 13.12 4.105 247
800 m cells (128‡) 0.64 42.65 11.72 96
1 600 m cells (43‡) 2.56 127.0 32.26 51

‡ number of non-zero cells

Figure 4.8: Total-order sensitivity indices with respect to the sum of the� AAD indicator over three spatial supports:
house (left), district (center), and �oodplain (right)

Sensitivity analysisFigure 4.8 displays the total-order sensitivity indices computed for each uncertain
model input with respect to the aggregated value of the� AAD indicator over spatial supportsv1 (house),
v2 (district) andv3 (�oodplain). It clearly suggests that the ranking of uncertainty sources depends on the
surface area of the spatial supportv. The variance of� AAD v1 (smallest support) appears to be mainly
explained by the uncertainty on the two spatially distributed inputs, that is, the assets map and the hazard
maps (sensitivity indices: 0.8 and 0.65, respectively). On the contrary, the non spatially distributed inputs
(depth-damage curves and �ood return intervals) prove to be the most important sources of uncertainty
when computing the� AAD v3 indicator over the total �oodplain (sensitivity indices:0:29 and 0:33,
respectively). These results are in line with our theoretical developments of §4.1 and offer clear evidence
of the “change of support” effect on variance-based sensitivity indices: the sensitivity indices of spatially
distributed inputs decrease with the size of the supportv while the sensitivity indices of non-spatially
distributed inputs symmetrically increase with the size ofv.
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4.3.3.2 Setting B: raster maps of the� AAD indicator

Uncertainty analysisFigure 4.9 on the facing page shows a spatially explicit representation of the un-
certainty on the� AAD raster map over theN tot � 28 672model runs—cell sizeScS� 0:04 sq. km is
taken as an example. A �rst map displaying the maximum values of� AAD for each cell over all model
runs (Figure 4.9a) is compared to the map of minimum values (Figure 4.9b). It appears that for a large
number of cells, the minimum and maximum values of� AAD have opposite signs, which we interpret
to mean that, due to the input uncertainties in the NOE code, it is impossible to assess with certainty
whether these areas will bene�t or suffer from the implementation of the �ood-control measures on the
Orb Delta.

By comparing these maps with that of land use on the study site (Figure 2.19 on page 64), it can be noted
that the cells with uncertain sign are mostly covered with agricultural land and show relatively small
values of positive or negative� AAD. On the contrary, for cells that include urban areas, campgrounds and
other economic activities, the� AAD indicator proves to keep a constant sign over all model runs, with
larger positive or negative values.a Hence, in spite of the numerous uncertainties that were considered
in the analysis, we can conclude that the �ood risk management plan will almost certainly result in
a reduction of the average annual damages on urban areas, and almost certainly result in an increase
of annual damages on campgrounds. In addition, cells that include urban areas or campgrounds show
large standard deviations and low coef�cients of variation of the� AAD indicator (Figure 4.9c andd),
while cells only covered with agricultural land have small standard deviations but larger coef�cients of
variation.a

Finally, Table 4.2 on the preceding page gives for each cell sizeScS� 0:04, 0:16, 0:64 and2:56 sq. km
the average value (over the cellscj ) of the mean, standard deviation and coef�cient of variation of the
� AAD indicator.d It indicates that the mean and standard deviation of the� AAD indicator increase with
the surface areaScSof the cells, while its coef�cient of variation decreases. These results are consistent
with the ones obtained in Setting A (§4.3.3.1 on page 160).

Sensitivity analysisFigure 4.11 on page 165 displays the maps of sensitivity indicesS i; ScS for each
model input and for both the smallest cell sizeScS� 0:04 sq. km and the largest cell sizeScS� 2:56 sq.
km. Spatial distribution of sensitivity indices proves to be heterogeneous. By comparing the �rst maps
of sensitivity indices (ScS� 0:04 sq. km) with the map of land use on the study site (Figure 2.19 on
page 64), we can identify two different types of areas: urban areas and agricultural land. On the cells
that include urban areas, the assets map and the hazard maps display smaller sensitivity indices than
on the cells covered with agricultural land. Symmetrically, damage functions and �ood return intervals
have larger sensitivity indices in urban areas than on agricultural land. This �nding might be explained by
comparing the characteristics of depth-damage curves for private housing assets and agricultural assets. In
particular, depth-damage curves for agricultural land are simple step functions with a number of threshold
water levels: when water levels are uncertain, they may induce a “jump” from damage amounts below
or above these important thresholds. These jumps might explain that the water depth maps have a larger
contribution to the variance on the� AAD indicator for agricultural land than on urban areas.

Besides, the spatial heterogeneity of the maps of sensitivity indices indicate that we fall out of the hy-
potheses used in our theoretical developments presented in §4.1. In particular, nor the mean nor the

aThese qualitative analyses could be improved, for example by computing summary statistics of� AAD average value, s.d. and
proportion of sign changes over all cells depending on their land use type.

dThe cellscj for which the mean value of the� AAD indicator overN tot model runs was equal to0 were not considered to
compute these average values.
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Figure 4.9: Uncertainty on the� AAD raster map of cell sizeScS� 0:04 sq. km overN tot � 28 672model runs:
maximum values (a), minimum values (b), standard deviations (c), and coef�cients of variation (d) at each cellcj .
Dashed cells indicate that the sign of� AAD over the cell changes for more than 20% of model runs.
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variance of the spatially distributed inputsZ ˆx• are spatially homogeneous heree. This non stationarity
results in sensitivity indices being different from one location to one another, whereas they were neces-
sarily constant over the spatial domain in our theoretical developments.

In addition, we can investigate the change of support effect on the NOE modelling framework by compar-
ing the maps of sensitivity indicesS i; ScSfor cell sizesScS� 0:04sq. km andScS� 2:56sq. km (Figure 4.11
on the facing page top and bottom, respectively). The sensitivity indices of the spatially distributed inputs
(the assets map and the hazard maps) seem to decrease fromScS� 0:04to ScS� 2:56sq. km, while the maps
of sensitivity indices of the damage functions and of the �ood return intervals display larger values for
cell sizeScS� 2:56sq. km than forScS� 0:04sq. km. These results are in line with those observed with Set-
ting A (§4.3.3.1 on page 160), that is, the sensitivity indices of spatially distributed inputs decrease with
the size of the supportv while the sensitivity indices of non-spatially distributed inputs symmetrically
increase with the size ofv.

To better highlight this change of support effect, Figure 4.10 displays the average valuesST i; ScS[Eqn. (4.33)
on page 160] of the maps of sensitivity indices for each model input and each cell sizeScS. The sensitivity
indices of spatially distributed inputs (assets map and hazard maps) prove to decrease with an increase of
the areaScSover which the model output� AAD is aggregated, while the sensitivity indices of non spa-
tially distributed inputs (damage functions and �ood return intervals) increase symmetrically. The critical
cell sizeScSc, for which spatially and non-spatially distributed inputs contribute equally to the variance of
the model output, falls somewhere between 5 and 50 sq. km.

Figure 4.10: Average valuesST i; ScSof the maps of sensitivity indices with increasing cell sizeScS(logarithmic scale)
for the asset map (j ), the hazard maps (Y), the depth-damage curves (Q) and the �ood return intervals (l )

eIndeed, the mean value of water depths is not constant over the �oodplain, and the random realisations of the DEM were
generated with conditional simulations, resulting in low variances of simulations close to the ground control points, and larger
variances far from the control points.
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the� AAD indicator. First, we observed that the uncertainty on the� AAD maps is not spatially homo-
geneous. In particular, the sign of the� AAD indicator is almost certainly constant in some parts of the
study area (urban areas: positive� AAD; seaside campgrounds: negative� AAD), while in other areas
(those mostly covered with cultivated land), the sign of the� AAD indicator is highly uncertain. This
spatially explicit description of uncertainty brings new information for the model end-user, compared to
the �rst analysis (§3.3 on page 111) in which only the aggregated model outputs over the entire �oodplain
were scrutinized. It may lead the model end-user to better express his concerns about the uncertainty on
the� AAD maps, and de�ne new quantities of interest to quantify this uncertainty and decide whether it
is bearable or not. For example, in this case study, the decision-maker could be especially concerned with
the absolute standard deviation of the� AAD indicator: he would then pay more attention to urban areas.
To decide whether the uncertainty on the� AAD map can be tolerated or not in this speci�c perspective,
he could de�ne as a new quantity of interest the maximum� AAD standard deviation obtained on an indi-
vidual cell, or the90%quantile of� AAD standard deviations over all cells. On the contrary, he could be
worried not so much about the� AAD standard deviation, but rather about the� AAD changing sign: in
that case he would focus on cultivated land. A possible quantity of interest would then be the proportion
of cells on the map for which the� AAD indicator changes sign on more than 20% of model runs. To
sum up, the maps of� AAD uncertainty are certainly valuable tools to better account for the variability
of the NOE model outputs, and to discuss what level of uncertainty and what type of uncertainty can be
tolerated or not by the model end-user.

Spatial variability of sensitivity indices To identify which sources of uncertainty contribute the most
to the variability of the� AAD maps, we also produced maps of sensitivity indices computed at each
cell of a regular grid. These maps clearly suggest that the contribution of the NOE model inputs to the
variance of the� AAD indicator is not spatially homogeneous. For example, the sensitivity indices of
the water depth maps and the assets map are smaller in urban areas than in areas covered with cultivated
land. Such different ranking of uncertainty sources from one location to another may be explained by a
number of factors, including the main land use type at that location, the shape of the associated depth-
damage curves, the average water depth at that location, etc. Even if we did not explore this point further,
the maps of sensitivity indices clearly appear to be promising tools to better explore the behavior of the
NOE modelling framework. In particular, an interesting question is how to summarize the information
contained in a map of sensitivity indices into a single scalar measure. In this exploratory study, we simply
computed the non-weighted averageST i � 1~G P j STi ˆcj • of sensitivity indices de�ned with respect
to the� AAD indicator on each cellcj of the map. However, we could design other measures, in order
to answer the various questions of the model end-user. For example, if the model end-user is mostly
concerned with reducing the absolute standard deviation of the� AAD indicator, then he may compute
the average of cell-based sensitivity indicesSTi ˆcj • weighted by the� AAD variance on each cellcj .
On the contrary, if he is more worried with the� AAD indicator changing signs, he will calculate the
average of cell-based sensitivity indicesSTi ˆcj • weighted by the proportion of� AAD changing signs
over all model runs on the cellcj . These various measures would probably give different conclusions on
the key model inputs that drive the uncertainty on the map of the� AAD indicator at a given cell sizeScS.
It may be an interesting research item to further explore their properties.

Other averaging-out effects in the NOE modelling framework The theoretical framework we built
to explain change of support in VB-GSA can be extended, by analogy, to a number of other averaging-
out effects in the NOE modelling framework. For example, we observed in §3.3.5.2 on page 129 an
averaging-out effect related to the number of �ood-exposed assets of different types on the Orb Delta: the
sensitivity indices of the hazard maps was smaller for private housing (large number of assets on the study
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site: 16 436) than for other economic activities (small number of assets:691). A possible explanation is
that the dispersion of water depth errors is averaged over the large number of housing polygons scattered
across the study area. Hence, we can somehow write that the sensitivity index of the hazard maps with
respect to the aggregated value of the� AAD indicator over the assets of type “private housing” veri�es:

Shazard mapsŒ
1

# T
(4.34)

in which # T is the number of assets of this type. This relation could be applied to other types of assets
(agricultural land, campgrounds, etc.). For a given type of assets, if the number of assets grows, then
the “averaging-out effect” on the water depth errors will get stronger, and the relative contribution of
the hazard maps to the variance of the aggregated� AAD indicator will be smaller. A similar “number
averaging-out effect” may partly explain why the uncertainty on depth-damage curves appears to be
more in�uential on the private housing sector, which is described with only one depth-damage curve,
than for the other economic activities, which are described by 60 damage curves that are assumed to vary
independently.

This analogy may also be useful to understand the contribution of the uncertain return intervals of �ood
scenarios to the variance of the� AAD indicator. As explained in §2.2.7 on page 49, computing the
� AAD indicator requires to estimate the return intervals (or annual exceedance probabilities) of a number
m of �ood scenarios. These estimates of �ood return intervals are affected by errors that are statistically
correlated. By analogy with Eqn. (4.10) on page 145, we may expect that the sensitivity index related to
these uncertain �ood return intervals (or exceedance probabilities) with respect to the� AAD indicator
follows a law similar to:

Sreturn intervalsŒ
mc

m
(4.35)

in which m is the number of �ood scenarios considered to compute the� AAD indicator, andmc is a
measure of the intensity of correlation between the errors on these �ood return intervals. In other words,
the sensitivity index of uncertain �ood return intervals will: i) decrease if the numberm increases; and ii)
increase if the intensity of correlation between �ood return interval estimates increase. Of course, further
research is needed to con�rm or invalidate these explanations that are only based on analogies. Besides,
the implications of these various averaging-out effects will be discussed in the Chapter conclusion on
page 172 and in the general conclusion on page 177.
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4.4 Chapter conclusion

4.4.1 On scale issues in VB-GSA of spatial models

Sensitivity indices depend on the spatial support, spacing and extent of model outputIn §4.1, we
investigated the case of a point-based and spatially additive modelF , in which the spatially distributed
input is modelled as a Stationary Random FieldZ ˆx•. Using the vocabulary of geostatistics, we sug-
gested to use the term “site sensitivity indices” when sensitivity indices of model inputs are computed
with respect to the point valueYˆx• at some locationx > 
 , and the term “block sensitivity indices”
when the variance-based sensitivity indices of model inputs are computed with respect to the aggregated
valueYv of model output over a spatial supportv. Then, building on the regularization theory in geo-
statistics, we proved that the ratioSZ ˆv•~SU ˆv• of block sensitivity indices of spatially distributed input
Z ˆx• and scalar inputsUi is proportional to the ratioSvSc~SvS, in whichSvSis the surface area of the spatial
support over which model output is aggregated, andSvSc some critical area [Eqn. (4.10) on page 145]. This
equation summarizes the effect of spatial support on variance-based sensitivity indices in a point-based
and spatially additive model: when the surface areaSvSincreases, the relative contribution of spatially dis-
tributed inputs to the variance of the aggregated model outputYv decreases. In our contribution, we also
speci�ed how the critical sizeSvSc depends on the covariance structureCˆ �• of the spatially distributed
inputZ ˆx•.

Next, in §4.2, we discussed the in�uence of spatial “spacing” on the VB-GSA of the same point-based
and spatially additive modelF . We proved that if the aggregated model outputYv is approximated on a
regular grid of points, then the ratioSZ ˆv•~SU ˆv• of block sensitivity indices of spatial and scalar inputs
will also be approximated. We showed that the approximation error is aOˆs•, in whichs is the “spacing”
of the grid of points, that is, the distance between two neighbouring points of the grid.

Finally, we did not consider in our work the last component of the scale triplet (§1.1.3 on page 20), that is,
the “extent”—the entire area
 ` R2 covered by the modelF . However, for the case of a point-based and
spatially additive model in whichZ ˆx• is modelled as a stationary random �eld, the “change of support”
properties discussed in §4.1 give an appropriate framework to discuss the impact of “extent” as well. If
the output of interest for sensitivity analysis is the aggregated valueY
 of model output over the entire
model extent
 , then the ratioSZ ˆ 
 •~SU ˆ 
 • is inversely proportional to the surface areaS
 Sof model
extent.

These contributions may prove useful to give a complementary insight on scale issues in spatially dis-
tributed modelling. When a spatial model is developed to represent some physical, biological or anthro-
pogenic processes, the choice of a modelling scale (i.e., support, spacing and extent) depends on a number
of constraints, some of which are controlled by the modeller, and others not. Among these constraints
are the understanding of the processes under study, the intended use of the model results, but also the
characteristics of the �eld data that can be collected, the computationnal power available, etc. What we
have shown in this chapter is that the choice of a modelling scale will also partly determine which are the
key sources of uncertainty in the model. In particular, if the support of model output is large compared
to the characteristic length of correlation in a spatially distributed input, then we can expect that the con-
tribution of this input to the variance of the aggregated model output will be small. Hence, such an input
does not deserve too much attention, and extra data gathering or �eld data collecting should be dedicated
to other model inputs.

Limits of our analysis As mentioned in the conclusion of section §4.1, our analysis of scale issues in
VB-GSA of spatial models is based on a number of limitative hypotheses that may not be met in some
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practical cases. These limits are already discussed in §4.1.4 on page 147, hence we just give here some
extra comments on the following key points:

(1) Stationarity of Z(x). In the analytical test case under study in §4.1 and §4.2, we assumed the input
random �eld Z ˆx• to be stationary; if it is not, site sensitivity indices de�ned in Eqn. (4.4) on
page 143 depend on sitex > 
 . It is then possible to compute maps of these indices (Marrel et al.
2011; Pettit and Wilson 2010) to discuss the spatial variability of model inputs sensitivities. We
used this approach to carry out VB-GSA on the NOE code on the Orb Delta case study in §4.3.
We produced map of sensivity indices of different cell sizes (Figure 4.11 on page 165). We think
that these maps are valuable tools to investigate the spatial variability of model input sensitivities,
identify areas where some inputs are more in�uential, and �nally better understand the behaviour
of the model under study.

(2) Random Field model. We also assumed in §4.1 and §4.2 that the spatially distributed input in model
F can be modelled by a Random FieldZ ˆx•. The properties that were obtained on the in�uence
of “support” and “spacing” on variance-based sensitivity indices are only valid for this speci�c
case. However, there are many other theoretical frameworks that could describe the variability of
a spatially distributed input (e.g., spatial point processes). Even if we could not prove it in our
research, we are of the �rm opinion that the properties obtained for Random Field inputs would
in most cases hold for other types of spatially distributed inputs. In particular, the in�uence of the
support of model output on variance-based sensitivity indices would most probably be the same:
the relative contribution of spatially distributed inputs to the variance of the aggregated output over
a supportv is a decreasing function ofSvS.

(3) Case of a non spatially additive model.We can wonder whether the results presented in §4.1 and
§4.2 would hold or not for non spatially additive numerical models. A model is non spatially
additive when the output of interest is not the spatial averageYv (or the spatial sum) of spatially
distributed ouputY ˆx• over a given spatial unitv ` 
 (§1.1.5 on page 23). For example, the output
of interest could be the maximum value ofY ˆx• overv (e.g., the maximal pollutant concentration
over a study area), some quantile ofY ˆx• overv, or the percentage ofv for whichYˆx• exceeds a
certain threshold. In theses cases, there is no “averaging-out effect” associated with linearity, and
there is no reason why the contribution of an uncertain inputZ ˆx• to the variance of the output of
interest would increase or decrease under a change of spatial supportv. Properties of sensitivity
indices discussed in §4.1 and §4.2 no longer hold.

(4) Case of a non-point based model.A model is non-point based when there are some spatial interac-
tions involved in the description of the physical processes under study (§1.1.4 on page 22). For
example, models that simulate river �ow routing are usually not point-based, as the water �ow at a
locationx > 
 depends on the �ow at other locationsxœ> 
 upstream. Another example is given
by Brémond (2011), who developed a model for �ood damage assessment in which the damage
on a farm located at a given pointx > 
 depends on the �ood intensity parameters (water depth,
velocity, etc.) at this locationx but also on a number of induced damages on crops, warehouses or
infrastructures, related to �ood intensity parameters at other locationsxœ. In this case, the change
of support properties discussed in §4.1 do not hold either, because the value of the spatial average
Yv does no depend only on the values of the spatially distributed inputZ ˆx• over zonev, but also
on the values ofZ ˆx• over total domain
 . Nevertheless, in many applications, a non-point based
model can be replaced by a point-based model as a �rst-order approximation. Hence, for these
“quasi point-based” models, the behaviour described for point-based models in §4.1 would also be
observed: the block sensitivity indices of spatially distributed inputs over a spatial supportv will
decrease whenv gets bigger.
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From change of spatial support to other averaging-out effects We proved in §4.1 that the ratio of
block sensitivity indices of spatially distributed model inputZ ˆx• and scalar inputsUi with respect to
the aggregated model ouputYv : i) decreases when the sizeSvSof the spatial supportv increases, and ii)
increases when the spatial auto-correlation in random �eldZ ˆx• increases (larger range parametera).
By analogy, we could describe other “averaging-out effects” that occur in VB-GSA of numerical models.
For example, we can consider a time-dependent modelF , in which one of the model inputs is a time serie
Z ˆ t• that exhibits auto-correlation, and model output is a time serieY ˆ t•. If the model is point-basedf

and time additiveg, then the ratio of sensitivity indices of time dependent inputZ ˆ t• and scalar inputsUi

will: i) decrease with the lengthSt2 � t1Sof the time interval� t1; t2� over which the model outputY ˆ t• is
aggregated; and ii) increase when the auto-correlation in the time dependent inputZ ˆ t• grows. If � tc is
a characteristic duration that measures the intensity of auto-correlation in the time dependent inputZ ˆ t• ,
then a possible portray of “time averaging out effect” in VB-GSA might be:

SZ ˆ� t1; t2�•
SU ˆ� t1; t2�•

Œ
� tc

St2 � t1S
(4.36)

A similar explanation may be used to discuss the case of other non-scalar inputs, such as tabular inputs.
We also used the same argument to try and explain some averaging-out effects observed in the NOE
modelling framework on the Orb Delta case study (§4.3.4 on page 167). Of course, further research is
needed to con�rm or invalidate these explanations that are only based on analogies.

4.4.2 On the NOE modelling framework

We carried out in §4.3 a second sensitivity analysis of the NOE modelling framework on the Orb Delta
case study, in which we considered as outputs of interest the aggregated value of the� AAD indicator
over different spatial supportv. We brie�y summarize here the main outcomes of this analysis, which are
discussed into more details in §4.3.4 on page 166.

Ranking sources of uncertainty Following the theoretical developments of §4.1, we found that the
ranking of uncertainty sources in the NOE modelling framework on the Orb Delta case study depend
on the spatial support over which the� AAD indicator is aggregated. Hence, the strategy to reduce the
variability of �ood damage estimates on the Orb Delta will heavily depend on the choice of a spatial
support for model output. If the NOE modelling framework is used to produce maps of �ood damages
with a resolution �ner than5 � 5 km, one must try to reduce �rst the uncertainty on water depth maps
and assets map, which are the key sources of uncertainty on small spatial supports. On the contrary, if the
NOE modelling framework is used to produce estimates of total �ood damages over a large �oodplain,
then the uncertain return intervals of �ood scenarios are the main sources of uncertainty.

Generalizing the results obtained on the Orb Delta case study The “change of support” properties
that we highlighted in §4.3 for the Orb Delta case study would certainly hold for other �oodplains,
because they only require the model under study to be point-based and spatially additive. These properties
also offer a clear explanation to the empirical observations we made when comparing VB-GSA results on
two case studies: the Orb Delta (63 sq. km) and the Vilaine �oodplain (10 sq. km), as detailed in §3.3.7
on page 131. It appeared that the contribution of the assets map and water depth maps to the variance

f i.e., model output at a given timet only depends on scalar inputsUi and on the value of the input time serieZ ˆ t • at that same
time t

gi.e., the output of interest is the average valueY� t 1 ;t 2 � of model output over some time interval� t1 ; t 2 �
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of the � AAD indicator aggregated over the entire extent of the study site was more important in the
Vilaine �oodplain (smaller extent) than on the Orb Delta (larger extent). This observation is in line
with Eqn. (4.10) on page 145 that describe how block sensitivity indices depend on the spatial support of
model output. At the time of writing, it is planned to carry out a more complete comparative analysis of
VB-GSA results on another two �oodplains along the Rhône River, brie�y described in §2.3.3: Fourques-
Beaucaire case study (125 sq. km), and ZEC case study (650 sq. km). The outcomes of this comparative
analysis will hopefully be used to illustrate and validate change of support effect in VB-GSA of the NOE
modelling framework.

Other averaging-out effects in the NOE modelling chain As mentioned in §4.3.4 on page 167, the
theoretical framework we built to explain change of support in VB-GSA can be extended, by analogy, to
a number of other averaging-out effects in the NOE modelling framework. In particular, we showed that
there are such averaging-out effects related to the surface area of �ood-exposed assets, to the number of
assets of each type (private housing, agricultural land, etc.), to the number of damage functions used, and
to the number of �ood scenarios considered for the computation of the� AAD indicator. These various
parameters control the ranking of the uncertainty sources in the NOE modelling framework.

Choice of uncertainty models and averaging-out effects As mentioned in the conclusion of Chap-
ter 3, a key limit to our analysis of the NOE modelling chain is the choice of an uncertainty model for
each model input. For some model inputs, this choice is sometimes supported by few or even no data
(e.g., damage functions for the Orb Delta case study). What appears now is that it is of the greatest
importance to characterise the auto-correlation that uncertain non-scalar model inputs may exhibit. In-
deed, we have shown in this chapter that the sensitivity index of a non-scalar model input will depend
on its auto-correlated structure: the more (positive) auto-correlation, the largest the contribution of this
input to the variance of the model output. However, it is often very dif�cult to characterise properly the
correlation structure in such model inputs. For example, on the Orb Delta case study, we assumed that
the uncertainty on each depth-damage curve was independent from the uncertainty on other curves; in-
troducing some sort of correlation in this description would mechanically increase the sensitivity index
of depth-damage curves with respect to the total �ood damages over the study site. Along the same line,
introducing stronger spatial auto-correlation in the description of the DTM would result in an increase of
its sensitivity index. Finally, in the same manner, we can discuss the choice that was made to model the
variability of the annual exceedance probabilities of �ood scenarios. In the Orb Delta study, the errors
associated with the return interval of each �ood scenario are perfectly related—they all stem from the
sameQ-f curve. Hence, the contribution of the uncertain exceedance probabilities to the variance of the
� AAD indicator is larger than if the errors on exceedance probabilities were assumed independent for
each �ood scenario.

Unfortunately, this discussion will be of no help for a modeller who wants to carry out a sensitivity
analysis of his model, but has few or no data to support the choice of an uncertainty description for
some of the model inputs. However, our contribution may help him anticipate the impact of the arbitrary
choices that he will have to do. In particular, the sensitivity indices of a complex model input will increase
if it is modelled with a strong auto-correlated structure, and decrease if not. This point will be further
discussed in the general conclusion on page 177.
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the spatially distributed inputs are modelled as Stationary Random Fields. We used the notion of the
“scale triplet” to decompose the research question into three items, namely the in�uence of support,
spacing and extent of model output. We suggested to de�ne “site sensitivity indices” and “block sensitivity
indices” to account for the role of the spatial support of model output, and established some properties of
these indices. In particular, we proved that the relative contribution of an uncertain spatially distributed
input to the variance of the model output: i) decreases with the size of the spatial support considered
for model output aggregation [Eqn. (4.10) on page 145]; and ii) increases with its correlation length,
and more generally depends on its auto-correlated structure. To be more precise, we gave a formula that
expresses the ratio of block sensitivity indices of a spatially distributed inputZ ˆx• and scalar inputsUi as
a function of i) the surface area considered for model output aggregation, and ii) the covariance function
of Z ˆx•. The role of the other two components of scale (spacing and extent) were less scrutinized.

Prospects and directions for future work

The methods and results described in this thesis may be applied straightforwardly to a wide range of non
CPU intensive models, in different �elds of earth and environmental sciences. The main dif�culty the
modeller will encounter to apply these methods is to characterise the uncertainty in the model inputs: this
issue was not the focus of our work, even if we suggested a few strategies to model spatial uncertainty
(§3.2.2 on page 98). Besides, we would like to stress three points that could extend the reach of our study.

Other types of complex model inputs.The methods we described to handle spatially distributed inputs
in VB-GSA could easily be used to deal with other types of high-dimensional model inputs, such as
functional inputs, time series, tabular data, etc. For example, in the sensitivity analysis of the NOE
code on the Orb Delta case study, uncertain depth-damage relations were represented as tabular data:
they were handled with the “map labelling” method. Of course, all the issues discussed for spatially
distributed inputs would have to be carefully investigated for these other types of inputs. In particular,
attention should be paid to carefully model the auto-correlation in such non scalar model inputs.

Other averaging-out effects.By analogy with the “change of support” effect that we detailed in §4.1
on page 140, it is possible to explain other “averaging-out effects” that occur in VB-GSA of numerical
models. This point is extensively explained in the conclusion of Chapter 4 on page 171. We will also
discuss it for the speci�c case of the NOE modelling framework later in this conlusion.

Scaling issues in spatial modelling.Our contributions on scale issues in VB-GSA may prove useful
to give a complementary insight on the problem of scaling in spatially distributed modelling. When a
model is developed to represent some physical, biological or anthropogenic processes, the choice of a
modelling spatial scale (i.e., support, spacing and extent) depends on a number of constraints, some of
which are controlled by the modeller, and others not. Among these constraints are the understanding of
the processes under study, the intended use of the model results, but also the characteristics of the �eld
data that can be collected, the computational power available, etc. What we have shown in Chapter 4 is
that the choice of a modelling scale will also partly determine which are the main sources of uncertainty
in the model.

Finally, to further expand the �ndings of this thesis, it would be necessary to explore new research topics.
Here are four research items that could be investigated.

(1) Assessing the in�uence of uncertain map attributes.As mentioned in §3.1.4 on page 92, none of
the techniques encountered in the literature can answer the following question: if a spatially dis-
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tributed input proves to be in�uential, which of its “attributes”h contribute the most to the variance
of the model output? A possible way to answer this question would be to �rst carry out VB-GSA
with the “map labelling” technique, then to perform a complementary graphical analysis based on
scatterplots or Contribution to the Sample Mean plots to assess the relative in�uence of the different
map attributes.

(2) Optimal sampling of spatially distributed inputs. Our exploratory study of section §3.2 on page 98
clearly suggets that further research is needed to �nd optimal sampling techniques of spatially
distributed inputs in VB-GSA. An interesting path of research is opened by the work of Scheidt
and Caers (2009) who suggest to draw optimal samples of random realisations ofZ ˆx• based on
the de�nition of a distance between realisations.

(3) VB-GSA for CPU intensive spatial models.We noted that none of the available techniques described
in Chapter 3 is appropriate to handle a time-consuming model with several spatially distributed
model inputsZ i ˆx• whose dimension cannot be reduced. Hence, further research is needed to
solve this situation, in which intensive simulation is computationally intractable.

(4) Relaxing hypotheses on scaling results.The results we obtained on scale issues in VB-GSA are
conditioned to a number of limitative hypotheses, namely: i) the spatially model input is modelled
as a Stationary Random Field; ii) the model under study is spatially additive; and iii) the model
under study is point-based. An interesting research path would be to try and relax some of these
conditions. This point is extensively discussed in the conclusion of Chapter 4 on page 169.

Apart from these four points, we suggest to add a last direction for future work. We have not fully
adressed in this manuscript the issue of computing variance-based sensitivity indices when the model
output Y is spatially distributed. We have focused on two speci�c situations, in which the output of
interest for the modeller is either the output valueYˆx‡• at some speci�c locationx‡ , or the aggregated
valueYv over a given supportv. A third situation is the following: the modeller may be interested in the
spatially distributed model output˜ Y ˆx• � x >
 • as a whole, and may want to de�ne sensitivity indices
with respect to the overall variability of the output map. Here are two ideas to adress this issue.

(5) Generalized sensitivity indices.A �rst idea is to build up on the work of Campbell et al. (2006), who
investigated the issue of sensitivity analysis with a functional or multivariate output. They suggest
to: i) use any dimension reduction technique—such as Principal Component Analysis— to extract
a small number of scalar componentsY ˆ k • from the multivariate outputY , then ii) estimate sen-
sitivity indicesSˆ k •

i with respect to each of these scalar components. Lamboni et al. (2011) apply
this approach for a time-dependent outputY ˆ t•, and further de�ne a new “generalized sensitivity
index” Sˆ gal •

i � P k pk Sˆ k •
i as a weighted average of indicesSˆ k •

i , in which weightspk repre-
sent the energy content of each independent scalar componentY ˆ k • —see also Auder et al. (2012).
With a reasonable effort, it should be possible to adapt this method to a spatially distributed output
Y ˆx•: the main dif�culty would be to �nd the most appropriate dimension reduction technique for
spatially distributed data.

(6) A new measure of importance?Another research path would to be build on the work of Liu and
Homma (2010) to de�ne a new importance measure dedicated to spatially distributed outputsY ˆx•.
Let assume that we have de�ned a measure of dissimilarity� that could represent the overall “dis-
similarity” of a set of maps—Scheidt and Caers (2009) give an example of such a measure. A
possible way to assess the contribution of thei th model input to the variability of the model output
would be to compute the difference between: i) the dissimilarity� of a set of output maps obtained

he.g., any scalar descriptor such as the mean value of the input map, the value at a particular location, etc.
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by running simulations of the model under study with a full sampling is the space of the uncertain
model inputs, and ii) the reduced dissimilarity� ˆ i • of a set of output maps obtained from a con-
ditional sampling of model inputs with a �xed value of thei th model input. Of course, such an
importance measure would probably lack most of the nice properties of variance-based sensitivity
indices (sum up to 1, etc.).

Lessons on cost-bene�t analyses of �ood risk management plans

The applied goal of our thesis was to investigate the propagation of uncertainty in cost-bene�t analyses of
�ood risk management plans, and to identify the most in�uential sources of uncertainty with VB-GSA.
We display a brief summary of this part of our research, and give directions for future work.

A brief summary

A preliminary but essential step of our work was to clarify the perimeter and characteristics of the model
we had to study. Hence, a �rst applied contribution of this thesis was to designed a modelling framework
named NOE to describe cost-bene�t analyses of �ood risk management plans. Particular attention was
paid in this framework to two points that are usually not emphasized in the literature: i) the proper
de�nition of the average annual damages (AAD indicator); and ii) the description of the spatial overlay
procedure between the hazard maps and the assets map.

Next, we implemented the NOE modelling framework on �ve study sites, and carried out sensitivity
analysis for three of them: the Orb Delta, the Vilaine �oodplain and the ZEC project along the Rhône
river. Only the results obtained on the Orb Delta case study were extensively presented and discussed in
this manuscript (§3.3 on page 111 and §4.3 on page 156). However, in this conclusion, we offer to draw
general conclusions from the various studies that were carried out. A key result is thatit is impossible to
establish a �xed and general ranking of the sources of uncertainty in CBA studiesapplied to �ood
risk management plans. On the contrary, we proved that the contribution of each source of uncertainty to
the variance of the NOE model outputs depends on a number of factors that may change from one case
study to another. The second applied contribution of this thesis was to investigate three of these factors,
which are listed below.

Economic sector.We found that the ranking of uncertainty sources with respect to their contribution to
the variance of the �ood damage estimates depends on the economic sector considered (private housing,
agriculture, industry, etc.).

Spatial extent of the study area.All other things being equal, the relative contributions of the assets
map and water depth maps to the variance of the �ood damage estimates are a decreasing function of
the extent of the study area. Symmetrically, the relative contribution of non spatially distributed inputs
(damage functions, �ood return intervals) will increase with the extent of the study area. These empirical
observations are in line with the theoretical results we obtained on scale issues in VB-GSA of point-based
and spatially additive models.

Other non-spatial averaging-out effects.As mentioned in §4.3.4 on page 166, the theoretical framework
we built to explain change of support in VB-GSA can be extended, by analogy, to a number of other
averaging-out effects that occur in the NOE modelling framework. In particular, we showed that there
are such averaging-out effects related to the surface area of �ood-exposed assets, to the number of assets
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of each type (private housing, agricultural land, etc.), to the number of damage functions used, and to
the number of �ood scenarios considered for the computation of the� AAD indicator. These various
parameters control the ranking of the uncertainty sources in the NOE modelling framework.

Prospects and directions for future work

One initial motivation for the applied part of this thesis was to better address uncertainty in CBA studies
applied to �ood risk management plans. It is obviously a challenging task to make �rm and detailed
recommendations on the basis of our results, which show that the ranking of uncertainty sources in �ood
damage assessments differ from one case study to another. However, the following comments might
prove useful to modellers.

What resolution for �ood damage maps?Experts that produce �ood risk assessment studies often have
to choose a spatial resolution for the production of �ood damage maps. This thesis does not give a �rm
answer to this dif�cult question, but yields a better understanding of the following point: the choice of a
given resolution (i.e., a spatial support for the aggregation of the �ood damage indicator) will determine
which sources of uncertainty are the most in�uential and which are not. If �ood damage maps are pro-
duced at a �ne resolution, one must try to reduce �rst the uncertainty on water depth maps and assets
map, which will probably be the key sources of uncertainty on small spatial supports. On the contrary, if
average annual �ood damages are aggregated over a large �oodplain, then the uncertain return intervals
of �ood scenarios are likely to be the main sources of uncertainty.

Flood risk analyses—how detailed do we need to be?This is the title of a research paper by Apel et al.
(2009), who discussed the question of the required model complexity in �ood risk analyses. As they
explain it, “the methods used in research and practical applications range from very basic approaches
with numerous simplifying assumptions up to very sophisticated, data and calculation time demanding
applications both on the hazard and on the vulnerability part of the risk.” One contribution of this thesis
is to shade some new light on this tough issue. The level of “detail” or “ complexity” of a model for
�ood risk assessment can somehow be described as a level of aggregation (not necessarily spatial) as de-
�ned in §1.1.3 on page 20i . Disaggregated models often give the—false—impression that they produce
more “precise” results than aggregated models. Yet, only a careful uncertainty and sensitivity analysis
can assess the variability of the model output and estimate the contribution of each model input to this
variability. In the light of our work, we want to underline the following point:the more disaggregated a
model is, the more dif�cult it will be to carry out a sensitivity analysis of it . Indeed, we have shown
that it is of the greatest importance in sensitivity analysis to properly characterise the auto-correlation
that disaggregated model inputs may exhibit, because the strength of this auto-correlation will partly
determine their sensitivity indices.j Unfortunately, it is most of the time dif�cult or even impossible to
collect enough data to support the choice of an auto-correlated uncertainty model for such disaggregated
inputs.k What is dangerous for the modeller is the tantalising solution to just ignore auto-correlation and
consider the elements of a disaggregated input as either statistically independent or completely colinear.

iFor example, in the �ood damage assessment that was carried out on the Orb Delta study site, only one depth-damage curve was
used to model damage for private housing. On the contrary, the CEPRI guidelines for cost-bene�t analysis of �ood risk management
plans suggest to use up to seven different depth-damage relations depending on the caracteristics of the houses (CEPRI 2011). We
can say that the CEPRI model is more “detailed”—or “ complex”—than the Orb one. We can also say that it operates at a “less
aggregated” level. There are many other examples of �ood damage assessments that are more or less aggregated than these two.

jThis issue has been further discussed in the conclusion of Chapter 4 (§4.4 on page 169)
kFor example, in the CEPRI guideline—like in any other case where depth-damage relations are designed at a low level of

aggregation—the modeller would have to quantify the correlation between the seven uncertain depth-damage curves for private
housing.
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One contribution of this thesis is to anticipate the impact of such arbitrary choices: in particular, the sensi-
tivity indices of a disaggregated model input will likely be overestimated if its components are modelled
as completely colinear, and underestimated if its components are modelled as purely independent. To
sum up, we are of the opinion that disaggregated models make uncertainty and sensitivity analyses more
dif�cult to carry out, and are thus more dif�cult to evaluate with regards to uncertainty management.

Directions for future work.Further research is needed to extend our study on uncertainties in cost-bene�t
analyses applied to �ood risk management plans. Here is a list of important research topics that could be
investigated.

(1) Hydraulic modelling. One major limit of our study is that we considered the hazard maps as model
inputs: we did not include the hydraulic model that produces them as a part of the NOE modelling
framework. To overcome this limit, further work could build on the extensive literature that already
deals with uncertainties in hydraulic modelling (de Rocquigny et al. 2010; Arnaud et al. 2006). A
notable challenging issue is that hydraulic models are not point-based models—the water depth,
water velocity or �ood duration at one location depend on the water �ow upstream.

(2) Ignored sources of uncertainty.Some uncertainty sources were identi�ed but not taken into account
in the sensitivity analysis of the NOE modelling chain. In further work, at least two of them–which
are uncertain modelling assumptions rather than uncertain model inputs—could be included with a
reasonable effort: i) the choice of a technical procedure for spatial overlay analysis between hazard
maps and assets maps; and ii) the initial choice of �ood scenarios considered (number of scenarios
and their characteristics).

(3) Mischaracterised sources of uncertainty.Another dif�culty in sensitivity analysis is to properly
describe and quantify uncertainty on the various model inputs. Regarding the NOE modelling
framework, there is room for improvement in the modelling of the input uncertainties. We can
for example mention the case of uncertainties on the annual exceedance probabilities of �ood sce-
narios: one aspect that we did not adress is the estimation of �ood exceedance probabilities and
associated uncertainty when many river tributaries and lateral in�ows contribute to the main river
under study.

(4) Grouping of model inputs. The numerous inputs of the NOE code were gathered into �ve groups to
make the sensitivity analysis computationally more tractable. The outcomes of the analysis heavily
depend on the initial choices that were made to compose these groups, and further work should try
to divide these groups into subgroups to better identify the most in�uential inputs. This point has
been discussed in the conclusion of Chapter 3 on page 135.

Besides, the NOE modelling framework does not account for all possible subtleties in CBA-AD studies
applied to �ood risk management plans. To extend the reach of our discussion on the uncertainties in
these CBA-AD studies, it would be necessary to investigate the following extra research topics.

(5) Continuous scenarios.As mentioned in §2.2.6 on page 48, �ood scenarios that are used in the com-
putation of the annual average damages could be randomly generated over a very large length of
time in order to build a plausible chronicle of �ooding events over time. An open research item is
how to account for uncertainty in such chronicles and related computation of the AAD indicator.

(6) Non point-based damage assessment.As discussed earlier (limits of the analysis in the conclusion
of Chapter 4 on page 169), models for �ood damage assessment are not necessarily point-based.
For example, the damage on a farm located at a given point may depend on the �ood intensity
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parameters at this location but also on a number of induced damages on crops, warehouses or
infrastructures, related to �ood intensity parameters at other locations (Brémond 2011). Another
example is that of �ood damage assessment for roads or energy supply networks, in which the
damage on one part of the network heavily depends on the �ood impacts on other parts of the
network (Gleyze 2005). An open research item is how to account for uncertainty in such models,
and how scale issues that were discussed in this thesis would hold or not in that non point-based
case.

(7) Evolution of land use over time. In the NOE modelling framework, the state of the whole system
under study (land use, hydrologic and hydraulic characteristics, etc.) is assumed to be �xed through
the length of time over which the �ood risk management plan is evaluated (typically 30 to 50 years).
Relaxing this hypothesis would require a large amount of work and would open a number of new
research questions. In particular, if we acknowledge that the climate and subsequent hydrologic
characteristics of a �oodplain vary over time, then the probabilistic framework in which we de�ned
the average annual �ood damages is not appropriate anymore.

Practice of sensitivity analysis in environmental modelling

We would like to conclude this thesis by a few practical comments on the outcomes of sensitivity analysis
in environmental modelling. During this research work, we partly acted as modellers who had to build
and implement a numerical model, carry out a sensitivity analysis, and communicate the results of this
sensitivity analysis to the model end-users. These comments are modest testimonies from our experience.

Outcomes of sensitivity analysis: a modeller's point of view

The main reason given in the literature to justify the use of sensitivity analysis is to reduce the variability
of the model output by identifying the key sources of uncertaintyl . However, in our experience, this goal
is often dif�cult to reach because reducing the variability of the key model inputs may be impossible.
Nevertheless, sensitivity analysis brings some other invaluable outcomes that we detail below.

First, from a practical perspective, the most challenging step of an uncertainty/sensitivity analysis is to
identify and describe the various sources of uncertainty involved in a model—uncertain inputs, modelling
assumptions, etc. In our view, this �rst step is also the most instructive for the modeller. Indeed, by
carefully discussing the nature of uncertainty in his model, the modeller will be led to foresee problems
that he ignored so far and may come up with new ideas. For example, in our case, investigating the nature
of uncertainty in cost-bene�t analyses of �ood risk management plans was a strong incentive to better
de�ne two parts of the NOE modelling framework: i) the multi-dimensional de�nition of the Average
Annual Damages (§2.2.5 on page 44); and ii) the spatial overlay procedure to assess �ood exposure from
the hazard maps and the assets map.

Next, sensitivity analysis is also a wonderful excuse for striking up conversations with the various ex-
perts involved in a complex modelling project. A common situation in environmental modelling is the
following: a large modelling chain is built to support decision-making on a given issue (e.g., �ood dam-
age assessment); this chain is composed of a number of submodels that summarize various �elds of
knowledge (e.g., hydrology, hydraulic, economy, etc.). These various submodels or input data are often
produced by different experts, and sensitivity analysis of the global modelling chain requires to collect

lThis rationale is called “variance cutting” in Saltelli et al. (2008)
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relevant information on uncertainty for each of them. This is a daunting task, but it offers the opportu-
nity to better understand the behaviour of each submodel and to promote a shared view of uncertainty
treatment with all the different partners involved in a modelling project.

Finally, sensitivity analysis has also proven its worth as an aid in better understanding the limits of a
model. In particular, the exploration of the space of uncertain model inputs may help identify some par-
ticular range of input values in which the model has an unexpected behaviour. Besides, sensitivity analysis
—or more precisely uncertainty analysis, which can be seen as the �rst step of SA—also produces empir-
ical con�dence intervals on the outputs of the model. These are essential outcomes that should help the
modeller to decide what use can be done of the model and to what extent he can draw �rm conclusions
and recommendations on the basis of the model outputs.

Communicating sensitivity analysis results to model end-users

During our research, we organized a number of meetings to communicate the results of sensitivity analysis
of the NOE modelling framework to the water managers involded on the various study sites (not only the
Orb Delta but also the Rhône River). We list below three major dif�culties we encountered: they are
likely to be faced by anyone trying to communicate to the model end-users the results of a sensitivity
analysis of a spatial model.

A �rst recommendation is to clearly present and discuss the results of the uncertainty analysisbefore
switching to sensitivity analysis conclusions. Our experience shows that it is useless to discuss sensitivity
analysis results if uncertainty information has not been correctly interpreted by the decision makers.
Indeed, only the model end-user is legitimate to decide whether the variability of a model output is small
enough or needs to be reduced. Besides, it is also his role—with the help of the modeller—to de�ne what
measure of variability (variance of the model output, probability to exceed a threshold value, etc.) should
be chosen to perform sensitivity analysis.

A second recommendation is to insist on the limitations in the interpretation of the sensitivity analysis
results. Indeed, we observed a trend toward an over-interpretation of sensitivity indices by the model end-
users. A small value ofSi is often interpreted by decision makers as “model inputUi is not important and
we can completely forget about it, in any future application of this model”, when a cautious interpretation
would rather be: “in this speci�c model, with the speci�c uncertainty ranges that were speci�ed for the
different input variables, the uncertainty on inputUi does not contribute much to the overall variability
of model output”. In particular, the results of a sensitivity analysis do not say what would happen if the
uncertainty ranges on model inputs were severely modi�ed. Hence, as a general rule, it is necessary to
carry out a new sensitivity analysis, with appropriate uncertainty ranges, if a model is to be applied to a
new data set. Communicating the results of sensitivity analysis to model end-users thus requires to insist
on these limitations.

Finally, a last challenging issue is how to communicate to model end-users the outcomes of an uncertainty
and sensitivity analysis, especially when the model outputs are maps. An unmissable starting point on
this vast subject is the RIVM/MNP Guidance on Uncertainty Assessment and Communication (Van der
Sluijs et al. 2003), which includes a volume dedicated to the visualisation of spatial uncertainty (Visser
et al. 2006). Many other authors have also brought valuable contributions on this issue: Thomson et al.
(2005) displayed an extensive review on the question; Kunz et al. (2011) focused on uncertainty visualisa-
tion methods in natural hazards assessments and suggested various visual variables to map uncertainties;
�nally, Viard et al. (2011) showed that spatial uncertainty visualisation does in�uence decision making,
and investigated the difference between adjacent versus coincident display of spatial uncertainties. These
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papers essentially lead us to the conclusion that a clear communication of uncertainties associated with a
spatial decision support system is both a necessity and a dif�cult challenge.
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