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Introduction

...et remarquant que cette vérité, je pense, donc je suis, était si
ferme et si assurée, que toutes les plus extravagantes suppositions
des sceptiques n'étaient pas capables de l'ébranler, je jugeai que
je pouvais la recevoir sans scrupule pour le premier principe de la
philosophie que je cherchais.

René Descartes,Discours de la méthode
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A Short History of Formal Logic

When René Descartes asserted the famous �I think, thereforeI am� in his
Discourse on Method, his justi�cation for this statement was that it �was so
�rm and so assured that all the most extravagant suppositions of the sceptics
were unable to shake it�. This informal kind of reasoning, based mainly
on an intuitive notion of truth , on common sense and dialectics, had been
for centuries the foundation for argumentations in every �eld of what was
then called philosophy, a concept which included both natural and human
sciences. In particular, advances in algebra, analysis andmathematics in
general had been relying on an intuitive and well-accepted notion of proof.

1
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As a matter of fact, Descartes was an accomplished mathematician himself
and published, as an appendix to theDiscourse on Method, his breakthrough
approach to analytic geometry which fostered the rise of cartesian coordinate
systems and calculus.

Over time, as mathematicians were working towards more and more
complex results, the issue was raised of whether the intuitive approach was
su�cient or whether a more formal language was required to describe math-
ematics and logical reasonings. As early as the end of the 17th century,
Leibniz wished for a calculus ratiocinator, a formal logical and algorithmic
language, which, in regard to modern computer science and proof theory, was
an incredibly insightful and pioneering concept. It was not before the end of
the 19th century that this idea started becoming reality, wi th the publica-
tion of Gottlob Frege's Begri�sschrift in 1879, and the later Grundsgesetze
der Arithmetik in 1903. His work provided the �rst formal presentation of
�rst-order logic and even if it was proved inconsistent by Russell's paradox,
his system was the basis of many a work on the foundations of mathematics
around the turn of the 20th century.

As the search for a novel foundation of mathematics led to theZermelo-
Fraenkel theory, an ambitious program launched by David Hilbert aimed
at �nding a consistent formal theory relying on a small number of well-
understood axioms and on the basis of which all mathematics could be
assembled. Kurt Gödel soon brought a negative answer to thisambition:
his �rst incompleteness theorem shows that there does not exist a consistent
system where all true properties are provable, as soon as a system embeds
non-trivial arithmetic reasoning. Nevertheless, Gödel'sdiscovery did not
completely put a stop to Hilbert's program and later research focused on
�nding consistent logical systems which were expressive enough to formalize
interesting fragments of mathematics.

In 1934, Gehrard Gentzen introduced the notion of sequent and proposed
the two sequent calculi LJ and LK, respectively for intuitio nistic and classical
�rst-order logic. These calculi are expressed in terms of deduction rules
between sequents, for instance the following rule of LJ:

� ; A ` C � ; B ` C

� ; � ; A _ B ` C
(_L)

means that if one can proveC from A and the assertions in �, and also
from B and the assertions in �, then C can be proved from A _ B and
the assertions in � and �. When read bottom-up, Gentzen's rul es can be
seen as instructions on how to construct a proof of the bottomstatement.
This analogy is fundamental since it means the rules describe a way to
systematically search for a proof of a given statement, as long as there is
only a �nite way of applying them for any statement. In the abs ence of
quanti�ers, this condition is guaranteed by the fact that Ge ntzen's calculi
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satisfy the cut-elimination property, i.e. that the following rule:

� ` A � ; A ` B

� ; � ` B
(Cut)

also known as modus ponens, can be removed from the system without
reducing its expressiveness. In this regard, Gentzen's sequent calculi repre-
sented an important breakthrough and has had an important impact on the
development of proof theory and automated deduction.

Towards Mechanized Reasoning

Automated Theorem Proving

With the development of computing systems, the second half of the 20th
century made it possible to �nally put into practice deducti on systems such
as Gentzen's sequent calculi which had been studied in the �rst half of
the century. Although Church and Turing had independenly proved in the
1930s that �rst-order logic was not decidable, it remained to be seen whether
computers could nonetheless automatically prove interesting formulae.

The �rst major works in automated deduction were Newell, Simon and
Shaw's Logic Theory machine in 1956 [NSS57] and Wang's work [Wan60].
Both aimed at automatically proving a variety of �rst-order tautologies
found in Russell and Whitehead'sPrincipia Mathematica , but using quite
di�erent approaches. The Logic Theory machine attempted toprove a state-
ment by following heuristics to perform a mix a backward and forward rea-
soning, thus becoming one of the �rst achievements in the �eld of arti�cial
intelligence. On the other hand, Wang followed an algorithmic approach and
based his procedure on sequent calculus, systematically exploring the possi-
ble proofs of a statement. Wang's approach fared better thanthe Logic The-
ory machine and gave the tone to later automated theorem provers (ATP).

The 1960s saw the development of the DPLL procedure [DP60, DLL62]
to e�ciently decide validity in propositional logic, and a m ajor breakthrough
was initiated by John A. Robinson's resolution rule [Rob65]. Resolution was
very popular, in particular for its ability to deal with �rst -order logic, and led
to the development of the logical programming language Prolog. Resolution
is still in use in many modern ATPs. In order to become more versatile,
automated deduction systems needed to go beyong propositional reasoning
and deal for instance with the frequently used equality predicate. To that
end, the paramodulation [RW69] rule was designed in order toachieve better
equational reasoning.

As interest in ATP systems grew, so did the number of potential ap-
plications and the variety of formulae to discharge. In particular, many
applications (notably software veri�cation) required pro ving the validity of
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formulae in logics more constrained than �rst-order predicate logic with
equality: integer arithmetic often became essential, and other theories such
as arrays or bitvectors as well. To deal with these theories,an axiomatic
approach in a standard ATP is not satisfactory and speci�c decision pro-
cedures were developed instead. The last decade has seen a very active
development in the �eld of Satis�ability Modulo Theory (SMT ) solvers, an
alternative category of automated deduction systems whichstarted around
1980. These SMT solvers decide the satis�ability of formulae by combin-
ing a propositional solver with decision procedures dedicated to background
theories such as linear arithmetic. SMT solvers will be at the heart of our
dissertation and we present them in more detail in Chapter 1.

Interactive Theorem Proving

In parallel to the development of automated theorem proving, others started
using deductive systems in order to verify the validity of existing proofs. This
task was particularly amenable to mechanization since it was both tedious
and decidable. There were also some systems which were neither automated
theorem provers nor proof checkers, but somewhere in the middle. This
was the case of the Boyer-Moore prover, which was based on resolution
but allowed the user to give directives at di�erent points during a proof.
We can consider that such a system is a proof checker since the�proof�
consists in the sequence of directives, but how complicatedcan proof steps
be if we are to qualify a system as a proof checker? A qualitative answer
to this question was given by de Bruijn's criterion: the correctness of the
proof checker as a whole shall only depend on a very small, well-understood,
kernel. The Boyer-Moore prover, or any other automated theorem prover
for that matter, hardly satis�es this criterion, and system s which verify this
criterion have not been developed on top of techniques like resolution, but
on type theory.

Type theory was introduced by Russell and Whitehead in their Prin-
cipia Mathematica in order to avoid the inconsistency of Frege's approach
as revealed by Russell's paradox. Zermelo-Fraenkel's set theory remained
(and still remains) the preferred logical foundation for mathematics, but
the interest in type theory was renewed by Church's invention of � -calculus
after it was discovered that there exists a strong correspondence between
the deduction rules in type theory and a typing system for � -calculus. This
correspondance is known as theCurry-Howard isomorphism and allows one
to identi�es programs to proofs, and types to propositions: if there exists a
ground � -term t of type � , then � is a tautology and t is a proof of that tau-
tology. The characterization of proofs as programs denotesthe constructive
nature of this formalism and it is not surprising that it is on ly describing
intuitionistic logic. A proof checker for such a system is therefore simply
a type-checker for � -terms; in particular, it satis�es the de Bruijn criterion
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because it is quite reduced and is entirely described by a small set of typing
rules.

A limitation of type theory is that only formulae which corre spond to
types of terms can be expressed in this framework, and simply-typed � -
calculus is not very expressive in that regard. In order to express richer
properties, Martin-Löf proposed an intuitionistic type th eory [ML75] richer
than Russell and Whitehead's, insofar as it is possible to quantify over ob-
jects and types using a dependent product operator. By usingdependent
types, it is possible to express properties quanti�ed by objects and which
depend on the value of these objects, which makes it much moreexpressive
than simple type theory. Another important change is that since terms are
part of types, they can be reduced and therefore there is a natural notion of
computation in the logic. The Calculus of Constructions, due to Coquand
and Huet [CH88], can be seen as a higher-order extension of Martin-Löf's
type theory.

The �rst proof checker based on type theory was Automath [dB94]: it
was developed in 1968 by de Bruijn and would take a full proof term and
verify it. Later came LCF, which relied on a proof language which had a
big impact in the �eld of programming languages since it is at the basis of
languages of the ML family. LCF had a revolutionary architecture which is
now common to all so-called LCF-style provers, like HOL [hol], and which
consists of a dedicated language of commands calledtactics based on a small
set of elementary rules. LCF used abstract types to prevent theorems to be
built from other means than this reduced kernel. Because these systems
allow one to iteratively build a veri�ed proof, they are call ed interactive
provers in contrast to automated provers.

Modern interactive provers based on type theory can be classi�ed in two
di�erent families. Like LCF, the �rst family uses type theor y as a meta-logic
to justify basic inferences steps allowed by the prover. This family includes
provers such as Isabelle [Isa] or TweLF [PS99]. The other class of interactive
provers rely on a type theory and simply implement a typechecker for terms
in this theory. Among these systems, NuPrl [NuP] and Agda [BDN09] are
based on Martin-Löf's type theory, while Lego [Leg], Matita [ACTZ07] and
Coq [Coq] are based on a variant of the Calculus of Constructions. Coq is
our interactive prover of choice in this thesis and we discuss its logic and its
architecture in much more detail in Chapter 4.

Combining Interactive and Automated Approaches

Modern interactive provers use very expressive logics based on type theory
and therefore allows for an intuitive formalization of mathematical concepts.
They can thus be used to formalize complex concepts and achieve complex
proofs, which are way beyond the capabilities of automated theorem provers.
Unfortunately, they can be very tedious to work with becauseproofs must
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be justi�ed by small basic steps and therefore require much more detail
than even the most detailed pencil-and-paper proof. Moreover, in very big
proofs, it is often the case that there are just a few key arguments requiring
human thinking and the remaining of the proof is then simple enough to be
discharged by an automated prover.

This is therefore a natural idea to try and combine the interactive and au-
tomated approaches by using an automated prover to discharge easy enough
goals during an interactive proof. Unfortunately, automated provers, as we
explained, are complex systems which do not meet de Bruijn'scriterion and
therefore they cannot be embedded as such in an interactive prover without
compromising its kernel. There is actually concern over thecorrectness of
ATPs and SMT solvers considering the complexity of these systems and the
fact that they are being used for critical software or hardware veri�cation.

There exists a category of systems which take a less sceptical stance than
the interactive provers cited above, and which dilutes the de Bruijn criterion.
Such systems include ACL2 [ACL] (the descendant of the Boyer-Moore the-
orem prover), the PVS speci�cation and veri�cation system [PVS], or the
Atelier B based on the B-Method [Abr96] (which has the particularity of
relying on set theory). These veri�cation systems provide an expressive log-
ical language to formalize programs or mathematics and to write precise
speci�cations about these formalizations. They also provide an interactive
way of proving these properties in a manner similar to proof assistants, but
with the help of automated decision procedures. These toolsare very pop-
ular because they allow one to write formal speci�cations while the proving
phase is assisted by automated provers and is therefore lesstedious than
typical interactive provers.

For those systems which still want to keep a small trusted kernel and not
rely on automated provers directly, the integration of automated methods
is a real challenge. In order to be trusted by the interactive prover, the
automated prover must not only �nd a proof, it must explain it s proof in
terms of the basic steps accepted by the proof checker. This explanation is
called a proof trace and since the steps accepted by the interactive prover
are so basic, instrumenting an automated prover to return proof traces suit-
able for the interactive prover is a complex task. It is usually done in two
steps, with the solver returning an intermediate proof trace which is further
transformed into an object suitable for the proof checker (that second phase
is called proof reconstruction).

Another way to proceed is to use the ability of the logic to embed compu-
tations, and more generally programs. Along with the ability of higher-order
logic to re�ect itself [Har95, BM90], this feature makes it possible to use a
technique of proof by re�ection . This consists in implementing a decision
procedure directly as a program in the logic, and using the correctness of
this implementation, prove formulae by a simple computation of the proce-
dure. We will make use of this method in this thesis and it will be explained
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in detail in Chapter 4

Contributions

We now present the contributions of this dissertation. We have seen that
interactive provers allow complex formalizations at the price of tedious proof
developments, while automated theorem provers do not require human in-
tervention but raise soundness issues. We are interested inthe soundness of
the SMT solver Alt-Ergo and use the Coq proof assistant to formally verify
Alt-Ergo's core components. This leads to the two following contributions.

A Formally Veri�ed SMT Solver Kernel

Our �rst contribution in this work is to have formalized Alt-Ergo's kernel
components and formally established the correctness of this formalization
in the Coq proof assistant. This kernel consists in a propositional solver
based on the DPLL procedure, extended with standard optimizations, along
with an original decision procedure combining the theory of equality on
uninterpreted functions with an arbitrary theory under cer tain conditions.
Because this procedure, calledCC(X), is novel, it is all the more important
that it is proved sound and complete in a formal setting.

This formalization and veri�cation of Alt-Ergo's kernel dramatically in-
creases the trust that we can have inAlt-Ergo; in particular developing the
proof has helped us better understand some of the details of the algorithm
and make sure of the conditions where it could be applied. This is par-
ticularly interesting because Alt-Ergo is used to discharge proof obligations
coming from software veri�cation systems, and must therefore be reliable.

A Re�exive Tactic for Automated Deduction

Our second contribution is to extend our Coq veri�cation of Alt-Ergo's kernel
in such a way that it is possible to use the underlying decision procedure as
a Coq tactic. We do not extend Coq's trusted code base or perform proof
reconstruction from Alt-Ergo; instead, we formalize the kernel's components
by writing an e�ective implementation in the Coq proof assistant. This
approach raises some issues since it amounts to reimplementing the solver's
kernel in the context of the pure programming language contained in Coq's
logic, and do it in such a way that it can be computed reasonably e�ciently.
In order to be used to prove Coq's formulae, we use the principle of proof by
re�ection and therefore we have to de�ne semantics of the concrete objects
manipulated by our algorithm which can be lifted to Coq's own notion of
validity. Another critical point is the rei�cation phase: t he translation of
Coq's formulae in concrete objects which represent them andon which the
algorithm can be applied.
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By following this approach, we develop a re�exive tactic which e�ectively
combines three useful theories: propositional logic, equality with uninter-
preted functions, and linear integer arithmetic. These three theories are
ubiquitous in usual Coq developments and such a tactic is the�rst which
can handle their combination. Indeed, many evolved tacticsexist in Coq to
deal with some logical fragment but it is generally impossible to combine
them. Consequently, these existing tactics only work for formulae which are,
for instance, purely arithmetic, purely propositional, or purely equational.
Providing a tactic which actually combines these three fragments represents
a real contribution towards more automation in Coq.

Throughout this development, we also implement componentswhich are
highly reusable and are not speci�c to our particular goal. For instance, we
provide a library for ordered types and generic data structures commonly
used in programming language. Such extensions are valuableto the Coq
community since existing reusable components help developfaster programs.
This is even more signi�cant than in a standard programming language since
components developed in Coq must also come with speci�cations and proofs,
and thus are particularly time-consuming to reimplement.

Outline

This thesis is organized in two parts.
The �rst part is devoted to the mathematical formalization o f Alt-Ergo's

quantifer-free kernel. Chapter 1 presents the origin of SMTsolvers and
the architecture of Alt-Ergo. In Chapter 2, we present a formalization of
the propositional solver at the heart of our SMT solver. This propositional
solver is based on a standard DPLL procedure, which we formalize as an
inference system. We also show how to extend this system to commonly
used optimizations such as con�ict-driven clause learning, and also discuss
adaptations required for use in an SMT solver. Chapter 3 details Alt-Ergo's
original combination schemeCC(X) used to perform congruence closure mod-
ulo a theory X. We also show how we extend this system in order to deal
with disequations.

The second part is devoted to the implementation of a Coq re�exive tac-
tic based on the formalization presented in the �rst part. Chapter 4 presents
the Coq proof assistant, its logic, its speci�cities, and the approach of proof
by re�ection as well as other approaches for automating deduction in Coq.
Chapter 5 presents a Coq library of �rst-class containers which provides
common structures such as ordered types, �nite sets and �nite dictionaries,
and which are fundamental to implementations in later chapters. Chap-
ter 6 presents the Coq formalization ofAlt-Ergo's propositional solver and
how it can be instrumented into a re�exive tactic to automati cally discharge
propositional tautologies. We address the issue of conversion to conjunctive
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normal form in Chapter 7, where we present how to adapt the propositional
solver in order to use a lazy conversion scheme. Chapter 8 presents the mod-
i�cations which must be done in order to extend the propositional solver to
an SMT solver and in order to extend the tactic's rei�cation p rocess to
equalities between terms on an arbitrary signature. We thenformalize and
implement the combination schemeCC(X) in Chapter 9 and show how it can
be plugged in the propositional solver to extend the tacticsto propositional
logic modulo equality. Chapter 10 �nally presents the implementation of
the theory of linear arithmetic and how it can be used in our framework.

We conclude in Chapter 11 with a presentation of the whole system
implemented in Coq and its capabilities. We also address thevarious limi-
tations and possible extensions which we envision.
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CHAPTER1

Solvers for Satis�ability Modulo Theories

Ce n'est pas quand il a découvert l'Amérique,
mais quand il a été sur le point de la découvrir,
que Colomb a été heureux.

Fiodor M. Dostoïevski , L'Idiot
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This �rst chapter introduces and presents the Alt-Ergo tool, which is at
the basis of the formalizations we present in this document.Alt-Ergo belongs
to a family of tools called SMT solvers, where SMT stands forSatis�ability
Modulo Theories. Section 1.1 is devoted to an informal presentation of the
SMT decision problem and the �eld of SMT in general. In Section 1.2, we
then present Alt-Ergo and show how it is dedicated to a certain class of
problems that arise in program veri�cation.

1.1 Satis�ability Modulo Theories

In the �eld of automated deduction systems, the two most popular sub�elds
are SAT solvers on one side, and general �rst-order automated theorem
provers (ATP) on the other side. Users of such deduction systems often want
to know the satis�ability, or equivalently the validity, of formulas in a logic
which is more expressive than propositional logic, but morerestrained than
�rst-order logic. Typically, these users are interested in the satis�ability
of �rst-order formulae where some predicate or function symbols have a

13
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predetermined interpretation. For instance, the following formula:

x = 0 = ) f (2 + x) = f (2)

is not valid in general because 0, 2, + and even = can have nonstandard
interpretations, but these nonstandard models are of no interest and this
formula is indeed valid if the equality and arithmetic symbols have their
standard meaning. The interpretation of the predeterminedsymbols is often
called the background theory, and the problem of deciding the satis�ability
of a formula with respect to such a background theory is called satis�ability
modulo theory.

In order to deal with background theories in traditional aut omated de-
duction systems, one must somehow be able to impose the theory constraints
to the prover. This can be done in di�erent ways whether one isconsidering
a generic ATP or a SAT solver.

The only way to force �rst-order automated theorem provers to only
consider models which are consistent with the background theory is to add
axioms to the formula which describe the theory. This is onlypossible when
the theory is axiomatizable, or more precisely�nitely axiomatizable , i.e.
when there exists a �nite set of �rst-order formulae which exactly describe
the theory. For instance, considering the fact that almost all ATPs deal
with equality adequately, the formula above can be proved valid by such
ATP simply by adding the following two axioms:

(i) 8xyz; x + ( y + z) = ( x + y) + z

(ii) 8x; x + 0 = x = 0 + x

which describe + as a monoid operation whose neutral elementis 0. The
performance of dealing with interesting theories through such axiomatization
is often unacceptable, but more importantly, a great numberof interesting
theories are not �nitely axiomatizable. For instance, Tarski's axiomatization
of real numbers [Tar46] cannot be expressed with a �nite number of axioms,
neither can Presburger arithmetic [Pre29]. All the theories of inductive
datatypes with a �nite number of constructors (such as �nite trees [BRVs95]
for instance) are not �nitely axiomatizable either, because second-order logic
is required to express the induction principle.

We have seen that some theories cannot be axiomatized in an ATP;
however, for many such theories, as those cited above, thereexists decision
procedures for the satis�ability of quanti�er-free formul ae. Such decision
procedures have been actively studied in the last two decades and there is a
growing list of decision procedures for theories with practical applications.
The research on SMT has been concerned with the problem of integrating
these decision procedures in SAT solvers in order to solve the SMT prob-
lem for the corresponding theories. Early research on the problematic of
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incorporating decision procedures in formal provers was performed more
than thirty years ago by the likes of Shostak [Sho78, Sho79, Sho84], Nelson
and Oppen [NO79, NO80], and later by Boyer and Moore [BM88, BM90]
in their Boyer-Moore prover. The interest in SMT research rose again at
the end of the 1990s and has since been very active, both on theoretical
and practical aspects. SMT solvers have been developed in academia as
well as in the industry; an annual workshop brings together users and de-
velopers of the SMT community; a common pool of benchmarks has been
established [BST10] in order to measure the progress of the systems and a
competition [SMT] is organized in order to compare their relative strengths
and weaknesses. Techniques and systems from the SMT community are now
used in a variety of domains such as static checkers or veri�cation systems
(this is the case for Alt-Ergo, see Section 1.2), model checkers (BLAST),
interactive theorem provers (HOL, PVS), etc.

There are two main approaches when designing an SMT solver, which
are known as theeager and the lazy approach. Alt-Ergo, like most other
systems, follows the lazy approach and we will present this architecture in
detail in the next section. Whereas lazy SMT solvers rely on the dynamic
combination of a SAT solver and a decision procedure for the theory literals,
eager SMT solvers try to express all the possible useful theory constraints
related to a formula and translate this formula in order to add all these
constraints and retain equisatis�ability. The translated formulae are then
passed on to a standard SAT solver. A survey with many detailson modern
SMT techniques in both lazy and eager SMT solvers is available in [BSST09].

1.2 Alt-Ergo: an SMT Solver Dedicated to Pro-
gram Veri�cation

We now presentAlt-Ergo, an SMT solver dedicated to program veri�cation.
Before we detail its architecture, we look into the context of program veri-
�cation.

1.2.1 Program Analysis and Software Veri�cation

There exists a broad range of techniques which aim at ensuring certain
properties (or, equivalently, avoiding certain run-time errors) in computing
systems. The main characteristics that allow one to classify these techniques
are whether they are automatic or human-driven, and whetherthey happen
at run-time (dynamic) or are performed statically. For inst ance, research on
programming languages leads to type systems which statically ensure that
all well-typed programs will verify some properties (basically the absence
of crash due to typing errors, but also the absence of null dereferencing
in languages like OCaml, C# or Haskell) while other languages (typically
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scripting languages like Python, PHP or JavaScript) only provide dynamic
type-checking.

In order to statically verify more complex properties of programs, for in-
stance detecting divisions by zero, out-of-bounds accesses, over�ows and
other typical dangerous situations a program can encounter, techniques
like model-checking, abstract interpretation or static analysis can be used.
These techniques can be fully automated or simply semi-automated, but in
any case require typically much less manual e�ort than full formal veri�ca-
tion using proof assistants such as HOL, Isabelle or Coq. Theamount of
manual work required usually depends on the complexity of the properties
that one wants to establish. Examples of these systems, called extended
static checkers, include Spec# [BRS05], ESC/Java [FLL+ 02] or SPARK.
The Whyplatform [Fil03, FM07] is a multi-language, multi-prover p latform
for program veri�cation, whose architecture is shown in Figure 1.1.

Annotated C programs JML-annotated Java programs

Caduceus Why program Krakatoa

Why

Interactive provers
(Coq, PVS,
Isabelle/HOL, etc.)

veri�cation conditions
Automatic provers
(Alt-Ergo, Simplify,
Yices, Z3, CVC3, etc.)

Figure 1.1: Architecture of the Whyplatform

The platform revolves around Why, a veri�cation condition generator
(VCG) which takes an annotated Whyprogram as input, analyzes it and re-
turns a set of logical formulae, calledveri�cation conditions or proof obliga-
tions (PO). The annotations in the input program express logical properties
on the program's behaviour and the tool guarantees that it issu�cient to
verify that all the PO are valid in order to check that the logi cal properties
in the program are veri�ed. The Whyplatform can then translate these ver-
i�cation conditions and dispatch them to a variety of prover s, interactive or
automatic. Whyis used as an intermediate annotated language for verifying
programs in mainstream languages, namely C and Java, through separate
tools called Caduceus and Krakatoa. These tools perform language-speci�c
analysis, in particular they need to model their respectivelanguage's features
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into the intermediate language. For example, let us consider the following
annotated C program:

/*@ ensures
@ \result >= x && \result >= y &&
@ (\result == x || \result == y)
@*/

int max(int x, int y) {
if (x > y) return x; else return y;

}

It de�nes a function maxwhich computes the maximum of two integer ar-
guments. The special comments preceding the function are the annotations
that describe its behaviour: it states that the result of the function should
be greater or equal than both arguments and should be one of the two argu-
ments. Processing this program through theWhyplatform will yield proof
obligations corresponding to two branches of the conditional in the function:

8xy : int; x > y =) x � x ^ x � y ^ (x = x _ x = y)

8xy : int; x 6> y =) y � x ^ y � y ^ (y = x _ y = y)

which are trivially true and can be discharged by any automated prover
knowledgable about linear arithmetic. This is a very easy example, but such
program analysis often yields a great number of proof obligations, many of
which are quite easy. Therefore it is very important to be able to discharge
these obligations automatically as much as possible. The few very complex
obligations, if any, can be inspected by hand or in an interactive prover.

An automated theorem prover used at the back-end of such a program
veri�cation plaform needs to be able to deal with quanti�ers and with back-
ground theories corresponding to the various built-in datatypes of the source
languages, typically arithmetic, arrays, tuples, etc. This is why SMT solvers
like Z3 [dMB08], Yices [Yic] or CVC [BT07], i.e. those which can deal with
�rst-order logic in general, are tools of choice for such a task, and Alt-Ergo
was developed speci�cally for that purpose.

1.2.2 Alt-Ergo

In the context of program veri�cation, we have seen that goals to be proved
are formulae of typed �rst-order logic with quanti�ers and i nterpreted built-
in symbols for equalities, integer and/or �oating point ari thmetic, etc. Sorts
naturally arise from the usual datatypes of programming languages (as in-
tegers in our example above) and also from the user speci�cations. Annota-
tions in Why, for instance, are very expressive since they allow user-de�ned
types, symbols, functions and predicates. Whyalso has the particularity
of using polymorphic types [Pie02]: polymorphism is very convenient to



18

de�ne and reason about generic data structures like arrays or lists, and
also as a means to ensure separation in the memory model used by Ca-
duceus [HM07, TKN07].

Unfortunately, there are only a few SMT solvers under activedevelop-
ment which deal with quanti�ers, but none of them can handle polymorphic
�rst-order logic natively. In order to use these provers, which are either un-
sorted or multisorted, the available solutions are to ignore types, trying to
guess the monomorphic instances which are needed for a givenformula, or
using encodings, and all these solutions are quite unsatisfactory [CL07]. Alt-
Ergofully supports polymorphic �rst-order logic and is therefo re particularly
well-suited for the Whyplatform.

SMT parser Why parser

Typing

SAT-solver

Matching CC(X)

main loop

Decision
procedure

Figure 1.2: Architecture of Alt-Ergo

Alt-Ergo's architecture is shown in Figure 1.2; it is highly modular and
this �gure schematizes the relation between the di�erent modules. On the
front end, Alt-Ergo accepts two di�erent syntaxes: the standard SMT for-
mat de�ned in the SMT-LIB [BST10], and Why's native format. For both
formats, an abstract syntax tree in the same internal datatype is produced
and then type-checked in polymorphic �rst-order logic. The formulae then
enter the main loop of the prover, which performs the proof search:

SAT-solver. The main part is a home-made SAT-solver with backjumping
which deals with the propositional part of the formulae. It also keeps
track of the lemmas (i.e. universally quanti�ed hypotheses) of the
input problem and those that are generated during the execution.

Matching. The matching module is used to �nd terms that can be used
to instantiate the lemmas contained in the SAT solver; it proceeds
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modulo the equivalence classes inCC(X) and allows the SAT-solver to
derive ground sentences from the available lemmas.

CC(X). The CC(X) module handles the ground atoms assumed by the SAT-
solver: the SAT-solver sends atoms to this box, which in turninforms
the SAT-solver of what atoms are true or false. It combines the the-
ory of equality ( i.e. uninterpreted symbols) with a theory X via a
congruence closure algorithm moduloX.

Decision Procedure. The decision procedure implements the reasoning
relative to the background theory X and is used byCC(X) in order to
construct equivalence classes moduloX.

Alt-Ergo is implemented in OCaml [Obj] and uses almost exclusively
functional data structures, except for the technique of hash-consing, which
is used extensively in order to ensure maximal sharing in thedata structures
and to avoid the blow-up in size due to the conversion to conjunctive normal
form [FC06]. Its development was started in 2006 and its mainloop is about
5000 lines of code, which is really small for an SMT prover. The small size
and modular architecture of Alt-Ergo make it easier to establish that the
prover is correct, and this last point has been a motivation (and a concern)
from the beginning.

In order to ensure its correctness, we present formalizations of the al-
gorithms at the heart of the most critical modules in Alt-Ergo. Chapter 2
deals with the SAT-solver module and formalizes the DPLL algorithm on
which Alt-Ergo's SAT-solver is based, as well as various optimizations. Chap-
ter 3 is devoted to the CC(X) module and describesAlt-Ergo's original con-
gruence closure algorithm modulo a background theory. The requirements
that the corresponding decision procedure must verify are also dealt with
in Chapter 3. We do not give any formalization for the matching mod-
ule: this module is indeed not critical for two reasons. First and foremost,
the matching mechanism cannot really be incorrect in the sense that any
possible lemma instantiations are correct, the matching mechanism is sup-
posed to e�ciently determine useful instances, and useful instances only, but
too many instances can only cause ine�ciencies. Second, �rst-order SMT
solvers cannot be complete in general on non-ground formulae, therefore
even if the matching mechanism misses all instances, the prover may just
be �more� incomplete than ideal, but again it is not a critica l error. Now,
matching e�ciently can be a di�cult challenge and advances t echniques
exist (see [MB07] for instance). Alt-Ergo uses a rather naïve approach but
some subtleties arise due to the polymorphic logic, as explained and detailed
in [BCCL08].
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Formalization of the Propositional Solver
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In this chapter, we present the formalization of the propositional solver
at the heart of Alt-Ergo. As explained in the previous chapter, this part
of the system is fundamental to any SMT solver and we want to guarantee
its correctness. Alt-Ergo's propositional solver is a SAT solver based on
the traditional Davis-Putnam-Logemann-Loveland (DPLL) p rocedure and
we start in Section 2.1 by presenting this original DPLL procedure. We
also give our own formalization of this algorithm through a set of inference
rules and prove the correctness of our inference system. In Section 2.2, we
extend this system by successively adding non-chronological backtracking
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and a mechanism for learning new clauses from con�icts. We then go on to
discuss other typical optimizations of state-of-the-art SAT solvers which we
have not integrated into our system. In Section 2.3, we show how the SAT
solving procedure we have presented can be easily adapted inorder to be
integrated to an SMT architecture.

2.1 DPLL: A SAT-Solving Procedure

2.1.1 The Satis�ability Problem

The satis�ability problem SAT is the problem of deciding whether the vari-
ables of a propositional (or boolean) formula can be assigned values in such
a way as to make the formula true. A formula for which such an assign-
ment exists is said to besatis�able whereas a formula for which no suitable
assignment exists is said to beunsatis�able. Of course, the unsatis�ability
problem is dual to the satis�ability one and both are equally di�cult. It
is a well-known result, and one of the �rst historical results in complexity
theory, that the satis�ability problem is NP-complete [Coo 71].

More formally, the formulae of propositional logic are de�ned as follows.
We assume a setL of propositional variables, also calledatoms, and a for-
mula is any sentence which can be built using the usual logical connectives
and the atoms x in L :

F := x j : F j F _ F jF ^ F j F ! F j F $ F:

The SAT problem is traditionally presented with solely the conjunction ^ ,
disjunction _ and negation: operators, but any functionally complete set of
boolean operators can be used without changing the nature ofthe problem,
and we choose here to add the implication and equivalence connectives. A
formula reduced to an atom is said to beatomic. A literal is a variable or
the negation of a variable; it is called respectively apositive or a negative
literal. We will write the negation of literals in a slightly di�erent manner
than the negation of formulae, namely�l will denote the negation of literal l .
A clause is a disjunction of literals and a formula is in conjunctive normal
form (CNF) if it is a conjunction of clauses, i.e. a conjunction of disjunction
of literals.

There are several ways to decide the satis�ability or unsatis�ability of
a boolean formula. The most naive way is to enumerate all possible as-
signments and check for each one if the formula becomes true or not; for n
variables in the formula, there are 2n assignments to try. Much better ways
have been developed over the years in order to avoid as much aspossible
the exploration of this exponential search space. Some techniques such as
Binary Decision Diagrams [Bry92] can decide satis�ability for any boolean
formula, but the majority of modern SAT solvers are variants of the DPLL
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procedure and only operate on formulae in CNF. Before we dealin detail
with the DPLL procedure and some of its variants, let us recall that any
propositional formula can be converted into an equivalent formula in CNF,
using the well-known De Morgan rules. Therefore requiring that the for-
mulae be in CNF is not a restriction per se, and in the remainder of this
chapter we shall assume that formulae are in CNF. We will discuss the issue
of CNF conversion in great detail later in Chapter 7.

To conclude this introduction, here are several examples:

� the formula (x1_ (x3^ x1)) $ : (x2_ x3) is satis�able, take for instance
x1 false, x2 true and x3 false;

� the formula (x1 _ �x2) ^ x2 ^ �x1 is in CNF and is unsatis�able;

� for any positive integer n 2 N� , the formula

Hn =
n̂

p=1

n� 1_

i =1

xpi ^
n� 1^

i =1

n̂

p=1

p� 1^

q=1

(�xpi _ �xqi)

is unsatis�able. It expresses the pigeon-hole principle,i.e. the fact
that n pigeons cannot be put inn� 1 holes without two pigeons sharing
the same hole. The variablexpi stands for �pigeon p is in the hole i �,
the �rst part of the conjunct expresses the fact that all pigeons are
sheltered, while the second part prevents each hole from containing two
pigeons. Note that the formula is in conjunctive normal form. Generic
formulae like this one are very useful to benchmark or test a procedure
since the parameter can be changed at will; the unsatis�ability of the
pigeon-hole formula is notoriously di�cult when n grows.

2.1.2 The DPLL Procedure

The Davis-Putnam-Logemann-Loveland procedure was proposed in two sem-
inal papers in the early 1960s in order to solve the satis�ability problem for
propositional formulae. In [DP60], Davis and Putnam �rst pr oposed a semi-
decision procedure for �rst-order logic which proceeded byenumerating all
propositional ground instances of a formula and checking the satis�abil-
ity of each of these instances. The satis�ability check was performed by a
resolution-based procedure,i.e. the instance was simpli�ed repeatedly by
using the following rule:

l _ C �l _ D

C _ D

which resolves two clauses in a single clause by eliminatinga literal appearing
positively and negatively. This method led to a worst-case exponential blow-
up in the size of the formula and in order to avoid this, Davis, Logemann
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and Loveland then re�ned the satis�ability procedure in [DL L62], and what
is now known as DPLL.

The DPLL algorithm works on a CNF formula and runs by guessingtruth
values for literals and the way in which it improves on a naiveexhaustive
backtracking search is the eager use of the following rules:

Boolean constraints propagation. Once a truth value has been assigned
to a literal, the formula can be simpli�ed accordingly: false literals
can be deleted from the clauses where they appear, and clauses that
contain true literals can be removed from the formula.

Unit propagation. A unit clause is a clause which only contains one lit-
eral. It is obvious that such a clause can only be satis�ed by assigning
the adequate value to make that literal true. Such deterministic choices
of a truth value for a variable cuts out a large part of the exponential
search space and is thus very important for e�ciency.

Pure literal elimination. A literal is pure if it only appears with the same
polarity in the whole formula. A pure literal can be assignedsuch that
all clauses that contain it are true, in other words, it is not constraining
the proof search and they can be eliminated systematically.Note that
this heuristics is not used anymore because the cost of detecting pure
literals exceeds the bene�t of eliminating them in modern SAT solvers,
therefore we will not include this rule in our presentation.

In this fashion, the algorithm proceeds by successively assigning values to
the variables in the formula until one of the following occurs:

� the simpli�ed formula is reduced to the empty conjunction ; , which
means that the current assignment satis�es the formula; in other
words, the formula is satis�able and the algorithm stops;

� one of the clauses in the problem is empty (also called acon�ict clause)
and cannot be satis�ed with the current assignment; in that case the
search backtracks and tries another assignment to some variable. If
this is not possible, the formula is unsatis�able.

2.1.3 DPLL as an Inference System

We now present the DPLL procedure formally as a system of inference rules.
We use the following conventions for denoting formulas in CNF:

� the order in which literals are presented in a clause is irrelevant, as
well as the order of clauses in a CNF formula;

� we write l _ C for a clause containing the literal l , and we use set-
theoretic notation f l1; l2; l3g to denote the clausel1 _ l2 _ l3;
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� a formula in CNF is written C1; : : : ; Cn where the Ci are the di�erent
clauses of the formula, we use � to range over such conjunctions of
clauses.

Red
� ; l ` � ; C

� ; l ` � ; �l _ C
Elim

� ; l ` �

� ; l ` � ; l _ C
Assume

� ; l ` �

� ` � ; f lg

Conflict
� ` � ; ;

Split
� ; l ` � � ; �l ` �

� ` �

Figure 2.1: An abstract presentation of DPLL

Our DPLL formalization is given in Figure 2.1 through �ve inf erence
rules. The state of the algorithm is described as asequent� ` �, where � is
the set of literals assumed to be true, and � is the current formula. These
rules must be read bottom-up: the state under the bar is the state before
the application of the inference rule.

The �rst two rules perform the boolean constraints propagation as de-
scribed above. If a literal is supposed to be false (its negation belongs to
�), it can be eliminated from all clauses (Red ); if a clause contains a true
literal, the entire clause can be removed (Elim ). Assume implements the
unit propagation by assuming a literal in a unit clause. Split represents
the variable assignment and is the only branching rule: a literal is assumed
to be true on the left branch and false on the right branch. Finally, the
Conflict rule detects empty clauses and has no premises: it is the only
rule that ends the di�erent branches of the proof search.

Starting with some sequent � ` �, building a complete derivation with
these rules requires each branch to end with an application of the Conflict
rule. In other words, if there exists a derivation starting with � ` �, there
is no satisfying assignment of the variables in � such that all the variables
in � are true (we will say that such an assignment extends�). Reciprocally,
if there is no derivation for � ` �, it means that there is a branch that
reduces to the empty set of clauses,i.e. that there is a way to extend �
while satisfying �. Now, given a formula in CNF �, the unsatis �ability of
� is equivalent to the existence of a derivation for the sequent ; ` �, i.e.
starting with an empty partial assignment. We will prove the se properties
in the next section.

Derivation system vs. Algorithm. The DPLL algorithm and its mod-
ern variants are traditionally presented in a procedural manner [DLL62,
MMZ + 01], that is as deterministic algorithms (for instance as abstracted
real code or pseudo-code). We instead chose to present the algorithm as an
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abstract set of inference rules, in particular we do not specify how and when
rules should be applied.

This kind of presentation is more similar to Tinelli's DPLL( T ) presen-
tation [Tin02]. In our opinion, the main advantage of this approach is that
we can manipulate the system without taking the details of a particular
implementation into account. Typically, we can prove the correctness of
our system regardless of a particularstrategy of how rules should be ap-
plied, and the proofs will apply to any implementation based on the given
rules. It would have been possible to add more �constraints�to the system,
restricting which strategies are acceptable and which aren't, by using side
conditions for some inference rules. For instance, the use of the splitting
rule Split could be modi�ed like this:

Split'
� ; l ` � � ; �l ` �

� ` �
l; �l =2 �
9C 2 � ; l 2 C

in order to constrain the rule to only be applied to an unassigned literal that
actually appears in the problem. There is not much bene�t in doing that:
these side conditions are not used in the soundness proof of the system, and
they just constrain the completeness proof by forbidding some applications
of the rules. On the other hand, if one �nds a very e�cient stra tegy which,
for some reason, occasionally performs a useless split on analready assigned
literal, one could not use the system to justify the strategy. Also, if we add
some strategy to the rules, how much should we add exactly? Itis reasonable
to think that the Conflict rule should be used as soon as possible, and
that boolean constraint and unit propagation should be performed eagerly
otherwise, with Split used as a last resort. This speci�c strategy could be
summarized in regular expression style as:

(Conflict ?.(Red |Elim |Assume)*. Split' )*

but it is very restrictive and other reasonable alternatives or re�nements
exist, such as:

(Conflict ?.Assume*.Red *.Split' )*

Because there is no reason to favour one particular strategy, we chose to not
add any unnecessary constraint to our system in order to keepit as general
as possible. Some strategies may be complete, some may be incomplete1,
but all strategies will be correct as long as the system is sound.

In the second part of this document, when we will provide a formal
proof of this system in the Coq proof assistant and then derive some Coq
implementations, this approach will be of the utmost importance. It will

1When considering one particular strategy, its completeness should always be investi-
gated; the completeness of the system itself is just that there exists at least one complete
strategy, as we can see in the proofs page 27.
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allow us to prove the abstract system once and for all, and then prove the
correctness of the di�erent strategies we will implement with respect to the
original system; in particular, this is a very useful way to factorize proofs.

2.1.4 Correctness Proofs for DPLL

We claimed in the previous section that the existence of a derivation of ; ` �
in the system presented in Figure 2.1 is equivalent to the unsatis�ability of
the formula �. We will now prove this claim. There are actuall y two
separate parts to prove: thesoundnessof the system is the fact that only
unsatis�able formulas have a derivation, whereas itscompletenessis the fact
that a derivation can be found for every unsatis�able formula2.

We will actually prove slightly more general results, for any sequent
� ` �, and the case with an empty assignment � will only be a partic ular
instance. We start with the de�nition of the semantic notion of model.

De�nition 2.1.1 (Models). Given a set of atomsL , an L -model M is a
function L 7! f> ; ?g which assigns a truth value (true> , or false ? ) to
every atom. We write M (x) for the truth value of atom x in the model M .

This notion of model is general and we will use it in the next chapter as
well. We will write model instead of L -model because the set of atoms is
clear from the context. For example, in the remainder of thischapter, L is
the set of propositional variables de�ned earlier.

We extend theM (x) notation to literals in a natural way: we write M (l)
for the truth value of the literal l , namely M (x) if l is a positive literal x,
and the negation ofM (x) if l is a negative literal �x.

De�nition 2.1.2 (Satis�ability) . A set of clauses� is satis�able if and
only if there exists a modelM such that for every clauseC in � , there
exists a literal l 2 C such that M (l) = > . In that case, we write M j = � .
If there exists no such modelM , � is said to beunsatis�able.

Because we will be dealing with models that are compatible with a partial
assignment �, we need a more general notion of satis�ability with respect
to a partial assignment, which we call compatibility.

De�nition 2.1.3 (Submodel). A set of literals � is a submodelof a model
M , denoted � � M , if every literal l 2 � is true in M . We also say that
M completes � .

De�nition 2.1.4 (Compatibility) . A set of literals � and a set of clauses
� are compatible if and only if there exists a modelM completing � such
that M j = � . If there exists no such model, we say that� and � are
incompatible.

2 In our choice for naming the two implications soundness and completeness, we are
focusing on the unsatis�ability of a formula: if we were taki ng the dual point of view of
satis�ability instead, the soundness and completeness properties would be swapped.
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We can now prove the soundness of our DPLL derivation system.

Theorem 2.1.5 (Soundness of DPLL). Let � be a set of literals and� a
set of clauses such that the sequent� ` � is derivable, then � and � are
incompatible.

Proof. We proceed by structural induction on the derivation of � ` � and
by case analysis on the �rst rule applied:

(Conflict) The set of clauses � contains the empty clause; , therefore there
cannot be a modelM satisfying � and � and � are incompatible.

(Red) By induction hypothesis, there is no modelM such that � ; l � M
and M j = � ; C. Suppose now that there is a modelM completing � ; l and
such that M j = � ; �l _ C. In particular, M j = � and there exists a literal
k in �l _ C such that M (k) = > . BecauseM completes � ; l , M (l) = > and
thereforek 6= l and k 2 C. Thus, M j = C and M j = � ; C, which contradicts
the induction hypothesis.

(Elim) Assume there is a modelM completing � ; l such that M j = � ; l _
C. In particular, M j = � and therefore � ; l and � are compatible, which
contradicts the induction hypothesis.

(Assume) Assume there is a modelM completing � such that M j = � ; f lg.
By de�nition, it must be the case that M (l) = > . Thus, � ; l is a submodel
of M , and sinceM j = �, then � ; l and � are compatible, which contradicts
the induction hypothesis.

(Split) Assume there is a modelM completing � such that M j = �. De-
pending on whetherM (l) is > or ? , M completes � ; l or � ; �l . In either case,
this contradicts the induction hypothesis for one of the two branches.

Corollary 2.1.6. Let � be a formula in conjunctive normal form. If ; ` �
is derivable, � is unsatis�able.

Proof. By Theorem 2.1.5, � and the empty assignment are incompatible.
Since the empty assignment is a submodel of every model, thismeans that
there are no models of �, in other words � is unsats�able.

We now turn our attention to establishing the completeness of the deriva-
tion system, i.e. proving that a derivation can be found for any sequent
� ` � as soon as � and � are incompatible. Such a proof actually con -
tains a strategy: it explicitly shows how to build a derivati on for a given
incompatible sequent3. More precisely, any complete proof search strategy
using the rules in Figure 2.1 can be used as a skeleton for a completeness

3This claim only holds if the proof is constructive of course, which will be the case here
and for all our formal proofs in the Coq proof assistant later in Part 2. Our point here is
really to stress that there is a strong link between an actual proof search strategy and the
completeness proof.
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proof, and there are at least as many proofs as strategies. Easier strategies
make for easier proofs, therefore we will follow a very naivestrategy for
constructing our proof.

De�nition 2.1.7 (Well-formed assignments). A set of literals � is well-
formed if it does not contain both a literal l and its negation �l .

Until now, we had not imposed any restriction on the partial assignment
� in a sequent. In order to prove completeness of the system however, we
need this notion of well-formedness. To see why, notice thataccording to
the de�nition of a submodel, only a well-formed � can be a submodel of
someM . Therefore, an ill-formed � is incompatible with any sets of clauses
�, but we cannot expect to be able to build a derivation for suc h sequents:
consider x1; �x1 ` f x2g for instance. We will thus only prove completeness
for incompatible sequents with a well-formed assignment.

Lemma 2.1.8. Let � a well-formed set of literals and� a set of clauses
incompatible with � , such that all literals appearing in � are present either
positively or negatively in � . Then, there is a derivation of the sequent
� ` � .

Proof. Let M be a model completing �. There exists such a model because
� is well-formed, and it su�ces to arbitrarily complete � to a ll variables in
L not appearing in �. Now, because � is incompatible with �, the re exists
a clauseC in � such that all literals in C are false inM . Since all variables
in � are assigned positively or negatively in �, this means th at for all literal
l 2 C, �l 2 �.

Therefore, we can applyRed as many times as there are literals in the
clause C, and we are left with a sequent containing the empty clause, to
which point we apply Conflict . We have built a derivation for � ` �:

� ` � ; ;
Conflict

���
� ` � ; f l2; : : : ; ln g

Red

� ` � ; f l1; l2; : : : ; lng
Red

Theorem 2.1.9 (Completeness of DPLL). Let � a well-formed set of literals
and � a set of clauses incompatible with� , then the sequent� ` � is
derivable.

Proof. Let L 0 be the set of variables appearing in � which are not assigned
(neither positively nor negatively) in �. Let us call these v ariablesx1; : : : ; xn .
Starting with � ` �, we apply the Split rule as many times as necessary
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on all the x i in sequence, until we obtain 2n branches of the form �0 ` �
where � 0 ranges from � ; x1; : : : ; xn to � ; �x1; : : : ; �xn .

� ; x1; : : : ; xn ` � : : :
Split : : :

���
� ; x1 ` �

Split

� ; �x1; : : : ; �xn ` � : : :
Split

���
� ; �x1 ` �

Split

� ` �
Split

Let us consider one of the top sequent of the form �0 ` �. Since � 0 is a
superset of � and � and � are incompatible, � 0 and � are incompatible.
By construction, since � is well-formed, so is � 0 since we only split on each
variable once. Finally, all the variables that appear in � ar e assigned in
� 0, therefore we can apply Lemma 2.1.8 to the sequent �0 ` � and �nd a
derivation for this sequent.

By applying the lemma for each sequent at the top, we have built a full
derivation for the sequent � ` �.

Corollary 2.1.10. Let � be an unsatis�able formula in conjunctive normal
form. The sequent; ` � is derivable.

Proof. The empty set of literals ; is well-formed. Therefore, we can apply
Theorem 2.1.9 and; ` � is derivable.

Final remarks. We have established the equivalence between the unsat-
is�ability of a formula and the existence of a derivation in our system from
Figure 2.1. Note that since we based the completeness proof on a very naive
strategy, it does not even use theElim or Assume rule. Indeed, the system
formed by the rules Red , Conflict and Split is a correct and complete
inference system for the unsatis�ability of formulae in CNF. We added the
Elim rule because it may be desirable and it cannot be implementedwith
the three basic rules; typically, most imperative implementations will not
perform elimination of true clauses explicitely during the proof search, but
some functional implementations may, in order to simplify the problem dur-
ing the proof search4. The Assume rule can actually be implemented using
the other rules:

...

� ; l ` �

� ` � ; f lg
Assume

()

...

� ; l ` �

� ; l ` � ; f lg
Elim

� ; �l ` � ; ;
Conflict

� ; �l ` � ; f lg
Red

� ` � ; f lg
Split

4This will of course be the case for our implementation of this system in Coq, but it
is also the case inAlt-Ergo, therefore we need to include this rule to adequately describe
Alt-Ergo's SAT solver.
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but we add it speci�cally because of its historical and practical importance.

2.2 Standard DPLL Optimizations

The system described in the previous section remains very naive, and modern
SAT solvers, though based on this original procedure, achieve much better
results thanks to numerous optimizations [ZM02, Fre95]. Some of these
optimizations have a heuristic nature, as they try to pick the most �relevant�
decision literals when applying the Split rule for instance. Others, on
the contrary, are purely algorithmic and aim at pruning part s of the proof
derivation in order to avoid repeating similar reasonings several times.

In this section, we will only focus on the latter kind of enhancements
(namely non-chronological backtracking and con�ict clause learning), while
the others will be brie�y addressed at the end of the chapter. In particular,
we will show how slight modi�cations of the system presentedso far can
lead to sharp improvements.

2.2.1 Non-Chronological Backtracking

Principle. Non-chronological backtracking [SS96], also called backjump-
ing, consists in checking whether a literal introduced in the application of
Split was �useful� to the derivation of a con�ict in the left branch of this
rule. In the case wherel wasn't used to establish the con�ict, the system
can avoid checking the right branch of the rule since the samecon�ict could
be derived in that branch anyway. To illustrate this method, Figure 2.2
shows a run of DPLL on a particular example where variables are encoded
as integers:

�4 ` fg

3 ` f �4g; f 4g
Assume

�5 ` fg
�3 ` f �5g; f 5g

Assume

2 ` f �3; �4g; f �3; 4g; f 3; 5g; f 3; �5g
Split

...
�2 ` : : :

1 ` f �3; �4g; f �3; 4g; f 2; 3; 5g; f 3; 5g; f 3; �5g
Split

: : :

0 ` f �3; �4g; f �1; �3; 4g; f 2; 3; 5g; f 3; 5g; f 3; �5g
Split
: : :

; ` f �0; �3; �4g; f �1; �3; 4g; f 2; 3; 5g; f 3; 5g; f 3; �5g
Split

Figure 2.2: An example run of DPLL

Only the rules Assume and Split are actually represented, as we as-
sume that every possible boolean constraint propagation has been realized
between each application of these rules. Also, due to space constraints, only
the last added literal is shown in �. One can notice that in the branch where
2 has been assumed, con�icts arise from the interaction of the literals 3, 4
and 5. The same derivation certainly exists in the right branch where�2 was
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supposed instead of 2, and the proof search in this branch is therefore done
uselessly by DPLL.

Whereas some optimizations are based on heuristics and try to pick the
best candidates to split on in order to avoid cases like the one above as
much as possible, non-chronological backtracking permitsto detect these
cases during the proof-search and recover from an earlier unfortunate literal
choice.

Changing the rules. In order to take this phenomenon into account,
the system has to be able to calculate which literals are responsible for
the con�icts in a given branch of a proof derivation. We do this by adding
dependency information to literals and clauses in a sequent. To that purpose,
we modify our DPLL system from Figure 2.1 in the following manner:

� the context � now contains annotated literals, i.e. pairs l [A ] where l
is the literal added to the context and A is a set of literals (called its
dependencies) representing those literals who led to the introduction
of l in the context;

� each clause in � is now also annotated by a set containing the literals
that played a role in its reduction;

� �nally, sequents are now of the form � ` � : A where the new element
A is the set of literals used to establish the incompatibility of � and
�. One can also view these sequents as an algorithm taking as input
� and �, and returning a set of literals A . We call A the con�ict set
of the sequent � ` � : A .

Red
� ; l [B] ` � ; C[B [ C ] : A

� ; l [B] ` � ; �l _ C[C] : A
Elim

� ; l [B] ` � : A

� ; l [B] ` � ; l _ C[C] : A

Conflict
� ` � ; ; [A ] : A

Assume
� ; l [B] ` � : A

� ` � ; l [B] : A

Split
� ; l [l ] ` � : A � ; �l [A n l ] ` � : B

� ` � : B
l 2 A

BJ
� ; l [l ] ` � : A

� ` � : A
l =2 A

Figure 2.3: Inference rules for DPLL with backjumping
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The rules corresponding to this mechanism are detailed in Figure 2.3.
The �ve original rules are adapted from the �rst system, and a new oneBJ
performs the backjumping. In the rules Red , Elim and Assume, annota-
tions are naturally passed over to clauses and literals: thedependencies of a
reduced clause are the dependencies of the literal used to reduce it plus those
of the original clause; the dependencies of a unit clause arepropagated to
the corresponding literal; other dependencies do not change, including the
con�ict sets. The con�ict sets are actually assigned exclusively by the Con-
flict rule, which now returns, in the right-hand part of the sequent, the
set of literals that led to the empty clause. The Split rule is the one which
introduces new literals in the mix, and therefore introduces new dependen-
cies: a literal l assumed in a split only depends on itself. The right branch is
more involved: the negation�l depends on the con�ict set of the left branch,
i.e. it is implied by the fact that no satisfying assignment was found in the
left branch, with l assumed. The con�ict set of the whole split is the con�ict
set returned by the second branch. Finally, the information brought by the
con�ict set is used in the BJ rule in order to implement the backjumping
mechanism, by discarding the right branch of the split when the con�ict set
does not contain the chosen literall .

Now, if we take another look at the example of Figure 2.2, the derivation
whereSplit was applied with the literal 2 will now be an application of the
new BJ rule. This is represented in Figure 2.4, whereA stands for the set
of literals f 0; 1; 3g et B = A n 3 = f 0; 1g. SinceA decorates the left branch
and does not contain 2, the right branch will not be explored.

�4[0; 3] ` fg [A ] : A
Conflict

3[3] ` f �4g[0; 3]; f 4g[1; 3] : A
Assume

�5[B] ` fg [B] : B
Conflict

�3[A ] ` f �5g[A ]; f 5g[A ] : B
Assume

2[2] ` f �3; �4g[0]; f �3; 4g[1]; f 3; 5g[]; f 3; �5g[] : B
Split

1[1] ` f �3; �4g[0]; f �3; 4g[1]; f 2; 3; 5g[]; f 3; 5g[]; f 3; �5g[] : B
BJ

Figure 2.4: An example run of DPLL with backjumping

As a side remark about the inference system, notice that thistime we
added some side conditions to the rules: the one forBJ is required for the
rule to be correct, but the one for Split could be removed safely. There is
just no reason to useSplit whereBJ could be used, therefore we added this
second side condition in order to make the two rules mutuallyexclusive.

2.2.2 Correctness of the Backjumping Mechanism

In order to prove correctness of the inference system with non-chronological
backtracking presented in the previous section, we will simulate derivations
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in this system with derivations in the system without backtr acking. This
is one advantage of using a very generic presentation in Section 2.1: we
can prove further systems as re�nements of the �rst one, ensuring some
factorization of the proofs. We start by showing a weakeningproperty for
the derivation system without backjumping.

Lemma 2.2.1 (Weakening). Let � , � 0 be two sets of literals such that� �
� 0, and � , � 0 two sets of clauses such that� � � 0. Then, if � ` � is
derivable, so is� 0 ` � 0.

Proof. The proof is really straightforward and proceeds by induction on the
derivation of � ` �. By analyzing each possible rule, it is easy to check
that adding new clauses and literals does not change the applicability of the
rules. Note that it is a very natural property if we take the po int of view
of unsatis�ability instead of derivability: if � is incompa tible with �, then
surely adding more clauses to � will not help, and neither wil l adding more
constraints to �.

De�nition 2.2.2 (Cutting dependencies). If � is a set of annotated literals
and A a set of literals, we write � jA for the set of literals which only depend
on literals in A :

� jA = f l j l [B] 2 � ; B � Ag :

Similarly, if � is a set of annotated clauses, we write� jA for the set of
clauses only depending on literals inA :

� jA = f C j C[B] 2 � ; B � Ag :

This cutting operation provides us with a translation from sequents with
dependencies to sequents without dependencies. We also write � j� and � j�
for respectively the sets of literals in � and clauses in �, i.e. this is a special
case of cutting which just removes all annotations. Our proof is based on
a stability property: if � ` � : A is derivable, then � jA ` � jA is derivable,
which gives a relation between derivations with backjumping and derivations
in the original DPLL system. In order to prove the stability, we need an
invariant on the annotations in � and �. To see why, consider t he sequent
; ` � ; ; [x1] : f x1g where � is some set of clauses, it is trivially derivable;
if we cut this sequent with the set f x1g, the resulting sequent is ; ` �
and is of course not derivable in general. To avoid such cases, we de�ne
well-annotated sequents:

De�nition 2.2.3 (Well-annotated) . Let � be a set of annotated literals,�
a set of annotated clauses andA a set of literals. The sequent� ` � : A is
well-annotated if the following holds:

(i) 8k[B] 2 � ; 8l 2 B ; l [l ] 2 �
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(ii) 8C[B] 2 � ; 8l 2 B ; l [l ] 2 �

In other words, all literals l appearing in dependencies in� and � must be
such that l [l ] belongs to� . We call such literals decision literals.

Note that the de�nition of well-annotated sequents does notsay anything
about the con�ict set A and one may wonder if the literals in A should also
be decision literals or not. This is indeed a consequence of the derivability
of a well-annotated sequent.

Lemma 2.2.4. If � ` � : A is a derivable, well-annotated, sequent, then
for all literal l 2 A , l [l ] belongs to� .

Proof. We proceed by induction on the derivation of � ` � : A and case
analysis on the �rst rule applied.

(Conflict) When Conflict is used, ; [A ] belongs to �, and because the
sequent is well-annotated, all literals in A are decision literals.

(Red) If Red is used, the start of the derivation looks like this:

� ; l [B] ` � ; C[B [ C ] : A

� ; l [B] ` � ; �l _ C[C] : A
Red

It is straightforward to check that the sequent � ; l [B] ` � ; C[B [ C ] : A is
well-annotated, and therefore we get the result by induction hypothesis.

(Elim) If Elim is used, the start of the derivation looks like this:

� ; l [B] ` � : A

� ; l [B] ` � ; l _ C[C] : A
Elim

We can apply the induction hypothesis because the premise sequent is well-
annotated and we obtain that all literals in A are decision literals.

(Assume) If Assume is used, the start of the derivation looks like this:

� ; l [B] ` � : A

� ` � ; l [B] : A
Assume

Noting that � ; l [B] ` � : A is well-annotated, we get by induction hypothesis
that any literal k in A is such that k[k] belongs to � ; l [B]. Becausel cannot
be in B, this means that k[k] belongs to � and we have the needed result.

(BJ) If BJ is used �rst, the start of the derivation looks like this:

� ; l [l ] ` � : A

� ` � : A
BJ

and we have the additional hypothesis that l =2 A . Let k 2 A , by induction
hypothesis we know that k[k] 2 � ; l [l ]. Sincek 6= l, we know that k[k] 2 �.
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(Split) If Split is used �rst, the start of the derivation looks like this:

� ; l [l ] ` � : B � ; �l [B n l ] ` � : A

� ` � : A
Split

with the additional hypothesis that l 2 B . We can apply the induction
hypothesis on the left branch, and we obtain that all literals k in B are such
that k[k] 2 � ; l [l ]. Therefore, we know that all literals k in B n l are such
that k[k] belongs to �, and thus that the sequent � ; �l [B n l ] ` � : A is well-
annotated. Hence, we can apply the induction hypothesis to this sequent
and we get that all literals in A are decision literals.

We now have enough to express the stability theorem.

Theorem 2.2.5 (Stability) . Let � be a set of annotated literals,� a set of
annotated clauses andA a set of literals such that� ` � : A is a derivable,
well-annotated, sequent. Then, there exists a derivation of � jA ` � jA .

Proof. First, note that the statement mixes two di�erent kind of der ivations.
Because the syntactic nature of the sequent usually su�ces to distinguish
between derivations in DPLL with and without backjumping, w e do not
explicitely state which system we are using unless it is absolutely necessary.

The proof proceeds by a structural induction on the derivation of � ` � :
A and by case analysis on the �rst rule applied. Note that when applying
the induction hypothesis, we will not explicitely prove that the premise
sequents are well-annotated, the arguments are exactly thesame as in the
above lemma.

(Conflict) When Conflict is used, the empty set belongs to � and is
annotated with the con�ict set A . Therefore, it also belongs to � jA and we
can apply Conflict to �nd a derivation of � jA ` � jA :

(Red) If Red is used, the start of the derivation looks like this:

� ; l [B] ` � ; C[B [ C ] : A

� ; l [B] ` � ; �l _ C[C] : A
Red

There are two cases to consider:

� if B [ C � A , then both B and C are subsets ofA , and thus l , C
and l _ C are not removed when cutting the sequent. The induction
hypothesis gives us a derivation of �jA ; l ` � jA ; C and by applying
Red we obtain a suitable derivation :

� jA ; l ` � jA ; C

� jA ; l ` � jA ; �l _ C
Red



2.2 Standard DPLL Optimizations 37

� if B [ C 6� A , then the reduced clauseC is cut from the top sequent,
and the induction hypothesis gives us a derivation of (�; l [B]) jA ` � jA .
Since � jA is included in (� ; C[C]) jA , applying the weakening lemma
to the induction hypothesis gives us a derivation for (� ; l [B]) jA `
(� ; C[C]) jA .

(Elim) If Elim is used, the start of the derivation looks like this:

� ; l [B] ` � : A

� ; l [B] ` � ; l _ C[C] : A
Elim

The induction hypothesis gives us a derivation of (�; l [B]) jA ` � jA . By
weakening, we have a derivation of (�; l [B]) jA ` (� ; l _ C[C]) jA .

(Assume) If Assume is used, the start of the derivation looks like this:

� ; l [B] ` � : A

� ` � ; l [B] : A
Assume

The unit clause and the literal l have the same dependenciesB and therefore
they are both cut or both kept. In the �rst case, we need a derivation of
� jA ` � jA and it is simply the induction hypothesis; in the latter case, we
can apply Assume to the cut sequent to retrieve the induction hypothesis:

� jA ; l ` � jA

� jA ` � jA ; f lg
Assume

(BJ) If BJ is used �rst, the start of the derivation looks like this:

� ; l [l ] ` � : A

� ` � : A
BJ

and we have the additional hypothesis that l =2 A . After cutting, the top
and bottom sequents are the same and therefore we just need toapply the
induction hypothesis.

(Split) If Split is used �rst, the start of the derivation looks like this:

� ; l [l ] ` � : B � ; �l [B n l ] ` � : A

� ` � : A
Split

with the additional hypothesis that l 2 B . The induction hypothesis on the
left branch gives us a derivation for the sequent �jB ; l ` � jB . There are two
cases to consider depending on what happens on the right branch:

� if B n l 6� A, the induction hypothesis on the right branch gives us a
derivation of � jA ` � jA , which is exactly what we want;
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� if B n l � A , the induction hypothesis on the right branch gives us a
derivation of � jA ; �l ` � jA . We would like to apply the Split rule, in
other words we would like to establish that � jA ; l ` � jA is derivable.
Unfortunately, the induction hypothesis on the left branch gives a
slightly di�erent derivation, namely � jB ; l ` � jB . We prove � jA ; l `
� jA from � jB ; l ` � jB by using the weakening property, i.e. we prove
that � jB � � jA and � jB � � jA . Let k 2 � jB , there is k[C] 2 � such
that C � B , we want to prove that k 2 � jA , i.e. that C � A . Since
Bnl � A , it is equivalent with the fact that l 62 C. Because the sequent
on the right branch is well annotated, we know that all litera ls in C
are decision literals in � ; �l [B n l ], and therefore that l does not belong
to C. This proves that � jB � � jA and by the same argument, we can
prove that � jB � � jA . Therefore we have a derivation of �jA ; l ` � jA
and by using the rule Split , we can build the derivation we want:

� jA ; l ` � jA � jA ; �l ` � jA

� jA ` � jA
Split

Theorem 2.2.6 (Soundness). Let � be a set of annotated literals,� a set of
annotated clauses andA a con�ict set such that � ` � : A is well-annotated
and derivable. Then,� j� and � j� are incompatible.

Proof. By the stability lemma, the sequent � jA ` � jA is derivable, and
by weakening, this means that the sequent �j� ` � j� is derivable as well.
We simply conclude by applying theorem 2.1.5,i.e. the soundness of the
derivation system without backjumping.

We �nish these proofs by stating the particular case of soundness for an
empty assignment, which is the starting point of a procedurebased on these
rules:

Corollary 2.2.7. Let � be a formula in CNF. Let us annotate all clauses
in � with an empty set of dependencies. Then, if; ` � : A is derivable for
someA, � is unsatis�able.

Proof. By Theorem 2.2.6.

The completeness of the system with backjumping can be easily obtained
by showing that any derivation of a sequent � j� ` � j� also leads to a deriva-
tion of � ` � : A for someA.

Lemma 2.2.8. Let � be a set of annotated literals and� a set of annotated
clauses. If � j� ` � j� is derivable, then there exists some con�ict setA such
that � ` � : A is derivable.
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Proof. The proof proceeds by structural induction on the derivation of � j� `
� j� and by case analysis on the �rst rule used. Intuitively, eachrule can be
mimied by the corresponding rule in the system with backjumping, simply
by adding the dependencies and the con�ict sets. For instance, if the rule
used wasConflict , it has the following form:

� j� ` � 0
j� ; ;

Conflict

where � = � 0; ; [A ] for some set of dependenciesA . Thus, the empty clause
appears in � annotated with A and therefore the following derivation is
possible:

� ` � 0; ; [A ] : A
Conflict

If instead the rule used wasRed , the derivation has the following form:

� 0
j� ; l ` � 0

j� ; C

� 0
j� ; l ` � 0

j� ; �l _ C
Red

where � = � 0; l [B] and � = � 0; �l _ C[C] for some sets of dependenciesB and
C. By applying the induction hypothesis to the sets � and � 0; C[B [ C ], we
know that there exists A such that � ; l [B] ` � ; C[B [ C ] : A is derivable.
Hence, we can build the following derivation:

� 0; l [B] ` � 0; C[B [ C ] : A

� 0; l [B] ` � 0; �l _ C[C] : A
Red

i.e. a derivation of � ` � : A . The rules Elim and Assume can be treated
similarly without any di�culty. The only interesting rule i s the Split rule.
Suppose the derivation of �j� ` � j� starts with the Split rule:

� j� ; l ` � j� � j� ; �l ` � j�

� j� ` � j�
Split

We can apply the induction hypothesis to � ; l [l ], the clauses � and the
derivation in the �rst branch and we get a derivation of � ; l [l ] ` � : A for
some con�ict set A . Now if l 2 A , we apply the induction hypothesis to
� ; �l [A n l ], the clauses � and the second branch of the above derivation: we
get a derivation of � ; �l [A n l ] ` � : B for some setB, and we apply the split
rule in order to get a derivation of � ` � : B.

� ; l [l ] ` � : A � ; �l [A n l ] ` � : B

� ` � : B
Split
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If on the contrary l does not belong toA , we can simply apply the BJ rule
and take advantage of the backjumping mechanism:

� ; l [l ] ` � : A

� ` � : A
BJ

Using this lemma and the completeness of the DPLL system, we get the
completeness of the system with backjumping.

Theorem 2.2.9 (Completeness). Let � be a formula in CNF with all
clauses annotated with empty dependencies. Then, if� j� is unsatis�able,
there existsA such that ; ` � : A is derivable.

Proof. By the completeness of the derivation system without backjumping
(Corollary 2.1.10), there exists a derivation of ; ` � j� . We conclude by
Lemma 2.2.8.

2.2.3 Con�ict-Driven Learning

Principle. Adding non-chronological backtracking has allowed our sys-
tem to avoid exploring some parts of the tree by analyzing theway earlier
con�icts were found, but it still does not take advantage of all the informa-
tion that is available. To realize this issue, consider the situation schematized
in Figure 2.5.

; [0; 1; 3]
�4 `

3 `

; [0; 1]
�5 `
�3 `

2 ` BJ

1 `

; [0; x]
�7 `

6 `
�1 `

x `

??

1 `

...
�1 `

�x `

0 `

Figure 2.5: Example showing the insu�ciency of backjumping

This �gure shows the skeleton of a proof derivation (in the system of
Figure 2.3) which is somehow similar to the one shown in Figure 2.2. Only
the decision literals and the con�ict sets at the leaves of the tree are repre-
sented. The di�erence between the derivation of Figure 2.4 and this one is
that, in the latter, a new literal x has been introduced bySplit between the
introductions of 0 and 1. Now, 0 and 1 were precisely the two literals which
were leading to the con�icts, for after backjumping on 2, the dependencies
associated to the sequent wereB = f 0; 1g.
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In particular, this means that assuming both 0 and 1 will also lead to
a con�ict in the branch marked with a question mark. Nevertheless, non-
chronological backtracking cannot help pruning this part of the tree since
the dependency information f 0; 1g is lost as soon as the algorithm returns
�below� a node where one of these literals was introduced. Inour case, when
returning from the branch where 1 was assumed, the new set of dependencies
is f 0; xg and cannot anyway mention the literal 1: when backtracking to the
point where x was introduced, we lost the information that 0 and 1 do not
go along so well, and we can't exploit it in the remaining part of the proof
search.

Changing the rules, again. In order to solve this problem, a possible
solution is to keep, along with the current set of dependencies, a set of
clauses calledcon�ict clauses representing all the clauses that have already
been �learnt� during the proof search. On our example, we have learnt that
0 and 1 imply the empty clause, since; is annotated with [0; 1]. This is
the information we keep in the con�ict set on the right-hand side of the
sequent. More generally, every time we have a clauseC annotated with
literals l1; : : : ; ln , this means that l1 ^ : : : ^ ln implies C. The only such
relation that the system with backjumping remembers is the one that is
stored in the con�ict set. When the solver returns to the branch on x, it will
lose this information so we want to make sure that it remembers that 0 ^ 1
implies a con�ict. Because 1 does not appear in the assignment anymore, it
cannot appear in the dependencies; in other words, when removing 1 from
the context, we want to change ; [0; 1] to f �1g[0]. More generally, we will
consider that con�ict clauses are annotated clauses and de�ne an operation
called �shifting�, noted Shift l , used to remove a literal l from a clause's
annotations and move it to the clause itself. Shift l is a function applied to
a set of annotated clauses:

Shift l (; ) = ;

Shift l (f C[A ; l ]g [ A) = f �l _ C[A ]g [ Shift l (A)

Shift l (f C[A ]g [ A) = f C[A ]g [ Shift l (A) if l =2 A

Sequents are now of the form � ` � : A ; A where the new element
A is the set of con�ict clauses. The rules are very similar to the one in
Figure 2.3 and only add the treatment of con�ict clauses; they are presented
in Figure 2.6. Con�ict clauses originate from the dependencies found in
Conflict , and Split takes care of adding�l[Anl] to the set of con�ict clauses
when the set of dependenciesA contains l . The clauses are maintained by
all other rules, with the exception of Split and BJ , which apply Shift l to
all con�ict clauses found in the left branch, as suggested inthe discussion
above. Finally, these clauses are used in the right branch ofthe Split rule
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in order to accelerate the search of a con�ict in this branch. Actually, among
the clauses inShift l (A), those who contain �l will be eliminated by Bcp , but
the other ones will possibly help in quickly establishing a con�ict.

Red
� ; l [B] ` � ; C[B [ C ] : A ; A

� ; l [B] ` � ; �l _ C[C] : A ; A
Elim

� ; l [B] ` � : A ; A

� ; l [B] ` � ; l _ C[C] : A ; A

Conflict
� ` � ; ; [A ] : A ; ;

Assume
� ; l [B] ` � : A ; A

� ` � ; l [B] : A ; A

Split
� ; l [l ] ` � : A ; A � ; �l [A n l ] ` � ; Shift l (A) : B; B

� ` � : B; Shift l (A) [ f �l [A n l ]g [ B
l 2 A

BJ
� ; l [l ] ` � : A ; A

� ` � : A ; Shift l (A)
l =2 A

Figure 2.6: Inference rules for DPLL with con�ict clause learning

Correctness proofs. Unlike the previous derivation system presented in
Section 2.2.1, where we were able to derive the soundness andcompleteness
proofs of the backjumping mechanism from the proofs of the basic DPLL
system, this is not easily feasible for the system with con�ict-driven clause
learning. The intuition behind this is that the �rst two syst ems had the
same proof derivations, with some parts being cut o� by the backjumping
rule. With learning, clauses in a part of the tree can come from a con�ict
obtained in a totally di�erent part of the tree. Moreover, th ey cannot be
justi�ed �locally� in the proof derivation, but are justi�e d by the initial
problem at the root of the tree. Note that the completeness property can
still be established exactly like our �rst two systems, by ignoring the learnt
clauses and just building the naive derivation similar similar to what we
did in Section 2.2.2. The soundness proof is quite long and isgiven in
Appendix A. The soundness theorem is stated as follows:

Theorem 2.2.10 (Soundness). Let � be a formula in CNF, with all clauses
annotated with empty dependencies. Then, if there exists a con�ict set A
and some set of con�ict clausesA such that ; ` � : A ; A is derivable, � is
unsatis�able.

Proof. See Appendix A.
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2.2.4 Backjumping vs. Learning

We have just presented two di�erent mechanisms for optimizing the DPLL
procedure: backjumping and con�ict-driven clause learning. They are tradi-
tionally presented together as a single mechanism because the clause learning
mechanism supersedes the backjumping mechanism: as we explained above,
a con�ict set A is indeed just a special case of con�ict clause; [A ]. Never-
theless, these two mechanisms are fundamentally di�erent and it is one of
the speci�cities of our approach to present them separately.

To understand the important di�erence between backjumping and learn-
ing, we can look at the impact of each of these optimizations in comparison
to the basic DPLL. Backjumping enhances the proof search by trimming the
search tree and each use of of the backjumping rule strictly simpli�es the
search. In constrast, con�ict-driven clause learning proceeds by adding new
clauses to the problem which hopefully allow the system to derive con�icts
faster and accelerates the search. The cost of adding backjumping is simply
the cost of adding dependency analysis and is easily compensated by the
gain in e�ciency due to the use of the BJ rule. On the contrary, the cost
of adding backtracking encompasses both dependency analysis and the fact
that the number of clauses in the problem can augment dramatically (up to
2n clauses wheren is the number of variables in the problem). In practice,
there is no guarantee that learning will actually improve the e�ciency of the
system on a given problem, it might well slow down the prover: this has a
lot to do with how well the implementation can cope with a great number
of clauses.

Therefore, the decision of whether or not clause learning should be used
in a given system depends on the context in which it is implemented and
used. In the context of software veri�cation of programs annotated by hu-
mans, as explained in Section 1.2.1, the propositional complexity of proof
obligations derives mainly from the propositional complexity of annotations
and from the annotated functions' structure, and is therefore quite limited.
Such formulae do not require state-of-the-art optimizations and Alt-Ergo's
SAT-solver relies on the DPLL procedure with backjumping (because it is
always pro�table) but without clause learning, because its e�ect is too un-
predictable and having too many useless clauses can be very detrimental to
the solver5.

2.3 From SAT to SMT

So far in this chapter, we have described a system to decide the unsatis�-
ability of propositional formulae, but as explained in Chapter 1, when it is

5For instance, as explained in Section 1.2.2, the matching mechanism relies on the
terms available in the current clauses to derives new instances, therefore having too many
clauses can yield too many instances.
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used at the heart of an SMT solver likeAlt-Ergo, the propositional atoms are
not variables but are typically terms with some interpreted function sym-
bols. This means that not all assignments are acceptable andwe discuss in
this section how the rules seen so far can be easily adapted toaccount for
satis�ability modulo theories.

De�nition 2.3.1. A theory is a set of models. IfT is a theory, we call
its elementsT -models. We say that a formulaF is T -satis�able (resp. T -
unsatis�able) if there exists (resp. there does not exist) aT -model satisfying
the formula F .

As with models, the de�nition of a theory is quite general and we will
reuse it in the next chapter. Let us look at an example �rst. Let S be a
set of symbols, and assume the set of propositional atomsL is the set of
equations between elements ofS, i.e. L = S � S . The sequent ; ` f s1 =
s2g; f s2 = s3g; f s3 6= s1g is not derivable and therefore the set of clauses is
satis�able, but any satisfying assignment mapss1 = s2 to > , s2 = s3 to >
and s3 = s1 to ? , which does not respect the �meaning�of equality. We are
actually only interested in the models which verify the following properties:

(i) 8x 2 S; M j = x = x

(ii) 8xy 2 S; M j = x = y ! M j = y = x

(iii) 8xyz 2 S; M j = x = y ! M j = y = z ! M j = x = z

and the set of models which verify these properties is an example of a theory6

(which can be seen as the theory of equality onS). If we only consider the
models in this theory, the set of clauses above is unsatis�able. To account
for this, we change the nature of partial assignments from a set of literals
to an abstract structure of environment.

De�nition 2.3.2. An environment � is a structure which supports the two
following operations:

(i) the assumption of a literal l , which is a partial operation; we write � ; l
when assumingl in � succeeds;

(ii) querying whether a literal l is true in the environment or not; we write
� # l to denote that the literal l is true in � .

These two operations correspond to the two manners in which we use the
partial assignment in the di�erent systems from Figures 2.1, 2.3 and 2.6. We

6 In traditional model theory, where theories are de�ned as se ts of formulae (or axioms),
these properties (i), (ii), (ii) could be seen as the axioms de�ning this theory. The presen-
tation as sets of models is equivalent and can be more natural when dealing with SMT:
the SMT solver does not know about the axioms of a theory T , but tries to construct a
T -model for an input formula.
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assumeliterals, i.e. add them to the environment, when we assign a value
to some literal, and wequery the partial assignment for the state of a literal,
i.e. check whether a literal or its negation has already been assigned a value.
The assumption of a literal is a partial operation because the assumed literal
can be inconsistent with the current environment. It is then straightforward
to rewrite the rules with an environment in the left-hand side of the sequent
instead of a set of literals, for instance Figure 2.7 show howwe adapt the
basic DPLL.

Red
� ` � ; C

� ` � ; �l _ C
� # l Elim

� ` �

� ` � ; l _ C
� # l

Assume
� ; l ` �

� ` � ; f lg
Conflict

� ` � ; ;

Split
� ; l ` � � ; �l ` �

� ` �

Figure 2.7: DPLL with an environment

The Red and Elim rules now have a side condition to express that the
query in the environment must return true, and other rules do not change
syntactically. Note that because assumption must succeed,the rules As-
sume and Split , although they do not change syntactically, are slightly
more constrained than in the original presentation: in particular, it is now
impossible to build a derivation where � is not well-formed i n the sense
of De�nition 2.1.7 page 29, because a new literal cannot be assumed if it
contradicts a formerly assumed literal.

In an environment for some theoryT , a literal can be true even if it (or its
negation) has not been assigned explicitely, because it canbe a consequence
in T of the literals explicitely assumed in the environment. Conversely, a
literal can be false if it is inconsistent with the literals already assumed in
the environment. We write j� j for the set of literals explicitely assumed
in environment �. For instance, an environment for the theor y of equality
above will typically perform the equivalence closure of theequalities assumed
and the query of x3 = x1 in the environment x1 = x2; x2 = x3 will return
true. More generally, in order to be suitable to decide satis�ability in some
theory T , an environment will have to verify some properties:

� for the system to be sound, the environment must be sound withre-
spect to the theory T , i.e. that if � # l , l must be a consequence of all
the assumed literals:

8l; � # l ! 8M 2 T ; M j = j� j ! M (l) = >
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� for the system to be complete, the environment must be complete with
respect to the theory T , in symbols:

8l; 8M 2 T ; M j = j� j ! M (l) = > ! � # l

With such invariants, the correctness proofs are straightforward to adapt and
we can prove that the derivability of the sequent ; ` � is equivalent to the
T -satis�ability of the formula �. We will not detail how to pre cisely adapt
the correctness proofs of our DPLL derivation system here, the soundness
proof will be detailed formally later in Chapter 8.

An equivalent characterization of the existence of an environment struc-
ture suitable for a theory T is the existence of a decision procedureP for
the T -satis�ability of conjunctions of literals. Indeed, if such a procedureP
exists, the following operations de�ne a suitable environment:

� an environment is simply a set of literals;

� the adding operation � ; l simply adds l to the set � and uses P to check
that the new set of literals is not unsatis�able; if it is, the assumption
does not succeed;

� to perform a query of l in �, use the procedure P to test the satis-
�ability of the set of literals � ; : l : if it is unsatis�able, then l is a
consequence of the literals of � and � # l holds; otherwise it does not
hold.

The latter characterization is slightly more convenient. For instance, this
method can be applied to the trivial theory of all models in order to retrieve
the DPLL procedure for pure propositional logic: the procedure P simply
checks whether both a literal and its negation are present inthe conjunction.

SMT with dependencies. A natural question is whether it is also possi-
ble to adapt the backjumping and clause learning mechanismsto this SMT
architecture. In order to do so, environments must be able todeal with
annotations:

� the assumption of a literal should also take its dependencies as input:
we write � ; l [B] for the assumption of l with dependenciesB in �;

� when a query for a literal l succeeds, the environment should also
return a set of dependencies which justify thatl is indeed true, which
we write � # l [B].

The adaptations of the rules is then straightforward, and the rules with
backjumping are given in Figure 2.8 for instance. In practice, adding depen-
dency analysis to an environment based on a satis�ability procedure for some
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Red
� ` � ; C[B [ C ] : A

� ` � ; �l _ C[C] : A
� # l [B] Elim

� ` � : A

� ` � ; l _ C[C] : A
� # l [B]

Conflict
� ` � ; ; [A ] : A

Assume
� ; l [B] ` � : A

� ` � ; l [B] : A

Split
� ; l [l ] ` � : A � ; �l [A n l ] ` � : B

� ` � : B
l 2 A

BJ
� ; l [l ] ` � : A

� ` � : A
l =2 A

Figure 2.8: DPLL with backjumping and an environment

theory can be very challenging since the decision proceduremust be instru-
mented in order to �nd the (possibly smallest) sets of literals which justify
its results. Examples of interesting results in this area ofproof-producing
decision procedures are [NO05, dMRS05, RRT07].Alt-Ergo implements a
coarse but e�ective dependency analysis in order to use backjumping, but
we have not implemented a proof producing procedure in Coq, and conse-
quently our Coq implementation does not use backjumping butstays with
the basic DPLL procedure (see Chapter 6).

2.4 Discussion

In this chapter, we have described the propositional solverat the heart of
Alt-Ergo as a system of inference rules. This algorithm is based on the
DPLL SAT solving procedure and we showed how to enhance the basic
system with a non-chronological backtracking mechanism, as well as con�ict-
driven clause learning. These two mechanisms are ubiquitous in modern
implementations of DPLL-based SAT solvers.

2.4.1 State-of-the-Art SAT Solvers

Even with the backjumping and learning mechanisms, our DPLL system
does not qualify as a modern, state-of-the-art, SAT solver.Such SAT solvers
typically include a great number of di�erent optimizations and heuristics
and can deal e�ciently with industrial problems containing hundreds of
thousands of propositional variables (cf. [sat]).

We do not claim to achieve the sheer performance of these systems or to
be able to simulate their behaviour with our rule-based systems. Instead, our
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motivation is to apply this formalization to Alt-Ergo's SAT solver in order
to accurately describe it, and Alt-Ergo uses a relatively basic SAT solving
procedure. In fact, Alt-Ergo is based on the system with backjumping but
does not use clause learning. Therefore, the rules we have presented so far
are su�cient to describe Alt-Ergo's kernel. More generally speaking, they
are also a solid foundation on which to implement a SAT solver, and this is
what motivated us into adding con�ict-driven clause learni ng. We now take
a quick look at other typical optimizations that are present in modern SAT
solvers, and discuss what kind of challenge they would represent.

Variable assignment. When applying the splitting rule, i.e. when arbi-
trarily trying to assign a variable either boolean value, some variable must
be chosen. As we emphasized at the start of Section 2.2.1, theperformance
of the SAT solver is very sensitive to that particular choice. Di�erent strate-
gies have been designed in order to pick variables in a sensible way: some
choose randomly, some try to maximize some measure (e.g. thenumber of
times a variable appears in a problem), some are much more involved and
perform very well in a great variety of problems, like the Variable State
Independent Decaying Sum (VSIDS) decision heuristic used in Cha� and
presented in [MMZ+ 01], which is used in conjunction with con�ict-based
clause learning. The important thing about variable assignment choices is
that any strategy is correct and therefore there is almost nothing to prove
about it: soundness is granted, and completeness is guaranteed as long as
the strategy tries every variable sooner or later. This is why there is no
reason to mention such a strategy in our formalization; on the contrary, our
rules gives full freedom as far as the choice of a literal is concerned.

Two-watched literals. A SAT solver spends most of its time performing
boolean constraint propagation and trying to apply the unit rule. Modern
optimizations often employ a variant of a technique calledtwo-watched lit-
erals [MMZ + 01, Zha97], which consists in keeping a handle on two non-false
literals per clause at all time and only performing simpli�c ations on these
literals, until it is not possible to �nd two such literals, w hich means the
corresponding clause is unitary or empty. Such a technique is very impor-
tant in practice but in our opinion, it is not a feature that re quires a formal
description and proof, but rather it is a matter of implement ation.

Restarts. Modern SAT solvers also rely on some way ofrestarting the
proof search at regular intervals, in order to explore the search space more
e�ciently. A typical restart strategy for our system with cl ause learning
would be to stop search at some point and restart with an emptyassignment,
but retaining some of the clauses learnt so far. That way, thesearch starts
in a �fresh� state, but with more information than the �rst ti me, hopefully
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avoiding bad variable choices in the future. Restarts cannot be simulated
with our rules, because this would require the initial state (or formula) to
be stored in the sequent, but once again the critical point about restarts is
whether the learnt clauses are correct, not the restart mechanism itself and
we decided not to adapt our rules to include restarts. Incidentally, there
exists a broad range of restart strategies, see [Hua07] for instance.

Con�ict Analysis. In our inference rules, we described the con�icts found
during the proof search thanks to the literals in annotations. These liter-
als were what is known asdecision literals, i.e. literals which were added
through a Split (or BJ ) rule. There exists other ways to describe a con-
�ict, and con�ict analyses have been thoroughly studied because their e�ect
on the performance of a SAT solver is very signi�cant (see [SS96, ZMM01]
for instance). In particular, [ZMM01] describes con�icts using an implica-
tion graph between assigned literals and their empirical results show that
literals which have some property in this graph (known as UIP, for Unique
Implication Point) lead to better con�ict clauses than deci sion literals for
instance. Our system could be adapted to any con�ict analysis by keep-
ing an implication graph instead of the simple annotations we have, but we
did not formalize that modi�cation. In particular, such ana lyses are only
useful to improve the e�ect of con�ict-driven clause learning, in the sense
that it generates con�ict clauses which are maybe more pertinent, but it
does not improve on backjumping since a system with backjumping always
backtracks to the lowest possible literal in the proof tree. Note also that
unlike the preceding optimizations, the con�ict analysis is critical and re-
quires an accurate formalization, since unsound clauses could be derived by
an inappropriate strategy.

2.4.2 Conclusion

The work closest to this approach originated with [Tin02] and is Nieuwen-
huis, Oliveras and Tinelli's formalization of DPLL [NOT04] . Their system is
based on transition rules and describes a version of DPLL where side condi-
tions are expressed in an abstract manner. This allows them to encompass at
once a broad range of common optimizations and to easily reason about the
correctness of such techniques. In particular, unlike ours, their presentation
does not di�erentiate backjumping from clause learning, and we explained
above why we think that it is important to separate these two mechanisms.
The main downside of their approach is that its abstraction makes it harder
to derive a trustworthy implementation from the formalizat ion. On the con-
trary, the gap between our system and the actual implementation is really
small: in particular, our rules describe exactly how to calculate dependencies
and con�ict clauses.
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This is also a downside, of course, since our system is much less expres-
sive than the one in [NOT04]. Nevertheless, as we emphasizedseveral times
in this chapter, we tried to remain as generic as possible. Wedo not have
any strategy to select decision literals, but adding heuristics to pick literals
in the Split rule would not impact our correctness proof. In our Coq imple-
mentation in Chapter 7, we will demonstrate how our system isindependent
of the actual representation of formulas, and how to take advantage of this
to use techniques of e�cient CNF conversion, such as maximalsharing of
sub-formulas usinghash-consing.
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In Chapter 2, we presented how to handle propositional logicwith the
DPLL procedure and its modern variants. We also hinted at the fact that
the same procedure could be used to deal with formulae where literals have
some interpretation, i.e. to decide the satis�ability of a formula modulo
sometheory, as long as one is able to provide an environment which decides
entailment in this theory. This chapter is devoted to show how to build such
an environment for a certain class of theories. More precisely, we will show
how to build an environment for the combination of the theory of equal-
ity and any theory X which veri�es certains properties, among which the
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existence of a particular function called asolver. This algorithm is param-
eterized by this theory X and will be called CC(X). In Section 3.1, we will
describe the problem of solving the theory of equality modulo another theory
and present the two main existing methods: the Nelson-Oppencombination
method on one hand, and Shostak's algorithm on the other. In Section 3.2,
we present our algorithm CC(X) for the congruence closure modulo a theory
X and show how it di�ers and improves on the two existing methods. We
then prove that the algorithm is sound and complete for suitable theories.
Finally, we extend CC(X) in Section 3.4 in order to deal with disequations
instead of just equalities.

3.1 Combining Equality and Other Theories

3.1.1 Preliminaries

In order to de�ne the theories we are interested in and to build their literals,
we need a term algebra. In the following, we assume a large, �xed, set �
of symbols and we suppose that each symbol comes with a non-negative
integer called its arity . We de�ne the set of (ground) terms T inductively
as the smallest set which is closed for the following operation: if f 2 � is
a symbol of arity n and t1; : : : ; tn are some terms inT , then f (t1; : : : ; tn )
belongs toT . In particular, our terms are untyped since we do not consider
any typing constraint for the construction of terms. The set of propositional
atoms that we are interested in in the remaining of this chapter is the setL
of all equalities u = v for someu; v 2 T .

De�nition 3.1.1. The theory of equality, written E, is de�ned by the fact
that = is a congruence relation, i.e. by the following axioms:

(Re�exivity) 8t 2 T ; t = t

(Symmetry) 8t; u 2 T ; t = u =) u = t

(Transitivity) 8t; u; v 2 T ; t = u =) u = v =) t = v

(Congruence) 8f 2 � ; 8t1; u1 : : : ; tn ; un 2 T ;
(8i; t i = ui ) =) f (t1; : : : ; tn ) = f (u1; : : : ; un )
The theory E (in the sense of De�nition 2.3.1 page 44) is the set of models
for which these axioms hold.

The theory E is often called EUF, for Equality on Uninterpreted Func-
tions, and is obviously essential to deduction and veri�cation systems. For
instance, problem divisions in the SMT competition [BST10] include a cat-
egory devoted to this theory (QF_UF) and other categories deal with the
combination of EUF and other theories such as bitvectors (QF_AUFBV),
di�erence logic (QF_UFIDL), arrays (QF_AUFLIA), etc.

Given a set of equalitiesE, the set of all equalities implied by the combi-
nation of E and the theory of equality is the congruence closureof E . If we
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considerE as a relation over terms, its congruence closure is also a relation
over terms and we write it = E . Formally, this means that given two terms
u and v:

u = E v () 8 M 2 E; M j= E =) M j= u = v:

For example, if f and a are some symbols in �, and E is the set of equations
f a = f (f (f (a))) ; a = f (f (f (f (f (a))))) g, then a = E f (a).

The task of computing the congruence closure of a �nite set ofequations
has been addressed separately by Downey, Sethi and Tarjan [DST80], Nelson
and Oppen [NO80] and Shostak [Sho78] thirty years ago. Theirprocedures
all achieved worst-case complexity ofO(n log(n)) and are formulated on
relations over vertices of a graph representing the terms ofthe problem.

In a solver like Alt-Ergo, we are not only dealing with uninterpreted
functions, but some symbols have a standard interpretationwhich should
be accounted for. The meaning of these symbols is given by oneor several
theories. For instance, the following formula1:

k = 0 = ) s � a = a =) f (s + k; 2 + 3) = f (a + a;5) (3.1)

is valid in the union of E and the theory of linear arithmetic on rationals but
not in E alone. To decide the satis�ability of such formulae, the previous
algorithms for computing a congruence closure are not su�cient and one
needs a procedure for congruence closure modulo a theory.

3.1.2 The Nelson-Oppen Combination Method

The most widely used method to combine the theory of equalityand other
theories was proposed by Nelson and Oppen [NO79]. Their method is ac-
tually more general in that it gives an algorithm to combine decision proce-
dures for di�erent theories into a decision procedure for the union of these
theories.

Let T1; : : : ; Tn be n theories such that there exists satis�ability proce-
duresP1; : : : ; Pn for each of these theories. Among other things, the Nelson-
Oppen method requires that theories use disjoint sets of interpreted symbols,
say � 1; : : : ; � n . The algorithm proceeds by splitting a formula � into n sub-
formulae � 1; : : : ; � n where � i only usesabstraction variables2 and symbols
in � i . It then dispatches each subformula � i to the corresponding decision
procedure Pi . The di�erent decision procedure only cooperate indirectly
by exchanging informations about the variables of the problem through the
dispatcher. This architecture is summarized in Figure 3.1.

The procedure can be summarized by the following steps:
1as is usually done, we write binary arithmetic symbols in in� x notation.
2These abstraction variables are not strictly speaking vari ables but can also be con-

sidered as fresh constants. They are traditionally called variables in the literature about
Nelson-Oppen combination.
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Dispatcher

P1 P2 ... Pn

x = y x = y x = y

Figure 3.1: Architecture of the Nelson-Oppen combination

1. (Variable abstraction) Split the formula � in a conjuncti on of pure
formulae � 1; : : : ; � n which only share abstraction variables.

2. (Dispatching) Send each formula � i to the corresponding procedure
Pi . If any returns unsatis�able then the whole formula is unsatis�able.

3. (Equality propagation) Gather all the equalities between variables
which have been found by thePi during the previous step, and prop-
agate them to all theories. Return to step 2.

4. (End) When no contradiction has been found by any decisionproce-
dure, and no more equalities between variables are found, � is satis�-
able.

One can see that a key point in the method originally presented by Nel-
son and Oppen is that thePi must return the equalities between variables
they �nd when they are run. Although critical for e�ciency, t his require-
ment is not theoretically mandatory. In a later presentation of this algo-
rithm [TH96], Tinelli and Harandi proposed a non-deterministic version of
the algorithm where the correct partition between the variables (what they
call an arrangement of the variables) is simply guessed. Since there are a
�nite number of arrangements, an algorithm could proceed bytrying all of
them.

It is clear that, provided that the unsatis�ability procedu res P1; : : : ; Pn

are correct, the formula is truly unsatis�able when the procedure says so.
The converse however is not true in general: when all subproblems are
satis�able in their respective theories, the conjunction is not necessarily
satis�able in the union of theories. To be sound and complete, the Nelson-
Oppen procedure thus requires strong properties on the theories:

� The theories must beconvex: this means that a conjunction of literals
should not entail a disjunction of equalities without entailing at least
one of the disjuncts. This restriction ensures that there isno need for
�splits� since the combination scheme cannot dispatch disjunctions of
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equalities. Although many theories of interest are indeed convex, the
convexity requirement is the biggest obstacle in practice (for instance,
the theories of arrays or linear arithmetic with inequaliti es are non-
convex).

� The theories must be stably in�nite . This condition was formalized
in [TH96] and not in the original paper, and it expresses the fact that
all satis�able formulae admit models with in�nite cardinal ity. In par-
ticular, this excludes theories that specify �nite types, e.g. booleans.

This general combination scheme has been applied to the issue of combin-
ing congruence closure and other theories. For instance we can use this
scheme with the theory E and linear rational arithmetic to solve our exam-
ple formula 3.1. The variable abstraction yields the following conjunction
of literals:

� 1 : f (z1; z2) 6= f (z3; z4)

� 2 : k = 0 ^ s � a = a ^ s + k = z1 ^ 2 + 3 = z2 ^ a + a = z3 ^ 5 = z4

� 1 and � 2 are both satis�able in their theory, but when analyzing � 2 the
decision procedure for linear arithmetic reports thats = z1 = z3 and z2 = z4.
After propagation in � 1, the congruence closure algorithm reports that �1

is unsatis�able, and so is the original formula.
The Nelson-Oppen architecture or variants thereof are usedin deduction

systems such as the Stanford Pascal Veri�er [LGvH+ 79], Yices [Yic], Sim-
plify [DNS05], CVC3 [BT07] and Z3 [dMB08]. It is widely used because of
its generic nature and because it applies to many theories ofinterests.

3.1.3 The Shostak Combination Method

The Nelson-Oppen combination method is not devoted to the combination
of equality and another theory, but it is more generic than that. One con-
sequence is thatE and the other theories play a totally symmetric role.
In [Sho84] Shostak proposed an alternative which is speci�cally devoted to
combining equality with another theory. Shostak's procedure only works
on equational theories which have two special functions: acanonizer and a
solver. The canonizer is used to transform a term into a normal form with
respect to the theory, while the solver takes an equation and�solves� it into
an equivalent substitution, i.e. a list of equalities of the form x = t where x
is a variable in the original equation. We call these theories Shostak theories.

Congruence closure algorithms in [DST80, NO80, Sho78] proceed by
computing a canonical form for all terms, in particular using a union-�nd
structure; Shostak's procedure does essentially the same thing but using
the canonizer and the solver of the theoryT in order to build a canonical
form modulo T . The canonizer is used to normalize terms moduloT and the
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solver is used to propagate all the consequences of an equation into the union-
�nd structure. For instance, let us look at example 3.1 again. The theory of
linear rational arithmetic is a Shostak theory: the normal form for this the-
ory is a sum of ordered monomials with rational coe�cients, and the solver
can be implemented with standard Gauss elimination. Solving the �rst two
equalities k = 0 and s � a = a yields the substitutions k 7! 0 and s 7! 2 � a.
After substitution, the last equality becomes f (2 � a+0 ; 2+3) = f (a+ a;5),
and after canonization, it becomesf (2 � a;5) = f (2 � a;5) which is obviously
true.

The original presentation of Shostak's procedure su�ered multiple �aws,
in particular it is neither complete nor terminating. The pr ocedure was
revamped and corrected �rst partially in [CLS96] by Cyrluk, Lincoln and
Shankar, and then completely in [RS01] by Rueÿ and Shankar. The formal-
ization and the proofs are much more involved than in the original presen-
tation, and Ford and Shankar later published [FS02] a formalproof of the
presentation in [RS01], done in PVS [PVS]. Proofs about combinations of
theories are notoriously di�cult and error-prone, and such veri�ed proofs
are rare and valuable.

3.1.4 Motivations

The restriction imposed on Shostak theories,i.e. the properties that must
hold for the canonizers and solvers, make them a smaller class than the
class of theories suitable for Nelson-Oppen. However, whenit applies,
Shostak's combination scheme improves on Nelson-Oppen's architecture.
Indeed, Nelson-Oppen does not treatE in a special way, and all decision
procedures must perform their own equality propagation (typically using
union-�nd) which is costly. Shostak's procedure regroups equality reasoning
in a single congruence closure algorithm, and factors all theory reasoning
in the canonizer and solver functions. We schematize this situation in Fig-
ure 3.2. Thanks to this better interaction with the traditio nal congruence
reasoning, the Shostak procedure seems to perform better than the Nelson-
Oppen procedure: comparing these two algorithms in practice is not easy
because they are usually part of bigger systems, but an informal comparison
reported in [CLS96] suggests a di�erence of about an order ofmagnitude.
Shostak's algorithm is also simpler to implement than Nelson-Oppen be-
cause there is no exchange of equalities between the di�erent procedures.

Although some of the disadvantages of the Nelson-Oppen scheme are
avoided by Shostak, his procedure has its own shortcomings.In particular,
the underlying decision procedures in Nelson-Oppen can be implemented in
any possible way, whereas a Shostak theory revolves around the term data
structure: it must be implemented with a term canonizer and asolver which
returns term substitutions. Altogether, canonizing, solving and substituting
are actions which require a lot of term manipulations and traversals. For
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Figure 3.2: Schematic comparison of the Nelson-Oppen (left) and Shostak
architecture (right).

most theories, this does not represent the way one would implement such
functions, and more e�cient representations of the terms could be more
convenient. For instance, the term data structure is not adapted to linear
arithmetic manipulation, and solving and substituting can be implemented
much more e�ciently with polynoms, i.e. an ad-hoc data structure. This is
the motivation for the algorithm we present in the remainder of this chapter:
a mechanism for congruence closure modulo a theory inspiredby Shostak
but where abstract data representation is possible and encouraged.

3.2 CC(X): Congruence Closure Modulo X

In this section, we present the algorithm CC(X) (for congruence closure
modulo X) which combines the theoryE with an arbitrary built-in theory X.
This algorithm usesabstract valuesas representatives allowing e�cient data
structures for the implementation of solvers. We �rst de�ne the class of the-
ories which are amenable for our algorithm, which we callsolvable theories,
and then present CC(X) as a set of inference rules whose description is de-
tailed enough to truly re�ect the actual implementation of t he combination
mechanism inAlt-Ergo.

3.2.1 Solvable Theories

While solvers and canonizers of Shostak theories operate onterms directly,
solvable theories work on a certain setR, whose elements are calledsemantic
values. The main particularity is that we don't know the exact struc ture
of these values, only that they are somehow constructed frominterpreted
and uninterpreted (or foreign) parts. To compensate, we dispose of two
functions [�] and leaves which are reminiscent of the variable abstraction
mechanism found in the Nelson-Oppen method. The function [�], which we
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also call make, constructs a semantic value from a term;leaves extracts its
uninterpreted parts in an abstract form.

De�nition 3.2.1. We call a solvable theory X a tuple (� X ; R ; X ), where
� X � � is the set of function symbols interpreted byX, R is the set of
semantic values andX is an equational theory. In particular, X is a relation
over terms and therefore= X � T � T denotes the congruence closure of the
relation X . Additionally, a solvable theory X has the following properties:

(i) There is a function [�] : T(�) ! R to construct a semantic value out
of a term. For any set E of equations between terms we write[E ] for
the setf [x] = [ y] j x = y 2 Eg and similary for sequences of equations.

(ii) There is a function leaves: R ! P �
f (R), where the elements ofP �

f (R)
are �nite non-empty sets of semantic values. Intuitively, its role is to
return the set of maximal uninterpreted values a given semantic value
consists of3. Its behaviour is left unde�ned for now, but is constrained
by axioms given below.

(iii) There is a special value 1 2 R which we will use to denote the leaves
of pure terms' representatives.

(iv) There is a function subst : R � R � R ! R . Instead of subst(p; P; r)
we write r f p 7! Pg. The pair (p; P) is called a substitution and
subst(p; P; r) is the application of the substitution (p; P) to r .

(v) There is a function solve : R � R ! (R � R )> ;? which takes an
equation between semantic values and returns either> , ? or an equa-
tion between semantic values (which must be seen as a substitution).
When the result is> (resp. ? ), we say that the equation is solved (resp.
unsolvable).

In the remaining of this paper, we simply call theory a solvable theory.
An example of such a theory is given in Section 3.2.3. We write� the
equality in the set of semantic values, and it should not be confused with
term equality =.

In the following, for any set S, we write S� the set of �nite sequences of
elements ofS. If s 2 S� is such a sequence anda is an element ofS, we write
a; s for the sequence obtained by prependinga to s. The empty sequence is
denoted � . We will use sequences instead of sets in many places in orderto
be able to describe the incrementality of our algorithm; we will however use
sequences as sets implicitly in places where order does not matter. As we
will often talk about successive substitutions, we de�ne anauxiliary function
that does just that:

3Therefore, the leavescorrespond to what are called the solvablespart of an interpreted
term in [RS01].
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De�nition 3.2.2. We de�ne the partial function iter : (R�R )� �R ! R ?

that applies solve and subst successively in the following way:

iter (� ; r ) = r

iter (( r1; r2); S; r3) = r 0
3 f p 7! Pg where

(
r 0

i = iter (S; r i )
solve(r 0

1; r 0
2) = ( p; P)

iter (( r1; r2); S; r3) = r 0
3 where

(
r 0

i = iter (S; r i )
solve(r 0

1; r 0
2) = >

iter (( r1; r2); S; r3) = ? where

(
r 0

i = iter (S; r i )
solve(r 0

1; r 0
2) = ?

iter (( r1; r2); S; r3) = ? otherwise:

Thus, iter (S; r) successively solves all equations inS, applying the resulting
substitution (if any) to r and to the remaining equations along the way.
It returns ? if and only if one of the equations was unsolvable. We now
use this notion of iterated substitution to de�ne entailmen t in the set R of
semantic values.

De�nition 3.2.3. Let E be a sequence of equations between semantic values,
and r1; r2 two semantic values. We writeE j= X r1 = r2 to denote that the
sequence of equationsE entail that r1 = r2, and we de�ne it in the following
way:

E j= X r1 = r2
def

() iter (E; r 1) � iter (E; r 2):

In particular, if iter (E; r 1) and iter (E; r 2) are ? , E j= X r1 = r2 holds.

In addition to de�nition 3.2.1, a theory X must ful�ll the following ax-
ioms:

Axiom 3.2.4. For any r1; r2; p; P 2 R ,

(i) solve(r1; r2) = ( p; P) ) r1 f p 7! Pg � r2 f p 7! Pg

(i') solve(r1; r2) = ( p; P) ) p 62leaves(P)

(ii) solve(r1; r2) = > () r1 � r2

(iii) solve(r1; r2) = ? () 8 (p; P); r1 f p 7! Pg 6� r2 f p 7! Pg.

Axiom 3.2.5. For any set of term equationsE and pair of terms u; v,

[E ] j= X [u] = [ v] ) u = E;X v;

where = E;X is the congruence closure of the equational theory de�ned by
E [ X .

Axiom 3.2.6. For any r; p; P 2 R such that r 6� r f p 7! Pg,

(i) p 2 leaves(r )
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(ii) leaves(r f p 7! Pg) = ( leaves(r ) n f pg) [ leaves(P).

Axiom 3.2.7. For any pure term t, i.e. a term built exclusively from symbols
in � X, we haveleaves([t]) = f 1g.

Let us explain this a little bit. First of all, as we will see in section 3.2.2,
the algorithm establishes and maintains equivalence classes over semantic
values. Every equivalence class is labeled by an element of the set R; a
function � : R ! R is maintained which for each value returns its current
label. Together with the [:] function, this function can be used to maintain
equivalence classes over terms. The functionsolve is capable of solving an
equation between two elements ofR, that is, it transforms an equation r1 =
r2 for r1; r2 2 R into the substitution ( p; P), with p; P 2 R , where the value
p is now isolated. Axiom 3.2.4-(i) makes sure that such a substitution renders
equal the two semantic valuesr1 and r2, which are at the origin of this
substitution, and 3.2.4-(i') enforces that the left-hand side of a substitution
cannot appear in the right-hand side4. The last two items in Axiom 3.2.4 are
straightforward and cover the cases where the equation is either solved or
unsolvable. We have equippedR with a notion of implication of equalities,
the relation j= X . Axiom 3.2.5 just states that, if some equations [E ] between
semantic values imply an equation [u] = [ v], then u = E;X v, that is, an
equality on the theory side implies an equality between corresponding terms.
Axiom 3.2.6 ensures that substituting p with P in a semantic value only has
e�ect if p is a leaf of this value, and that the new leaves after the substitution
are leaves coming fromP. In this respect, leaves can be understood as the
�variables� of a semantic value. Finally, the last axiom describes why we
introduced a special value1 in R: representatives of pure terms do not have
leavesper se, but it is convenient for the algorithm that the set leaves(r ) be
non-empty for any semantic valuer . To that purpose, we arbitrarily enforce
that leaves([t]) is the singleton f 1g for any pure term t.

As a last remark, we have given the interface of a theoryX in a slightly
less general fashion as was possible: depending on the theory, the function
solve may as well return a list of pairs (pi ; Pi ) with pi ; Pi 2 R . It becomes
clear why we call this a substitution: the pi can be seen as variables, that,
during the application of a substitution, are replaced by a certain semantic
value. However, for the example presented in the next section, solve always
returns a single pair, if it succeeds at all. Thus, we will stick with the simpler
forms of solve and subst in our presentation.

The following proposition is a simple, but useful, consequence of the
axioms stated above. It will be used in the soundness proof. It simply
states that, if semantic values constructed with [�] are equal, the original
terms were already equal with respect toX .

4This is a standard way of ensuring that the substitution is id empotent and that
applying it will remove all occurences of the left-hand side .
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Proposition 3.2.8. For any terms u; v 2 T , [u] � [v] ) u = X v.

Proof. This is simply axiom 3.2.5 with E the empty sequence.

Another, less trivial, consequence of the axioms and de�nitions above is that
if r 0 has been obtained fromr by iterated substitution, then the equations
at the origin of these substitutions imply the equality r 0 � r .

Proposition 3.2.9. For any S 2 (R � R )� and any r 2 R , we haveS j= X

iter (S; r) = r where S is seen as a set on the left-hand side ofj= X .

Proof. By de�nition, we need to show that iter (S; iter (S; r)) � iter (S; r),
which can be seen as the idempotency of the iterated substitution. This is
of course a consequence of the idempotency of the substitutions returned by
solve (see Axiom 3.2.4-(i')). We proceed by induction on the sequence of
equations S. If S is the empty sequence� , the goal becomesr � r which is
trivially true.

Now, let us suppose that S j= X iter (S; r) = r and let r1; r2 be some
semantic values. We want to prove that (r1; r2); S j= X iter (( r1; r2); S; r) =
r . If iter (S; r) is ? , then the result is obviously true; otherwise, iter (S; :)
is de�ned for all values and let r 0 = iter (S; r); r 0

1 = iter (S; r1) and r 0
2 =

iter (S; r2). We proceed by case analysis on the result ofsolve(r 0
1; r 0

2):

? : iter (( r1; r2); S; r) = ? hence the result holds.

> : iter (( r1; r2); S; r) � iter (S; r) � r 0 and by induction hypothesis the
result holds.

(p; P): by de�nition, ( r1; r2); S j= X iter (( r1; r2); S; r) = r is true if and only
if r 0f p 7! Pg f p 7! Pg � r 0f p 7! Pg. By Axioms 3.2.4-(i') and 3.2.6,
we know that p does not belong toleaves(r 0f p 7! Pg) and hence that
substituting f p 7! Pg in r 0f p 7! Pg does not have any e�ect, which
proves the equality above.

In order to prove the completeness, we need to make a few more assump-
tions about the theory X, or rather about the interpretation of symbols in
� X.

Axiom 3.2.10. For each interpreted symbolf 2 � X of arity n, we assume
there exists a function f X from R n to R such that:

8t1; : : : ; tn 2 T(�) ; [f (t1; : : : ; tn )] � f X([t1]; : : : ; [tn ])

Note, though, that these functions need not be implemented for the algo-
rithm to work: only their existence matters to us, [ :] could be computed in
any other conceivable way and our algorithmCC(X) will never need to use
one of these functions explicitly. The last axiom simply state that substitu-
tions happen at the leaves level of semantic values.
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Axiom 3.2.11. For any interpreted symbol f , given valuesr1; : : : ; rn and
two semantic valuesp and P,

f X(r1; : : : ; rn )f p 7! Pg � f X(r1f p 7! Pg; : : : ; rn f p 7! Pg)

Together with Axiom 3.2.10, this last axiom indeed implies that substitution
�traverses� interpreted symbols.

3.2.2 The CC(X) Algorithm

The backtracking search underlying the architecture of a lazy SMT solver
enforces an incremental treatment of the set of ground equations maintained
by the solver. Indeed, for e�ciency reasons, equations are given one by one
by the SAT solver to the decision procedures which prevents them from
realizing a global preliminary treatment, unless restarting the congruence
closure from scratch. Therefore,CC(X) is designed to be incremental and

deals with a sequence of equationsu = v and queriesu ?= v instead of a
given set of ground equations.

The algorithm works on tuples (con�gurations ) h� j � j � j � i , where:

� � is the set of terms already encountered by the algorithm;

� � is a mapping from semantic values to sets of terms which intuitively
maps each semantic value to the terms that �use� it directly. This
structure is reminiscent of Tarjan et al.'s algorithm [DST80] but dif-
fers in the sense that it traverses interpreted symbols (as expressed
in Proposition 3.3.12 in Section 3.3). This information is used to e�-
ciently retrieve the terms which have to be considered for congruence;

� � is a mapping from semantic values to semantic values maintaining
the equivalence classes overR as suggested in Section 3.2.1: it is a
structure that can tell us if two values are known to be equal (it can
be seen as thef ind function of a union-�nd data structure);

� � is a sequence of equations between terms that remain to be pro-
cessed.

There is a special kind of con�gurations written h ? j � i to denote the
cases whereCC(X) has reached an inconsistent state,i.e. the case where
some of the equations already treated are inconsistent withthe theory.

Given a sequenceE of equations and a querya ?= b for which we want
to solve the uniform word problem, CC(X) starts in an initial con�guration

K 0 = h ; j � 0 j � 0 j E ; a ?= b i , where � 0(r ) = ; and � 0(r ) = r for all r 2
R. In other words, no terms have been treated yet by the algorithm, and
the partition � 0 corresponds to the physical equality� .

In Figure 3.3, we describe our algorithm CC(X) as six inference rules
operating on con�gurations. The semantic value �( r ), for r 2 R is also
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Congr
h � j � j � j a = b ; � i

h � j � ] � 0 j � 0 j � 0 ; � i
a; b2 � ; �[ a] 6� �[ b]

where;
(p; P) = solve(�[ a]; �[ b])

� 0 =
[

l2 leaves(P )

l 7! �( l ) [ �( p)

8r 2 R ; � 0(r ) := �( r ) f p 7! Pg

� 0 =

(

f (~u) = f (~v)

�
�
�
�
�

� 0[~u] � � 0[~v]; f (~u) 2 �( p)
f (~v) 2 �( p) [

S
t2 � jp2 leaves(�[ t ])

T
l2 leaves(� 0[t ]) �( l )

)

Unsolv
h � j � j � j a = b ; � i

h ? j � i
a; b2 � ; �[ a] 6� �[ b]

where? = solve(�[ a]; �[ b])

Remove
h � j � j � j a = b ; � i

h � j � j � j � i
a; b2 � ; �[ a] � �[ b]

Add
h � j � j � j C[f (~a)] ; � i

h � [ f f (~a)g j � ] � 0 j � j � 0 ; C[f (~a)] ; � i

(
f (~a) 62�
8v 2 ~a; v 2 �

where C[f (~a)] denotes an equation or a query containing the termf (~a)

with

8
>>>><

>>>>:

� 0 =
[

l2L � (~a)

l 7! �( l ) [ f f (~a)g

� 0 =

8
<

:
f (~a) = f (~b)

�
�
�
�
�
�
�[ ~a] � �[ ~b]; f (~b) 2

\

l2L � (~a)

�( l )

9
=

;

where L � (~a) =
S

v2~a leaves(�[ v])

Query
h � j � j � j a ?= b ; � i

h � j � j � j � i
a; b2 � ; �[ a] � �[ b]

Incons
h ? j e ; � i

h ? j � i
e equation or query

Figure 3.3: The rules of the congruence closure algorithmCC(X)
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called representative of r . When t is a term of T , we write �[ t] as an
abbreviation for �([ t]), which we call the representative of t. Figure 3.3
also uses several other abbreviations: we write~u for u1; : : : ; un , where n
is clear from the context; we also write �[ ~u] � �[ ~v] for the equivalences
�[ u1] � �[ v1]; : : : ; �[ un ] � �[ vn ]. If t 2 �( r ) for t 2 T ; r 2 R , we also say
r is used byt, or t usesr .

We now have all the necessary elements to understand the rules. There
are actually only two of them, namely Congr and Add , which perform any
interesting tasks. The others are much simpler:Remove just checks if the
�rst equation in � is already known to be true (by the help of �) , and, if
so, discards it. Query is analogous toRemove but deals with a query5.
The other two rules deal with inconsistent con�gurations: Unsolv takes an
unsolvable equation from the sequence of pending equationsand returns the
inconsistent con�guration; rule Incons expresses the fact that once a con-
�guration is inconsistent, all new equations can be ignored, and all queries
are true. Finally, note that the case where the �rst pending equation is
already solved is dealt with by the Remove rule, because Axiom 3.2.4-(ii)
ensures thatsolve(�[ a]; �[ b]) returns > if and only if �[ a] � �[ b].

The rule Congr is much more complex. It deals with the �rst equation
in �, but only when it is neither solved nor unsolvable. This e quation a = b
with a; b 2 � is transformed into an equation in R, �[ a] � �[ b], and then
solved in the theory X , which yields two semantic valuesp and P. The
value p is then substituted by P in all representatives. The map � is up-
dated according to this substitution: the terms that used p up to that point
now also use all the valuesl 2 leaves(P). Finally, a set � 0 of new equations
is computed, and appended to the sequence � of the equations to be treated
(the order of the equations in � 0 is irrelevant). The set � 0 is computed in
the following way: the left hand side of any equation in � 0 is a term that
usedp, and the right hand side is either a term that usedp, or a term that
used everyl 2 leaves(� 0(r )) for a value r such that p 2 leaves(�( r )). This
rather complicated condition ensures that only relevant terms are consid-
ered for congruence. As the name implies, theCongr rule will only add
equations of the formf (t1; : : : ; tn ) = f (t0

1; : : : ; t0
n ), where the corresponding

subterms are already known to be equal: �0[t i ] � � 0[t0
i ], 1 � i � n.

The rule Add is used when the �rst equation of � contains at least a
term f (~a) that has not yet been encountered by the algorithm (f (~a) =2 �).
Its side condition ensures that all proper subterms of this term have been
added before; in other words, new terms are added recursively. The �rst
task that this rule performs is of course to update the map � by adding the

5Our system does not �return� any truth value for a query per se: it passes queries
that are true (using the Query rule) and is blocked at false queries.
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information that f (~a) uses all the leaves of its direct subterms. However, this
is not su�cient: we lose the completeness of the algorithm if no equation is
added during the application of an Add rule. Indeed, suppose for instance
that � is the sequence f (a) = t; a = b; f (b) = u. Then, we would fail to
prove that t = u since the equality a = b is processed too early. At this
point, f (b) has not been added yet to the structure �, thus preventing th e
congruence equationf (a) = f (b) to be discovered in theCongr rule. For
this reason, the Add rule also performs congruence closure by looking for
equations involving the new term f (~a): this is the construction of the set
� 0 of equations, where the restrictive side condition overf (~b) ensures that
only relevant terms are considered.

Soundness and completeness proofs ofCC(X) are given in Section 3.3.
Since no new terms are generated duringCC(X)'s execution, it is easy to
bound the number of times that the Congr rule and the Add rule can be
used. Let k be the number of terms (and subterms) in the input problem:
Add can be called at mostk times and Congr at most k(k � 1)=2 times.
The number of steps in aCC(X) run is therefore quadratically bounded by
the input problem size.

3.2.3 Example: Rational Linear Arithmetic

In this section, we present the theoryA of linear arithmetic over the rationals
Q as an interesting example of instantiation ofCC(X). This theory consists
of the following elements:

� The interpreted function symbols are +; � ; � and all constants q 2 Q.

� The semantic values are polynomials of the form

c0 +
nX

i =1

ci r i ; ci 2 Q ; r i 2 T ; ci 6= 0 :

From an implementation point of view, these polynomials canbe rep-
resented as pairs where the left component representsc0 and the right
component is a map from foreign values (terms not handled by linear
arithmetic; these are surrounded by a box in this section, inorder to
distinguish them from interpreted terms) to rationals that represents
the sum

P n
i =1 ci r i . Note that in the semantic value above, + is not the

interpreted function symbol but just notation to separate t he di�erent
components of the polynomial.

� = A is just the usual equality of linear arithmetic over rationals.

The functions needed by the algorithm are de�ned as follows:

� The function [�] interprets the above function symbols as usual and
constructs polynomials accordingly.
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� The function leaves just returns the set of all the foreign values in the
polynomial:

leaves

 

c0 +
nX

i =1

ci r i

!

=
�

r i j 1 � i � n
	

:

� For the value r and the polynomials p1; p2, subst( r ; p1; p2) replaces
the foreign value r by the polynomial p1 in p2, if r occurs in p2.

� For two polynomials p1; p2 2 R , solve(p1; p2) is simply the Gaussian
elimination algorithm that solves the equation p1 = p2 for a certain
foreign value occurring with di�erent coe�cients in p1 and p2.

If we admit the soundness of the [�] function and the Gauss algorithm
used in solve, the axioms that need to hold are true and A is indeed a
solvable theory.

We now want to show the execution ofCC(X) by an example using this
theory of arithmetic. Consider therefore the set of equations

E = f g(x + k) = a; s = g(k); x = 0g

and we want to �nd out if the equation s = a follows from E. We will present
the equations of E to the algorithm in the same sequence as above. The
algorithm starts in the initial con�guration K 0 = h ; j � 0 j � 0 j E ; s ?= a i ,
as de�ned in section 3.2.2. In the following, components of the con�gura-
tion with the subscript i denote the state of the component after complete
treatment of the i th equation.

Before being able to treat the �rst equation g(x + k) = a using the
Congr rule, all the terms that appear in the equation have to be added
by the Add rule. This means in particular that the components � and �
are updated according to Fig. 3.3. No new equations are discovered, so �
and � remain unchanged. Now we can apply the Congr rule to the �rst
equation g(x + k) = a. This yields an update of � and �, but no congruence
equations are discovered. Here is the con�guration after the treatment of
the �rst equation:

� 1 =
n

x 7! f x + k; g(x + k)g ; k 7! f x + k; g(x + k)g
o

[ � 0

� 1 =
n

g(x + k) 7! a ; a 7! a
o

[ � 0

The second equation is treated similarly: the termss and g(k) are Add ed
and the representative of g(k) becomes s. These are the changes to the
structures � and �:

� 2 =
n

k 7! f x + k; g(x + k); g(k)g
o

[ � 1

� 2 =
n

g(k) 7! s ; s 7! s
o

[ � 1
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The most interesting part is the treatment of the third equat ion, x = 0,
because we expect the equationg(x + k) = g(k) to be discovered. Other-
wise, the algorithm would be incomplete. Every term in the third equa-
tion has already been added, so we can directly apply theCongr rule.
solve(� 2 [x] ; � 2 [0]) returns the substitution ( x; 0), which is applied to all
representatives. The value 0 is a pure arithmetic term, soleaves(0) returns
f 1g. We obtain the following changes to �3 and � 3:

� 3 = f 1 7! f x + k; g(x + k)gg [ � 2

� 3 =
n

x 7! 0; x + k 7! k
o

[ � 2

It is important to see that the representative of x + k has changed, even if
the term was not directly involved in the equation that was tr eated.

To discover new equations, the set �3 has to be calculated. To calculate
this set, we �rst collect the terms that use x:

� 2( x ) = f x + k; g(x + k)g :

The elements of �2( x ) are potential left-hand sides of new equations. To
calculate the set of potential right-hand sides, we �rst construct the set
of values r corresponding to terms in � 2 such that the representative of r
contains x:

f r j x 2 leaves(� 2(r ))g =
n

x ; x + k
o

Now, for every valuer in this set, we calculate leaves(� 3(r )) and construct
their intersection:

\

l2 leaves(0)

� 2(l ) = � 2(1) = ;

\

l2 leaves
�

k
�

� 2(l ) = f x + k; g(x + k); g(k)g

The union of the two sets and the set �2( x ) is the set of potential right-hand
sidesf x + k; g(x + k); g(k)g. If we cross this set with the set � 2( x ) and �lter
the equations that are not congruent, we obtain three new equalities

� 3 = x + k = x + k ; g(x + k) = g(x + k) ; g(x + k) = g(k) ; s ?= a:

The �rst two equations get immediately removed by the Remove rule. The
third one, by transitivity, delivers the desired equality w hich permits to
discharge the querys ?= a.
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3.3 Correctness Proofs

3.3.1 Soundness

We now proceed to prove the soundness of the algorithm. LetE be a set of
equations between terms ofT and X a solvable theory as de�ned page 58. For
the proof, we need an additional information about the run ofan algorithm,
which is not contained in a con�guration: the set O of equations that have
already been treated in aCongr or Unsolv rule.

The �rst proposition shows that the equations that are already treated
are never contradicted by �.

Proposition 3.3.1. For any con�guration h � j � j � j � i and for all
t1; t2 2 T we have: t1 = t2 2 O ) �[ t1] � �[ t2].

Proof. The property is true for the initial con�guration K 0 since O is the
empty set. We proceed by induction on the derivation that led to the con-
�guration h � j � j � j � i and by case analysis on the last rule used. The
cases ofRemove , Query and Add are trivial since they change neither
O nor �. If the Congr rule is used, the new equationa = b is added to
O and � is updated with the substitution ( p; P) = solve(�[ a]; �[ b]). Old
equations in O are equal in � by induction hypothesis, and as for a = b, by
Axiom 3.2.4-(i), the new representatives ofa and b are equal in the updated
�.

The next proposition shows that � coincides with the functio n iter ,
applied to the equations that have already been treated.

Proposition 3.3.2. For any con�guration h � j � j � j � i and for all
t 2 T we have�[ t] = iter ([O] ; [t]).

Proof. It is straightforward to verify this property by induction o n O and
by de�nition of iter .

Now that we have characterized the representative of a termt as the result
of iterated substitution, we can prove the next proposition. It states that the
evolution of the representative of a term is always justi�ed by the equations
that have been treated:

Proposition 3.3.3. For any con�guration h � j � j � j � i and for all
t 2 T we have[O] j= X � 0[t ] = �[ t].

Proof. We have � 0[t ] = [ t] and by Proposition 3.3.2, �[ t ] = iter ([O]; [t]).
Proposition 3.2.9 ensures that [O] j= X t = iter ([O]; [t]), hence the result.

We now turn to the main lemma: it basically states the soundness of �,
crucial for the soundness of the whole algorithm.
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Lemma 3.3.4. For any con�guration h� j � j � j � i and for all t1; t2 2 T ,
we have:

�[ t1] � �[ t2] ) t1 = X;O t2:

Proof. By applying Proposition 3.3.3 to t1 and t2, we get [O] j= X [t1] =
�[ t1] and [O] j= X [t2] = �[ t2]. By transitivity, if �[ t1] = �[ t2], then
[O] j= X [t1] = [ t2]. We now apply Axiom 3.2.5 and obtain t1 = X;O t2.

We are now ready to state the main soundness theorem: whenever two
terms have the same representative, they are equal w.r.t. the equational
theory de�ned by E and X , and every newly added equation is sound as
well. For the soundness of the algorithm, we are only interested in the �rst
statement, but we need the second to prove the �rst, and the statements
have to be proved in parallel by induction.

Theorem 3.3.5. For any con�guration h� j � j � j � i , we have:

8t1; t2 2 T : �[ t1] � �[ t2] =) t1 = X;E t2

8t1; t2 2 T : t1 = t2 2 � = ) t1 = X;E t2:

Proof. We prove the two claims simultaneously by induction on the deriva-
tion and we are only interested in the application of the rules Congr , Re-
move, Add and Query . First, we observe that both claims are true for the
initial con�guration K 0: the second claim is trivial as � = E, and the �rst
claim is true because of proposition 3.2.8.

In the induction step, consider the last rule applied to the con�guration
h � j � j � j � i , and show that the claims still hold in the con�guration
obtained by application of that rule. For the rules Remove and Query
this is actually trivial, as � does not change and � does not ge t any new
equalities added. For the ruleAdd , the �rst claim is trivial, as � remains
unchanged. The second claim is established as follows. Ift1 = t2 2 �, we
can conclude by induction hypothesis. If t1 = t2 2 � 0, then t1 � f (~a) and
t2 � f (~b), for f with arity n. The conditions in Figure 3.3 guarantee that
�[ ~a] � �[ ~b]. By the �rst claim, we can state that ai = X;E bi (1 � i � n) and
by the congruence property of =X;E we have f (~a) = X;E f (~b), which proves
the second claim.

We �nally assume that the last rule applied was a Congr rule. To
prove the �rst claim, we assume � 0[t1] � � 0[t2]. By lemma 3.3.4, we have
t1 = X;O;a = b t2. Now, a = b is obviously an element of the setf a = bg [ �, so
that, by induction hypothesis, a = X;E b. By the induction hypothesis and
proposition 3.3.1, for any ai = bi 2 O we have alsoai = X;E bi . As = X;E is a
congruence relation, we can concludet1 = X;E t2. The second claim can be
proved as in the case of theAdd rule, by the aid of the �rst claim.
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Until now, we have only addressed the case of consistent con�gurations
and indeed Theorem 3.3.5 establishes the soundness of the � map along
a derivation as long as the con�guration remains consistent. We now deal
with inconsistent con�gurations: in order to be sound, we need to show that
as soon as a con�guration becomes inconsistent, it must be the case that
the original set of equationsE is inconsistent with X.

Theorem 3.3.6. If an inconsistent derivation h ? j � i is derivable from
K 0, then E and X are inconsistent. Consequently,a = X;E b for any terms
a and b.

Proof. When the con�guration �rst becomes inconsistent, it must be by ap-
plication of the Unsolv rule. Thus, there is a con�guration h� j � j � j a =
b; � i derivable from K 0 such that solve(�[ a]; �[ b]) returns ? . Let O be the
equalities treated up to that point. By the second part of Theorem 3.3.5,
we know that a = X;E b and that for all u = v 2 O, u = X;E v.

Let t be any term, we want to show that iter (a = b; O; [t]) = ? . By
Proposition 3.3.2, iter (O; [a]) = �[ a] and iter (O; [b]) = �[ b]. Thus by
de�nition of iter and sincesolve(�[ a]; �[ b]) returns ? , iter (a = b; O; [t]) is
unde�ned. By applying this to any two terms t1 and t2, we can prove that
a = b; O j= X t1 = t2 and by Axiom 3.2.5, this means that t1 = X;O;a = b t2.

Because this last equality is true for any termst1 and t2 and because
a = b and the equations in O are consequences ofX and E, X and E are
inconsistent.

3.3.2 Completeness

We �nally proceed to the completeness of the algorithm. In opposition to
the correctness proof, we are now interested in the fact thatevery possible
equation on the terms of the problem can be deduced by the algorithm,
and in particular we are interested in its termination. We wi ll only con-
sider consistent con�gurations since inconsistent con�gurations cannot be
incomplete.

Termination and congruence closure of �

In the following, we assume a �xed problem � consisting in the set of equa-
tions E and a query a ?= b; we denote the successive con�gurations by
h� n j � n j � n j � n i with n = 0 the initial con�guration (as de�ned in Sec-

tion 3.2.2). Let T� be the set of terms and subterms that appear inE; a ?= b,
in particular, T� is closed by subterm. At any stagen in the algorithm, we
write On for the set of equations that have been treated by the algorithm
so far through the rule Congr or Remove .

The �rst property we are interested in is the fact that all the equations
inferred, and thus all the terms added, are only using terms from T� .

Proposition 3.3.7. For any n, Im (� n ) � T� , � n � T� � T� and � n � T� .
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Proof. Straightforward to verify by analyzing every rule.

Theorem 3.3.8 (Termination) . The algorithm terminates on any input
problem � .

Proof. To prove that this system terminates, it is su�cient to consi der the
measure de�ned as (jT� n � n j; j� n= �j ; j� n j), where the second component
represents the number of equivalence classes overT� in � n . To be precise,
the measure is only de�ned for consistent con�gurations but inconsistent
con�gurations can be considered as �nal (they just discard every equation
and query pending).

It is immediate to check that, used lexicographically, this measure de-
creases for every rule of the system. The �rst element of thismeasure
remains unchanged for all rules exceptAdd , where it strictly decreases: in-
deed a new term is added to �n and by Proposition 3.3.7, this new term
belongs toT� .

The second part measures the number of di�erent equivalenceclasses in
� n with respect to � . It is obvious that rules Remove and Query do not
alter this quantity. As for Congr , this quantity decreases strictly since two
elements that were di�erent in � n are made equal in � n+1 by Axiom 3.2.4.

Finally, the third part of the measure is the number of equations and
queries that remain to be treated, and it is clear that rulesRemove , Query
always remove one element from this set. To sum up, we have thefollowing
table :

jT� n � n j j� n = � j j� n j

Add < � �

Congr = < �

Remove = = <

Query = = <

which proves the termination of the algorithm.

Now, we know that there exists a �nal con�guration, for n = ! . At this
stage, all the equations from the original problem have beentreated, and
every term in T� has been encountered :

Proposition 3.3.9. O! � E .

Proof. Since � 0 = � and all these equations have been treated at the end,
it is obvious that O! contains at least the equations in �, i.e. E .

Corollary 3.3.10. At the end of the algorithm, � ! = T� .
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Proof. We already know by 3.3.7 that � ! is included in T� . By 3.3.9
and 3.3.7, all the left and right-hand sides of the equations/queries in �
are in � ! . Since � ! is closed by subterm, it also containsT� , so it is equal
to T� .

Proposition 3.3.11. The function n 7! � n is nondecreasing, i.e. � n(r ) �
� n+1 (r ) for all r and n.

Proof. It is easy to check this property by looking at all the rules.

The following proposition gives the true �meaning� of the map � n . It
shows that a term in � n uses all the leaves of the representatives of its direct
subterms.

Proposition 3.3.12. For any term f (t1; : : : ; tm ) in � n , if there exists i � m
such that p 2 leaves(� n [t i ]), then f (t1; : : : ; tn ) 2 � n (p).

Proof. The proof proceeds by induction onn. The result holds trivially for
the initial con�guration since � 0 is empty. If the result holds after n steps,
we proceed by case analysis on the rule used to get to then +1-th step. The
rules Remove , Query do not change � n , � n or � n , so if one of these rules
is used the result still holds at n + 1. We detail both remaining rules :

Congr: Let f (t1; : : : ; tm ) 2 � n+1 = � n , and i and p such that p 2
leaves(� n+1 [t i ]). If ( v; R) is the substitution applied, by de�nition
of � n+1 , p 2 leaves(� n [t i ]f v 7! Rg). Now, we distinguish two cases :

� if p 2 leaves(� n [t i ]), then by induction hypothesis, we know that
f (t1; : : : ; tn ) 2 � n(p), and thus f (t1; : : : ; tn ) 2 � n+1 (p).

� if p =2 leaves(� n [t i ]), then � n [t i ] has been changed by the sub-
stitution and the axiom 3.2.6 tells us that v 2 leaves(� n [t i ]) and
p 2 leaves(R). Therefore, by applying the induction hypothesis
to v and the de�nition of � n+1 , we can conclude that :

f (t1; : : : ; tn ) 2 � n (v) � � n (p) [ � n(v) = � n+1 (p)

Add: If f (t1; : : : ; tm ) was already in � n , then it is straightforward to check
that for all p 2 leaves(� n+1 ([t i ])), p was already in � n [t i ] and the
induction hypothesis together with the monotonicity of � n gives us
the wanted result.

If f (t1; : : : ; tm ) is in fact the new term f (~a) added by the rule, then let
p 2 leaves(� n+1 [t i ]). Again, p was already in � n [t i ] and sincet i is a
direct subterm of the new added termf (~a), we have by de�nition that
f (~a) 2 � n+1 (p) = � n (p) [ f f (~a)g.
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The next proposition is the central property ensuring the completeness of
the algorithm, and states that � ! indeed represents a congruence relation.

Proposition 3.3.13. The restriction of � ! to T� is congruence-closed, i.e.

8f (~a); f (~b) 2 T� ; � ! [~a] � � ! [~b] ) � ! [f (~a)] � � ! [f (~b)]:

Proof. Let k the smallest integer such that both f (~a) and f (~b) belong to
� k . Because terms can only be added to � by the rule Add , we know
the rule applied at the previous step wasAdd . We can safely assume the
term added was f (~a), by switching ~a and ~b if necessary. If f (~a) and f (~b)
are equal, the result is obvious. Otherwise,f (~a) 6= f (~b) and f (~b) had been
added before and was in �k� 1. Now there are two cases, depending on
whether � k� 1[~a] � � k� 1[~b] or not.

� if � k� 1[~a] � � k� 1[~b], we will prove that f (~a) = f (~b) has been added
to � k , that is to say we need to establish that :

8i; 8l 2 leaves(� k� 1[ai ]); f (~b) 2 � k� 1(l ).

For any such i and l, we know that l is in leaves(� k� 1[ai ]), and
therefore in leaves(� k� 1[bi ]). By Proposition 3.3.12, this means that
f (~b) 2 � k� 1(l ), which is exactly what we wanted.

� if on the contrary, [~a] and [~b] were not equal in � k� 1, then let j � k be
the smallest integer such that � j [~a] � � j [~b]. The rule applied at the
previous step must beCongr since only Congr changes �. Thus,
a substitution f p 7! Pg has made � j � 1[~a] and � j � 1[~b] equal: there
exists an i , such that

� j � 1[ai ] 6� � j � 1[bi ] ^ � j � 1[ai ]f p 7! Pg � � j � 1[bi ]f p 7! Pg.

This means that at least one of these values, say �j � 1[ai ], has been
changed by the substitution and by Axiom 3.2.6, that p belongs to
leaves(� j � 1[ai ]). Proposition 3.3.12 ensures thatf (~a) 2 � j � 1(p).

We still have to prove that f (~b) veri�es the conditions in the rule
Congr , namely that:

f (~b) 2 � j � 1(p) [
S

t jp2 leaves(� j � 1 (t ))
T

l2 leaves(� j (t )) � j � 1(l ):

Again, we distinguish two cases :

� if � j � 1[bi ] 6� � j [bi ], then by the same argument as above for
f (~a), f (~b) 2 � j � 1(p) and f (~b) has the desired property.
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� if � j � 1[bi ] � � j [bi ], then leaves(� j [ai ]) = leaves(� j [bi ]) =
leaves(� j � 1[bi ]) and by applying Proposition 3.3.12 once again,
we deduce that for everyl in leaves(� j [ai ]), f (~b) 2 � j � 1(l ). Since
p 2 leaves(� j � 1[ai ]), this means indeed that:

f (~b) 2
S

t jp2 leaves(� j � 1 (t ))
T

l2 leaves(� j (t )) � j � 1(l ).

So far, we have established that the equationf (~a) = f (~b) has been
added when the ruleCongr was applied at the stepj � 1, and thus
that f (~a) = f (~b) belongs to � j . At the end of the algorithm, this
equation must have been treated. Thus, by 3.3.1, we know thatthe
representatives off (~a) and (~b) are equal in � ! .

The axioms 3.2.10 and 3.2.11 introduced in Section 3.2.1 areused to
prove that the � ! component of the �nal con�guration is coherent with the
theory X, that is to say:

Proposition 3.3.14. Let f (t1; : : : ; tn ) a term in T� where f is an inter-
preted symbol. Then,� ! [f (t1; : : : ; tn )] � f X(� ! [t1]; : : : ; � ! [tn ]).

Proof. We will prove this result by proving it (by simple induction) for � n

for every N between 0 and the �nal con�guration.
First, we observe that the result is true for the initial con� guration, i.e.

� 0[f (t1; : : : ; tm )] � f X(� 0[t1]; : : : ; � 0[tm ]) because it directly follows from
Axiom 3.2.10 and the de�nition of � 0.

Now, it is su�cient to show that if the equality holds for � n , it still
holds in � n+1 . Since the only rule that changes � n is Congr , the result
is obvious for any other rule. In the case of aCongr rule, let p; P be the
substitution applied to � n :

� n+1 [f (t1; : : : ; tm )] = � n [f (t1; : : : ; tm )]f p 7! Pg by de�nition
� f X(� n [t1]; : : : ; � n [tm ])f p 7! Pg by induction
� f X(� n [t1]f p 7! Pg; : : : ; � n [tm ]f p 7! Pg) by 3.2.11
� f X(� n+1 [t1]; : : : ; � n+1 [tm ]) by de�nition

which proves the result.

In other words, this property means that � actually represen ts a union-
�nd structure modulo X, that is, it behaves correctly with respect to the
interpreted symbols.

Models and Structures

We now recall some usual de�nitions about structures and models on a
certain signature, which we will use to �nish the completeness proof.

De�nition 3.3.15. A � -structure M is de�ned as a tuple (jMj ; (f M )f 2 � )
where:
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� jMj is a set called thedomain of M

� for each function symbolf 2 � of arity n, f M is a function from jMj n

to jMj called the interpretation of f in M

De�nition 3.3.16. Let M be a � -structure, t a term in T . The interpre-
tation of t in M , noted M (t), is recursively de�ned6 by:

8f 2 � ; t1; : : : tn 2 T ; M (f (t1; : : : ; tn ))
def
= f M (M (t1); : : : ; M (tn ))

�-structures can now be used as models for our atoms, in the sense of
De�nition 2.1.1 page 27. Recall that in this chapter, atoms are equations
between terms ofT .

De�nition 3.3.17. Let M be a � -structure, t; u terms in T . We say that
M is a model of t = u, written M j = t = u, if and only if M (t) � M (u).

Completeness

The completeness expresses the fact that if the query is entailed by the set
of equationsE and the theory X, it is proved true by CC(X). In other words,
we need to prove that:

a = X;E b =) � ! [a] � � ! [b].

The �rst step of the proof is to build a �-structure M which modelsE
and = X , and such that the interpretation in M coincides with � ! on [a]
and [b].

De�nition 3.3.18. Let M be the structure de�ned in the following way :

� the domain of M is the setR of semantic values

� for each symbolf 2 � of arity n, we distinguish whetherf is inter-
preted in X or not :

� if f 2 � X, then f M def
= f X

� if f =2 � X , and r1; : : : ; rn 2 R , then the idea is to use� ! wherever
we can :

f M (r1; : : : ; rn )
def
= � ! [f (t1; : : : ; tn )]

(
if f (t1; : : : ; tn ) 2 T�

and 8i; r i � � ! [t i ]

f M (r1; : : : ; rn )
def
= 1 otherwise

Here, we use1, but we could use any element inR, since we will
see that it does not matter how we de�ne interpretations in this
case.

6 the base case being 0-ary function symbols, i.e. constants.
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Proof. The very �rst thing we have to do is to prove that the de�nition we
just gave is indeed a de�nition. In the case wheref M is de�ned in terms
of � ! , there may be several ways to pick the termst i and we have to show
that the result does not depend on this choice. Lett1; : : : ; tn , u1; : : : ; un be
terms such that � ! [t i ] � r i � � ! [ui ] for all i . By Proposition 3.3.13, we
know that � ! [f (t1; : : : ; tn )] � � ! [f (u1; : : : ; un )], which means exactly that
the de�nition of f M (r1; : : : ; rn ) does not depend on the choice of thet i .

Now that M is a well-de�ned �-structure, we will �rst show that on all
the terms in T� , the interpretation in M is exactly the function � ! [:].

Lemma 3.3.19. For any term t 2 T� , M (t) � � ! [t ].

Proof. We proceed by structural induction on terms.
Let t = f (t1; : : : ; tn ) 2 T� , we can apply the induction hypothesis to all

the t i becauseT� is closed by subterm. Thus, for all i , M (t i ) � � ! [t i ].
Now, if f 62� X ,
M (f (t1; : : : ; tn )) = f M (M (t1); : : : ; M (tn ))

� f M (� ! [t1]; : : : ; � ! [tn ]) by IH
� � ! [f (t1; : : : ; tn )] by de�nition of f M

If f 2 � X , then
M (f (t1; : : : ; tn )) = f M (M (t1); : : : ; M (tn ))

� f M (� ! [t1]; : : : ; � ! [tn ]) by IH
� f X(� ! [t1]; : : : ; � ! [tn ]) by de�nition of f M

� � ! [f (t1; : : : ; tn )] by 3.3.14 sincef (t1; : : : ; tn ) 2 T�
which concludes the proof.

Finally, we show that M is a model of =X and E, i.e. that it models all
equalities in the congruence closure ofX and E.

Lemma 3.3.20. For all u; v 2 T , u = X;E v =) M j = u = v.

Proof. Since M is a structure whose domainR is the domain of semantic
values ofX, and since the interpretation in M of every interpreted symbol
f is precisely its interpretation in X, namely f X, M is a model of =X .

Moreover, let t = u be an equation in E. Since t and u are in T� ,
the preceding lemma tells us thatM (t) � � ! [t ] and M (u) � � ! [u]. By
proposition 3.3.9, we know that sincet = u is in E , it has been treated at
the end and � ! [t ] � � ! [u]. Thus, M (t) � M (u) for any equation t = u in
E, and M j = E.

Theorem 3.3.21 (Completeness). 8a; b2 T ; a = X;E b =) � ! [a] � � ! [b].

Proof. By lemma 3.3.20, M is a model of E and = X . Therefore, since
a = X;E b, it must be the case that M is also a model ofa = b, in other
words, that M (a) � M (b). Hence, by lemma 3.3.19, � ! [a] � � ! [b].

We have established the completeness ofCC(X).
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3.4 Adding Disequalities

In the previous sections, we have presented a new algorithm called CC(X)
which performs the congruence closure of a set of equations modulo a solv-
able theory X. In order to use such a system in an SMT solver, we need to
turn it into an environment suitable for the DPLL procedure, as described
in Section 2.3. The missing part in CC(X) as presented so far is that the
SAT solver will feed the environment with both positive and negative liter-
als, and query positive and negative literals as well. Therefore, we need to
adapt our system such that it is able to deal with disequalities as well and
we present such an extension in this section.

The modi�cations required to deal with disequalities can be roughly
summarized as follows:

(a) we must account for inputs of the form a 6= b where a and b are some
terms: the algorithm will store an extra relation N � T � T which
gathers all such constraints;

(b) there is a new way for the con�gurations to become inconsistent,
namely when treating an equation which contradicts the constraints
gathered in N : solving a (solvable) equation inCongr rule can merge
two terms in � which are unequal according to N , and conversely,
adding a disequality constraint can contradict the current �;

(c) when dealing with a negative querya
?
6= b, we must determine whether

a and b can be equal or not: it is not su�cient to check the current
constraints N because merginga and b can lead to more equalities
(modulo X), one way to do so is to try and add the equationa = b
and test if the con�guration becomes inconsistent.

Note that N must be an irre�exive, symmetric relation; adding the dise-
quality a 6= b to N yields the relation N [ f (a; b); (b; a)g. The N structure
can be implemented in a variety of ways, one possible way is tomap terms
to the set of terms which are di�erent. For modi�cation (b), i t is necessary
to check that the union-�nd � and the relation N are not contradictory.

De�nition 3.4.1. Let N � T � T a relation over terms and � : R ! R a
union-�nd on semantic values. We say thatN and � are coherent if:

8a; b2 T ; (a; b) 2 N =) �[ a] 6� �[ b]

We say that they areincoherent otherwise.

Because the relationN remains �nite (since there are a �nite number of
inputs after a �nite number of steps), this coherence check can be imple-
mented without problem. Finally, in order to deal with modi� cation (c),
we de�ne a couple of notations: if K is a con�guration, we write K " if
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there is a derivation from K to an inconsistent con�guration, and K # if the
con�guration remain consistent and all queries succeed.

We now present an extended set of inference rules which completes and
corrects the rules in Figure 3.3. Con�gurations are extended with the N
structure and are now written h � j � j � j N j � i and the initial
con�guration K 0 is just as before with an empty N = ; . The extended
inference system is given in Figure 3.4. The rulesRemove , Unsolv , Add ,
Query and Incons are left unchanged: theN structure is simply passed
from one con�guration to the next. The Congr rule is modi�ed so that
it only applies if the resulting union-�nd � 0 is coherent with the set of
constraints; other than that it is left unchanged. The new rule IncohEq
takes care of the case when �0 and N are incoherent. There are three rules
left, all new with respect to Figure 3.3, and they all deal with disequalities.
Diff adds a new disequality constraint to the structure N , but only if
that does not contradict the current map �. If it does, then IncohDiff
applies and yields an inconsistent con�guration. Finally, negative queries
are handled byQueryDiff , which only accepts a querya 6= b if adding the
equality a = b to the current con�guration raises an inconsistency.

Adapting the proofs. It is straightforward to check that the proofs that
we did in Section 3.3 still hold (for the most part) for this extended system.
Indeed, the extendedCC(X) deals with equalities (whether inputs or queries)
in exactly the same way as the originalCC(X): the only di�erence lurks in
the fact that an equation can contradict some previous disequalities, i.e.
the IncohEq rule. Therefore the extended system can yield more inconsis-
tencies, but consistent con�gurations remain the same and therefore remain
correct and complete (as far as equalities are concerned). More formally, if
� is the input problem, let us call E + the set of input equations in � and
E � the set of disequalities. We can reproduce the exact same reasoning that
led to Theorem 3.3.5 and deduce:

Theorem 3.4.2. For any con�guration h� j � j � j N j � i , we have:

8t1; t2 2 T : �[ t1] � �[ t2] =) t1 =
X;E + t2

8t1; t2 2 T : t1 = t2 2 � = ) t1 =
X;E + t2:

Similary, the soundness of inconsistentCC(X) con�gurations, namely The-
orem 3.3.6, can be obtained by replacingE with the only positive inputs
E + :

Theorem 3.4.3. If an inconsistent derivation h ? j � i is derivable from
K 0 using Unsolv , then E + and X are inconsistent. Consequently, the equa-
tion a =

X;E + b folds for any terms a and b.

In order to complete the soundness proof for the extended system, we
need invariants on the N structure along the derivation: all constraints in
N must be consequences of the disequalities inE � .
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Congr
h � j � j � j N j a = b ; � i

h � j � ] � 0 j � 0 j N j � 0 ; � i
a; b2 � ; �[ a] 6� �[ b]

where
� 0, � 0 and � 0 are computed as in theCongr rule in Figure 3.3
N and � 0 are coherent

IncohEq
h � j � j � j N j a = b ; � i

h ? j � i
a; b2 � ; �[ a] 6� �[ b]

where
� 0, � 0 and � 0 are computed as in theCongr rule in Figure 3.3
N and � 0 are incoherent

Diff
h � j � j � j N j a 6= b ; � i

h � j � j � j N [ f (a; b); (b; a)g j � i
a; b2 � ; �[ a] 6� �[ b]

IncohDiff
h � j � j � j N j a 6= b ; � i

h ? j � i
a; b2 � ; �[ a] � �[ b]

Unsolv
h � j � j � j N j a = b ; � i

h ? j � i
a; b2 � ; �[ a] 6� �[ b]

where? = solve(�[ a]; �[ b])

Remove
h � j � j � j N j a = b ; � i

h � j � j � j N j � i
a; b2 � ; �[ a] � �[ b]

Add
h � j � j � j N j C[f (~a)] ; � i

h � [ f f (~a)g j � ] � 0 j � j N j � 0 ; C[f (~a)] ; � i

(
f (~a) 62�
8v 2 ~a; v 2 �

where � 0 and � 0 are computed as in theAdd rule in Figure 3.3

Query
h � j � j � j N j a ?= b ; � i

h � j � j � j N j � i
a; b2 � ; �[ a] � �[ b]

QueryDiff
h � j � j � j N j a

?
6= b ; � i

h � j � j � j N j � i
a; b2 � ; �[ a] � �[ b]
h� j � j � j N j a = b i "

Incons
h ? j e ; � i

h ? j � i
e equation or query

Figure 3.4: The rules ofCC(X) extended to deal with disequalities
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Proposition 3.4.4. If h � j � j � j N j � i is derivable from K 0, then all
terms (a; b) 2 N are such thata 6= b or b 6= a belong toE � .

Proof. The proof is easy by induction on the derivation; only the Diff rule
adds elements toN , and no rule ever adds disequalities to the pending
inputs.

We can now prove the soundness of the system when it reaches inconsis-
tent con�gurations.

Proposition 3.4.5. If an inconsistent con�guration h ? j � i is derivable
from K 0, then the union of E + , E � and X are inconsistent, i.e. there exists
no model M of E + ; X such that all disequalities inE � are false in M .

Proof. By case analysis on the rule which made the con�guration inconsis-
tent. The case of theUnsolv rule is given by Theorem 3.4.3: E + and X
together are already inconsistent.

If IncohEq is used thenN and � 0are incoherent. Therefore, there exists
u; v two terms such that (u; v) 2 N and �[ u] � �[ v]. By Theorem 3.4.2, we
know that u =

X;E + v and by Proposition 3.4.4 that u 6= v or v 6= u belongs
to E � . Therefore, X; E + is inconsistent with E � .

Finally, if IncohDiff is used then there isa 6= b 2 E � such that
�[ a] � �[ b]. By Theorem 3.4.2, we know that a =

X;E + b and therefore
X; E + is inconsistent with E � .

This last proposition also gives us the soundness of the treatment of
negative queries, i.e. the soundness of theQueryDiff rule. Indeed, if
h � j � j � j N j a = b i " , then by Proposition 3.4.5, a = b; E+ ; X and E �

are inconsistent. Therefore if M models E + , X and E � , it is impossible
that M j = a = b holds. In other words, a 6= b is indeed a consequence of the
inputs E and the theory X.

Now that we have established the soundness of the extended system, we
prove its completeness. We use the same notations as in Section 3.3, for the
�xed sequence of inputsE (which are split in equalities E + and disequalities
E � ). Once again we only deal with consistent con�gurations since inconsis-
tent con�gurations are necessarily complete. The completeness theorem is
expressed in two parts, one for positive queries and one for negative queries.

Theorem 3.4.6. Let a; b be two terms in T .

(i) Assume that 8M ; M j = E; X =) M j = a = b.

Then, h � 0 j � 0 j � 0 j N0 j E ; a ?= b i #.

(ii) Assume that 8M ; M j = E; X =) M j = a 6= b.

Then, h � 0 j � 0 j � 0 j N0 j E ; a
?
6= b i #.

Proof.
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(i) Let us assume that a = b is entailed by E; X . We want to prove that

h � 0 j � 0 j � 0 j N0 j E ; a ?= b i #, and such a derivation can only end with
the Query rule therefore it is enough to prove that � ! [a] � � ! [b].

We now build a special �-structure M in exactly the same way as we
did in Section 3.3, with domain R and such that it coincides with � ! every-
where possible. By Proposition 3.3.19, we know that for every term t in the
problem, M (t) � � ! [t ]. Adapting Lemma 3.3.20, we also know thatM is a
model of X; E + . Finally, let u; v 2 E � : we know that E � has been treated
by a Diff rule, so (u; v) belongs to N . BecauseN ! and � ! are coherent,
this means that � ! [u] 6� � ! [v]. Thus, M is a model ofE � as well and alto-
gether, M j = E; X . By hypothesis, this means that M j = a = b, that is to
say M (a) � M (b). Since a and b are terms of the problem, � ! [a] � � ! [b].

(ii) We now assume that a 6= b is entailed by E; X . We want to prove that

h � 0 j � 0 j � 0 j N0 j E ; a
?
6= b i #, and such a derivation can only end with

the QueryDiff rule therefore it is easy to see that it amounts to proving
that h� 0 j � 0 j � 0 j N0 j E ; a = b i " .

We proceedab absurdo: if h � 0 j � 0 j � 0 j N0 j E ; a = b i does not
yield an inconsistent con�guration, there is a �nal con�gur ation with a map
that we denote � ! ; we proceed as in the (i) part and build a �-structure
M such that M is a model of E; X and such that M (t) � � ! [t ] for all
terms t appearing in E; a = b. By hypothesis, we know that M j = a 6= b;
on the other hand, becausea = b has been treated in � ! , it must be the
case that � ! [a] � � ! [b], which means that M j = a = b. We have reached a
contradiction.

3.5 Conclusion

We have presented a new algorithmCC(X) which combines the theory of
equality over uninterpreted function symbols with a solvable theory. Our
method is inspired by Shostak's algorithm and its main novelty rests in the
use of abstract data structures for class representatives;this allows e�cient
implementations of crucial operations. Our approach is also modular un-
like ad-hoc extensions of congruence closure [NO80, NO07],CC(X) can be
instantiated with an arbitrary solvable theory underlying the restrictions
described in Section 3.2.

We gave a useful example of a solvable theory in Section 3.2.3with the
theory of linear rational arithmetic. The same theory can also be used to
deal with linear integer arithmetic, which does not have a solver, but it can
be incomplete. For instance, the formula:

8xyz : Z; 2 � x = z =) 2 � y 6= z + 1

cannot be established. Because such formulae are not frequent in program
veri�cation in practice, Alt-Ergo basically uses the theory of rational arith-
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metic in order to deal with integers7. This illustrates one interesting feature
of the ability to use semantic values: this decision procedure for integers
can manipulate and construct semantic values which do not correspond to
terms, e.g. the constant polynom 1=2, which is not possible with Shostak's
procedure. There are other theories of interest which happen to be solvable
theories and are implemented inAlt-Ergo: a theory of pairs (similar to the
theory given as an example by Shostak in [Sho84]) and a theoryof �nite
vectors.

Nevertheless, solvable theories are still a quite stronglyconstrained class
of theories. They are included in the class of Nelson-Oppen theories. They
are stably in�nite because the semantic values of a solvabletheory need to be
able to embed the set of all termsT (through the [.] function). In particular,
it is not possible to deal with a theory of �nite types because CC(X) has a
coarse treatment of disequalities: a terma in N can be constrained to be dif-
ferent from arbitrarily many terms and CC(X) will not detect inconsistencies
due to an upper limit on the cardinality of a model. There are combina-
tion schemes which try to address cardinality constraints thoroughly: for
instance, Tinelli and Zarba [TZ03] proposed a combination scheme in which
any theory can be combined with a special kind of theory (shiny theories)
which have a function to compute cardinality constraints. Finally, Ranise,
Ringeissen and Tran proposed a combination scheme for a class of theories
strictly included between Nelson-Oppen and Shostak theories [RRT04].

7Alt-Ergo still tries to do some integer-speci�c reasoning: for insta nce, strict inequal-
ities a < b are transformed into large equalities a � b � 1, thus using a fundamental
characteristic of integers.
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The second part of this document is devoted to the presentation of a
Coq formalization of the SMT techniques described in Part 1. We start in
this chapter by giving a detailed introduction to the Coq proof assistant
and the technique of proof by re�ection. We �rst describe Coq 's underlying
logic and its general features in Section 4.1.1, before we detail the di�erent
techniques for proof automation inCoq and in interactive provers in general
(Section 4.2). We �nish with an outline of our re�exive SMT so lver in
Section 4.3.
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4.1 Introduction to Coq

Coq is a proof assistant for higher-order logic whose development started in
the middle of the 1980's, and which is now maintained and developed in the
TypiCal project [Typ]. We start by describing its logical la nguage before we
deal with the proof assistant per se.

4.1.1 CIC: The Calculus of Inductive Constructions

The logical language on whichCoq is based is an evolution of a calculus pro-
posed by T. Coquand and G. Huet in [CH88], theCalculus of Constructions
(CoC). This calculus is itself an extension of type theory and can be seen
as a combination of the principles of two successful type-theoretic frame-
works from the 1970's, Martin-Löf's Intuitionistic Theory of Types [ML75]
and Girard's second-order� -calculus F! .

One of the main speci�cities of Martin-Löf's theory is the dependent
product � which allows one to quantify over both objects and t ypes and
these dependent types allow one to express much more properties through
types than in standard simply-typed � -calculus. Through the Curry-Howard
isomorphism, which identi�es programs to proofs and types to logical propo-
sitions, this system can be used as a foundation of constructive mathematics.

In the CoC, � -abstractions are typed with a dependent product noted
8 using the following rule: if, for all x with type T, the term u has type
U, the term �x : T:u has type 8x : T:U, where U can mention the variable
x. Therefore a product type 8x : T:U can be read both as the type of a
dependent function, or as a universal quanti�cation over objects of type T.
When U does not mention x, the product becomes non-dependent and is
written T ! U, which can be read as a traditional function type or as a
logical implication.

Because of its higher-order nature, quanti�cation in the CoC is not re-
stricted to terms and as a matter of fact, terms and types are not distin-
guished in the CoC. Therefore types themselves have types, and these �types
of types� are special terms called sorts:f Prop; Set; Typei;i 2 Ng. Now, the fact
that a term t has type T in the CoC can be seen in two dual ways: thatt is
an object of type T, but also that t is a proof of proposition T. Of course,
not every type should be seen as a proposition, for instance basic datatypes
like integers and functions are traditional �program types�. The sorts above
are used to ensure a strict separation between informative types (data types,
programs) and logical types (propositions, proofs): the former category of
types have type Set, while the latter have type Prop. In particular, the
sorts Prop and Set di�er by the fact that Prop alone is impredicative, i.e.
quantifying over propositions still yields a proposition1. Quanti�cation over

1Early versions of Coq implemented an impredicative version of the sort Set, but it
was discovered to be inconsistent thereforeSet has since been made predicative.
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Set yields more complex objects, whose type isType0. In fact, both Prop
and Set themselves have typeType0, and the sorts Typei form a hierarchy of
sorts reminiscent of Martin-Löf's universesUn , where eachTypei has type
Typei +1 , which allows one to de�ne arbitrarily complex objects.

Another decisive feature of the CoC, which it inheritates from simply-
typed � -calculus, is the fact that there is a natural notion of reduction of
terms. The rules of reduction in CoC form a con�uent, strongly normalizing,
system and a very important typing rule allows one to take advantage of
this reduction: the conversion rule says that if a term t has type T, it also
has type T0 as long asT0 and T have the same normal form. This brings
computational reasoning in the typing system: some typing judgments can
now simply be veri�ed by computing a normal form. For instance, if one
has a proof ofP((15 � (75 � 7))=12), it is also a proof ofP(85), P(5 � 17) or
P(100 � 15)2.

Finally, the CoC was extended with inductive de�nitions by T . Coquand
and C. Paulin [CP90, PM93], and then to coinductive de�nitio ns by E.
Giménez [Gim96] in what is now known as theCalculus of Inductive Con-
structions (CIC). Inductive de�nitions allow one to easily de�ne datat ypes
in an intuitive manner, what was essentially only possible through tedious
second-order encodings in the CoC. We demonstrate the use ofinductive
de�nitions in the next section.

4.1.2 The Coq Proof Assistant

The Coq proof assistant is a system based on the CIC presented above:it
revolves around a small critical kernel whose role is to typecheck CIC terms.
If one is able to build a term t of type T, then one is guaranteed to have a
(constructive) proof of T. Depending on whetherT is a proposition or not,
this shows that Coq can be used both to prove propositions and to write
pure functional programs. Coq is therefore really adapted to the task of
writing programs, speci�cations, and proofs that these programs verify their
speci�cations, all in one single system.

Inductive de�nitions. Coq users do not manipulate CIC terms directly;
instead Coq provides a speci�cation language called Gallina and a set of
top-level commands calledvernaculars. For instance, the datatype of Peano
integers can be de�ned by the following inductive de�nition :

Inductive nat : Set :=
| O : nat
| S : nat ! nat.

In e�ect, this de�nition actually corresponds to four separ ate de�nitions:

2We suppose here that integers and arithmetic operations have been de�ned, we will
see in the next subsection how this can be done.
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� the de�nition of a type nat of type Set;

� two symbols, called the constructors of the inductive type nat : O of
type nat and S of type nat ! nat ;

� an induction principle nat_ind of type:

8P : nat ! Prop ,
P 0 ! ( 8n : nat, P n ! P (S n)) ! 8 n : nat, P n.

This induction principle is a second-order formula expressing the traditional
induction principle used to prove properties by induction on integers. It
states that integers are exactly built by application of the constructors O
and S. Such an inductive de�nition also has two internal consequences (due
to the introduction of inductives in the CIC). The �rst one is that it is
possible to use pattern-matching to deconstruct a object ofan inductive
type. For instance, we can de�ne a �predecessor� function inthe following
way:

De�nition pred ( n : nat) :=
match n with
| O ) O (* -1 is not a nat *)
| S m ) m
end .

The system checks that the pattern-matching is exhaustive,i.e. that all
constructors are accounted for. Syntatic extensions in Gallina make it pos-
sible to use complex, nested pattern constructs, as is usually done in func-
tional languages. The second consequence of the de�nition of an inductive
datatype is the ability to write recursive functions, i.e. �x-points on the
structure of an inductive type. For instance, we can de�ne the addition
operation plus n m by induction on the structure of the �rst argument:

Fixpoint plus ( n m : nat) { struct n} :=
match n with
| O ) m
| S n0 ) S (plus n0 m)
end .

This special kind of de�nition, using the Fixpoint keyword, is possible as
long as the recursive calls are performed on objects which are structurally
smaller than the original argument. In this case,n0 is obtained by destruct-
ing n and is therefore structurally smaller than n. This analysis ensures that
all functions de�ned in Coq are terminating, and this is one of the strongest
constraint in the language. When the structural condition is not veri�ed,
there are alternative ways of de�ning recursive functions,we will see some
of these tricks in the following chapters. As a �nal remark, Coq allows the
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use of decimal representation to denote constantnat 's, for instance4 stands
for S(S(S(S 0))) .

Let's add the logic. As we have seen in the last section, CIC is an
extension of � -calculus, and does not contain built-in constructs for logical
reasoning besides universal quanti�cation (and of course the Prop sort). It
is well-known that the usual connectives of �rst-order logic can be encoded
using second-order quanti�cation, and inductive de�nitio ns can be used to
perform a similar encoding. For instance, the conjunctionand A Bof two
propositions is de�ned in the following way:

Inductive and (A B : Prop ) : Prop :=
| conj : A ! B ! and A B
where �A ^ B� := (and A B) : type_scope.

There is only one constructor, i.e. one way to build the conjunction and
A B, and unsurprisingly this is by giving proofs for A and B. The induction
principle generated:

and_ind : 8A B P : Prop , (A ! B ! P) ! and A B ! P

is the usual second-order encoding of conjunction. The de�nition above also
introduces a syntactic notation for the conjunction and A B, namely the
traditional A^ B. Notations are a very convenient feature ofCoq and com-
plex notations can be de�ned for user-de�ned constructs. The disjunction
of two propositions can be de�ned inductively in a similar manner, with two
constructors corresponding to either branch of the disjunction, and is noted
A _ B. The special propositionsTrue and False are respectively de�ned
by an inductive type with a single trivial constructor, and b y the empty
inductive type:

Inductive True : Prop := I.
Inductive False : Prop :=.

Note that the elimination principle for False is the ex falso quodlibet3 prin-
ciple 8P : Prop , False ! P. The negation of a propositionP is simply
de�ned as:

De�nition not (P : Prop ) := P ! False.

and is denoted�P . Finally, the existential quanti�cation is denoted 9x : T, P
and is de�ned inductively as:

Inductive ex (A : Type ) (P : A ! Prop ) : Prop :=
| ex_intro : 8x : A, P x ! ex P.

In particular, an axiom-free proof of 9x : T, P must use ex_intro and
must provide a witness of type T which veri�es P, which is the trademark of
an intuitionistic logic.

3From a false proposition, anything follows.
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Interactive proofs. Using the logical de�nitions above, we can express
propositions and try to prove them. As explained already, proving a propo-
sition P amounts to giving a term of type P. This method is not practical
except for the easiest propositions, for instance the term:

fun A : Prop ) fun H : A ) H

where fun is the Gallina syntax for � -abstractions, is a proof of the propo-
sition 8(A : Prop ), A ! A . To prove more complex properties,Coq
provides an interactive mode, calledproof mode, that allows the user to
interactively construct proofs through the use of a language of commands
called tactics. In their simplest form, tactics mimic the application of tr a-
ditional introduction and elimination rules in natural ded uction systems, or
right and left rules in sequent calculi à la Gentzen. For instance, let us detail
a proof of a simple propositional tautology4:

Theorem or_not_and : 8(A B : Prop ), �A _ �B ! �(A ^ B).
Proof .

The Theoremcommand is one of the many available vernaculars (Lemma,
Property , ...) which introduces a new goal to prove.Coq switches to proof
mode and displays the current state. At every moment in proofmode, the
state is described by a sequence of subgoals, each subgoal being a list of
hypotheses and a conclusion to prove under these hypotheses. Only the
�rst subgoal is displayed by Coq , with the conclusion separated from the
hypotheses by a double bar. After starting the proof of the theorem above,
the current state is the following single subgoal5:

1 subgoal

=============================
8(A B : Prop ), �A _ �B ! �(A ^ B)

We start the proof by using the introduction rule for univers al quanti�-
cation, four times. We write this using the intros tactic and explicitely
provide names for the introduced objects.

intros A B H N.

Note that the fourth introduction uses the fact that �(A ^ B) is actually
de�ned as the implication A ^ B ! False . After applying this tactic,
the subgoal becomes:

4This theorem is intuitionistically valid but note that the c onverse of or_not_and is
not an intuitionistic tautology, but is only valid in classi cal logic.

5To distinguish proof states from Gallina and tactic inputs, we will always present
Coq 's output in proof mode in a framed box.
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1 subgoal

A : Prop
B : Prop
H : � A _ � B
N : A ^ B
============================
False

We now perform eliminations of the conjunction N and disjunction H:
both eliminations can be performed with the same tactic, called destruct .
Destructing the conjunction with destruct N as [NA NB] yields two new
hypothesesNA : A and NB : B and does not change the conclusion. De-
structing the disjunction with destruct H yields two di�erent subgoals
where hypothesisH is respectively a proof of �A and �B .

destruct N as [NA NB]. destruct H.

2 subgoals

A : Prop
B : Prop
H : � A
NA : A
NB : B
============================
False

This �rst subgoal can be proved by eliminating the implicati on in H, in
other words by �applying� hypothesis H, which is done with the apply H
tactic. The remaining conclusion is A, which is true by hypothesis NA, and
the goal can be discharged with the tacticassumption .

apply H. assumption.

This clears the �rst subgoal and therefore the user is left with the second
subgoal to prove.

1 subgoal

A : Prop
B : Prop
H : � B
NA : A
NB : B
============================
False

This one is proved in a similar manner, only this time the assumption
used will be NB.
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apply H. assumption.

Since all the subgoals have been proved, the proof is �nishedand the system
displays so:

Proof completed.

The last thing to do is to close the proof with the Qedcommand.

Qed .

or_not_and is defined.

This last step is not anecdotal: it checks that the term which was pro-
gressively constructed by the tactics indeed has the type ofthe theorem.
This mechanism ensures that tactics can be implemented without formal
restriction and that possible bugs in the tactics are �double-checked� at the
end of the proof by the kernel. Thus, only the kernel is critical for the
correctness of the proof assistant and it is important for such a system to
limit critical areas to the smallest possible part. As a matter of fact, there
are a great number of tactics, many of which are much more complex than
the ones presented here: the proof above could typically be performed by a
single tactic call. We will present such complex tactics andthe techniques
behind them in detail below in Section 4.2.

Equality proofs. We now turn our attention to the treatment of equality
in the Coq proof assistant. As with logical connectives, equality is not
built-in in the CIC but is de�ned inductively by the followin g predicate:

Inductive eq (A : Type ) ( x : A) : A ! Prop :=
| refl_equal : eq A x x .

and can be used with the usual= notation. The induction lemma associated
with this de�nition is the well-known Leibniz's principle:

eq_ind : 8(A : Type ) ( x : A) (P : A ! Prop ),
P x ! 8 y : A, x = y ! P y

and allows to replace a termx by an equal term y in any proposition P.
For this reason, this equality is often called Leibniz equality in Coq , in
particular in constrat to other setoid equalities which can be natural for
some types6. From the de�nition of eq and refl_equal , it may seem that
the only equalities which are provable in an empty context are of the form
x = x for somex, but this is where the conversion rule that we introduced
earlier comes into play: it can be used to prove that two termswhich reduce
to the same term are equal. For instance, one can build a proofof 4 = 4
by considering refl_equal nat 4 , but it turns out that the normal form

6Consider the type of propositions Prop and the equivalence relation $ for instance,
or function spaces and pointwise equality.



4.1 Introduction to Coq 93

of 2 + 2 = pred 5 is precisely4 = 4, therefore by conversionrefl_equal
nat 4 is a proof of 2 + 2 = pred 5. Most tactics in Coq perform modulo
some kind of conversion, and it is possible to simply applyrefl_equal in
order to prove a de�nitional equality. The tactic reflexivity is precisely
a shortcut for this:

Remark p : pred (pred (12 + 35)) = 45.
Proof .

reflexivity.
Qed .

p is defined.

There are many tactics that explicitely perform some form of reduction
or normalization, Coq even provides a virtual machine [GL02] to quickly
reduce terms to their normal form; we will present these capabilities later.
Note that the reduction mechanism is not limited to terms in sort Set, it can
be used on any term in the CIC and in particular it is completely legitimate
to reduce propositional proofs. Nevertheless, it is often the case that we do
not want to compute through proofs:

� proof terms are often big and therefore slow to reduce;

� there is no point in reducing (or more generally observing) proof terms
because most of the time, we do not care what the proof of a propo-
sition looks like, but just that there exists a proof7.

In order to be able to separate between reducible terms and non-reducible
ones,Coq provides an opacity mechanism. When completing a proof with
Qedas we did earlier, we are also making the corresponding theorem opaque
and preventing that it be reduced in the future. In order to �n ish a proof
and keep it transparent, one can use theDefined command. We will see
in later chapters that a �ne management of opacity can be critical for the
e�ciency of an algorithm implemented in Coq . Note though, that proof
terms are never erased, even for opaque lemmas, and can stillbe inspected.
The fact that proof terms are kept is one feature ofCoq which di�erentiates
it from many other provers like Isabelle or HOL, and this is why the size of
proof terms is problematic when automatically constructing proofs through
tactics (see Section 4.2).

Other features. There are many other features in theCoq proof assistant
that allow one to write formalizations or programs in a more natural or a
more convenient way. We will encounter some of them in the remaining of
this document, but we cannot give an exhaustive list. Some ofthe more
interesting capabilities are:

7This principle, called proof irrelevance, is not part of the CIC and therefore is not
enforced by Coq ; it is consistent to add it as an axiom though.
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� a �batch-mode� executable coqc to compile �les which can then be
loaded and imported into other �les, which enables separatecompila-
tion;

� a module system by J. Courant [Cou97] and J. Chrz¡szcz [Chr03]
similar to OCaml's module system, which permits to write structured
programs and structured implementations, we will use it extensively
in the following chapters;

� an extraction mechanism developed originally by C. Paulin [PM89a,
PM89b] and then by P. Letouzey [Let03, Let08] which allows toef-
fectively extract programs from speci�cations to OCaml or Haskell.
The distinction Prop/Set that we explained earlier is critical for this
mechanism, since extraction erases propositional contents and keeps
informative contents. In particular, this is the reason why Coq pre-
vents any object in Set to be constructed from destructing an object
in Prop;

� a system of coercions which allow a form of automatic subtyping
through the de�nition of coercions between types;

� a mechanism to deal with ad-hoc (setoid) equalities, and rewriting
of setoid equalities through functions declared as morphisms for such
equalities (initially developed by C. Sacerdoti Coen [Coe04] and reim-
plemented by M. Sozeau [Soz09]);

� a variety of external tools such as a documentation generator coqdoc, a
library validator coqchk, and an integrated development environment
CoqIDE.

4.2 Automation Techniques for Interactive Prov-
ing

In the last section, we have seen examples of simple tactics.Most realistic
proofs will use many more di�erent and complex tactics, someof which
performing a lot of automated reasoning. In this section, wepresent a
survey of the di�erent automation techniques available in a proof assistant
like Coq and the relevant existing tactics.

Note that interactive provers in general ensure their correctness by fol-
lowing the so-called LCF-style approach: every proof must be checked by
a small, trusted part of the system (in Coq 's case, the kernel). Thus, a
complex decision procedure inplemented in an interactive prover shall not
only decide if a formula is provable or not, but it must also generate an
actual proof object, which can be checked by the prover's kernel. This is
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in contrast to a system like PVS, where a new decision procedure can be
added to the system as a �black box�.

4.2.1 Customized Tactics

The �rst technique that we present is perhaps the most recent in Coq 's
history, but it has the great advantage of not requiring any external tool or
special knowledge about the internal representation of CICterms. It does
not require any proof reconstruction either, because it is based on the tactic
language. This technique uses a language calledL tac and developed by
D. Delahaye [Del00] which provides combinators for tactics, called tacticals,
allowing the de�nition of complex tactics inside the prover. We cannot list
all the tacticals exhaustively but we will present the most salient capabilities
of L tac.

The base of the language is formed by combinators for chaining tac-
tics (; ), repeating tactics (do, repeat ), error catching (try ) or throwing
(fail ), branching (|| , first ), displaying terms, tactics and arbitrary mes-
sages (idtac ), checking for progress or termination in a subgoal (progress ,
solve ). These tacticals already allow a lot of interesting combinations, for
instance the following:

Ltac dintros := repeat (intro; try (destruct 0)).

de�nes a new tactic dintros which does as many introductions as possible
(using repeat ), and for each object introduced, tries to destruct it if it i s
possible (destruct 0 refers to the last introduced hypothesis by its index,
thus with number 0). In our example proof in the last section, we could
have started the proof with that tactic in order to introduce and destruct
all hypotheses. Because both remaining subgoals can be proved by the
sameapply H; assumption combination, we could use chaining and prove
the theorem in a single line:

Theorem or_not_and : 8(A B : Prop ), �A _ �B ! �(A ^ B).
Proof .

dintros; apply H; assumption.
Qed .

or_not_and is defined.

Even more interesting is the ability to manipulate terms in L tac def-
initions: one can construct terms, reduce terms, deconstruct terms using
a pattern-matching construct. Pattern-matching can also be used against
the goal and the hypotheses, which makes it possible to writetactics that
perform di�erent tasks according to the shape of the goal andthe available
hypotheses. For instance, consider the following de�nition:

Ltac equal :=
match goal with
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| ` ?x = ?x ) reflexivity
| H : ? x = ?y ` ?y = ?x )

symmetry; assumption
| H : ? x = ?y, H' : ? y = ?z ` ?x = ?z )

transitivity y; assumption
| ` _ = _ ) idtac �No proof found.�
| _ ) fail �The goal is not an equality.�
end .

This tactic equal tries to prove an equality and proceeds by matching the
current goal, and then depending on the result performs the relevant action.
If the goal has the form x = x, it just applies re�exivity. The second and
third branch try to �nd, in the hypotheses, equalities relat ed to the conclu-
sion and to apply respectively symmetry or transitivity. Th e next-to-last
branch just reports that the tactic did not succeed in proving the goal (but
does not fail), while the last branch raises a failure because the goal is not
an equality. This example gives a small idea of the expressivity of L tac;
note in particular that the matching is non-linear since the same variable
can appear twice or more in a pattern, and must be matched to the same
term. L tac is even higher-order because tactics can be parameterized by
tactics (and by parameterized tactics...) and can also be de�ned recursively.

Here are a few examples of complex tactics developed inL tac in the Coq
standard library or in the community:

� in the Reals library, containing an axiomatization of reals, the spe-
cialized tactics discrR , prove_sup and Rcomputeare built with L tac;

� in the speci�cation of OrderedType's, i.e. types with a total decidable
order, there is a dedicated tacticorder which tries to prove a goal using
total order and equivalence properties, it proceeds by saturating the
context with all possible consequences of the hypotheses until it �nds
a contradiction; it is actually complete for that fragment;

� in the FSets library of �nite sets (which we describe, as well as an alter-
native, in Chapter 5), A. Bohannon contributed a very complex tactic
fsetdec which discharges goals about set memberships and common
set operations;

� in his book [Chl], A. Chlipala gives many concrete examples of L tac
usage, in particular his �swiss knife� tactic called crunch ;

� A. Charguéraud proposes an extended set of tactics and tactic nota-
tions to help perform a variety of tasks [Cha].

Even if it has its own limitations and can be quite ine�cient, L tac is very
convenient because of its expressiveness and above all the fact that it does
not require an external tool or �hacking� in the Coq sources, which, as we
will see, is the biggest inconvenient of the other techniques.
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4.2.2 Built-In Procedures

The vast majority of tactics available in Coq are not de�ned in external
contributions or L tac �les, but are simply implemented in the Coq sources
and are compiled and shipped with the proof assistant. All atomic tactics
like intro and so on are actually built-in tactics and are implemented in the
OCaml sources with the remaining of the system, but there arealso several
very useful tactics which do not perform atomic tasks, but a complex proof
search.

tauto. The tactic tauto by C. Muñoz [Mn94] implements a decision
procedure for intuitionistic propositional calculus based on Dyckho�'s
contraction-free sequent calculi [Dyc92]: it automatically proves any
goal which is intuitionistically valid (e.g. our theorem or_not_and
could have been discharged by a simple call totauto ). It is also avail-
able as a simpli�er called intuition which performs the same search
tree as tauto , clears as many branches as possible and returns the
simpli�ed goals to the user, which can be very useful in practice.

omega. Another ubiquitous tactic in Coq is omega, which was imple-
mented by P. Crégut after a decision procedure by W. Pugh [Pug92].
It is a decision for Presburger arithmetic which automatically solves
quanti�er-free formulae whose atoms are equalities, disequations or
inequalities on natural or relative integers. Though omegais theoreti-
cally incomplete, it rarely happens in practice and this tactic is used
a lot in any development dealing with arithmetic.

congruence. The congruence tactic was developed by P. Corbineau [Cor06]
and implements a decision procedure for the theory of equality mod-
ulo the theory of constructors (i.e. injectivity of constructors, and
discrimination of di�erent constructors of the same dataty pes). The
procedure tries to prove the goal if it is an equality and to derive a
discriminable (hence false) equality otherwise.

auto. The tactics auto and eauto perform an automatic backward proof
search in a manner very similar to Prolog. They use a databaseof
lemmas, calledhints, as well as the hypotheses in the current context,
and try to apply them eagerly and �nd a chain of lemmas proving a
goal. auto is perhaps the most popular proof search tactic inCoq and
tactics that generate a lot of subgoals likeinduction or destruct are
often chained with auto .

There exists other built-in tactics which are not performing proof searchper
se, but are nonetheless quite complicated and can replace a lotof tedious
manual manipulations, for instance theautorewrite or the inversion tac-
tics.
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The tactics above are therefore implemented in a standard programming
language and there is of course no restriction as to how they perform their
proof search. However, once they have found a proof (if any),they need to
construct a proof term because, like the other tactics, theyare just used to
construct proof terms and are not trusted by the kernel. This reconstruction
phase can take di�erent forms: tauto and auto , for instance, build a com-
plete proof term corresponding to the proof they have found ;omegaand
congruence also reconstruct a term from the proof found but use a variety
of prede�ned ad-hoc lemmas in an attempt to simplify the reconstruction
and also to obtain smaller proof terms.

Note that, in the most recent versions of Coq (� 8.2) and OCaml (� 3.11.0),
it is possible to dynamically load ML plugins in a Coq session. Therefore,
one can implement such a built-in procedure as a plugin and itcan be dis-
tributed and used without having to recompile everything along with the
Coq sources. Nevertheless, implementing one's own decision procedure and
term reconstruction requires to useCoq as an API and therefore requires
some amount of knowledge about the internal representationof proofs, terms
and tactics. This is a much bigger e�ort than learning L tac for instance.

4.2.3 External Tools

Another possible approach for the creation of an automationtactic is to
use an external state-of-the-art decision procedure. The proof reconstruc-
tion phase requires the external tool to be able to returnproof traces of its
proof search,i.e. data which justi�es the result claimed by the tool. Work
must then be done in the interactive prover in order to reconstruct a suit-
able proof object from the output of the external tool. For instance, Weber
and Amjad [WA09a] have successfully integrated two leadingSAT solvers,
zCha� [MMZ + 01] and MiniSat [ES04], with Higher Order Logic theorem
provers. Integrations of resolution-based provers have also been realized in
Coq [BHdN02, BDD07] and Isabelle [MQP06a]. The main advantage of this
approach is the ability to use a very e�cient external tool. I ts main short-
coming is that the tool must be able to produce proof traces, which is not
that common, and the reconstruction of a proof term from proof traces can
be quite di�cult to perform e�ciently (see for instance the c onsiderations
in [WA09a]).

This approach is actually a special case of the previous one (Section 4.2.2),
since nothing prevents a built-in procedure from using an external tool un-
der the hood. It allows the use of faster, state-or-the-art procedures, but
the proof traces may not be very well adapted to the proof reconstruction
phase, whereas a procedure speci�cally developed for a given proof assistant
can lead to an easier (maybe even smaller) proof term.
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4.2.4 Traces and Re�ection

The crux of the last two approaches,i.e. using a built-in procedure or an
external tool, is the reconstruction of a proof term from the proof search. A
built-in procedure could technically build a proof term dir ectly during the
proof search but this is probably not the most e�cient thing t o do, most
procedures will go through some internal form of traces and reconstruct the
term at the last moment; users of external tools have no choice whatsoever
(unless the tool can output a Coq proof term directly, like Zenon [BDD07],
but this is very rare) and need to perform reconstruction from some proof
traces.

So far, we had implicitely assumed that the reconstruction was a meta
procedure (i.e. not expressed in the prover) that, given some trace� , would
create a CIC term t to be sent back to the prover for typechecking. In
that sense, the reconstruction acts as an oracle which givesan hopefully
adequate term to the prover. There is an alternative approach, which we
now present: the so-calledproof by re�ection [Bou97]. In this setting, the
reconstruction will be a function in the prover's logic and we will use the
reduction mechanism and the conversion rule to execute thisfunction during
typechecking.

Re�ection. Suppose we have a datatypeS, and a predicateP : S ! Prop
on elements in this datatype. Suppose we have an oracle (the external pro-
cedure) which, given ans : S , will look for a proof of P s and, if any, will
return some proof traces to justify this result. We assume that the proof
traces can be represented by a datatypeT in the prover, which is typically
the case. Now, in order to use the oracle's proof traces in theprover, we
just need the following:

� a function check : S ! T ! bool implemented in the prover and
returning a boolean8 such that check s t checks if the trace t is a
good justi�cation of the fact that s has property P;

� a proof, called are�ection principle , that the function check is correct:

check_correct : 8( s : S) ( t : T), check s t = true ! P s.

The function check is similar to proof reconstruction but does not construct
anything, it just returns a boolean value to denote whether the traces were
adequate or not. The re�ection principle then relates the computational be-
haviour of check to its propositional meaning and proves that it is su�cient
to check the result of check in order to verify the traces. Given a concrete
s and some tracest returned by the oracle, the proof of P s is simply:

8Booleans in Coq are just a type with two values true and false . It has sort Set and
should not be confused with the type of propositions Prop.
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(check_correct s t (refl_equal _ true)) : P s

where the call of refl_equal is used to force reduction and veri�cation
that check s t indeed reduces totrue . In comparison to standard proof
reconstruction, we note that:

� the proof term is not explicitely reconstructed; typically , part of the
work is performed by the check function, while remaining part is per-
formed in the proof of check_correct , and is therefore factorized once
and for all;

� the proof search will be faster because it does not have to reconstruct
a proof term afterwards, but this is compensated by the fact that
typechecking the proof now includes a computation;

� the size of the proof terms is now proportional to the size of the traces
(and the original object) whereas reconstructed proof terms can be
much bigger than the traces.

Levels of detail. Given one particular problem for which we would like to
use the re�ection technique described above, a natural question which arises
is: what should the traces actually be like? There are indeedtypically a
broad range of choices in the amount of detail that the tracesshould include.
To illustrate this fact, let us take a simple concrete example9: suppose that
we are interested in proving that some Peano integers arecomposite, i.e.
that they are not prime, using an external procedure. If for instance we are
interested in the number 91, here are some of the answers thatwe might get
from the procedure:

� Yes, 91 is composite.

� Yes, 91 is divisible by 7.

� Yes, 91 is divisible by 7 and the quotient is 13.

� Yes, 91 = 13 � 7, indeed 7� 3 equals 21, carry the 2, 7� 1 is 7, plus
2, makes 91.

Figure 4.1 schematizes this situation: it represents the possible proof
traces on a scale from the most detailed (on the left) to the less detailed
(on the right). The relevance of using re�ection is in inverse proportion to
the level of detail of the traces: in the leftmost case, the external procedure
has produced a proof term and therefore there is no need for re�ection at
all; conversely, in the rightmost case, the trace is empty and the check
function must do everything from scratch, which means that the external

9This example was drawn from G. Dowek's excellent popular science book [Dow08].



4.2 Automation Techniques for Interactive Proving 101

Is 91 a composite number?

- | | +
Yes77, 131 3

� 7
2 1
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9 1

Figure 4.1: One problem, many solutions: a scale of proof traces

tool is basically useless and could be bypassed10. In the average cases, the
procedure returns pieces of information that thecheck function can verify:
try to divide 91 by 7 in one case, check that 7 by 13 is 91 in the other case.

In general, �ne-grained traces make for an easier proof reconstruction but
require a substantial amount of work in the decision procedure, including
justifying steps that are often implicit in an e�cient imple mentation. On the
other hand, coarse-grained traces make proof reconstruction much harder
since all implicit steps must be implemented in the proof assistant in the
re�ection principle. Tactics which are somewhere between the two extreme
cases on this scale are usually calledsemi-re�exive and most tactics using
re�ection fall in that category. Examples of this intermedi ate approach are
Corbineau and Contejean [CC05] and Contejeanet al. [CCF+ ]'works on
integrations mixing traces and re�ection. There also exists semi-re�exive
versions of thetauto tactic, called rtauto , and of omega, called romega.

Tactics which do not use an external procedure at all are called fully
re�exive . For instance, the tactics ring [GM05] and field [DM01], which
respectively solve expressions on ring and �eld structures, are built along this
re�ection mechanism. The main advantage of the fully re�exive approach is
the size of the generated proof term, which only consists in one application
of the correctness property. The trade-o� is that typechecking the proof
term includes executing the decision procedure, thereforere�ection can be
used favourably in cases where the proof traces would not be comparatively
simpler than the proof search itself. For instance, supposewe were interested
in prime numbers instead of composite numbers: since there is no �simple�
justi�cation that a number is prime, it would be a good idea to use a fully
re�exive procedure.

10 One case where it would still be useful to run the external too l is when it runs at least
an order of magnitude faster than the re�exive function check. In such a case, it makes
sense to run the external procedure �rst, simply to know if it 's worth running the re�exive
one.
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Rei�cation. Until now, we have only dealt with properties on a concrete
datatype, namely natural integers. In general, we might want to apply
the re�ection technique to a more general class of formulae,for instance all
�rst-order formulae. This means the type Sis now the sort of all propositions
Prop, and it becomes impossible to write a functioncheck : S ! T ! bool
(remember that informative datatypes like bool cannot be constructed by
deconstructing propositional objects). In such a case, we need a concrete,
intermediate, representation of formula, i.e. an informative type form, along
with an interpretation function interp : form ! Prop . The re�ection
function and its correction lemma then become:

check : form ! T ! bool
check_correct : 8( f : form) t, check f t = true ! interp f

and in order to prove a formula F : Prop, the system cannot directly use the
re�ection principle but must infer a concrete f : form such that interp f
= F, or interp f ! F at the very least. The construction of this object f
cannot be expressed in the prover's logic and is therefore a meta procedure;
it is called rei�cation and must be performed by an external oracle11. In
particular, we will see in Chapter 6 that it introduces a �hol e� which prevents
a re�exive procedure to be formally complete.

4.3 Towards a Re�exive SMT Kernel

We have just presented a variety of techniques to implement automation
tactics in the Coq proof assistant. Our goal is to integrate inCoq the kernel
of our SMT solver, as presented in Chapters 2 and 3, in order toprovide
a tactic which e�ectively combines propositional, equality and arithmetic
reasoning. We chose to use the fully re�exive approach in order to achieve
this integration, for the following reasons.

First of all, as explained in Section 1.2, we are especially interested in
proving proof obligations which arise from analysis of annotated programs,
or more generally to discharge goals in usualCoq proofs. Our experience
with our own prover Alt-Ergo is that these formulas' di�cult y lies more in
�nding the pertinent hypotheses and lemmas' instances thanin their propo-
sitional structure or the theory reasoning involved in their proofs. Con-
sequently, these problems become rather easy as soon as we know which
hypotheses and instances are su�cient for the proof, and we can thus solve
formulae in this ground fragment by pure re�ection. Moreover, Coq is par-
ticularly well suited for this approach because its formalism includes a full
programming language, whose evaluation has been recently dramatically
improved by an optimized bytecode-based virtual machine.

11 Thanks to their ability to construct, match and destruct ter ms, L tac tactics can
typically be used to perform this rei�cation step. This avoi ds, in principle at least, the
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Coq Formula
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Counter
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Figure 4.2: An overview of our re�exive tactic

Second, we are interested in a tactic that could be used by allCoq users,
and it should be availableout-of-the-box with the system, without requiring
the installation of an external solver like Alt-Ergo. Also, such an external
dependency is a concern for maintainability since the proofreconstruction
mechanism will be very dependent of the exact format of the proof traces:
it would have to be kept up-to-date with the changes in the external tool,
and would have to be totally revamped in order to support another external
tool12.

Third, it is not easy to instrument an SMT solver to generate proof
traces, in particular in underlying decision procedures such as the congru-
ence closure algorithm and Fourier-Motzkin, and to choose the adequate
level of detail. Without any traces on the reasoning of underlying theories,
the re�ection principle would become nearly has hard as the fully re�exive
procedure; with details on the reasoning of underlying theories, proof traces
and proof objects could get quite large and it would be a problem for a
prover like Coq which saves proof objects in typechecked �les. With a fully
re�exive tactic, we ensure a proof term which is linear in thesize of the goal.

Finally, we have formalized in Coq the algorithms and proofs presented
in Chapters 2 and 3 in order to formally verify these proofs, and it is nat-
ural to try and take advantage of this formalization in order to use these
algorithms in Coq using re�ection. An overview of our re�exive tactic's
architecture is given in Figure 4.2.

need any need for an external OCaml procedure.
12 Although there is an ongoing e�ort in the SMT community to des ign a standard,

common, format for SMT proof traces, no such format has been adopted yet.
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Outline. The following chapters are devoted to the presentation of the
di�erent parts of this Coq re�exive tactic. We start in Chapter 5 by de�n-
ing a library of �rst-class �nite sets and �nite maps which is used intensively
in our development. Chapter 6 presents the propositional solver and Chap-
ter 7 extends it with an original lazy CNF conversion mechanism. The
extension to SMT and the development of the congruence closure algorithm
is described in Chapters 8 and 9. Finally, we show how to instantiate our
congruence closure with a theory of integer linear arithmetic in Chapter 10.
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As a programming language, it is natural to endows Coq with libraries of
generic data structures. Indeed, mainstream programming languages usually
come with libraries to manipulate these structures which are widely used:
lists, �nite sets, association tables, etc. For instance, C++ programmers
can rely on the STL [SL95](Standard Template Library), whereas OCaml
programmers are provided with a fair number of modules (including lists,
queues, sets and maps, hashtables, ...) in the OCaml standard library. The
genericity of these data structures, that is, the fact that they can be used
to hold elements of any type, is ensured in di�erent ways depending on
the programming language: polymorphism in languages of the ML family,
templates in C++ or generics in Java.

For their implementation to be e�cient, some data structure s require cer-
tain properties on the elements they can contain, such as a comparison or a
hash function. This kind of genericity, called ad-hoc polymorphism, is made
possible by the use offunctors in OCaml and type classesin Haskell [WB89].
Even if these two paradigms can be used to solve a similar design issue,
they are fundamentally di�erent and both have their advanta ges and their
shortcomings [WM06]. For a few years, Coq has featured a full-blown mod-
ule system similar to OCaml's [Chr03] and P. Letouzey and J-C. Filliâtre
used it in order to develop a comprehensive library of �nite sets and �nite
maps [FL04], calledFSets. Such structures are very important for develop-
ing our SMT solver kernel: in Part 1, we have used sets of literals, maps for
union-�nd structures, maps to sets of terms for the � data str ucture, etc.
We have used thisFSets library in developing the tactic presented in this
document and have been confronted with issues which were inherent to the
module system. Since Coq has been recently enhanced with a type class
system based on dependent records [SO08], we decided to build on this new
functionality and reimplement the existing FSets library using type classes.
We present this library in detail in this chapter.

Section 5.1 quickly presents Coq's type class system, as well as the prob-
lems which motivated our work. We then introduce the cornerstone of our
libary, ordered types, in Section 5.2, before describing the actual interfaces of
�nite sets and dictionaries (Section 5.3). We follow by giving a few concrete
instantiations of these structures, before comparing in detail our library with
the modular version in Section 5.5.

5.1 Preliminaries and Motivations

5.1.1 Type Classes

In this section, we present Coq's new type class system and its basic features.
For a more detailed and involved description, the interested reader can refer
to [SO08].
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A type class can be seen as a way to package a number of de�nitions
and properties together, much like a record1. Classes can be parameterized
by types or other constructions, and one can for instance de�ne the class of
types which are equipped with a decidable equality in the following way:

Class decidable (A : Type ) := {
eq : A ! A ! bool;
eq_dec : 8xy, eq x y = true $ x = y

}.

This decidable class is parameterized by a typeA and contains two �elds:
a boolean equality on this type A and a proof that this equality test really
decides logical equality. Objects of typedecidable T for a type T are called
instancesand must be de�ned in a special way using theInstance keyword.
This is how we can de�ne an instance for the type of booleans:

De�nition bool_eq ( x y : bool) := if x then y else negb y.
Property bool_eq_dec : 8xy, bool_eq x y = true $ x = y.
Proof . .... Qed .
Instance bool_dec : decidable bool :=

{ eq := bool_eq; eq_dec := bool_eq_dec }.

An instance's �elds can also be initialized directly or proved interactively at
the time of the de�nition. Type classes reach their full potential with the
conjunction of two mechanisms:

� the ability to de�ne objects parameterized by type classes and use
these objects without explicity providing these parameters;

� a mechanism for automatically inferring type class instances using all
instances already de�ned by the user.

For instance, one can prove the following lemma for any type which has an
instance of decidable 2

Lemma decides_eq `{decidable A} :
8( x y : A), x = y _ x 6= y.

Proof . .... Qed .

This lemma is parameterized by a typeA and an instance of decidable
A, but both parameters are declared as implicit using the special {...}
delimiters. The backquote character ` is just a way to ask Coq to auto-
matically generalize the lemma on the fresh typeA. When we subsequently
use this lemma by applying it to two terms of some typeB, an instance of
decidable B is automatically searched and inferred using already de�ned

1suitably, Coq's type classes are implemented using dependent records.
2bear in mind that Coq's logic is intuitionistic, therefore t his lemma really means that

equality on type A is decidable.
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instances. For instance, one can write the term decides_eq true false
which is well-typed and will implicitely and automatically use thebool_dec
instance provided above.

Automatically inferring instances becomes particularly useful when one
de�nes families of instances, or instances parameterized by other instances.
To give an example, we can write an instance for any productA � B given
instances for the typesA and B.

Instance prod_dec `{decidable A, decidable B} :
decidable (A � B) := {
eq := fun x y ) eq (fst x) (fst y) &&

eq (snd x) (snd y);
eq_dec := ...

}.
The system can then infer instances for any product of decidable types,

for example with bool_dec and prod_dec, an instance for the typebool �
bool � bool can be used automatically:

Check (decides_eq (true, (false, true))
(false, (false, true))).

Let us conclude this introduction to type classes by noting that it is
possible to build hierarchies of classes, and a system of automatic coercions
guarantees that an instance of some class can be used as an instance of its
sub-classes. We will demonstrate this feature later in Section 5.2.

5.1.2 Motivations

In the light of the features provided by the type class system, we can ex-
plain the reasons why we turned to this system instead of using the already
available module-basedFSets. These were the motivations in starting this
reimplementation of a containers library.
Automatic instantiation. In our development, we manipulate sets of
numerous di�erent types, including sets of sets, and for each new element
type, we need to create a �nite set module for this type. This creation must
be performed manually by applying the adequate functor to anordered type
module (packing the element type and a comparison function together3).
Namely, given ordered type modulesInt , IntPair , BoolList for integers,
pairs of integers and lists of booleans, one must write4:

Module IntSet := FSetList.Make Int.
Module IntPairSet := FSetList.Make IntPair.
Module BoolListSet := FSetList.Make BoolList.

3 the corresponding signature is given in Section 5.2.1
4FSetList.Make is a functor creating a module of �nite sets based on sorted li sts.
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in order to be able to use sets on these three kinds of elements. This may
look like a lesser evil, but one quickly �nds himself instantiating not only the
FSetList.Make functor, but also other functors creating useful properties
on ordered types and on �nite sets, which are invaluable to start working
with the data structures created above.

Module IntFacts := OrderedType.OrderedTypeFacts Int.
Module IntSetEqProps := FSetEqProperties.EqProperties IntSet.
Module IntSetProps := IntSetEqProps.MP.
Module IntSetFacts := IntSetEqProps.MP.Dec.FM.
Module IntPairFacts := OrderedTypeFacts IntPair.
...

This sort of de�nitions, which every FSets user has encountered, rapidly
becomes tedious to read and maintain. Moreover, functor applications are
not free and it is not uncommon to spend a couple of seconds solely on
instantiating these various objects.
Overloading. Because the module system does not o�er any overloading
mechanism5, one must refer to members of a module by qualifying their
names with the module's name. In our example case, this meansthat every
usage of a function, a lemma or a type provided by these modules (IntSet,
IntPairSet, IntSetProps, ...) must be properly quali�ed. This quickly
makes proof scripts and de�nitions verbose and hardly readable. One often
ends up giving very short names to these modules (IS, IPS, ISP, ... )
and then the script loses in clarity what it gained in compactness. Through
the use of implicit type class arguments, the type class system does not
require such quali�cation of identi�ers and provides a real overloading of
types and operators.
Performance and modularity. In order to ensure a good modularity
in our development, some parts of the system ought to be parameterized
by modules which, among other things, bring types and data structures on
these types. For instance, it is not uncommon for an OCaml programmer
to write signatures like this one:

(* some abstract type *)
type t
(* finite sets of elements of type t *)
module TS = Set.S with type elt = t
(* finite maps indexed by elements of type t *)
module TM = Map.S with type key = t
...

When parameterizing our development in a similar fashion inCoq, we
encountered a performance issue related to modules' instantiation and type-
checking. In practice, the functors' applications with such signatures were

5notations can help making up for the absence of overloading, but are limited and can
be fragile in general.
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taking unreasonable time: our topmost functor would require about 15 sec-
onds. Although this seemed to be an implementation issue6 rather than
a theoretical limit with modules, it can be a real showstopper for an ap-
plication based on modules, and type classes do not su�er from the same
limitation.
First-class values. To further stress the previous point, type class in-
stances in Coq are actually �rst-class values, and therefore the cost of an
instantiation is reduced to typechecking the argument (since it is really just
applying a function to an argument). This means that one could possi-
bly perform �interactive� instantiations of a procedure pa rameterized by
type classes. An example that arose in our work was that of a re�exive
tactic: such a tactic must be invoked interactively and each time, a new
instantiation of a parameterized procedure had to be made depending on
the context where the tactic was called. This kind of dynamicinstantiation
is not possible with a functorized procedure since the instantiation time at
each invocation would be prohibitive.

Amongst these motivations, the �rst two are inherent to modu les and
class types, whereas the last two are more speci�c to a given implementation,
in our case the Coq proof assistant v8.2. Although the third one was the
actual initial reason why we started using typeclasses, the�rst two points
proved important enough in practice to justify choosing oneparadigm over
the other.

5.2 Ordered Types

To be implemented in an e�cient way, structures of �nite sets and �nite
maps require that the elements be equipped with a total decidable order. In
this section we show how we formalize the class of such types.

5.2.1 OrderedType

An ordered type is a type which has an equality (an equivalence relation), a
strict order (a transitive irre�exive relation) and such th at these relations are
decidable. Coq already provides a type class namedEquivalence for equiv-
alence relations, as well as the notationsx === y and x =/= y for equalities
and disequalities with respect to equivalence relations. We de�ne the class
of strict orders modulo an equivalence relation. This classis parameterized
by the type of elements, the equivalence relation and the order relation:

Class StrictOrder {A} lt eq {Equivalence eq} := {
StrictOrder_Transitive :

8( x y z : A), lt x y ! lt y z ! lt x z;

6 in particular, using �nite sets implemented as AVL trees ins tead of sorted lists would
multiply this time by four without apparent reason.
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StrictOrder_Irreflexive :
8( x y : A), lt x y ! x =/= y

}.

Note that only the order and equality are explicit arguments of this class.
We now look at the existing implementations of ordered types: the FSets

library brings two di�erent signatures for ordered types, r espectively in the
modulesOrderedType (Figure 5.1) and OrderedTypeAlt (Figure 5.2).

Inductive Compare {A} lt eq x y :=
| LT : lt x y ! Compare lt eq x y
| EQ : eq x y ! Compare lt eq x y
| GT : lt y x ! Compare lt eq x y.

Parameter t : Type .
Parameter eq : t ! t ! Prop.
Parameter lt : t ! t ! Prop.
(* equivalence axioms for eq *)
...
Axiom lt_trans : 8xyz, lt x y ! lt y z ! lt x z.
Axiom lt_not_eq : 8xy, lt x y ! � eq x y.
Parameter compare : 8xy, Compare lt eq x y.

Figure 5.1: Existing OrderedType module

Inductive comparison := Lt | Eq | Gt.

Parameter t : Type .
Parameter compare : t ! t ! comparison.

Parameter compare_sym : 8xy,
compare y x = match compare x y with

| Eq ) Eq | Gt ) Lt | Lt ) Gt
end .

Parameter compare_trans :
8cxyz, compare x y = c !

compare y z = c ! compare x z = c.

Figure 5.2: Existing OrderedTypeAlt module

OrderedType brings a type t , an equivalence relationeq and a strict
order lt on t , as well as the corresponding properties. The decidabilityof
these relations is given by thecompare function which is completely speci-
�ed by its return type: the Compareinductive datatype. More precisely, the
comparefunction performs the comparison of two elements but also returns
a proof of the relation between these elements. This formalization is quite
convenient to use: in particular, when reasoning by case analysis on the com-
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parison between two elements, the hypotheses corresponding to each branch
are naturally added to the context. A possible inconvenient, however, is the
fact that the compare function is not purely computational, but informa-
tive, and it can become an issue and be a source of ine�ciencies when it is
used very frequently in an algorithm. Alternatively, to ensure a separation
between computations and proofs,OrderedTypeAlt revolves around a pure
comparison function compare, whose return type comparison is the 3-value
type Lt | Eq | Gt . Unfortunately, this function's speci�cation through
properties of symmetry and transitivity is really tedious t o reason with.

In order to keep the best of both alternatives, we choose a purely com-
putational comparison function, but specify it with the fol lowing inductive
de�nition:

Inductive compare_spec {A} eq lt ( x y : A) :
comparison ! Prop :=

| compare_spec_lt : lt x y ! compare_spec eq lt x y Lt
| compare_spec_eq : eq x y ! compare_spec eq lt x y Eq
| compare_spec_gt : lt y x ! compare_spec eq lt x y Gt.

Unlike Compare, this inductive is not the return type of the comparison
function, but it relates each comparison value to the corresponding adequate
hypothesis. It is then enough to prove that all the function's results belong
to this relation for the function to be correct: namely, for a function f of
type T ! T! comparison to be deciding some equality� and order � on
T, it is su�cient and necessary to have:

8xy, compare_spec � � x y (f x y).
Using such a speci�cation, we are now able to write the classOrderedType
of ordered types:

Class OrderedType (A : Type ) := {
_eq : relation A;
_lt : relation A;
OT_Equivalence : > Equivalence _eq;
OT_StrictOrder : > StrictOrder _lt _eq;
compare : A ! A ! comparison;
compare_dec :

8xy, compare_spec _eq _lt x y (compare x y)
}.

This class is parameterized by the typeAof elements and contains the equal-
ity and strict order relations. SubclassesEquivalence and StrictOrder , in-
troduced by :> , are used to specify these relations. The last part is the com-
parison function and its speci�cation, which are given as explained above.
This version is as easy to use as the original despite the purely computational
return type of compare. Indeed, in a context wherecompare a bappears,
it is enough to invoke the tactic destruct (compare_dec a b) in order to
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perform case analysis on this comparison:compare a bis then replaced in
each branch by its value (Eq, Lt or Gt) and the corresponding hypothesis is
added to the context. In this regard, the compare_specinductive is similar
to the re�exive �views� of the SSReflect extension [GM08].7

Once the class for ordered types is de�ned, numerous useful lemmas (like
the fact that the order relation is a morphism for equality) and notations
are established and can be used for any ordered type. The following table
summarizes the available notations and the corresponding �views� for non-
propositional objects:

Notation Meaning View
x === y x equal to y
x =/= y x not equal to y
x <<< y x smaller than y
x >>> y x greater than y
x =?= y compare x y compare_dec
x == y true i� x =?= y returns Eq eq_dec
x << y true i� x =?= y returns Lt lt_dec
x >> y true i� x =?= y returns Gt gt_dec

5.2.2 Special Equalities

When writing a piece of code which is parameterized by an ordered type,
it is very frequent to require a certain type to be ordered with the con-
straint that the equality relation be some special equality, typically Leib-
niz equality. The module system allows one to express such a constraint
by specializing the signature: OrderedType with Definition eq := ... .
Unfortunately, this kind of constraints cannot be expressed with type classes
unless the part we wish to specialize is a parameter of the type class and not
a �eld. To make the use of speci�c equalities possible, we introduce a spe-
cial classSpecificOrderedType , which is parameterized by the equivalence
relation, and also show that any instance of this class is also an instance of
OrderedType.

Class SpecificOrderedType (A : Type )
(eqA : relation A) (Equivalence A eqA) := {
SOT_lt : relation A;
SOT_StrictOrder : StrictOrder SOT_lt eqA;
SOT_compare : A! A ! comparison;
SOT_compare_spec :

8xy, compare_spec eqA SOT_lt x y (SOT_comparex y)
}.

7 this discussion assumes Coq v8.2 ; Coq's next version is going to introduce a mixed
signature taking advantage of type classes and a speci�cation à la compare_spec, inspired
by this one.
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Instance SOT_as_OT `{SpecificOrderedType A eqA equivA} :
OrderedType A := {
_eq := eqA;
_lt := SOT_lt;
...

}.

We also add a notation UsualOrderedType to denote the particular and
yet frequent case where the wanted equality is Leibniz equality. These or-
dered types with speci�c equalities will come in handy when de�ning con-
tainers in Section 5.3.

5.2.3 Automatic Instances Generation

After classes, generic lemmas and de�nitions have been de�ned, we declare
instances of OrderedType for all basic types and usual type constructors.
When possible, we declare instances ofUsualOrderedType, including for
type constructors8. The library provides instances for Peano integers, binary
integers (whether positive, natural or relative), rationals, booleans, lists,
products, sums and options. At this point, generic functions on ordered
types can therefore be used on all combinations of these types and type
constructors without manual intervention, thanks to the au tomatic inference
of type classes:

Goal 8( x y : ((nat � bool) + (list Z � Q))), x === y.

To typecheck this goal, an instance ofOrderedType is inferred for the type
of x and y. In particular, an e�ective comparison function is availab le to
compare elements of this type.

In practice however, a type like the one above will typically be de�ned
directly as a two-branch inductive:

Inductive t :=
| C1 : nat ! bool ! t
| C2 : list Z ! Q ! t.

The type classes system cannot automatically infer instances for such in-
ductive types, but we have implemented a new vernacular command in
OCaml which can handle such cases automatically. This command is in-
voked by Generate OrderedType <type>, takes an inductive type as ar-
gument and tries to generate the equality, the strict order relation, the
comparison function and all the mandatory proofs, before declaring the cor-
responding instance. To do that, it potentially uses other instances already
de�ned and available in the context. In the generated order relation, con-
structors are ordered arbitrarily, and parameters on a single constructor

8 for instance, if Aand Bare ordered types for Leibniz equality, then so are their pro duct
and their sum.
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are ordered lexicographically9. For instance, when invoking the command
for the type t above, the following de�nitions are performed automatically :

Inductive t_eq : t ! t ! Prop :=
| t_eq_C1 : 8( x1 y1 : nat) ( x2 y2 : bool),

x1 === y1 ! x2 === y2 ! t_eq (C1 x1 x2) (C1 y1 y2)
| t_eq_C2 : 8( x1 y1 : list Z) ( x2 y2 : Q),

x1 === y1 ! x2 === y2 ! t_eq (C2 x1 x2) (C2 y1 y2).

Inductive t_lt : t ! t ! Prop :=
| t_lt_C1_1 : 8( x1 y1 : nat) ( x2 y2 : bool),

x1 <<< y 1 ! t_lt (C1 x1 x2) (C1 y1 y2)
| t_lt_C1_2 : 8( x1 y1 : nat) ( x2 y2 : bool),

x1 === y1 ! x2 <<< y 2 ! t_lt (C1 x1 x2) (C1 y1 y2)
| t_lt_C1_C2 : 8( x1 : nat) ( x2 : bool) ( y1 : list Z) ( y2 : Q),

t_lt (C1 x1 x2) (C2 y1 y2)
| t_lt_C2_1 : 8( x1 y1 : list Z) ( x2 y2 : Q),

x1 <<< y 1 ! t_lt (C2 x1 x2) (C2 y1 y2)
| t_lt_C2_2 : 8( x1 y1 : list Z) ( x2 y2 : Q),

x1 === y1 ! x2 <<< y 2 ! t_lt (C2 x1 x2) (C2 y1 y2)

and this comparison function is generated:

De�nition t_cmp (x y : t) :=
match x with
| C1 x1 x2 )

match y with
| C1 y1 y2 )

match x1 =?= y1 with
| Eq ) x2 =?= y2

| Lt ) Lt
| Gt ) Gt
end

| C2 _ _ ) Lt
end

| C2 x1 x2 )
match y with
| C1 _ _ ) Gt
| C2 y1 y2 )

match x1 =?= y1 with
| Eq ) x2 =?= y2

9but note that the command should typically be used in cases wh ere any well-de�ned
order relation is suitable, not unlike the Pervasives.compare polymorphic comparison in
OCaml.
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| Lt ) Lt
| Gt ) Gt
end

end
end .

We do not show the proofs and instances generated along with these de�-
nitions. Note that we used inductive predicates to de�ne the equality and
order relations: there are other ways to generically de�ne such relations (as
a function predicate for instance) but we chose to use inductives because
it makes proofs easier and shorter.10 It is important to keep the proofs as
short as possible since they can be quite large: in particular, the proof of
transitivity of t_lt grows in cubic proportion to the number of construc-
tors in t , and a call to Generate OrderedType can take several seconds on
a large type.

The Generate OrderedType command will work with all (mutually) re-
cursive inductive de�nitions, including uniform paramete rs, which makes it
a very useful addendum to the library. For instance, the following commands
demonstrate its use for automatically comparing strings ofcharacters. An
instance is generated for the typeascii of 8-bit characters, and then for
the type string of strings, which usesascii .

Generate OrderedType ascii.
Generate OrderedType string. (* string uses ascii *)
Eval vm_compute in (�long� =?= �small�).
(* this computation returns Lt *)

5.3 Finite Sets and Maps

The ordered types we described in Section 5.2 are a type classon which it
is possible to implement a few e�cient structures of containers. The goal
of our library is to provide such structures, and we know present and de�ne
the interface for �nite sets in detail and also address �nite maps.

5.3.1 Interfaces and Speci�cations

The class of the �nite sets containing elements of an orderedtype Ais de�ned
in the following way:

10 here is one way to see why inductive predicates make proofs shorter: suppose you
know t_eq x y for some x and y, inverting this hypothesis will yield the two possible
cases, one for each constructor int_eq . With a non-inductive speci�cation, one would
have to reason by analysis onx and y, which yields four cases: the two absurd cases must
be eliminated manually.
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Class FSet `{H : OrderedType A} := {
set : Type ;
In : A ! set ! Prop;
empty : set;
mem : A! set ! bool;
add : A ! set ! set;
...
FSet_OrderedType :>

SpecificOrderedType set (Equal_pw set A In) _
}.
Implicit Arguments set [[H] [FSet]].

This class is parameterized11 by a type A and an ordered typeOrderedType
A. It brings the type set of all �nite sets of elements of type A as well as
the various operations available on these sets. The �eldIn is the mem-
bership predicate for these sets and is the only logical �eldin this class:
all operators are consequently speci�ed in terms of this predicate. The �eld
FSet_OrderedTyperequires explanations: it guarantees that the typeset is
itself an ordered type, what's more an ordered type for a veryspeci�c equal-
ity; it does so by introducing a subclassSpecificOrderedType as described
in Section 5.2.2. This equality is the pointwise extension of the membership
predicate In , i.e. two sets are equal if they have the same elements, and it
is de�ned in the following way for any container type ctr and element type
elt :

De�nition Equal_pw (ctr elt : Type )
(In : elt ! ctr ! Prop) ( s s0 : ctr) : Prop :=
8a : elt, In a s $ In a s0.

These de�nitions allow one to consider sets as ordered types(and in partic-
ular build sets of sets of sets of ...), for instance by writing s === empty.
They also ensure that this equality is convertible with the pointwise equal-
ity, which is the one used in the original FSets library. The last line of the
de�nition, right after the de�nition of the class, declares two arguments of
the set projection as implicit. More precisely, set normally expects three
arguments, the type of elements, an instance ofOrderedType for this type,
and an instance of FSet: we declare that the type of elements should be
passed explicitely, but that the instances for ordered typeand �nite sets
will be inferred automatically. The consequence of this is that the type
of sets of elements of a typeA can be denoted simply asset A. Given an
instance of FSet for an ordered type A, we can then manipulate sets ofA
easily:

De�nition add_all ( x y z : A) ( s : set A) :=
add x (add y (add z s)).

11 this design choice, far from being benign, is discussed further in Section 5.5.
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In interactive proof manipulations, it is not advisable tha t the used instance
FSet be fully unveiled to the user, ie. that the projections set , add, etc, can
be reduced and reveal the actual implementations beneath. In particular,
one's de�nitions and proofs should not depend on the actual set imple-
mentations but only on the interface and the provided speci�cations, which
guarantees an encapsulation of the actual implementation of the structures,
and the genericity of the code that uses the library. To that end, we make
the various �elds of the FSet classopaque12:

Global Opaque set In empty mem add ... .

The FSet class only contains the computational interface for the �nite
sets' structure and not its speci�cation. We made this choice in order to
separate operations and speci�cations for pragmatic reasons: de�nitions of
functions and algorithms only need the computational interface, which re-
mains relatively small, whereas proofs and only proofs willrequire the spec-
i�cations. Before we de�ne these speci�cations in detail, we can already
de�ne a few generic predicates and notations on �nite sets, among which
Equal s t for pointwise equality, Subset s t for the subset relation and
Empty s to denote the fact that the set s is empty. The available notations
are listed in Table 5.3.

s [=] t Equal s t
s [<=] t Subset s t

v 2 s In v s
{} empty
{v} singleton v

{v ; s} add v s
{s � v} remove v s
v in s mem v s
s ++ t union s t
s \ t diff s t

Figure 5.3: Available notations on �nite sets

All the speci�cations for the FSet class could be packaged in a single large
classFSetSpecs parameterized by anFSet instance, but we instead choose
to specify each operation in a separate class. For instance,the speci�cations
for the �elds empty and add are given by the following classes, and are
straightforward to understand:

Class FSetSpecs_empty `(FSet A) := {
empty_1 : Empty empty

12 this does not prevent computations with the compute and vm_computetactics, but
only the � -conversions, i.e. the unfolding of de�nitions, which are p erformed by some
tactics.
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}.
Class FSetSpecs_add `(FSet A) := {

add_1 : 8s x y, x === y ! In y (add x s);
add_2 : 8s x y, In y s ! In y (add x s);
add_3 : 8s x y, x =/= y ! In y (add x s) ! In y s

}.

We make this choice for two reasons. First, when writing proofs, it is very
common to ask the system about all lemmas available on some identi�er,
say add, using the commandSearchAbout add or one of its variants. If
all the speci�cations � about �fty � are bundled in a single cl ass, this com-
mand will unfortunately display this class's constructor and the elimination
principle associated with it, and both are very large objects. This is rather
unfortunate, and makes it almost useless in such cases. The other, more
general, reason for our choice is that it makes it possible tohave proofs
only depend on what is really necessary. For instance, if some speci�c data
structure implementing �nite sets does not feature all the sets operations
described in the interface, but one's application does not use the missing op-
erations, one can still rely on our library and its generic interface since the
missing speci�cations will never be required. Pushing thiseven further, we
can imagine a development which does not involve any proof (such as a pro-
cedure used as an oracle for some larger algorithm), and would only use the
computational interface FSet. For those systems that require the interface
with full speci�cations, we de�ne a superclass which embedsspeci�cations
for all operations:

Class FSetSpecs `(F : FSet A) := {
FFSetSpecs_In : > FSetSpecs_In F;
FFSetSpecs_mem :> FSetSpecs_mem F;
FFSetSpecs_add :> FSetSpecs_add F;
...

}.

Together, this speci�cation class and the interface classFSet correspond
exactly to the interface FSetInterface.S in the existing library.

Finite maps. In this paper, we only present the interface for �nite sets in
order to remain concise, but the library also provides an interface for �nite
maps. It is adapted from the standard library's �nite maps ( FSets.FMaps) in
a similar way to what we just described for �nite sets. In part icular, the same
choices were made as far as the separation of operations and speci�cations,
and the splitting of speci�cations.
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5.3.2 A Library of Properties

The FSets library contains several modules of generic results and prop-
erties about �nite sets: FSetFacts, FSetDecide, FSetProperties, and
FSetEqProperties . The task of adapting these modules to the typeclass-
based interface presented above was a �rst good way to check our interface
and its ease of use. We adapted all the aforementioned modules without
any major issue, the most delicate point certainly beingFSetDecide and
its tactic fsetdec initially contributed by A. Bohannon and which performs
automatic reasoning on the theory of �nite sets. One slight di�erence is that
the original tactic only dealt with one single type of sets at a time, while
our port of the tactic deals with all hypotheses related to sets at the same
time; this can lead to minor incompatibilities. As a whole, all lemmas and
properties keep the same name as in the original library, which minimizes
the amount of work necessary to port one's code from the modular version
to the one we present here (cf. Section 5.5.3 for more details).

We have also added some properties in order to facilitate reasoning on
functions like mem, choose or min_elt , using inductive views to write their
speci�cations. For example, choose's speci�cation is available in the follow-
ing fashion:

Inductive choose_spec (s : set elt) :
option elt ! Prop :=

| choose_spec_Some :
8x (Hin : In x s), choose_spec (Some x)

| choose_Spec_None :
8(Hempty : Empty s), choose_spec None.

Property choose_dec : 8s, choose_spec (choose s).

and can be used very easily by doing case analysis on the result of choose_dec.
Higher-order iterators. Elements in a container are traditionally enumer-
ated using step-by-step iterators in imperative languages, and higher-order
iterators à la fold in functional languages. In FSets as well as in our library,
there is one such iterator function fold ; in our interface for elements of
type A, it appears as:

fold : 8 {B : Type}, (A ! B ! B) ! set ! B ! B
where the type B is the type of what is commonly called the accumula-
tor. The speci�cation for this function is given in terms of the t raditional
fold_left function on lists, and the function elements returning the list
of elements of a set:

fold_1 : 8f s i ,
fold f s i = fold_left ( fun a e ) f e a) (elements s) i

This indirect speci�cation is really tedious to use becausein order to reason
by induction on a �nite set, it requires to express all the other hypotheses
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relative to s in terms of elements s and to proceed by induction on the
list of elements. Becausefold is used a lot when programming with �nite
sets, reasoning aboutfold is very frequent and the above procedure must be
done repeatedly. To avoid the tedious process of usingfold_1 , we designed
an induction principle for fold . The idea is that the induction principle lets
one prove an invariant over the accumulator by proving that the invariant
is true for the initial accumulator and is preserved with each iteration step.

fold_ind :
8`{OrderedType A} (B : Type ) (P : B ! Type )

( f : A ! B ! B) ( i : B) ( s : set A),
P i !
( 8( e : A) ( a : B), In e s ! P a ! P (f e a)) !
P (fold f s i ).

The preservation is expressed by the fact that ifa has the invariant Pand an
elemente, belonging to the sets, is added to the accumulator, the resulting
accumulator f e a still veri�es P. This principle is still rather weak, because
in general, one may need more information in order to properly express the
invariant and prove its preservation. For that reason we provide the following
stronger, more generic, induction principle:

fold_ind_gen :
8`{OrderedType A} (B : Type ) (P : set A ! B ! Type )

( f : A ! B ! B) ( i : B) ( s : set A),
( 8( s s0 : set A) ( a : B), s === s0 ! P s a ! P s0 a) !
P i !
( 8( e : A) ( a : B) (vis : set A),

In e s ! �In e vis ! P vis a ! P {e; vis} ( f e a) !
P s (fold f s i ).

In the latter principle, the invariant takes one extra argum ent, the set of
elements already visited by the iterator. There is one extrahypothesis to
make sure that the invariant is a morphism for pointwise equality, and in
the preservation step, the new element is such that it has notbeen visited
yet. The conclusion of the principle is that the invariant is veri�ed for the
whole fold when all elements have been visited. For example,here is how to
write a �ltering function 13 on sets of integer usingfold and then prove its
speci�cation using fold_ind :

De�nition filter_pos ( s : set nat) :=
fold ( fun e s ) if e >> 0 then { e; s} else s) s {}.

De�nition filter_pos_invariant ( s acc : set nat) :=
8e, In e acc $ In e s _ e >>> 0.

Theorem filter_pos_spec : 8s, P s (filter_pos s).

13 the generic filter function is actually part of the FSets interface, we do not use it
here in order to demonstrate fold .
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Proof .
intro s; unfold filter_pos.
apply fold_ind with (P := filter_pos_invariant).
...

Qed .

As a �nal note, these principles are available with our library but we �rst
developed them for the original FSets library, and therefore they are also
available for FSets starting with Coq v8.2.

5.4 Applications

5.4.1 Lists and AVL trees

The existing library FSets proposes two kind of implementations of sets
and �nite maps, the ones based on sorted lists, and the otherson balanced
binary search trees (AVL) [G. 62].

We have adapted the �nite sets and maps based on sorted lists,as well
as those sorted on AVL trees. Let us detail for instance the case of �nite
sets based on sorted lists. In practice, the implementationof sorted lists is
the same in the modular version and in our version, and they di�er only
marginally14. The original development of sorted lists in the FSets library
is a functor parameterized by a module of signatureOrderedType, whereas
the development for sorted lists in our version is parameterized by an in-
stance of theOrderedType class. This is achieved by using Coq's sectioning
mechanism and theContext command which introduces instance variables
in a section:

Modular version

Module Make (X : OrderedType)
< : S with Module E := X.
Module E := X.
De�nition elt := X.t.
...

End Make.

Type class version

Section Make.
Context `{OrderedType elt}.
...

End Make.

In the `{OrderedType elt} context, elt is a fresh type featuring a decid-
able order. The de�nitions in the section can then useelt as an ordered
type, and they are automatically generalized at the time thesection is closed.

Once the de�nitions of sorted lists and their various operations, as well
as the adequate proofs, have been completed, we are only leftwith the task
of declaring the instances corresponding to the classes presented earlier in
Section 5.3.1. We can package all these de�nitions in a speci�c module

14 it is thus natural to be concerned about the issue of code duplication between both
versions ; we discuss this point in Section 5.5.
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SetList , which doesn't have to be imported by an external user, sinceonly
the instances providing the interface are necessary. In thecase of sorted
lists, which provide a structure of �nite sets for any ordered type, we de�ne
a generic instance ofFSet parameterized by an ordered type:

Instance SetList_FSet `{Helt : OrderedType elt} :
FSet := {
set := SetList.set elt;
In := @SetList.In elt Helt;
empty := ...

}.

This de�nition really declares a whole family of instances, in other words
it gives a way to obtain a �nite set structure for any ordered t ype elt .
Similarly, we can de�ne a family of speci�cations for each ofthese structures
indexed by an ordered typeelt :

Instance SetList_FSetSpecs `{Helt : OrderedType elt} :
FSetSpecs SetList_FSet := {
FFSetSpecs_In := ...;
FFSetSpecs_mem := ...;
...

}.

With these instances de�ned in a �le (resp. module), it is enough to import
that �le (resp. module) to be able to use �nite sets on any ordered type.

5.4.2 Usage

The simplicity with which our library can be used is one of its main interests.
To work with �nite sets, it is enough to import the module Sets which
exports the following functionalities:

� the notion of ordered type, along with a library of instancesand results
about ordered types ;

� the generic instances for �nite sets based on AVL trees, whose design
is completely similar to the one based on sorted lists ;

� the interfaces, speci�cations, notations and basic properties relative to
�nite sets.

A �rst thing to note is that the library loads AVL trees by defa ult instead of
sorted lists. This is justi�ed by the fact that AVL are more e� cient in general
and there is no penalty in terms of loading time with respect to sorted lists.
This is unlike the modular version where applying the AVL functors takes
much longer than applying the sorted lists' version. A user who wishes to
use sorted lists instead of AVL trees can still load the adequate instances ;
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she could also manually specify what instance to use if the circumstances
demand it15. A module Mapsalso exists, which loads all the infrastructure
required to work with �nite maps ; in particular, it loads the maps based
on AVL trees.

OnceSets has been imported, one can use all the generic de�nitions and
notations on sets, with the only restriction that they be applied to ordered
types. If, as is often the case, the necessary instances ofOrderedType
can be automatically inferred as described in Section 5.2.3, then the use of
�nite sets becomes totally transparent to the user, and becomes completely
similar to fully polymorphic structures such as lists. The following example
demonstrates the computation of a set of integers:

Require Import Sets.

Fixpoint fill n s :=
match n with
| O ) s
| S n0 ) fill n0 { n0; s}
end .

Eval vm_compute in mem 6 (fill 7 {42}).
(* this computation returns 'true' *)

Finite sets for di�erent types can coexist peacefully in the same context, in
the same functions ; in particular, thanks to the FSet_OrderedType�eld in
the FSet class (cf. 5.3.1), we can manipulate sets of sets:

De�nition map_fill ( s : set nat) : set (set nat) :=
fold ( fun n S ) {fill n {}; S}) s {}.

Eval vm_compute in cardinal (map_fill (fill 3 {})).
(* this computation returns 3 *)

Similarly easy is the use of lemmas from the library during proofs. For
instance, to apply the �rst part of the speci�cation of the add operation,
called add_1, it is enough to apply the lemma directly and all implicit ar-
guments are correctly inferred:

Goal 8( x : option nat) s, In x { x; s}.
Proof . intro; apply add_1; reflexivity. Qed .

To conclude that section, here is an example involving �nite maps and
some of the notations associated to maps. The type of �nite maps binding
keys of type key to values of type elt is written Map[key, elt] . The
notation s[k  v] denotes the insertion (or the update) of a binding in
the map s, [] is the empty map and s[k] is the value associated to the key
k in s, if any.

15 in such cases, the gain in verbosity compared to the modular version is reduced to
zero, but this explicit instantiation can almost always be a voided.
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Require Import Maps.

Fixpoint fill ( s : Map[nat,nat]) ( n : nat) :=
match n with
| O ) s
| S n0 ) fill s[ n0  S n0] n0

end .
Eval vm_compute in (fill [] 7)[4].
(* this computation returns 'Some 5' *)

The library is available for download at the following URL:
http://www.lri.fr/~lescuyer/Containers.fr.html .

5.5 Discussion

In this section, we take a closer look at the comparison between our library
and the existing one, and discuss a couple of choices and limitations in our
current implementation.

5.5.1 Performances

In order to compare the performances of our library with the module-based
implementation, we added a �le called BenchMarks.v which tests the basic
functions over �nite sets. The test consists in creating a set of integers from a
(pseudo-)randomly generated sequence, and in making various membership
tests in the resulting set. This process is repeated for setsbased on type
classes and sets based on modules. The result is satisfying since, when the
comparison functions for the elements are the same16, the two alternatives
show the exact same performance.

To understand why the mere fact that the performances are similar is
satisfying, it is important to notice that the convenient an d concise formu-
lation that comes from using type classes is actually made tothe expense
of the terms' size. Indeed, although the various type classes parameters are
implicit and are automatically �lled in, one must not forget that these argu-
ments are present in the proof terms, and that the corresponding instances
must be passed on and reduced during the computations. For example, the
simple expression{1; {}} (or add 1 empty), which denotes the singleton
set containing 1, actually corresponds to the following sybilline expression:

16 several comparison functions, for relative integers in particular, were not completely
computational in the existing library and because of that, w ere being �ve times slower
than the purely computational functions in our library. Thi s does not denote any signi�ca-
tive di�erence between modules and type classes, but rather underlines the importance
of having an interface which encourages one to write purely computational comparison
functions. We of course corrected the slow comparison functions from the existing library
before running our benchmarks.
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@add nat (@SOT_as_OT nat (@eq nat)
(@eq_equivalence nat) nat_OrderedType)

(@SetAVLInstance.SetAVL_FSet nat
(@SOT_as_OT nat (@eq nat)

(@eq_equivalence nat) nat_OrderedType))
1
(@empty nat

(@SOT_as_OT nat (@eq nat)
(@eq_equivalence nat) nat_OrderedType)

(@SetAVLInstance.SetAVL_FSet nat
(@SOT_as_OT nat (@eq nat)

(@eq_equivalence nat) nat_OrderedType)))

whereas the corresponding expression with modules would simply be:

NatSet.add 1 NatSet.empty.

To sum this up, functor applications are replaced by applications of extra
arguments in all set-related operations.

If the performances of the computations do not su�er from this hidden
complexity, this is unfortunately not the case for the time spent typechecking
these objects when compiling a �le, or simply when manipulating them in an
interactive proof. We get back to this important point infra in Section 5.5.4.

5.5.2 Upgrade of Existing Code

The task of updating earlier versions of our tactic to this library represented
a good benchmark to judge how hard it was to adapt existing code, based
on FSets/FMaps, to our alternative library. The code base is indeed about
30 000 lines of Coq and used various di�erent types of �nite sets, including
sets of sets.

The conclusion of this experience was very positive since the modi�cation
of our existing code went on without a signi�cant issue. As a matter of fact,
because the names of operations and lemmas have been preserved between
the original library and ours, the modi�cations one has to make to one's
existing code are almost automatic:

� for all modules verifying the signature OrderedType, de�ne the corre-
sponding OrderedType instance17 or use the translation functors de-
scribed in the next section ;

� replace all occurences of set types likeNatSet.t with set nat ;

� replace invocations ofdetruct compare in proof scripts by destruct
compare_dec;

17 this is only needed if the instance cannot be inferred automatically by the system, nor
generated with the Generate OrderedType.
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� �unqualify�all references to objects belonging to modulesof �nite sets
or properties over �nite sets, for instance replace any quali�ed ref-
erence toNatSet.add , to the lemma NatSet.add_3 or to the tactic
NatSetDec.fsetdec by add, add_3 and fsetdec .

These modi�cations can be applied seamlessly and also make one's code
more concise and more readable. Therefore, they should not deter one from
switching from one library to the other.

5.5.3 Code Sharing

When we presented the interfaces in Section 5.3 and the concrete implemen-
tations in Section 5.4, we emphasized how the library of generic properties
and the developments of lists and AVL trees were almost exactly the same in
our library and in the original one. Therefore, it is natural to wonder about
how we can avoid code duplication between the two versions: for obvious
reasons, it wouldn't be satisfactory if the code remained duplicated.

In order to share most of that which is duplicated over the two versions
of the library, it is possible to only write the version based on type classes,
and then obtain the modular version with very little boilerp late. We show
this construction on the example of ordered types. Given thesignature
OrderedType and the type class OrderedType as in Section 5.2, we can
build the following functor which translates an instance of OrderedType in
a module of signatureOrderedType:

Module Type S.
Parameter t : Type .
Instance Ht : OrderedType t.

End S.

Module OT_to_FOT (Import X : S) < : OrderedType.
De�nition t := t.
De�nition eq : t ! t ! Prop := _eq.
De�nition lt : t ! t ! Prop := _lt.

De�nition eq_refl : 8( x : t), eq x x :=
reflexivity.

De�nition eq_sym : 8( x y : t), eq x y ! eq y x :=
symmetry.

...
De�nition compare : 8x y, Compare lt eq x y.
Proof . ... Qed .

End OT_to_FOT.

The signature S is just a way to package an ordered type with its instance
in a module. The functor itself is parameterized by a module of signature
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S, in other words by an ordered type, and creates a module of signature
OrderedType for the type and relations passed in the parameter. The in-
stance and the de�nitions for a given ordered typet can therefore be de�ned
once and for all, and the user of the modular library can get the correspond-
ing module via this functor. It is interesting to note that on e can also build
the converse translation, that is a functor parameterized by an OrderedType
module which returns a module of signatureS containing the correspond-
ing instance. Of course, this translation has a lot less interest because it
requires the user to manually and explicitely de�ne each instance he needs
by applying this functor, which is precisely what type classes are there to
avoid. The functor OT_to_FOT, on the contrary, is not more constraining to
use than the existing module-based system.

The sharing we obtain in this fashion can be generalized to other parts
of the system, for instance we could de�ne a functor returning a module of
�nite sets for a type A from an instance of FSet A. This way, we would only
have to duplicate the interfaces of the di�erent parts of the system, all still
sharing the same concrete implementations. Our library features a module
called Bridge which contains such functors, albeit only for ordered types.

5.5.4 Designing the Interface

In Section 5.3.1, we chose to parameterize theFSet type class with the
(ordered) type of the elements. We could also have written the FSet class
without this parameter, in the following way:

Class FSet := {
set : 8A {OrderedType A}, Type ;
In : 8`{OrderedType A}, A ! set A ! Prop;
empty : 8`{OrderedType A}, set A;
...

}.

This class should be interepreted in a slightly di�erent way from the one
de�ned in Section 5.3.1: the class itself is not parameterized by an ordered
type anymore, but each �eld is. Hence, an instance of this class provides
implementations of �nite sets for any possible ordered typeand not for a sin-
gle particular one. For instance, sorted lists and AVL trees, as presented in
Section 5.4.1, are potential instances of this class because they can be used
on any ordered type. This is in contrast to speci�c structures like Patricia
sets [OG98] which can only be used to form sets of binary integers. The
advantage of this alternative formalization is that one can use di�erent in-
stances in the class de�nition itself, for instance we couldadd the traditional
mapoperation:

map : 8`{OrderedType A, OrderedType B},
(A ! B) ! set A ! set B
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whereas this would neither be possible with our parameterized interface,
nor with the module system. It seems to us that this kind of bene�ts is less
important than the ability to deal with implementations tha t are speci�c to
certain element types (like integers), and therefore we decided to keep the
formalization where FSet is parameterized.

Unfortunately, this choice is not without consequences on the size of the
terms created using the library. We illustrated in Section 5.5.1 how implicit
type class arguments were leading to larger terms even though they were
hidden to the user. This e�ect gets ampli�ed by the parameterization of
the FSet class: indeed, all operations inFSet are themselves parameterized
with the same arguments as the class itself, and these arguments appear
twice in the proof term for each operation. For instance, suppose F is a
generic instance ofFSet and nat_OT has type OrderedType nat, then the
expressionadd 5 {} will actually become:

@add F nat nat_OT 5 (@empty F nat nat_OT)

if the class is not parameterized (second, rejected, alternative) whereas it
becomes:

@add nat nat_OT (F nat nat_OT) 5
(@empty nat nat_OT (F nat nat_OT))

when the class is parameterized (our original, retained, alternative). The
di�erence may seem insigni�cant but we have measured its e�ect with ac-
curacy on a development which uses �nite sets extensively, and we found
out that the total size of proofs and de�nitions would grow by about 40%,
as well as the time devoted to type-checking the source �les.The increase
in the size of terms and type-checking time is one of the only downsides of
using type classes, and it is really unfortunate that this gets ampli�ed by
the (otherwise useful) parameterization of theFSet interface18. In practice,
the time we gained in functor's instantiations still outwei ghed the time lost
because of the size of terms.

5.5.5 Type Classes and Modules

The work presented here is not a general criticism of modulescompared to
type classes, let alone a criticism of the existingFSets library. As demon-
strated in [WM06], modules and type classes are not interchangeable and
each one can claim bene�ts over the other. In particular, modules allow a
good control of the namespace, unlike type classes. Modulesare also very
well suited to splitting a large system in smaller parts with well de�ned in-
terfaces ; functors allow one to easily replace one part of such a system by

18 it is interesting to note that the duplicated expressions, o r parameters, appear as
siblings in the Coq terms and are thus typed in the same context. Therefore, some form
of memoization or hash-consing in the Coq type checker would surely cancel these negative
e�ects.
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another with the same interface and this can come in very handy to test
alternative algorithms or compare choices in a larger system.

However, we think that generic data structures like sets or maps are not
good candidates for a modular design since it is common to need several dif-
ferent instances of these structures at the same time, whichraises the issues
mentioned in Section 5.1.2. For such cases, it seemed to us aninteresting
experiment to try and take advantage of the new type class system in order
to provide alternative implementations of such structures.

5.6 Conclusion

We have presented a Coq library of �nite sets and �nite maps which repro-
duces much of the features of the existingFSets/FMapslibrary, but which is
based on the new type class system instead of the module system. Thanks
to the use of type classes, this library facilitates the use of these structures
and leads to faster, more concise development of algorithmsin Coq. It also
avoids a couple of performance issues related to the module system. Existing
implementations which rely on the standard library can be easily adapted
to this version. We are convinced that such a library contributes greatly to
improving Coq as a programming language since it provides easy access to
standard, generic, commonly used data structures.



CHAPTER6

A Re�exive SAT-Solver

Comment pouvez-vous identi�er un doute avec certitude?
- A son ombre! L'ombre d'un doute, c'est bien connu.

Raymond Devos,A plus d'un titre
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We start the formalization of our re�exive tactic by the prop ositional
solver. In Chapter 1, we have emphasized howAlt-Ergo's architecture is
modular and we will reproduce this modular architecture in our formaliza-
tion as well. In particular, the propositional solver, as described in Chap-
ter 2, can lead to a re�exive tactic for propositional logic, and this is what
we will describe in this chapter. In Section 6.1, we describea Coq formaliza-
tion of this DPLL procedure and we prove its soundness and completeness.
We then use this procedure in Section 6.2 in order to build a re�exive tactic
solving propositional goals. We �nish by showing how to use modularity
and de�ne a better strategy in Section 6.3.
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6.1 Formalizing DPLL in Coq

In this section, we present a Coq formalization of the inference system pre-
sented in Section 2.1.3 page 25, for which we prove soundnessand complete-
ness with respect to a notion of semantics for formulae.

6.1.1 Literals

We start by de�ning how literals shall be represented. To do so, we will
make use of Coq's module system [Cou97, Chr03]. Coqmodule typesallow
one to pack together types, functions and related axioms by keeping a high
level of abstraction. One can then createfunctors, i.e. modules which are
parameterized by other modules of a certain signature and which can then
be instantiated on any modules that match the expected signature.

Module Type LITERAL.
Parameter t : Set .
(* t is an ordered type *)
Instance t_OT : OrderedType t.
(* Negation function and its properties *)
Parameter mk_not : t ! t .
Axiom mk_not_invol : 8l , mk_not (mk_not l) === l.
Axiom mk_not_compat : 8l l 0, l === l0 $ mk_not l === mk_not l0.
...
(* Sets of literals, clauses and sets of clauses *)
Notation lset := (set t).
Notation clause := (set t).
Notation cset := (set clause).

End LITERAL.

Figure 6.1: A module type for literals

Therefore, in order to take advantage of Coq's module system, we will
�rst de�ne module types for literals and formulae, and we wil l then be able
to develop our decision procedure in a way that is independent of the actual
representation of the input. The signature at the base of oursystem is
the module type LITERALof literals and is presented in Figure 6.1. This
module type provides a typet for literals, a function mk_not which builds
the negation of a literal and some axioms about this function(like the fact
that it is involutive). Literals also come with a decidable equality and a total
order, which are necessary to later de�ne �nite sets of literals: this is done by
requiring an instance ofOrderedType t in the signature, as described in the
previous chapter. Note that there is no way to construct literals from scratch
with this signature, this is indeed not required by the DPLL p rocedure.
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Finally, the last part of the LITERALsignature introduces notations for sets
of literals and sets of sets of literals. We actually use two di�erent notations,
namely lset and clause , to denote �nite sets of literals. Although they
represent the same type, the reason we make that distinctionis because
our intent is that they will represent di�erent objects and w ill be used in
di�erent places. Having di�erent names ensures better maintenance and less
confusion1. Precisely, lset will be used to build partial assignments, i.e.
sets of literals that are considered to be true, whereasclause , as its name
suggests, will be used to represent clauses,i.e. disjunction of literals. The
last notation cset will be used to represent conjunctions of clauses, in other
words CNF formulae. Note that in de�ning these notations, we used the
fact that an instance for OrderedType for the type of literals was introduced
before (in order to build the sets of literals), and also that our containers
library ensures that sets of elements form an ordered type themselves (cf.
Section 5.3.1), thus allowing to build sets of sets of literals.

6.1.2 Semantics and Formulae

In the previous subsection, we de�ned module types for literals and we now
turn our attention to de�ning a notion of semantics, i.e. what it means for
a formula to be �true�. We cannot directly (nor do we want to) r ely on the
prover's notion of truth because we are dealing with abstract formulae and
not native Coq propositional formulae.

Once again we use Coq's functorization system and de�ne semantics as
a functor with respect to a module L of type LITERAL. The �rst thing we
need for semantics is a notion ofmodel: in accordance with De�nition 2.1.1
page 27, a model should be a function assigning a truth value to a literal.
We will simply de�ne a model as any type which can be seeenas a function
from literals to propositional values:

Module Type SEM_INTERFACE (Import L : LITERAL).
Parameter model : Type .
Parameter model_as_fun : model ! (L.t ! Prop ).
Coercion model_as_fun : model � Funclass .

...
End SEM_INTERFACE.

1 In practice, we also took advantage of that distinction in or der to use di�erent �nite
sets implementations for lset and clause , namely AVL trees for the former and ordered
lists for the latter, because they were used in a quite di�ere nt manner in the algorithm:
partial assignments were mainly used with membership tests, while clauses were mainly
iterated upon. Therefore, the cost of keeping a balanced tree in order to obtain logarithmic
lookup time was not justi�ed for clauses. In such a case, the notations lset and clause
represent di�erent types. We simplify the presentation in t his document, but note that
the fact that we had made that syntactic distinction between lset and clause from the
start made it much easier to use di�erent implementations la ter on.
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The type model is left abstract and can be transformed into a function
from literals to propositional values using model_as_fun. The Coercion
declaration ensures that we can implicitely use a model as a function over
literals.

Not any function from literals to Prop can be considered as a model for
literals, it also has to verify some properties which we require by adding
some axioms to the signature:

Axiom morphism : 8M l l 0, l === l0 ! (M l $ M l0).
Axiom consistent : 8M l, M l ! �(M (mk_not l)).
Axiom total : 8M l, ��(�(M l) ! M (mk_not l)).

The �rst one is technical and simply expresses that a model must be a
morphism for the equality on literals and is required because we did not
enforce equality on literals to be Leibniz equality. The other two axioms
denote the logical meaning of a model:

� consistent expresses that a model should not assign a true proposi-
tion to both a literal and its negation;

� total expresses that a model should be total, in the sense that given
any literal, itself or its negation should be true in the model. It is
stated with a double negation because Coq's logic is intuitionistic and
we would not be able to prove this axiom without double negation for
the type of models we have in mind. For instance, supposeM l is some
propositional value �A , and as one can expect,M (mk_not l) is A; it is
not true in general in intuitionistic logic that ��A ! A and therefore
the model would not be necessarily �total� for literal l . By adding
the double negation, we make sure that this property is provable in
intuitionistic logic.

Note that together, total and consistent are equivalent to the prop-
erty 8M l, ��(M l $ � M (mk_not l)), i.e. they express that the in-
terpretation of the negation of a literal l should be the negation of the
interpretation of l . Only the total part of this equivalence requires a
double-negation, hence we split this property in the two axioms above.

It is now straightforward to de�ne what it means for a model to satisfy
a clause or a set of clauses, and when a formula in CNF is unsatis�able:

De�nition sat_clause (M : model) (C : clause) :=
9l 2 C, M l.

De�nition sat_goal (M : model) (D : cset) :=
8C 2 D, sat_clause M C.

De�nition unsatisfiable (D : cset) :=
8(M : model), �sat_goal M D.

This gives us a notion of satis�ability for clauses and formulae, but we also
need to take the context of a sequent into account. As we did inthe proofs
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of Chapter 2, we need a notion of how a set of literals can be asubmodelof
some model:

De�nition submodel (G : lset) (M : model) := 8l 2 G, M l.

Note that this de�nition of a submodel implies that Gis a well-formed partial
assignment, in the sense that it does not contain both a literal and its
negation. From this notion of submodel naturally follows the de�nition of
incompatibility between a partial assignment and a set of clauses:

De�nition incompatible (G : lset) (D : cset) :=
8(M : model), submodel G M ! �sat_goal M D.

We can now de�ne a module type CNFfor formulae, as shown in Fig-
ure 6.2. This signature provides a typeformula for the concrete representa-
tion of formulae. Because the type of formulae will depend onsome notion
of literals, the signature CNFalso embeds a moduleL of signature LITERAL
through the Declare Module vernacular. Another module is required in
the interface, with the signature SEM_INTERFACE L, which brings a notion
of model and semantics for the module of literalsL. Finally, an instance
of CNFinstance shall provide a "CNF conversion" function calledmakethat
takes a formula and returns a sets of clauses (as de�ned in the module of
literals). Such a formalization (having the module bringing its own abstract
type of formulae and conversion function) allows instancesthat only ac-
cept formulae that are already in CNF, and wheremakeis just the identity
function for instance.

Module Type CNF.
Parameter formula : Set .

Declare Module L : LITERAL.
Declare Module Sem : SEM_INTERFACE L.

Parameter make : formula ! L.cset.
End CNF.

Figure 6.2: A module type for formulae

6.1.3 Sequents and Derivations

We can now start the de�nition of a functor SATparameterized by a module
F of type CNFand which will implement our SAT solving algorithm without
any knowledge about the actual representation of formulae or literals. The
development can only use elements that are de�ned inF's signature and
this ensures modularity as well as reusability. The functorstarts with the
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de�nition of sequents: a sequent, notedG ` D, is simply a record with a
partial assignment Gand a set of clausesD, as discussed in Section 2.1.3. For
conveniency, we �rede�ne� incompatibility for sequents using incompatibility
from the semantics moduleSem.

Module SAT (Import F : CNF).
Import L.
Record sequent : Type := {G : lset; D : cset}.

De�nition incompatible (S : sequent) :=
Sem.incompatible (G S) (D S).

...
End SAT.

The next step is the de�nition of the rules system presented in Fig. 2.1. We
use an inductive de�nition shown2 in Fig. 6.3 by enumerating all possible
ways a derivation can be built from a given sequent. We call this inductive
derivable and an object of type derivable (G ` D) represents a proof
derivation of sequent G ` D. Note that each constructor faithfully follows
from a rule of the original system. For instance, Assumedescribes unit
propagation, and Elim and Redtogether describe the two rules for boolean
constraint propagation.

Inductive derivable : sequent ! Prop :=
| Conflict : 8G D, ; 2 D ! derivable (G ` D)
| Assume : 8G Dl, f lg 2 D ! derivable (G, l ` D n f lg) !

derivable (G ` D)
| Elim : 8G Dl C, l 2 G ! l 2 C ! C 2 D !

derivable (G ` D n {C}) ! derivable (G ` D)
| Red : 8G Dl C, l 2 G ! �l 2 C ! C 2 D !

derivable (G ` D n C, C n f �lg) ! derivable (G ` D)
| Split : 8G Dl, derivable (G, l ` D) ! derivable (G, �l ` D) !

derivable (G ` D).

Figure 6.3: The inductive de�nition of the proof system

6.1.4 The Decision Procedure

Using the semantics we de�ned earlier, we can now proceed to prove the
fundamental theorems about our derivation system. First in line is the
soundness of the proof system:

2 In this �gure and in the following, we use mathematical notat ions for set-related
operations, rather than Coq's concrete syntax, for the sake of readability.
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if there exists a derivation of the sequent; ` D, D is unsatis�able

and as in the proofs in Chapter 2 we prove something more general than
this statement, using the notion of incompatibility that we just described:

Theorem soundness : 8S, derivable S ! incompatible S.

The special case where the context of sequentS is empty yields exactly the
above statement. This theorem can be proved by a structural induction on
the derivation of S following the arguments from Theorem 2.1.5, and the
Coq proof is not di�cult (about 50 lines of tactics).

Conversely, the completeness of the algorithm could be expressed by the
following statement:

Theorem completeness :
8S, wf_context (G S) ! incompatible S ! derivable S.

which corresponds to Theorem 2.1.9. There are at least two reasons why we
do not prove completeness in this particular form:

� We do not only want full equivalence between the notions of derivabil-
ity and incompatibility, but we also want a decision procedure, i.e. a
function capable of telling if a given formula is unsatis�able or not.
Proving such a theorem of completeness would certainly giveus an
equivalence between the derivability of a sequent and its incompati-
bility, thus bringing the problem of deciding satis�abilit y down to the
one of deciding derivability. However, deciding derivability amounts
to try and build a derivation for a given sequent if possible,and it is a
proof that actually encompasses the completeness theorem presented
above. Thus, we want to avoid doing the same job twice.

� We want to be able to use that procedure in Coq through the mecha-
nism of re�ection, i.e. by actually computing the proof search in the
system. Of course, an intuitionistic completeness proof isconstruc-
tive and therefore can give a derivation, as an algorithm, but it is
well known that procedures with propositional contents cannot be ex-
ecuted as e�ciently as purely computational functions, because in the
�rst case, proofs need to be replayed along with computations. Thus,
we do not want to encode the decision procedure as part of a general
completeness theorem.

For these reasons, we will build the decision procedure in two steps: �rst
we will program a function without propositional content to implement the
actual decision procedure, and then we will show that its results are correct.
This function will not return any �complex� information, bu t only Sat G if
it has found a partial model G, and Unsat otherwise:
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Inductive Res : Type :=
| Sat : lset ! Res
| Unsat : Res.

The decision procedureper secan now be implemented as a recursive func-
tion returning such a result:

Fixpoint proof_search (G ` D : sequent) n { struct n} : Res :=
match n with

| O ) Sat ; (* Absurd case *)
| S n0 )

if is_empty D then Sat G (* Model found! *)
else

if ; 2 D then Unsat (* Rule Conflict *)
else ...
...

let l := pick D in (* Rule Split *)
match proof_search (G, l ` D) n0 with

| Sat M ) Sat M
| Unsat ) proof_search (G, �l ` D) n0

end
...

end .

Because the recursion is not structural, we use an extra integer argument
n, and we will later make sure that we call the function with an integer
large enough so thatn never reaches 0 before the proof search is completed.
This short excerpt of the function proof_search shows that it proceeds by
trying to apply some rules one after another, one rule at a time, with a
given strategy. Here, the function �rst checks if the problem is empty, in
which case it returns the current context as a model; otherwise, it checks
if the empty clause is in the formula, in which case it returns Unsat. We
then skip some parts of the function, where we try to apply the rules for
elimination, reduction or unit propagation. The last part c orresponds to the
Split constructor: some literal l is picked in the problem using thepick
function and the proof search is called recursively with theliteral added to
the partial assignment, which corresponds to the left branch of the Split
rule. If this branch is satis�able, the whole formula is satis�able in the same
model. If it is unsatis�able, we call the proof search again for the right
branch and return the result.

The �rst theorem about proof_search states that when it returns Unsat,
it indeed constructed a derivation on the way:

Theorem proof_unsat :
8n S, proof_search S n = Unsat ! derivable S.



6.1 Formalizing DPLL in Coq 139

The proof follows the �ow of the function and shows that each recursive call
that was made corresponds to a correct application of the derivation rules.
One may wonder why we didn't construct this derivation in proof_search ,
so as to return it with Unsat: the reason is that a derivation contains proofs
(in side conditions) and had we done so, our function would not have been
100% computational anymore.

The second theorem aboutproof_search is the one that encompasses
completeness: it states that ifSat Mhas been returned, it is indeed a model
of the formula and of the context3.

Theorem proof_sat :
8n S M, � (S) < n ! wf_context (G S) !

proof_search S n = Sat M !
(G S) � M ^ sat_goal M (D S).

A couple of remarks about this theorem are necessary:

� � is a measureof a sequent that we have de�ned in Coq, and for which
we proved that it decreases for every recursive call in the algorithm.
We could have de�ned the function by a well-founded induction on this
measure, but it is computationally slightly more e�cient to use the ex-
tra integer. This is a well-known technique to transform non-structural
inductions in structural inductions [BC04]. A suitable measure of a
sequentG ` D here is the size ofD plus the number of literals which
appear in D and are unbound (positively or negatively) in G. When
calling proof_search on a sequentS, a suitable integer is � (S) + 1: it
is large enough forproof_sat to be applicable, in other words for the
procedure to be complete;

� we need an extra hypothesis that the context remains well-formed
(wf_context (G S) ), which means that it doesn't contain a literal and
its negation. This is not guaranteed by the derivation rules because
the side conditions were purposely very loose in order to allow any
kind of strategy. Here, it is our strategy that guarantees this invariant
is never broken, and this is part of the completeness proof.

Together with the soundness theorem, this shows thatproof_search is a
decision procedure for unsatis�ability and we can now de�nethis �top-level�
dpll function and prove the corresponding soundness theorem:

De�nition dpll ( f : formula) : Res :=
let S := ; ` (make f ) in
proof_search S ( � (S)+1).

3Technically, the set returned is not a model because it is only partial; it can be
completed into a model though, as long as it is a valid partial assignment, and we simpli�ed
the actual details here since they seem cumbersome.
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Theorem dpll_correct :
8f , dpll f = Unsat ! Sem.incompatible ; (make f ).

The de�nition of proof_search and the proofs of its properties require 700
lines of code.

6.2 Deriving a Re�exive Tactic

We now show how to use the procedure we have developed so far asa tactic
to solve goals in our proof assistant.

6.2.1 Rei�cation

In order to use our SAT solver on Coq propositional formulae,we need to
instantiate the SATfunctor. This raises the question of the actual represen-
tation of formulae and literals: we need to build modules of types LITERAL
and CNFthat will represent Coq formulae.

A natural choice for the type of literals would be to directly use the
type Prop of propositions, but this is impossible because the type of literals
must be an OrderedType, and in particular we need to be able to decide if
two given propositions are equal or not. Indeed, consider the formula A ^
�A : we need to know that the propositional variable A is the same on both
sides to conclude that this formula is unsatis�able. Since the only decidable
equality on sort Prop is the one that is always true, we cannot useProp as
the type of literals.

Instead, we resort to Coq's metalanguageL tac, which we introduced
in Section 4.2.1. This language provides pattern-matchingfacility on Coq
terms, and thereby allows us to check the syntactic equalityof proposi-
tional terms at a metalevel. We will use this language to build, for a given
propositional formula F, an abstract representationof F on which we will be
able to apply the algorithm. This process, calledrei�cation or sometimes
metai�cation , has been introduced earlier in Section 4.2.4.

Using L tac, we �rst build a function get_vars which traverses a formula
F and retrieves a list of all the propositional variables ofF. We de�ne another
function list_to_map that turns such a list into a balanced map. This map
now contains all the propositional variables of F and provides an e�cient
way to search for a particular variable into a map. The type of these maps
is called varmapand is de�ned as a parameterized binary tree:

Inductive varmap (A : Type ) :=
| Empty_vm : A ! varmap A
| Node_vm : A ! varmap A ! varmap A ! varmap A.

For instance, if F is the following formula:

F: A ^ (�B _ ( p A C)) ^ ( 8D, ( p D D))
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the result of list_to_map (get_vars F) will be a map containing the vari-
ablesA, B, ( p A C) and 8D, (p D D). In particular, the last variable is ab-
stracted because our propositional language does not include quanti�ers.
Given this map, we are able to represent variables by their path in the map:
the type of paths is index and is de�ned as

Inductive index : Set :=
| Left_idx : index ! index
| Right_idx : index ! index
| End_idx : index.

As long as the varmap is built in a balanced way, the representation of
literals through indices is logarithmic in the total number of variables in the
formula. It is now straightforward to create the module LPROPof literals,
where a literal is just an index in the map and a boolean saying if it is
negated or not, and themk_not function a simple inversion of this boolean:

Module LPROP< : LITERAL.
De�nition t := index � bool.
De�nition mk_not (p, b) : t := ( p, negb b).
...

End LPROP.

We can move on to de�ning the corresponding types for formulae. We
will for now assume that we only deal with formulae in conjunctive normal
form, and we address the problem of conversion to CNF later inChapter 7.
In Fig. 6.4, we show an excerpt of the moduleCNFPROPof type CNF, which
implements our type of formulae. Its literals are, of course, the literals of
the module LPROPwe just de�ned. Formulae and clauses are de�ned in
a very natural way by two inductives: a formula is either a clause or a
conjunction of formulae; a clause is a literal or a disjunction of clauses. This
representation makes the functionmakeconverting a formula to a set of sets
of literals (not shown here) really straightforward.

The CNFPROPmodule is not �nished yet since we also need to provide a
module of interface SEM_INTERFACE LPROP, i.e. semantics for the proposi-
tional literals. A natural model for literals is a map of type varmap Prop,
since it binds literals to their propositional value:

Module SEMPROP< : SEM_INTERFACE LPROP.
De�nition model := varmap Prop .
De�nition model_as_fun ( v : model) ( l : L.t) : Prop :=

match l with | (id, true) ) lookup id v
| (id, false) ) �(lookup id v) end .

...
End SEMPROP.

where lookup id v returns the proposition bound to id in the map v, and
the default proposition True if id is not bound in the map. The coercion
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Module CNFPROP< : CNF.
Module L := LPROP.

Inductive clause : Set :=
| COr : clause ! clause ! clause
| CLit : L.t ! clause.
Inductive formula : Set :=
| FAnd : formula ! formula ! formula
| FClause : clause ! formula.
...

End CNFPROP.

Figure 6.4: A module for propositional formulae

model_as_fun can be seen as a way tointerpret literals in a varmap, and
we can interpret clauses and formulae using this interpretation of literals:

Fixpoint cinterp ( v : model) ( c : clause) : Prop :=
match c with
| CLit l ! v l
| COr c1 c2 ! cinterp v c1 _ cinterp v c2

end .
Fixpoint interp ( v : model) ( f : formula) : Prop :=

match f with
| FClause c ! cinterp v c
| FAnd f 1 f 2 ! interp v f 1 ^ interp v f 2

end .

This interpretation function interp is such that interp v f interprets an
object f of type formula to its propositional counterpart in Coq, and is the
reverse operation of rei�cation.

The last step of the rei�cation process is to build a tactic in L tac, that,
for a given formula F in Coq's propositional language, builds an abstract
formula f of type formula and a map v such that interp v f = F . We
have already covered the construction of the mapv. The construction of the
formula f is realized by a couple of recursiveL tac tactics which analyze the
head symbol of the current formula to construct the corresponding abstract
version. For instance, the top-level function matches conjuncts and goes like
this:

Ltac reify_formula F v :=
match constr:F with

| and ?F1 ?F2 )
let f 1 := reify_formula F1 v
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with f 2 := reify_formula F2 v in
constr:(FAnd f 1 f 2)

| ?F )
let c := reify_clause F v in constr:(FClause c)

end .

Now, if we go back to our previous example, and if we take this formula as
our current goal, we can use the tactics we just described to build a suitable
map, reify the goal in an abstract formula f , and replace the current goal
by the interpretation of f .

1 subgoal

=============================
A ^ (� B _ ( p A C)) ^ ( 8D : Prop , ( p D D))

match goal with | ` ?F )
let varmap := list_to_map (get_vars F) in
let reif := reify_formula F varmap in
set ( v := varmap); set ( f := reif);
change (interp v f )

end .

1 subgoal

v := Node_vmProp (...) (...) : varmap Prop
f := FAnd (FClause ...) (FAnd ... ...) : CNFPROP.formula
=============================
interp v f

In particular, the set tactics introduce the varmap and the rei�ed for-
mula in the context, and the tactic changeasks Coq to change the goal using
conversion: it computesinterp v f and checks that it is indeed equal to
the original goal.

6.2.2 The Generic Tactic

At this point, in order to turn our development into a user-fr iendly tactic,
we still need to address a couple of issues.

Conversion to normal form. Before running the actual proof search,
a formula should be put in CNF. If it is not in CNF, then some subfor-
mulae will be abstracted (like the quanti�ed part in our exam ple above).
We address the issue of conversion to normal form in detail inChapter 7,
where we propose an original way of performing this conversion in a lazy,
on-the-�y, fashion. For now, let us suppose that we use tacticals to convert
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formulae in the context, prior to applying the tactic. Coq pr ovides a tac-
tic named autorewrite which performs automatic rewriting of expressions.
When fed with a set of (oriented) equalities describing a normalizing sys-
tem, autorewrite will transform an expression into its normal form with
respect to this system. Thus, we encode the conversion into CNF as a set of
rewriting rules4: linearizing implications, pushing negations to the atomic
variables, distributing disjunction over conjunction, et c.

Lifting the Semantics. We now have a rei�cation mechanism which al-
lows us to transform propositional formulae in our Coq context into objects
of the form interp v f for some mapv and concrete objectf . In order to
obtain re�exive proofs, we still need to lift our notion of semantics on propo-
sitional literals LPROP.tand formulae CNFPROP.formulato Coq's notion of
truth. Recall that we have de�ned models as varmaps containing proposi-
tional values. For each formula rei�ed in a varmap v, there is a �canonical�
model, which is v itself. Indeed, if l is a literal representing a variableA of
type Prop in the map, this canonical model satis�esl if and only if there is
a proof of A. This result lifts to clauses and formulae, and we can prove this
adequation lemma:

Theorem adequation :
8v ( f : formula), interp v f ! sat_goal v (make f ).

This theorem can be read as : �if there is a proof of a formulaF, then its
rei�ed counterpart f is satis�able�, and a satisfying model is the varmap in
which F was rei�ed. Together with the soundness of the decision procedure,
this gives us the following fact:

Corollary validity : 8v ( f : formula),
dpll f = Unsat ! �(interp v f ).

Note how similar that theorem is to the check_correct theorem that we in-
troduced in Section 4.2.4, page 102. It is the re�ection theorem for our dpll
procedure as it re�ects the computational result of dpll (or equivalently
proof_search ) to a propositional proof �(interp v f) . In particular, the
conclusion of this re�ection theorem is a negation, which shows that our
procedure can only proceed by refutation (since it checks that a formula is
unsatis�able) of the context.

Wrapping up. We can now wrap everything up in a high-level tactic
unsat which performs the following steps:

1. introducing as many hypotheses from the goal to the context as possi-
ble, and building the conjunction F of all the hypotheses in the context,
changing the goal toFalse ;

4 In practice, we use several complementary rewriting systems, because for e�ciency
reasons, some transformations must be done before others, e.g. rewriting of implications.
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2. converting F to CNF using rewriting as described above;

3. reifying F into a concrete formula f and a map v for interpreting vari-
ables;

4. changingF to interp v f using the conversion rule;

5. applying the validity theorem to v and f in order to bring the current
goal down to a proof ofdpll f = Unsat ;

6. asking Coq to compute this equality, thus triggering the actual proof
search;

7. if the procedure returnsUnsat, the goal becomesUnsat = Unsat and
is thus trivially proved; if however the goal is Sat M = Unsatfor some
M, then the context is not satis�able, the tactic fails and pri nts out
the countermodel M, since it can be very useful to the user in order to
understand why the tactic did not succeed.

Users of classical logic assume the excluded-middle in their developments,
and therefore they can use the same mechanism to prove thevalidity of a
current goal F, by �rst applying double negation, introducing �F and trying
the unsat tactic on �F . We provide a tactic called valid that performs these
operations. The de�nitions and proofs for unsat and valid represent about
500 lines.

Examples. We �nish this section by giving a small example of how the
tactic unsat can be used in practice. Suppose our goal is the following
propositional formula where variablesA to Dhave type Prop:

1 subgoal

A : Prop
B : Prop
C : Prop
D : Prop
=============================
A ^ (C _ �B ^ (�D ! �A)) ! D ^ D ^ �A

If we try to apply unsat to this goal, the tactic will try to show that the
left-hand side of the implication is unsatis�able. Since it is not, the tactic
fails and prints out the countermodel shown below: indeed, one can easily
verify that this valuation makes the goal false.
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unsat.

The formula in not valid.
The following countermodel has been found :
D : true
B : false
A : true

We can use this countermodel to add complementary hypotheses to our
formula, for instance that B is true and A is false. By doing so, we see that
the unsat tactic now succeeds in about one tenth of a second:

1 subgoal

A : Prop
B : Prop
C : Prop
D : Prop
=============================
A ^ (C _ �B ^ (�D ! �A)) ! B ^ �A ! D ^ D ^ �A

Time unsat.

Proof completed.
Finished transaction in 0. secs (0.108007 u,0. s)

6.2.3 About Completeness

We have seen that, so far, only the soundness of our decision procedure
was useful in developing the re�exive tactic: it allowed us to establish the
re�ection theorem validity . The soundness of the procedure formally guar-
antees that when our tactic succeeds, the goal was indeed valid. However,
our decision procedure was not only sound, but also complete, and we made
no use of the completeness theorem yet.

First of all, it is technically possible to use the completeness theorem in
a similar way to how we used the soundness theorem. We have seen how a
result of Unsat for the proof search re�ects to a proof of (interp v f) ; we
could similarly re�ect a result of Sat M to a proof that the conjunction of
all literals in Mimplies interp v f . In practice, if Mcontains literals which
interpret to propositions A1, A2, : : :, An , this would amount to adding a new
hypothesis of type:

compl : A1 ! A2 ! ... An ! F

to the context, where F is the formula which rei�es to f . In particular,
an hypothesis of type F is already in the context and therefore this new
hypothesis would be of no use. This is why we just output the counter
model to the user.
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Even without explicitely using the countermodel when the formula is
satis�able, a legitimate concern is to know whether the tactic is �complete�
or not. Although the procedure is complete in the sense of thepropositional
semantics de�ned in the SEM_INTERFACEprocedure, this property does not
lift to Coq's notion of truth; in other words, the formula F is not necessarily
satis�able because theAi do not necessary form a consistent conjunction:

� Coq's logic is much richer than propositional logic and as one can
expect, the procedure can �nd a counter model with literals which are
inconsistent in general. For instance, it could add the literal �(0 =
0) , or the two mutually exclusive literals 8x, p x and �p t.

� More annoyingly, the procedure can fail because the rei�cation in-
troduces an abstraction layer which cannot be formally proved. For
instance, if the rei�cation of A ^ �A is not performed adequately and
mapsA to some variablel , and �A to some other variablel0, instead of
the negation of l , the procedure will determine that the formula can
be satis�ed with f l ; l0g.

Knowing when a procedure is complete can help understand theresults
of a tactic; in particular, any unexpected failure shall be a consequence of
an unexpected behaviour of the rei�cation process. Displaying the counter
model when the tactic fails is one way to let the user check if the formula is
indeed satis�able, or if there is anything wrong in the modeldisplayed. Nev-
ertheless, the re�exive tactic only formally relies on the soundness property,
and the re�exive approach can be used with semidecidable or undecidable
properties, as long as the procedure is sound. In the remaining of this doc-
ument, when presenting evolutions of this �rst re�exive tac tic, we will only
address the issue of soundness.

6.3 A Better Strategy

The decision procedureproof_search presented in Section 6.1.4 is rather
coarse and applies the possible rules in turn, one after another. It is one of
the most basic possible strategy to build a derivation and wenow implement
a much better strategy, which we use in practice. Once we haveformalized
the derivation system and proved its soundness, we are indeed free to im-
plement any strategy and derive a re�exive tactic just as we did in the last
section. The module system can help us do that in a modular manner.

We de�ne a module type DPLL, parameterized by a module of signature
CNF, which describes the interface that a procedure shall verify in order to
be usable in the re�exive tactic:

Module Type DPLL(Import F : CNF).
Inductive Res : Type :=
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| Sat : L.lset ! Res
| Unsat : Res.

Parameter dpll : formula ! Res.
Axiom dpll_correct :

8f , dpll f = Unsat ! Sem.incompatible ; (make f ).
End DPLL.

The signature requires aResdatatype similar to the one we have seen above,
and a function dpll taking a formula and returning a Res, along with a
proof that it is correct. This function is the real proof search, and it is
straightforward to check that our functor SAT Fpresented in Section 6.1
has signature DPLL F. The whole development of the re�exive tactic can
then be implemented as a functor parameterized by such a module; it is not
parameterized by aCNFmodule though, since much of the development (the
rei�cation, the tactic and the re�ection theorem) depends on the particular
representation of literals and formulae. For instance, thedevelopment of the
tactic presented above for propositional literals is wrapped in the following
functor:

Module LoadTactic ( Import D : DPLL CNFPROP).
...
Ltac unsat := ...

End LoadTactic.

This makes it easy to de�ne several di�erent strategies, generate a tactic for
each one and compare the tactics obtained for each of these strategies.

We implemented various strategies with their soundness proofs, but we
now quickly present our fastest strategy. Incidentally, this strategy is exactly
the same as the one used inAlt-Ergo. It is based on the following observation:
although the derivation and sequents are expressed in termsof sets of literals,
and sets of clauses, it is not mandatory that the procedure uses these data
structures, as long as it is possible to relate what the procedure does to
sequents and derivations. During the proof search, the partial assignments
are used exclusively for adding elements and membership tests, therefore an
e�cient structure of �nite sets (like AVL) seems adequate. O n the other
hand, an e�cient strategy for propagating boolean constraints on the sets
of clauses is to iterate on every clause, and every literal inevery clause,
trying to eliminate and reduce as many clauses as possible. To perform such
a task, keeping clauses as AVLs or ordered lists is not required, and basic
lists can prove much more e�cient. Therefore, in this strategy, the partial
assignment will have type lset and the set of clauses will have typelist
(list L.t) . Lists of literals and lists of lists of literals can be converted
back to clause and cset using the adequate functions:

Fixpoint l2s ( l : list L.t) : clause :=
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match l with | nil ) ; | a:: q ) { a; l2s q} end .
Fixpoint ll2s ( l : list (list L.t)) : cset :=

match l with | nil ) ; | a:: q ) {l2s a; ll2s q} end .

and the main recursive function in the strategy has the following type, and
its correctness lemma is expressed usingll2s :

Fixpoint proof_search (G : lset) (D : list (list L.t))
{ struct n} ( n : nat) : Res := ...

Theorem proof_search_unsat :
8n G D, proof_search G D n = Unsat ! derivable (G ` ll2s D).

The strategy uses two auxiliary functions,reduce and bcp. Function reduce
is used to reduce a clause with respect to a given partial assignment as much
as possible:

Inductive redRes : Type :=
| redSome : list L.t ! bool ! redRes
| redNone : redRes.
Fixpoint reduce (C : list L.t) : redRes :=

match C with
| nil ) redSome nil false
| l ::C' )

if l 2 G then redNone
else

match reduce C' with
| redNone ) redNone
| redSome Cred b )

if mk_not l 2 G then redSome Cred true
else redSome (l ::Cred) b

end
end .

If it �nds a true literal in the clause, it returns redNone denoting that the
clause can be eliminated from the problem. Otherwise, it returns the reduced
clause, with an extra boolean which is true i� the clause has changed. For
instance, here is one of the properties ofreduce, namely its soundness when
it returns a clause:

Corollary reduce_correct : 8C Cred bred,
reduce C = redSome Cred bred!
derivable (G ` {l2s Cred; D}) !
derivable (G ` {l2s C; D}).

Note how this statement can be read as an advanced inference rule, the
fact that we can prove it means that this rule is derivable from the basic
set of rules. Thebcp function does the boolean constraint propagation on
the clauses of a problem. It proceeds with respect to a partial assignment
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by reducing all clauses (usingreduce), assuming literals in unitary clauses
along the way.

Inductive bcpRes : Type :=
| bcpSome : lset ! list (list L.t) ! bool ! bcpRes
| bcpNone : bcpRes.
Fixpoint bcp (G : lset) (D : list (list L.t)) : bcpRes :=

match D with
| nil ) bcpSome G nil false (* no clauses *)
| C::D' )

match reduce G C with
| redNone ) (* elim C *)

match bcp G D' with
| bcpNone ) bcpNone
| bcpSome G' D' _ ) bcpSome G' D' true
end

| redSome nil bred ) bcpNone (* conflict *)
| redSome (l ::nil) _ ) (* unit *)

match bcp (add l G) with
| bcpNone ) bcpNone
| bcpSome G' D' _ ) bcpSome G' D' true
end

| redSome Cred bred ) (* reduce C *)
match bcp G D' with
| bcpNone ) bcpNone
| bcpSome G' D' b )

bcpSome G' (Cred::D') (bred || b)
end

end
end .

It returns bcpNoneif one of the clauses reduced to the empty clause along
the way, and bcpSome G' D' botherwise, whereG' is the extended partial
assignment,D' the simpli�ed set of clauses andb a boolean true if and only
if there was any progress. For instances, here are some of theproperties of
bcp which prove its soundness, and can be seen as derived inference rules:

Theorem bcp_correct : 8D G Gext Dredb,
bcp G D = bcpSome Gext Dredb !
derivable (Gext ` ll2s Dred) !
derivable (G ` ll2s D).

Theorem bcp_unsat : 8D G,
bcp G D = bcpNone! derivable (G ` ll2s D).

Finally, the toplevel function proof_search just applies bcp repeatedly until
it returns bcpNone(in which case the problem is unsatis�able) or until it
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does not progress any more, in which case it splits on a literal and searches
recursively in the left branch, and then in the right branch i f no model was
found.

Fixpoint proof_search (G : lset) (D : list (list L.t))
( n : nat) { struct n} : Res :=
match n with

| O ) Sat empty (* assert false *)
| S n0 )

match bcp G Dwith
| bcpNone ) Unsat (* conflict *)
| bcpSome newG newDb )

match newDwith
| nil ) Sat newG (* empty *)
| _ )

if b then (* progress *)
proof_search newG newDn0

else (* G = newG, D = newD *)
let l := pick D in
match proof_search { l ; G} D n0 with
| Sat M ) Sat M
| Unsat ) proof_search { �l ; G} D n0

end
end

end
end .

With the various properties of bcp, we can establish the correctness of this
procedure and give it the expected signatureDPLL F:

De�nition dpll ( f : formula) :=
let D0 := makef in
let L0 := List.map elements (elements D0) in

proof_search ; L0 ( � (D0)+1).
Theorem dpll_correct :

8f , dpll f = Unsat ! Sem.incompatible ; (make f ).

6.4 Conclusion

We have presented a formalization of a propositional solverand its use as
a re�exive decision procedure for propositional logic. We have shown how
using the module system can be bene�cial, just as in a usual programming
language. First, we were able to develop a procedure independent of the
actual representation of formulae, and we could use it to decide the satis�a-
bility of boolean logic without much pain, by de�ning the sui table CNFBOOLof
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CNF. We will use many more representations of literals in the next chapters.
Also, we can factorize the development of rei�cation and of the top-level
tactic in a functor parameterized by the underlying procedure. This allows
us to easily develop di�erent strategies and derive re�exive tactics for these
strategies.

The strategy that we presented in Section 6.3 is not the only possible,
nor the fastest possible of course. We have actually tried a fairly good
number of di�erent strategies, but this one is particularly interesting for
two reasons: �rst it is precisely the strategy used by theAlt-Ergo theorem
prover, and therefore it was worth investigating its correctness; second, this
strategy can be adapted easily to the modi�cations which we will apply to
the general design of our propositional solver in the next chapters (adding a
lazy CNF conversion, and then generalized environments instead of partial
assignments), which was not the case of all the strategies wetried.

Of course, another way of improving the procedure is to use a more
re�ned inference system, such as the ones with backjumping or con�ict-
driven clause learning presented in Chapter 2. We have formalized these
systems and their proofs in Coq, in the similar fashion to what we did in
this chapter, but we do not present them in this document. Our main reason
is that, even if they allow more e�cient SAT solving tactics, we will not use
these optimizations in the more general setting of SMT solving which we
will describe in the following chapters, and we do not think describing these
systems here has much interest. The formalization and the proofs simply
follow the description in Section 2.2. For reference, we give in Appendix B
benchmarks comparing re�exive propositional procedures obtained with the
basic and optimized derivation systems and for various strategies.



CHAPTER7

Dealing with CNF Conversion

Que la paresse soit un des péchés capitaux nous
fait douter des six autres.

Robert Sabatier
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In the previous chapter, we have designed a tactic based on a SAT solver
which can be used to decide the validity of propositional formulae in Con-
junctive Normal Form (CNF). In order for our tactic to be able to deal with
the full propositional fragment of Coq's logic and be usefulin practice, we
must perform a conversion into CNF before applying the procedure. This
conversion step can be critical for the e�ciency of the wholesystem since it
can transform a rather easy problem into one that is much too hard for our
decision procedure. In the previous chapter, we relied on a simple rewriting
of Coq formulae prior to the rei�cation process, but this is not a satisfac-
tory solution. A much better solution, which is used in Alt-Ergo as well as
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in other SMT solvers, is to rely on a lazy conversion mechanism such as
Simplify's [DNS05]. Because this mechanism must be tightlycoupled to the
decision procedure, this requires adapting the DPLL rules.It also rules out
the use of an external tool and takes advantage of our approach of proof by
full re�ection.

In this chapter, we show how to adapt our fully certi�ed stand ard DPLL
procedure in order to take a lazy conversion scheme into account. In Sec-
tion 7.1, we start by some preliminary considerations aboutCNF conversion
techniques. We describe our abstraction of the lazy CNF conversion method
in Section 7.2 as well as the necessary modi�cations to the DPLL procedure.
Section 7.3 then presents how the lazy CNF conversion can be e�ciently im-
plemented in Coq. Finally, we compare our tactic with other methods in
Section 7.4 and argue about its advantages and how they couldbe useful in
other settings.

7.1 The CNF Conversion Issue

In order for a re�exive tactic based on a SAT solver to deal with the full
propositional fragment of Coq's logic, it needs to be able totake any arbi-
trary formula in input and convert it into CNF, which is the on ly class of
formulae that the DPLL procedure can handle. Looking at Fig. 4.2 page 103
once again, which shows an overview of our re�exive tactic, there are two
possibilities as to where this CNF conversion can occur: on the Coq side
or on the abstract side, i.e. before or after the formula is rei�ed into an
abstract Coq object.

When conversion is performed on the Coq side, every manipulation of the
formula is actually a logical rewriting step and ends up in the proof term.
Each rewriting step contains the whole context in which it is performed,
therefore each step is linear in the size of the whole formula. Moreover,
it is very slow in practice because the matching and rewriting mechanism,
which is used to rewrite the formula adequately, is not very e�cient. Alto-
gether, this CNF conversion can yield really big proof termson average-sized
formulae and it easily ends up taking much longer than the proof search it-
self. Performing the CNF conversion on the abstract side, however, can be
summarized in the following way:

� we implement a function conversion : formula ! formula that
transforms an abstract formula as wanted;

� we show that for all formula F, conversion F is in CNF and is equiv-
alent (or at least equisatis�able) to F itself.

This method ensures that CNF conversion takes a constant, thus neglectible,
size in the �nal proof term, and can be performed e�ciently si nce it is
executed by Coq's virtual machine.
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Once we decide to implement the CNF conversion as a function on ab-
stract formulae, there are di�erent well-known techniques that can be con-
sidered and that we implemented.

1. The �rst possibility is to do a naive, traditional, CNF con version that
uses de Morgan laws in order to push negations through the formula to
the atoms' level, and distributes disjunctions over conjunctions until
the formula is in CNF. For instance, this method would transform the
formula A _ (B ^ C) in ( A _ B ) ^ (A _ C). It is well-known that the
resulting formula can be exponentially bigger than the original.

2. Another technique that avoids the exponential blow-up of the naive
conversion is to use Tseitin's conversion [Tse68]. It adds intermediate
variables for subformulae andde�nitional clauses for these variables
such that the size of the resulting CNF formula is linear in the size of
the input. On the A _ (B ^ C) formula above, this method returns
(A _ X ) ^ ( �X _ B ) ^ ( �X _ C) ^ (X _ �B _ �C) where X is a new variable.

3. A re�nement of the previous technique is to �rst convert th e for-
mula to negation normal form and use Plaisted and Greenbaum's
CNF conversion [PG86] to add half as many de�nitional clauses for
the Tseitin variables. In the above example, the resulting formula is
(A _ X ) ^ ( �X _ B ) ^ ( �X _ C).

The Need for Another CNF Conversion. The CNF conversion tech-
niques that we have considered so far remain unsatisfactory. The �rst one
can cause an exponential increase in the size of the formula,and the other
two add many new variables and clauses to the problem. All of them also
fail to preserve the high-level logical structure of the input formula, in that
sense they make the problem more di�cult than it was original ly. There has
been lots of work on more advanced CNF conversion techniquesbut their
implementation in Coq raises some issues. For instance, Plaisted and Green-
baum's method was originally intended to preserve the structure of formulae,
but in order to do so, it requires that equal subformulae be shared. Other
optimization techniques [NRW98, dlT90] are based on renaming parts of the
subformula to increase the potential sharing. However, it is hard to imple-
ment such methods e�ciently as a Coq function, i.e. in a pure applicative
setting with structural recursion. Even implementing and proving the stan-
dard Tseitin conversion proved to be much more challenging than one would
normally expect.

For the same reason, it is undeniable that our re�exive Coq decision pro-
cedure cannot reach the same level of sheer performance and tuning than
state-of-the-art SAT solvers, which means that we cannot a�ord a CNF con-
version that adds too many variables, disrupts the structure of the formula,
in a word that makes a given problem look harder than it actually is. Results
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presented in Section 7.4 show that this concern is justi�ed.Constraints due
to CNF conversion also arise in Isabelle where formulae sentto the Metis
prover are limited to 64 clauses. In the description of theirSimplify theorem
prover [DNS05], Nelsonet al. describe a lazy CNF conversion method they
designed in order to prevent the performance loss due to Tseitin-style CNF
conversion. Their experience was that �introducing lazy CNF into Simplify
avoided such a host of performance problems that [..] it converted a prover
that didn't work in one that did.� In the next sections of this chapter, we
describe how we formalized and integrated this lazy CNF conversion mech-
anism in our DPLL-based tactic. To our knowledge, this work represents
the �rst e�ort at a formal description and proof of this metho d.

7.2 A DPLL Procedure with Lazy CNF Conver-
sion

In this section, we formally describe how a DPLL procedure can be adapted
to deal with literals that represent arbitrary formulae.

7.2.1 Expandable Literals

In a Tseitin-style CNF conversion, new literals are added that represent sub-
formulae of the original formula. To denote this fact, clauses must be added
to the problem that link the new literals to the corresponding subformulae.
The idea behind lazy CNF conversion is that new literals should not merely
represent subformulae, but they shouldbethe subformulae themselves. This
way, there would be no need for additional de�nitional clauses. Detlefs et
al. [DNS05] present things a bit di�erently, using a separate set ofde�nitions
for new variables (which they call proxies), and make sure the de�nitions
of a given proxy variable are only added to the current context when this
variable is assigned a boolean value by the procedure. Our abstraction will
require less changes to the DPLL procedure.

In order for literals to be able to stand for arbitrary complex subformulae,
we extend the signature of literals given in Fig. 6.1 page 132in the following
way:

Module Type EXPLITERAL.
(* Negation, OrderedType... as before *)
Include Type LITERAL.
(* Expansion *)
Parameter expand : t ! list (list t).
...

End EXPLITERAL.

In other words, expandable literals always come with negation, comparison,
and various properties, which are copied from theLITERALsignature using
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the Include Type capability, but they have an additional expansion func-
tion, named expand, which takes a literal and returns a list of lists of literals,
in other words a CNF of literals. For a genuine literal which just stands for
itself, this list is simply the empty list. For another liter al that stands for
a formula F , i.e. a proxy F , this function allows one to unfold this literal
and reveal the underlying structure of F . This underlying structure must be
expressed as a conjunction (list) of disjunctions (lists) of literals, but since
these literals are also expandable literals, they can standfor subformulae of
F themselves. Therefore, this CNF does not have to be the full conjunctive
normal form of F : expand can undress the logical structure ofF one layer
at a time, using proxy literals to represent the direct subformulae of F . This
means that the CNF conversion of formulaF can be performed step after
step, in a call-by-needfashion. In [DNS05], theexpand function would be a
look-up in the set of proxy de�nitions.

As an example, let us consider the formulaA _ (B ^ C) once again.
A proxy literal for this formula could expand to its full CNF, namely the
list of lists [[A; B ]; [A; C]]. But more interestingly, it may also reveal only
one layer at a time and expand to the simpler list [[A; X ]], where X itself
expands to [[B ]; [C]]. Note that this variable X is not a new variable in
the sense of Tseitin conversion, it is just a way to denote theunique literal
that expands to [[B ]; [C]], and which therefore stands for the formulaB ^
C. This unicity will be the key to the structural sharing provi ded by this
method. In Section 7.3, we will describe how these expandable literals can be
implemented in such a way that common operations are reasonably e�cient,
but for now let us see how the DPLL procedure should be adapted.

7.2.2 Adaptation of the DPLL Procedure

In order to use expandable literals in the DPLL procedure, wehave to adapt
the inference rules presented in Fig. 2.1 page 25, which we later formalized
in Chapter 6. Let us consider a proxy literal f for a formula F . If this proxy
is assigned a true value at some point during the proof search, this means
that the formula F is assumed to be true. Therefore, something should
be added to the current problem that re�ects this fact in order to preserve
the semantic soundness of the procedure. To this end, we use the expand
function on f in order to unveil the structure of F , and add the resulting
list of clausesexpand(f ) to the current problem.

The revised version of our inference rules system is given inFig. 7.1. The
only modi�cations between this system and the one presentedin Fig. 2.1
concern rules which change the current assignment � :Assume and Split .
When a literal l is assumed in the current context, it is expanded and the
resulting clauses are added to the current problem �. Intuit ively, if l is a
proxy for F , expand(l) can be seen as �consequences� ofF and must be
added in order to re�ect the fact that F shall now be satis�ed. Now, given
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Assume
� ; l ` � ; expand(l)

� ` � ; l
Red

� ; l ` � ; C

� ; l ` � ; �l _ C

Elim
� ; l ` �

� ; l ` � ; l _ C
Conflict

� ` � ; ;

Split
� ; l ` � ; expand(l) � ; �l ` � ; expand(�l )

� ` �

Figure 7.1: The DPLL procedure adapted to expandable literals

an arbitrary formula F , instead of explicitely converting it into a CNF � F

and searching a derivation for; ` � F , it is enough to build a proxy literal lF
for F and attempt to �nd a derivation for ; ` lF instead. This allows us to
use a DPLL decision procedure with the lazy conversion mechanism. Note
that correctness does not require proxy literals to be addedto the current
assignment �; however, doing so has a dramatic e�ect on formulae that can
bene�t from sharing, e.g. l ^ : l , where l stands for a big formula F : in that
case, adding the proxy literal l to the assignment will allow the elimination
of : l in one single step. Such formulae are not as anecdotal as theyseem,
and we discuss this further in Section 7.4.2.

We spent most of Chapter 6 describing how to formalize DPLL'sba-
sic inference system in Coq, proving its correctness and implementing a
computable strategy to use in a re�exive tactic. In order to adapt these
constructions to this new DPLL system with expandable literals, there are
quite a few changes that must be made, but there is nothing fundamentally
di�erent in the method and the approach followed. Therefore we do not
detail these changes but the most important can be summarized as follows:

� the de�nition of derivable , the inductive inference system, must be
adapted as above with the expansion of assumed literals in �;

� proofs must be adapted, but are very close to the original proofs;
one of the main di�erences is that, in order to be well-formed, partial
assignments not only need to be consistent with the negationof literals,
but also with their expansion, which is guaranteed by the strategy
used;

� the semantics must be adapted so that models now account for proxy
literals: if a proxy for F is in a modelM, then Mmust satisfy F; in other
words, models are exactly determined by their non-proxy literals;

� the proof search procedure must expand literals properly and its proofs
must be extended;
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� on the front-end, when the tactic fails, only non-proxy literals in the
countermodel are displayed to the user.

The most interesting and di�cult point is how to adapt the imp lementation
of literals to expandable literals, and is the topic of the next section.

7.3 Implementing Lazy Literals in Coq

In this section, we show how to design a suitable literal module on which
we can instantiate the procedure we described in Section 7.2.2.

7.3.1 Raw Expandable Literals

Expandable literals are either standard propositional atoms, or proxies for
a more complex formula. Because a proxy shall be uniquely determined
by its expansion (in other words, proxies that expand to the same formula
stand for the same formula, and therefore should be equal), we choose to
directly represent proxies as their expansion. Also, the implementation of
expandable literals can be de�ned in a way that does not depend on the
representation of the actual non-proxy literals. In other words, we suppose
we are given a moduleL of traditional literals as de�ned in the previous
chapter, and we implement expandable literals as a functor parameterized
by L. This leads us to the following de�nition of raw expandable literals as
a Coq inductive type:

Module RAW (L : LITERAL).
Inductive t : Type :=
| Proxy (pos neg : list (list t))
| Lit ( l : L.t).
...

End RAW.

Standard literals are represented by theLit constructor which takes a literal
L.t as argument. More interestingly, the Proxy constructor expects two
arguments: the �rst one represents the formula that the proxy literal stands
for, while the other one corresponds to the expansion of its negation. We
proceed this way in order to be able to compute the negation ofa literal in
constant time, whether it is a proxy or not. Thus, the second parameter of
Proxy should just be seen as a memoization of the negation function. As a
matter of fact, we can easily de�ne the negation function:

De�nition mk_not (l : t) : t :=
match l with

| Proxy pos neg ) Proxy neg pos
| Lit l ) Lit (L.mk_not l)

end .
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Negating a standard literal is just done via a call to L.mk_not, while negat-
ing a proxy amounts to swapping its arguments. This memoization of the
negation of a proxy literal is really critical for the e�cien cy of the method
because literals are negated many times over the course of the DPLL proof
search. In Section 7.3.3, we will show how these proxies are created in linear
time.

The implementation of the expansion function is straightforward and
requires no further comment:

De�nition expand (l : t) : list (list t) :=
match l with

| Proxy pos _ ) pos
| Lit _ ) []

end .

We are left with implementing an instance of OrderedTypefor these literals.
For instance, the total comparison function goes like this :

Fixpoint compare (x y : t) : comparison :=
match x, y with

| Lit l , Lit l0 ) l =?= l0

| Lit _, Proxy _ _ ) Lt
| Proxy _ _, Lit _ ) Gt
| Proxy xpos xneg, Proxy ypos yneg )

compare_list_list compare xpos ypos
end .

Recall that the notation l =?= l' , introduced in Chapter 5, is the e�ec-
tive comparison of two elementsl and l' ; we can use it here because the
base literals' moduleL brings an instance of OrderedType for L.t . In this
de�nition, compare_list_list recursively applies the comparison function
comparein a lexicographic manner to lists of lists of literals. The part that
is worth noticing is that we only compare proxies' �rst component and we
skip the negated part. This of course ensures that the comparison of proxies
is linear in the size of the formula they stand for; had we compared the
second component as well, it would have been exponential in practice. The
issue with such optimizations is that we have to convince Coqthat they
make sense, and the next section is devoted to that point.

7.3.2 Adding Invariants to Raw Literals

When implementing expandable literals in the previous section, we made a
strong implicit assumption about a proxy Proxy pos neg, namely that neg
was indeed containing the �negation� of pos. We need to give a formal mean-
ing to this sentence and to ensure this invariant is veri�ed by all literals. It
is not only needed for semantical proofs about literals and the DPLL proce-
dure, but for the correctness of the simplest operations on literals, starting



7.3 Implementing Lazy Literals in Coq 161

with comparisons. Indeed, considering the comparison function compare
presented above, it should verify the properties required by OrderedType
and by Literal in general, in particular the following should be true:

compare x y = Eq $ compare (mk_not x) (mk_not y) = Eq

for all literals x and y, sincecompareshould return Eq if and only if its ar-
guments are equal, and negation should be a morphism for equality (axiom
mk_not_compatin signature LITERAL). Proving this property for standard
literals is straightforward, but as far as proxies are concerned, the fact that
the equality test returns true only tells us that the �rst com ponent of the
proxies are equal: there is no guarantee whatsoever on the second compo-
nent. Therefore, this property is not provable as is and we need to add
some relation between the two components of a proxy. This relation also
ought to be symmetric since themk_not function swaps the �rst and second
components and should of course preserve the invariant as well.

We are going to link the two components of a proxy literal by ensuring
that each one is the image of the other by an adequate functionN . Intu-
itively, this function N must negate a conjunction of disjunction of literals
and return another conjunction of disjunction of literals; it can be recursively
de�ned in the following way

N ((
Wn

i =1 x i ) ^ C) =
V n

i =1
V

D 2N (C)(�x i _ D)

where the x i are literals and C is a CNF formula. Once this function is
implemented, we can de�ne an inductive predicate that speci�es well-formed
literals:

Inductive wf_lit : t ! Prop :=
| wf_lit_lit : 8l , wf_lit (Lit l )
| wf_lit_proxy : 8pos neg, N pos = neg ! N neg = pos !

( 8l t , l 2 pos ! t 2 l ! wf_lit t) !
( 8l t , l 2 neg ! t 2 l ! wf_lit t) !
wf_lit (Proxy pos neg).

The �rst constructor expresses that all atomic literals are well-formed. The
second one brings up requirements on proxy literals: not only should the
two components be each other's image byN 1, but all literals appearing in
these expansions should recursively be well-formed. In particular, if two
proxies are well-formed, their second components are equalif and only if
their �rst components are equal, which means that we can establish the
needed properties about the comparison function.

Packing everything together. In Coq, one can usedependent typesin
order to de�ne a type of objects that meet certain speci�cations. We use this

1This constraints the form of possible proxies since N is not involutive in general.
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feature in our Coq development in order to de�ne a module of well-formed
expandable literals. Using functors once again, we de�ned this module as
a functor parameterized by L : LITERAL which uses theRAWfunctor seen
above. In this functor, we de�ne the type of literals as the dependent type
of raw literals packed with a proof that they are well-formed:

Module LLAZYFY (L : LITERAL)< : EXPLITERAL.
(* Imports all the raw definitions *)
Module Import RAW := RAW L.

De�nition t : Type := { l | wf_lit l }.
...

End LLAZYFY.

We then have to rede�ne the required operations on literals. In most cases,
it is just a matter of �lifting� to well-formed literals the d e�nition we made
for raw literals by showing that the operation preserves well-formedness. For
instance, the negation function is (re)de�ned this way:

Property wf_mk_not : 8l , wf_lit l ! wf_lit (mk_not l).
Proof . ..... Qed .
De�nition mk_not (l : t) : t :=

exist (mk_not � 1( l )) (wf_mk_not � 1( l ) � 2( l )).

where� 1 and � 2 respectively access to the raw literal and its well-formedness
proof in a well-formed literal. We have presented a simpli�ed version here
and the real development contains more invariants that are required through-
out various proofs about literals and their operations. In particular, in order
to enable the de�nition of recursive functions over the structure of expand-
able literals, or simply guarantee the termination of the proof search, we
had to add a notion of size of literals, along with proofs that the literals
appearing in the expansion of a proxy are smaller than the proxy itself. Al-
together, we obtain a module with the signature of literals as expected by
the DPLL procedure, and where every operation is totally certi�ed.

7.3.3 Converting Formulae to Lazy Literals

Once we have a module implementing lazy literals as described above, we
are left with the task of constructing such literals out of an input formula.

First, note that we should not build arbitrary literals but o nly literals
that are well-formed. Therefore we have to make sure that theproxies we
build respect the invariants that we introduced in the last section. Assume
we want to build a proxy for a formula F = F1 _ F2 and we know how to
build proxies l1 and l2 for the formulae F1 and F2. A suitable proxy for F is
the one that expands positively to the list [[l1; l2]], and to the list [[ �l1]; [�l2]]
negatively. We can check that these two lists are indeed eachother's image
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Proxy pos neg
X � P f Pg f �Pg
X � F _ G { F _ Gg f �F gf �Gg
X � F ^ G f F gf Gg f �F _ �Gg
X � (F ! G) f �F _ Gg f F gf �Gg
X � (F1 _ F2 _ : : : _ Fn ) f F1 _ F2 _ : : : _ Fn g f �F1gf �F2g: : : f �Fn g
X � (F1 ^ F2 ^ : : : ^ Fn ) f F1gf F2g: : : f Fn g f �F1 _ �F2 _ : : : _ �Fng

Figure 7.2: Proxy construction for each logical connective

by N . In practice, we de�ne a function constructing such a proxy and we
prove that its result is well-formed:

De�nition mk_or_aux f g :=
Proxy [[ f ; g]] [[mk_not f ];[mk_not g]].

Property wf_mk_or : 8( l l 0 : t), wf_lit (mk_or_aux l l 0).
Proof . ..... Qed .
De�nition mk_or f g : t :=

exist (mk_or_aux f g ) (wf_mk_or f g ).

The last command usesmk_or_auxand wf_mk_or to de�ne a function that
creates a well-formed proxy literal for the disjunction of two well-formed
literals. We create such smart constructors for each logical connective: the
table in Fig. 7.2 sums up how proxies are constructed for the usual logical
connectives. Creating a proxy for an arbitrary formula is then only a matter
of recursively applying these smart constructors by following the structure
of the formula. We have implemented such a function namedmk_formand
proved that for every formula F, mk_form F $ F. This theorem is very
important since it is the �rst step that must be done when appl ying the
tactic: it allows us to replace the current formula by a proxy before calling
the DPLL proof search. Note that the converted formula is equivalent to the
original because no new variables have been added, whereas with Tseitin-
like methods, the converted formula is onlyequisatis�able. Note also that
the proxies constructed for �F _ G and F ! G are equal, and so areF _ G
and G _ F for instance, therefore the proxy construction not only identi�es
formulae that are syntactically equal, but also sometimes semantically.

Constructing proxies for N-ary operators. Figure 7.2 also contains
proxy de�nitions for n-ary versions of the ^ and _ operators. We have
implemented an alternative version of the mk_form function above which
tries to add as few levels of proxies as possible. When constructing a proxy
for a disjunction (resp. conjunction), it tries to regroup all the disjunctive
(resp. conjunctive) top-level structure in one single proxy. In this setting,
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equivalences are interpreted either as conjunctions or as disjunctions2 in
order to minimize the number of proxies.

7.4 Results and Discussion

7.4.1 Benchmarks

tauto CNFC CNFA Tseitin Tseitin2 Lazy LazyN
hole3 � 0.72 0.06 0.24 0.21 0.06 0.05
hole4 � 3.1 0.23 3.5 6.8 0.32 0.21
hole5 � 10 2.7 80 � 1.9 1.8
deb5 83 � 0.04 0.15 0.10 0.09 0.03
deb10 � � 0.10 0.68 0.43 0.66 0.09
deb20 � � 0.35 4.5 2.5 7.5 0.35
equiv2 0.03 � 0.06 1.5 1.0 0.02 0.02
equiv5 61 � � � � 0.44 0.42
franzen10 0.25 16 0.05 0.05 0.03 0.02 0.02
franzen50 � � 0.40 1.4 0.80 0.34 0.35
schwicht20 0.48 � 0.12 0.43 0.23 0.10 0.10
schwicht50 8.8 � 0.60 4.3 2.2 0.57 0.7
partage � � � 13 19 0.04 0.06
partage2 � � � � � 0.12 0.11

Figure 7.3: Comparison of di�erent tactics and CNF conversion methods.
Timings are given in seconds and � denote time-outs (>120s).

We benchmarked our tactic and the di�erent CNF conversion methods
on valid and unsatis�able formulae described by Dyckho� [Dyc97]; for in-
stanceholen stands for the pigeon-hole formula withn holes. We used two
extra special formulae in order to test sharing of subformulae : partage is
the formula hole3 ^ : hole3, while partage2 is deb3 where atoms have been
replaced by pigeon-hole formulae with varying sizes. Results are summa-
rized in Fig. 7.3, where CNFC and CNFA are naive translations respectively
on the Coq side (i.e. with rewriting steps) and on the abstract side (i.e.
through a Coq function), Tseitin and Tseitin2 are the two var iants of Tseitin
conversion described in Section 7.1. The last two columns, Lazy and LazyN,
are devoted to our lazy conversion, with only LazyN using proxies for n-ary
operators. On each line, the best timings are emphasized with bold type-
face. These results show that our tactic outperformstauto in every single
case (see discussion below for di�erences between our tactic and tauto ),
solving in less than a second goals that were beyond reach with the existing
tactic. About the di�erent CNF conversions, it turns out tha t the Tseitin
conversion is almost always worse than the naive abstract CNF conversion

2The equivalence F $ G is logically equivalent to the conjunction ( F ! G) ^ (G ! F )
and the disjunction ( F ^ G) _ ( �F ^ �G).
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because of the extra clauses and variables. The lazy tacticsalways perform
at least as well as CNFA and in almost all cases they perform much better,
especially when some sharing is required.

7.4.2 Discussion and Limitations

Comparison with tauto/intuition . As explained in Chapter 4, the
tactic tauto is actually a customized version of the tacticintuition . When
it can't solve a goal completely, intuition is able to take advantage of the
search-tree built by its decision procedure in order to simplify the current
goal in a set of (simpler) subgoals;tauto simply calls intuition and fails
if any subgoals are generated. Unlikeintuition , our tactic is unable to
return a simpli�ed goal when it cannot solve it completely, and in that sense
it can be considered as less powerful. However,intuition 's performance
often becomes an issue in practice3, therefore we are convinced that the two
tactics can prove really complementary in practice, with intuition being
used as a simpli�er and unsat as a solver.

Classical reasoning in an intuitionistic setting. The DPLL procedure
is used to decide classical propositional logic whereas Coq's logic is intu-
itionistic. In our development, we took great care in not using the excluded-
middle for our proofs so that Coq users who do not want to assume the
excluded-middle in their development can still use our tactic. The reason we
were able to do so lies in the observation that the formula8A::: (A _ : A) is
intuitionnistically provable: when the current goal is False , this lemma can
be applied to add an arbitrary number of ground instances of the excluded-
middle to the context. In other words, if a ground formula � is a classical
tautology, :: � is an intuitionistic tautology 4. Noticing that ::: � implies
: � in intuitionistic logic, this means that if : � is classically valid, it is also
a tautology in intuitionistic logic. Because the DPLL procedure proceeds
by refuting the context �, i.e. proving : �, we can use it in intuitionsitic
reasoning even if it relies on classical reasoning.

In practice, the use of classical reasoning in our development is mainly
for the correctness of theSplit rule and of the di�erent CNF conversion
rules (e.g. F ! G � �F _ G). This led us to proving many intermediate
results and lemmas in double-negation style because they were depending on
some classical reasoning steps5, but the nice consequence is that our tactic

3As Coq users, we often let tauto run for a few seconds to try and make sure that
a goal is provable. When tauto succeeds, albeit not immediately, we then proceed to
manually prove the goal or simplify it in easier subgoals.

4This is not true for �rst-order formulae, because the formul a :: (8A:A _ : A), where
the quanti�cation lies below the double negation, is not int uitionnistically provable.

5Typically, see the characterization of the totality of a mod el on page 134, in the
semantics of formulae: we use 8M l, ��(�(M l) ! M (mk_not l )) instead of the sim-
pler 8M l, �(M l) ! M (mk_not l ).
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produces intuitionistic refutation proofs and thus can really replace tauto
when the context becomes inconsistent. Users of classical reasoning can use
our tactic for classical validity by simply refuting the negation of the current
goal, as explained in Chapter 6.

Impact of sharing. The results presented above show that the number
of proxies has less e�ect on the performance than the sharingthey provide.
Depending on the formula, it may not be the best idea to minimize the
number of proxies as LazyN does, because this minimizes the number of
subformulae that are shared. Once again, we can use our modular devel-
opment to provide these di�erent alternatives as options to the user. We
wrote in Section 7.2.2 that adding proxies to the current assignment made
it possible to reduce a whole subformula of a problem in one single step,
and this is why sharing is bene�cial. We gave the obvious, rather crafted,
example ofl ^ �l wherel is a big formula, but there is a less obvious and much
more frequent situation where it happens. Practical formalizations often in-
volve predicate de�nitions p(x1; : : : ; xn ) = �( x1; : : : ; xn ) where � can be a
big formula, p is then used as a shortcut for � throughout the proofs. Now,
when calling a DPLL procedure, one has to decide whether occurrences of
p should be considered as atoms or whether they should be unfolded to �.
There is no perfect strategy, since proofs sometimes dependon p being un-
folded and sometimes do not; there is a conservative strategy since always
unfolding p su�ces, but it leads to performance losses if it wasn't required.
Proxies make the DPLL procedure completely oblivious to such intermedi-
ate de�nitions, and this is a great asset when dealing with proof obligations
from program veri�cation.

7.4.3 Application to Other Systems

The advantages of the CNF conversion that we have implemented go beyond
the scope of our tactic. It generally allows subformulae to be structurally
shared which can give a big performance boost to the procedure. Moreover,
in standard programming languages, proxies can be comparedin constant
time by using hash-consing[FC06], which removes the main cost of using
lazy literals.

Lazy literals also provide a solution to a problem that is speci�c to
SMT solvers: de�nitional clauses due to Tseitin-style variables appearing in
contexts where they are not relevant can not only cause the DPLL procedure
to perform many useless splits, but they also add ground terms that can be
used to generate instances of lemmas. De Moura and Bjorner report on
this issue in [dMB07], where they use a notion ofrelevancy in order to only
consider de�nitional clauses at the right time. Lazy CNF conversion is a
solution to this issue, and it is the method we currently use in our own
prover Alt-Ergo.
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Finally, one may wonder whether this method can be adapted tostate-
of-the-art decision procedures, including common optimizations like back-
jumping and con�ict clause learning. Adapting such procedures can be done
in the same way that we adapted the basic DPLL and is really straightfor-
ward; an interesting question though is the potential impact that lazy CNF
conversion could have on the dependency analysis behind these optimiza-
tions. We have not thoroughly studied this question but our experience with
Alt-Ergo suggests that lazy CNF conversion remains a very good asset even
with a more optimized DPLL.

7.5 Conclusion

We have presented how our re�exive tactic for propositional logic presented
in the previous chapter can be adapted to use a lazy conversion scheme in
order to bring arbitary formulae into clausal form without d eteriorating the
performance of the procedure. We use this method inAlt-Ergo and it is very
satisfactory to be able to formalize and verify it in the Coq proof assistant.
It also turns out that this method brings very good results in the re�exive
tactic as well and outperforms the other CNF conversion techniques that we
have tried.
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CHAPTER8

From Propositional Logic to Theory Reasoning

L'Anglais est un praticien qui n'a pas de théories ;
l'Allemand, un théoricien qui applique ses théories ;
le Français, un théoricien qui ne les applique pas :
c'est ce qu'on appelle chez nous avoir du bon sens.

Antoine Det÷uf (1902)
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In this chapter, we show how to extend our formalization of a re�exive
propositional tactic in order to introduce theory reasoning, as described in
Section 2.3. We start in Section 8.1 by adapting our DPLL formalization
and procedure to accept generalized environments instead of simple partial
assignments. Then, in Section 8.2, we address an issue whichis speci�c to
Coq and our re�exive approach, namely the issue of reifying not only propo-
sitional variables but equalities between terms in an arbitrary signature, and
�nally their semantics in Section 8.3.
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8.1 A Generalized Environment for DPLL

8.1.1 Environments

In Section 2.3, we described how the DPLL procedure can be generalized by
replacing the partial assignment with a notion of environment, thus allow-
ing the procedure to be used to solve the SMT problem rather than just the
SAT problem. We now formalize this approach and start by the de�nition
of the signature of environments. Recall that we described environments in
Section 2.3 as data structures which provideassumption and query oper-
ations in order to add literals and check the truth value of a literal. Our
formalization of the signature of environments follows this description:

Module Type ENV_INTERFACE (Import F : CNF).
Parameter t : Type .

Parameter empty : t.
Parameter assume : L.t ! t ! Exception t.
Parameter query : L.t ! t ! bool.
Notation " e j= l" := (query l e = true).

...
End ENV_INTERFACE.

The signature, calledENV_INTERFACE, is parameterized by a module of sig-
nature CNF, as described in the previous chapter. It provides the typet of
environments and the two expected operationsassumeand query . It also
provides the empty environment empty, otherwise it would be impossible
to construct environments with that signature. We made the observation
in Section 2.3 that the assumeoperation was a partial operation: indeed,
adding a literal to the environment can make it inconsistent and in that case
it cannot return a valid environment. To account for this, th e return type
of assumeis Exception t, where Exception is just an �option� datatype
de�ned like this:

Inductive Exception (A : Type ) :=
| Normal (env : A)
| Inconsistent.

The interface of environments also introduces a handy notation for queries,
namely e j= l to denote that the query of l in e returns true. To complete
ENV_INTERFACE, we need to add the necessary requirements on these opera-
tions, and in order to express these requirements, we need the set of literals
which were explicitely assumed in an environment:

Parameter assumed : t ! L.lset.
Axiom assumed_empty : assumed empty ===; .
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Axiom assumed_assume :8e l E,
assume l e = Normal E ! assumed E === {l ; assumed e}.

The function which returns this set is called assumedand is completely
speci�ed by the assumed_emptyand assumed_assumeaxioms. Now, we can
express the requirements for the environment to be sound:

Axiom query_true : 8e l, e j= l !
( 8M, Sem.submodel (assumede) M ! M l).

Axiom assumed_inconsistent : 8e l,
assume l e = Inconsistent ! e j= L.mk_not l .

The �rst axiom is the soundness of thequery operation and expresses that
if a query succeeds onl, it is indeed justi�ed, in the sense that every model
of the literals added to the environment is a model of l . This axiom is
not su�cient and we add a second axiom for the soundness of theassume
operation: it states that assuming l only returns Inconsistent if �l is true
in the environment.

Strictly speaking, the signature we have written so far is su�cient to
describe sound environments, and as we explained in Section6.2.3, we are
only interested in the soundness of our procedure when developing a re�exive
tactic. In practice, there is a part of the completeness of a procedure which
we want to address nonetheless, and that is termination. More precisely, we
need some reasonable completeness properties on our structure in order to
ensure that some functions will behave correctly1. Here are the main two
completeness properties which we require on environments:

Axiom query_assumed : 8e l, l 2 assumede ! e j= l .
Axiom query_monotonic :

8e e0 l , assumed e � assumede0 ! e j= l ! e0 j= l .

The �rst one ensures that assumed literals are true in the environment,
while the second guarantees that assuming more literals canonly make more
literals true, not less.

8.1.2 A Simple Environment

We can give a simple example of an environment by encoding normal partial
assignments as a module of signatureENV_INTERFACE.

Module ENV (Import F : CNF) < : ENV_INTERFACE F.
De�nition t := L.lset.
1Consider for instance the two versions of proof_search function described in Chap-

ter 6: they use a natural integer in order to ensure terminati on, but we want to be able
to call them with large enough integers in order to avoid un�n ished computations. This
is a part of the completeness theorem which is not strictly ne cessary but which we want
to prove nonetheless, and it requires properties on the structures used: typically, once a
literal has been supposed and the problem has been simpli�ed by BCP, this literal should
not appear anymore in the problem.
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De�nition empty := ; .
De�nition assume l e :=

if mem (L.mk_not l) e then Inconsistent
else Normal { l ; e}.

De�nition query l e := meml e.

De�nition assumede := e.
...

End ENV.

The de�nition of the operations are self-explanatory and all the required
properties are completely straightforward to prove. This environment can
be seen as a �default� environment which allows to solve SAT modulo the
trivial theory, i.e. satis�sability in propositional logic.

8.1.3 Adapting DPLL

With the signature of environments de�ned as above, we can adapt our
formalization of DPLL to use environments, as we did with inference rules
in Fig. 2.7 page 45. The functor SAT, which we introduced for the �rst
time in Section 6.1.3, is adapted by adding an environment module as new
parameter:

Module SAT (Import F : CNF)(Import E : ENV_INTERFACE F).
Record sequent : Type := { G : E.t; D : L.cset }.

De�nition incompatible (S : sequent) : Prop :=
Sem.incompatible (assumed (G S)) (D S).

...
End SAT.

The functor SATis now parameterized by aCNFmodule and an environ-
ment module E for that CNFmodule (interestingly, notice how signature of
parameters can depend on earlier parameters). The sequentsare de�ned
accordingly with an environment E.t in place of a partial assignment. Note
how incompatibility of a sequent is rephrased using the set of literals as-
sumed in the environment. The derivability predicate of such sequents is
very similar to the one we have presented earlier; it is adapted as in Fig. 2.7
and starts like this:

Inductive derivable : sequent ! Prop :=
| Conflict :

8G D (i : ; 2 D), derivable (G ` D)
| Assume :

8G Dl G', { l } 2 D ! assume l G = Normal G' !
derivable (G' ` (L.expand l) [ (D n { l})) !
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derivable (G ` D)
| Elim :

8G Dl C, G j= l ! l 2 C ! C 2 D !
derivable (G ` {D � C}) !
derivable (G ` D)

...

This excerpt shows that the Conflict rule does not change; more interest-
ingly, the Assumerule, in order to extend the partial assignment, usesassume
and can only be applied if the result of this assumption is notInconsistent ;
�nally, the Elim rule tests the state of a literal in the current environment
by using query in order to eliminate a clause. The soundness proof of this
notion of derivability is stated in the exact same way:

Theorem soundness : 8S, derivable S ! incompatible S.

and is proved using the same reasonings, with the help of soundness proper-
ties from module E to replace earlier reasoning on partial assignments. The
new return type of the proof search procedure is now:

Inductive Res : Type :=
| Sat : E.t ! Res
| Unsat.

where the countermodel in theSat branch is an environment instead of a set
of literals. The proof search strategies which we have described in Chapter 6
can be adapted very easily:

� when testing the status of a literal in the current assignment ( i.e.
environment), query must be used instead of set membership;

� when extending the current assignment with a literal, assumemust be
used and the case where this assumption returnsInconsistent must
be treated properly.

We do not give more details on how the proof strategies, especially the
e�cient strategy presented in Section 6.3, are adapted to environments.
Actual details can be quite tedious and verbose but are not particulary
di�cult. In the end, modules suitable for generating a re�ex ive tactic need
to have the following DPLLsignature:

Module Type DPLL (Import F : CNF)(E : ENV_INTERFACE F).
Inductive Res : Type :=
| Sat : E.t ! Res
| Unsat.

Parameter dpll : formula ! Res.
Axiom dpll_correct :
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8f , dpll f = Unsat ! Sem.incompatible ; (make f ).
End DPLL.

which is really similar to the original DPLLinterface. This emphasizes how
little has to be changed to adapt the development of the tactic itself: rei�-
cation and re�ection theorems are unchanged, and the only modi�cation is
that when the tactic fails, the countermodel is now an environment and not
simply a set of literals. The function assumedis used by the front-end to
retrieve the literals which were explicitely assumed during the proof search
and display them.

As a �nal remark, and a demonstration of the capabilities of the module
sytem, note how a functor D with this DPLLsignature can be instantiated
with the basic environment functor ENVpresented above in order to retrieve
a functor with the old DPLLsignature (as in Chapter 6):

Module NewDPLLasOld (F : CNF)(D : DPLL).
Module OldE := ENV F.
Include (D F OldE).

End NewDPLLasOld.

This functor takes the uninstantiated functor D and applies it to a F of
signature CNFmodule and a basic environment forF. The result is included
in the result module.

8.2 Beyond Literals: Terms and Rei�cation

In the second part of this chapter, we detail how to adapt the rei�cation
process in order to go beyond simple propositional literals, which is a quite
complex task. Indeed, in Chapters 9 and 10, we will build an environment
for our DPLL re�exive tactic which will implement reasoning for the theory
of equality modulo linear arithmetic. Consequently, we need to be able to
reify formulae in the following grammar:

F := p j T = T j : F j F _ F j F ^ F j F ! F j F $ F

T := f (T; : : : ; T)

where p represents propositional variables andf function symbols. Recip-
rocally, we need to be able to interpret these rei�ed objectsback to their
original counterparts, in a way similar to what we did with th e interp func-
tion in Section 6.2.1. We already know how to reify propositional variables,
the usual logical connectives, and de�ne their interpretation. Unfortunately,
the di�culty lies in the interpretation of terms and equalit ies: suppose we
reify terms to a concrete datatype term, we need a functioninterp_term
that interprets such an object back to the corresponding term, but what
should its type be? There is no way to give such function a simple type
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since its type depends on the input: for example, if 0 is rei�ed into t0 :
term and true is rei�ed into ttrue : term , interp_term t0 shall have
type nat and interp_term ttrue type bool . The only way to achieve this
is to use dependent types and have a function with a type of theform:

interp_term : 8( t : term), type_of t

where type_of returns the expected type of the object corresponding to
a rei�ed term. That being said, when interpreting a term of th e form
f (T1; : : : ; Tn ), we need to interpret the Ti to concrete terms t i of various
types, and somehow apply the symbolf to these terms. The symbolf is
itself rei�ed (as were propositional variables) and must beinterpreted to a
concrete Coq entity which can be applied to thet i . Even if we can program
such functions using Coq's rich type system, there is no guarantee that a
term corresponds to a well-typed concrete object and that its interpretation
will succeed, in other words that the rei�ed symbols represent symbols with
the adequate types. To detect ill-formed rei�ed terms, we need to be able
to compare expected types and actual types during the interpretation of
a term, and this is not possible if we use Coq's types directly. Hence, in
order to be able to correctly reify terms with arbitrary type s, we cannot
use a shallow embedding, i.e. only reifying terms, but we will use a deep
embeddingof terms in the logic, i.e. reify both terms and their types.

8.2.1 Types

We will not reify all possible Coq types, in particular we only interpret non-
dependent products (�arrows�), the type Z of relative integers, and consider
all other types as atomic types,i.e. we reify them as variables, similarly to
what we did with propositional variables. We de�ne the following inductive
datatype type for rei�ed types:

Inductive type : Set :=
| typeCst (tidx : index)
| typeDefault
| typeArith
| typeArrow (_ _ : type).

The last two constructors correspond to the type of relative integers and to
arrow types. The role of typeDefault is to serve as a default datatype used
to make some functions total and which should not be used by the rei�cation
process. Finally, typeCst is used for a rei�ed atomic type. Note that we
again use an object of typeindex to denote a variable, which means that
we use avarmap to interpret a type into a Coq type:

De�nition type_env := varmap Type .
Inductive dummy :Set := mk_dummy.
Section TInterp.
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Variable vtypes : type_env.
Fixpoint tinterp ( t : type) : Type :=

match t with
| typeCst idx ) varmap_find dummy idx vtypes
| typeDefault ) dummy
| typeArith ) Z
| typeArrow t1 t2 ) (tinterp t1) ! (tinterp t2)

end .
End TInterp.

We de�ne type_env as the type of maps used to interpret rei�ed types, i.e.
asvarmap Type, and we also de�ne a new typedummywhich is speci�c to the
rei�cation routine. The type interpretation function tinterp uses a map of
type type_env and is de�ned in a section2 where such a map is introduced.
It is straightforward and simply proceeds by induction on the structure of
the rei�ed type, interprets arrows as arrows, integers as integers, and atomic
types in the map using varmap_find . The special type dummyis used as a
default, in particular when the lookup in the map fails; looking for dummy
in a rei�ed formula is then a way to easily spot problems in the rei�cation
process.

We also de�ne an equality test for rei�ed types, which would not have
been possible with Coq's types:

Fixpoint tequal ( t t 0 : type) : bool := ....
Property tequal_1 : 8t t 0, tequal t t 0 = true ! t = t0.
Property tequal_2 : 8t t 0, t = t0 ! tequal t t 0 = true.

8.2.2 Symbols

In this subsection and in the following, we suppose we are in aCoq section
where a variablevtypes of type_env is de�ned, as above, and our de�nitions
will therefore be implicitely parameterized by vtypes . We use the notation
Jty Kto denote tinterp ty vtypes , the interpretation of a rei�ed type ty .

We do not interpret any symbols except arithmetic constantsand arith-
metic operations. For other symbols, we need to proceed as with proposi-
tional variables and uninterpreted types, i.e. we need to store them in some
kind of map and use indices in the map to represent these symbols. The
problem is that symbols may have arbitrary types and therefore we cannot
store them in one particular varmap (these are homogeneous); instead, we
use, for each rei�ed type, one varmap to store all symbols with that type,
and we store all these varmaps in a single �varmap of varmaps�. This leads
to a double indirection, and each symbol must be representedwith two in-
dices: one to identify which varmap should be used, and the other to locate

2Coq's sectioning mechanism allow one to introduce variables which are generalized at
the end of the section.
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the symbol in that particular varmap. The type of rei�ed symb ols is de�ned
as follows:

Inductive arithop : Set :=
| Plus | Minus | Opp | Mult.
Inductive symbol : Set :=
| Unint (ty_idx t_idx : index)
| Cst ( z : Z)
| Op (op : arithop).

where uninterpreted symbols are encoded with a pair of indices, as explained
above. We now need to formally de�ne the �varmap of varmaps� used to
interpret such symbols. Because the outer varmap needs to behomogeneous,
each of the inner varmaps must have the same type and therefore we use
the following dependent pair to denote the type of the inner varmaps:

De�nition depvarmap := {ty : type & ( Jty K � varmap Jty K)}.
De�nition defvm : depvarmap :=

existT _ typeDefault (mk_dummy, Empty_vm).

Such a depvarmapis a dependent pair whose �rst element is a rei�ed type
ty , and whose second element is a varmap containing values of type JtyK
and an extra value of the same type which will be used as a default. An
example of a depvarmap is given with the de�nition of defvm, a default
varmap for the default type. The environment used to interpret symbols,
called a term_env is then simply de�ned as:

De�nition term_env := varmap depvarmap.
Variable v : term_env.

Note that term_env is a dependent type itself, since it implicitely depends
on vtypes in this context. We now also introduce a variablev : term_env
in the context and we can de�ne the function which returns the (rei�ed) type
of a symbol:

De�nition lookup_type ( f : symbol) : type :=
match f with

| Unint ty_idx _ )
� 1(varmap_find defvm ty_idx v)

| Cst _ ) typeArith
| Op (Plus | Minus | Mult) )

typeArrow typeArith (typeArrow typeArith typeArith)
| Op Opp ) typeArrow typeArith typeArith

end .

The types of arithmetic constants and operations do not require explana-
tions, and the type of an uninterpreted symbol is found usingits �rst index:
we �nd the corresponding depvarmapin v using varmap_find , and use its
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�rst projection, i.e. the rei�ed type. Now that we have this function, we
can de�ne the interpretation of a symbol, which we call lookup :

De�nition lookup ( f : symbol) : Jlookup_type f K :=
match f with

| Unint ty_idx s_idx )
let ( d, vs) :=

� 2(varmap_find defvm ty_idx v) in
varmap_find d s_idx vs

| Cst z ) z
| Op Plus ) Zplus | Op Minus ) Zminus ...

end .

This function is dependently-typed and for all symbol f , returns an object
whose type is the interpretation of the rei�ed type lookup_type f . The
interpretation of arithmetic symbols is straightforward, and as for uninter-
preted symbols, thedepvarmapcontaining the symbol is retrieved using the
�rst index, its second component is retrieved with the projection � 2 and the
second index is used to �nd the Coq value corresponding to thesymbol in
the inner varmap. Note that the default passed to that secondvarmap_find
is the value stored along the inner varmap in thedepvarmap. Coq is able to
verify that this function indeed returns an object of type Jlookup_type f K
for all f .

8.2.3 Terms

Once symbols are de�ned, the type of rei�ed terms is simply:

Inductive term : Set :=
| app ( f : symbol) (lt : list term).

The expected type of a rei�ed term can be de�ned by the following recursive3

function:

Nested Fixpoint type_of ( t : term) : type :=
match t with

| app f l ) types_of l (lookup_type f )
end

with types_of ( l : terms) (ret : type) : type :=
match l with

| nil ) ret
| cons _ l )

match ret with
| typeArrow _ t2 ) types_of l t 2

3This syntax for recursive functions is not standard: Coq nor mally does not allow
�xpoints through a nested inductive (in this case, list) to b e written in the usual way; we
wrote an extension to allow this.
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