6Q‘K HBxBM;:; M/ AKTH2K2MiBM; _2~2tBpz
mMiQK i2/ .2/m+iBQM BM *Q]
ai2T? M2 G2b+mv2°

hQ +Bi2 i?Bb p2 " bBQM,
ai2T? M2 G2b+mv2 X 6Q K HBxBM; M/ AKTH2K2MiBM; _2~2tBp2 h +
*Q[X Pi?2° (+bXP>)X IMBp2 bBid S "Bbam/ @ S Bb sA- kyRRX 1M;HB
yydRjee3

> G A/, i2ZH@yydRjee3
2iiTh,ffi2HX "+?Bp2b@Qmp2 i2bX7 fi2H@yydR
am#KBii2/ QM k CmH kyRKk

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

ORSAY
N d'ordre:

UNIVERSITE DE PARIS-SUD 11
CENTRE D'ORSAY

THESE

présentée
pour obtenir

le grade de docteur en sciences DE L'UNIVERSITE PARIS XI
Discipline : Informatiqu

PAR

Stéphane LESCUYER
!

SUJET:

Formalizing and Implementing a Re exive Tactic for
Automated Deduction in Coq

Formalisation et Développement d'une Tactique Ré exive
pour la Démonstration Automatique en Coq

soutenue le 4 janvier 2011 devant la commission d'examen cqrosée de

Sylvain Conchon (Encadrant)
Evelyne Contejean (Encadrante)

Pierre Crégut (Rapporteur)
Hugo Herbelin (Examinateur)
Sava Krstic (Examinateur)

Shankar Natarajan (Rapporteur)
Burkhart Wol (Examinateur)

Acknowledgements

This work would not have been possible without the help and asistance
of many people, and even though a PhD thesis ultimately is anndividual
work, a lot of credit should go to those who supported me one waor another
during the last three to four years.

First and foremost, my thanks go to my advisors, Evelyne Congjean and
Sylvain Conchon. They granted me an immensely interesting sbject, which
ambitiously aimed at bridging the gap between interactive and automated
provers, killing two birds with one stone: bringing automation to Coq on one
side, and formal soundness to our automated prover on the otr side. The
numerous sleepless nights | spent working on details that we at times nasty,
at times nifty, are as good a measure as any of an original anchieresting
PhD topic. Even though I did not achieve as much as | would haveliked
but do we ever? |learned many things about formal methods ar certainly
hope this work can be put to good use, and for all that, | am verythankful
to Evelyne and Sylvain. | especially thank Sylvain for how awailable he was
every time | needed advice or wished to share my latest progss, and for
the many friendly discussions we had along the way.

| sincerely thank Pierre Crégut and Shankar Natarajan for acepting to
review the earlier version of this document, and for their numerous correc-
tions and constructive comments. | also thank my other exammners Hugo
Herbelin, Sava Krstic, and Burkhart Wol , for accepting to b e members of
my defense committee and for their insightful questions andemarks on that
day.

| was fortunate enough to be part of the Proval team while premaring
this work, and | thank everyone in the team for the kindness aml good
spirits they showed week after week. Be it cake receipes, swer games or
challenging puzzles, there was always something to share drchat about
in the co ee room besides everyone's ongoing work. | am very rgteful
to Jean-Christophe Filliatre for how much | learned about data structures

and algorithms through him and the passion he shows for suchhings, and
TAOCP will always have a front row seat on my bookshelves. | ao want
to express my gratitude to Matthieu Sozeau and Guillaume Meguiond for
passing their experience with Coq to me, and the discussionk had with
them helped me greatly on some aspects of this work. Aléligia fiafneal
to Andrei Paskevich and his amazing ability to give relevant and insightful
remarks on just about every topic.

To my coworkers and friends, you made the last 3+ years go waydo
quickly! Johannes, thank you for bearing with me when | kept dsturbing you
in the o ce, you know I'm always in for a beer on a CL evening. Florence,
Louis, I'm glad | could help you explore the amazing world of ®g-iness, and
Florence, I'm afraid you aren't done with me yet! Yannick, your cheerful
attitude makes everyone forget how old you really are :-) Kayan, fare thee
well, too bad | have no one to talk cricket with anymore. To our younger
members in the team, Francgois, Cédric, Asma, Paolo, Mohamedand Claire,
| wish you all the very best for your PhDs.

| want to thank Assia Mahboubi, Pierre Letouzey, Pierre Castéran,
Thomas Braibant, Benjamin Grégoire, and Aaron Stump, for hdping me
one way or another, by giving advice when | was stuck on techmial issues
or simply by being supportive of my work. | also want to thank the people
who, in retrospect, gave me the will and motivation to engagein a PhD:
Gilles Dowek, Benjamin Pierce and Dale Miller. Years ago, tmough your
teaching or tutoring, you raised my interest in computer science and in logic
and formal methods in particular, and | am sure you kept and ke=p inspiring
many students to follow in your tracks.

Un grand merci en n a mes chers parents, pour m'avoir soutenypatiem-
ment dans ces études qui n'en nissaient pas. J'espére vousvair rendus
ers, puissiez-vous Vvoir en ce travail un témoignage de ma gtitude.

A Christine.

Contents

[introduction | 1
|A_Short History of Formal Logicl 1
Mowards Mechanized Reasonidg 3

|Automated Theorem Proving oo v oo i 3
Interactive Theorem Proving 4
ICombining Interactive and Automated Approaches 5
[Contributions] 7
|A Formally Veried SMT Saolver Kernel| 7
/A Re exive Tactic for Automated Deduction| 7
Outline 8

I_Formalization of an SMT Solver's Kernel | 11

[1_Solvers for Satis ability Modulo Theories | 13
[1.1_Satis ability Modulo Theoriesl. 13
[1.2An SMT Solver Dedicated to Program Veri cation 15

[1.2.1 Program Analysis and Software Vericatiod 15
122 AIErgd. . .. oo 17

[2_Formalization of the Propositional Solver | 21

21 DPLL: A SAT-Solving Procedurd 22
[2.1.1 The Satis ability Problem/|. 22
212 The DPLL Proceduré 23
[2.1.3 DPLL as an Inference System 24
[2.1.4 Correctness Proofs for DPLL 27

[2.2__Standard DPLL Optimizations 31
2.2.1 Non-Chronalogical Backtracking 31

Vi CONTENTS

[2.2.2 Correctness of the Backjumping Mechanism 33
m 40
jumpi T I 43
23 FomSATtoSMTl 43
24 Discussioh 47
-of-the-Art SAT Solvers 47
[2.4.2 Conclusion 49
I3 CC(X): Con 51
3.1 _Combining Equality and Other Theories 52
[B.1.1 Preliminanie$ 52
[3.1.2 The Nelson-Oppen Combination Method 53
[3.1.3 The Shostak Combination Method 55
[3.1.4 Motivationd 56
3.2 CC(X): Congruence Closure Modulo X 57
13.2.1 Solvable TheOri€s v oo oo 57
3.2.2 The CC(X) Algorithm|. 62
13.2.3 Example: Rational Linear Arithmetic| 65
[3.3 Correctness Proofs o oo 68
331 Soundness 68
[3.3.2 Completeness o oo 70
3.4 _Adding Disequalities 77
3.5 ConClUSION . .« v v v o 81
| _ . o I oo | |
83
4 Proving by Re ection in Coq! 85
4.1 Introductionto Cogl 86
4.1.1 CIC: The Calculus of Inductive Constructions 86
4.1.2 The Cog Proof Assistant 87
4.2 Automation Techniques for Interactive Proving 94
421 Customized Tactich. 95
[4.2.2 Built-In Procedure$ 97
423 ExternalToold 08
424 Tracesand Reectioh 99
4.3 Towards a Re exive SMT Kernel 102
[5 A Cog Library of First-Class Containers 105
5.1 _Preliminaries and Motivations 106
511 Type Classes oo v oo 106
.12 Motivationd 108

CONTENTS vii

52,1 OrderedTyPe . . . o o v v 110
I5.2.2 Special Equaliieso 113
5.2.3 Automatic Instances Generation 114
[5.3 Finite Sets and Maps o oo 116
I5.3.1 Interfaces and Specications 116
5.3.2__A Library of Properties 120
5.4 Applicationso 122
5.4.1 Listsand AVL trees 122
542 Usage 123
55 Discussioh 125
551 Performancds 125
5.5.2_Upgrade of Existing Code 126
553 CodeSharng, 127
igning the Interfack 128
I5.5.5 Type Classes and Modulés 129
B.6 Conclusioh oo 130
l6__A Re exive SAT-Solver | 131
%me 132
.......................... 132
l6.1.2 _Semantics and Formulde 133
[6.1.3 Sequents and Derivatiods 135
isi e 136
l6.2_Deriving a Re exive Tactic 140
.21 Reication 140
622 The Generic Tacti¢ 143
6.2.3 _About Completeness 146
l6.3 ABetter Strategyll 147
6.4 Conclusioh 151
[7_Dealing with CNF Conversion | 153
[Z1 The CNF Conversion Issueo, 154
[7.2__A DPLL Procedure with Lazy CNF Conversiodl 156
[7.2.1 Expandable Literal$ 156
[7.2.2 Adaptation of the DPLL Procedure 157
(7.3 _Implementing Lazy Literalsin Cogl. 159
[7.3.1 Raw Expandable Literals 159
[7.3.2__Adding Invariants to Raw Literals| 160
.33 _Converting Formulae to Lazy Literals 162
[Z.4_Results and DiSCUSSIAN o oot 164
241 Benchmarks 164
[2.4.2__Discussion and Limitation$ 165
[7.4.3 __Application to Other Systems 166
75 Conclusion oo v 167

viii CONTENTS

I8_From Propositional Logic to Theory Reasoning 169
8.1 : lized Envi : |

9.3 A CC(X)Environmentfor DPLL| 204
9.3.1 CCOXwith Invariants]. 204
9.3.2 A CCXased Environment 205
94 Resulth. 206
041 Examplé. 206
.42 Conclusioh 208
[10 A Theory of Linear Arithmetic | 209
[10.1 Rational Polynomial$ v v oo 209
[10.1.1 Raw Polynomials 210
[10.1.2 Polynoms asOrderedType o v oo oo .. 212
110.2_Theory of Integer Arithmetic| 214
[10.2.1 Implementationot 214
[10.2.2 Specication$ 216
03 Results.o 221
1031 Exampléo 221
[10.32 Conclusioh 223
Il Results, Conclusions and Perspectives | 225
[11 Results and Analysis | 227

[11.1 Overview of the tactié o v v oo oot 228

CONTENTS iX

...................... 238
[11.3.1 Interpreted Predicate Symbols 239

|A_Correctness of Conict-Driven Clause Learning | 265
[B_Comparison of DPLL Strategies in Coq | 271

CONTENTS

Introduction

...et remarquant que cette vérité, je pense, donc je suis, éit si
ferme et si assurée, que toutes les plus extravagantes suppions
des sceptiques n'étaient pas capables de I'ébranler, je jegi que
je pouvais la recevoir sans scrupule pour le premier princip de la
philosophie que je cherchais.

René DescartesDiscours de la méthode

Contents
|A_Short History of Formal Logic 1
[Towards Mechanized Reasoning . | 3
[Automated Theorem Proving 3
[nteractive Theorem Proving 4
ICombining Interactive and Automated Approaches . 5
Contributions 1. 7
|A Formally Veri ed SMT Solver Kernell 7
|A Re exive Tactic for Automated Deduction]| 7
Outine] 8

A Short History of Formal Logic

When René Descartes asserted the famous | think, thereforé am in his
Discourse on Method his justi cation for this statement was that it was so

rm and so assured that all the most extravagant suppositions of the sceptics
were unable to shake it. This informal kind of reasoning, based mainly
on an intuitive notion of truth, on common sense and dialectics, had been
for centuries the foundation for argumentations in every eld of what was
then called philosophy, a concept which included both natual and human
sciences. In particular, advances in algebra, analysis anchathematics in
general had been relying on an intuitive and well-accepted ation of proof.

1

2 CONTENTS

As a matter of fact, Descartes was an accomplished mathematian himself
and published, as an appendix to theDiscourse on Method his breakthrough
approach to analytic geometry which fostered the rise of caesian coordinate
systems and calculus.

Over time, as mathematicians were working towards more and rare
complex results, the issue was raised of whether the intuitie approach was
su cient or whether a more formal language was required to describe math-
ematics and logical reasonings. As early as the end of the Ifrtcentury,
Leibniz wished for a calculus ratiocinator, a formal logical and algorithmic
language, which, in regard to modern computer science and pof theory, was
an incredibly insightful and pioneering concept. It was notbefore the end of
the 19th century that this idea started becoming reality, with the publica-
tion of Gottlob Frege's Begri sschrift in 1879, and the later Grundsgesetze
der Arithmetik in 1903. His work provided the rst formal presentation of
rst-order logic and even if it was proved inconsistent by Russell's paradox,
his system was the basis of many a work on the foundations of nthematics
around the turn of the 20th century.

As the search for a novel foundation of mathematics led to theZermelo-
Fraenkel theory, an ambitious program launched by David Hibert aimed
at nding a consistent formal theory relying on a small number of well-
understood axioms and on the basis of which all mathematics auld be
assembled. Kurt Godel soon brought a negative answer to thimmbition:
his rstincompleteness theorem shows that there does not egt a consistent
system where all true properties are provable, as soon as astgm embeds
non-trivial arithmetic reasoning. Nevertheless, Godel'sdiscovery did not
completely put a stop to Hilbert's program and later researd focused on
nding consistent logical systems which were expressive anugh to formalize
interesting fragments of mathematics.

In 1934, Gehrard Gentzen introduced the notion of sequent ad proposed
the two sequent calculi LJ and LK, respectively for intuitio nistic and classical
rst-order logic. These calculi are expressed in terms of dduction rules
between sequents, for instance the following rule of LJ:

AT C ‘B C
i JA_ B C

(_L)

means that if one can proveC from A and the assertions in , and also
from B and the assertions in , then C can be proved fromA _ B and
the assertions in and . When read bottom-up, Gentzen's rul es can be
seen as instructions on how to construct a proof of the bottomstatement.
This analogy is fundamental since it means the rules describ a way to
systematically search for a proof of a given statement, as g as there is
only a nite way of applying them for any statement. In the absence of
quanti ers, this condition is guaranteed by the fact that Ge ntzen's calculi

CONTENTS 3

satisfy the cut-elimination property, i.e. that the following rule:

A AT B
"B

(Cut)

also known asmodus ponens can be removed from the system without
reducing its expressiveness. In this regard, Gentzen's sagnt calculi repre-
sented an important breakthrough and has had an important impact on the
development of proof theory and automated deduction.

Towards Mechanized Reasoning

Automated Theorem Proving

With the development of computing systems, the second half bthe 20th
century made it possible to nally put into practice deducti on systems such
as Gentzen's sequent calculi which had been studied in the st half of
the century. Although Church and Turing had independenly proved in the
1930s that rst-order logic was not decidable, it remained © be seen whether
computers could nonetheless automatically prove intereshg formulae.

The rst major works in automated deduction were Newell, Simon and
Shaw's Logic Theory machine in 1956[[NSS57] and Wang's worlkNan60Q].
Both aimed at automatically proving a variety of rst-order tautologies
found in Russell and Whitehead's Principia Mathematica, but using quite
di erent approaches. The Logic Theory machine attempted to prove a state-
ment by following heuristics to perform a mix a backward and forward rea-
soning, thus becoming one of the rst achievements in the et of arti cial
intelligence. On the other hand, Wang followed an algorithmic approach ard
based his procedure on sequent calculus, systematically pboring the possi-
ble proofs of a statement. Wang's approach fared better tharthe Logic The-
ory machine and gave the tone to later automated theorem proers (ATP).

The 1960s saw the development of the DPLL procedure [DP60, DL62]
to e ciently decide validity in propositional logic, and a m ajor breakthrough
was initiated by John A. Robinson's resolution rule [Rob65]. Resolution was
very popular, in particular for its ability to deal with rst -order logic, and led
to the development of the logical programming language Pralg. Resolution
is still in use in many modern ATPs. In order to become more vesatile,
automated deduction systems needed to go beyong propositial reasoning
and deal for instance with the frequently used equality predcate. To that
end, the paramodulation [RW69] rule was designed in order t@achieve better
equational reasoning.

As interest in ATP systems grew, so did the number of potentid ap-
plications and the variety of formulae to discharge. In particular, many
applications (notably software veri cation) required pro ving the validity of

4 CONTENTS

formulae in logics more constrained than rst-order predicate logic with
equality: integer arithmetic often became essential, and ther theories such
as arrays or bitvectors as well. To deal with these theoriesan axiomatic
approach in a standard ATP is not satisfactory and speci ¢ decision pro-
cedures were developed instead. The last decade has seen ayvactive
development in the eld of Satis ability Modulo Theory (SMT) solvers, an
alternative category of automated deduction systems whichstarted around
1980. These SMT solvers decide the satis ability of formula by combin-
ing a propositional solver with decision procedures dedidad to background
theories such as linear arithmetic. SMT solvers will be at the heart of our
dissertation and we present them in more detail in Chapter1.

Interactive Theorem Proving

In parallel to the development of automated theorem proving others started
using deductive systems in order to verify the validity of exsting proofs. This
task was particularly amenable to mechanization since it wa both tedious
and decidable. There were also some systems which were nadtrautomated
theorem provers nor proof checkers, but somewhere in the mile. This
was the case of the Boyer-Moore prover, which was based on dation
but allowed the user to give directives at di erent points during a proof.
We can consider that such a system is a proof checker since theroof
consists in the sequence of directives, but how complicatedan proof steps
be if we are to qualify a system as a proof checker? A qualitatie answer
to this question was given by de Bruijn's criterion: the correctness of the
proof checker as a whole shall only depend on a very small, weinderstood,
kernel. The Boyer-Moore prover, or any other automated thesem prover
for that matter, hardly satis es this criterion, and system s which verify this
criterion have not been developed on top of techniques likeesolution, but
on type theory.

Type theory was introduced by Russell and Whitehead in their Prin-
cipia Mathematica in order to avoid the inconsistency of Frege's approach
as revealed by Russell's paradox. Zermelo-Fraenkel's sehéory remained
(and still remains) the preferred logical foundation for mathematics, but
the interest in type theory was renewed by Church's invention of -calculus
after it was discovered that there exists a strong correspotdence between
the deduction rules in type theory and a typing system for -calculus. This
correspondance is known as th€urry-Howard isomorphism and allows one
to identi es programs to proofs, and types to propositions: if there exists a
ground -termt of type ,then is atautology andt is a proof of that tau-
tology. The characterization of proofs as programs denotethe constructive
nature of this formalism and it is not surprising that it is on ly describing
intuitionistic logic. A proof checker for such a system is therefore simply
a type-checker for -terms; in particular, it satis es the de Bruijn criterion

CONTENTS 5

because it is quite reduced and is entirely described by a sniisset of typing
rules.

A limitation of type theory is that only formulae which corre spond to
types of terms can be expressed in this framework, and simphyped -
calculus is not very expressive in that regard. In order to epress richer
properties, Martin-L6f proposed an intuitionistic type th eory [ML75] richer
than Russell and Whitehead's, insofar as it is possible to qantify over ob-
jects and types using a dependent product operator. By usinglependent
types, it is possible to express properties quanti ed by obgcts and which
depend on the value of these objects, which makes it much morexpressive
than simple type theory. Another important change is that since terms are
part of types, they can be reduced and therefore there is a naftral notion of
computation in the logic. The Calculus of Constructions, due to Coquand
and Huet [CH88], can be seen as a higher-order extension of Mun-L6f's
type theory.

The rst proof checker based on type theory was Automath [dBY]: it
was developed in 1968 by de Bruijn and would take a full proof érm and
verify it. Later came LCF, which relied on a proof language wtich had a
big impact in the eld of programming languages since it is atthe basis of
languages of the ML family. LCF had a revolutionary architecture which is
now common to all so-called LCF-style provers, like HOL [[hq], and which
consists of a dedicated language of commands callggctics based on a small
set of elementary rules. LCF used abstract types to prevent heorems to be
built from other means than this reduced kernel. Because thge systems
allow one to iteratively build a veried proof, they are call ed interactive
provers in contrast to automated provers.

Modern interactive provers based on type theory can be clas®d in two
di erent families. Like LCF, the rst family uses type theor y as a meta-logic
to justify basic inferences steps allowed by the prover. Ths family includes
provers such as Isabelle [Isa] or TweLF [PS99]. The other cks of interactive
provers rely on a type theory and simply implement a typecheker for terms
in this theory. Among these systems, NuPrl [NuR] and Agda [BDNQ9] are
based on Martin-L6f's type theory, while Lego [Leg], Matita [ACTZ07] and
Coq [Cod] are based on a variant of the Calculus of Constructins. Coq is
our interactive prover of choice in this thesis and we discus its logic and its
architecture in much more detail in Chapter [4.

Combining Interactive and Automated Approaches

Modern interactive provers use very expressive logics badeon type theory
and therefore allows for an intuitive formalization of mathematical concepts.
They can thus be used to formalize complex concepts and achie complex
proofs, which are way beyond the capabilities of automatedlheorem provers.
Unfortunately, they can be very tedious to work with becauseproofs must

6 CONTENTS

be justied by small basic steps and therefore require much rore detail
than even the most detailed pencil-and-paper proof. Moreoer, in very big
proofs, it is often the case that there are just a few key argurants requiring
human thinking and the remaining of the proof is then simple enough to be
discharged by an automated prover.

This is therefore a natural idea to try and combine the interactive and au-
tomated approaches by using an automated prover to discharg easy enough
goals during an interactive proof. Unfortunately, automated provers, as we
explained, are complex systems which do not meet de Bruijn'sriterion and
therefore they cannot be embedded as such in an interactiverpver without
compromising its kernel. There is actually concern over thecorrectness of
ATPs and SMT solvers considering the complexity of these syems and the
fact that they are being used for critical software or hardware veri cation.

There exists a category of systems which take a less sceptlcance than
the interactive provers cited above, and which dilutes the ¢ Bruijn criterion.
Such systems include ACL2[JACL] (the descendant of the BoyeMoore the-
orem prover), the PVS speci cation and veri cation system [PVS], or the
Atelier B based on the B-Method [Abr96] (which has the particularity of
relying on set theory). These veri cation systems provide a expressive log-
ical language to formalize programs or mathematics and to wite precise
speci cations about these formalizations. They also provile an interactive
way of proving these properties in a manner similar to proof asistants, but
with the help of automated decision procedures. These toolare very pop-
ular because they allow one to write formal speci cations while the proving
phase is assisted by automated provers and is therefore lessdious than
typical interactive provers.

For those systems which still want to keep a small trusted kenel and not
rely on automated provers directly, the integration of automated methods
is a real challenge. In order to be trusted by the interactive prover, the
automated prover must not only nd a proof, it must explain it s proof in
terms of the basic steps accepted by the proof checker. Thisxplanation is
called a proof trace and since the steps accepted by the interactive prover
are so basic, instrumenting an automated prover to return poof traces suit-
able for the interactive prover is a complex task. It is usualy done in two
steps, with the solver returning an intermediate proof trace which is further
transformed into an object suitable for the proof checker (hat second phase
is called proof reconstruction).

Another way to proceed is to use the ability of the logic to emked compu-
tations, and more generally programs. Along with the ability of higher-order
logic to re ect itself [Har95] BM9Q], this feature makes it possible to use a
technique of proof by re ection . This consists in implementing a decision
procedure directly as a program in the logic, and using the coectness of
this implementation, prove formulae by a simple computation of the proce-
dure. We will make use of this method in this thesis and it will be explained

CONTENTS 7

in detail in Chapter]

Contributions

We now present the contributions of this dissertation. We hase seen that
interactive provers allow complex formalizations at the price of tedious proof
developments, while automated theorem provers do not reque human in-

tervention but raise soundness issues. We are interested ihe soundness of
the SMT solver Alt-Ergo and use the Coq proof assistant to formally verify
Alt-Ergo's core components. This leads to the two following contribdions.

A Formally Veri ed SMT Solver Kernel

Our rst contribution in this work is to have formalized Alt-Ergo's kernel
components and formally established the correctness of tkiformalization
in the Coq proof assistant. This kernel consists in a proposional solver
based on the DPLL procedure, extended with standard optimiations, along
with an original decision procedure combining the theory of equality on
uninterpreted functions with an arbitrary theory under cer tain conditions.
Because this procedure, calledCC(X), is novel, it is all the more important
that it is proved sound and complete in a formal setting.

This formalization and veri cation of Alt-Ergo's kernel dramatically in-
creases the trust that we can have inAlt-Ergo; in particular developing the
proof has helped us better understand some of the details oht algorithm
and make sure of the conditions where it could be applied. T is par-
ticularly interesting because Alt-Ergo is used to discharge proof obligations
coming from software veri cation systems, and must therefae be reliable.

A Re exive Tactic for Automated Deduction

Our second contribution is to extend our Coq veri cation of Alt-Ergo's kernel
in such a way that it is possible to use the underlying decisia procedure as
a Coq tactic. We do not extend Coq's trusted code base or perfon proof
reconstruction from Alt-Ergo; instead, we formalize the kernel's components
by writing an e ective implementation in the Coq proof assistant. This
approach raises some issues since it amounts to reimplemény the solver's
kernel in the context of the pure programming language contied in CoqQ's
logic, and do it in such a way that it can be computed reasonaby} e ciently.
In order to be used to prove Coq's formulae, we use the princig of proof by
re ection and therefore we have to de ne semantics of the conrete objects
manipulated by our algorithm which can be lifted to Coqg's own notion of
validity. Another critical point is the rei cation phase: t he translation of
Coq's formulae in concrete objects which represent them anén which the
algorithm can be applied.

8 CONTENTS

By following this approach, we develop a re exive tactic which e ectively
combines three useful theories: propositional logic, equidy with uninter-
preted functions, and linear integer arithmetic. These three theories are
ubiquitous in usual Coq developments and such a tactic is therst which
can handle their combination. Indeed, many evolved tacticsexist in Coq to
deal with some logical fragment but it is generally impossilbe to combine
them. Consequently, these existing tactics only work for fomulae which are,
for instance, purely arithmetic, purely propositional, or purely equational.
Providing a tactic which actually combines these three fragnents represents
a real contribution towards more automation in Coq.

Throughout this development, we also implement componentshich are
highly reusable and are not speci ¢ to our particular goal. For instance, we
provide a library for ordered types and generic data structures commonly
used in programming language. Such extensions are valuable the Coq
community since existing reusable components help develdfaster programs.
This is even more signi cant than in a standard programming language since
components developed in Cog must also come with speci catiws and proofs,
and thus are particularly time-consuming to reimplement.

Outline

This thesis is organized in two parts.

The rst part is devoted to the mathematical formalization o f Alt-Ergo's
quantifer-free kernel. Chapter[1 presents the origin of SMTsolvers and
the architecture of Alt-Ergo. In Chapter £, we present a formalization of
the propositional solver at the heart of our SMT solver. This propositional
solver is based on a standard DPLL procedure, which we form&e as an
inference system. We also show how to extend this system to oamonly
used optimizations such as con ict-driven clause learning and also discuss
adaptations required for use in an SMT solver. ChapteiB detds Alt-Ergo's
original combination schemeCC(X) used to perform congruence closure mod-
ulo a theory X. We also show how we extend this system in order to deal
with disequations.

The second part is devoted to the implementation of a Coq re «ive tac-
tic based on the formalization presented in the rst part. Chapter[d presents
the Coq proof assistant, its logic, its speci cities, and the approach of proof
by re ection as well as other approaches for automating dedation in Cog.
Chapter B presents a Coq library of rst-class containers wtich provides
common structures such as ordered types, nite sets and nie dictionaries,
and which are fundamental to implementations in later chapters. Chap-
ter Bl presents the Coq formalization of Alt-Ergo's propositional solver and
how it can be instrumented into a re exive tactic to automati cally discharge
propositional tautologies. We address the issue of conveim to conjunctive

CONTENTS 9

normal form in Chapter [7] where we present how to adapt the prpositional
solver in order to use a lazy conversion scheme. ChaptEr 8 ments the mod-
i cations which must be done in order to extend the propositional solver to
an SMT solver and in order to extend the tactic's rei cation process to
equalities between terms on an arbitrary signature. We thenformalize and
implement the combination schemeCC(X) in Chapter @ and show how it can
be plugged in the propositional solver to extend the tacticsto propositional
logic modulo equality. Chapter [I0 nally presents the implementation of
the theory of linear arithmetic and how it can be used in our framework.

We conclude in Chapter[I1 with a presentation of the whole sytem
implemented in Coq and its capabilities. We also address thevarious limi-
tations and possible extensions which we envision.

10

CONTENTS

Part |

Formalization of an SMT
Solver's Kernel

11

cHAPTER]

Solvers for Satis ability Modulo Theories

Ce n'est pas quand il a découvert I'Amérique,
mais quand il a été sur le point de la découvrir,
que Colomb a été heureux.

Fiodor M. Dostoievski , L'ldiot
Contents

This rst chapter introduces and presents the Alt-Ergo tool, which is at
the basis of the formalizations we present in this document Alt-Ergo belongs
to a family of tools called SMT solvers where SMT stands for Satis ability
Modulo Theories Section[I.] is devoted to an informal presentation of the
SMT decision problem and the eld of SMT in general. In Sectin [L.2, we
then present Alt-Ergo and show how it is dedicated to a certain class of
problems that arise in program veri cation.

1.1 Satis ability Modulo Theories

In the eld of automated deduction systems, the two most popuar sub elds
are SAT solvers on one side, and general rst-order automaté theorem
provers (ATP) on the other side. Users of such deduction systms often want
to know the satis ability, or equivalently the validity, of formulas in a logic
which is more expressive than propositional logic, but morerestrained than
rst-order logic. Typically, these users are interested in the satis ability

of rst-order formulae where some predicate or function syniols have a

13

14

predetermined interpretation. For instance, the following formula:
x=0=) f@2+x)=1()

is not valid in general because 0, 2, + and even = can have nonandard
interpretations, but these nonstandard models are of no inerest and this
formula is indeed valid if the equality and arithmetic symbols have their
standard meaning. The interpretation of the predeterminedsymbols is often
called the background theory and the problem of deciding the satis ability
of a formula with respect to such a background theory is calld satis ability
modulo theory.

In order to deal with background theories in traditional aut omated de-
duction systems, one must somehow be able to impose the theoconstraints
to the prover. This can be done in di erent ways whether one isconsidering
a generic ATP or a SAT solver.

The only way to force rst-order automated theorem provers to only
consider models which are consistent with the background tkory is to add
axioms to the formula which describe the theory. This is onlypossible when
the theory is axiomatizable, or more precisely nitely axiomatizable, i.e.
when there exists a nite set of rst-order formulae which exactly describe
the theory. For instance, considering the fact that almost dl ATPs deal
with equality adequately, the formula above can be proved véid by such
ATP simply by adding the following two axioms:

(i) 8xyz;x+(y+2z)=(x+y)+z
(i) 8x;x+0=x=0+ X

which describe + as a monoid operation whose neutral elemens 0. The
performance of dealing with interesting theories through sich axiomatization
is often unacceptable, but more importantly, a great numberof interesting
theories are not nitely axiomatizable. For instance, Tarski's axiomatization
of real numbers [Tar46] cannot be expressed with a nite numter of axioms,
neither can Presburger arithmetic [Pre29]. All the theories of inductive
datatypes with a nite number of constructors (such as nite trees [BRVS95]
for instance) are not nitely axiomatizable either, because second-order logic
is required to express the induction principle.

We have seen that some theories cannot be axiomatized in an AT;
however, for many such theories, as those cited above, themxists decision
procedures for the satis ability of quanti er-free formul ae. Such decision
procedures have been actively studied in the last two decadeand there is a
growing list of decision procedures for theories with pradtal applications.
The research on SMT has been concerned with the problem of iegrating
these decision procedures in SAT solvers in order to solve é@SMT prob-
lem for the corresponding theories. Early research on the mblematic of

1.2 An SMT Solver Dedicated to Program Veri cation 15

incorporating decision procedures in formal provers was pérmed more

than thirty years ago by the likes of Shostak [Sho78, Sho79, #84], Nelson
and Oppen [NO79,[NO80], and later by Boyer and Moore[[BM88| BM(]

in their Boyer-Moore prover. The interest in SMT research rose again at
the end of the 1990s and has since been very active, both on tbeetical

and practical aspects. SMT solvers have been developed in ademia as
well as in the industry; an annual workshop brings together sers and de-
velopers of the SMT community; a common pool of benchmarks habeen
established [BST10] in order to measure the progress of theystems and a
competition [SMT] is organized in order to compare their rehtive strengths

and weaknesses. Technigues and systems from the SMT commgnare now

used in a variety of domains such as static checkers or veriation systems

(this is the case for Alt-Ergo, see Section_Ll2), model checkers (BLAST),
interactive theorem provers (HOL, PVS), etc.

There are two main approaches when designing an SMT solver, hich
are known as theeager and the lazy approach. Alt-Ergo, like most other
systems, follows the lazy approach and we will present this @hitecture in
detail in the next section. Whereas lazy SMT solvers rely on he dynamic
combination of a SAT solver and a decision procedure for thetieory literals,
eager SMT solvers try to express all the possible useful thep constraints
related to a formula and translate this formula in order to add all these
constraints and retain equisatis ability. The translated formulae are then
passed on to a standard SAT solver. A survey with many detailson modern
SMT techniques in both lazy and eager SMT solvers is availald in [BSST09].

1.2 Alt-Ergo: an SMT Solver Dedicated to Pro-
gram Veri cation

We now presentAlt-Ergo, an SMT solver dedicated to program veri cation.
Before we detail its architecture, we look into the context d program veri-
cation.

1.2.1 Program Analysis and Software Veri cation

There exists a broad range of techniques which aim at ensurin certain
properties (or, equivalently, avoiding certain run-time errors) in computing
systems. The main characteristics that allow one to classif these techniques
are whether they are automatic or human-driven, and whetherthey happen
at run-time (dynamic) or are performed statically. For inst ance, research on
programming languages leads to type systems which staticil ensure that
all well-typed programs will verify some properties (basi@ally the absence
of crash due to typing errors, but also the absence of null deferencing
in languages like OCaml, C# or Haskell) while other languages (typically

16

scripting languages like Python, PHP or JavaScript) only provide dynamic
type-checking.

In order to statically verify more complex properties of programs, for in-
stance detecting divisions by zero, out-of-bounds accesseover ows and
other typical dangerous situations a program can encounter techniques
like model-checking, abstract interpretation or static analysis can be used.
These techniques can be fully automated or simply semi-autmated, but in
any case require typically much less manual e ort than full formal veri ca-
tion using proof assistants such as HOL, Isabelle or Cog. Thamount of
manual work required usually depends on the complexity of tke properties
that one wants to establish. Examples of these systems, cadl extended
static checkers, include Spec# [BRS05], ESC/Javal|[FLL" 02] or SPARK.
The Whyplatform [Eil03] EMQ7] is a multi-language, multi-prover p latform
for program veri cation, whose architecture is shown in Figure [L1.

Annotated C programs JML-annotated Java programs

| |

Caduceuy =ssss==)p \Why program < e————— Krakatoa

|

Why
Interactive provers l Automatic provers
(Cogq, PVS, @mmmm \eri cation conditions == (Alt-Ergo, Simplify,
Isabelle/HOL, etc.) Yices, Z3, CVC3, etc.)

Figure 1.1: Architecture of the Whyplatform

The platform revolves around Why, a veri cation condition generator
(VCG) which takes an annotated Whyprogram as input, analyzes it and re-
turns a set of logical formulae, calledveri cation conditions or proof obliga-
tions (PO). The annotations in the input program express logical properties
on the program's behaviour and the tool guarantees that it issu cient to
verify that all the PO are valid in order to check that the logi cal properties
in the program are veri ed. The Whyplatform can then translate these ver-
i cation conditions and dispatch them to a variety of prover s, interactive or
automatic. Whyis used as an intermediate annotated language for verifying
programs in mainstream languages, namely C and Java, throuy separate
tools called Caduceus and Krakatoa. These tools perform laguage-speci c
analysis, in particular they need to model their respectivelanguage's features

1.2 An SMT Solver Dedicated to Program Veri cation 17

into the intermediate language. For example, let us considethe following
annotated C program:

[*@ ensures
@ \result >= x && \result >= y &&
@ (\result == x || \result == vy)
@*/

int max(int x, int y) {
if (x > y) return x; else return y;

}

It de nes a function maxwhich computes the maximum of two integer ar-
guments. The special comments preceding the function are #hannotations
that describe its behaviour: it states that the result of the function should
be greater or equal than both arguments and should be one of thtwo argu-
ments. Processing this program through theWhyplatform will yield proof
obligations corresponding to two branches of the conditioal in the function:

8xy :int; x>y =) X XAX yrMN(X=X_X=Y)
8xy :int; x By =) y x"y yt(y=x_y=y)

which are ftrivially true and can be discharged by any automatkd prover
knowledgable about linear arithmetic. This is a very easy eample, but such
program analysis often yields a great number of proof obliggons, many of
which are quite easy. Therefore it is very important to be abk to discharge
these obligations automatically as much as possible. The fe very complex
obligations, if any, can be inspected by hand or in an interative prover.

An automated theorem prover used at the back-end of such a prgram
veri cation plaform needs to be able to deal with quanti ers and with back-
ground theories corresponding to the various built-in dataypes of the source
languages, typically arithmetic, arrays, tuples, etc. This is why SMT solvers
like Z3 [dMBO08], Yices [Yic] or CVC [BTQ7], i.e. those which can deal with
rst-order logic in general, are tools of choice for such a tak, and Alt-Ergo
was developed speci cally for that purpose.

1.2.2 Alt-Ergo

In the context of program veri cation, we have seen that goak to be proved
are formulae of typed rst-order logic with quanti ers and i nterpreted built-
in symbols for equalities, integer and/or oating point ari thmetic, etc. Sorts
naturally arise from the usual datatypes of programming larguages (as in-
tegers in our example above) and also from the user speci cans. Annota-
tions in Why, for instance, are very expressive since they allow user-ded
types, symbols, functions and predicates. Whyalso has the particularity
of using polymorphic types [Pie02]: polymorphism is very cavenient to

18

de ne and reason about generic data structures like arrays o lists, and
also as a means to ensure separation in the memory model use¢ ICa-
duceus [HMO7, TKNO7].

Unfortunately, there are only a few SMT solvers under active develop-
ment which deal with quanti ers, but none of them can handle polymorphic
rst-order logic natively. In order to use these provers, which are either un-
sorted or multisorted, the available solutions are to ignoe types, trying to
guess the monomorphic instances which are needed for a givéormula, or
using encodings, and all these solutions are quite unsatiattory [CLO7]. Alt-
Ergofully supports polymorphic rst-order logic and is therefo re particularly
well-suited for the Whyplatform.

‘ SMT parser’ ‘ Why parseﬂ

N S

e v ™

main loop

. Decision
ceX) procedure
o

Figure 1.2: Architecture of Alt-Ergo

Alt-Ergo's architecture is shown in Figure[1.2; it is highly modular and
this gure schematizes the relation between the di erent modules. On the
front end, Alt-Ergo accepts two di erent syntaxes: the standard SMT for-
mat de ned in the SMT-LIB [BST10]} and Why's native format. For both
formats, an abstract syntax tree in the same internal datatype is produced
and then type-checked in polymorphic rst-order logic. The formulae then
enter the main loop of the prover, which performs the proof sarch:

SAT-solver. The main part is a home-made SAT-solver with backjumping
which deals with the propositional part of the formulae. It also keeps
track of the lemmas (.e. universally quanti ed hypotheses) of the
input problem and those that are generated during the execubn.

Matching. The matching module is used to nd terms that can be used
to instantiate the lemmas contained in the SAT solver; it proceeds

1.2 An SMT Solver Dedicated to Program Veri cation 19

modulo the equivalence classes i€C(X) and allows the SAT-solver to
derive ground sentences from the available lemmas.

CC(X). The CC(X) module handles the ground atoms assumed by the SAT-
solver: the SAT-solver sends atoms to this box, which in turninforms
the SAT-solver of what atoms are true or false. It combines tke the-
ory of equality (i.e. uninterpreted symbols) with a theory X via a
congruence closure algorithm moduloX.

Decision Procedure. The decision procedure implements the reasoning
relative to the background theory X and is used byCC(X) in order to
construct equivalence classes modulX.

Alt-Ergo is implemented in OCaml [Obj] and uses almost exclusively
functional data structures, except for the technique of has-consing, which
is used extensively in order to ensure maximal sharing in thelata structures
and to avoid the blow-up in size due to the conversion to conjactive normal
form [ECO6]. Its development was started in 2006 and its mairloop is about
5000 lines of code, which is really small for an SMT prover. Tk small size
and modular architecture of Alt-Ergo make it easier to establish that the
prover is correct, and this last point has been a motivation @nd a concern)
from the beginning.

In order to ensure its correctness, we present formalizatios of the al-
gorithms at the heart of the most critical modules in Alt-Ergo. Chapter [2
deals with the SAT-solver module and formalizes the DPLL algrithm on
which Alt-Ergo's SAT-solver is based, as well as various optimizations. Cdip-
ter @ is devoted to the CC(X) module and describesAlt-Ergo's original con-
gruence closure algorithm modulo a background theory. The @quirements
that the corresponding decision procedure must verify are o dealt with
in Chapter Bl We do not give any formalization for the matching mod-
ule: this module is indeed not critical for two reasons. Fir$ and foremost,
the matching mechanism cannot really be incorrect in the sese that any
possible lemma instantiations are correct, the matching mehanism is sup-
posed to e ciently determine usefulinstances, and useful instances only, but
too many instances can only cause ine ciencies. Second, rsorder SMT
solvers cannot be complete in general on non-ground formuéa therefore
even if the matching mechanism misses all instances, the pver may just
be more incomplete than ideal, but again it is not a critica | error. Now,
matching e ciently can be a dicult challenge and advances t echniques
exist (see [MBQTY] for instance). Alt-Ergo uses a rather naive approach but
some subtleties arise due to the polymorphic logic, as expiaed and detailed
in [BCCLO8].

20

CHAPTERZ

Formalization of the Propositional Solver

Contents

1 DPII: A SAT-Solving Procedure 22
R11 The Satis ability Problem]. 22
[2.1.2 _The DPLL Procedur® 23
[2.1.3 DPLI as an Inference System 24
[2.1.4 Correctness Proofs for DPLL 27

2.2 Standard DPLL Optimizations . .J. 31
[2.2.1 Non-Chronological Backtracking 31
2.2.2__Correctness of the Backjumping Mechanism . . 33
[2.2.3 Conict-Driven Learning| 40
2.2.4 Backjumping vs. Learning 43

23 FOomSATtQSMT. J................ 43

24 Discussionl 47

-of-the-Art SAT Solver$ 47

242 Conclusioh 49

In this chapter, we present the formalization of the propostional solver
at the heart of Alt-Ergo. As explained in the previous chapter, this part
of the system is fundamental to any SMT solver and we want to garantee
its correctness. Alt-Ergo's propositional solver is a SAT solver based on
the traditional Davis-Putnam-Logemann-Loveland (DPLL) p rocedure and
we start in Section 21 by presenting this original DPLL procedure. We
also give our own formalization of this algorithm through a set of inference
rules and prove the correctness of our inference system. IneStion [Z.2, we
extend this system by successively adding non-chronologt backtracking

21

22

and a mechanism for learning new clauses from con icts. We tan go on to
discuss other typical optimizations of state-of-the-art SAT solvers which we
have not integrated into our system. In Section[Z.8, we show bw the SAT
solving procedure we have presented can be easily adapted order to be
integrated to an SMT architecture.

2.1 DPLL: A SAT-Solving Procedure

2.1.1 The Satis ability Problem

The satis ability problem SAT is the problem of deciding whether the vari-
ables of a propositional (or boolean) formula can be assiguevalues in such
a way as to make the formula true. A formula for which such an asign-
ment exists is said to besatis able whereas a formula for which no suitable
assignment exists is said to beunsatis able. Of course, the unsatis ability

problem is dual to the satis ability one and both are equally dicult. It

is a well-known result, and one of the rst historical results in complexity

theory, that the satis ability problem is NP-complete [Coo 71]].

More formally, the formulae of propositional logic are de ned as follows.
We assume a seL of propositional variables, also calledatoms, and a for-
mula is any sentence which can be built using the usual logidaconnectives
and the atomsx in L:

F = xj:FjF _FjFAFjF! FjF$ F:

The SAT problem is traditionally presented with solely the conjunction *,
disjunction _ and negation: operators, but any functionally complete set of
boolean operators can be used without changing the nature dhe problem,
and we choose here to add the implication and equivalence comctives. A
formula reduced to an atom is said to beatomic. A literal is a variable or
the negation of a variable; it is called respectively apositive or a negative
literal. We will write the negation of literals in a slightly di erent manner
than the negation of formulae, namelyl will denote the negation of literal I.
A clauseis a disjunction of literals and a formula is in conjunctive normal
form (CNF) if it is a conjunction of clauses, i.e. a conjunction of disjunction
of literals.

There are several ways to decide the satis ability or unsats ability of
a boolean formula. The most naive way is to enumerate all possle as-
signments and check for each one if the formula becomes trug oot; for n
variables in the formula, there are 2' assignments to try. Much better ways
have been developed over the years in order to avoid as much gmssible
the exploration of this exponential search space. Some tedigues such as
Binary Decision Diagrams [Bry92] can decide satis ability for any boolean
formula, but the majority of modern SAT solvers are variants of the DPLL

2.1 DPLL: A SAT-Solving Procedure 23

procedure and only operate on formulae in CNF. Before we deah detall

with the DPLL procedure and some of its variants, let us recal that any

propositional formula can be converted into an equivalent brmula in CNF,

using the well-known De Morgan rules. Therefore requiring hat the for-

mulae be in CNF is not a restriction per se and in the remainder of this

chapter we shall assume that formulae are in CNF. We will disass the issue
of CNF conversion in great detail later in Chapter[4.

To conclude this introduction, here are several examples:

the formula (x1_ (X3 x1)) $: (X2_Xx3) is satis able, take for instance
X1 false, x> true and x3 false;

the formula (x1 _ X2) » X2 X1 is in CNF and is unsatis able;

for any positive integer n 2 N , the formula

m n 1 mim 1l

Hp = Xpi N (Xpi _ Xqi)
p=1 i=1 i=1 p=1¢=1

is unsatis able. It expresses the pigeon-hole principle,.e. the fact
that n pigeons cannot be putinn 1 holes without two pigeons sharing
the same hole. The variablex,; stands for pigeon p is in the holei ,
the rst part of the conjunct expresses the fact that all pigeons are
sheltered, while the second part prevents each hole from ctaining two
pigeons. Note that the formula is in conjunctive normal form. Generic
formulae like this one are very useful to benchmark or test a ppcedure
since the parameter can be changed at will; the unsatis abilty of the
pigeon-hole formula is notoriously di cult when n grows.

2.1.2 The DPLL Procedure

The Davis-Putnam-Logemann-Loveland procedure was propasd in two sem-
inal papers in the early 1960s in order to solve the satis ality problem for
propositional formulae. In [DP60], Davis and Putnam rst pr oposed a semi-
decision procedure for rst-order logic which proceeded byenumerating all
propositional ground instances of a formula and checking tk satis abil-
ity of each of these instances. The satis ability check was erformed by a
resolution-based procedure,j.e. the instance was simpli ed repeatedly by
using the following rule:
I_C | _D
CcC_D
which resolves two clauses in a single clause by eliminatirgliteral appearing

positively and negatively. This method led to a worst-case gponential blow-
up in the size of the formula and in order to avoid this, Davis, Logemann

24

and Loveland then re ned the satis ability procedure in [DL_L62], and what
is now known as DPLL.

The DPLL algorithm works on a CNF formula and runs by guessingtruth
values for literals and the way in which it improves on a naive exhaustive
backtracking search is the eager use of the following rules:

Boolean constraints propagation. Once a truth value has been assigned
to a literal, the formula can be simplied accordingly: false literals
can be deleted from the clauses where they appear, and classthat
contain true literals can be removed from the formula.

Unit propagation. A unit clause is a clause which only contains one lit-
eral. It is obvious that such a clause can only be satis ed by asigning
the adequate value to make that literal true. Such determinstic choices
of a truth value for a variable cuts out a large part of the expaential
search space and is thus very important for e ciency.

Pure literal elimination. A literal is pure if it only appears with the same
polarity in the whole formula. A pure literal can be assignedsuch that
all clauses that contain it are true, in other words, it is not constraining
the proof search and they can be eliminated systematicallyNote that
this heuristics is not used anymore because the cost of detiétg pure
literals exceeds the bene t of eliminating them in modern SAI' solvers,
therefore we will not include this rule in our presentation.

In this fashion, the algorithm proceeds by successively agmning values to
the variables in the formula until one of the following occurs:

the simpli ed formula is reduced to the empty conjunction ;, which
means that the current assignment satis es the formula; in dher
words, the formula is satis able and the algorithm stops;

one of the clauses in the problem is empty (also called eon ict clause)
and cannot be satis ed with the current assignment; in that case the
search backtracks and tries another assignment to some vable. If
this is not possible, the formula is unsatis able.

2.1.3 DPLL as an Inference System

We now present the DPLL procedure formally as a system of infeence rules.
We use the following conventions for denoting formulas in CNF:

the order in which literals are presented in a clause is irradvant, as
well as the order of clauses in a CNF formula;

we write | _ C for a clause containing the literal |, and we use set-
theoretic notation fl;l5;13g to denote the clausel, 1, _ I3;

2.1 DPLL: A SAT-Solving Procedure 25

a formula in CNF is written Cq;:::;C, where the C; are the di erent
clauses of the formula, we use to range over such conjunctios of
clauses.
y ,C . ,
Red - Elim Assume —
oy o ; 1_C flg
Conflict ——— Split ’

Figure 2.1: An abstract presentation of DPLL

Our DPLL formalization is given in Figure ZI1through ve inf erence
rules. The state of the algorithm is described as &equent ~ , where is
the set of literals assumed to be true, and is the current formula. These
rules must be read bottom-up: the state under the bar is the sate before
the application of the inference rule.

The rst two rules perform the boolean constraints propagation as de-
scribed above. If a literal is supposed to be false (its negain belongs to
), it can be eliminated from all clauses (Red); if a clause contains a true
literal, the entire clause can be removed Elim). Assume implements the
unit propagation by assuming a literal in a unit clause. Split represents
the variable assignment and is the only branching rule: a lieral is assumed
to be true on the left branch and false on the right branch. Finally, the
Conflict rule detects empty clauses and has no premises: it is the only
rule that ends the di erent branches of the proof search.

Starting with some sequent ~ , building a complete derivation with
these rules requires each branch to end with an applicationfahe Conflict
rule. In other words, if there exists a derivation starting with ~ , there
is no satisfying assignment of the variables in such that all the variables
in are true (we will say that such an assignment extends). Reciprocally,
if there is no derivation for =~ | it means that there is a branch that
reduces to the empty set of clausesi.e. that there is a way to extend
while satisfying . Now, given a formula in CNF , the unsatis ability of

is equivalent to the existence of a derivation for the sequent ; ~ , i.e.
starting with an empty partial assignment. We will prove the se properties
in the next section.

Derivation system vs. Algorithm. The DPLL algorithm and its mod-
ern variants are traditionally presented in a procedural manner [DLL62,
MMZ * 01], that is as deterministic algorithms (for instance as alstracted
real code or pseudo-code). We instead chose to present thegalithm as an

26

abstract set of inference rules, in particular we do not speiéy how and when
rules should be applied.

This kind of presentation is more similar to Tinelli's DPLL(T) presen-
tation [Tin02]. In our opinion, the main advantage of this approach is that
we can manipulate the system without taking the details of a articular
implementation into account. Typically, we can prove the carectness of
our system regardless of a particularstrategy of how rules should be ap-
plied, and the proofs will apply to any implementation based on the given
rules. It would have been possible to add more constraints to the system,
restricting which strategies are acceptable and which areh, by using side
conditions for some inference rules. For instance, the usef dhe splitting
rule Split could be modi ed like this:

e 1 Il 2

Split < 9C2 :l2cC

in order to constrain the rule to only be applied to an unassigned literal that
actually appears in the problem. There is not much benet in doing that:
these side conditions are not used in the soundness proof di¢ system, and
they just constrain the completeness proof by forbidding sme applications
of the rules. On the other hand, if one nds a very e cient stra tegy which,
for some reason, occasionally performs a useless split on alteady assigned
literal, one could not use the system to justify the strategy Also, if we add
some strategy to the rules, how much should we add exactly? lis reasonable
to think that the Conflict rule should be used as soon as possible, and
that boolean constraint and unit propagation should be perbrmed eagerly
otherwise, with Split used as a last resort. This speci ¢ strategy could be
summarized in regular expression style as:

(Conflict ?.(Red |Elim JAssume)*. Split')*

but it is very restrictive and other reasonable alternatives or re nements
exist, such as:

(Conflict ?.Assume*.Red*.Split')*

Because there is no reason to favour one patrticular strategyve chose to not
add any unnecessary constraint to our system in order to keejit as general
as possible. Some strategies may be complete, some may bedmplete@,
but all strategies will be correct as long as the system is sad.

In the second part of this document, when we will provide a fomal
proof of this system in the Coq proof assistant and then derie some Coq
implementations, this approach will be of the utmost importance. It will

IWhen considering one particular strategy, its completeness should always be investi-
gated; the completeness of the system itself is just that there exists at least one complete
strategy, as we can see in the proofs pag€2d7.

2.1 DPLL: A SAT-Solving Procedure 27

allow us to prove the abstract system once and for all, and tha prove the
correctness of the di erent strategies we will implement wth respect to the
original system; in particular, this is a very useful way to factorize proofs.

2.1.4 Correctness Proofs for DPLL

We claimed in the previous section that the existence of a dévation of ; °
in the system presented in FigureZZ.1l is equivalent to the unatis ability of
the formula . We will now prove this claim. There are actuall y two
separate parts to prove: thesoundnessof the system is the fact that only
unsatis able formulas have a derivation, whereas itscompletenesds the fact
that a derivation can be found for every unsatis able formuld?,

We will actually prove slightly more general results, for ary sequent

, and the case with an empty assignment will only be a partic ular

instance. We start with the de nition of the semantic notion of model.

De nition 2.1.1 (Models). Given a set of atomsL, an L-model M is a
function L 7! f> ;?g which assigns a truth value (true>, or false ?) to
every atom. We write M (x) for the truth value of atom x in the model M .

This notion of model is general and we will use it in the next clapter as
well. We will write model instead of L-model because the set of atoms is
clear from the context. For example, in the remainder of thischapter, L is
the set of propositional variables de ned earlier.

We extend the M (x) notation to literals in a natural way: we write M (1)
for the truth value of the literal |, namely M (x) if | is a positive literal X,
and the negation of M (x) if | is a negative literal x.

De nition 2.1.2 (Satis ability) . A set of clauses is satis able if and
only if there exists a modelM such that for every clauseC in , there
exists a literal | 2 C such thatM (I) = >. In that case, we write M j =

If there exists no such modeM , is said to beunsatis able.

Because we will be dealing with models that are compatible vih a partial
assignment , we need a more general notion of satis ability with respect
to a partial assignment, which we call compatibility.

De nition 2.1.3 (Submodel). A set of literals is a submodelof a model
M, denoted M , if every literal | 2 is true in M. We also say that
M completes

De nition 2.1.4 (Compatibility) . A set of literals and a set of clauses

are compatible if and only if there exists a modelM completing such
that M j= . If there exists no such model, we say that and are
incompatible.

2In our choice for naming the two implications soundness and completeness, we are
focusing on the unsatis ability of a formula: if we were taki ng the dual point of view of
satis ability instead, the soundness and completeness properties would be swapped.

28

We can now prove the soundness of our DPLL derivation system.

Theorem 2.1.5 (Soundness of DPLL) Let be a set of literals and a
set of clauses such that the sequent * is derivable, then and are
incompatible.

~

Proof. We proceed by structural induction on the derivation of and

by case analysis on the rst rule applied:

(Conflict) The set of clauses contains the empty clause; , therefore there
cannot be a modelM satisfying and and are incompatible.

(Red) By induction hypothesis, there is no modelM such that ;I M
and Mj= ;C. Suppose now that there is a modeM completing ;I and
such that Mj= ;I _ C. In particular, M j= and there exists a literal
kinl_ C suchthat M (k) = >. BecauseM completes ;I, M (I) = > and
thereforek 6 | andk 2 C. Thus,Mj= CandMj= ;C, which contradicts
the induction hypothesis.

(Elim) Assume there is a modeM completing ;I suchthat Mj= ;I _
C. In particular, M j= and therefore ;| and are compatible, which
contradicts the induction hypothesis.

(Assume) Assume there is a modeM completing such that Mj= ;flg.
By de nition, it must be the case that M (1) = >. Thus, ;I is a submodel
of M, and sinceM j = , then ;1 and are compatible, which contradicts
the induction hypothesis.

(Split) Assume there is a modelM completing such that M j= . De-
pending on whetherM (I) is > or ?, M completes ;I or ;l. In either case,
this contradicts the induction hypothesis for one of the two branches. [

Corollary 2.1.6. Let be a formula in conjunctive normal form. If ;°
is derivable, is unsatis able.

Proof. By Theorem [ZZ1.5, and the empty assignment are incompatible.
Since the empty assignment is a submodel of every model, thimeans that
there are no models of , in other words is unsats able. O

We now turn our attention to establishing the completeness éthe deriva-
tion system, i.e. proving that a derivation can be found for any sequent

as soon as and are incompatible. Such a proof actually con -

tains a strategy: it explicitly shows how to build a derivati on for a given
incompatible sequerE. More precisely, any complete proof search strategy
using the rules in Figure[Z1 can be used as a skeleton for a cpfeteness

3This claim only holds if the proof is constructive of course, which will be the case here
and for all our formal proofs in the Coq proof assistant later in Part 2. Our point here is
really to stress that there is a strong link between an actual proof search strategy and the
completeness proof.

2.1 DPLL: A SAT-Solving Procedure 29

proof, and there are at least as many proofs as strategies. Eer strategies
make for easier proofs, therefore we will follow a very naivestrategy for
constructing our proof.

De nition 2.1.7 (Well-formed assignments) A set of literals is well-
formed if it does not contain both a literal | and its negation|.

Until now, we had not imposed any restriction on the partial assignment

in a sequent. In order to prove completeness of the system hwever, we
need this notion of well-formedness. To see why, notice thaticcording to
the de nition of a submodel, only a well-formed can be a submodel of
someM . Therefore, an ill-formed is incompatible with any sets of clauses
, but we cannot expect to be able to build a derivation for suc h sequents:
considerx1;X; ~ f x»g for instance. We will thus only prove completeness
for incompatible sequents with a well-formed assignment.

Lemma 2.1.8. Let a well-formed set of literals and a set of clauses
incompatible with , such that all literals appearing in are present either
positively or negatively in . Then, there is a derivation of the sequent

Proof. Let M be a model completing . There exists such a model because

is well-formed, and it su ces to arbitrarily complete to a |l variables in
L not appearing in . Now, because is incompatible with , the re exists
a clauseC in such that all literals in C are false inM . Since all variables
in are assigned positively or negatively in , this means th at for all literal
12C,12 .

Therefore, we can applyRed as many times as there are literals in the

clause C, and we are left with a sequent containing the empty clause, @
which point we apply Conflict . We have built a derivation for

———— Conflict
fI I Red
] 2y+-++31n Red
B EH PYR e
O
Theorem 2.1.9 (Completeness of DPLL). Let a well-formed set of literals
and a set of clauses incompatible with , then the sequent ° is
derivable.

Proof. Let L%be the set of variables appearing in which are not assigned

Starting with ~ |, we apply the Split rule as many times as necessary

30

on all the x; in sequence, until we obtain 2 branches of the form ©°

where 0ranges from ;Xq1;:::;Xn t0 [X1;111Xp
X Xn “:Split D X Xn :::Split
v Split — Split
X1 X1 Split
Let us consider one of the top sequent of the form °° . Since Cis a

superset of and and are incompatible, Oand are incompatible.
By construction, since is well-formed, so is °since we only split on each
variable once. Finally, all the variables that appear in ar e assigned in
O therefore we can apply Lemma 2118 to the sequent®” and nd a
derivation for this sequent.
By applying the lemma for each sequent at the top, we have butla full
derivation for the sequent ~ . O

Corollary 2.1.10. Let be an unsatis able formula in conjunctive normal
form. The sequent; "’ is derivable.

Proof. The empty set of literals ; is well-formed. Therefore, we can apply
Theorem[Z.1.9 and; = is derivable. O

Final remarks. We have established the equivalence between the unsat-
is ability of a formula and the existence of a derivation in our system from
Figure[Z1. Note that since we based the completeness prooh@ very naive
strategy, it does not even use theElim or Assume rule. Indeed, the system
formed by the rules Red, Conflict and Split is a correct and complete
inference system for the unsatis ability of formulae in CNF. We added the
Elim rule because it may be desirable and it cannot be implementedavith
the three basic rules; typically, most imperative implemertations will not
perform elimination of true clauses explicitely during the proof search, but
some functional implementations may, in order to simplify the problem dur-
ing the proof searchl. The Assume rule can actually be implemented using
the other rules:

y T Conflict

o 'I" fl ; ,f,l Red
—— Assume i g . . g Split
flg 0 flg

“This will of course be the case for our implementation of this system in Coq, but it
is also the case inAlt-Ergo, therefore we need to include this rule to adequately describe
Alt-Ergo’s SAT solver.

2.2 Standard DPLL Optimizations 31

but we add it speci cally because of its historical and practical importance.

2.2 Standard DPLL Optimizations

The system described in the previous section remains very e, and modern
SAT solvers, though based on this original procedure, achie much better
results thanks to numerous optimizations [ZM02,[Fre9%]. Sme of these
optimizations have a heuristic nature, as they try to pick the most relevant
decision literals when applying the Split rule for instance. Others, on
the contrary, are purely algorithmic and aim at pruning part s of the proof
derivation in order to avoid repeating similar reasonings gveral times.

In this section, we will only focus on the latter kind of enhancements
(namely non-chronological backtracking and con ict clause learning), while
the others will be brie y addressed at the end of the chapter. In particular,
we will show how slight modi cations of the system presentedso far can
lead to sharp improvements.

2.2.1 Non-Chronological Backtracking

Principle. Non-chronological backtracking [SS96], also called backmp-
ing, consists in checking whether a literal introduced in the application of
Split was useful to the derivation of a conict in the left branch of this
rule. In the case wherel wasn't used to establish the conict, the system
can avoid checking the right branch of the rule since the sameon ict could

be derived in that branch anyway. To illustrate this method, Figure 22
shows a run of DPLL on a particular example where variables a& encoded
as integers:

4" fg 5 fg
———— Assume ————— Assume
3°f 4g;f4g 3 f 5g;f5g

2°f 3;49;13;4q;3;50g;f3; 59
1°f 3;4q;f3;49;f2;3;50g;f3;5g; f3;59
0°f 3;49;f1;3;4qg;f2;3;5q; f3;5g;f3; 59
; f 0;3;4g;f1;3;49;f2;3;5g;f3; 59; 3; 59

Sl -
it 27 .
Split
Split
~ Split

Figure 2.2: An example run of DPLL

Only the rules Assume and Split are actually represented, as we as-
sume that every possible boolean constraint propagation h&been realized
between each application of these rules. Also, due to spacemstraints, only
the last added literal is shown in . One can notice that in the branch where
2 has been assumed, con icts arise from the interaction of th literals 3, 4
and 5. The same derivation certainly exists in the right branch where2 was

32

supposed instead of 2, and the proof search in this branch isherefore done
uselessly by DPLL.

Whereas some optimizations are based on heuristics and tryotpick the
best candidates to split on in order to avoid cases like the oa above as
much as possible, non-chronological backtracking permitd¢o detect these
cases during the proof-search and recover from an earlier fmrtunate literal
choice.

Changing the rules. In order to take this phenomenon into account,
the system has to be able to calculate which literals are respnsible for
the con icts in a given branch of a proof derivation. We do this by adding
dependency information to literals and clauses in a sequentTo that purpose,
we modify our DPLL system from Figure [Z1 in the following manner:

the context now contains annotated literals, i.e. pairs I[A] wherel
is the literal added to the context and A is a set of literals (called its
dependencie} representing those literals who led to the introduction
of | in the context;

each clause in is now also annotated by a set containing the iterals
that played a role in its reduction;

~

nally, sequents are now of the form A where the new element

A is the set of literals used to establish the incompatibility of and

. One can also view these sequents as an algorithm taking asriput
and , and returning a set of literals A. We call A the conict set

of the sequent ~ : A.
Red ;I[B]‘\ ;C[B[C]:A Elim ;![B]‘ A
Bl S1_C[Q:A Bl s1_C[Q:A
. Bl A
Conflet ——M—— Assume —M—
G [A]CA 1B A
Split A1 @ A \ J[Anl] BI2A
. B
BJ MI%A
A

Figure 2.3: Inference rules for DPLL with backjumping

2.2 Standard DPLL Optimizations 33

The rules corresponding to this mechanism are detailed in Fjure [2.3.
The ve original rules are adapted from the rst system, and a hew oneBJ
performs the backjumping. In the rules Red, Elim and Assume, annota-
tions are naturally passed over to clauses and literals: thelependencies of a
reduced clause are the dependencies of the literal used todhece it plus those
of the original clause; the dependencies of a unit clause aggropagated to
the corresponding literal; other dependencies do not chargy including the
con ict sets. The con ict sets are actually assigned exclusvely by the Con-
flict rule, which now returns, in the right-hand part of the sequert, the
set of literals that led to the empty clause. The Split rule is the one which
introduces new literals in the mix, and therefore introduces new dependen-
cies: a literall assumed in a split only depends on itself. The right branch is
more involved: the negationl depends on the con ict set of the left branch,
i.e. it is implied by the fact that no satisfying assignment was faund in the
left branch, with | assumed. The con ict set of the whole split is the con ict
set returned by the second branch. Finally, the information brought by the
conict set is used in the BJ rule in order to implement the backjumping
mechanism, by discarding the right branch of the split when the con ict set
does not contain the chosen literall.

Now, if we take another look at the example of FigurdZ2, the érivation
where Split was applied with the literal 2 will now be an application of the
new BJ rule. This is represented in Figure[Z4, whereA stands for the set
of literals f0;1;3g et B= An 3 = f0; 1g. SinceA decorates the left branch
and does not contain 2, the right branch will not be explored.

- Conflict - Conflict
4[0;3] " fg [A]: A 5B] fg [B]: B
- Assume - Assume
3[3] " f 4g[0;3];f4g[1;3] : A 3[A] " f 5g[A];f5g[A]: B Split

2[2]" f 3;49[0]; f 3; 49[1]; f 3; 59[1; f 3; 5q[] : B

111" f 3,40[0], 13, 40[L], 12,3, 50011 3,500 {3,500 : B

Figure 2.4: An example run of DPLL with backjumping

As a side remark about the inference system, notice that thigime we
added some side conditions to the rules: the one fdBJ is required for the
rule to be correct, but the one for Split could be removed safely. There is
just no reason to useSplit whereBJ could be used, therefore we added this
second side condition in order to make the two rules mutuallyexclusive.

2.2.2 Correctness of the Backjumping Mechanism

In order to prove correctness of the inference system with no-chronological
backtracking presented in the previous section, we will siralate derivations

34

in this system with derivations in the system without backtr acking. This
is one advantage of using a very generic presentation in Seaoh Z1: we
can prove further systems as re nements of the rst one, ensting some
factorization of the proofs. We start by showing a weakeningproperty for
the derivation system without backjumping.

Lemma 2.2.1 (Weakening). Let , ©be two sets of literals such that
0 and , O9two sets of clauses such that 0 Then, if ° is
derivable, sois ©° O

Proof. The proof is really straightforward and proceeds by induction on the
derivation of By analyzing each possible rule, it is easy to check
that adding new clauses and literals does not change the apighbility of the
rules. Note that it is a very natural property if we take the point of view
of unsatis ability instead of derivability: if is incompa tible with , then

surely adding more clauses to will not help, and neither wil | adding more
constraints to . O

De nition 2.2.2 (Cutting dependencies) If is a set of annotated literals
and A a set of literals, we write ;5 for the set of literals which only depend
on literals in A:

ia = fljl[B]2 ;B Ag :

Similarly, if is a set of annotated clauses, we write ;5 for the set of
clauses only depending on literals imA:

in=fCjC[B]2 ;B Ag :

This cutting operation provides us with a translation from sequents with
dependencies to sequents without dependencies. We also teri ; and

for respectively the sets of literals in and clauses in , i.e. this is a special
case of cutting which just removes all annotations. Our prod is based on
a stability property: if ~ . A is derivable, then ;5 = s is derivable,
which gives a relation between derivations with backjumpirg and derivations
in the original DPLL system. In order to prove the stability, we need an
invariant on the annotations in and . To see why, consider t he sequent
- i1 [X1] : X120 where is some set of clauses, it is trivially derivable;
if we cut this sequent with the set fxi1g, the resulting sequent is; °

and is of course not derivable in general. To avoid such casesve de ne
well-annotated sequents:

De nition 2.2.3 (Well-annotated). Let be a set of annotated literals,
a set of annotated clauses and\ a set of literals. The sequent ~ : A'is
well-annotated if the following holds:

() 8k[B]2 ;812B:I[]2

2.2 Standard DPLL Optimizations 35

(i) 8C[B]2 ;82B;I[]2

In other words, all literals | appearing in dependencies in and must be
such thatl[l] belongs to . We call such literals decision literals

Note that the de nition of well-annotated sequents does notsay anything
about the con ict set A and one may wonder if the literals in A should also
be decision literals or not. This is indeed a consequence ohé derivability
of a well-annotated sequent.

Lemma 2.2.4. If ~ : A is a derivable, well-annotated, sequent, then
for all literal 12 A, I[I] belongs to .

Proof. We proceed by induction on the derivation of ~ : A and case
analysis on the rst rule applied.

(Conflict) When Conflict is used,;[A] belongs to , and because the
sequent is well-annotated, all literals in A are decision literals.

(Red) If Red is used, the start of the derivation looks like this:
JI[B]° ;C[B[C]:A
Bl ;I_CI[C:A

Red

It is straightforward to check that the sequent ;I[B]~ ;C[B[C]:A'is
well-annotated, and therefore we get the result by induction hypothesis.

(Elim) If Elim is used, the start of the derivation looks like this:
BT A
Bl 1_C[C:A

Elim

We can apply the induction hypothesis because the premise gaent is well-
annotated and we obtain that all literals in A are decision literals.

(Assume) If Assume is used, the start of the derivation looks like this:

Bl

————— Assume
1[B]: A

Notingthat ;I[B]~ : A iswell-annotated, we get by induction hypothesis
that any literal k in A is such that k[k] belongs to ;I[B]. Becausel cannot
be in B, this means that k[k] belongs to and we have the needed result.

(BJ) If BJ is used rst, the start of the derivation looks like this:

;|[|\]‘. A g

A

and we have the additional hypothesis thatl 2 A. Let k 2 A, by induction
hypothesis we know thatk[k] 2 ;I[l]. Sincek 6 I, we know that k[k] 2 .

36

(Split) If Split is used rst, the start of the derivation looks like this:

] B ABnl]> A
A

Split

with the additional hypothesis that | 2 B. We can apply the induction
hypothesis on the left branch, and we obtain that all literals k in B are such
that k[k] 2 ;I[I]. Therefore, we know that all literals k in B nl are such

that k[k] belongs to , and thus that the sequent ;I[Bnl]~ : A is well-
annotated. Hence, we can apply the induction hypothesis to his sequent
and we get that all literals in A are decision literals. O

We now have enough to express the stability theorem.

Theorem 2.2.5 (Stability) . Let be a set of annotated literals, a set of
annotated clauses andA a set of literals such that =~ : A is a derivable,
well-annotated, sequent. Then, there exists a derivationfo jo = ja.

Proof. First, note that the statement mixes two di erent kind of der ivations.
Because the syntactic nature of the sequent usually su ces ¢ distinguish
between derivations in DPLL with and without backjumping, w e do not
explicitely state which system we are using unless it is abdotely necessary.
The proof proceeds by a structural induction on the derivation of
A and by case analysis on the rst rule applied. Note that when aplying
the induction hypothesis, we will not explicitely prove that the premise
sequents are well-annotated, the arguments are exactly theame as in the
above lemma.

(Conflict) When Conflict is used, the empty set belongs to and is
annotated with the con ict set A. Therefore, it also belongs to ;4 and we
can apply Conflict to nd a derivation of ;o = ja:

(Red) If Red is used, the start of the derivation looks like this:

JI[B]° ;C[B[C]:A
Bl s1_CI[C:A

There are two cases to consider:

if B[C A , then both B and C are subsets ofA, and thus I, C
and | _ C are not removed when cutting the sequent. The induction
hypothesis gives us a derivation of j5;I ©= j4;C and by applying
Red we obtain a suitable derivation :

2.2 Standard DPLL Optimizations 37

if B[C 6 A, then the reduced clauseC is cut from the top sequent,
and the induction hypothesis gives us a derivation of (;I[B])ja = ja-
Since ja is included in (;C[C]);a, applying the weakening lemma
to the induction hypothesis gives us a derivation for (;I[B])ja ~
(;CIQAja -

(Elim) If Elim is used, the start of the derivation looks like this:

Bl ¢ A .
- Elim
Bl S1_C[Q:A
The induction hypothesis gives us a derivation of (;I[B])jx =~ ja.- By
weakening, we have a derivation of (;I[B])ja = (;1 _ C[Q)a .

(Assume) If Assume is used, the start of the derivation looks like this:

Bl 1 A
J1[B]: A

Assume

The unit clause and the literal | have the same dependencie® and therefore

they are both cut or both kept. In the rst case, we need a deriation of
iA ja and it is simply the induction hypothesis; in the latter case, we

can apply Assume to the cut sequent to retrieve the induction hypothesis:
jA\’I A_ Assume

iA ia:flg

(BJ) If BJ is used rst, the start of the derivation looks like this:

AN 0 A
T A

BJ

and we have the additional hypothesis thatl 2 A. After cutting, the top
and bottom sequents are the same and therefore we just need tapply the
induction hypothesis.

(Split) If Split is used rst, the start of the derivation looks like this:

Al @ B ABnll™ o A

Split
A p

with the additional hypothesis that | 2 B. The induction hypothesis on the
left branch gives us a derivation for the sequent ;1 ° ;5. There are two
cases to consider depending on what happens on the right brah:

if Bnl 6 A, the induction hypothesis on the right branch gives us a
derivation of ;5 ~ ja, Which is exactly what we want;

38

if Bnl A , the induction hypothesis on the right branch gives us a
derivation of ja;l "~ . We would like to apply the Split rule, in
other words we would like to establish that 5;1 ~ s is derivable.
Unfortunately, the induction hypothesis on the left branch gives a
slightly di erent derivation, namely jg;1 = 5. We prove ja;l °
ia from ;1" g by using the weakening property,i.e. we prove
that g ia and g ia- Let k2 g, there isk[C] 2 such
that C B, we want to prove that k 2 5, i.e. that C A . Since
Bnl A ,itis equivalent with the fact that | 62 CBecause the sequent
on the right branch is well annotated, we know that all literals in C
are decision literals in ;1[B nl], and therefore that | does not belong
to C. This proves that 5 i and by the same argument, we can
prove that g ia- Therefore we have a derivation of jo;1° A
and by using the rule Split , we can build the derivation we want:

iasl A iasl

i A split
A A

O
Theorem 2.2.6 (Soundness) Let be a set of annotated literals, a set of

annotated clauses andA a conict set suchthat ~ : A is well-annotated

and derivable. Then, ; and ; are incompatible.

Proof. By the stability lemma, the sequent ;5 ~ ja is derivable, and
by weakening, this means that the sequent ; ~ ; is derivable as well.
We simply conclude by applying theorem[Z15,i.e. the soundness of the
derivation system without backjumping. O

We nish these proofs by stating the particular case of sounahess for an
empty assignment, which is the starting point of a procedurebased on these
rules:

Corollary 2.2.7. Let be a formula in CNF. Let us annotate all clauses
in with an empty set of dependencies. Then, if = : A is derivable for
someA, is unsatis able.

Proof. By Theorem[Z.2.8. O

The completeness of the system with backjumping can be eagibbtained
by showing that any derivation of a sequent ; ~ ; also leads to a deriva-
tionof ° : A for someA.

Lemma 2.2.8. Let be a set of annotated literals and a set of annotated
clauses. If i h i is derivable, then there exists some conict sefA such
that ~ : A is derivable.

2.2 Standard DPLL Optimizations 39

Proof. The proof proceeds by structural induction on the derivation of ; ~

j and by case analysis on the rst rule used. Intuitively, eachrule can be
mimied by the corresponding rule in the system with backjumgng, simply
by adding the dependencies and the con ict sets. For instane, if the rule
used wasConflict , it has the following form:

—— . Conflict
]]

where = ©:[A]for some set of dependenciea. Thus, the empty clause
appears in annotated with A and therefore the following derivation is
possible:

Conflict

O [A]:A

If instead the rule used wasRed, the derivation has the following form:

0.|~ 0.
i C Red
i e
where = ¢|[BJand = %] _CJ[C] for some sets of dependencie® and
C. By applying the induction hypothesis to the sets and ©¢C[B[C], we
know that there exists A such that ;I[B]© ;C[B[C]: A is derivable.

Hence, we can build the following derivation:

%B]° °c[B[C]:A

Red
SIB]" %1_C[]:A
i.e. a derivation of ° : A. The rules Elim and Assume can be treated
similarly without any di culty. The only interesting rule i s the Split rule.
Suppose the derivation of ; © ; starts with the Split rule:
il L .
- Split

i j
We can apply the induction hypothesis to ;I[lI], the clauses and the
derivation in the rst branch and we get a derivation of ;I[Il]~ : A for

some conict set A. Now if | 2 A, we apply the induction hypothesis to
;I[An 1], the clauses and the second branch of the above derivation we

get a derivation of ;I[Anl]" : B for some setB, and we apply the split
rule in order to get a derivation of ~ : B.
AN 0 A AN 1] B)
[1] RLGLY Spi

B

40

If on the contrary | does not belong toA, we can simply apply the BJ rule
and take advantage of the backjumping mechanism:
AN 0 A
A

BJ

O

Using this lemma and the completeness of the DPLL system, we e the
completeness of the system with backjumping.

Theorem 2.2.9 (Completeness) Let be a formula in CNF with all
clauses annotated with empty dependencies. Then, if; is unsatis able,
there existsA such that; ™ : A is derivable.

Proof. By the completeness of the derivation system without backjumping
(Corollary E11.10), there exists a derivation of; © ;. We conclude by
LemmalZZ3. O

2.2.3 Conict-Driven Learning

Principle. Adding non-chronological backtracking has allowed our sys
tem to avoid exploring some parts of the tree by analyzing theway earlier
con icts were found, but it still does not take advantage of all the informa-
tion that is available. To realize this issue, consider the guation schematized
in Figure 2.5.

;[0;1; 3] ;[0;1]
4" 5° ; [0;X]
3" 3" 7°
2° BJ 6" ?2?
1 1 1 1
X X

0
Figure 2.5: Example showing the insu ciency of backjumping

This gure shows the skeleton of a proof derivation (in the system of
Figure [2:3) which is somehow similar to the one shown in Figue[Z2. Only
the decision literals and the con ict sets at the leaves of the tree are repre-
sented. The di erence between the derivation of FigureZZ% ad this one is
that, in the latter, a new literal x has been introduced bySplit between the
introductions of 0 and 1. Now, 0 and 1 were precisely the two terals which
were leading to the con icts, for after backjumping on 2, the dependencies
associated to the sequent wer® = f0; 1g.

2.2 Standard DPLL Optimizations 41

In particular, this means that assuming both 0 and 1 will alsolead to
a con ict in the branch marked with a question mark. Nevertheless, non-
chronological backtracking cannot help pruning this part of the tree since
the dependency informationf 0; 1g is lost as soon as the algorithm returns
below a node where one of these literals was introduced. Irour case, when
returning from the branch where 1 was assumed, the new set ofaphendencies
is f 0; xg and cannot anyway mention the literal 1. when backtracking to the
point where x was introduced, we lost the information that 0 and 1 do not
go along so well, and we can't exploit it in the remaining part of the proof
search.

Changing the rules, again. In order to solve this problem, a possible
solution is to keep, along with the current set of dependends, a set of
clauses calledcon ict clauses representing all the clauses that have already
been learnt during the proof search. On our example, we hae learnt that
0 and 1 imply the empty clause, since; is annotated with [0;1]. This is
the information we keep in the conict set on the right-hand side of the
sequent. More generally, every time we have a claus€ annotated with
literals 11;:::;14, this means that [{ ~ ::: " |, implies C. The only such
relation that the system with backjumping remembers is the ae that is
stored in the con ict set. When the solver returns to the branch onx, it will
lose this information so we want to make sure that it remembes that 0" 1
implies a con ict. Because 1 does not appear in the assignmeémnymore, it
cannot appear in the dependencies; in other words, when rermng 1 from
the context, we want to change;[0; 1] to f1g[0]. More generally, we will
consider that con ict clauses are annotated clauses and daene an operation
called shifting, noted Shift;, used to remove a literal| from a clause's
annotations and move it to the clause itself. Shift; is a function applied to
a set of annotated clauses:

Shift, (;) = ;
Shift, (fC[A;Ilg[A) = fl _ C[A]g[Shift; (A)
Shift, (fC[A]g[A) = fC[A]g[Shift, (A)if | 2A

Sequents are now of the form ~ : A;A where the new element
A is the set of conict clauses. The rules are very similar to thke one in
Figure 2.3 and only add the treatment of con ict clauses; they are presented
in Figure Z8&. Conict clauses originate from the dependeng&s found in
Conflict ,andSplit takes care of addind[Anl] to the set of con ict clauses
when the set of dependencies contains |. The clauses are maintained by
all other rules, with the exception of Split and BJ, which apply Shift; to
all conict clauses found in the left branch, as suggested inthe discussion
above. Finally, these clauses are used in the right branch ahe Split rule

42

in order to accelerate the search of a con ict in this branch. Actually, among
the clauses inShift;(A), those who contain| will be eliminated by Bcp, but
the other ones will possibly help in quickly establishing a on ict.

Red ;I[B]‘\ ;CIB[C]:AA Elim ;![B]‘ DAA
Bl 1_C[C:AA Bl S1_C[CO:AA
_ Bl 1 AA
Conflict - Assume —
G IATDAL Bl AA
Split A1 0 AGA .;I[Anl]‘ ;Shiftl(A):B;BI2A
B; Shift, (A) [f I[Anllg[B
A0 0 AGA
BJ — - [2A
. A; Shift, (A)

Figure 2.6: Inference rules for DPLL with con ict clause learning

Correctness proofs. Unlike the previous derivation system presented in
Section[ZZ1, where we were able to derive the soundness aodmpleteness
proofs of the backjumping mechanism from the proofs of the bsic DPLL
system, this is not easily feasible for the system with con tt-driven clause
learning. The intuition behind this is that the rst two syst ems had the
same proof derivations, with some parts being cut o by the backjumping
rule. With learning, clauses in a part of the tree can come fron a con ict
obtained in a totally dierent part of the tree. Moreover, th ey cannot be
justied locally in the proof derivation, but are justie d by the initial
problem at the root of the tree. Note that the completeness poperty can
still be established exactly like our rst two systems, by ignoring the learnt
clauses and just building the naive derivation similar simiar to what we
did in Section ZZ2. The soundness proof is quite long and igiven in
Appendix [A] The soundness theorem is stated as follows:

Theorem 2.2.10 (Soundness) Let be a formula in CNF, with all clauses
annotated with empty dependencies. Then, if there exists aonict set A
and some set of conict clausesA such that; ™ : A;A is derivable, is
unsatis able.

Proof. See Appendix(A. O

2.3 From SAT to SMT 43

2.2.4 Backjumping vs. Learning

We have just presented two di erent mechanisms for optimizing the DPLL
procedure: backjumping and con ict-driven clause learnirg. They are tradi-
tionally presented together as a single mechanism becauskd clause learning
mechanism supersedes the backjumping mechanism: as we exipled above,
a conict set A is indeed just a special case of conict clause[A]. Never-
theless, these two mechanisms are fundamentally di erent ad it is one of
the speci cities of our approach to present them separately

To understand the important di erence between backjumping and learn-
ing, we can look at the impact of each of these optimizationsri comparison
to the basic DPLL. Backjumping enhances the proof search byrimming the
search tree and each use of of the backjumping rule strictly impli es the
search. In constrast, con ict-driven clause learning proeeds by adding new
clauses to the problem which hopefully allow the system to deve con icts
faster and accelerates the search. The cost of adding backjuping is simply
the cost of adding dependency analysis and is easily competed by the
gain in e ciency due to the use of the BJ rule. On the contrary, the cost
of adding backtracking encompasses both dependency analgsand the fact
that the number of clauses in the problem can augment dramatally (up to
2" clauses wheren is the number of variables in the problem). In practice,
there is no guarantee that learning will actually improve the e ciency of the
system on a given problem, it might well slow down the prover:this has a
lot to do with how well the implementation can cope with a great number
of clauses.

Therefore, the decision of whether or not clause learning sbuld be used
in a given system depends on the context in which it is implemated and
used. In the context of software veri cation of programs anrotated by hu-
mans, as explained in Sectioi"L.2]1, the propositional comexity of proof
obligations derives mainly from the propositional complexty of annotations
and from the annotated functions' structure, and is therefare quite limited.
Such formulae do not require state-of-the-art optimizations and Alt-Ergo's
SAT-solver relies on the DPLL procedure with backjumping (because it is
always pro table) but without clause learning, because its e ect is too un-
predictable and having too many useless clauses can be vergtimental to
the solvefd,

2.3 From SAT to SMT

So far in this chapter, we have described a system to decide ¢hunsatis -
ability of propositional formulae, but as explained in Chapter I, when it is

SFor instance, as explained in Section [I.Z2, the matching mechanism relies on the
terms available in the current clauses to derives new instances, therefore having too many
clauses can yield too many instances.

44

used at the heart of an SMT solver likeAlt-Ergo, the propositional atoms are
not variables but are typically terms with some interpreted function sym-
bols. This means that not all assignments are acceptable andie discuss in
this section how the rules seen so far can be easily adapted tccount for
satis ability modulo theories.

De nition 2.3.1. A theory is a set of models. IfT is a theory, we call
its elements T -models. We say that a formulaF is T -satis able (resp. T -
unsatis able) if there exists (resp. there does not exist) ar -model satisfying
the formula F.

As with models, the de nition of a theory is quite general and we will
reuse it in the next chapter. Let us look at an example rst. Let S be a
set of symbols, and assume the set of propositional atomk is the set of
equations between elements 08, i.e. L = S S . The sequent; " f s; =
s>0;fsp = s30;fs3 6 s19 is not derivable and therefore the set of clauses is
satis able, but any satisfying assignment mapss; = s, to >, s, = sz to >
and sz = s; to ?, which does not respect the meaning of equality. We are
actually only interested in the models which verify the following properties:

() 8x2S;Mj=x=Xx
(i) 8xy2S;Mj=x=y!Mj =y=x
(i) 8xyz2S;Mj=x=y!Mj =y=2zI!Mj =x=1z2

and the set of models which verify these properties is an exapte of a theor;ﬁ
(which can be seen as the theory of equality org). If we only consider the
models in this theory, the set of clauses above is unsatis dle. To account
for this, we change the nature of partial assignments from a et of literals
to an abstract structure of environment.

De nition 2.3.2. An environment is a structure which supports the two
following operations:

(i) the assumption of a literal I, which is a partial operation; we write ;I
when assumingl in succeeds;

(i) querying whether a literal | is true in the environment or not; we write
#| to denote that the literal | is true in

These two operations correspond to the two manners in which & use the
partial assignment in the di erent systems from Figures[Z.], [Z.3 and[Z6. We

8In traditional model theory, where theories are de ned as se ts of formulae (or axioms),
these properties (i), (i), (ii) could be seen as the axioms de ning this theory. The presen-
tation as sets of models is equivalent and can be more natural when dealing with SMT:
the SMT solver does not know about the axioms of a theory T, but tries to construct a
T -model for an input formula.

2.3 From SAT to SMT 45

assumeliterals, i.e. add them to the environment, when we assign a value
to some literal, and wequery the partial assignment for the state of a literal,
i.e. check whether a literal or its negation has already been asgined a value.
The assumption of a literal is a partial operation because tle assumed literal
can be inconsistent with the current environment. It is then straightforward
to rewrite the rules with an environment in the left-hand sid e of the sequent
instead of a set of literals, for instance Figure[Zl7 show howve adapt the
basic DPLL.

Red ———— #I Elim ————r #I
1 .
Assume — Conflict -
g s

Split

Figure 2.7: DPLL with an environment

The Red and Elim rules now have a side condition to express that the
query in the environment must return true, and other rules do not change
syntactically. Note that because assumption must succeedthe rules As-
sume and Split , although they do not change syntactically, are slightly
more constrained than in the original presentation: in particular, it is now
impossible to build a derivation where is not well-formed in the sense
of De nition ZT.7]page [Z9, because a new literal cannot be asimed if it
contradicts a formerly assumed literal.

In an environment for some theoryT, a literal can be true even if it (or its
negation) has not been assigned explicitely, because it cdme a consequence
in T of the literals explicitely assumed in the environment. Corversely, a
literal can be false if it is inconsistent with the literals already assumed in
the environment. We write j j for the set of literals explicitely assumed
in environment . For instance, an environment for the theory of equality
above will typically perform the equivalence closure of theequalities assumed
and the query of x3 = X7 in the environment x1 = Xo;X» = X3 will return
true. More generally, in order to be suitable to decide satisability in some
theory T, an environment will have to verify some properties:

for the system to be sound, the environment must be sound withre-
spect to the theory T, i.e. thatif #1, | must be a consequence of all
the assumed literals:

8, #1 ! 8M2T ;Mj=jj'M ()= >

46

for the system to be complete, the environment must be comple with
respect to the theory T, in symbols:

8;8M2T :Mj=j j!M ()=> ! #1

With such invariants, the correctness proofs are straightbrward to adapt and

we can prove that the derivability of the sequent;~ is equivalent to the

T -satis ability of the formula . We will not detail how to pre cisely adapt

the correctness proofs of our DPLL derivation system here, te soundness
proof will be detailed formally later in Chapter 8]

An equivalent characterization of the existence of an envionment struc-
ture suitable for a theory T is the existence of a decision procedur® for
the T -satis ability of conjunctions of literals. Indeed, if such a procedureP
exists, the following operations de ne a suitable environnent:

an environment is simply a set of literals;

the adding operation ;| simply adds| to the set and uses P to check
that the new set of literals is not unsatis able; if it is, the assumption
does not succeed;

to perform a query of | in , use the procedure P to test the satis-

ability of the set of literals ;: I: if it is unsatis able, then | is a
consequence of the literals of and #1 holds; otherwise it does not
hold.

The latter characterization is slightly more convenient. For instance, this
method can be applied to the trivial theory of all models in order to retrieve
the DPLL procedure for pure propositional logic: the procedire P simply
checks whether both a literal and its negation are present irthe conjunction.

SMT with dependencies. A natural question is whether it is also possi-
ble to adapt the backjumping and clause learning mechanism$o this SMT

architecture. In order to do so, environments must be able todeal with

annotations:

the assumption of a literal should also take its dependencias input:
we write ;1[B] for the assumption of | with dependenciesB in ;

when a query for a literal | succeeds, the environment should also
return a set of dependencies which justify thatl is indeed true, which
we write #1[B].

The adaptations of the rules is then straightforward, and the rules with
backjumping are given in Figure[2.8 for instance. In practie, adding depen-
dency analysis to an environment based on a satis ability piocedure for some

2.4 Discussion 47

~ ;C[B[C]:A : ;
Red — #1[B] Elim — #1[B]
1 C[T:A 1 C[Q:A
. BT A
Conflict ——mF—— Assume ——
AT A J[B] A
Split T :A\ .;IéAnI]‘ :BI2A
gy M = A gp
A

Figure 2.8: DPLL with backjumping and an environment

theory can be very challenging since the decision procedumaust be instru-
mented in order to nd the (possibly smallest) sets of literals which justify
its results. Examples of interesting results in this area ofproof-producing
decision procedures are [NO05, dMRS05, RRT07]Alt-Ergo implements a
coarse but e ective dependency analysis in order to use bagkmping, but
we have not implemented a proof producing procedure in Coq, rad conse-
quently our Coq implementation does not use backjumping butstays with
the basic DPLL procedure (see Chapteib).

2.4 Discussion

In this chapter, we have described the propositional solverat the heart of
Alt-Ergo as a system of inference rules. This algorithm is based on the
DPLL SAT solving procedure and we showed how to enhance the Isac
system with a non-chronological backtracking mechanism, sawell as con ict-
driven clause learning. These two mechanisms are ubiquitaiin modern
implementations of DPLL-based SAT solvers.

2.4.1 State-of-the-Art SAT Solvers

Even with the backjumping and learning mechanisms, our DPLL system
does not qualify as a modern, state-of-the-art, SAT solver.Such SAT solvers
typically include a great number of di erent optimizations and heuristics
and can deal e ciently with industrial problems containing hundreds of
thousands of propositional variables (cf. [[sat]).

We do not claim to achieve the sheer performance of these sysns or to
be able to simulate their behaviour with our rule-based syséms. Instead, our

48

motivation is to apply this formalization to Alt-Ergo's SAT solver in order

to accurately describe it, and Alt-Ergo uses a relatively basic SAT solving
procedure. In fact, Alt-Ergo is based on the system with backjumping but
does not use clause learning. Therefore, the rules we havegsented so far
are su cient to describe Alt-Ergo's kernel. More generally speaking, they
are also a solid foundation on which to implement a SAT solverand this is

what motivated us into adding con ict-driven clause learning. We now take

a quick look at other typical optimizations that are present in modern SAT

solvers, and discuss what kind of challenge they would repsent.

Variable assignment. When applying the splitting rule, i.e. when arbi-
trarily trying to assign a variable either boolean value, sane variable must
be chosen. As we emphasized at the start of Sectian2.2.1, thperformance
of the SAT solver is very sensitive to that particular choice. Di erent strate-
gies have been designed in order to pick variables in a sen&bway: some
choose randomly, some try to maximize some measure (e.g. thumber of
times a variable appears in a problem), some are much more imlved and
perform very well in a great variety of problems, like the Variable State
Independent Decaying Sum (VSIDS) decision heuristic usedni Cha and
presented in [MMZ* 01], which is used in conjunction with con ict-based
clause learning. The important thing about variable assignment choices is
that any strategy is correct and therefore there is almost nohing to prove
about it: soundness is granted, and completeness is guaraged as long as
the strategy tries every variable sooner or later. This is wly there is no
reason to mention such a strategy in our formalization; on the contrary, our
rules gives full freedom as far as the choice of a literal is c@erned.

Two-watched literals. A SAT solver spends most of its time performing
boolean constraint propagation and trying to apply the unit rule. Modern
optimizations often employ a variant of a technique calledtwo-watched lit-
erals [MMZ * 01,[Zha97], which consists in keeping a handle on two non-feé
literals per clause at all time and only performing simpli c ations on these
literals, until it is not possible to nd two such literals, w hich means the
corresponding clause is unitary or empty. Such a techniquesi very impor-
tant in practice but in our opinion, it is not a feature that re quires a formal
description and proof, but rather it is a matter of implement ation.

Restarts. Modern SAT solvers also rely on some way ofestarting the
proof search at regular intervals, in order to explore the sarch space more
e ciently. A typical restart strategy for our system with cl ause learning
would be to stop search at some point and restart with an emptyassignment,
but retaining some of the clauses learnt so far. That way, thesearch starts
in a fresh state, but with more information than the rstti me, hopefully

2.4 Discussion 49

avoiding bad variable choices in the future. Restarts cannbbe simulated
with our rules, because this would require the initial state (or formula) to
be stored in the sequent, but once again the critical point alout restarts is
whether the learnt clauses are correct, not the restart mechnism itself and
we decided not to adapt our rules to include restarts. Incidatally, there
exists a broad range of restart strategies, seé¢ [Hua07] fonstance.

Con ict Analysis. In our inference rules, we described the con icts found
during the proof search thanks to the literals in annotations. These liter-
als were what is known asdecision literals, i.e. literals which were added
through a Split (or BJ) rule. There exists other ways to describe a con-
ict, and con ict analyses have been thoroughly studied because their e ect
on the performance of a SAT solver is very signi cant (seel [S$G, [ZMMO1]
for instance). In particular, [ZMMO1] describes con icts using an implica-
tion graph between assigned literals and their empirical reults show that
literals which have some property in this graph (known as UIR for Unique
Implication Point) lead to better con ict clauses than deci sion literals for
instance. Our system could be adapted to any con ict analyss by keep-
ing an implication graph instead of the simple annotations we have, but we
did not formalize that modi cation. In particular, such ana lyses are only
useful to improve the e ect of con ict-driven clause learning, in the sense
that it generates con ict clauses which are maybe more pertient, but it
does not improve on backjumping since a system with backjumimg always
backtracks to the lowest possible literal in the proof tree. Note also that
unlike the preceding optimizations, the con ict analysis is critical and re-
quires an accurate formalization, since unsound clauses glal be derived by
an inappropriate strategy.

2.4.2 Conclusion

The work closest to this approach originated with [Tin02] and is Nieuwen-

huis, Oliveras and Tinelli's formalization of DPLL [NOTO04]. Their system is

based on transition rules and describes a version of DPLL whe side condi-
tions are expressed in an abstract manner. This allows themd encompass at
once a broad range of common optimizations and to easily reas about the

correctness of such technigues. In particular, unlike ourstheir presentation

does not di erentiate backjumping from clause learning, ard we explained
above why we think that it is important to separate these two mechanisms.
The main downside of their approach is that its abstraction makes it harder

to derive a trustworthy implementation from the formalizat ion. On the con-

trary, the gap between our system and the actual implementaion is really

small: in particular, our rules describe exactly how to calalate dependencies
and con ict clauses.

50

This is also a downside, of course, since our system is muctskeexpres-
sive than the one in [NOT04]. Nevertheless, as we emphasizesveral times
in this chapter, we tried to remain as generic as possible. Welo not have
any strategy to select decision literals, but adding heurisics to pick literals
in the Split rule would not impact our correctness proof. In our Coq imple
mentation in Chapter [7] we will demonstrate how our system isindependent
of the actual representation of formulas, and how to take adantage of this
to use techniques of e cient CNF conversion, such as maximalsharing of
sub-formulas usinghash-consing

CHAPTER3

CC(X): Congruence Closure Modulo Solvable Theories

Contents

B1__Combining Equality and Other Theories . 1. . 52
[3.1.1 Preliminarie$ 52
13.1.2 The Nelson-Oppen Combination Method 53
13.1.3 The Shostak Combination Methodl 55
B1.4 Motivations 56

13.2__CC(X): Congruence Closure Modulo X . . | . 57
[3.2.1 Solvable Theoriés 57
[3.2.2 The CC(X) Algorithml. 62
13.2.3 Example: Rational Linear Arithmetic| 65

[3.3 Correctness Proofs . |. 68
331 Soundneds 68
332 Completeneds 70

3.4 Adding Disequalities | 77

B5 Conclusion |. 81

In Chapter 2] we presented how to handle propositional logiowith the
DPLL procedure and its modern variants. We also hinted at the fact that
the same procedure could be used to deal with formulae wherédrals have
some interpretation, i.e. to decide the satis ability of a formula modulo
sometheory, as long as one is able to provide an environment which decide
entailment in this theory. This chapter is devoted to show haow to build such
an environment for a certain class of theories. More precidg we will show
how to build an environment for the combination of the theory of equal-
ity and any theory X which veri es certains properties, among which the

51

52

existence of a particular function called asolver. This algorithm is param-
eterized by this theory X and will be called CC(X). In Section[31, we will
describe the problem of solving the theory of equality modub another theory
and present the two main existing methods: the Nelson-Opperombination
method on one hand, and Shostak's algorithm on the other. In 8ction [3:2,
we present our algorithm CC(X) for the congruence closure modulo a theory
X and show how it di ers and improves on the two existing methods. We
then prove that the algorithm is sound and complete for suiteble theories.
Finally, we extend CC(X) in Section[3.4 in order to deal with disequations
instead of just equalities.

3.1 Combining Equality and Other Theories

3.1.1 Preliminaries

In order to de ne the theories we are interested in and to build their literals,
we need a term algebra. In the following, we assume a large, ed, set

of symbols and we suppose that each symbol comes with a non-getive
integer called its arity. We de ne the set of (ground) terms T inductively
as the smallest set which is closed for the following operatn: if f 2 is

belongs toT . In particular, our terms are untyped since we do not conside
any typing constraint for the construction of terms. The set of propositional
atoms that we are interested in in the remaining of this chaper is the setL
of all equalities u = v for someu;v 2T .

De nition 3.1.1. The theory of equality, written E, is de ned by the fact
that = is a congruence relation,i.e. by the following axioms:

(Reexivity) 8t2T;t=1t
(Symmetry) 8t,u2T;t=u =) u=t
(Transitivity) 8t;u;v2T;t=u =) u=v =) t=v

(Congruence) 8f 2 ;8ty;ui:::;th;un 2T ;

(8isti = uj) =) f(ty;:inta) = f(ugsiii;un)

The theory E (in the sense of De nition 2.3.T1 page[44) is the set of models
for which these axioms hold.

The theory E is often called EUF, for Equality on Uninterpreted Func-
tions, and is obviously essential to deduction and veri caion systems. For
instance, problem divisions in the SMT competition [BST10]include a cat-
egory devoted to this theory (QF_UF) and other categories deal with the
combination of EUF and other theories such as bitvectors (QF AUFBYV),
di erence logic (QF_UFIDL), arrays (QF_AUFLIA), etc.

Given a set of equalitiesk, the set of all equalities implied by the combi-
nation of E and the theory of equality is the congruence closureof E. If we

3.1 Combining Equality and Other Theories 53

considerE as a relation over terms, its congruence closure is also a egion
over terms and we write it =g. Formally, this means that given two terms
uandv:

u=gv (8 M2EMFE =) MFu=w:

For example, if f and a are some symbols in , and E is the set of equations
fa = f(f(f(a);a= f(f(f(f(f(a))) g thena=g f(a)

The task of computing the congruence closure of a nite set okquations
has been addressed separately by Downey, Sethi and Tarjan EX80], Nelson
and Oppen [NO80] and Shostak [Sho78] thirty years ago. Theiprocedures
all achieved worst-case complexity ofO(nlog(n)) and are formulated on
relations over vertices of a graph representing the terms ofhe problem.

In a solver like Alt-Ergo, we are not only dealing with uninterpreted
functions, but some symbols have a standard interpretationwhich should
be accounted for. The meaning of these symbols is given by ore several
theories. For instance, the following formulai:

k=0=) s a=za=) f(s+k;2+3)= f(a+ a;b) (3.1)

is valid in the union of E and the theory of linear arithmetic on rationals but
not in E alone. To decide the satis ability of such formulae, the previous
algorithms for computing a congruence closure are not su cent and one
needs a procedure for congruence closure modulo a theory.

3.1.2 The Nelson-Oppen Combination Method

The most widely used method to combine the theory of equalityand other
theories was proposed by Nelson and Oppen [NO79]. Their metid is ac-
tually more general in that it gives an algorithm to combine decision proce-
dures for di erent theories into a decision procedure for the union of these
theories.

Oppen method requires that theories use disjoint sets of irgrpreted symbols,
say 1;:::; n. The algorithm proceeds by splitting a formula into n sub-
formulae 1;:::; n where | only usesabstraction variableg and symbols
in . It then dispatches each subformula ; to the corresponding decision
procedure P;. The dierent decision procedure only cooperate indirectly
by exchanging informations about the variables of the probém through the
dispatcher. This architecture is summarized in Figure[3.1.
The procedure can be summarized by the following steps:

as is usually done, we write binary arithmetic symbols in in x notation.

2These abstraction variables are not strictly speaking vari ables but can also be con-
sidered as fresh constants. They are traditionally called variables in the literature about
Nelson-Oppen combination.

54

[Dispatcher}

Figure 3.1: Architecture of the Nelson-Oppen combination

1. (Variable abstraction) Split the formula in a conjuncti on of pure
formulae 1;:::; n which only share abstraction variables.

2. (Dispatching) Send each formula ; to the corresponding procedure
P;. If any returns unsatis able then the whole formula is unsatis able.

3. (Equality propagation) Gather all the equalities between variables
which have been found by theP; during the previous step, and prop-
agate them to all theories. Return to step 2.

4. (End) When no contradiction has been found by any decisionproce-
dure, and no more equalities between variables are found, $ satis -
able

One can see that a key point in the method originally presentd by Nel-
son and Oppen is that the P; must return the equalities between variables
they nd when they are run. Although critical for e ciency, t his require-
ment is not theoretically mandatory. In a later presentation of this algo-
rithm [TH96], Tinelli and Harandi proposed a non-deterministic version of
the algorithm where the correct partition between the variables (what they
call an arrangement of the variables) is simply guessed. Since there are a
nite number of arrangements, an algorithm could proceed bytrying all of
them.

are correct, the formula is truly unsatis able when the procedure says so.
The converse however is not true in general: when all subprdems are
satis able in their respective theories, the conjunction is not necessarily
satis able in the union of theories. To be sound and complete the Nelson-
Oppen procedure thus requires strong properties on the thetes:

The theories must beconvex this means that a conjunction of literals
should not entail a disjunction of equalities without entailing at least
one of the disjuncts. This restriction ensures that there isno need for
splits since the combination scheme cannot dispatch disjnctions of

3.1 Combining Equality and Other Theories 55

equalities. Although many theories of interest are indeed onvex, the
convexity requirement is the biggest obstacle in practice for instance,
the theories of arrays or linear arithmetic with inequalities are non-
convex).

The theories must be stably in nite . This condition was formalized
in [TH96] and not in the original paper, and it expresses the &ct that
all satis able formulae admit models with in nite cardinal ity. In par-
ticular, this excludes theories that specify nite types, e.g. booleans.

This general combination scheme has been applied to the issuwf combin-
ing congruence closure and other theories. For instance wean use this
scheme with the theory E and linear rational arithmetic to solve our exam-
ple formula 3. The variable abstraction yields the following conjunction
of literals:

1 - f(z1;20) 6 T (z3;24)
> . k=0"s a=za*s+k=z1"2+3=2z"a+a=2z3"5=2

1 and », are both satis able in their theory, but when analyzing , the
decision procedure for linear arithmetic reports thats = z; = zzand z, = z4.
After propagation in 1, the congruence closure algorithm reports that ;
is unsatis able, and so is the original formula.

The Nelson-Oppen architecture or variants thereof are usedh deduction
systems such as the Stanford Pascal Veri er [LGvH 79], Yices [Yid], Sim-
plify [DNSO05], CVC3 [BT07] and Z3 [dMBQ8]. It is widely used because of
its generic nature and because it applies to many theories dhterests.

3.1.3 The Shostak Combination Method

The Nelson-Oppen combination method is not devoted to the cmbination
of equality and another theory, but it is more generic than that. One con-
sequence is thatE and the other theories play a totally symmetric role.
In [Sho84] Shostak proposed an alternative which is specially devoted to
combining equality with another theory. Shostak's procedue only works
on equational theories which have two special functions: @&anonizer and a
solver. The canonizer is used to transform a term into a normal form with
respect to the theory, while the solver takes an equation andsolves it into
an equivalent substitution, i.e. a list of equalities of the form x = t where x
is a variable in the original equation. We call these theoris Shostak theories
Congruence closure algorithms in[[DST80/ NO80, Sho78] preed by
computing a canonical form for all terms, in particular using a union- nd
structure; Shostak's procedure does essentially the saméhing but using
the canonizer and the solver of the theoryT in order to build a canonical
form modulo T. The canonizer is used to normalize terms moduld@ and the

56

solver is used to propagate all the consequences of an equatiinto the union-
nd structure. For instance, let us look at example 3.1 again The theory of
linear rational arithmetic is a Shostak theory: the normal form for this the-
ory is a sum of ordered monomials with rational coe cients, and the solver
can be implemented with standard Gauss elimination. Solvirg the rst two

equalitesk =0 and s a= ayields the substitutions k 7! 0 ands 7! 2 a.
After substitution, the last equality becomesf (2 a+0;2+3) = f(a+ a;5),
and after canonization, it becomesf (2 a;5) = f (2 a;5) which is obviously
true.

The original presentation of Shostak's procedure su ered mltiple aws,
in particular it is neither complete nor terminating. The pr ocedure was
revamped and corrected rst partially in [CLS96] by Cyrluk, Lincoln and
Shankar, and then completely in [RS01] by Ruey and Shankar. fie formal-
ization and the proofs are much more involved than in the orignal presen-
tation, and Ford and Shankar later published [FS02] a formalproof of the
presentation in [RS01], done in PVSI[[PV$]. Proofs about comimations of
theories are notoriously di cult and error-prone, and such veri ed proofs
are rare and valuable.

3.1.4 Motivations

The restriction imposed on Shostak theories,.e. the properties that must
hold for the canonizers and solvers, make them a smaller clasthan the
class of theories suitable for Nelson-Oppen. However, wheit applies,
Shostak's combination scheme improves on Nelson-Oppen'sréhitecture.
Indeed, Nelson-Oppen does not treatE in a special way, and all decision
procedures must perform their own equality propagation (typically using
union- nd) which is costly. Shostak's procedure regroups guality reasoning
in a single congruence closure algorithm, and factors all teory reasoning
in the canonizer and solver functions. We schematize this giation in Fig-
ure[32. Thanks to this better interaction with the traditio nal congruence
reasoning, the Shostak procedure seems to perform better #&m the Nelson-
Oppen procedure: comparing these two algorithms in practie is not easy
because they are usually part of bigger systems, but an infanal comparison
reported in [CLS96] suggests a di erence of about an order ofmagnitude.
Shostak's algorithm is also simpler to implement than Nelsa-Oppen be-
cause there is no exchange of equalities between the di ereprocedures.
Although some of the disadvantages of the Nelson-Oppen schee are
avoided by Shostak, his procedure has its own shortcomingdn particular,
the underlying decision procedures in Nelson-Oppen can benplemented in
any possible way, whereas a Shostak theory revolves aroundhe term data
structure: it must be implemented with a term canonizer and asolver which
returns term substitutions. Altogether, canonizing, solving and substituting
are actions which require a lot of term manipulations and traversals. For

3.2 CC(X): Congruence Closure Modulo X 57

| Dispatcher |
SR
(Equality| Arith
(UF moduio] [UF] UF modulo

Figure 3.2: Schematic comparison of the Nelson-Oppen (leftand Shostak
architecture (right).

most theories, this does not represent the way one would imgiment such
functions, and more e cient representations of the terms cauld be more
convenient. For instance, the term data structure is not adgted to linear
arithmetic manipulation, and solving and substituting can be implemented
much more e ciently with polynoms, i.e. an ad-hoc data structure. This is
the motivation for the algorithm we present in the remainder of this chapter:
a mechanism for congruence closure modulo a theory inspireby Shostak
but where abstract data representation is possible and enagaged.

3.2 CC(X): Congruence Closure Modulo X

In this section, we present the algorithm CC(X) (for congruence closure
modulo X) which combines the theory E with an arbitrary built-in theory X.
This algorithm usesabstract valuesas representatives allowing e cient data
structures for the implementation of solvers. We rst de ne the class of the-
ories which are amenable for our algorithm, which we calkolvable theories
and then present CC(X) as a set of inference rules whose description is de-
tailed enough to truly re ect the actual implementation of t he combination
mechanism in Alt-Ergo.

3.2.1 Solvable Theories

While solvers and canonizers of Shostak theories operate derms directly,
solvable theories work on a certain seR, whose elements are calledemantic
values The main particularity is that we don't know the exact struc ture
of these values, only that they are somehow constructed froninterpreted
and uninterpreted (or foreign) parts. To compensate, we dipose of two
functions [] and leaves which are reminiscent of the variable abstraction
mechanism found in the Nelson-Oppen method. The function [, which we

58

also call make constructs a semantic value from a term;leaves extracts its
uninterpreted parts in an abstract form.

De nition 3.2.1. We call a solvable theory X a tuple (x;R;X), where
X is the set of function symbols interpreted byX, R is the set of
semantic values andX is an equational theory. In particular, X is a relation
over terms and therefore=, T T denotes the congruence closure of the
relation X . Additionally, a solvable theory X has the following properties:

(i) There is a function []:T() 'R to construct a semantic value out
of a term. For any set E of equations between terms we writ¢E] for
the setf [x] =[y]j X = y 2 Eg and similary for sequences of equations.

(i) There is a function leaves: R!P (R), where the elements oP; (R)
are nite non-empty sets of semantic values. Intuitively, its role is to
return the set of maximal uninterpreted values a given semdit value
consists ofl. Its behaviour is left unde ned for now, but is constrained
by axioms given below.

(iii) There is a special value 1 2 R which we will use to denote the leaves
of pure terms' representatives.

(iv) There is a function subst:R R R!R . Instead of subst(p; P;r)
we write rfp7! Pg. The pair (p;P) is called a substitution and
subst(p; P;r) is the application of the substitution (p;P) to r.

(v) There is a function solve: R R ! (R R)>*? which takes an
equation between semantic values and returns either, ? or an equa-
tion between semantic values (which must be seen as a suhsiiin).

When the result is> (resp. ?), we say that the equation is solved (resp.
unsolvable).

In the remaining of this paper, we simply call theory a solvable theory.
An example of such a theory is given in Sectioi—3.213. We write the
equality in the set of semantic values, and it should not be cofused with
term equality =.

In the following, for any set S, we write S the set of nite sequences of
elements ofS. If s2 S is such a sequence and is an element ofS, we write
a; s for the sequence obtained by prepending to s. The empty sequence is
denoted . We will use sequences instead of sets in many places in order
be able to describe the incrementality of our algorithm; we Wl however use
sequences as sets implicitly in places where order does notatter. As we
will often talk about successive substitutions, we de ne anauxiliary function
that does just that:

3Therefore, the leavescorrespond to what are called the solvablespart of an interpreted
term in [RSO1].

3.2 CC(X): Congruence Closure Modulo X 59

De nition 3.2.2. We de ne the partial function iter :(R R) R!R 7
that applies solve and subst successively in the following way:

iter(;r) = r (S
iter ((r1;rp); S;r3) = r8fp7! Pg where (Solve(rg);ré)i ; (I s;ré) i)
iter ((r1;r2); S;ra) = 9 Where(Solve(r(l);ré)io N i>ter (Siri)
iter ((r1;r2); S;rz) = ? where Solve(rg’;rg’;o : i;er (S;ri)
iter (rq;r2);S;r3) = ? otherwise

Thus, iter (S;r) successively solves all equations i§, applying the resulting
substitution (if any) to r and to the remaining equations along the way.
It returns ? if and only if one of the equations was unsolvable. We now
use this notion of iterated substitution to de ne entailment in the set R of
semantic values.

De nition 3.2.3. Let E be a sequence of equations between semantic values,
and rq;r, two semantic values. We writeE Fx r; = r, to denote that the
sequence of equation& entail that r; = r,, and we de ne it in the following
way:

EExri=r; ()def iter (E;rq) iter (E;ry):
In particular, if iter (E;r,) anditer (E;ro) are ?, E Fx r1 = ro holds.

In addition to de nition 3[Z.1]a theory X must ful Il the following ax-
ioms:

Axiom 3.2.4. Forany ry;ro;p;P 2R,

(i) solve(ry;ra)=(p;P)) rifp7' Pg rofp7! Pg

(') solve(ry;rz) =(p;P)) p6AeaveyP)

(i) solve(ry;r)=>0 ra r2

(i) solve(ry;r)=? (0 8 (p;P);rifp7! Pg6 rofp7! Pg.

Axiom 3.2.5. For any set of term equationsE and pair of terms u; v,
[ElFx Ul=[Vv]) u=¢g Vi

where =_, is the congruence closure of the equational theory de ned by
E[X.

Axiom 3.2.6. For any r;p;P 2R such thatr 6 rfp7! Pg,
(i) p2 leavedr)

60

(i) leaveqrfp 7! Pg) =(leaveqr) nfpg) [leaveqP).

Axiom 3.2.7. For any pure term t, i.e. a term built exclusively from symbols
in x, we haveleaveq[t]) = f1g.

Let us explain this a little bit. First of all, as we will see in section[3.2.2,
the algorithm establishes and maintains equivalence clags over semantic
values. Every equivalence class is labeled by an element ofi¢ setR; a
function : R!R is maintained which for each value returns its current
label. Together with the [:] function, this function can be used to maintain
equivalence classes over terms. The functiosolve is capable of solving an
equation between two elements oR, that is, it transforms an equation r1 =
ro for ri;ro 2 R into the substitution (p; P), with p;P 2 R, where the value
pis now isolated. Axiom[3.Z.3-(i) makes sure that such a sub#ution renders
equal the two semantic valuesr; and r», which are at the origin of this
substitution, and B.Z.2-(i") enforces that the left-hand side of a substitution
cannot appear in the right-hand sidél. The last two items in Axiom 322l are
straightforward and cover the cases where the equation is #ier solved or
unsolvable. We have equippedR with a notion of implication of equalities,
the relation F x . Axiom B2ZH just states that, if some equations E] between
semantic values imply an equation {i] = [v], then u =_, v, that is, an
equality on the theory side implies an equality between coresponding terms.
Axiom ensures that substituting p with P in a semantic value only has
e ectif pis a leaf of this value, and that the new leaves after the substution
are leaves coming fromP. In this respect, leaves can be understood as the
variables of a semantic value. Finally, the last axiom describes why we
introduced a special valuel in R: representatives of pure terms do not have
leavesper sg but it is convenient for the algorithm that the set leaveqr) be
non-empty for any semantic valuer. To that purpose, we arbitrarily enforce
that leaveq([t]) is the singleton f 1g for any pure term t.

As a last remark, we have given the interface of a theoryX in a slightly
less general fashion as was possible: depending on the thgothe function
solve may as well return alist of pairs (p;;P;) with p;;P; 2 R. It becomes
clear why we call this a substitution: the p; can be seen as variables, that,
during the application of a substitution, are replaced by a @rtain semantic
value. However, for the example presented in the next sectig solve always
returns a single pair, if it succeeds at all. Thus, we will stck with the simpler
forms of solve and subst in our presentation.

The following proposition is a simple, but useful, consequece of the
axioms stated above. It will be used in the soundness proof. tIsimply
states that, if semantic values constructed with [] are equal, the original
terms were already equal with respect toX .

“This is a standard way of ensuring that the substitution is id empotent and that
applying it will remove all occurences of the left-hand side .

3.2 CC(X): Congruence Closure Modulo X 61

Proposition 3.2.8. Foranytermsu;v2T,[u] [v]) u=, v.
Proof. This is simply axiom 323 with E the empty sequence. O

Another, less trivial, consequence of the axioms and de nibns above is that
if r®has been obtained fromr by iterated substitution, then the equations
at the origin of these substitutions imply the equality r% r.

Proposition 3.2.9. Forany S2 (R R) and anyr 2R, we haveS Fx
iter (S;r) = r where S is seen as a set on the left-hand side ¢f x .

Proof. By de nition, we need to show that iter (S;iter (S;r)) iter (S;r),
which can be seen as the idempotency of the iterated substition. This is
of course a consequence of the idempotency of the substitotis returned by
solve (see Axiom[3:Z4-(i")). We proceed by induction on the sequece of
equations S. If S is the empty sequence , the goal becomeg r which is
trivially true.

Now, let us suppose thatS Fyx iter(S;r) = r and let rq;r, be some
semantic values. We want to prove that (r1;r2); S Fx iter ((r1;r2); S;r) =
r. If iter (S;r) is ?, then the result is obviously true; otherwise, iter (S;:)
is de ned for all values and let r° = iter (S;r);rQ = iter (S;ry) and r9 =
iter (S;). We proceed by case analysis on the result afolve(r$;r):

?: iter ((ry;r2); S;r) = ? hence the result holds.

> iter ((ro;ro); S;r) iter (S;r) r%and by induction hypothesis the
result holds.

(p; P): by denition, (ry1;r2); S Ex iter((rq;r2); S;r) = r is true if and only
if r%fp7! Pgfp7! Pg r%p7! Pg. By Axioms B.24-(i) and B.Z.8,
we know that p does not belong toleave(r°f p 7! Pg) and hence that
substituting fp 7! Pgin r%p 7! Pg does not have any e ect, which
proves the equality above.

O

In order to prove the completeness, we need to make a few morasump-
tions about the theory X, or rather about the interpretation of symbols in

X

Axiom 3.2.10. For each interpreted symbolf 2 of arity n, we assume
there exists a functionf X from R" to R such that:

Note, though, that these functions need not be implemented dr the algo-
rithm to work: only their existence matters to us, [:] could be computed in
any other conceivable way and our algorithmCQ(X) will never need to use
one of these functions explicitly. The last axiom simply stae that substitu-

tions happen at the leaves level of semantic values.

62

Together with Axiom 8210 this last axiom indeed implies that substitution
traverses interpreted symbols.

3.2.2 The CC(X) Algorithm

The backtracking search underlying the architecture of a lay SMT solver
enforces an incremental treatment of the set of ground equabns maintained
by the solver. Indeed, for e ciency reasons, equations are igen one by one
by the SAT solver to the decision procedures which prevents iem from
realizing a global preliminary treatment, unless restarting the congruence
closure from scratch. Therefore,CQ(X) is designed to be incremental and

deals with a sequence of equationsi = v and queriesu 2 v instead of a
given set of ground equations.
The algorithm works on tuples (con gurations) h j | | i, where:

is the set of terms already encountered by the algorithm;

is a mapping from semantic values to sets of terms which intutively
maps each semantic value to the terms that use it directly. This
structure is reminiscent of Tarjan et al.'s algorithm [DST80] but dif-
fers in the sense that it traverses interpreted symbols (as xpressed
in Proposition B:3.12 in Section[3:B). This information is used to e -
ciently retrieve the terms which have to be considered for cogruence;

is a mapping from semantic values to semantic values maintaining
the equivalence classes oveR as suggested in Sectiofi 3.2.1: it is a
structure that can tell us if two values are known to be equal {t can
be seen as thdind function of a union- nd data structure);

is a sequence of equations between terms that remain to be po-
cessed.

There is a special kind of con gurations written h ? j i to denote the
cases whereCC(X) has reached an inconsistent statej.e. the case where
some of the equations already treated are inconsistent wittihe theory.

Given a sequenceE of equations and a querya 2 b for which we want
to solve the uniform word problem, CC(X) starts in an initial con guration
Ko=h;j oj ojE; az bi, where o(r)=; and o(r)=r forall r 2
R. In other words, no terms have been treated yet by the algoribm, and
the partition o corresponds to the physical equality

In Figure B3, we describe our algorithm CC(X) as six inference rules
operating on con gurations. The semantic value (r), for r 2 R is also

3.2 CC(X): Congruence Closure Modulo X 63

Congr

.] 9 o5 o cabz ;o [a]6 [b

whereg
(p;P) = solve([a]; [b)

o= | 70 (DL (p)
12 leaves(P)
8r2R; qr):=(nNfp7 Pg

()
.) Qu] v f(8) 2 (p)
= f®=1K) f(v)2 (pI Stz jp2leaves([t]) TI2Ieave8(o (1)

i Joa=b;
h ?] i

where? = solve([a]; [b))

Unsolv

a;b2 ; [a]6 [b

h j §] a=b; i
Remove . , : . ab2 ; [a [b

e 10 "t 62
hf@e 1 1 %7) S chtal. 1 8v2av?

where C[f (€)] denotes an equation or a query containing the termf (-9)

8
% 0= 70 (D[f(a)g
. gL (® 9
with < =

\
°= f@=f® [d [B f(D2 (n.

2L (a)

Add

whereL (&)= szﬁleaves([v])

i j aZb; i
Query . ab2 ; [a [b
h j] j i
h 2 | e; i .
Incons - — e equation or query
h 2?2 | i

Figure 3.3: The rules of the congruence closure algorithn€Q(X)

64

called representative of r. When t is a term of T, we write [t] as an
abbreviation for ([t]), which we call the representative oft. Figure [3.3

is clear from the context; we also write [4] [#] for the equivalences
[u] [wvaliiis;[unl [wa]- Ft2 (r)fort2T;r 2R, we also say
r is used byt, or t usesr.

We now have all the necessary elements to understand the rude There
are actually only two of them, namely Congr and Add , which perform any
interesting tasks. The others are much simpler:Remove just checks if the
rst equation in is already known to be true (by the help of) , and, if
so, discards it. Query is analogous toRemove but deals with a quer;ﬁ.
The other two rules deal with inconsistent con gurations: Unsolv takes an
unsolvable equation from the sequence of pending equatiorad returns the
inconsistent con guration; rule Incons expresses the fact that once a con-
guration is inconsistent, all new equations can be ignored and all queries
are true. Finally, note that the case where the rst pending equation is
already solved is dealt with by the Remove rule, because Axiom3.Z4-(ii)
ensures thatsolve([a]; [b]) returns > ifand only if [a] [b.

The rule Congr is much more complex. It deals with the rst equation
in , but only when it is neither solved nor unsolvable. This e quation a= b
with a;b2 is transformed into an equation in R, [a] [b], and then
solved in the theory X, which yields two semantic valuesp and P. The
value p is then substituted by P in all representatives. The map is up-
dated according to this substitution: the terms that used p up to that point
now also use all the values 2 leavegP). Finally, a set 9of new equations
is computed, and appended to the sequence of the equationsd be treated
(the order of the equations in Cis irrelevant). The set Cis computed in
the following way: the left hand side of any equation in ©is a term that
usedp, and the right hand side is either a term that usedp, or a term that
used everyl 2 leaveq qr)) for a value r such that p 2 leaveq (r)). This
rather complicated condition ensures that only relevant tems are consid-
ered for congruence. As the name implies, th&Congr rule will only add

subterms are already known to be equal: It;] 9,1 i n.

The rule Add is used when the rst equation of contains at least a
term f (-8) that has not yet been encountered by the algorithm ¢ (&) 2).
Its side condition ensures that all proper subterms of this €rm have been
added before; in other words, new terms are added recursiwel The rst
task that this rule performs is of course to update the map by adding the

5Our system does not return any truth value for a query per se it passes queries
that are true (using the Query rule) and is blocked at false queries.

3.2 CC(X): Congruence Closure Modulo X 65

information that f (-8) uses all the leaves of its direct subterms. However, this
is not su cient: we lose the completeness of the algorithm if no equation is
added during the application of an Add rule. Indeed, suppose for instance
that is the sequence f(a) = t;a = b;f(b) = u. Then, we would fail to
prove that t = u since the equality a = b is processed too early. At this
point, f (b) has not been added yet to the structure , thus preventing the
congruence equationf (a) = f (b) to be discovered in the Congr rule. For
this reason, the Add rule also performs congruence closure by looking for
equations involving the new term f (@): this is the construction of the set

0 of equations, where the restrictive side condition overf () ensures that
only relevant terms are considered.

Soundness and completeness proofs @C(X) are given in Section[3.3.
Since no new terms are generated duringcC(X)'s execution, it is easy to
bound the number of times that the Congr rule and the Add rule can be
used. Letk be the number of terms (and subterms) in the input problem:
Add can be called at mostk times and Congr at most k(k 1)=2 times.
The number of steps in aCC(X) run is therefore quadratically bounded by
the input problem size.

3.2.3 Example: Rational Linear Arithmetic

In this section, we present the theoryA of linear arithmetic over the rationals
Q as an interesting example of instantiation of CC(X). This theory consists
of the following elements:

The interpreted function symbols are +; ; and all constantsq2 Q.

The semantic values are polynomials of the form

X
o+ G, G2Q;f]2T;c 60:

i=1
From an implementation point of view, these polynomials canbe rep-
resented as pairs where the left component representg and the right
component is a map from foreign values (terms not handled byihear
arithmetic; these are surrounded by a box in this section, inorder to
distinguigsh them from interpreted terms) to rationals that represents
thesum [, C[fi].- Note that in the semantic value above, + isnot the
interpreted function symbol but just notation to separate t he di erent
components of the polynomial.

=, is just the usual equality of linear arithmetic over rationals.
The functions needed by the algorithm are de ned as follows:

The function [] interprets the above function symbols as usual and
constructs polynomials accordingly.

66

The function leaves just returns the set of all the foreign vdues in the

polynomial:
|
bl

leaves co+ G[fi] = []j1 1 n

i=1

For the value 1] and the polynomials p1; p2, subst(TJ; p1; p2) replaces
the foreign value[r] by the polynomial p; in py, if r occurs in ps.

For two polynomials p1;p2 2 R, solve(py; p2) is simply the Gaussian
elimination algorithm that solves the equation p; = p, for a certain
foreign value occurring with di erent coe cients in p; and p,.

If we admit the soundness of the [function and the Gauss algorithm
used in solve, the axioms that need to hold are true and A is indeed a
solvable theory.

We now want to show the execution of CQ(X) by an example using this
theory of arithmetic. Consider therefore the set of equatims

E =fg(x+ k)= a;s= g(k);x =0g

and we want to nd out if the equation s = afollows from E. We will present
the equations of E to the algorithm in the same sequence as above. The
algorithm starts in the initial con guration Kg=h;j oj oJE ; s 2 a i,
as de ned in section[3.:2Z.2. In the following, components of he con gura-
tion with the subscript i denote the state of the component after complete
treatment of the ith equation.

Before being able to treat the rst equation g(x + k) = a using the
Congr rule, all the terms that appear in the equation have to be adde
by the Add rule. This means in particular that the components and
are updated according to Fig.[3:B. No new equations are diswered, so
and remain unchanged. Now we can apply the Congr rule to the rst
equation g(x + k) = a. This yields an update of and , but no congruence
eqguations are discovered. Here is the con guration after tle treatment of
the rst equation:

n (0]
1 = X7fx+k gx+Kg; K7 fx+k gx+kg [o

n (0]
gx+K|7"@m @@ [o

The second equation is treated similarly: the termss and g(k) are Add ed
and the representative ofg(k) becomes[s. These are the changes to the
structures and :

1

n (0]
K71 fx+k g(x+Kk); gk)g [1

n 0
9(k)| 7! 51 37! [1

2

2

3.2 CC(X): Congruence Closure Modulo X 67

The most interesting part is the treatment of the third equation, x =0,
because we expect the equatiomg(x + k) = g(k) to be discovered. Other-
wise, the algorithm would be incomplete. Every term in the third equa-
tion has already been added, so we can directly apply theCongr rule.
solve(2 [x]; 2[0]) returns the substitution (x; 0), which is applied to all
representatives. The value 0 is a pure arithmetic term, sdeaveq0) returns
f 1g. We obtain the following changes to 3 and 3:

w
I

Ll?!fx+k;g(x+k2}gg[2
X7 ox+ k7K [2

w
I

It is important to see that the representative of x + k has changed, even if
the term was not directly involved in the equation that was tr eated.

To discover new equations, the set 3 has to be calculated. To calculate
this set, we rst collect the terms that use x:

2(X) = fx+ kjg(x + k)g:

The elements of »(X]) are potential left-hand sides of new equations. To
calculate the set of potential right-hand sides, we rst corstruct the set

of valuesr corresponding to terms in » such that the representative ofr

contains x:

n 0
frjx2leaveqd o(r))g= XX+

Now, for every valuer in this set, we calculateleavey 3(r)) and construct
their intersection:

2(1) =

2(1)

12 leaves(0)

fx + k;g(x + k); g(k)g

2(1)
12 leaves

The union of the two sets and the set (X)) is the set of potential right-hand
sidesf x + k; g(x + k); g(k)g. If we cross this set with the set »(X]) and lter
the equations that are not congruent, we obtain three new eqalities

3= x+k=x+k; g+ k)= g+ k) g+ k)= gk) 5 s a

The rst two equations get immediately removed by the Remove rule. The
third one, by transitivity, delivers the desired equality w hich permits to

discharge the querys 2 a.

68

3.3 Correctness Proofs

3.3.1 Soundness

We now proceed to prove the soundness of the algorithm. LeE be a set of
equations between terms off and X a solvable theory as de ned pag€58. For
the proof, we need an additional information about the run ofan algorithm,
which is not contained in a con guration: the set O of equations that have
already been treated in aCongr or Unsolv rule.

The rst proposition shows that the equations that are already treated
are never contradicted by .

Proposition 3.3.1. For any conguration h j j j i and for all
t1;t2 2T we have:t; = t5 2 O) [t]_] [tz].

Proof. The property is true for the initial con guration Kg since O is the
empty set. We proceed by induction on the derivation that led to the con-
guraton h j j | i and by case analysis on the last rule used. The
cases ofRemove, Query and Add are trivial since they change neither
O nor . If the Congr rule is used, the new equationa = b is added to
O and is updated with the substitution (p;P) = solve([a]; [b]). Old
eqguations in O are equal in by induction hypothesis, and as for a = b, by
Axiom BZ4-(i), the new representatives ofa and b are equal in the updated
O

The next proposition shows that coincides with the functio n iter,
applied to the equations that have already been treated.

Proposition 3.3.2. For any conguration h j j j i and for all
t2T we have[t] = iter ([O];[t]).

Proof. It is straightforward to verify this property by induction o n O and
by de nition of iter. O

Now that we have characterized the representative of a termt as the result
of iterated substitution, we can prove the next proposition. It states that the
evolution of the representative of a term is always justi ed by the equations
that have been treated:

Proposition 3.3.3. For any conguration h j j | i and for all
t2T we have[O]Fx oft]= [t].

Proof. We have ([t] = [t] and by Proposition 332, [t] = iter ([O]; [t]).
Proposition 3.2.9 ensures that D] E x t = iter ([O];[t]), hence the result. O

We now turn to the main lemma: it basically states the soundness of
crucial for the soundness of the whole algorithm.

3.3 Correctness Proofs 69

Lemma 3.3.4. Foranyconguration h j j | iandforallt;;t,2T,
we have:

[ta] [ta]) ti=yo ta

Proof. By applying Proposition to t; and ty, we get O] Ex [ti] =
[t2] and [O] Fx [t2] = [t2]. By transitivity, if [ti] = [t2], then
[O] Ex [t1] =[t2]. We now apply Axiom and obtainty =, to. O

We are now ready to state the main soundness theorem: whenevavo
terms have the same representative, they are equal w.r.t. th equational
theory de ned by E and X, and every newly added equation is sound as
well. For the soundness of the algorithm, we are only intereted in the rst
statement, but we need the second to prove the rst, and the satements
have to be proved in parallel by induction.

Theorem 3.3.5. For any conguration h j | | i, we have:
8t1;t, 2T [t4] [o] =) @ =g 2
8t1;t, 2T : t1=122 =) 1 =g L2

Proof. We prove the two claims simultaneously by induction on the deiva-
tion and we are only interested in the application of the rules Congr , Re-
move, Add and Query . First, we observe that both claims are true for the
initial con guration Kyg: the second claim is trivial as = E, and the rst
claim is true because of propositiori_3.218.

In the induction step, consider the last rule applied to the @mn guration
h j j |j i, andshow that the claims still hold in the con guration
obtained by application of that rule. For the rules Remove and Query
this is actually trivial, as does not change and does not ge t any new
equalities added. For the ruleAdd , the rst claim is trivial, as remains
unchanged. The second claim is established as follows. if = t, 2 , we
can conclude by induction hypothesis. Ift; = t, 2 ¢ thent; f(a) and
t, f (D), for f with arity n. The conditions in Figure [3.3 guarantee that
[@ [1. Bythe rstclaim, we can state that &y =, b (1 i n)and
by the congruence property of =, we havef (&) =, f (1), which proves
the second claim.

We nally assume that the last rule applied was a Congr rule. To
prove the rst claim, we assume Jt4] 9t,]. By lemma[3.3.2, we have
t1 = 0. - t2- NOw, a= bis obviously an element of the sefa= bg[, so
that, by induction hypothesis, a =, b. By the induction hypothesis and
proposition 3.3, for anya = b 2 O we have alsoa; =, b. As=,. isa
congruence relation, we can concludeé; =, tz. The second claim can be
proved as in the case of theAdd rule, by the aid of the rst claim. O

70

Until now, we have only addressed the case of consistent cogurations
and indeed Theorem[3:3b establishes the soundness of the ap along
a derivation as long as the con guration remains consistent We now deal
with inconsistent con gurations: in order to be sound, we ne=d to show that
as soon as a con guration becomes inconsistent, it must be # case that
the original set of equationsE is inconsistent with X.

Theorem 3.3.6. If an inconsistent derivation h ?j i is derivable from
Ko, then E and X are inconsistent. Consequently,a =, b for any terms
aandhb.

Proof. When the con guration rst becomes inconsistent, it must be by ap-
plication of the Unsolv rule. Thus, thereisaconguration h j j ja=
b; i derivable from K such that solve([a]; [b]) returns ?. Let O be the
equalities treated up to that point. By the second part of Theorem[3.3.35,
we know that a=, . band thatforall u=v2O0O,u=,. v.

Let t be any term, we want to show that iter (a = b, O;[t]) = ?. By
Proposition 3332, iter (O;[a]) = [a] and iter (O;[b]) = [b]. Thus by
de nition of iter and sincesolve([a]; [b)) returns ?, iter (a= b; O;[t]) is
unde ned. By applying this to any two terms t; and t,, we can prove that
a= b0 fFx ty =tz and by Axiom B.Z5, this means thatt; =, _, to.

Because this last equality is true for any termst; and t, and because
a = b and the equations in O are consequences of and E, X and E are
inconsistent. O

3.3.2 Completeness

We nally proceed to the completeness of the algorithm. In ogposition to
the correctness proof, we are now interested in the fact thaevery possible
equation on the terms of the problem can be deduced by the algithm,

and in particular we are interested in its termination. We will only con-
sider consistent con gurations since inconsistent con guations cannot be
incomplete.

Termination and congruence closure of
In the following, we assume a xed problem consisting in the set of equa-

tions E and a query a 2 b; we denote the successive con gurations by
h hwj nj nij ni with n=0 the initial con guration (as de ned in Sec-
tion B2Z7). Let T be the set of terms and subterms that appear irE ; a 2 b,
in particular, T is closed by subterm. At any stagen in the algorithm, we
write O,, for the set of equations that have been treated by the algorihm
so far through the rule Congr or Remove.

The rst property we are interested in is the fact that all the equations
inferred, and thus all the terms added, are only using termsifom T .

Proposition 3.3.7. Foranyn,Im(,) T, o, T T and , T.

3.3 Correctness Proofs 71

Proof. Straightforward to verify by analyzing every rule. O

Theorem 3.3.8 (Termination). The algorithm terminates on any input
problem

Proof. To prove that this system terminates, it is su cient to consi der the

measure dened as [T n nj;j n=1] ;i nj), where the second component
represents the number of equivalence classes ovér in . To be precise,
the measure is only de ned for consistent con gurations but inconsistent

con gurations can be considered as nal (they just discard e/ery equation

and query pending).

It is immediate to check that, used lexicographically, this measure de-
creases for every rule of the system. The rst element of thismeasure
remains unchanged for all rules excepAdd , where it strictly decreases: in-
deed a new term is added to ,, and by Proposition [3.3.4, this new term
belongs toT .

The second part measures the number of di erent equivalencelasses in

n With respect to . It is obvious that rules Remove and Query do not
alter this quantity. As for Congr , this quantity decreases strictly since two
elements that were dierent in |, are made equal in 41 by Axiom BZ4.

Finally, the third part of the measure is the number of equations and
gueries that remain to be treated, and it is clear that rulesRemove , Query
always remove one element from this set. To sum up, we have thillowing
table :

TN nj|J n=] J nj
Add <
Congr = <
Remove = = <
Query = = <
which proves the termination of the algorithm. O
Now, we know that there exists a nal con guration, for n = ! . At this

stage, all the equations from the original problem have beenreated, and
every term in T has been encountered :

Proposition 3.3.9. O, E.

Proof. Since o= and all these equations have been treated at the end,
it is obvious that O, contains at least the equations in , i.e. E. O

Corollary 3.3.10. At the end of the algorithm, , = T .

72

Proof. We already know by [3:3.7 that , is included in T . By B339
and [3331, all the left and right-hand sides of the equation&jueries in
arein . Since is closed by subterm, it also containsT , so it is equal

toT . O

Proposition 3.3.11. The function n 7! , is nondecreasing, i.e. (r)
n+1 (r) for all r and n.

Proof. It is easy to check this property by looking at all the rules. O

The following proposition gives the true meaning of the map ,. It
shows that a term in uses all the leaves of the representatives of its direct
subterms.

Proposition 3.3.12. Foranyterm f (t1;:::;tm) in n, ifthere existsi m
such thatp 2 leaveq n[ti]), then f (t1;:::;th) 2 n(p).

Proof. The proof proceeds by induction onn. The result holds trivially for
the initial con guration since o is empty. If the result holds after n steps,
we proceed by case analysis on the rule used to get to the+ 1-th step. The
rules Remove, Query do notchange ., n, or q, so if one of these rules
is used the result still holds atn + 1. We detail both remaining rules :

Congr: Let f(t1;:::;tm) 2 n+1 = n, and i and p such that p 2
leaved n+1[ti]). If (v;R) is the substitution applied, by de nition
of nh+1,p2leaveq n[tj]fv 7! Rg). Now, we distinguish two cases :

if p2 leaveq ,[ti]), then by induction hypothesis, we know that
f(t;iiitn) 2 n(p), and thus f (t1;:::5th) 2 nea (D).

if pZleaveqy nl[ti]), then 4[ti] has been changed by the sub-
stitution and the axiom 8.Z.6ltells us that v 2 leavey ,[ti]) and
p 2 leaveqR). Therefore, by applying the induction hypothesis
to v and the de nition of +1, we can conclude that :

f(tyith) 2 n(v) n(P [n(V)= n+(p)

Add: If f (ty;:::;tm) was already in |, then it is straightforward to check
that for all p2 leaveqd n+1([ti])), p was already in [tij] and the
induction hypothesis together with the monotonicity of |, gives us
the wanted result.

p 2 leaveq n+1[ti]). Again, p was already in ,[ti] and sincet; is a
direct subterm of the new added termf (4), we have by de nition that
f@2 nua(P)= n(p)[f f(E)0

O

3.3 Correctness Proofs 73

The next proposition is the central property ensuring the canpleteness of
the algorithm, and states that | indeed represents a congruence relation.

Proposition 3.3.13. The restriction of | to T is congruence-closed, i.e.

gt(@,fM2T1T; [M) ([fE@ [FOI

Proof. Let k the smallest integer such that both f (8) and f () belong to
k. Because terms can only be added to by the rule Add, we know
the rule applied at the previous step wasAdd . We can safely assume the

term added wasf (4€), by switching & and D if necessary. Iff (@) and f ()
are equal, the result is obvious. Otherwisef (€) 6 f (B) and f (b) had been
added before and was in ¢ ;. Now there are two cases, depending on
whether 1[4 k 1[0] or not.

if « 1[4 x 1[M], we will prove that f (@) = f (D) has been added
to i, that is to say we need to establish that :

8i: 81 2 leavey « 1[al);fM 2 « 1().

For any such i and |, we know that | is in leavey ¢ i[ai]), and
therefore in leavey ¢ 1[b]). By Proposition B.3.12, this means that
f(M 2 « (1), which is exactly what we wanted.

if on the contrary, [€] and [were not equal in ¢ 1,thenletj kbe
the smallest integer such that ;[4] j[0. The rule applied at the
previous step must beCongr since only Congr changes . Thus,
a substitution fp 7! Pg has made ; i[al and ; 1[b] equal: there
exists ani, such that

i 1al16 j albl ~ 1alfp 7! Pg i 1[blfp 7 Pg.

This means that at least one of these values, say j i[a], has been
changed by the substitution and by Axiom [3.2.8, that p belongs to
leaveq ; 1[ai]). Proposition B.3.12 ensures thatf (€) 2 ; 1(p).

We still have to prove that f () veries the conditions in the rule
Congr , namely that:

S T
FM2 j 1(P) [tporeaves(; 1(t) 12teaves(j(ty i 1(D):

Again, we distinguish two cases :

if ; 1[b] 6 j[b], then by the same argument as above for
f(a), f(M2 ; 1(p) andf (b has the desired property.

74

it 1[b] j[b], then leaveq j[a]) = leavey j[b]) =
leavey ; 1[b]) and by applying Proposition B:3.12 once again,
we deduce that for everyl in leavey j[a]), f (B 2 ; 1(l). Since
p2 leaveq ; 1[a]), this means indeed that:

S T
f(b) 2 tip2leaves(; 1(t)) 12leaves((1)) | ().

So far, we have established that the equationf (&) = f () has been
added when the ruleCongr was applied at the stepj 1, and thus
that f (a) = f (B belongs to ;. At the end of the algorithm, this

equation must have been treated. Thus, by 3311, we know thathe
representatives off (€) and (b) are equal in .

O

The axioms[3.2.10 and3.2.11 introduced in Sectiofi 3.2.1 aresed to
prove that the , component of the nal con guration is coherent with the
theory X, that is to say:

Proposition 3.3.14. Let f (t1;:::;tp) aterm in T wheref is an inter-
preted symbol. Then, | [f (t1;:::;t0)] FXC ([tad;:::; 1 [ta]).

Proof. We will prove this result by proving it (by simple induction) for ,
for every N between 0 and the nal con guration.

First, we observe that the result is true for the initial con guration, i.e.

off (t1;:::tm)] FX(oltal;:::; oftm]) because it directly follows from
Axiom B.Z. 10 and the de nition of .

Now, it is su cient to show that if the equality holds for n, it still
holds in +1. Since the only rule that changes . is Congr , the result
is obvious for any other rule. In the case of aCongr rule, let p; P be the
substitution appliedto

ne1 [f (i tm)] = nlf (t1;:::5tm)]fp 7! Pg by de nition
fXC n[td;:::; n[tmDfp 7! Pg by induction
fXC nltalfp7! Pgii:i; altmlfp 7! Pg) by BZIT
fX(nerltadiii:; et [tm]) by de nition
which proves the result. O

In other words, this property means that actually represen ts a union-
nd structure modulo X, that is, it behaves correctly with respect to the
interpreted symbols.

Models and Structures

We now recall some usual de nitions about structures and moals on a
certain signature, which we will use to nish the completeness proof.

De nition 3.3.15. A -structure M is de ned as a tuple (jMj ; (fM)i2)
where:

3.3 Correctness Proofs 75

jMj is a set called thedomain of M

for each function symbolf 2 of arity n, fM is a function from jMj "
to jMj called theinterpretation of f in M

De nition 3.3.16. Let M be a -structure, t a term in T. The interpre-
tation of t in M, noted M (t), is recursively de nedd by:

8f 2 ty;iiith 2T ;M (F(ty;:::tn) dgff“"(M (t1);::; M (tp))

-structures can now be used as models for our atoms, in the sese of
De nition ZT. Tlpage [Z4. Recall that in this chapter, atoms are equations
between terms ofT .

De nition 3.3.17. Let M be a -structure, t;u terms in T. We say that
M is a modelof t = u, written Mj=t=u, ifand only if M (t) M (u).

Completeness

The completeness expresses the fact that if the query is enlad by the set
of equationsE and the theory X, it is proved true by CQ(X). In other words,
we need to prove that:

a=ye b =) v [a] [0l

The rst step of the proof is to build a -structure M which modelsE
and =, , and such that the interpretation in M coincides with | on [a]
and [b].

De nition 3.3.18. Let M be the structure de ned in the following way :
the domain of M is the setR of semantic values

for each symbolf 2 of arity n, we distinguish whetherf is inter-
preted in X or not :

if f 2 thenfM % ¢x

iff 2 x,andrq;:::;rh 2R, then the idea is to use |, wherever
we can :

Mo e def o L., iff(tyintn)2T
fM(reiinrn) = CIF(tg)] and 8i-r]

fMryiir) = 1 otherwise

Here, we usel, but we could use any element iR, since we will
see that it does not matter how we de ne interpretations in tlis
case.

Sthe base case being O-ary function symbols, i.e. constants.

76

Proof. The very rst thing we have to do is to prove that the de nition we
just gave is indeed a de nition. In the case wheref M is de ned in terms
of ., there may be several ways to pick the termd; and we have to show

Now that M is a well-de ned -structure, we will rst show that on all
the terms in T , the interpretation in M is exactly the function | [].

Lemma 3.3.19. Foranyterm t2 T , M (t) 1 [t].

Proof. We proceed by structural induction on terms.

the tj becauseT is closed by subterm. Thus, for alli, M (t;) [t
Now, if f 62 ,
M (f(ty;:::th) = fM(M (t1);::; M (tn))
fM (el 1 [ta]) by IH
| [f (t1;:::;t0)] by de nition of M
Iff 2 x,then
M (f(ty;::th) = fM(M (t1);:::; M (tn))
fM otz o [ta]) by IH
fX(y[tad;:::; 1 [ta]) by de nition of M
V[(tg; o tn)] by B34 sincef (t1;:::;t0) 2 T
which concludes the proof. O

Finally, we show that M is a model of = and E, i.e. that it models all
equalities in the congruence closure oK and E.

Lemma 3.3.20. Forall u;v2T,u=,. v =) Mj =u=v.

Proof. SinceM is a structure whose domainR is the domain of semantic
values of X, and since the interpretation in M of every interpreted symbol
f is precisely its interpretation in X, namely f X, M is a model of = .
Moreover, lett = u be an equation inE. Sincet and u are in T
the preceding lemma tells us thatM (t) 1 [t] and M (u) i [u]. By
proposition [3:3.9, we know that sincet = u is in E, it has been treated at
the end and | [t] i [u]. Thus, M (t) M (u) for any equationt = u in
E,andMj= E. O

Theorem 3.3.21 (Completeness) 8a;b2 T ;a=,. b =) e 1 [D].

Proof. By lemma [3:320,M is a model ofE and =, . Therefore, since
a =, b, it must be the case that M is also a model ofa = b, in other
words, that M (a) M (b). Hence, by lemmal3.3.1P, | [a] ! [b. O

We have established the completeness @@C(X).

3.4 Adding Disequalities 77

3.4 Adding Disequalities

In the previous sections, we have presented a new algorithmatled CC(X)
which performs the congruence closure of a set of equationsadulo a solv-
able theory X. In order to use such a system in an SMT solver, we need to
turn it into an environment suitable for the DPLL procedure, as described
in Section[Z3. The missing part in CC(X) as presented so far is that the
SAT solver will feed the environment with both positive and negative liter-
als, and query positive and negative literals as well. Therfore, we need to
adapt our system such that it is able to deal with disequalities as well and
we present such an extension in this section.

The modi cations required to deal with disequalities can be roughly
summarized as follows:

(a) we must account for inputs of the form a 6 b wherea and b are some
terms: the algorithm will store an extra relaton N T T which
gathers all such constraints;

(b) there is a new way for the con gurations to become inconsstent,
namely when treating an equation which contradicts the consraints
gathered inN: solving a (solvable) equation inCongr rule can merge
two terms in which are unequal according to N, and conversely,
adding a disequality constraint can contradict the current ;

?

(c) when dealing with a negative querya 6 b, we must determine whether
a and b can be equal or not: it is not su cient to check the current
constraints N because merginga and b can lead to more equalities
(modulo X), one way to do so is to try and add the equationa = b
and test if the con guration becomes inconsistent.

Note that N must be an irre exive, symmetric relation; adding the dise-

quality a6 bto N yields the relation N [f (a;b);(b;ag. The N structure

can be implemented in a variety of ways, one possible way is tmap terms

to the set of terms which are di erent. For modi cation (b), i t is necessary
to check that the union- nd and the relation N are not contradictory.

De nition 3.4.1. LetN T T arelationovertermsand : R!R a
union- nd on semantic values. We say thatN and are coherentif:

8a;b2T;(a;p2N =) [a6 [b
We say that they areincoherent otherwise.

Because the relationN remains nite (since there are a nite number of
inputs after a nite number of steps), this coherence check an be imple-
mented without problem. Finally, in order to deal with modi cation (c),
we de ne a couple of notations: if K is a con guration, we write K " if

78

there is a derivation from K to an inconsistent con guration, and K # if the
con guration remain consistent and all queries succeed.

We now present an extended set of inference rules which cormgiks and
corrects the rules in Figure[33. Con gurations are extende with the N
structure and are now written h j | j N j i and the initial
con guration Ky is just as before with an empty N = ;. The extended
inference system is given in Figuré_3}4. The ruleRemove, Unsolv , Add ,
Query and Incons are left unchanged: theN structure is simply passed
from one con guration to the next. The Congr rule is modied so that
it only applies if the resulting union-nd °is coherent with the set of
constraints; other than that it is left unchanged. The new rule IncohEq
takes care of the case when ®and N are incoherent. There are three rules
left, all new with respect to Figure [3.3, and they all deal with disequalities.
Diff adds a new disequality constraint to the structure N, but only if
that does not contradict the current map . If it does, then IncohDiff
applies and yields an inconsistent con guration. Finally, negative queries
are handled by QueryDiff , which only accepts a querya 6 bif adding the
equality a = b to the current con guration raises an inconsistency.

Adapting the proofs. It is straightforward to check that the proofs that
we did in Section[3:3 still hold (for the most part) for this extended system.
Indeed, the extendedCC(X) deals with equalities (whether inputs or queries)
in exactly the same way as the originalCQ(X): the only di erence lurks in
the fact that an equation can contradict some previous disegalities, i.e.
the IncohEqg rule. Therefore the extended system can yield more inconsis
tencies, but consistent con gurations remain the same and herefore remain
correct and complete (as far as equalities are concerned). &dde formally, if

is the input problem, let us call E* the set of input equations in and
E the set of disequalities. We can reproduce the exact same rsaning that
led to Theorem[3.3.% and deduce:

Theorem 3.4.2. For any conguraton h j j jNj i, we have:
8ty t2 2T [t [t] =) ti= .t
8t1;t2 2T : t1=1t2 =) '[1=X_EJr to:

Similary, the soundness of inconsisteniCQ(X) con gurations, namely The-
orem[3.3.6, can be obtained by replacinge with the only positive inputs
E*:

Theorem 3.4.3. If an inconsistent derivation h ?j i is derivable from
Ko using Unsolv , then E* and X are inconsistent. Consequently, the equa-
tion a= _, bfolds for any termsa and b.

In order to complete the soundness proof for the extended sysm, we
need invariants on the N structure along the derivation: all constraints in
N must be consequences of the disequalities i

3.4 Adding Disequalities 79

h i i iNja=b; |

Congr - - - - :
h j 1 % 9% Nj 9 i

ab2 ; [a6 [h

where
0 Oand Care computed as in theCongr rule in Figure
N and Care coherent

i i iNja=b; |

IncohEq 7 |

a,b2 ; [a]6 [b

where
0 Oand Care computed as in theCongr rule in Figure
N and Care incoherent

J] jNja6hb; i
hj J JINI[f (ab;(bagj i

j 1 iNjaé&b; i
?] i

Diff ab2 ; [a6 [N

IncohDiff

ab2 ; [a [

i i iNja=b; |
h 2 | i

where? = solve([a]; [b])

Unsolv

a,b2 ; [a6 [b

h i iNja=b; |

Remove N a,b2 ; [a [0
o . (
Add h § J JNjClf@]; i f (€) 62
h [ff@gj 1 % iNj % Cl@l; i 8v2eav2

where %and Care computed as in theAdd rule in Figure

Query 11 iNjaZb; "ab2 : [a [Y
hj] JNJ i ’ ’

?
. j jJ iNjag&b; i ab2 ; [a [N
ueryDiff - - — R
Query i § iNj i h i j jNja=bi
h ?2 | e; i .
Incons - — e equation or query
h ? j i

Figure 3.4: The rules of CO(X) extended to deal with disequalities

80

Proposition 3.4.4. If h j j |JNj i is derivable fromKyg, then all
terms (a;b) 2 N are such thata6 bor b6 a belong toE

Proof. The proof is easy by induction on the derivation; only the Diff rule
adds elements toN, and no rule ever adds disequalities to the pending
inputs. O

We can now prove the soundness of the system when it reachescionsis-
tent con gurations.

Proposition 3.4.5. If an inconsistent con guration h ?j i is derivable
from Ko, then the union of E*, E and X are inconsistent, i.e. there exists
no modelM of E*; X such that all disequalities inE are false inM .

Proof. By case analysis on the rule which made the con guration incasis-
tent. The case of theUnsolv rule is given by Theorem[3.43:E* and X
together are already inconsistent.

If IncohEq is usedthenN and Oare incoherent. Therefore, there exists
u; Vv two terms such that (u;v) 2 N and [u] [v]. By Theorem[34.2, we
know that u Y and by Proposition [34.4 that u 6 v or v 6 u belongs
to E . Therefore, X;E * is inconsistent with E

Finally, if IncohDiff is used then there isa 6 b 2 E such that
[a] [b. By Theorem [3.4.2, we know that a = e+ b and therefore

X:E * is inconsistent with E . O

This last proposition also gives us the soundness of the trément of
negative queries,i.e. the soundness of theQueryDiff rule. Indeed, if
h j j jNja=bi", then by Proposition B.45,a= b;E*;X and E
are inconsistent. Therefore ifM modelsE*, X and E , it is impossible
that M j= a= bholds. In other words, a 6 bis indeed a consequence of the
inputs E and the theory X.

Now that we have established the soundness of the extended stgm, we
prove its completeness. We use the same notations as in Semti[3.3, for the
xed sequence of inputsE (which are split in equalities E* and disequalities
E). Once again we only deal with consistent con gurations sirte inconsis-
tent con gurations are necessarily complete. The completaess theorem is
expressed in two parts, one for positive queries and one foragative queries.

Theorem 3.4.6. Let a;bbe two terms inT.

() Assume that 8M ;Mj= E;X =) Mj =a=h
Then, h oj o] ojNojE;aZ bi#.

(i) Assume that 8M ;Mj=E;X =) Mj = a6 b
Then, h o] oj ojNojE;agbi#.

Proof.

3.5 Conclusion 81

(i) Let us assume that a = bis entailed by E; X . We want to prove that

h oj oj ojNojE;a 2 bi#, and such a derivation can only end with
the Query rule therefore it is enough to prove that [a] 1 [b].

We now build a special -structure M in exactly the same way as we
did in Section[3.3, with domain R and such that it coincides with |, every-
where possible. By Proposition"3.3.19, we know that for everterm t in the
problem, M (t) 1 [t]. Adapting Lemma 3:3.20, we also know thatM is a
model of X;E *. Finally, let u;v 2 E : we know that E has been treated
by a Diff rule, so (u;v) belongs toN. BecauseN, and | are coherent,
thismeansthat [u]6 [v]. Thus, M is a model ofE as well and alto-
gether, M j= E; X . By hypothesis, this means thatM j= a = b, that is to
sayM (a) M (b). Sincea and b are terms of the problem, [a] 1 [D].

(i) We now assume that a 6 bis entailed by E; X . We want to prove that

?
h oj oj ojNojE;a6 bi#, and such a derivation can only end with
the QueryDiff rule therefore it is easy to see that it amounts to proving
that h oj oj ojNojE;aZ bi".
We proceedab absurdo if h gj oj oj Noj E;a= bi does not
yield an inconsistent con guration, there is a nal con gur ation with a map

that we denote | ; we proceed as in the (i) part and build a -structure
M such that M is a model of E; X and such that M (t) 1 [t] for all
terms t appearing in E;a = b. By hypothesis, we know that M j= a 6 b;
on the other hand, becausea = b has been treated in ,, it must be the
case that | [q] i [b], which means thatM j= a = b. We have reached a
contradiction. O

3.5 Conclusion

We have presented a new algorithmCQ(X) which combines the theory of
equality over uninterpreted function symbols with a solvable theory. Our
method is inspired by Shostak's algorithm and its main novety rests in the
use of abstract data structures for class representativeghis allows e cient
implementations of crucial operations. Our approach is ale modular un-
like ad-hoc extensions of congruence closuré [NO80, NOO7;(X) can be
instantiated with an arbitrary solvable theory underlying the restrictions
described in Sectior_3.P.

We gave a useful example of a solvable theory in Sectidn_3.2\8ith the
theory of linear rational arithmetic. The same theory can also be used to
deal with linear integer arithmetic, which does not have a sdver, but it can
be incomplete. For instance, the formula:

8xyz:Z;2 x=z=) 2 y6z+1

cannot be established. Because such formulae are not frequtein program
veri cation in practice, Alt-Ergo basically uses the theory of rational arith-

82

metic in order to deal with integerﬂ This illustrates one interesting feature
of the ability to use semantic values: this decision procedre for integers
can manipulate and construct semantic values which do not coespond to
terms, e.g. the constant polynom E2, which is not possible with Shostak's
procedure. There are other theories of interest which happeto be solvable
theories and are implemented inAlt-Ergo: a theory of pairs (similar to the
theory given as an example by Shostak in[[Sho84]) and a theorgf nite
vectors.

Nevertheless, solvable theories are still a quite stronglgonstrained class
of theories. They are included in the class of Nelson-Opperheories. They
are stably in nite because the semantic values of a solvabléheory need to be
able to embed the set of all termsT (through the [.] function). In particular,
it is not possible to deal with a theory of nite types because COX) has a
coarse treatment of disequalities: a termain N can be constrained to be dif-
ferent from arbitrarily many terms and CQ(X) will not detect inconsistencies
due to an upper limit on the cardinality of a model. There are combina-
tion schemes which try to address cardinality constraints tioroughly: for
instance, Tinelli and Zarba [TZ03] proposed a combination sheme in which
any theory can be combined with a special kind of theory §hiny theories)
which have a function to compute cardinality constraints. Finally, Ranise,
Ringeissen and Tran proposed a combination scheme for a ce®f theories
strictly included between Nelson-Oppen and Shostak theogs [RRT04].

"Alt-Ergo still tries to do some integer-speci ¢ reasoning: for insta nce, strict inequal-
ities a < b are transformed into large equalites a b 1, thus using a fundamental
characteristic of integers.

Part Il

Ergo: a Re exive Tactic for
Automated Deduction in
Coqg

83

CHAPTERS

Proving by Re ection irCoq

Tool , Re ection

Contents

4.1 Introductionto Cogl 86
4.1.1 CIC: The Calculus of Inductive Constructions . . . 86
4.1.2 The Coq Proof Assistarft 87
421 Customized Tactics. 95
4.2.2 Built-In Procedures 97
423 External TooI$ 98
424 Tracesand Reectiolm 99

4.3 Towards a Re exive SMT Kernel . . | 102

The second part of this document is devoted to the presentatin of a
Coq formalization of the SMT techniques described in Part 1. We gart in
this chapter by giving a detailed introduction to the Coq proof assistant
and the technique of proof by re ection. We rst describe Coq's underlying
logic and its general features in Sectioi 4.1]11, before we @&l the di erent
techniques for proof automation inCoq and in interactive provers in general
(Section [42). We nish with an outline of our re exive SMT so Iver in
Section[43.

85

86

4.1 Introduction to Coq

Coq is a proof assistant for higher-order logic whose developme started in
the middle of the 1980's, and which is now maintained and deveped in the
TypiCal project [Typ], We start by describing its logical la nguage before we
deal with the proof assistant per se

41.1 CIC: The Calculus of Inductive Constructions

The logical language on whichCoq is based is an evolution of a calculus pro-
posed by T. Coquand and G. Huet in [CH88], theCalculus of Constructions
(CoC). This calculus is itself an extension of type theory aml can be seen
as a combination of the principles of two successful type-thoretic frame-
works from the 1970's, Martin-L6f's Intuitionistic Theory of Types [ML75]
and Girard's second-order -calculusF, .

One of the main speci cities of Martin-L6f's theory is the dependent
product which allows one to quantify over both objects and t ypes and
these dependent types allow one to express much more propés through
types than in standard simply-typed -calculus. Through the Curry-Howard
isomorphism, which identi es programs to proofs and types b logical propo-
sitions, this system can be used as a foundation of construste mathematics.

In the CoC, -abstractions are typed with a dependent product noted
8 using the following rule: if, for all x with type T, the term u has type
U, the term x : T:u has type 8x : T:U, where U can mention the variable
X. Therefore a product type 8x : T:U can be read both as the type of a
dependent function, or as a universal quanti cation over ohjects of type T.
When U does not mention x, the product becomes non-dependent and is
written T ! U, which can be read as a traditional function type or as a
logical implication.

Because of its higher-order nature, quanti cation in the CoC is not re-
stricted to terms and as a matter of fact, terms and types are ot distin-
guished in the CoC. Therefore types themselves have typesnd these types
of types are special terms called sorts:f Prop; Set, Type;; ;9. Now, the fact
that a term t has type T in the CoC can be seen in two dual ways: thatt is
an object of type T, but also that t is a proof of proposition T. Of course,
not every type should be seen as a proposition, for instancedsic datatypes
like integers and functions are traditional program types. The sorts above
are used to ensure a strict separation between informativeypes (data types,
programs) and logical types (propositions, proofs): the fomer category of
types have type Set, while the latter have type Prop. In particular, the
sorts Prop and Set di er by the fact that Prop alone isimpredicative, i.e.
quantifying over propositions still yields a propositiorﬂ. Quanti cation over

LEarly versions of Coq implemented an impredicative version of the sort Set, but it
was discovered to be inconsistent therefore Set has since been made predicative.

4.1 Introduction to Coq 87

Set yields more complex objects, whose type igype,. In fact, both Prop
and Setthemselves have typ€elype,, and the sorts Type form a hierarchy of
sorts reminiscent of Martin-L6f's universesU,, where eachType has type
Type ., which allows one to de ne arbitrarily complex objects.

Another decisive feature of the CoC, which it inheritates from simply-
typed -calculus, is the fact that there is a natural notion of reduction of
terms. The rules of reduction in CoC form a con uent, strongly normalizing,
system and a very important typing rule allows one to take adwantage of
this reduction: the conversion rule says that if a term t has type T, it also
has type T?as long asT®and T have the same normal form. This brings
computational reasoning in the typing system: some typing jydgments can
now simply be veried by computing a normal form. For instance, if one
has a proof ofP((15 (75 7))=12), itis also a proof of P(85), P(5 17) or
P(100 150.

Finally, the CoC was extended with inductive de nitions by T . Coquand
and C. Paulin [CP9Q, [PM93], and then to coinductive de nitions by E.
Giménez [Gim96] in what is now known as theCalculus of Inductive Con-
structions (CIC). Inductive de nitions allow one to easily de ne datat ypes
in an intuitive manner, what was essentially only possible hrough tedious
second-order encodings in the CoC. We demonstrate the use afductive
de nitions in the next section.

4.1.2 The Coqg Proof Assistant

The Coqg proof assistant is a system based on the CIC presented abovid:
revolves around a small critical kernel whose role is to typeheck CIC terms.
If one is able to build a term t of type T, then one is guaranteed to have a
(constructive) proof of T. Depending on whetherT is a proposition or not,
this shows that Coq can be used both to prove propositions and to write
pure functional programs. Coq is therefore really adapted to the task of
writing programs, speci cations, and proofs that these pragrams verify their
speci cations, all in one single system.

Inductive de nitions. Coqg users do not manipulate CIC terms directly;
instead Coq provides a speci cation language called Gallina and a set of
top-level commands calledvernaculars. For instance, the datatype of Peano
integers can be de ned by the following inductive de nition :

Inductive nat : Set =
| O : nat
| S :pnat ! nat

In e ect, this de nition actually corresponds to four separ ate de nitions:

2We suppose here that integers and arithmetic operations have been de ned, we will
see in the next subsection how this can be done.

88

the de nition of a type nat of type Set

two symbols, called the constructors of the inductive type nat: O of
type nat and S of type nat ! nat;

an induction principle nat_ind of type:

8P :nat ! Prop,
PO! (81 :nat, P n! P(Sn) !'8 n:nat, P n.

This induction principle is a second-order formula expresig the traditional

induction principle used to prove properties by induction on integers. It
states that integers are exactly built by application of the constructors O
and S. Such an inductive de nition also has two internal consequaces (due
to the introduction of inductives in the CIC). The rst one is that it is

possible to use pattern-matching to deconstruct a object ofan inductive
type. For instance, we can de ne a predecessor function inthe following
way:

De nition pred (n : nat) :=
match n with
| O) O (*-1is not a nat ¥
| S m) m
end.

The system checks that the pattern-matching is exhaustive,i.e. that all
constructors are accounted for. Syntatic extensions in Gdina make it pos-
sible to use complex, nested pattern constructs, as is usugldone in func-
tional languages. The second consequence of the de nitionf@n inductive
datatype is the ability to write recursive functions, i.e. Xx-points on the
structure of an inductive type. For instance, we can de ne the addition
operation plus n m by induction on the structure of the rst argument:

Fixpoint plus (n m : nat) { struct n} :=
match n with

|O) m
| S n°) S (plus n°m)
end.

This special kind of de nition, using the Fixpoint keyword, is possible as
long as the recursive calls are performed on objects which arstructurally

smaller than the original argument. In this case,n®is obtained by destruct-
ing n and is therefore structurally smaller than n. This analysis ensures that
all functions de ned in Coq are terminating, and this is one of the strongest
constraint in the language. When the structural condition is not veri ed,

there are alternative ways of de ning recursive functions,we will see some
of these tricks in the following chapters. As a nal remark, Coq allows the

4.1 Introduction to Coq 89

use of decimal representation to denote constantat's, for instance 4 stands
for S(S(S(S 0))) .

Let's add the logic. As we have seen in the last section, CIC is an
extension of -calculus, and does not contain built-in constructs for logcal
reasoning besides universal quanti cation (and of coursehe Prop sort). It
is well-known that the usual connectives of rst-order logic can be encoded
using second-order quanti cation, and inductive de nitio ns can be used to
perform a similar encoding. For instance, the conjunctionand A Bof two
propositions is de ned in the following way:

Inductive and (A B : Prop) : Prop :=
| conj: A B! and AB
where A ~ B := (and A B) : type_scope.

There is only one constructor,i.e. one way to build the conjunction and
A B and unsurprisingly this is by giving proofs for A and B. The induction
principle generated:

and_ind : 8ABP :Prop, (A ! B! P)! and AB! P

is the usual second-order encoding of conjunction. The de ition above also
introduces a syntactic notation for the conjunction and A B namely the
traditional A”™ B. Notations are a very convenient feature ofCoq and com-
plex notations can be de ned for user-de ned constructs. The disjunction
of two propositions can be de ned inductively in a similar manner, with two
constructors corresponding to either branch of the disjuntion, and is noted
A_ B, The special propositionsTrue and False are respectively de ned
by an inductive type with a single trivial constructor, and by the empty
inductive type:

Inductive True : Prop := 1.
Inductive False : Prop :=.

Note that the elimination principle for False is the ex falso quodlibﬁ prin-
ciple 8P : Prop, False ! P. The negation of a propositionP is simply
de ned as:

Deniton not (P : Prop) := P ! False.

and is denoted P . Finally, the existential quanti cation isdenoted 9x : T, P
and is de ned inductively as:

Inductive ex (A : Type) P : A ! Prop): Prop :=
| ex_intro : 8 : A, P x! ex P.
In particular, an axiom-free proof of 9x : T, P must useex_intro and

must provide a witness of type T which veri es P, which is the trademark of
an intuitionistic logic.

3From a false proposition, anything follows.

90

Interactive proofs. Using the logical de nitions above, we can express
propositions and try to prove them. As explained already, proving a propo-
sition P amounts to giving a term of type P. This method is not practical
except for the easiest propositions, for instance the term:

fun A: Prop) fun H: A) H

where fun is the Gallina syntax for -abstractions, is a proof of the propo-
sition 8(A : Prop), A ! A . To prove more complex properties,Coq
provides an interactive mode, calledproof mode that allows the user to
interactively construct proofs through the use of a languag@ of commands
called tactics. In their simplest form, tactics mimic the application of tr a-
ditional introduction and elimination rules in natural ded uction systems, or
right and left rules in sequent calculi a la Gentzen. For instance, let us detall
a proof of a simple propositional tautolog)@]:

Theorem or_not and: 8AB: Prop), A _ B! (A ~ B).
Proof .

The Theoremcommand is one of the many available vernaculars emma
Property , ...) which introduces a new goal to prove.Coq switches to proof
mode and displays the current state. At every moment in proofmode, the
state is described by a sequence of subgoals, each subgoainigea list of

hypotheses and a conclusion to prove under these hypothese€nly the

rst subgoal is displayed by Coq, with the conclusion separated from the
hypotheses by a double bar. After starting the proof of the theorem above,
the current state is the following single subgoﬁ)

1 subgoal

8AB: Prop), A _ B! (A "™ B)

We start the proof by using the introduction rule for univers al quanti -
cation, four times. We write this using the intros tactic and explicitely
provide names for the introduced objects.

intros A B H N.

Note that the fourth introduction uses the fact that (A ~ B) is actually
de ned as the implication A" B! False . After applying this tactic,
the subgoal becomes:

4This theorem is intuitionistically valid but note that the ¢ onverse of or_not_and is
not an intuitionistic tautology, but is only valid in classi cal logic.

®To distinguish proof states from Gallina and tactic inputs, we will always present
Coq's output in proof mode in a framed box.

4.1 Introduction to Coq 91

False

We now perform eliminations of the conjunction N and disjunction H
both eliminations can be performed with the same tactic, cdled destruct .
Destructing the conjunction with destruct N as [NA NB] yields two new
hypothesesNA : Aand NB : Band does not change the conclusion. De-
structing the disjunction with destruct H vyields two dierent subgoals
where hypothesisHis respectively a proof of A and B.

destruct N as [NA NB]. destruct H.

2 subgoals
A : Prop

B : Prop
H: A

False

This rst subgoal can be proved by eliminating the implicati on in H in
other words by applying hypothesis H which is done with the apply H
tactic. The remaining conclusion is A which is true by hypothesis NA and
the goal can be discharged with the tacticassumption.

apply H. assumption.

This clears the rst subgoal and therefore the user is left wih the second
subgoal to prove.

1 subgoal

A : Prop
B : Prop
H: B

False

This one is proved in a similar manner, only this time the assmption
used will be NB

92

apply H. assumption.

Since all the subgoals have been proved, the proof is nishednd the system
displays so:

| Proof completed. |

The last thing to do is to close the proof with the Qedcommand.

Qed.

| or_not_and is defined. |

This last step is not anecdotal: it checks that the term which was pro-
gressively constructed by the tactics indeed has the type othe theorem.
This mechanism ensures that tactics can be implemented witbut formal
restriction and that possible bugs in the tactics are double-checked at the
end of the proof by the kernel. Thus, only the kernel is critical for the
correctness of the proof assistant and it is important for seh a system to
limit critical areas to the smallest possible part. As a matter of fact, there
are a great number of tactics, many of which are much more compx than
the ones presented here: the proof above could typically begsformed by a
single tactic call. We will present such complex tactics andthe techniques
behind them in detail below in Section[4.2.

Equality proofs. We now turn our attention to the treatment of equality
in the Coq proof assistant. As with logical connectives, equality is mt
built-in in the CIC but is de ned inductively by the followin g predicate:

Inductive eq (A : Type) (x : A): A ! Prop =
| refl_equal : eqg A X X.

and can be used with the usuak notation. The induction lemma associated
with this de nition is the well-known Leibniz's principle:

eg_ind : 8(A: Type) (x : A)(P:A ! Prop),
Px!8y:A x=y! Py

and allows to replace a termx by an equal termy in any proposition P.
For this reason, this equality is often called Leibniz equality in Coq, in
particular in constrat to other setoid equalities which can be natural for
some type. From the de nition of eq and refl_equal , it may seem that
the only equalities which are provable in an empty context ae of the form
x = x for somex, but this is where the conversion rule that we introduced
earlier comes into play: it can be used to prove that two termswhich reduce
to the same term are equal. For instance, one can build a proodf 4 = 4
by considering refl_equal nat 4 , but it turns out that the normal form

Consider the type of propositions Prop and the equivalence relation $ for instance,
or function spaces and pointwise equality.

4.1 Introduction to Coq 93

of 2 + 2 = pred 5is precisely4 = 4, therefore by conversionrefl_equal
nat 4 is a proof of 2 + 2 = pred 5. Most tactics in Coq perform modulo
some kind of conversion, and it is possible to simply applyrefl_equal in
order to prove a de nitional equality. The tactic reflexivity is precisely
a shortcut for this:

Remark p : pred (pred (12 + 35)) = 45.
Proof .

reflexivity.
Qed.

| p is defined. |

There are many tactics that explicitely perform some form ofreduction
or normalization, Coq even provides a virtual machine [GLO2] to quickly
reduce terms to their normal form; we will present these caphilities later.
Note that the reduction mechanism is not limited to terms in sort Set, it can
be used on any term in the CIC and in particular it is completely legitimate
to reduce propositional proofs. Nevertheless, it is often ie case that we do
not want to compute through proofs:

proof terms are often big and therefore slow to reduce;

there is no point in reducing (or more generally observing) poof terms
because most of the time, we do not care what the proof of a prop
sition looks like, but just that there exists a prooiﬂ.

In order to be able to separate between reducible terms and nmereducible
ones,Coq provides anopacity mechanism. When completing a proof with
Qedas we did earlier, we are also making the corresponding theem opaque
and preventing that it be reduced in the future. In order to n ish a proof
and keep it transparent, one can use theDefined command. We will see
in later chapters that a ne management of opacity can be critical for the
e ciency of an algorithm implemented in Coq. Note though, that proof

terms are never erased, even for opaque lemmas, and can sbik inspected.
The fact that proof terms are kept is one feature ofCoq which di erentiates

it from many other provers like Isabelle or HOL, and this is why the size of
proof terms is problematic when automatically constructing proofs through
tactics (see Sectior4.R).

Other features. There are many other features in theCoq proof assistant
that allow one to write formalizations or programs in a more natural or a
more convenient way. We will encounter some of them in the reraining of
this document, but we cannot give an exhaustive list. Some othe more
interesting capabilities are:

"This principle, called proof irrelevance, is not part of the CIC and therefore is not
enforced by Coq; it is consistent to add it as an axiom though.

94

a batch-mode executable coqc to compile les which can then be
loaded and imported into other les, which enables separatecompila-
tion;

a module system by J. Courant [Cou97] and J. Chrzjszcz[[ChrOB
similar to OCaml's module system, which permits to write structured
programs and structured implementations, we will use it exensively
in the following chapters;

an extraction mechanism developed originally by C. Paulin PM89a,
PM89b] and then by P. Letouzey [Let03,[Let08] which allows to ef-
fectively extract programs from speci cations to OCaml or Haskell.
The distinction Prop/Set that we explained earlier is critical for this
mechanism, since extraction erases propositional contestand keeps
informative contents. In particular, this is the reason why Coq pre-
vents any object in Setto be constructed from destructing an object
in Prop;

a system of coercions which allow a form of automatic subtypig
through the de nition of coercions between types;

a mechanism to deal with ad-hoc (setoid) equalities, and rewiting
of setoid equalities through functions declared as morphiws for such
equalities (initially developed by C. Sacerdoti Coen([[Coed] and reim-
plemented by M. Sozeaul[S0z09]);

a variety of external tools such as a documentation generatocoqdoc, a
library validator coqchk, and an integrated development environment
CoqIDE

4.2 Automation Techniques for Interactive Prov-
ing

In the last section, we have seen examples of simple tacticdviost realistic
proofs will use many more dierent and complex tactics, someof which
performing a lot of automated reasoning. In this section, wepresent a
survey of the di erent automation technigues available in a proof assistant
like Cog and the relevant existing tactics.

Note that interactive provers in general ensure their corretness by fol-
lowing the so-called LCF-style approach: every proof must le checked by
a small, trusted part of the system (in Coq's case, the kernel). Thus, a
complex decision procedure inplemented in an interactive pver shall not
only decide if a formula is provable or not, but it must also generate an
actual proof object, which can be checked by the prover's kerel. This is

4.2 Automation Techniques for Interactive Proving 95

in contrast to a system like PVS, where a new decision procede can be
added to the system as a black box.

421 Customized Tactics

The rst technique that we present is perhaps the most recentin Coq's
history, but it has the great advantage of not requiring any external tool or
special knowledge about the internal representation of ClCterms. It does
not require any proof reconstruction either, because it is lased on the tactic
language. This technique uses a language calledtac and developed by
D. Delahaye [Del00] which provides combinators for tactics called tacticals,
allowing the de nition of complex tactics inside the prover. We cannot list
all the tacticals exhaustively but we will present the most salient capabilities
of Ltac.

The base of the language is formed by combinators for chainup tac-
tics (;), repeating tactics (do, repeat), error catching (try) or throwing
(fail), branching (|| , first), displaying terms, tactics and arbitrary mes-
sages (dtac), checking for progress or termination in a subgoal frogress ,
solve). These tacticals already allow a lot of interesting combirations, for
instance the following:

Ltac dintros := repeat (intro; try (destruct 0)).

de nes a new tactic dintros which does as many introductions as possible
(using repeat), and for each object introduced, tries to destruct it if it i s
possible destruct 0 refers to the last introduced hypothesis by its index,
thus with number 0). In our example proof in the last section, we could
have started the proof with that tactic in order to introduce and destruct
all hypotheses. Because both remaining subgoals can be pex by the
sameapply H; assumption combination, we could use chaining and prove
the theorem in a single line:

Theorem or not and: 8AB: Prop), A __ B! (A ™ B).
Proof .

dintros; apply H; assumption.
Qed.

| or_not_and is defined. |

Even more interesting is the ability to manipulate terms in Ltac def-
initions: one can construct terms, reduce terms, deconstrct terms using
a pattern-matching construct. Pattern-matching can also be used against
the goal and the hypotheses, which makes it possible to writ¢actics that
perform di erent tasks according to the shape of the goal andthe available
hypotheses. For instance, consider the following de nitia:

Ltac equal :=
match goal with

96

| &~ ?2x = 2) reflexivity
|H:?2x =% " 2?2y = %)
symmetry; assumption
|H:?x =2, H :?2y=%" 2Xx=72)
transitivity y; assumption
| © _ = _) idtac No proof found.
| _) fail The goal is not an equality.
end.

This tactic equal tries to prove an equality and proceeds by matching the
current goal, and then depending on the result performs the elevant action.
If the goal has the form x = X, it just applies re exivity. The second and
third branch try to nd, in the hypotheses, equalities relat ed to the conclu-
sion and to apply respectively symmetry or transitivity. Th e next-to-last
branch just reports that the tactic did not succeed in proving the goal (but
does not fail), while the last branch raises a failure becauwsthe goal is not
an equality. This example gives a small idea of the expressity of Ltac;
note in particular that the matching is non-linear since the same variable
can appear twice or more in a pattern, and must be matched to tle same
term. Ltac is even higher-order because tactics can be parameteed by
tactics (and by parameterized tactics...) and can also be deed recursively.

Here are a few examples of complex tactics developed irtac in the Coq
standard library or in the community:

in the Reals library, containing an axiomatization of reals, the spe-
cialized tactics discrR , prove_sup and Rcomputeare built with Ltac;

in the speci cation of OrderedType's, i.e. types with a total decidable
order, there is a dedicated tacticorder which tries to prove a goal using
total order and equivalence properties, it proceeds by satrating the
context with all possible consequences of the hypotheses tilnit nds
a contradiction; it is actually complete for that fragment;

in the FSets library of nite sets (which we describe, as well as an alter-
native, in Chapter B), A. Bohannon contributed a very complex tactic

fsetdec which discharges goals about set memberships and common
set operations;

in his book [ChI], A. Chlipala gives many concrete examples foL tac
usage, in particular his swiss knife tactic called crunch;

A. Charguéraud proposes an extended set of tactics and tadti nota-
tions to help perform a variety of tasks [Chal.

Even if it has its own limitations and can be quite ine cient, Ltac is very
convenient because of its expressiveness and above all trecf that it does
not require an external tool or hacking in the Coq sources, which, as we
will see, is the biggest inconvenient of the other techniqus.

4.2 Automation Techniques for Interactive Proving 97

4.2.2 Built-In Procedures

The vast majority of tactics available in Coq are not de ned in external

contributions or Ltac les, but are simply implemented in the Coq sources
and are compiled and shipped with the proof assistant. All abmic tactics

like intro and so on are actually built-in tactics and are implemented h the

OCaml sources with the remaining of the system, but there arealso several
very useful tactics which do not perform atomic tasks, but a @mplex proof
search.

tauto. The tactic tauto by C. Mufioz [Mn94] implements a decision
procedure for intuitionistic propositional calculus based on Dyckho 's
contraction-free sequent calculi [Dyc92]: it automaticaly proves any
goal which is intuitionistically valid (e.g. our theorem or_not_and
could have been discharged by a simple call ttauto). It is also avail-
able as a simpli er called intuition ~ which performs the same search
tree astauto , clears as many branches as possible and returns the
simpli ed goals to the user, which can be very useful in pracice.

omega. Another ubiquitous tactic in Coqg is omega which was imple-
mented by P. Crégut after a decision procedure by W. Pugh[[Pu82].
It is a decision for Presburger arithmetic which automaticaly solves
guanti er-free formulae whose atoms are equalities, disegations or
inequalities on natural or relative integers. Though omegais theoreti-
cally incomplete, it rarely happens in practice and this tadic is used
a lot in any development dealing with arithmetic.

congruence. The congruence tactic was developed by P. Corbineaul[Cor06]
and implements a decision procedure for the theory of equali mod-
ulo the theory of constructors (i.e. injectivity of constructors, and
discrimination of di erent constructors of the same dataty pes). The
procedure tries to prove the goal if it is an equality and to deive a
discriminable (hence false) equality otherwise.

auto. The tactics auto and eauto perform an automatic backward proof
search in a manner very similar to Prolog. They use a databasef
lemmas, calledhints, as well as the hypotheses in the current context,
and try to apply them eagerly and nd a chain of lemmas proving a
goal. auto is perhaps the most popular proof search tactic inCoq and
tactics that generate a lot of subgoals likeinduction or destruct are
often chained with auto.

There exists other built-in tactics which are not performing proof searchper
se but are nonetheless quite complicated and can replace a ladf tedious
manual manipulations, for instance the autorewrite or the inversion tac-
tics.

98

The tactics above are therefore implemented in a standard ppgramming
language and there is of course no restriction as to how they grform their
proof search. However, once they have found a proof (if any)they need to
construct a proof term because, like the other tactics, theyare just used to
construct proof terms and are not trusted by the kernel. This reconstruction
phase can take di erent forms: tauto and auto, for instance, build a com-
plete proof term corresponding to the proof they have found ;omegaand
congruence also reconstruct a term from the proof found but use a variety
of prede ned ad-hoc lemmas in an attempt to simplify the recastruction
and also to obtain smaller proof terms.

Note that, in the most recent versions of Coq (8.2) and OCaml(3.11.0),
it is possible to dynamically load ML plugins in a Coq session. Therefore,
one can implement such a built-in procedure as a plugin and itan be dis-
tributed and used without having to recompile everything along with the
Coq sources. Nevertheless, implementing one's own decisiongedure and
term reconstruction requires to useCoq as an API and therefore requires
some amount of knowledge about the internal representatiomf proofs, terms
and tactics. This is a much bigger e ort than learning Ltac for instance.

4.2.3 External Tools

Another possible approach for the creation of an automationtactic is to
use an external state-of-the-art decision procedure. The iof reconstruc-
tion phase requires the external tool to be able to returnproof traces of its
proof search,i.e. data which justi es the result claimed by the tool. Work
must then be done in the interactive prover in order to reconsruct a suit-
able proof object from the output of the external tool. For instance, Weber
and Amjad [WAQ09a] have successfully integrated two leadingSAT solvers,
zCha [MMZ *01] and MiniSat [ES04], with Higher Order Logic theorem
provers. Integrations of resolution-based provers have ab been realized in
Coq [BHdNO2,[BDDQ7] and Isabelle [MQP06a]. The main advantge of this
approach is the ability to use a very e cient external tool. | ts main short-
coming is that the tool must be able to produce proof traces, wich is not
that common, and the reconstruction of a proof term from prod traces can
be quite dicult to perform e ciently (see for instance the ¢ onsiderations
in [WAQ9a)).

This approach is actually a special case of the previous oné&gction[4.2.2),
since nothing prevents a built-in procedure from using an eternal tool un-
der the hood. It allows the use of faster, state-or-the-art pocedures, but
the proof traces may not be very well adapted to the proof recastruction
phase, whereas a procedure speci cally developed for a givgroof assistant
can lead to an easier (maybe even smaller) proof term.

4.2 Automation Techniques for Interactive Proving 99

4.2.4 Traces and Re ection

The crux of the last two approaches,i.e. using a built-in procedure or an
external tool, is the reconstruction of a proof term from the proof search. A
built-in procedure could technically build a proof term dir ectly during the
proof search but this is probably not the most e cient thing t o do, most
procedures will go through some internal form of traces and &construct the
term at the last moment; users of external tools have no choie whatsoever
(unless the tool can output aCoq proof term directly, like Zenon [BDDQ7],
but this is very rare) and need to perform reconstruction fran some proof
traces.

So far, we had implicitely assumed that the reconstruction vas a meta
procedure (.e. not expressed in the prover) that, given some trace , would
create a CIC term t to be sent back to the prover for typechecking. In
that sense, the reconstruction acts as an oracle which givean hopefully
adequate term to the prover. There is an alternative approabt, which we
now present: the so-calledproof by re ection [Bou97]. In this setting, the
reconstruction will be a function in the prover's logic and we will use the
reduction mechanism and the conversion rule to execute thigunction during
typechecking.

Re ection. Suppose we have a datatyp&, and a predicateP : S ! Prop
on elements in this datatype. Suppose we have an oracle (thexternal pro-
cedure) which, given ans : S, will look for a proof of P s and, if any, will
return some proof traces to justify this result. We assume ttat the proof
traces can be represented by a datatypd in the prover, which is typically
the case. Now, in order to use the oracle's proof traces in th@rover, we
just need the following:

afunction check : S ! T ! bool implemented inthe prover and
returning a booleafl such that check s t checks if the tracet is a
good justi cation of the fact that s has property P,

a proof, called are ection principle , that the function check is correct:

check correct : 8(s:S) (t: T),check st=true ! Ps.

The function check is similar to proof reconstruction but does not construct
anything, it just returns a boolean value to denote whether the traces were
adequate or not. The re ection principle then relates the canputational be-
haviour of check to its propositional meaning and proves that it is su cient
to check the result of check in order to verify the traces. Given a concrete
s and some tracest returned by the oracle, the proof of P sis simply:

8Booleans in Coq are just a type with two values true and false . It has sort Setand
should not be confused with the type of propositions Prop.

100

(check_correct s t (refl_equal _ true)) : P s

where the call of refl_equal is used to force reduction and veri cation
that check s t indeed reduces totrue . In comparison to standard proof
reconstruction, we note that:

the proof term is not explicitely reconstructed; typically, part of the
work is performed by the check function, while remaining part is per-
formed in the proof of check_correct , and is therefore factorized once
and for all;

the proof search will be faster because it does not have to reastruct
a proof term afterwards, but this is compensated by the fact hat
typechecking the proof now includes a computation;

the size of the proof terms is now proportional to the size of he traces
(and the original object) whereas reconstructed proof terns can be
much bigger than the traces.

Levels of detail. Given one particular problem for which we would like to

use the re ection technique described above, a natural qué®n which arises
is: what should the traces actually be like? There are indeedypically a

broad range of choices in the amount of detail that the tracesshould include.
To illustrate this fact, let us take a simple concrete examptﬁ: suppose that
we are interested in proving that some Peano integers areomposite i.e.

that they are not prime, using an external procedure. If for instance we are
interested in the number 91, here are some of the answers thate might get
from the procedure:

Yes, 91 is composite.
Yes, 91 is divisible by 7.
Yes, 91 is divisible by 7 and the quotient is 13.

Yes, 91 =13 7,indeed 7 3equals 21, carrythe2,7 1lis?7, plus
2, makes 91.

Figure 4.1 schematizes this situation: it represents the pssible proof
traces on a scale from the most detailed (on the left) to the les detailed
(on the right). The relevance of using re ection is in inverse proportion to
the level of detail of the traces: in the leftmost case, the eternal procedure
has produced a proof term and therefore there is no need for rection at
all; conversely, in the rightmost case, the trace is empty ad the check
function must do everything from scratch, which means that the external

®This example was drawn from G. Dowek's excellent popular science book [Dow08].

4.2 Automation Techniques for Interactive Proving 101

Is 91 a composite number?

: | | -+
1 3 7,13 7 Yes
2 1
7 .
9 1

Figure 4.1: One problem, many solutions: a scale of proof trees

tool is basically useless and could be bypasé@ In the average cases, the
procedure returns pieces of information that thecheck function can verify:
try to divide 91 by 7 in one case, check that 7 by 13 is 91 in the dier case.

In general, ne-grained traces make for an easier proof rectstruction but
require a substantial amount of work in the decision procedue, including
justifying steps that are often implicit in an e cient imple mentation. On the
other hand, coarse-grained traces make proof reconstruah much harder
since all implicit steps must be implemented in the proof asstant in the
re ection principle. Tactics which are somewhere between he two extreme
cases on this scale are usually calledemi-re exive and most tactics using
re ection fall in that category. Examples of this intermedi ate approach are
Corbineau and Contejean [CC05] and Contejeanet al. [CCFE*]'works on
integrations mixing traces and re ection. There also exiss semi-re exive
versions of thetauto tactic, called rtauto , and of omega called romega

Tactics which do not use an external procedure at all are cadéid fully
re exive. For instance, the tactics ring [GMO05] and field [DMO01], which
respectively solve expressions on ring and eld structuresare built along this
re ection mechanism. The main advantage of the fully re exive approach is
the size of the generated proof term, which only consists inme application
of the correctness property. The trade-o is that typechecking the proof
term includes executing the decision procedure, thereforee ection can be
used favourably in cases where the proof traces would not beomparatively
simpler than the proof search itself. For instance, supposee were interested
in prime numbers instead of composite numbers: since theresino simple
justi cation that a number is prime, it would be a good idea to use a fully
re exive procedure.

190One case where it would still be useful to run the external too | is when it runs at least
an order of magnitude faster than the re exive function check. In such a case, it makes
sense to run the external procedure rst, simply to know if it 's worth running the re exive
one.

102

Rei cation. Until now, we have only dealt with properties on a concrete
datatype, namely natural integers. In general, we might wan to apply

the re ection technique to a more general class of formulaefor instance all
rst-order formulae. This means the type Sis now the sort of all propositions
Prop, and it becomes impossible to write a functioncheck : S ! T ! bool
(remember that informative datatypes like bool cannot be constructed by
deconstructing propositional objects). In such a case, we eed a concrete,
intermediate, representation of formula,i.e. an informative type form, along
with an interpretation function interp : form ! Prop . The re ection

function and its correction lemma then become:

check : form ! T ! bool
check correct : 8(f : form) t, check ft = true ! interp f

and in order to prove a formulaF : Prop, the system cannot directly use the
re ection principle but must infer a concrete f : form such that interp f

= Forinterp f ! Fatthe very least. The construction of this object f

cannot be expressed in the prover's logic and is therefore a @a procedure;
it is called rei cation and must be performed by an external oraci&l. In

particular, we will see in Chapter[@ that itintroduces a hol e which prevents
a re exive procedure to be formally complete.

4.3 Towards a Re exive SMT Kernel

We have just presented a variety of techniques to implement atomation
tactics in the Coq proof assistant. Our goal is to integrate inCoq the kernel
of our SMT solver, as presented in Chapter$12 an@3, in order tgrovide
a tactic which e ectively combines propositional, equality and arithmetic
reasoning. We chose to use the fully re exive approach in ordr to achieve
this integration, for the following reasons.

First of all, as explained in Section[I.2, we are especiallynterested in
proving proof obligations which arise from analysis of anntated programs,
or more generally to discharge goals in usuaCoq proofs. Our experience
with our own prover Alt-Ergo is that these formulas' di cult vy lies more in
nding the pertinent hypotheses and lemmas' instances thanin their propo-
sitional structure or the theory reasoning involved in their proofs. Con-
sequently, these problems become rather easy as soon as weoknwhich
hypotheses and instances are su cient for the proof, and we an thus solve
formulae in this ground fragment by pure re ection. Moreover, Coq is par-
ticularly well suited for this approach because its formalsm includes a full
programming language, whose evaluation has been recentlyramatically
improved by an optimized bytecode-based virtual machine.

" Thanks to their ability to construct, match and destruct ter ms, Ltac tactics can
typically be used to perform this rei cation step. This avoi ds, in principle at least, the

4.3 Towards a Re exive SMT Kernel 103

Coq Side Abstract Side
Rei cation
Coq Formula Abstract Formula
: Prop T K= f : formula

|

| DPLL Procedure

| formula ! result

Soundnesdemma J\\
Proof o <
by re ection 8f: DPLL f = UNSAT: JK UNSAT SAT
lodel

Figure 4.2: An overview of our re exive tactic

Second, we are interested in a tactic that could be used by alCoq users,
and it should be available out-of-the-box with the system, without requiring
the installation of an external solver like Alt-Ergo. Also, such an external
dependency is a concern for maintainability since the proofeconstruction
mechanism will be very dependent of the exact format of the poof traces:
it would have to be kept up-to-date with the changes in the external tool,
and would have to be totally revamped in order to support another external
tool?,

Third, it is not easy to instrument an SMT solver to generate proof
traces, in particular in underlying decision procedures soh as the congru-
ence closure algorithm and Fourier-Motzkin, and to choose e adequate
level of detail. Without any traces on the reasoning of undelying theories,
the re ection principle would become nearly has hard as the dilly re exive
procedure; with details on the reasoning of underlying thedes, proof traces
and proof objects could get quite large and it would be a probém for a
prover like Coq which saves proof objects in typechecked Is. With a fully
re exive tactic, we ensure a proof term which is linear in the size of the goal.

Finally, we have formalized in Coq the algorithms and proofs presented
in Chapters[2 and[3 in order to formally verify these proofs, ad it is nat-
ural to try and take advantage of this formalization in order to use these
algorithms in Coq using re ection. An overview of our re exive tactic's
architecture is given in Figure[4.2.

need any need for an external OCaml procedure.
12 Although there is an ongoing e ort in the SMT community to des ign a standard,
common, format for SMT proof traces, no such format has been adopted yet.

104

Outline. The following chapters are devoted to the presentation of tke
di erent parts of this Coq re exive tactic. We start in Chapter 5 by de n-

ing a library of rst-class nite sets and nite maps which is used intensively
in our development. Chapter[6 presents the propositional slver and Chap-
ter [7] extends it with an original lazy CNF conversion mechansm. The
extension to SMT and the development of the congruence close algorithm
is described in Chapterd 8 and®. Finally, we show how to instatiate our
congruence closure with a theory of integer linear arithmeic in Chapter [LO.

CHAPTERD

A Coq Library of First-Class Containers

Contents

(5.1 Preliminaries and Motivations . . | 106
611 TypeClassds 106
[B12 Motivationd 108

62 Ordered Types 1. 110
621 OrderedTypé 110
[5.2.2 Special Equalitie 113
[5.2.3 Automatic Instances Generation 114

[5.3 Finite Setsand Maps 116
[5.3.1 Interfaces and Specications. 116
[5.3.2 A Library of Propertied 120

6.4 Applications 1. 122
541 listsandAVI tree$ 122
B42 Usage . . . oo 123

6.5 Discussionl 125
651 Performancds 125
[55.2 Upgrade of Existing Code 126
653 CodeSharinhy 127
[55.4 Designing the Interfack 128
[55.5 Type Classesand Modules 129

66 Conclusion]...................... 130

105

106

As a programming language, it is natural to endows Coq with Ibraries of
generic data structures. Indeed, mainstream programmingdnguages usually
come with libraries to manipulate these structures which ae widely used:
lists, nite sets, association tables, etc. For instance, G-+ programmers
can rely on the STL [SL95]Standard Template Library), whereas OCaml
programmers are provided with a fair number of modules (inaliding lists,
queues, sets and maps, hashtables, ...) in the OCaml standadibrary. The
genericity of these data structures, that is, the fact that they can be used
to hold elements of any type, is ensured in dierent ways depading on
the programming language: polymorphism in languages of the ML family,
templatesin C++ or genericsin Java.

For their implementation to be e cient, some data structure s require cer-
tain properties on the elements they can contain, such as a eoparison or a
hash function. This kind of genericity, called ad-hoc polymorphism is made
possible by the use ofunctors in OCaml and type classesn Haskell [WB89].
Even if these two paradigms can be used to solve a similar degi issue,
they are fundamentally di erent and both have their advanta ges and their
shortcomings [WMOQ0E]. For a few years, Coq has featured a fulblown mod-
ule system similar to OCaml's [Chr03] and P. Letouzey and J-C Filliatre
used it in order to develop a comprehensive library of nite ®ts and nite
maps [FLO4], calledFSets. Such structures are very important for develop-
ing our SMT solver kernel: in Part 1, we have used sets of liteails, maps for
union- nd structures, maps to sets of terms for the data str ucture, etc.
We have used thisFSets library in developing the tactic presented in this
document and have been confronted with issues which were irgnent to the
module system. Since Coq has been recently enhanced with apg class
system based on dependent records [SO08], we decided to lbidn this new
functionality and reimplement the existing FSets library using type classes.
We present this library in detail in this chapter.

Section[5.1 quickly presents Coq's type class system, as Wwek the prob-
lems which motivated our work. We then introduce the cornergone of our
libary, ordered types, in Section5.2, before describing th actual interfaces of
nite sets and dictionaries (Section[5.3). We follow by giving a few concrete
instantiations of these structures, before comparing in d&il our library with
the modular version in Section[5.5.

5.1 Preliminaries and Motivations

5.1.1 Type Classes

In this section, we present Coq's new type class system andstbasic features.
For a more detailed and involved description, the intereste reader can refer
to [SOO04].

5.1 Preliminaries and Motivations 107

A type class can be seen as a way to package a number of de nitis
and properties together, much like a recorl. Classes can be parameterized
by types or other constructions, and one can for instance dene the class of
types which are equipped with a decidable equality in the fdlowing way:

Class decidable (A : Type) = {

eq: A! A! bool,

eg dec : 8xy,eq Xy =true $ x =y
}

This decidable class is parameterized by a typeA and contains two elds:
a boolean equality on this type A and a proof that this equality test really
decides logical equality. Objects of typedecidable T for a type T are called
instancesand must be de ned in a special way using thelnstance keyword.
This is how we can de ne an instance for the type of booleans:

De nition bool_eq (x y : bool) := if x then y else negby.
Property bool eq dec : 8xy, bool eq xy =true $ x =y.
Proof Qed.

Instance bool _dec : decidable bool =
{ eq := bool_eq; eq_dec := bool_eq_dec }.

An instance's elds can also be initialized directly or proved interactively at
the time of the de nition. Type classes reach their full potential with the
conjunction of two mechanisms:

the ability to de ne objects parameterized by type classes ad use
these objects without explicity providing these parameters;

a mechanism for automatically inferring type class instanes using all
instances already de ned by the user.

For instance, one canﬁprove the following lemma for any type \Wich has an
instance of decidable

Lemma decides_eq ‘{decidable A} :
8(xy :A), XxX=y _ XxX6y.
Proof Qed.

This lemma is parameterized by a type A and an instance of decidable
A but both parameters are declared as implicit using the speal {...}
delimiters. The backquote character is just a way to ask Cog to auto-
matically generalize the lemma on the fresh typeA When we subsequently
use this lemma by applying it to two terms of some typeB, an instance of
decidable B is automatically searched and inferred using already de ne

Lsuitably, Coq's type classes are implemented using dependet records.
2pear in mind that Cog's logic is intuitionistic, therefore t his lemma really means that
equality on type Ais decidable.

108

instances. For instance, one can write the term decides_eq true false
which is well-typed and will implicitely and automatically use thebool _dec
instance provided above.

Automatically inferring instances becomes particularly useful when one
de nes families of instances, or instances parameterizedybother instances.
To give an example, we can write an instance for any producA B given
instances for the typesAand B.

Instance prod_dec ‘{decidable A, decidable B} :

decidable (A B) = {

eq := fun xy) eq (fst x) (fst vy) &&

eq (snd x) (snd vy);

eg_dec = ..
}

The system can then infer instances for any product of decidale types,
for example with bool_dec and prod_dec, an instance for the type bool
bool bool can be used automatically:

Check (decides_eq (true, (false, true))
(false, (false, true))).

Let us conclude this introduction to type classes by noting hat it is
possible to build hierarchies of classes, and a system of aarhatic coercions
guarantees that an instance of some class can be used as antamxe of its
sub-classes. We will demonstrate this feature later in Sean 5.2.

5.1.2 Motivations

In the light of the features provided by the type class system we can ex-
plain the reasons why we turned to this system instead of usig the already
available module-basedFSets. These were the mativations in starting this

reimplementation of a containers library.

Automatic instantiation. In our development, we manipulate sets of
numerous di erent types, including sets of sets, and for eat new element
type, we need to create a nite set module for this type. This aeation must

be performed manually by applying the adequate functor to anordered type
module (packing the element type and a comparison function égethel).

Namely, given ordered type modulesint , IntPair , BoolList for integers,

pairs of integers and lists of booleans, one must writh

Module IntSet := FSetList.Make Int.
Module IntPairSet := FSetList.Make IntPair.
Module BoolListSet := FSetList.Make BoolList.

3the corresponding signature is given in Section[5.2.1
4FSetList.Make is a functor creating a module of nite sets based on sorted lists.

5.1 Preliminaries and Motivations 109

in order to be able to use sets on these three kinds of elementdhis may
look like a lesser evil, but one quickly nds himself instantiating not only the
FSetList.Make functor, but also other functors creating useful properties
on ordered types and on nite sets, which are invaluable to sart working
with the data structures created above.

Module IntFacts := OrderedType.OrderedTypeFacts Int.

Module IntSetEqProps := FSetEqgProperties.EqProperties IntSet.
Module IntSetProps := IntSetEqProps.MP.

Module IntSetFacts := IntSetEqProps.MP.Dec.FM.

Module IntPairFacts := OrderedTypeFacts IntPair.

This sort of de nitions, which every FSets user has encountered, rapidly
becomes tedious to read and maintain. Moreover, functor aplications are
not free and it is not uncommon to spend a couple of seconds &b} on
instantiating these various objects.

Overloading. Because the module system does not o er any overloading
mechanisné, one must refer to members of a module by qualifying their
names with the module's name. In our example case, this mearthat every
usage of a function, a lemma or a type provided by these moduge(IntSet,
IntPairSet, IntSetProps, ...) must be properly quali ed. This quickly
makes proof scripts and de nitions verbose and hardly readhle. One often
ends up giving very short names to these modulesl$, IPS, ISP, ...)
and then the script loses in clarity what it gained in compactness. Through
the use of implicit type class arguments, the type class sysim does not
require such quali cation of identi ers and provides a real overloading of
types and operators.

Performance and modularity. In order to ensure a good modularity
in our development, some parts of the system ought to be paramterized
by modules which, among other things, bring types and data stuctures on
these types. For instance, it is not uncommon for an OCaml prgrammer
to write signatures like this one:

(* some abstract type *)

type t

(* finite sets of elements of type t *)

module TS = Set.S with type elt =t

(* finite maps indexed by elements of type t *)
module TM = Map.S with type key =t

When parameterizing our development in a similar fashion inCoq, we
encountered a performance issue related to modules' instéiation and type-
checking. In practice, the functors' applications with such signatures were

Snhotations can help making up for the absence of overloading, but are limited and can
be fragile in general.

110

taking unreasonable time: our topmost functor would require about 15 sec-
onds. Although this seemed to be an implementation issifé rather than
a theoretical limit with modules, it can be a real showstoppe for an ap-
plication based on modules, and type classes do not su er frm the same
limitation.

First-class values. To further stress the previous point, type class in-
stances in Coq are actually rst-class values, and therefae the cost of an
instantiation is reduced to typechecking the argument (sirce it is really just
applying a function to an argument). This means that one coull possi-
bly perform interactive instantiations of a procedure pa rameterized by
type classes. An example that arose in our work was that of a rexive
tactic: such a tactic must be invoked interactively and eachtime, a new
instantiation of a parameterized procedure had to be made deending on
the context where the tactic was called. This kind of dynamicinstantiation
is not possible with a functorized procedure since the instatiation time at
each invocation would be prohibitive.

Amongst these motivations, the rst two are inherent to modules and
class types, whereas the last two are more speci ¢ to a givemriplementation,
in our case the Coq proof assistant v8.2. Although the third me was the
actual initial reason why we started using typeclasses, therst two points
proved important enough in practice to justify choosing oneparadigm over
the other.

5.2 Ordered Types

To be implemented in an e cient way, structures of nite sets and nite
maps require that the elements be equipped with a total decidble order. In
this section we show how we formalize the class of such types.

5.2.1 OrderedType

An ordered type is a type which has an equality (an equivalene relation), a
strict order (a transitive irre exive relation) and such th at these relations are
decidable. Coq already provides a type class hameiquivalence for equiv-
alence relations, as well as the notations === yand x =/= y for equalities
and disequalities with respect to equivalence relations. W de ne the class
of strict orders modulo an equivalence relation. This classs parameterized
by the type of elements, the equivalence relation and the ordr relation:

Class StrictOrder {A} It eq {Equivalence eq} := {
StrictOrder_Transitive :
8(xyz:A, It xy! It yz! It xz

®in particular, using nite sets implemented as AVL trees ins tead of sorted lists would
multiply this time by four without apparent reason.

5.2 Ordered Types 111

StrictOrder_Irreflexive :
8(xy : A, It xy! x-=/=y

Note that only the order and equality are explicit arguments of this class.

We now look at the existing implementations of ordered types the FSets
library brings two di erent signatures for ordered types, r espectively in the
modules OrderedType (Figure BE.1]) and OrderedTypeAlt (Figure B.2).

Inductive Compare {A} It eq x y =
| LT : It xy ! Compare lt eq xy
| EQ : eq xy ! Compare It eq x ¥y
| GT : It y x! Compare It eq x V.

Parameter t : Type.
Parameter eq : t ! t ! Prop.
Parameter It : t! t! Prop.
(* equivalence axioms for eq *)

Axiom It_trans : 8xyz, It xy ! It yz! It x z.
Axiom It_not_eq: 8xy, It xy! eq XVy.
Parameter compare : 8xy, Compare It eq X .

Figure 5.1: Existing OrderedType module

Inductive comparison := Lt | Eq | Gt.

Parameter t : Type.
Parameter compare : t ! t ! comparison.

Parameter compare_sym : 8xy,
comparey X = match compare x y with
|Eg) Eq|Gt) Lt|Lt) Gt
end.
Parameter compare_trans :
8cxyz, compare x y =c !
comparey z =c! comparex z = C.

Figure 5.2: Existing OrderedTypeAlt module

OrderedType brings a type t, an equivalence relationeq and a strict
order It ont, as well as the corresponding properties. The decidabilityof
these relations is given by thecompare function which is completely speci-
ed by its return type: the Comparenductive datatype. More precisely, the
comparefunction performs the comparison of two elements but also reirns
a proof of the relation between these elements. This formatation is quite
convenient to use: in particular, when reasoning by case argsis on the com-

112

parison between two elements, the hypotheses correspondjrto each branch
are naturally added to the context. A possible inconvenient however, is the
fact that the compare function is not purely computational, but informa-
tive, and it can become an issue and be a source of ine ciencies what is
used very frequently in an algorithm. Alternatively, to ensure a separation
between computations and proofsOrderedTypeAlt revolves around a pure
comparison function compare whose return type comparison is the 3-value
type Lt | Eq | Gt . Unfortunately, this function's speci cation through
properties of symmetry and transitivity is really tedious t o reason with.

In order to keep the best of both alternatives, we choose a paly com-
putational comparison function, but specify it with the fol lowing inductive
de nition:

Inductive compare_spec {A} eq It (xy : A):

comparison ! Prop :=
| compare_spec It : It xy ! compare_spec eq It x y Lt
| compare_spec_eq : eq x y ! compare_spec eq It x y Eq
| compare_spec gt : It y x ! compare_spec eq It x y Gt.

Unlike Compare this inductive is not the return type of the comparison
function, but it relates each comparison value to the correponding adequate
hypothesis. It is then enough to prove that all the function's results belong
to this relation for the function to be correct: namely, for a function f of
type T! T!' comparison to be deciding some equality and order on
T, it is su cient and necessary to have:

8xy, compare_spec xy (f xvy).
Using such a speci cation, we are now able to write the clas©OrderedType
of ordered types:

Class OrderedType (A : Type) = {
_eq : relation A;
_It : relation A,
OT_Equivalence :> Equivalence _eq;
OT_StrictOrder : > StrictOrder _It _eq;
compare : A! Al comparison;
compare_dec :
8xy, compare_spec _eq _It x y (compare X Yy)

}.

This class is parameterized by the typeA of elements and contains the equal-
ity and strict order relations. SubclassesEquivalence and StrictOrder |, in-
troduced by :>, are used to specify these relations. The last part is the com
parison function and its speci cation, which are given as eylained above.
This version is as easy to use as the original despite the pulsecomputational
return type of compare Indeed, in a context wherecompare a bappears,
it is enough to invoke the tactic destruct (compare_dec a b) in order to

5.2 Ordered Types 113

perform case analysis on this comparisoncompare a bis then replaced in
each branch by its value Eqg Lt or Gt) and the corresponding hypothesis is
added to the context. In this regard, the compare_specinductive is similar

to the re exive views of the SSReflect extension [GMOE:]E]

Once the class for ordered types is de ned, numerous usefutinmas (like
the fact that the order relation is a morphism for equality) and notations
are established and can be used for any ordered type. The foliving table
summarizes the available notations and the correspondingviews for non-
propositional objects:

Notation Meaning View

X ===y X equal toy

X ==y X not equal to y

X <<< Y x smaller than y

X >>>y X greater thany

X =?=y compare X y compare_dec
X ==y |true i x =?= yreturns Eq eqg_dec

X <<y |true i x =?= yreturns Lt It dec

X >>y |[true i x =?= yreturns Gt gt _dec

5.2.2 Special Equalities

When writing a piece of code which is parameterized by an orded type,
it is very frequent to require a certain type to be ordered with the con-
straint that the equality relation be some special equality, typically Leib-
niz equality. The module system allows one to express such aoostraint
by specializing the signature: OrderedType with Definition eq =
Unfortunately, this kind of constraints cannot be expressel with type classes
unless the part we wish to specialize is a parameter of the typ class and not
a eld. To make the use of speci ¢ equalities possible, we intoduce a spe-
cial classSpecificOrderedType , which is parameterized by the equivalence
relation, and also show that any instance of this class is ats an instance of
OrderedType.

Class SpecificOrderedType (A : Type)
(eqA : relation A) (Equivalence A egA) = {
SOT_It : relation A;
SOT_StrictOrder : StrictOrder SOT _It egA;
SOT _compare : Al Al comparison;
SOT_compare_spec :
8xy, compare_spec egA SOT It x y (SOT_comparex y)

"this discussion assumes Coq v8.2 ; Coq's next version is goig to introduce a mixed
signature taking advantage of type classes and a speci cation a la compare_speg inspired
by this one.

114

Instance SOT_as_OT {SpecificOrderedType A egA equivA} :
OrderedType A = {
_eq = edqA;
_It .= SOT_It;

We also add a notation UsualOrderedType to denote the particular and
yet frequent case where the wanted equality is Leibniz equély. These or-
dered types with speci ¢ equalities will come in handy when @ ning con-
tainers in Section[5.3.

5.2.3 Automatic Instances Generation

After classes, generic lemmas and de nitions have been deed, we declare
instances of OrderedType for all basic types and usual type constructors.
When possible, we declare instances ofJsualOrderedType, including for

type constructordd. The library provides instances for Peano integers, binary
integers (whether positive, natural or relative), rationals, booleans, lists,
products, sums and options. At this point, generic functions on ordered
types can therefore be used on all combinations of these tygeand type
constructors without manual intervention, thanks to the au tomatic inference
of type classes:

Goal 8(x y : ((nat bool) + (list Z Q)), x ===y.

To typecheck this goal, an instance ofOrderedType is inferred for the type
of x and y. In particular, an e ective comparison function is available to
compare elements of this type.

In practice however, a type like the one above will typically be de ned
directly as a two-branch inductive:

Inductive t :=
| C1:nat ! bool ! t
|C2:listz ! Q! t.

The type classes system cannot automatically infer instanes for such in-
ductive types, but we have implemented a new vernacular command in
OCaml which can handle such cases automatically. This comma is in-
voked by Generate OrderedType <type>, takes an inductive type as ar-
gument and tries to generate the equality, the strict order relation, the
comparison function and all the mandatory proofs, before delaring the cor-
responding instance. To do that, it potentially uses other instances already
de ned and available in the context. In the generated order rlation, con-
structors are ordered arbitrarily, and parameters on a sinde constructor

8for instance, if Aand Bare ordered types for Leibniz equality, then so are their pro duct
and their sum.

5.2 Ordered Types 115

are ordered Iexicographicallﬁ]. For instance, when invoking the command
for the type t above, the following de nitions are performed automatically :

Inductive teq: t! t! Prop :=
| t eq_C1 : 8(x1 y1 : nat) (X2 y2 : bool),

Xxp ===y1 ! Xz ===y, ! teq (Cl x1Xz) (Cl y1Y>)
| t eq_ C2 : 8(x1 y1 :list Z2) (X2 Y2 : Q)

X1 ===y1 ! Xz ===y, ! teq (C2 x1 X2) (C2 y1 Yy2).

Inductive tlt: t! t! Prop:=
| t It C1 1: 8(x1 Yy : nat) (X2 y2 : bool),
Xp <<<y 1! tIt(Cl X1 x2) (C1 y1y2)
| t It C1 2: 8(x1Yy:1: nat) (X2 y2 : bool),
Xp ===y1 ! Xp <<<y ! tIt(Cl x5 x2) (C1l y1y2)
| t It C1_C2: 8(x1:nat) (Xz :bool) (y1:listZ) (y2:Q),
tit (C1 x5 x2) (C2 y1 y2)
| 1t C2_1: 8(xpyp:listZ)(x2y2:Q),
X1 <<<y ! tIt(C2 x5 x2) (C2 y1 y2)
| 1t C2.2: 8(xpyp:listZ) (x2y2:Q),
Xp ===y1 ! Xz <<<y ! tIt(C2 x5 x2) (C2 y1y»)

and this comparison function is generated:

Deniton tcmp (xy : t):=
match x with
| C1 x1 X2)
match y with
| C1y1y2)
match x; =?=y; with
| Eq) X2 =?=1Y>

| Lt) Lt
| Gt) Gt
end
| C2) Lt
end
| C2 x1 X2)
match y with
|C1 _) Gt
| C2 y1Yy2)

match x; =?=y; with
| EQ) X2 =?=y»

but note that the command should typically be used in cases where any well-de ned
order relation is suitable, not unlike the Pervasives.compare polymorphic comparison in
OCaml.

116

| Lt) Lt
| Gt) Gt
end
end
end.

We do not show the proofs and instances generated along withhiese de -
nitions. Note that we used inductive predicates to de ne the equality and
order relations: there are other ways to generically de ne sch relations (as
a function predicate for instance) but we chose to use indudves because
it makes proofs easier and shortel!d 1t is important to keep the proofs as
short as possible since they can be quite large: in particula the proof of
transitivity of t_It grows in cubic proportion to the number of construc-
tors in t, and a call to Generate OrderedType can take several seconds on
a large type.

The Generate OrderedType command will work with all (mutually) re-
cursive inductive de nitions, including uniform paramete rs, which makes it
a very useful addendum to the library. For instance, the folbwing commands
demonstrate its use for automatically comparing strings ofcharacters. An
instance is generated for the typeascii of 8-bit characters, and then for
the type string of strings, which usesascii .

Generate OrderedType ascii.

Generate OrderedType string. (* string uses ascii *)
Eval vm_compute in (long =?= small).

(* this computation returns Lt *)

5.3 Finite Sets and Maps

The ordered types we described in Sectioi b2 are a type class which it
is possible to implement a few e cient structures of containers. The goal
of our library is to provide such structures, and we know pregnt and de ne
the interface for nite sets in detail and also address nite maps.

5.3.1 Interfaces and Speci cations

The class of the nite sets containing elements of an orderedlype Ais de ned
in the following way:

Ohere is one way to see why inductive predicates make proofs sbrter: suppose you
know t_eq x y for some x and vy, inverting this hypothesis will yield the two possible
cases, one for each constructor int_eq. With a non-inductive speci cation, one would
have to reason by analysis onx and y, which yields four cases: the two absurd cases must
be eliminated manually.

5.3 Finite Sets and Maps 117

Class FSet {H : OrderedType A} := {

set : Type;
In: Al set! Prop;
empty : set;
mem : Al set ! bool;

add : A! set ! set;

FSet_OrderedType :>
SpecificOrderedType set (Equal_pw set A In) _
}
Implicit Arguments set [[H] [FSet]].

This class is parameterize@ by a type Aand an ordered typeOrderedType
A It brings the type set of all nite sets of elements of type A as well as
the various operations available on these sets. The eldin is the mem-
bership predicate for these sets and is the only logical eldin this class:
all operators are consequently speci ed in terms of this prdicate. The eld
FSet_OrderedTyperequires explanations: it guarantees that the typeset is
itself an ordered type, what's more an ordered type for a veryspeci ¢ equal-
ity; it does so by introducing a subclassSpecificOrderedType as described
in Section[®.Z2.2. This equality is the pointwise extension 6the membership
predicate In, i.e. two sets are equal if they have the same elements, and it
is de ned in the following way for any container type ctr and element type
elt :

De nition Equal_pw (ctr elt : Type)
(In:elt ! ctr !' Prop) (s s°: ctr) : Prop :=
8a:elt,In as$ In asl

These de nitions allow one to consider sets as ordered type&@nd in partic-
ular build sets of sets of sets of ...), for instance by writig s === empty.
They also ensure that this equality is convertible with the pointwise equal-
ity, which is the one used in the original FSets library. The last line of the
de nition, right after the de nition of the class, declares two arguments of
the set projection as implicit. More precisely, set normally expects three
arguments, the type of elements, an instance oDrderedType for this type,
and an instance of FSet: we declare that the type of elements should be
passed explicitely, but that the instances for ordered typeand nite sets
will be inferred automatically. The consequence of this is hat the type
of sets of elements of a typeA can be denoted simply asset A. Given an
instance of FSet for an ordered type A, we can then manipulate sets ofA

easily:
Denition add all (xy z : A) (s : set A) =
add x (add y (add z 9)).

"this design choice, far from being benign, is discussed furter in Section [5.5.

118

In interactive proof manipulations, it is not advisable that the used instance
FSet be fully unveiled to the user, ie. that the projections set, add, etc, can
be reduced and reveal the actual implementations beneath. nl particular,

one's de nitions and proofs should not depend on the actual et imple-
mentations but only on the interface and the provided speci cations, which
guarantees an encapsulation of the actual implementation fthe structures,
and the genericity of the code that uses the library. To that end, we make
the various elds of the FSet classopaqu@:

Global Opaque set In empty mem add

The FSet class only contains the computational interface for the nite
sets' structure and not its speci cation. We made this choice in order to
separate operations and speci cations for pragmatic reasus: de nitions of
functions and algorithms only need the computational interface, which re-
mains relatively small, whereas proofs and only proofs wilfequire the spec-
i cations. Before we de ne these speci cations in detail, we can already
de ne a few generic predicates and notations on nite sets, among which
Equal s t for pointwise equality, Subset s t for the subset relation and
Empty sto denote the fact that the set s is empty. The available notations
are listed in Table [5.3.

s[E]t Equal s t
s [<=] t Subset s t
v2s Invs
{ empty
{v} singleton v
{v; s} add v s
{s v} remove v s
vins mem v S
S ++ t union s t
s\t diff s t

Figure 5.3: Available notations on nite sets

All the speci cations for the FSet class could be packaged in a single large
classFSetSpecs parameterized by anFSet instance, but we instead choose
to specify each operation in a separate class. For instancéhe speci cations
for the elds empty and add are given by the following classes, and are
straightforward to understand:

Class FSetSpecs empty “(FSet A) = {
empty_1 : Empty empty

2this does not prevent computations with the compute and vm_computetactics, but
only the -conversions, i.e. the unfolding of de nitions, which are p erformed by some
tactics.

5.3 Finite Sets and Maps 119

}
Class FSetSpecs_add “(FSet A) = {

add 1 : 8 xy, x ==y ! In y (add x s);

add 2 : 8 xy,In ys! In vy (add x s);

add 3:8sxy, x==y! Iny(add xs) ! Inys
}

We make this choice for two reasons. First, when writing prods, it is very
common to ask the system about all lemmas available on some édti er,
say add, using the command SearchAbout add or one of its variants. If
all the speci cations about fty are bundled in a single cl ass, this com-
mand will unfortunately display this class's constructor and the elimination
principle associated with it, and both are very large objecs. This is rather
unfortunate, and makes it almost useless in such cases. Theh®r, more
general, reason for our choice is that it makes it possible tchave proofs
only depend on what is really necessary. For instance, if somspeci c data
structure implementing nite sets does not feature all the sets operations
described in the interface, but one's application does not se the missing op-
erations, one can still rely on our library and its generic irterface since the
missing speci cations will never be required. Pushing thiseven further, we
can imagine a development which does not involve any proof (gh as a pro-
cedure used as an oracle for some larger algorithm), and wadionly use the
computational interface FSet. For those systems that require the interface
with full speci cations, we de ne a superclass which embedsspeci cations
for all operations:

Class FSetSpecs '(F : FSet A) = {
FFSetSpecs _In :> FSetSpecs_In F;
FFSetSpecs_mem> FSetSpecs_mem F;
FFSetSpecs_add > FSetSpecs _add F;

Together, this speci cation class and the interface classFSet correspond
exactly to the interface FSetinterface.S in the existing library.

Finite maps. In this paper, we only present the interface for nite sets in
order to remain concise, but the library also provides an inerface for nite
maps. Itis adapted from the standard library's nite maps (FSets.FMaps) in
a similar way to what we just described for nite sets. In particular, the same
choices were made as far as the separation of operations anplegi cations,
and the splitting of speci cations.

120

5.3.2 A Library of Properties

The FSets library contains several modules of generic results and pm
erties about nite sets: FSetFacts, FSetDecide, FSetProperties, and
FSetEqProperties . The task of adapting these modules to the typeclass-
based interface presented above was a rst good way to checkuo interface
and its ease of use. We adapted all the aforementioned modidewithout
any major issue, the most delicate point certainly beingFSetDecide and
its tactic fsetdec initially contributed by A. Bohannon and which performs
automatic reasoning on the theory of nite sets. One slight d erence is that
the original tactic only dealt with one single type of sets at a time, while
our port of the tactic deals with all hypotheses related to sas at the same
time; this can lead to minor incompatibilities. As a whole, all lemmas and
properties keep the same name as in the original library, whih minimizes
the amount of work necessary to port one's code from the modak version
to the one we present here (cf. Section’5.59.3 for more detals

We have also added some properties in order to facilitate resoning on
functions like memchoose or min_elt , using inductive views to write their
speci cations. For example, choose's speci cation is available in the follow-
ing fashion:

Inductive choose_spec (s : set elt) :
option elt ! Prop :=
| choose_spec_Some :
8x (Hin : In x s), choose_spec (Some x)
| choose_Spec_None :
8(Hempty : Empty s), choose_spec None.
Property choose_dec : 8s, choose spec (choose 5s).

and can be used very easily by doing case analysis on the resof choose_dec.
Higher-order iterators. Elements in a container are traditionally enumer-

ated using step-by-step iterators in imperative languagesand higher-order

iterators a la fold in functional languages. InFSets as well as in our library,

there is one such iterator function fold ; in our interface for elements of
type A it appears as:

fold : 8{B:Type}, (A ! B! B)! set! B! B

where the type B is the type of what is commonly called the accumula-
tor. The speci cation for this function is given in terms of the traditional
fold_left function on lists, and the function elements returning the list
of elements of a set:

fold 1: 8f si,
fold fsi =fold left (fun ae) f e a) (elements s) i

This indirect speci cation is really tedious to use becausen order to reason
by induction on a nite set, it requires to express all the other hypotheses

5.3 Finite Sets and Maps 121

relative to s in terms of elements s and to proceed by induction on the
list of elements. Becausdold is used a lot when programming with nite
sets, reasoning aboufold is very frequent and the above procedure must be
done repeatedly. To avoid the tedious process of usinfpld_1 , we designed
an induction principle for fold . The idea is that the induction principle lets
one prove an invariant over the accumulator by proving that the invariant
is true for the initial accumulator and is preserved with ead iteration step.

fold_ind :

8{OrderedType A} B : Type) (P : B | Type)
(f :A! B! B)(i:B)(s: setA),

Pil
(8(e: A (a:B),In es! Pa! P (fea)!
P (fold f si).

The preservation is expressed by the fact that ifa has the invariant Pand an
elemente, belonging to the sets, is added to the accumulator, the resulting
accumulator f e a still veri es P. This principle is still rather weak, because
in general, one may need more information in order to propest express the
invariant and prove its preservation. For that reason we provide the following
stronger, more generic, induction principle:

fold_ind_gen :
8'{OrderedType A} B : Type) (P :set A ! B! Type)
(f :A1 B! B)(i:B)(s: setA),

(8(s ®:setA) (a:B), s===s°! Psa! Psla)!
Pil

(8(e: A) (a: B) (vis: set A),

In es! In evis! Pvisa! P{evis}(fea)!l

Ps (fold f si).

In the latter principle, the invariant takes one extra argum ent, the set of
elements already visited by the iterator. There is one extrahypothesis to
make sure that the invariant is a morphism for pointwise equdity, and in

the preservation step, the new element is such that it has noteen visited
yet. The conclusion of the principle is that the invariant is veri ed for the

whole fold when all elements have been visited. For exampléyere is how to
write a ltering function [on sets of integer usingfold and then prove its
speci cation using fold_ind

De nition filter_pos (s : set nat) :=
fold (fun es) if e >> 0 then {e s} else s) s {}.

De nition filter_pos_invariant (S acc : set nat) =
8e,In eacc$ In es_e>> 0.
Theorem filter_pos_spec : 8s, P s (filter_pos s).

Bthe generic filter function is actually part of the FSets interface, we do not use it
here in order to demonstrate fold .

122

Proof .
intro s; unfold filter_pos.
apply fold_ind with (P := filter_pos_invariant).

Qed.

As a nal note, these principles are available with our library but we rst
developed them for the original FSets library, and therefore they are also
available for FSets starting with Coq v8.2.

5.4 Applications

5.4.1 Lists and AVL trees

The existing library FSets proposes two kind of implementations of sets
and nite maps, the ones based on sorted lists, and the other®n balanced
binary search trees (AVL) [G. 62].

We have adapted the nite sets and maps based on sorted listsas well
as those sorted on AVL trees. Let us detail for instance the cse of nite
sets based on sorted lists. In practice, the implementatiorof sorted lists is
the same in the modular version and in our version, and they der only
marginall. The original development of sorted lists in the FSets library
is a functor parameterized by a module of signatureOrderedType, whereas
the development for sorted lists in our version is parametezed by an in-
stance of theOrderedType class. This is achieved by using Coq's sectioning
mechanism and theContext command which introduces instance variables
in a section:

Modular version Type class version

Module Make (X : OrderedType) Section Make.

<: S with Module E := X. Context “{OrderedType elt}.
Module E := X.
De nition elt := X.t. End Make.

End Make.

In the {OrderedType elt} context, elt is a fresh type featuring a decid-
able order. The de nitions in the section can then useelt as an ordered
type, and they are automatically generalized at the time thesection is closed.
Once the de nitions of sorted lists and their various operations, as well
as the adequate proofs, have been completed, we are only lefith the task
of declaring the instances corresponding to the classes mented earlier in
Section[5:371. We can package all these de nitions in a speci module

4it is thus natural to be concerned about the issue of code duplication between both
versions ; we discuss this point in Section[&.3.

5.4 Applications 123

SetList , which doesn't have to be imported by an external user, sincenly
the instances providing the interface are necessary. In thease of sorted
lists, which provide a structure of nite sets for any ordered type, we de ne
a generic instance ofFSet parameterized by an ordered type:

Instance SetlList_FSet {Helt : OrderedType elt} :
FSet = {
set := Setlist.set elt;
In ;= @SetList.In elt Helt;
empty = ...
}

This de nition really declares a whole family of instances, in other words
it gives a way to obtain a nite set structure for any ordered type elt .
Similarly, we can de ne a family of speci cations for each ofthese structures
indexed by an ordered typeelt :

Instance SetlList FSetSpecs “{Helt : OrderedType eli} :
FSetSpecs SetList FSet := {
FFSetSpecs _In = ..,
FFSetSpecs_mem :=

,

With these instances de ned in a le (resp. module), it is enough to import
that le (resp. module) to be able to use nite sets on any ordered type.

5.4.2 Usage

The simplicity with which our library can be used is one of its main interests.
To work with nite sets, it is enough to import the module Sets which
exports the following functionalities:

the notion of ordered type, along with a library of instancesand results
about ordered types ;

the generic instances for nite sets based on AVL trees, whas design
is completely similar to the one based on sorted lists ;

the interfaces, speci cations, notations and basic propeties relative to
nite sets.

A rst thing to note is that the library loads AVL trees by defa ult instead of
sorted lists. This is justi ed by the fact that AVL are more e cient in general
and there is no penalty in terms of loading time with respect © sorted lists.
This is unlike the modular version where applying the AVL functors takes
much longer than applying the sorted lists' version. A user who wishes to
use sorted lists instead of AVL trees can still load the adegate instances ;

124

she could also manually specify what instance to use if the mumstances
demand i. A module Mapsalso exists, which loads all the infrastructure
required to work with nite maps ; in particular, it loads the maps based
on AVL trees.

Once Sets has been imported, one can use all the generic de nitions and
notations on sets, with the only restriction that they be applied to ordered
types. If, as is often the case, the necessary instances @rderedType
can be automatically inferred as described in Sectiol 5.2,3hen the use of
nite sets becomes totally transparent to the user, and becones completely
similar to fully polymorphic structures such as lists. The following example
demonstrates the computation of a set of integers:

Require Import Sets.

Fixpoint fill n s =
match n with
| O) s
| S nog) fill ng {no; s}
end.

Eval vm_compute in mem 6 (fill 7 {42}).
(* this computation returns 'true' *)

Finite sets for di erent types can coexist peacefully in the same context, in
the same functions ; in particular, thanks to the FSet_OrderedType eld in
the FSet class (cf.[5.3.1), we can manipulate sets of sets:

De nition map_fill (s : set nat) : set (set nat) :=
fold (fun n S) {fil n{ SP s{.

Eval vm_compute in cardinal (map_fill (fill 3 {})).

(* this computation returns 3 *)

Similarly easy is the use of lemmas from the library during poofs. For
instance, to apply the rst part of the speci cation of the add operation,
called add_1, it is enough to apply the lemma directly and all implicit ar-
guments are correctly inferred:

Goal 8(x : option nat) s, In x {x; s}
Proof . intro; apply add_1; reflexivity. Qed.

To conclude that section, here is an example involving nite maps and
some of the notations associated to maps. The type of nite mas binding
keys of type key to values of type elt is written Map[key, elt] . The
notation s[k v] denotes the insertion (or the update) of a binding in
the map s, [] is the empty map ands[k] is the value associated to the key
K in s, if any.

5in such cases, the gain in verbosity compared to the modular version is reduced to
zero, but this explicit instantiation can almost always be a voided.

5.5 Discussion 125

Require Import Maps.

Fixpoint fill (s : Map[nat,nat]) (n : nat) :=
match n with

|O) s
| S ng) fill s[ng S ng] no
end.

Eval vm_compute in (fill [] 7)[4].
(* this computation returns 'Some 5' *)

The library is available for download at the following URL.:
http://www.Iri.fr/~lescuyer/Containers.fr.ntml

5.5 Discussion

In this section, we take a closer look at the comparison betwen our library
and the existing one, and discuss a couple of choices and litations in our
current implementation.

5.5.1 Performances

In order to compare the performances of our library with the module-based
implementation, we added a le called BenchMarks.v which tests the basic
functions over nite sets. The test consists in creating a seof integers from a
(pseudo-)randomly generated sequence, and in making vans membership
tests in the resulting set. This process is repeated for setbased on type
classes and sets based on modules. The result is satisfyinipese, when the
comparison functions for the elements are the sarfid, the two alternatives
show the exact same performance.

To understand why the mere fact that the performances are sirilar is
satisfying, it is important to notice that the convenient an d concise formu-
lation that comes from using type classes is actually made tdhe expense
of the terms' size. Indeed, although the various type classeparameters are
implicit and are automatically lled in, one must not forget that these argu-
ments are present in the proof terms, and that the corresponihg instances
must be passed on and reduced during the computations. For emple, the
simple expression{l; {}} (or add 1 empty), which denotes the singleton
set containing 1, actually corresponds to the following syliline expression:

18 several comparison functions, for relative integers in particular, were not completely
computational in the existing library and because of that, w ere being ve times slower
than the purely computational functions in our library. Thi s does not denote any signi ca-
tive di erence between modules and type classes, but rather underlines the importance
of having an interface which encourages one to write purely computational comparison
functions. We of course corrected the slow comparison functions from the existing library
before running our benchmarks.

126

@add nat (@SOT_as_OT nat (@eq nat)
(@eq_equivalence nat) nat OrderedType)
(@SetAVLInstance.SetAVL_FSet nat
(@SOT_as_OT nat (@eq nat)
(@eq_equivalence nat) nat_OrderedType))
1
(@empty nat
(@SOT_as_OT nat (@eq nat)
(@eq_equivalence nat) nat_OrderedType)
(@SetAVLInstance.SetAVL_FSet nat
(@SOT_as_OT nat (@eq nat)
(@eq_equivalence nat) nat_OrderedType)))

whereas the corresponding expression with modules wouldrsply be:
NatSet.add 1 NatSet.empty.

To sum this up, functor applications are replaced by applicdaions of extra
arguments in all set-related operations.

If the performances of the computations do not su er from this hidden
complexity, this is unfortunately not the case for the time spent typechecking
these objects when compiling a le, or simply when manipulatng them in an
interactive proof. We get back to this important point infra in Section[5.5.3.

5.5.2 Upgrade of Existing Code

The task of updating earlier versions of our tactic to this library represented
a good benchmark to judge how hard it was to adapt existing cod, based
on FSets/FMaps, to our alternative library. The code base is indeed about
30 000 lines of Coq and used various di erent types of nite sés, including
sets of sets.

The conclusion of this experience was very positive since thmodi cation
of our existing code went on without a signi cant issue. As a natter of fact,
because the names of operations and lemmas have been presehbetween
the original library and ours, the modi cations one has to make to one's
existing code are almost automatic:

for all modules verifying the signature OrderedType, de ne the corre-
sponding OrderedType instancé-] or use the translation functors de-
scribed in the next section ;

replace all occurences of set types likblatSet.t with set nat ;

replace invocations ofdetruct compare in proof scripts by destruct
compare_dec;

this is only needed if the instance cannot be inferred automatically by the system, nor
generated with the Generate OrderedType.

5.5 Discussion 127

unqualify all references to objects belonging to modulesof nite sets
or properties over nite sets, for instance replace any qualed ref-
erence toNatSet.add , to the lemma NatSet.add_3 or to the tactic
NatSetDec.fsetdec by add, add_3 and fsetdec .

These modi cations can be applied seamlessly and also makene's code
more concise and more readable. Therefore, they should notetier one from
switching from one library to the other.

5.5.3 Code Sharing

When we presented the interfaces in Section 513 and the conete implemen-
tations in Section 5.4, we emphasized how the library of gené properties
and the developments of lists and AVL trees were almost exaty the same in
our library and in the original one. Therefore, it is natural to wonder about
how we can avoid code duplication between the two versions:of obvious
reasons, it wouldn't be satisfactory if the code remained dplicated.

In order to share most of that which is duplicated over the two versions
of the library, it is possible to only write the version basedon type classes,
and then obtain the modular version with very little boilerp late. We show
this construction on the example of ordered types. Given thesignature
OrderedType and the type class OrderedType as in Section[5.2, we can
build the following functor which translates an instance of OrderedType in
a module of signatureOrderedType:

Module Type S.
Parameter t : Type.
Instance Ht : OrderedType t.
End S.

Module OT to FOT Import X : S) <: OrderedType.
Denition t := t.

Deniton eq: t! t! Prop = eq.

Deniton It: t! t! Prop:= _lt

De nition eq_refl : 8(x : t), eq X X =
reflexivity.

Denition eq_sym :8(xy : t),eq xy! eqyx :=
symmetry.

De nition compare : 8x y, Compare It eq x v.
Proof Qed.
End OT_to FOT.

The signature Siis just a way to package an ordered type with its instance
in a module. The functor itself is parameterized by a module 6 signature

128

S, in other words by an ordered type, and creates a module of sigature

OrderedType for the type and relations passed in the parameter. The in-
stance and the de nitions for a given ordered typet can therefore be de ned
once and for all, and the user of the modular library can get tke correspond-
ing module via this functor. It is interesting to note that on e can also build
the converse translation, that is a functor parameterized ty an OrderedType

module which returns a module of signatureS containing the correspond-
ing instance. Of course, this translation has a lot less inteest because it
requires the user to manually and explicitely de ne each ingance he needs
by applying this functor, which is precisely what type classes are there to
avoid. The functor OT_to_FOTon the contrary, is not more constraining to

use than the existing module-based system.

The sharing we obtain in this fashion can be generalized to dter parts
of the system, for instance we could de ne a functor returnirg a module of
nite sets for a type Afrom an instance of FSet A This way, we would only
have to duplicate the interfaces of the di erent parts of the system, all still
sharing the same concrete implementations. Our library fetures a module
called Bridge which contains such functors, albeit only for ordered types

5.5.4 Designing the Interface

In Section [5.3.1, we chose to parameterize thé-Set type class with the
(ordered) type of the elements. We could also have written tle FSet class
without this parameter, in the following way:

Class FSet = {
set : 8A {OrderedType A}, Type;
In : 8{OrderedType A}, A ! set A ! Prop;
empty : 8{OrderedType A}, set A,

,

This class should be interepreted in a slightly di erent way from the one
de ned in Section 5:31: the class itself is not parameteried by an ordered
type anymore, but each eld is. Hence, an instance of this clas provides
implementations of nite sets for any possible ordered typeand not for a sin-
gle particular one. For instance, sorted lists and AVL trees as presented in
Section[5.41, are potential instances of this class becaeighey can be used
on any ordered type. This is in contrast to speci c structures like Patricia
sets [OG98] which can only be used to form sets of binary integys. The
advantage of this alternative formalization is that one can use di erent in-
stances in the class de nition itself, for instance we couldadd the traditional
mapoperation:

map : 8{OrderedType A, OrderedType B},
(A! B)! setA! setB

5.5 Discussion 129

whereas this would neither be possible with our parameteried interface,
nor with the module system. It seems to us that this kind of bere ts is less
important than the ability to deal with implementations tha t are speci c to
certain element types (like integers), and therefore we ddded to keep the
formalization where FSet is parameterized.

Unfortunately, this choice is not without consequences on he size of the
terms created using the library. We illustrated in Section[55.1 how implicit
type class arguments were leading to larger terms even thougthey were
hidden to the user. This e ect gets ampli ed by the parameterization of
the FSet class: indeed, all operations inFSet are themselves parameterized
with the same arguments as the class itself, and these argumts appear
twice in the proof term for each operation. For instance, suposeF is a
generic instance ofFSet and nat_OT has type OrderedType nat, then the
expressionadd 5 {} will actually become:

@add F nat nat OT 5 (@empty F nat nat_OT)

if the class is not parameterized (second, rejected, altemtive) whereas it
becomes:

@add nat nat OT (F nat nat OT) 5
(@empty nat nat OT (F nat nat_OT))

when the class is parameterized (our original, retained, aérnative). The

di erence may seem insigni cant but we have measured its e et with ac-

curacy on a development which uses nite sets extensively, red we found
out that the total size of proofs and de nitions would grow by about 40%,
as well as the time devoted to type-checking the source les.The increase
in the size of terms and type-checking time is one of the only dwnsides of
using type classes, and it is really unfortunate that this ga¢s ampli ed by

the (otherwise useful) parameterization of theFSet interfacetd. In practice,

the time we gained in functor's instantiations still outwei ghed the time lost
because of the size of terms.

5.5.5 Type Classes and Modules

The work presented here is not a general criticism of modulesompared to
type classes, let alone a criticism of the existing=Sets library. As demon-
strated in [WMO06], modules and type classes are not interchageable and
each one can claim bene ts over the other. In particular, modiles allow a
good control of the namespace, unlike type classes. Modulese also very
well suited to splitting a large system in smaller parts with well de ned in-
terfaces ; functors allow one to easily replace one part of &h a system by

18t is interesting to note that the duplicated expressions, o r parameters, appear as
siblings in the Coq terms and are thus typed in the same context. Therefore, some form
of memoization or hash-consing in the Coq type checker would surely cancel these negative
e ects.

130

another with the same interface and this can come in very hang to test
alternative algorithms or compare choices in a larger systa.

However, we think that generic data structures like sets or naps are not
good candidates for a modular design since it is common to ndeseveral dif-
ferent instances of these structures at the same time, whiclaises the issues
mentioned in Section[5.1.2. For such cases, it seemed to us amteresting
experiment to try and take advantage of the new type class sytem in order
to provide alternative implementations of such structures

5.6 Conclusion

We have presented a Coq library of nite sets and nite maps which repro-
duces much of the features of the existing-Sets/FMapslibrary, but which is
based on the new type class system instead of the module syste Thanks
to the use of type classes, this library facilitates the use bthese structures
and leads to faster, more concise development of algorithmis Coqg. It also
avoids a couple of performance issues related to the modulgstem. Existing
implementations which rely on the standard library can be eaily adapted
to this version. We are convinced that such a library contributes greatly to
improving Coq as a programming language since it provides ey access to
standard, generic, commonly used data structures.

CHAPTERO

A Re exive SAT-Solver

Comment pouvez-vous identi er un doute avec certitude?
- A son ombre! L'ombre d'un doute, c'est bien connu.

Raymond Devos,A plus d'un titre

Contents

6.1 Formalizing DPLL inCog . | 132
b1l Literald, 132
[6.1.2 Semantics and Formulde 133
[6.1.3 Sequents and Derivatiods 135
[6.1.4 The Decision Procedute 136

6.2 Deriving a Re exive Tactic . | 140
[6.2.1 Reication 140
[6.2.2 The Generic Tactit 143
[6.2.3 About Completeneds 146

6.3 A Better Strategy . |. 147

6.4 Conclusion |. 151

We start the formalization of our re exive tactic by the prop ositional
solver. In Chapter [1, we have emphasized howAlt-Ergo's architecture is
modular and we will reproduce this modular architecture in aur formaliza-
tion as well. In particular, the propositional solver, as described in Chap-
ter 2, can lead to a re exive tactic for propositional logic, and this is what
we will describe in this chapter. In Section[6.1, we describa Coq formaliza-
tion of this DPLL procedure and we prove its soundness and coppieteness.
We then use this procedure in Sectio 8]2 in order to build a reexive tactic
solving propositional goals. We nish by showing how to use nodularity
and de ne a better strategy in Section[6.3.

131

132

6.1 Formalizing DPLL in Coq

In this section, we present a Coqg formalization of the inferace system pre-
sented in SectionZ.1.B page25, for which we prove soundnemsd complete-
ness with respect to a notion of semantics for formulae.

6.1.1 Literals

We start by de ning how literals shall be represented. To do ®, we will
make use of Coq's module system [Cou97, Chr03]. Camodule typesallow
one to pack together types, functions and related axioms by &eping a high
level of abstraction. One can then createfunctors, i.e. modules which are
parameterized by other modules of a certain signature and wich can then
be instantiated on any modules that match the expected signature.

Module Type LITERAL.
Parameter t : Set.
(* t is an ordered type *)
Instance t_OT : OrderedType't.
(* Negation function and its properties *)
Parameter mk_not : t ! t.
Axiom mk_not_invol : 8l, mk_not (mk _not 1) ===
Axiom mk_not_compat : 81 1% | ===1°¢% mk_not | === mk_not|°

(* Sets of literals, clauses and sets of clauses *)
Notation Iset = (set t).
Notation clause := (set t).
Notation cset := (set clause).
End LITERAL.

Figure 6.1: A module type for literals

Therefore, in order to take advantage of Coq's module systemwe will
rst de ne module types for literals and formulae, and we will then be able
to develop our decision procedure in a way that is independdrof the actual
representation of the input. The signature at the base of oursystem is
the module type LITERALOf literals and is presented in Figure[61. This
module type provides a typet for literals, a function mk_not which builds
the negation of a literal and some axioms about this function(like the fact
that it is involutive). Literals also come with a decidable equality and a total
order, which are necessary to later de ne nite sets of literals: this is done by
requiring an instance ofOrderedType t in the signature, as described in the
previous chapter. Note that there is no way to construct literals from scratch
with this signature, this is indeed not required by the DPLL procedure.

6.1 Formalizing DPLL in Coq 133

Finally, the last part of the LITERALsignature introduces notations for sets
of literals and sets of sets of literals. We actually use two derent notations,
namely Iset and clause, to denote nite sets of literals. Although they
represent the same type, the reason we make that distinctionis because
our intent is that they will represent di erent objects and w ill be used in
di erent places. Having di erent names ensures better mairtenance and less
confusior. Precisely, Iset will be used to build partial assignments, i.e.
sets of literals that are considered to be true, whereaslause , as its name
suggests, will be used to represent clausege. disjunction of literals. The
last notation cset will be used to represent conjunctions of clauses, in other
words CNF formulae. Note that in de ning these notations, we used the
fact that an instance for OrderedType for the type of literals was introduced
before (in order to build the sets of literals), and also that our containers
library ensures that sets of elements form an ordered type temselves (cf.
Section[5.3.1), thus allowing to build sets of sets of literés.

6.1.2 Semantics and Formulae

In the previous subsection, we de ned module types for liteals and we now
turn our attention to de ning a notion of semantics, i.e. what it means for
a formula to be true. We cannot directly (nor do we want to) r ely on the
prover's notion of truth because we are dealing with abstrat formulae and
not native Coq propositional formulae.

Once again we use Cod's functorization system and de ne semécs as
a functor with respect to a module L of type LITERAL The rst thing we
need for semantics is a notion ofmodel: in accordance with De nition £.1.T]
pagel2ZT, a model should be a function assigning a truth valuect a literal.
We will simply de ne a model as any type which can be seeeras a function
from literals to propositional values:

Module Type SEM_INTERFACHENport L : LITERAL).
Parameter model : Type .
Parameter model_as fun : model ! (Lt ! Prop).
Coercion model_as_fun : model Funclass .

End SEM_INTERFACE.

YIn practice, we also took advantage of that distinction in or der to use di erent nite
sets implementations for Iset and clause , namely AVL trees for the former and ordered
lists for the latter, because they were used in a quite di ere nt manner in the algorithm:
partial assignments were mainly used with membership tests, while clauses were mainly
iterated upon. Therefore, the cost of keeping a balanced tree in order to obtain logarithmic
lookup time was not justi ed for clauses. In such a case, the notations Iset and clause
represent di erent types. We simplify the presentation in t his document, but note that
the fact that we had made that syntactic distinction between Iset and clause from the
start made it much easier to use di erent implementations la ter on.

134

The type model is left abstract and can be transformed into a function
from literals to propositional values using model_as _fun. The Coercion
declaration ensures that we can implicitely use a model as auhction over
literals.

Not any function from literals to Prop can be considered as a model for
literals, it also has to verify some properties which we reqire by adding
some axioms to the signature:

Axiom morphism : 8MI 1% | ===1°1 M1 $ MI9.
Axiom consistent : 8MI, M I ! (M (mk_not 1)).
Axiom total : 8MI, ((M) ! M (mk_notl)).

The rst one is technical and simply expresses that a model mst be a
morphism for the equality on literals and is required becaus we did not
enforce equality on literals to be Leibniz equality. The other two axioms
denote the logical meaning of a model:

consistent expresses that a model should not assign a true proposi-
tion to both a literal and its negation;

total expresses that a model should be total, in the sense that give
any literal, itself or its negation should be true in the modd. It is

stated with a double negation because Coq's logic is intuitnistic and
we would not be able to prove this axiom without double negaton for
the type of models we have in mind. For instance, supposk! | is some
propositional value A, and as one can expectM (mk_not) isA itis

not true in general in intuitionistic logic that A ! A and therefore
the model would not be necessarily total for literal 1. By adding

the double negation, we make sure that this property is provéle in

intuitionistic logic.

Note that together, total and consistent are equivalent to the prop-
erty 8MI, (M | $ M (mk_notl)), ie. they express thatthe in-
terpretation of the negation of a literal | should be the negation of the
interpretation of |. Only the total part of this equivalence requires a
double-negation, hence we split this property in the two axoms above.

It is now straightforward to de ne what it means for a model to satisfy
a clause or a set of clauses, and when a formula in CNF is unsatable:

De nition sat_clause (M : model) (C : clause) =
91 2 C, MI.

De nition sat _goal (M : model) (D : cset) :=
8C 2 D, sat_clause M C.

De nition unsatisfiable (D : cset) :=
8(M : model), sat goal M D.

This gives us a notion of satis ability for clauses and formuae, but we also
need to take the context of a sequent into account. As we did irthe proofs

6.1 Formalizing DPLL in Coq 135

of Chapter[2, we need a notion of how a set of literals can be submodelof
some model:

De nition submodel (G : Iset) (M : model) := 81 2 G, MI.

Note that this de nition of a submodel implies that Gis a well-formed partial
assignment, in the sense that it does not contain both a liteal and its
negation. From this notion of submodel naturally follows the de nition of
incompatibility between a partial assignment and a set of chuses:

De nition incompatible (G : Iset) (D : cset) =
8(M : model), submodel G M! sat goal M D.

We can now de ne a module type CNFfor formulae, as shown in Fig-
ure[62. This signature provides a typeformula for the concrete representa-
tion of formulae. Because the type of formulae will depend orsome notion
of literals, the signature CNFalso embeds a moduld. of signature LITERAL
through the Declare Module vernacular. Another module is required in
the interface, with the signature SEM_INTERFACEwhich brings a notion
of model and semantics for the module of literalsL. Finally, an instance
of CNFinstance shall provide a "CNF conversion" function calledmakethat
takes aformula and returns a sets of clauses (as de ned in the module of
literals). Such a formalization (having the module bringing its own abstract
type of formulae and conversion function) allows instancegshat only ac-
cept formulae that are already in CNF, and wheremakeis just the identity
function for instance.

Module Type CNF.
Parameter formula : Set.

Declare Module L : LITERAL.
Declare Module Sem : SEM_INTERFACE L.

Parameter make : formula ! L.cset.
End CNF.

Figure 6.2: A module type for formulae

6.1.3 Sequents and Derivations

We can now start the de nition of a functor SATparameterized by a module
F of type CNFand which will implement our SAT solving algorithm without
any knowledge about the actual representation of formulae pliterals. The
development can only use elements that are de ned inFs signature and
this ensures modularity as well as reusability. The functorstarts with the

136

de nition of sequents: a sequent, notedG = D, is simply a record with a
partial assignment Gand a set of clause®, as discussed in Section Z.11.3. For
conveniency, we rede ne incompatibility for sequents using incompatibility
from the semantics moduleSem

Module SAT (mport F : CNF).
Import L.
Record sequent : Type := {G : Iset; D : cset}.

De nition incompatible (S : sequent) :=
Sem.incompatible (G S) (D S).

End SAT.

The next step is the de nition of the rules system presented n Fig. Z1. We
use an inductive de nition showrd in Fig. by enumerating all possible
ways a derivation can be built from a given sequent. We call tlis inductive
derivable and an object of type derivable (G~ D) represents a proof
derivation of sequentG = D. Note that each constructor faithfully follows
from a rule of the original system. For instance, Assumedescribes unit
propagation, and Elim and Redtogether describe the two rules for boolean
constraint propagation.

Inductive derivable : sequent ! Prop =
| Conflict : 8G D,; 2 D! derivable (G ~ D)
| Assume : 8G DI, flg 2 D! derivable (G, |~ Dn flg) !

derivable (G~ D)
| Elim: 86 DI C,12G! |2C! C2D!
derivable (G~ Dn {C}) ! derivable (G ~ D)
| Red : 8GDIC, 1 2G! I2C! C2D!
derivable (G~ Dn C, Cn flg) ! derivable (G ~ D)
| Split : 8G DI, derivable (G, | ~ D) ! derivable (G, | = D) !
derivable (G~ D).

Figure 6.3: The inductive de nition of the proof system

6.1.4 The Decision Procedure

Using the semantics we de ned earlier, we can now proceed torpve the
fundamental theorems about our derivation system. First in line is the
soundness of the proof system:

%In this gure and in the following, we use mathematical notat ions for set-related
operations, rather than Coq's concrete syntax, for the sake of readability.

6.1 Formalizing DPLL in Coq 137

if there exists a derivation of the sequent = D, Dis unsatis able

and as in the proofs in Chapter[2 we prove something more genal than
this statement, using the notion of incompatibility that we just described:

Theorem soundness : 8S, derivable S ! incompatible S.

The special case where the context of sequer is empty yields exactly the
above statement. This theorem can be proved by a structural mduction on
the derivation of S following the arguments from Theorem[2Z 15, and the
Coq proof is not di cult (about 50 lines of tactics).

Conversely, the completeness of the algorithm could be expssed by the
following statement:

Theorem completeness :
8S, wf context (G S) ! incompatible S ! derivable S.

which corresponds to TheoreniZ.I19. There are at least two gsons why we
do not prove completeness in this particular form:

We do not only want full equivalence between the notions of davabil-

ity and incompatibility, but we also want a decision procedure, i.e. a
function capable of telling if a given formula is unsatis able or not.

Proving such a theorem of completeness would certainly givels an
equivalence between the derivability of a sequent and its inompati-
bility, thus bringing the problem of deciding satis abilit y down to the
one of deciding derivability. However, deciding derivabilty amounts

to try and build a derivation for a given sequent if possible,and it is a
proof that actually encompasses the completeness theorenrgsented
above. Thus, we want to avoid doing the same job twice.

We want to be able to use that procedure in Coq through the mech-
nism of re ection, i.e. by actually computing the proof search in the
system. Of course, an intuitionistic completeness proof isonstruc-
tive and therefore can give a derivation, as an algorithm, bu it is

well known that procedures with propositional contents camot be ex-
ecuted as e ciently as purely computational functions, because in the
rst case, proofs need to be replayed along with computatios. Thus,
we do not want to encode the decision procedure as part of a geral
completeness theorem.

For these reasons, we will build the decision procedure in tev steps: rst
we will program a function without propositional content to implement the
actual decision procedure, and then we will show that its reslts are correct.
This function will not return any complex information, bu tonly Sat Gif
it has found a partial model G and Unsat otherwise:

138

Inductive Res : Type :=
| Sat : Iset ! Res
| Unsat : Res.

The decision procedureper secan now be implemented as a recursive func-
tion returning such a result:

Fixpoint proof search (G ~ D : sequent) n {struct n} : Res :=
match n with
| O) Sat; (* Absurd case *)

| S no)
if is_empty D then Sat G (* Model found! *)
else
if ; 2 Dthen Unsat (* Rule Conflict *)
else ...
let | := pick D in (* Rule Split *)
match proof_search (G, | =~ D) ng with
| Sat M) Sat M
| Unsat) proof_search (G, | ° D) ng
end
end.

Because the recursion is not structural, we use an extra intger argument
n, and we will later make sure that we call the function with an integer
large enough so thatn never reaches 0 before the proof search is completed.
This short excerpt of the function proof _search shows that it proceeds by
trying to apply some rules one after another, one rule at a tine, with a
given strategy. Here, the function rst checks if the problem is empty, in
which case it returns the current context as a model; otherwse, it checks
if the empty clause is in the formula, in which case it returns Unsat. We
then skip some parts of the function, where we try to apply therules for
elimination, reduction or unit propagation. The last part ¢ orresponds to the
Split constructor: some literal | is picked in the problem using the pick
function and the proof search is called recursively with theliteral added to
the partial assignment, which corresponds to the left brant of the Split
rule. If this branch is satis able, the whole formula is satis able in the same
model. If it is unsatis able, we call the proof search again br the right
branch and return the result.

The rsttheorem about proof search states that when it returns Unsat,
it indeed constructed a derivation on the way:

Theorem proof_unsat :
8n S, proof search S n = Unsat ! derivable S.

6.1 Formalizing DPLL in Coq 139

The proof follows the ow of the function and shows that each recursive call
that was made corresponds to a correct application of the deavation rules.
One may wonder why we didn't construct this derivation in proof_search ,
S0 as to return it with Unsat: the reason is that a derivation contains proofs
(in side conditions) and had we done so, our function would nbhave been
100% computational anymore.

The second theorem aboutproof search is the one that encompasses
completeness: it states that ifSat Mhas been returned, it is indeed a model
of the formula and of the contex®.

Theorem proof_sat :
8n S M, (S) <n ! wfcontext (G S) !
proof search S n = Sat M!
(G 9 M~ sat_goal M (D S).

A couple of remarks about this theorem are necessary:

is ameasureof a sequent that we have de ned in Coq, and for which
we proved that it decreases for every recursive call in the glorithm.
We could have de ned the function by a well-founded induction on this
measure, but it is computationally slightly more e cientto use the ex-
tra integer. This is a well-known technique to transform non-structural
inductions in structural inductions [BC04]. A suitable measure of a
sequentG ~ D here is the size ofD plus the number of literals which
appear in D and are unbound (positively or negatively) in G When
calling proof_search on a sequentS, a suitable integeris (S +1: it
is large enough forproof sat to be applicable, in other words for the
procedure to be complete;

we need an extra hypothesis that the context remains well-fomed

(wf_context (G S)), which means that it doesn't contain a literal and

its negation. This is not guaranteed by the derivation rules because
the side conditions were purposely very loose in order to abw any
kind of strategy. Here, it is our strategy that guarantees this invariant

is never broken, and this is part of the completeness proof.

Together with the soundness theorem, this shows thatproof search is a
decision procedure for unsatis ability and we can now de nethis top-level
dpll function and prove the corresponding soundness theorem:

De nition dpll (f : formula) : Res =

let S :=; (makef) in
proof search S ((S)+1).

3Technically, the set returned is not a model because it is only partial; it can be
completed into a model though, as long as it is a valid partial assignment, and we simpli ed
the actual details here since they seem cumbersome.

140

Theorem dpll_correct :
8f, dpll f = Unsat! Sem.incompatible ; (make f).

The de nition of proof _search and the proofs of its properties require 700
lines of code.

6.2 Deriving a Re exive Tactic

We now show how to use the procedure we have developed so far asactic
to solve goals in our proof assistant.

6.2.1 Reication

In order to use our SAT solver on Coq propositional formulae,we need to
instantiate the SATfunctor. This raises the question of the actual represen-
tation of formulae and literals: we need to build modules of ypes LITERAL
and CNRhat will represent Coq formulae.

A natural choice for the type of literals would be to directly use the
type Prop of propositions, but this is impossible because the type ofiterals
must be an OrderedType, and in particular we need to be able to decide if
two given propositions are equal or not. Indeed, consider ta formula A »
A: we need to know that the propositional variable A is the same on both
sides to conclude that this formula is unsatis able. Since he only decidable
equality on sort Prop is the one that is always true, we cannot useProp as
the type of literals.

Instead, we resort to Coqg's metalanguagel_tac, which we introduced
in Section[4.21. This language provides pattern-matchingfacility on Coq
terms, and thereby allows us to check the syntactic equalityof proposi-
tional terms at a metalevel. We will use this language to buid, for a given
propositional formula F, an abstract representationof F on which we will be
able to apply the algorithm. This process, calledrei cation or sometimes
metai cation , has been introduced earlier in Section 4.2]4.

Using Ltac, we rst build a function get vars which traverses a formula
F and retrieves a list of all the propositional variables ofF. We de ne another
function list to_map that turns such a list into a balanced map. This map
now contains all the propositional variables of F and provides an e cient
way to search for a particular variable into a map. The type of these maps
is called varmapand is de ned as a parameterized binary tree:

Inductive varmap (A : Type) =
| Empty_vm : A! varmap A
| Node_vm : A! wvarmap A! varmap A! varmap A.

For instance, if F is the following formula:
FF AN (B _(pAC) " (8D, (pDD)

6.2 Deriving a Re exive Tactic 141

the result of list_ to_map (get_vars F) will be a map containing the vari-
ablesA B, (p A C)and 8D, (p D D) In particular, the last variable is ab-
stracted because our propositional language does not inalie quanti ers.
Given this map, we are able to represent variables by their pth in the map:
the type of paths isindex and is de ned as

Inductive index : Set =

| Left_idx : index I index
| Right_idx : index I index
| End_idx : index.

As long as the varmap is built in a balanced way, the represertion of
literals through indices is logarithmic in the total number of variables in the
formula. It is now straightforward to create the module LPROP literals,
where a literal is just an index in the map and a boolean saying if it is
negated or not, and themk_not function a simple inversion of this boolean:

Module LPROR: LITERAL.
De nition t := index bool.
De nition mk _not (p,b) : t := (p, negb b).

End LPROP.

We can move on to de ning the corresponding types for formula. We
will for now assume that we only deal with formulae in conjundive normal
form, and we address the problem of conversion to CNF later irChapter [7.
In Fig. 6.4 we show an excerpt of the moduleCNFPRO# type CNF- which
implements our type of formulae. Its literals are, of course the literals of
the module LPRORve just de ned. Formulae and clauses are de ned in
a very natural way by two inductives: a formula is either a clause or a
conjunction of formulae; a clause is a literal or a disjuncton of clauses. This
representation makes the functionmakeconverting a formula to a set of sets
of literals (not shown here) really straightforward.

The CNFPRQRodule is not nished yet since we also need to provide a
module of interface SEM_INTERFACE LPR@P semantics for the proposi-
tional literals. A natural model for literals is a map of type varmap Prop
since it binds literals to their propositional value:

Module SEMPRO®P: SEM_INTERFACE LPROP.
De nition model := varmap Prop .
De nition model_as_fun (v : model) (| : L.t) : Prop :=
match | with | (id, true)) lookup id v
| (id, false)) (lookup id v) end.

End SEMPROP.

where lookup id v returns the proposition bound to id in the map v, and
the default proposition True if id is not bound in the map. The coercion

142

Module CNFPROR: CNF.
Module L := LPROP.

Inductive clause : Set =

| COr : clause ! clause ! clause

| CLit : L.t I clause.

Inductive formula : Set :=

| FAnd : formula ! formula ! formula
| FClause : clause ! formula.

End CNFPROP.

Figure 6.4: A module for propositional formulae

model_as_fun can be seen as a way tanterpret literals in a varmap, and
we can interpret clauses and formulae using this interprettion of literals:

Fixpoint cinterp (v : model) (¢ : clause) : Prop =
match ¢ with
| CLit IV v
| COrcp ¢! cinterp v ¢ _ cinterp v &
end.
Fixpoint interp (v : model) (f : formula) : Prop :=

match f with

| FClause c! cinterp v c

| FAnd f, fo ! interp v f; ~ interp v f»,
end.

This interpretation function interp is such thatinterp v f interprets an
object f of type formula to its propositional counterpart in Coq, and is the
reverse operation of rei cation.

The last step of the rei cation process is to build a tactic in Ltac, that,
for a given formula F in Coq's propositional language, builds an abstract
formula f of type formula and a map v such that interp v f = F . We
have already covered the construction of the mapy. The construction of the
formula f is realized by a couple of recursive.tac tactics which analyze the
head symbol of the current formula to construct the correspading abstract
version. For instance, the top-level function matches conjincts and goes like
this:

Ltac reify formula F v :=
match constr:F with
| and ?F1 ?F2)
let f, := reify formula F1 v

6.2 Deriving a Re exive Tactic 143

with f, := reify_formula F2 v in
constr:(FAnd fq1 f))
| ?F)
let ¢ := reify clause F v in constr:(FClause)
end.

Now, if we go back to our previous example, and if we take thisdrmula as
our current goal, we can use the tactics we just described to dild a suitable
map, reify the goal in an abstract formula f, and replace the current goal
by the interpretation of f.

1 subgoal

A~ (B _(pAC)~" (;D:Prop,(pDD))

match goal with | = ?F)
let varmap := list to_map (get vars F) in
let reif := reify_formula F varmap in
set (v = varmap); set (f := reif);
change (interp v f)

end.
1 subgoal
v := Node_vmProp (...) (...) : varmap Prop

f := FAnd (FClause ...) (FAnd) : CNFPROP.formula

interp v f

In particular, the set tactics introduce the varmap and the rei ed for-
mula in the context, and the tactic changeasks Coq to change the goal using
conversion: it computesinterp v f and checks that it is indeed equal to
the original goal.

6.2.2 The Generic Tactic

At this point, in order to turn our development into a user-fr iendly tactic,
we still need to address a couple of issues.

Conversion to normal form. Before running the actual proof search,
a formula should be put in CNF. If it is not in CNF, then some subfor-
mulae will be abstracted (like the quanti ed part in our exam ple above).
We address the issue of conversion to normal form in detail icChapter [4,
where we propose an original way of performing this conversh in a lazy,
on-the-y, fashion. For now, let us suppose that we use tactcals to convert

144

formulae in the context, prior to applying the tactic. Coq pr ovides a tac-
tic named autorewrite which performs automatic rewriting of expressions.
When fed with a set of (oriented) equalities describing a nomalizing sys-
tem, autorewrite will transform an expression into its normal form with

respect to this system. Thus, we encode the conversion into F as a set of
rewriting rulesd: linearizing implications, pushing negations to the atomic
variables, distributing disjunction over conjunction, etc.

Lifting the Semantics. We now have a rei cation mechanism which al-
lows us to transform propositional formulae in our Coq contet into objects
of the form interp v f for some mapv and concrete objectf. In order to
obtain re exive proofs, we still need to lift our notion of semantics on propo-
sitional literals LPROP.tand formulae CNFPROP.formuldo Coq's notion of
truth. Recall that we have de ned models as varmaps containng proposi-
tional values. For each formula rei ed in a varmap v, there is a canonical
model, which isv itself. Indeed, if | is a literal representing a variable A of
type Prop in the map, this canonical model satis esl if and only if there is
a proof of A This result lifts to clauses and formulae, and we can provehis
adequation lemma:

Theorem adequation :
8v (f : formula), interp v f ! sat goal v (make f).

This theorem can be read as : if there is a proof of a formulaF, then its
rei ed counterpart f is satis able , and a satisfying model is the varmap in
which F was rei ed. Together with the soundness of the decision proedure,
this gives us the following fact:

Corollary validity : 8v (f : formula),
dpll f = Unsat! (interp v f).

Note how similar that theorem is to the check_correct theorem that we in-
troduced in Section[4.2.4, pag€~102. It is the re ection theoem for our dpll

procedure as it re ects the computational result of dpll (or equivalently
proof_search) to a propositional proof (interp v f) . In particular, the
conclusion of this re ection theorem is a negation, which slows that our
procedure can only proceed by refutation (since it checks tat a formula is
unsatis able) of the context.

Wrapping up. We can now wrap everything up in a high-level tactic
unsat which performs the following steps:

1. introducing as many hypotheses from the goal to the contexas possi-
ble, and building the conjunction F of all the hypotheses in the context,
changing the goal toFalse;

*In practice, we use several complementary rewriting systems, because for e ciency
reasons, some transformations must be done before others, . rewriting of implications.

6.2 Deriving a Re exive Tactic 145

2. converting F to CNF using rewriting as described above;

3. reifying F into a concrete formulaf and a mapv for interpreting vari-
ables;

4. changingF to interp v f using the conversion rule;

5. applying the validity theoremtov andf in order to bring the current
goal down to a proof ofdpll f = Unsat ;

6. asking Coq to compute this equality, thus triggering the actual proof
search;

7. if the procedure returnsUnsat, the goal becomedJnsat = Unsat and
is thus trivially proved; if however the goal is Sat M = Unsatfor some
M then the context is not satis able, the tactic fails and pri nts out
the countermodel M since it can be very useful to the user in order to
understand why the tactic did not succeed.

Users of classical logic assume the excluded-middle in thedevelopments,
and therefore they can use the same mechanism to prove thealidity of a
current goal F, by rst applying double negation, introducing F and trying
the unsat tactic on F.We provide a tactic called valid that performs these
operations. The de nitions and proofs for unsat and valid represent about
500 lines.

Examples. We nish this section by giving a small example of how the
tactic unsat can be used in practice. Suppose our goal is the following
propositional formula where variablesAto D have type Prop:

1 subgoal
A : Prop
B : Prop
C : Prop
D : Prop
AN (C BAN(D! A) ! DMAD"™ A

If we try to apply unsat to this goal, the tactic will try to show that the
left-hand side of the implication is unsatis able. Since it is not, the tactic
fails and prints out the countermodel shown below: indeed, ne can easily
verify that this valuation makes the goal false.

146

unsat.

The formula in not valid.
The following countermodel has been found :

D : true
B : false
A : true

We can use this countermodel to add complementary hypotheseto our
formula, for instance that Bis true and Ais false. By doing so, we see that
the unsat tactic now succeeds in about one tenth of a second:

1 subgoal
A : Prop
B : Prop
C : Prop
D : Prop
AN (C BA(MD! A)y ! B~ Al DAND"™ A

Time unsat.

Proof completed.
Finished transaction in 0. secs (0.108007 u,0. s)

6.2.3 About Completeness

We have seen that, so far, only the soundness of our decisionrqredure
was useful in developing the re exive tactic: it allowed us o establish the
re ection theorem validity . The soundness of the procedure formally guar-
antees that when our tactic succeeds, the goal was indeed vwdl However,
our decision procedure was not only sound, but also completeand we made
no use of the completeness theorem yet.

First of all, it is technically possible to use the completeress theorem in
a similar way to how we used the soundness theorem. We have sebow a
result of Unsat for the proof search re ects to a proof of (interp v f) ; we
could similarly re ect a result of Sat Mto a proof that the conjunction of
all literals in Mimplies interp v f . In practice, if Mcontains literals which

interpret to propositions A, A, :::, Ay, this would amount to adding a new
hypothesis of type:
compl : A1 ! A2! .. An ! F

to the context, where F is the formula which reies to f. In particular,

an hypothesis of type F is already in the context and therefore this new
hypothesis would be of no use. This is why we just output the canter
model to the user.

6.3 A Better Strategy 147

Even without explicitely using the countermodel when the famula is
satis able, a legitimate concern is to know whether the tactic is complete
or not. Although the procedure is complete in the sense of th@ropositional
semantics de ned in the SEM_INTERFA@Ecedure, this property does not
lift to Coq's notion of truth; in other words, the formula Fis not necessarily
satis able because theA do not necessary form a consistent conjunction:

Coq's logic is much richer than propositional logic and as or can
expect, the procedure can nd a counter model with literals which are
inconsistent in general. For instance, it could add the liteal (0 =
0), or the two mutually exclusive literals 8x, p x and p t.

More annoyingly, the procedure can fail because the reicabn in-
troduces an abstraction layer which cannot be formally proed. For
instance, if the rei cation of A~ A is not performed adequately and
maps Ato some variablel, and A to some other variablel® instead of
the negation of I, the procedure will determine that the formula can
be satis ed with fl;1%.

Knowing when a procedure is complete can help understand theesults
of a tactic; in particular, any unexpected failure shall be aconsequence of
an unexpected behaviour of the rei cation process. Displaing the counter
model when the tactic fails is one way to let the user check if he formula is
indeed satis able, or if there is anything wrong in the model displayed. Nev-
ertheless, the re exive tactic only formally relies on the oundness property,
and the re exive approach can be used with semidecidable or ndecidable
properties, as long as the procedure is sound. In the remaing of this doc-
ument, when presenting evolutions of this rst re exive tactic, we will only
address the issue of soundness.

6.3 A Better Strategy

The decision procedureproof _search presented in Section[6. 1.1 is rather
coarse and applies the possible rules in turn, one after anber. It is one of
the most basic possible strategy to build a derivation and wenow implement
a much better strategy, which we use in practice. Once we havéormalized
the derivation system and proved its soundness, we are inddefree to im-
plement any strategy and derive a re exive tactic just as we dd in the last
section. The module system can help us do that in a modular manmer.

We de ne a module type DPLL. parameterized by a module of signature
CNEwhich describes the interface that a procedure shall verif in order to
be usable in the re exive tactic:

Module Type DPLL(mport F : CNF).
Inductive Res : Type =

148

| Sat : L.Iset I Res
| Unsat : Res.
Parameter dpll : formula ! Res.

Axiom dpll_correct :
8f, dpll f = Unsat! Sem.incompatible ; (make f).
End DPLL.

The signature requires aResdatatype similar to the one we have seen above,
and a function dpll taking a formula and returning a Res along with a
proof that it is correct. This function is the real proof search, and it is
straightforward to check that our functor SAT Fpresented in Section[&.1
has signature DPLL F The whole development of the re exive tactic can
then be implemented as a functor parameterized by such a mode; it is not
parameterized by aCNFmodule though, since much of the development (the
rei cation, the tactic and the re ection theorem) depends on the particular
representation of literals and formulae. For instance, thedevelopment of the
tactic presented above for propositional literals is wrapped in the following
functor:

Module LoadTactic (Import D : DPLL CNFPROP).

Ltac unsat := ...
End LoadTactic.

This makes it easy to de ne several di erent strategies, gemrate a tactic for
each one and compare the tactics obtained for each of theserategies.

We implemented various strategies with their soundness profs, but we
now quickly present our fastest strategy. Incidentally, this strategy is exactly
the same as the one used iAlt-Ergo. Itis based on the following observation:
although the derivation and sequents are expressed in termsf sets of literals,
and sets of clauses, it is not mandatory that the procedure uss these data
structures, as long as it is possible to relate what the proogure does to
sequents and derivations. During the proof search, the paial assignments
are used exclusively for adding elements and membership tiss therefore an
e cient structure of nite sets (like AVL) seems adequate. O n the other
hand, an e cient strategy for propagating boolean constraints on the sets
of clauses is to iterate on every clause, and every literal irevery clause,
trying to eliminate and reduce as many clauses as possible.olperform such
a task, keeping clauses as AVLs or ordered lists is not requéd, and basic
lists can prove much more e cient. Therefore, in this strategy, the partial
assignment will have typelset and the set of clauses will have typdlist
(list L.t) . Lists of literals and lists of lists of literals can be conveted
back to clause and cset using the adequate functions:

Fixpoint 12s (I : list L.t) : clause :=

6.3 A Better Strategy 149

match | with | nil); | a:q) {a I2s q end.
Fixpoint 112s (| : list (list L.t)) : cset ;=
match | with | nil) ; | a:q) {l2s a; lI2s g} end.

and the main recursive function in the strategy has the follaving type, and
its correctness lemma is expressed usinggs :

Fixpoint proof _search (G : Iset) (D : list (list L.t))
{struct n} (n : nat) : Res = ...
Theorem proof search_unsat :
8n G D, proof_search G Dn = Unsat ! derivable (G ° lI2s D).

The strategy uses two auxiliary functions, reduce and bcp. Function reduce
is used to reduce a clause with respect to a given partial aggiment as much
as possible:

Inductive redRes : Type :=

| redSome : list L.t I bool ' redRes
| redNone : redRes.

Fixpoint reduce (C : list L.t) : redRes =

match C with
| nil) redSome nil false
| 1::C)
if 1 2 Gthen redNone
else

match reduce C' with
| redNone) redNone
| redSome Cred b)
if mk notl 2 Gthen redSome Cred true
else redSome (::Cred) b
end
end.

If it nds a true literal in the clause, it returns redNone denoting that the
clause can be eliminated from the problem. Otherwise, it retirns the reduced
clause, with an extra boolean which is true i the clause has banged. For
instance, here is one of the properties ofeduce, namely its soundness when
it returns a clause:

Corollary reduce_correct : 8C Cred bred,
reduce C = redSome Cred bred!
derivable (G~ {I2s Cred; D}) !
derivable (G =~ {I2s C; D}).

Note how this statement can be read as an advanced inferenceaile, the
fact that we can prove it means that this rule is derivable from the basic
set of rules. Thebcp function does the boolean constraint propagation on
the clauses of a problem. It proceeds with respect to a partidassignment

150

by reducing all clauses (usingreduce), assuming literals in unitary clauses
along the way.

Inductive bcpRes : Type :=

| bcpSome : Iset ! list (list L.t) I bool ! bcpRes
| bcpNone : bcpRes.

Fixpoint bcp (G : Iset) (D : list (list L.t)) : bcpRes =

match D with
| nil) bcpSome G nil false (* no clauses *)
| C:D')

match reduce G Cwith
| redNone) (* elim C *)
match bcp G D' with
| bcpNone) bcpNone
| bcpSome G' D' _) bcpSome G' D' true

end
| redSome nil bred) bcpNone (* conflict *)
| redSome (I:nil) _) (* unit *)

match bcp (add | G) with
| bcpNone) bcpNone
| bcpSome G' D' _) bcpSome G' D' true
end

| redSome Cred bred) (* reduce C *)
match bcp G D' with
| bcpNone) bcpNone
| bcpSome G' D' b)

bcpSome G' (Cred::D") (bred || b)

end

end

end.

It returns bcpNoneif one of the clauses reduced to the empty clause along
the way, and bcpSome G' D' botherwise, whereG' is the extended partial
assignment,D' the simpli ed set of clauses andb a boolean true if and only
if there was any progress. For instances, here are some of tipeoperties of
bcp which prove its soundness, and can be seen as derived infepenrules:

Theorem bcp_correct : 8D G Gext Dredb,
bcp G D = bcpSome Gext Dred !
derivable (Gext ° lI2s Dred) !
derivable (G~ lI2s D).
Theorem bcp_unsat : 8D G,
bcp G D = bcpNoné derivable (G~ 1I2s D).

Finally, the toplevel function proof_search just appliesbcp repeatedly until
it returns bcpNone(in which case the problem is unsatis able) or until it

6.4 Conclusion 151

does not progress any more, in which case it splits on a liteteand searches
recursively in the left branch, and then in the right branch if no model was
found.

Fixpoint proof_search (G : Iset) (D : list (list L.t))
(n : nat) { struct n} : Res :=
match n with
| O) Sat empty (* assert false *)
| S no)
match bcp G Dwith
| bcpNone) Unsat (* conflict *)
| bcpSome newG newb)
match newDwith
| nil) Sat newG (* empty *)
| _)
if b then (* progress *)
proof search newG newDng
else (* G = newG, D = newD *)
let | := pick D in
match proof_search { |; G} D ng with
| Sat M) Sat M
| Unsat) proof search { |I; G} D ng
end
end
end
end.

With the various properties of bcp, we can establish the correctness of this
procedure and give it the expected signatureDPLL F

De nition dpll (f : formula) :=
let DO := makef in
let LO := Listmap elements (elements DO) in
proof search ; LO ((DO)+1).
Theorem dpll_correct :
8f, dpll f = Unsat! Sem.incompatible ; (make f).

6.4 Conclusion

We have presented a formalization of a propositional solveland its use as
a re exive decision procedure for propositional logic. We lave shown how
using the module system can be bene cial, just as in a usual prgramming
language. First, we were able to develop a procedure indepdent of the
actual representation of formulae, and we could use it to dede the satis a-
bility of boolean logic without much pain, by de ning the sui table CNFBOQ@it

152

CNEWe will use many more representations of literals in the nekchapters.
Also, we can factorize the development of rei cation and of he top-level
tactic in a functor parameterized by the underlying procedure. This allows
us to easily develop di erent strategies and derive re exiwe tactics for these
strategies.

The strategy that we presented in Section[6.B is not the only pssible,
nor the fastest possible of course. We have actually tried aairly good
number of dierent strategies, but this one is particularly interesting for
two reasons: rst it is precisely the strategy used by the Alt-Ergo theorem
prover, and therefore it was worth investigating its corredness; second, this
strategy can be adapted easily to the modi cations which we wll apply to
the general design of our propositional solver in the next chpters (adding a
lazy CNF conversion, and then generalized environments irtead of partial
assignments), which was not the case of all the strategies weied.

Of course, another way of improving the procedure is to use a ore
re ned inference system, such as the ones with backjumping rocon ict-
driven clause learning presented in Chaptef 2. We have formized these
systems and their proofs in Coq, in the similar fashion to wha we did in
this chapter, but we do not present them in this document. Ourmain reason
is that, even if they allow more e cient SAT solving tactics, we will not use
these optimizations in the more general setting of SMT solwig which we
will describe in the following chapters, and we do not think describing these
systems here has much interest. The formalization and the pyofs simply
follow the description in Section[Z2. For reference, we giv in Appendix [Bl
benchmarks comparing re exive propositional procedures btained with the
basic and optimized derivation systems and for various streegies.

CHAPTER /

Dealing with CNF Conversion

Que la paresse soit un des péchés capitaux nous
fait douter des six autres.

Robert Sabatier

Contents
7.1 The CNF Conversion Issue. 154
. :
[72.1 Expandable Literals 156
[7.2.2_Adaptation of the DPLL Procedurg 157
[7.3 _Implementing Lazy Literalsin — Cogl. 159
[7.3.1 Raw Expandable Literals 159
[7.3.2Adding Invariants to Raw Literals| 160
[7.3.3 _Converting Formulae to Lazy Literals 162
I7.4 _Results and Discussion 164
41 Benchmarks 164
[7.4.2_ Discussion and Limitations 165
[7.4.3 Application to Other Systems 166
[Z5 Conclusion |. 167

In the previous chapter, we have designed a tactic based on aAF solver
which can be used to decide the validity of propositional fomulae in Con-
junctive Normal Form (CNF). In order for our tactic to be able to deal with
the full propositional fragment of Coq's logic and be usefulin practice, we
must perform a conversion into CNF before applying the procdure. This
conversion step can be critical for the e ciency of the whole system since it
can transform a rather easy problem into one that is much too tard for our
decision procedure. In the previous chapter, we relied on armple rewriting
of Coq formulae prior to the rei cation process, but this is not a satisfac-
tory solution. A much better solution, which is used in Alt-Ergo as well as

153

154

in other SMT solvers, is to rely on a lazy conversion mechanis such as
Simplify's [DNSO5]. Because this mechanism must be tightlycoupled to the
decision procedure, this requires adapting the DPLL rules.It also rules out
the use of an external tool and takes advantage of our appro#cof proof by
full re ection.

In this chapter, we show how to adapt our fully certi ed stand ard DPLL
procedure in order to take a lazy conversion scheme into acaot. In Sec-
tion [T, we start by some preliminary considerations aboutCNF conversion
techniques. We describe our abstraction of the lazy CNF corsrsion method
in Section[Z.2 as well as the necessary modi cations to the DEL procedure.
Section[Z3 then presents how the lazy CNF conversion can beagently im-
plemented in Coq. Finally, we compare our tactic with other methods in
Section[Z.4 and argue about its advantages and how they coulde useful in
other settings.

7.1 The CNF Conversion Issue

In order for a re exive tactic based on a SAT solver to deal with the full
propositional fragment of Coqg's logic, it needs to be able tatake any arbi-
trary formula in input and convert it into CNF, which is the on ly class of
formulae that the DPLL procedure can handle. Looking at Fig.[Z.2 page 108
once again, which shows an overview of our re exive tactic, here are two
possibilities as to where this CNF conversion can occur: onhe Coqg side
or on the abstract side, i.e. before or after the formula is rei ed into an
abstract Coq object.

When conversion is performed on the Coq side, every maniputien of the
formula is actually a logical rewriting step and ends up in the proof term.
Each rewriting step contains the whole context in which it is performed,
therefore each step is linear in the size of the whole formula Moreover,
it is very slow in practice because the matching and rewritiry mechanism,
which is used to rewrite the formula adequately, is not very ecient. Alto-
gether, this CNF conversion can yield really big proof termson average-sized
formulae and it easily ends up taking much longer than the prof search it-
self. Performing the CNF conversion on the abstract side, haever, can be
summarized in the following way:

we implement a function conversion : formula ! formula that
transforms an abstract formula as wanted;

we show that for all formula F, conversion F is in CNF and is equiv-
alent (or at least equisatis able) to F itself.

This method ensures that CNF conversion takes a constant, ths neglectible,
size in the nal proof term, and can be performed e ciently since it is
executed by Coq's virtual machine.

7.1 The CNF Conversion Issue 155

Once we decide to implement the CNF conversion as a functionroab-
stract formulae, there are di erent well-known techniques that can be con-
sidered and that we implemented.

1. The rst possibility is to do a naive, traditional, CNF con version that
uses de Morgan laws in order to push negations through the fonula to
the atoms' level, and distributes disjunctions over conjurctions until
the formula is in CNF. For instance, this method would transform the
formula A_ (B~ C)in (A_B)”" (A _ C). Itis well-known that the
resulting formula can be exponentially bigger than the orignal.

2. Another technique that avoids the exponential blow-up of the naive
conversion is to use Tseitin's conversion_[Tse68]. It addsitermediate
variables for subformulae andde nitional clauses for these variables
such that the size of the resulting CNF formula is linear in the size of
the input. On the A _ (B ~ C) formula above, this method returns
(A_X)"(X_B)M"(X _C)M(X _B _C)whereX is anew variable.

3. A re nement of the previous technique is to rst convert th e for-
mula to negation normal form and use Plaisted and Greenbauns
CNF conversion [PG86] to add half as many de nitional clauses for
the Tseitin variables. In the above example, the resulting brmula is
(A_X)"(X_B)MN(X _CQC).

The Need for Another CNF Conversion. The CNF conversion tech-
niques that we have considered so far remain unsatisfactoryThe rst one
can cause an exponential increase in the size of the formuland the other
two add many new variables and clauses to the problem. All of hem also
fail to preserve the high-level logical structure of the input formula, in that
sense they make the problem more di cult than it was originally. There has
been lots of work on more advanced CNF conversion techniquesut their
implementation in Coq raises some issues. For instance, Akted and Green-
baum's method was originally intended to preserve the struture of formulae,
but in order to do so, it requires that equal subformulae be slred. Other
optimization techniques [NRW98,[dIT90] are based on renamig parts of the
subformula to increase the potential sharing. However, it § hard to imple-
ment such methods e ciently as a Coq function, i.e. in a pure applicative
setting with structural recursion. Even implementing and proving the stan-
dard Tseitin conversion proved to be much more challenginghan one would
normally expect.

For the same reason, it is undeniable that our re exive Coq deision pro-
cedure cannot reach the same level of sheer performance andning than
state-of-the-art SAT solvers, which means that we cannot aord a CNF con-
version that adds too many variables, disrupts the structure of the formula,
in a word that makes a given problem look harder than it actualy is. Results

156

presented in Sectior /.4 show that this concern is justi ed.Constraints due
to CNF conversion also arise in Isabelle where formulae sertb the Metis
prover are limited to 64 clauses. In the description of theirSimplify theorem
prover [DNSO5], Nelsonet al. describe a lazy CNF conversion method they
designed in order to prevent the performance loss due to Tstmn-style CNF
conversion. Their experience was that introducing lazy CNF into Simplify
avoided such a host of performance problems that [..] it consrted a prover
that didn't work in one that did. In the next sections of this chapter, we
describe how we formalized and integrated this lazy CNF conersion mech-
anism in our DPLL-based tactic. To our knowledge, this work represents
the rst e ort at a formal description and proof of this metho d.

7.2 A DPLL Procedure with Lazy CNF Conver-
sion

In this section, we formally describe how a DPLL procedure ca be adapted
to deal with literals that represent arbitrary formulae.

7.2.1 Expandable Literals

In a Tseitin-style CNF conversion, new literals are added that represent sub-
formulae of the original formula. To denote this fact, clauses must be added
to the problem that link the new literals to the corresponding subformulae.
The idea behind lazy CNF conversion is that new literals shold not merely
represent subformulae, but they should be the subformulae themselves. This
way, there would be no need for additional de nitional clauses. Detlefs et
al. [DNSO5] present things a bit di erently, using a separate set ofde nitions
for new variables (which they call proxies), and make sure the de nitions
of a given proxy variable are only added to the current contex when this
variable is assigned a boolean value by the procedure. Our abraction will
require less changes to the DPLL procedure.

In order for literals to be able to stand for arbitrary complex subformulae,
we extend the signature of literals given in Fig[6.1 pagé 13t the following
way:

Module Type EXPLITERAL.
(* Negation, OrderedType... as before *)
Include Type LITERAL.
(* Expansion *)
Parameter expand : t ! list (list t).

End EXPLITERAL.

In other words, expandable literals always come with negatin, comparison,
and various properties, which are copied from theLITERALsignature using

7.2 A DPLL Procedure with Lazy CNF Conversion 157

the Include Type capability, but they have an additional expansion func-
tion, named expand, which takes a literal and returns a list of lists of literals,
in other words a CNF of literals. For a genuine literal which just stands for
itself, this list is simply the empty list. For another liter al that stands for
a formula F, i.e. a proxy F, this function allows one to unfold this literal
and reveal the underlying structure of F. This underlying structure must be
expressed as a conjunction (list) of disjunctions (lists) @ literals, but since
these literals are also expandable literals, they can standor subformulae of
F themselves. Therefore, this CNF does not have to be the full@njunctive
normal form of F: expand can undress the logical structure ofF one layer
at a time, using proxy literals to represent the direct subfamulae of F. This
means that the CNF conversion of formulaF can be performed step after
step, in a call-by-needfashion. In [DNSO05], the expand function would be a
look-up in the set of proxy de nitions.

As an example, let us consider the formulaA _ (B ~ C) once again.
A proxy literal for this formula could expand to its full CNF, namely the
list of lists [[A;B];[A;C]]. But more interestingly, it may also reveal only
one layer at a time and expand to the simpler list [A; X]], where X itself
expands to [B];[C]]. Note that this variable X is not a new variable in
the sense of Tseitin conversion, it is just a way to denote thaunique literal
that expands to [[B];[C]], and which therefore stands for the formulaB »
C. This unicity will be the key to the structural sharing provi ded by this
method. In Section[Z.3, we will describe how these expandablliterals can be
implemented in such a way that common operations are reasoty e cient,
but for now let us see how the DPLL procedure should be adapted

7.2.2 Adaptation of the DPLL Procedure

In order to use expandable literals in the DPLL procedure, wehave to adapt
the inference rules presented in Fig”Zl1 page 25, which wet& formalized
in Chapter Bl Let us consider a proxy literal f for a formula F . If this proxy
is assigned a true value at some point during the proof searghthis means
that the formula F is assumed to be true. Therefore, something should
be added to the current problem that re ects this fact in order to preserve
the semantic soundness of the procedure. To this end, we uséd expand
function on f in order to unveil the structure of F, and add the resulting
list of clausesexpand(f) to the current problem.

The revised version of our inference rules system is given ifig. [Z1. The
only modi cations between this system and the one presentedn Fig. 21
concern rules which change the current assignment :Assume and Split .
When a literal | is assumed in the current context, it is expanded and the
resulting clauses are added to the current problem . Intuit ively, if | is a
proxy for F, expand(l) can be seen as consequences df and must be
added in order to re ect the fact that F shall now be satis ed. Now, given

158

7 expand(l 7 ;C
Assume . pand() Red ———
d d| 1 C

Elm ——— Conflict ———

o _C .

7 rexpand(l 7 expandl

Spit pand() _ pand()

Figure 7.1: The DPLL procedure adapted to expandable literds

an arbitrary formula F, instead of explicitely converting it into a CNF ¢
and searching a derivation for; © g, itis enough to build a proxy literal Ig
for F and attempt to nd a derivation for ;" I instead. This allows us to
use a DPLL decision procedure with the lazy conversion mechasm. Note
that correctness does not require proxy literals to be addedo the current
assignment ; however, doing so has a dramatic e ect on formuae that can
bene t from sharing, e.g. | ~: |, wherel stands for a big formulaF: in that
case, adding the proxy literal |l to the assignment will allow the elimination
of : | in one single step. Such formulae are not as anecdotal as theseem,
and we discuss this further in Sectiol 7.4.2.

We spent most of Chapter[® describing how to formalize DPLL'sba-
sic inference system in Coq, proving its correctness and imipmenting a
computable strategy to use in a re exive tactic. In order to adapt these
constructions to this new DPLL system with expandable literals, there are
quite a few changes that must be made, but there is nothing fudamentally
di erent in the method and the approach followed. Therefore we do not
detail these changes but the most important can be summariz# as follows:

the de nition of derivable , the inductive inference system, must be
adapted as above with the expansion of assumed literals in ;

proofs must be adapted, but are very close to the original profs;
one of the main di erences is that, in order to be well-formed partial
assignments not only need to be consistent with the negationf literals,
but also with their expansion, which is guaranteed by the stiategy
used;

the semantics must be adapted so that models now account forrpxy
literals: if a proxy for Fis in a modelM then Mmust satisfy F; in other
words, models are exactly determined by their non-proxy lierals;

the proof search procedure must expand literals properly ad its proofs
must be extended;

7.3 Implementing Lazy Literals in Coq 159

on the front-end, when the tactic fails, only non-proxy literals in the
countermodel are displayed to the user.

The most interesting and di cult point is how to adapt the imp lementation
of literals to expandabile literals, and is the topic of the net section.

7.3 Implementing Lazy Literals in Coq

In this section, we show how to design a suitable literal modie on which
we can instantiate the procedure we described in Section 7.2.

7.3.1 Raw Expandable Literals

Expandable literals are either standard propositional atans, or proxies for
a more complex formula. Because a proxy shall be uniquely detmined
by its expansion (in other words, proxies that expand to the same formula
stand for the same formula, and therefore should be equal), & choose to
directly represent proxies as their expansion. Also, the implementation of
expandable literals can be de ned in a way that does not deped on the
representation of the actual non-proxy literals. In other words, we suppose
we are given a moduleL of traditional literals as de ned in the previous
chapter, and we implement expandable literals as a functor prameterized
by L. This leads us to the following de nition of raw expandable literals as
a Coq inductive type:

Module RAW (L : LITERAL).
Inductive t : Type :=

| Proxy (pos neg : list (list t))
| Lit (I : L.Y).
End RAW.

Standard literals are represented by thelit constructor which takes a literal
L.t as argument. More interestingly, the Proxy constructor expects two
arguments: the rst one represents the formula that the proxy literal stands
for, while the other one corresponds to the expansion of its egation. We
proceed this way in order to be able to compute the negation o# literal in
constant time, whether it is a proxy or not. Thus, the second parameter of
Proxy should just be seen as a memoization of the negation functionAs a
matter of fact, we can easily de ne the negation function:

Deniton mk not (I : t): t =
match | with
| Proxy pos neg) Proxy neg pos
| Lit 1) Lit (L.mk not 1)
end.

160

Negating a standard literal is just done via a call to L.mk_not, while negat-
ing a proxy amounts to swapping its arguments. This memoizaion of the
negation of a proxy literal is really critical for the e cien cy of the method
because literals are negated many times over the course oféhDPLL proof
search. In Sectior7.3.B, we will show how these proxies areeated in linear
time.
The implementation of the expansion function is straightforward and
requires no further comment:
De nition expand (I : t) : list (list t) =
match | with
| Proxy pos _) pos
| Lit _) 1
end.
We are left with implementing an instance of OrderedTypefor these literals.
For instance, the total comparison function goes like this :
Fixpoint compare (x y : t) : comparison :=
match x, y with

| Lit I, Lit 1)y | =2=1°
| Lit , Proxy) Lt
| Proxy _ _, Lit _) Gt

| Proxy xpos xneg, Proxy ypos yneg)
compare_list_list compare xpos ypos
end.

Recall that the notation | =?=I' , introduced in Chapter B is the e ec-
tive comparison of two elementsl and I' ; we can use it here because the
base literals' moduleL brings an instance of OrderedType for L.t . In this
de nition, compare_list_list recursively applies the comparison function
comparein a lexicographic manner to lists of lists of literals. The part that
is worth noticing is that we only compare proxies' rst component and we
skip the negated part. This of course ensures that the compason of proxies
is linear in the size of the formula they stand for; had we compred the
second component as well, it would have been exponential inrpctice. The
issue with such optimizations is that we have to convince Coqthat they
make sense, and the next section is devoted to that point.

7.3.2 Adding Invariants to Raw Literals

When implementing expandable literals in the previous sedbn, we made a
strong implicit assumption about a proxy Proxy pos neg, namely that neg
was indeed containing the negation of pos. We need to give a formal mean-
ing to this sentence and to ensure this invariant is veri ed by all literals. It
is not only needed for semantical proofs about literals andhe DPLL proce-
dure, but for the correctness of the simplest operations oniterals, starting

7.3 Implementing Lazy Literals in Coq 161

with comparisons. Indeed, considering the comparison furtion compare
presented above, it should verify the properties required § OrderedType
and by Literal in general, in particular the following should be true:

comparex y = Eq$ compare (mk_not x) (mk_not y) = Eq

for all literals x andy, sincecompareshould return Eqif and only if its ar-
guments are equal, and negation should be a morphism for eqlity (axiom
mk_not_compatin signature LITERAL. Proving this property for standard
literals is straightforward, but as far as proxies are concemed, the fact that
the equality test returns true only tells us that the rst com ponent of the
proxies are equal: there is no guarantee whatsoever on the @ad compo-
nent. Therefore, this property is not provable as is and we ned to add
some relation between the two components of a proxy. This reltion also
ought to be symmetric since themk_not function swaps the rst and second
components and should of course preserve the invariant as We

We are going to link the two components of a proxy literal by ersuring
that each one is the image of the other by an adequate functioN . Intu-
itively, this function N must negate a conjunction of disjunction of literals
and return another conjunction of disjunction of literals; it can be recursively
de ned in the following way

N (" x) A €)= I Y bow () (xi _ D)

where the x; are literals and C is a CNF formula. Once this function is

implemented, we can de ne an inductive predicate that species well-formed
literals:

Inductive wf lit: t! Prop =

| wf_lit_lit : 8l, wf_lit (Lit)]

| wf_lit_proxy : 8pos neg, N pos = neg! N neg = pos!
(8l't, 12 pos! t2 1! wflt t)!
(8l't, 1 2 neg! t2 11! wflt t)!

wf_lit (Proxy pos neg).

The rst constructor expresses that all atomic literals are well-formed. The
second one brings up requirements on proxy literals: not ol should the
two components be each other's image by, but all literals appearing in
these expansions should recursively be well-formed. In p#cular, if two
proxies are well-formed, their second components are equél and only if
their rst components are equal, which means that we can esthlish the
needed properties about the comparison function.

Packing everything together. In Coq, one can usedependent typesin
order to de ne a type of objects that meet certain speci cations. We use this

1This constraints the form of possible proxies since N is not involutive in general.

162

feature in our Coq development in order to de ne a module of wé-formed
expandable literals. Using functors once again, we de nedtis module as
a functor parameterized by L : LITERAL which uses theRAWunctor seen
above. In this functor, we de ne the type of literals as the degpendent type
of raw literals packed with a proof that they are well-formed:

Module LLAZYFY (L : LITERAL)<: EXPLITERAL.
(* Imports all the raw definitions *)
Module Import RAW = RAW L.

Denition t : Type :={I | wflit I}

End LLAZYFY.

We then have to rede ne the required operations on literals. In most cases,
it is just a matter of lifting to well-formed literals the d e nition we made
for raw literals by showing that the operation preserves wdlformedness. For
instance, the negation function is (re)de ned this way:

Property wf mk not : 8I, wf lit | ! wflit (mk not).
Proof Qed.
Deniton mk not (I : t): t =

exist (mk_not 1(1)) (wf_mk_not 1(1) 2(1)).

where 1 and ; respectively access to the raw literal and its well-formedess
proof in a well-formed literal. We have presented a simpli ed version here
and the real development contains more invariants that are equired through-
out various proofs about literals and their operations. In particular, in order
to enable the de nition of recursive functions over the structure of expand-
able literals, or simply guarantee the termination of the proof search, we
had to add a notion of size of literals, along with proofs that the literals
appearing in the expansion of a proxy are smaller than the prry itself. Al-
together, we obtain a module with the signature of literals & expected by
the DPLL procedure, and where every operation is totally ceti ed.

7.3.3 Converting Formulae to Lazy Literals

Once we have a module implementing lazy literals as descriloeabove, we
are left with the task of constructing such literals out of an input formula.
First, note that we should not build arbitrary literals but o nly literals
that are well-formed. Therefore we have to make sure that theproxies we
build respect the invariants that we introduced in the last section. Assume
we want to build a proxy for a formula F = F; _ F, and we know how to
build proxies I, and |, for the formulae F; and F,. A suitable proxy for F is
the one that expands positively to the list [[I1;12]], and to the list [[11]; [I2]]
negatively. We can check that these two lists are indeed eachther's image

7.3 Implementing Lazy Literals in Coq 163
Proxy pos neg
X P fPg fPg
X F_G {F _Gg fFgfGg
X F~G fFgfGg fF _Gg
X (F! G fF _Gg fFgfGg
X (F1_Fo_ i Fp) fF1 _Fo i Fnhg fFiofF2g:::fFhg
X (FiMFaN ™M Fp) fFigfFog:::fFRg fF1_Fo_::: Fng

Figure 7.2: Proxy construction for each logical connective

by N. In practice, we de ne a function constructing such a proxy and we
prove that its result is well-formed:

De nition
Proxy [[f;g]] [[mk_not

mk_or_auxf g :=
f];Imk_not (]].

Property wf_mk_or : 8(l 1°: t), wf lit (mk_or_aux | 19.
Proof Qed.
Deniton mk orf g : t =

exist (mk _or_aux f g) (wf_mk or f g).

The last command usesnk_or_auxand wf_mk_orto de ne a function that

creates a well-formed proxy literal for the disjunction of two well-formed
literals. We create such smart constructors for each logidaconnective: the
table in Fig. sums up how proxies are constructed for the sual logical
connectives. Creating a proxy for an arbitrary formula is then only a matter
of recursively applying these smart constructors by folloving the structure
of the formula. We have implemented such a function nhamednk_formand
proved that for every formula F, mk_form F$ F. This theorem is very
important since it is the rst step that must be done when applying the
tactic: it allows us to replace the current formula by a proxy before calling
the DPLL proof search. Note that the converted formula is equivalentto the
original because no new variables have been added, whereaghwTseitin-

like methods, the converted formula is onlyequisatis able. Note also that
the proxies constructed forF _ Gand F ! G are equal, and so ard= _ G
and G _ F for instance, therefore the proxy construction not only identi es

formulae that are syntactically equal, but also sometimes emantically.

Constructing proxies for N-ary operators. Figure [.2 also contains
proxy de nitions for n-ary versions of the A~ and _ operators. We have
implemented an alternative version of the mk_form function above which
tries to add as few levels of proxies as possible. When constting a proxy
for a disjunction (resp. conjunction), it tries to regroup all the disjunctive
(resp. conjunctive) top-level structure in one single prox. In this setting,

164

equivalences are interpreted either as conjunctions or as isjunctionﬂ in
order to minimize the number of proxies.

7.4 Results and Discussion

7.4.1 Benchmarks

tauto | CNF¢c | CNFa | Tseitin | Tseitin2 | Lazy | LazyN
hole3 0.72 0.06 0.24 0.21 0.06 | 0.05
hole4 3.1 0.23 35 6.8 032 | 0.21
hole5 10 2.7 80 1.9 1.8
deb5 83 0.04 0.15 0.10 0.09 | 0.03
debl0 0.10 0.68 0.43 0.66 | 0.09
deb20 0.35 4.5 25 7.5 0.35
equiv2 0.03 0.06 15 1.0 0.02 | 0.02
equivs 61 0.44 | 0.42
franzen1l0 | 0.25 16 0.05 0.05 0.03 0.02 | 0.02
franzen50 0.40 14 0.80 0.34 0.35
schwicht20 | 0.48 0.12 0.43 0.23 0.10 | 0.10
schwicht50 | 8.8 0.60 4.3 2.2 0.57 0.7
partage 13 19 0.04 0.06
partage2 0.12 | 0.11

Figure 7.3: Comparison of di erent tactics and CNF conversion methods.
Timings are given in seconds and denote time-outs (>120s).

We benchmarked our tactic and the di erent CNF conversion methods
on valid and unsatis able formulae described by Dyckho [Dyc97]; for in-
stance holen stands for the pigeon-hole formula withn holes. We used two
extra special formulae in order to test sharing of subformuhe : partage is
the formula hole3”: hole3, while partage2 is del8 where atoms have been
replaced by pigeon-hole formulae with varying sizes. Restd are summa-
rized in Fig. [.3, where CNR: and CNFA are naive translations respectively
on the Coq side {.e. with rewriting steps) and on the abstract side (i.e.
through a Coq function), Tseitin and Tseitin2 are the two var iants of Tseitin
conversion described in Sectioi 7]11. The last two columns,dzy and LazyN,
are devoted to our lazy conversion, with only LazyN using praies for n-ary
operators. On each line, the best timings are emphasized witbold type-
face. These results show that our tactic outperformstauto in every single
case (see discussion below for di erences between our tactiand tauto),
solving in less than a second goals that were beyond reach withe existing
tactic. About the di erent CNF conversions, it turns out tha t the Tseitin
conversion is almost always worse than the naive abstract CR conversion

2The equivalenceF $ G is logically equivalent to the conjunction (F ! G)~ (G! F)
and the disjunction (F ~ G) _ (F ~ G).

7.4 Results and Discussion 165

because of the extra clauses and variables. The lazy tacticaways perform
at least as well as CNFy and in almost all cases they perform much better,
especially when some sharing is required.

7.4.2 Discussion and Limitations

Comparison with tauto/intuition . As explained in Chapter [4, the
tactic tauto is actually a customized version of the tacticintuition . When
it can't solve a goal completely, intuition is able to take advantage of the
search-tree built by its decision procedure in order to simfify the current

goal in a set of (simpler) subgoals;tauto simply calls intuition and fails

if any subgoals are generated. Unlikentuition , our tactic is unable to
return a simpli ed goal when it cannot solve it completely, and in that sense
it can be considered as less powerful. Howeveintuition 's performance
often becomes an issue in practi& therefore we are convinced that the two
tactics can prove really complementary in practice, with intuition being
used as a simpli er and unsat as a solver.

Classical reasoning in an intuitionistic setting. The DPLL procedure
is used to decide classical propositional logic whereas Caqglogic is intu-
itionistic. In our development, we took great care in not using the excluded-
middle for our proofs so that Coq users who do not want to assum the
excluded-middle in their development can still use our tactc. The reason we
were able to do so lies in the observation that the formula8A::: (A_: A)is
intuitionnistically provable: when the current goal is False, this lemma can
be applied to add an arbitrary number of ground instances of he excluded-
middle to the context. In other words, if a ground formula is a classical
tautology, :: is an intuitionistic tautology [1. Noticing that ::: implies

in intuitionistic logic, this means that if : is classically valid, it is also
a tautology in intuitionistic logic. Because the DPLL procedure proceeds
by refuting the context , i.e. proving : , we can use it in intuitionsitic
reasoning even fif it relies on classical reasoning.

In practice, the use of classical reasoning in our developmeis mainly
for the correctness of theSplit rule and of the di erent CNF conversion
rules (e.g. F! G F _ G). This led us to proving many intermediate
results and lemmas in double-negation style because they wedepending on
some classical reasoning stelEsbut the nice consequence is that our tactic

3As Coq users, we often lettauto run for a few seconds to try and make sure that
a goal is provable. When tauto succeeds, albeit not immediately, we then proceed to
manually prove the goal or simplify it in easier subgoals.

4This is not true for rst-order formulae, because the formul a:: (8A:A _: A), where
the quanti cation lies below the double negation, is not int uitionnistically provable.

STypically, see the characterization of the totality of a mod el on page[I3%, in the
semantics of formulae: we use 8MI, ((M) ! M (mk_notl)) instead of the sim-
pler 8MI, (M 1) I M (mk_notl).

166

produces intuitionistic refutation proofs and thus can redly replace tauto
when the context becomes inconsistent. Users of classicatasoning can use
our tactic for classical validity by simply refuting the negation of the current
goal, as explained in Chapte 6.

Impact of sharing. The results presented above show that the number
of proxies has less e ect on the performance than the sharinghey provide.
Depending on the formula, it may not be the best idea to minimize the
number of proxies as LazyN does, because this minimizes theumber of
subformulae that are shared. Once again, we can use our modarl devel-
opment to provide these di erent alternatives as options to the user. We
wrote in Section[7.Z.2 that adding proxies to the current asggnment made
it possible to reduce a whole subformula of a problem in one sgle step,
and this is why sharing is bene cial. We gave the obvious, raher crafted,
example ofl * | wherel is a big formula, but there is a less obvious and much
more frequent situation where it happens. Practical formalzations often in-

big formula, p is then used as a shortcut for throughout the proofs. Now,
when calling a DPLL procedure, one has to decide whether ocetences of
p should be considered as atoms or whether they should be unfigd to .
There is no perfect strategy, since proofs sometimes deperah p being un-
folded and sometimes do not; there is a conservative stratggsince always
unfolding p su ces, but it leads to performance losses if it wasn't required.
Proxies make the DPLL procedure completely oblivious to sub intermedi-
ate de nitions, and this is a great asset when dealing with poof obligations
from program veri cation.

7.4.3 Application to Other Systems

The advantages of the CNF conversion that we have implemenig go beyond
the scope of our tactic. It generally allows subformulae to e structurally
shared which can give a big performance boost to the procedar Moreover,
in standard programming languages, proxies can be compareth constant
time by using hash-consing [FC06], which removes the main cost of using
lazy literals.

Lazy literals also provide a solution to a problem that is speic to
SMT solvers: de nitional clauses due to Tseitin-style variables appearing in
contexts where they are not relevant can not only cause the DBL procedure
to perform many useless splits, but they also add ground terra that can be
used to generate instances of lemmas. De Moura and Bjorner pert on
this issue in [dMBO7], where they use a notion ofelevancy in order to only
consider de nitional clauses at the right time. Lazy CNF conversion is a
solution to this issue, and it is the method we currently use n our own
prover Alt-Ergo.

7.5 Conclusion 167

Finally, one may wonder whether this method can be adapted tostate-
of-the-art decision procedures, including common optimiations like back-
jumping and con ict clause learning. Adapting such procedues can be done
in the same way that we adapted the basic DPLL and is really staightfor-
ward; an interesting question though is the potential impad that lazy CNF
conversion could have on the dependency analysis behind the optimiza-
tions. We have not thoroughly studied this question but our experience with
Alt-Ergo suggests that lazy CNF conversion remains a very god asset even
with a more optimized DPLL.

7.5 Conclusion

We have presented how our re exive tactic for propositionallogic presented
in the previous chapter can be adapted to use a lazy conversioscheme in
order to bring arbitary formulae into clausal form without d eteriorating the

performance of the procedure. We use this method iilt-Ergo and it is very

satisfactory to be able to formalize and verify it in the Coq proof assistant.
It also turns out that this method brings very good results in the re exive

tactic as well and outperforms the other CNF conversion tectmiques that we
have tried.

168

CHAPTERS

From Propositional Logic to Theory Reasoning

L'Anglais est un praticien qui n'a pas de théories ;
I'Allemand, un théoricien qui applique ses théories ;
le Francais, un théoricien qui ne les applique pas :
c'est ce qu'on appelle chez nous avoir du bon sens.

Antoine Det=+uf (1902)

Contents

8.1 A Generalized Environment for DPLL 170
[B.1.1 Environment$ 170
[8.1.2 A Simple Environment 171
813 AdaptingDPLL] 172

8.2 Beyond Literals: Terms and Reication . . .|. . 174
B21 Typek 175
B22 Symbolk 176
B23 Termb 178
[8.2.4 Implementatiod 181

8.3 New Literals, New Semantics . | 182

84 Conclusion |. 184

In this chapter, we show how to extend our formalization of a e exive
propositional tactic in order to introduce theory reasoning, as described in
Section[Z3. We start in Section[8.1 by adapting our DPLL formalization
and procedure to accept generalized environments insteadf gimple partial
assignments. Then, in Sectiori 812, we address an issue whighspeci c to
Coq and our re exive approach, namely the issue of reifying ot only propo-
sitional variables but equalities between terms in an arbitary signature, and
nally their semantics in Section B3l

169

170

8.1 A Generalized Environment for DPLL

8.1.1 Environments

In Section[Z.3, we described how the DPLL procedure can be gemalized by
replacing the partial assignment with a notion of environment, thus allow-
ing the procedure to be used to solve the SMT problem rather tlan just the
SAT problem. We now formalize this approach and start by the de nition

of the signature of environments. Recall that we described mvironments in
Section[Z3 as data structures which provideassumption and query oper-
ations in order to add literals and check the truth value of a literal. Our
formalization of the signature of environments follows this description:

Module Type ENV_INTERFACHEMport F : CNF).
Parameter t : Type.

Parameter empty : t.

Parameter assume : L.t ! t ! Exception t.
Parameter query : L.t ! t! bool
Notation "e F 1" := (query | e = true).

End ENV_INTERFACE.

The signature, called ENV_INTERFAQE parameterized by a module of sig-
nature CNF-as described in the previous chapter. It provides the typet of
environments and the two expected operationsassumeand query. It also
provides the empty environment empty, otherwise it would be impossible
to construct environments with that signature. We made the observation
in Section[Z3 that the assumeoperation was a partial operation: indeed,
adding a literal to the environment can make it inconsistent and in that case
it cannot return a valid environment. To account for this, th e return type
of assumeis Exception t, where Exception is just an option datatype
de ned like this:

Inductive Exception (A : Type) =
| Normal (env : A)
| Inconsistent.

The interface of environments also introduces a handy notdabn for queries,
namely e £ | to denote that the query of | in e returns true. To complete
ENV_INTERFAGKe need to add the necessary requirements on these opera-
tions, and in order to express these requirements, we need ¢hset of literals
which were explicitely assumed in an environment:

Parameter assumed :t ! L.lset.
Axiom assumed_empty : assumed empty ==3.

8.1 A Generalized Environment for DPLL 171

Axiom assumed_assume :8e | E,
assumel e = Normal E! assumed E === [assumed e€}.

The function which returns this set is called assumedand is completely
speci ed by the assumed_emptyand assumed_assumaxioms. Now, we can
express the requirements for the environment to be sound:

Axiom query true : 8el, efF | !

(8M, Sem.submodel (assumede) M! MI).
Axiom assumed_inconsistent : 8e |,

assumel e = Inconsistent ! e F L.mk_not I.

The rst axiom is the soundness of thequery operation and expresses that
if a query succeeds on, it is indeed justi ed, in the sense that every model
of the literals added to the environment is a model ofl. This axiom is
not su cient and we add a second axiom for the soundness of theassume
operation: it states that assuming | only returns Inconsistent if | is true
in the environment.

Strictly speaking, the signature we have written so far is suwcient to
describe sound environments, and as we explained in Secti@®2.3, we are
only interested in the soundness of our procedure when devabing a re exive
tactic. In practice, there is a part of the completeness of a pocedure which
we want to address nonetheless, and that is termination. Moe precisely, we
need some reasonable completeness properties on our struc in order to
ensure that some functions will behave correctl@. Here are the main two
completeness properties which we require on environments:

Axiom query assumed : 8e I, | 2 assumede ! e E .
Axiom query_monotonic :
8e 1, assumede assumede®?! e I! £ I

The rst one ensures that assumed literals are true in the enwonment,
while the second guarantees that assuming more literals caonly make more
literals true, not less.

8.1.2 A Simple Environment

We can give a simple example of an environment by encoding noral partial
assignments as a module of signatur&ENV_INTERFACE

Module ENV {mport F : CNF) <: ENV_INTERFACE F.
De nition t := L.Iset.

L Consider for instance the two versions of proof_search function described in Chap-
ter Bl they use a natural integer in order to ensure terminati on, but we want to be able
to call them with large enough integers in order to avoid un n ished computations. This
is a part of the completeness theorem which is not strictly ne cessary but which we want
to prove nonetheless, and it requires properties on the structures used: typically, once a
literal has been supposed and the problem has been simpli ed by BCP, this literal should
not appear anymore in the problem.

172

De nition empty = ;.

De nition assumel e =
if mem (L.mk_notl) e then Inconsistent
else Normal {l; e€}.

De nition query | e := meml e.

De nition assumede = e

End ENV.

The de nition of the operations are self-explanatory and al the required
properties are completely straightforward to prove. This ewironment can
be seen as a default environment which allows to solve SAT nodulo the
trivial theory, i.e. satis sability in propositional logic.

8.1.3 Adapting DPLL

With the signature of environments de ned as above, we can adpt our

formalization of DPLL to use environments, as we did with inference rules
in Fig. 7] page[4%. The functor SAT which we introduced for the rst

time in Section [6.1.3, is adapted by adding an environment mdule as new
parameter:

Module SAT (mport F : CNF)(Import E : ENV_INTERFACE F).
Record sequent : Type = { G : E.t; D : L.cset }.

De nition incompatible (S : sequent) : Prop =
Sem.incompatible (assumed (G S)) (D S).

End SAT.

The functor SATis now parameterized by aCNFmodule and an environ-
ment module E for that CNFmodule (interestingly, notice how signature of
parameters can depend on earlier parameters). The sequentre de ned
accordingly with an environment E.t in place of a partial assignment. Note
how incompatibility of a sequent is rephrased using the set bliterals as-
sumed in the environment. The derivability predicate of sud sequents is
very similar to the one we have presented earlier; it is adapd as in Fig.[ZT
and starts like this:

Inductive derivable : sequent ! Prop :=
| Conflict :

8G D (: ;2 D), derivable (G~ D)
| Assume :

8G DI G, {1} 2 D! assumel G = Normal G'!
derivable (G' ~ (L.expand I) [(D n {lI})) !

8.1 A Generalized Environment for DPLL 173

derivable (G~ D)
| Elim :
8GDIC, GEI! I2C! C2D!
derivable (G~ {D C}) !
derivable (G~ D)

This excerpt shows that the Conflict rule does not change; more interest-
ingly, the Assumeule, in order to extend the partial assignment, usesassume
and can only be applied if the result of this assumption is notinconsistent ;
nally, the Elim rule tests the state of a literal in the current environment
by using query in order to eliminate a clause. The soundness proof of this
notion of derivability is stated in the exact same way:

Theorem soundness : 8S, derivable S ! incompatible S.

and is proved using the same reasonings, with the help of sodness proper-
ties from module E to replace earlier reasoning on partial assignments. The
new return type of the proof search procedure is now:

Inductive Res : Type :=
| Sat : Et ! Res
| Unsat.

where the countermodel in theSat branch is an environment instead of a set
of literals. The proof search strategies which we have desitred in Chapter @
can be adapted very easily:

when testing the status of a literal in the current assignmen (i.e.
environment), query must be used instead of set membership;

when extending the current assignment with a literal, assumemust be
used and the case where this assumption returnBiconsistent must
be treated properly.

We do not give more details on how the proof strategies, espadly the
e cient strategy presented in Section 6.3, are adapted to ewironments.
Actual details can be quite tedious and verbose but are not peiculary
di cult. In the end, modules suitable for generating a re ex ive tactic need
to have the following DPLLsignature:

Module Type DPLL (mport F : CNF)(E : ENV_INTERFACE F).
Inductive Res : Type :=

| Sat : Et ! Res
| Unsat.
Parameter dpll : formula ! Res.

Axiom dpll_correct :

174

8f, dpll f = Unsat! Sem.incompatible ; (make f).
End DPLL.

which is really similar to the original DPLLinterface. This emphasizes how
little has to be changed to adapt the development of the tacttc itself: rei -
cation and re ection theorems are unchanged, and the only mdi cation is
that when the tactic fails, the countermodel is now an enviraament and not
simply a set of literals. The function assumedis used by the front-end to
retrieve the literals which were explicitely assumed durirg the proof search
and display them.

As a nal remark, and a demonstration of the capabilities of the module
sytem, note how a functor D with this DPLLsignature can be instantiated
with the basic environment functor ENVpresented above in order to retrieve
a functor with the old DPLLsignature (as in Chapter[8):

Module NewDPLLasOId (F : CNF)(D : DPLL).
Module OIdE := ENV F.
Include (D F OIdE).

End NewDPLLasOIld.

This functor takes the uninstantiated functor D and applies it to a F of
signature CNFmodule and a basic environment forF. The result is included
in the result module.

8.2 Beyond Literals: Terms and Rei cation

In the second part of this chapter, we detail how to adapt the rei cation
process in order to go beyond simple propositional literalswhich is a quite
complex task. Indeed, in Chapters® and_1I0, we will build an emronment
for our DPLL re exive tactic which will implement reasoning for the theory
of equality modulo linear arithmetic. Consequently, we neel to be able to
reify formulae in the following grammar:

F
T

piT=Tj:FjF_FjFAFjF! FjF$ F

1
=
;_|;

where p represents propositional variables andf function symbols. Recip-
rocally, we need to be able to interpret these rei ed objectsback to their
original counterparts, in a way similar to what we did with th einterp func-
tion in Section 6.2.1. We already know how to reify propositonal variables,
the usual logical connectives, and de ne their interpretation. Unfortunately,
the di culty lies in the interpretation of terms and equalit ies: suppose we
reify terms to a concrete datatype term, we need a functioninterp_term
that interprets such an object back to the corresponding tem, but what
should its type be? There is no way to give such function a simie type

8.2 Beyond Literals: Terms and Rei cation 175

since its type depends on the input: for example, if O is rei @l into tO :
term and true is reied into ttrue : term , interp_term t0 shall have
type nat and interp_term ttrue type bool. The only way to achieve this
is to use dependent types and have a function with a type of thdorm:

interp_term : 8(t : term), type of t

where type_of returns the expected type of the object corresponding to
a reied term. That being said, when interpreting a term of th e form

types, and somehow apply the symbof to these terms. The symbolf is
itself rei ed (as were propositional variables) and must beinterpreted to a
concrete Coq entity which can be applied to thet;. Even if we can program
such functions using Coq's rich type system, there is ho guantee that a
term corresponds to a well-typed concrete object and that its inerpretation
will succeed, in other words that the rei ed symbols represat symbols with
the adequate types. To detect ill-formed rei ed terms, we ned to be able
to compare expected types and actual types during the interpetation of
a term, and this is not possible if we use CoqQ's types directly Hence, in
order to be able to correctly reify terms with arbitrary type s, we cannot
use ashallow embeddingi.e. only reifying terms, but we will use a deep
embeddingof terms in the logic, i.e. reify both terms and their types.

8.2.1 Types

We will not reify all possible Coq types, in particular we only interpret non-

dependent products (arrows), the type Z of relative integers, and consider
all other types as atomic types,i.e. we reify them as variables, similarly to
what we did with propositional variables. We de ne the following inductive

datatype type for rei ed types:

Inductive type : Set =
| typeCst (tidx : index)

| typeDefault

| typeArith

| typeArrow (_ _ : type).

The last two constructors correspond to the type of relativeintegers and to
arrow types. The role of typeDefault is to serve as a default datatype used
to make some functions total and which should not be used by th rei cation
process. Finally, typeCst is used for a rei ed atomic type. Note that we
again use an object of typeindex to denote a variable, which means that
we use avarmapto interpret a type into a Coq type:

De nition type_env := varmap Type .
Inductive dummy :Set := mk_dummy.
Section TInterp.

176

Variable vtypes : type_env.
Fixpoint tinterp (t : type) : Type :=
match t with
| typeCst idx) varmap_find dummy idx vtypes
| typeDefault) dummy
| typeArith) Z
| typeArrow t1 tp) (tinterp t1) ! (tinterp t)
end.
End Tinterp.

We de ne type_env as the type of maps used to interpret rei ed types,i.e.
asvarmap Type and we also de ne a new typedummyvhich is speci c to the
rei cation routine. The type interpretation function tinterp uses a map of
type type_env and is de ned in a sectiol where such a map is introduced.
It is straightforward and simply proceeds by induction on the structure of
the rei ed type, interprets arrows as arrows, integers as inegers, and atomic
types in the map usingvarmap_find . The special type dummys used as a
default, in particular when the lookup in the map fails; looking for dummy
in a rei ed formula is then a way to easily spot problems in the rei cation
process.

We also de ne an equality test for rei ed types, which would not have
been possible with Coq's types:

Fixpoint tequal (t t°: type) : bool := ...
Property tequal 1 : 8t tC tequal tt%=true ! t =1t°
Property tequal 2 : 8tt% t =t9! tequal tt%= true.

8.2.2 Symbols

In this subsection and in the following, we suppose we are in €oq section
where a variablevtypes of type_env is de ned, as above, and our de nitions
will therefore be implicitely parameterized by vtypes . We use the notation
Jty Kto denote tinterp ty vtypes , the interpretation of a rei ed type ty.
We do not interpret any symbols except arithmetic constantsand arith-
metic operations. For other symbols, we need to proceed as thi proposi-
tional variables and uninterpreted types, i.e. we need to store them in some
kind of map and use indices in the map to represent these symi& The
problem is that symbols may have arbitrary types and therefae we cannot
store them in one particular varmap (these are homogeneous); instead, we
use, for each rei ed type, one varmap to store all symbols wih that type,
and we store all these varmaps in a single varmap of varmaps This leads
to a double indirection, and each symbol must be representeavith two in-
dices: one to identify which varmap should be used, and the dter to locate

2Coq's sectioning mechanism allow one to introduce variables which are generalized at
the end of the section.

8.2 Beyond Literals: Terms and Rei cation 177

the symbol in that particular varmap. The type of rei ed symb ols is de ned
as follows:

Inductive arithop : Set =

| Plus | Minus | Opp | Mult.
Inductive symbol : Set :=

| Unint (ty_idx t_idx : index)
| Cst (z: 2)

| Op (op : arithop).

where uninterpreted symbols are encoded with a pair of indies, as explained
above. We now need to formally de ne the varmap of varmaps used to
interpret such symbols. Because the outer varmap needs to beomogeneous,
each of the inner varmaps must have the same type and thereferwe use
the following dependent pair to denote the type of the inner \armaps:

De nition depvarmap = {ty : type & (JyK varmap Jy K}.
De nition defvm : depvarmap :=
existT _ typeDefault (mk_dummy, Empty vm).

Such adepvarmapis a dependent pair whose rst element is a rei ed type
ty , and whose second element is a varmap containing values ofpe JtyK
and an extra value of the same type which will be used as a defétu An

example of adepvarmapis given with the de nition of defvm, a default
varmap for the default type. The environment used to interpret symbols,
called aterm_env is then simply de ned as:

De nition term_env := varmap depvarmap.
Variable v : term_env.

Note that term_env is a dependent type itself, since it implicitely depends
on vtypes in this context. We now also introduce a variablev : term_env
in the context and we can de ne the function which returns the (rei ed) type
of a symbol:

De nition lookup_type (f : symbol) : type :=
match f with
| Unint ty_idx _)
1(varmap_find defvm ty idx v)
| Cst _) typeArith
| Op (Plus | Minus | Mult))
typeArrow typeArith (typeArrow typeArith typeArith)
| Op Opp) typeArrow typeArith typeArith
end.

The types of arithmetic constants and operations do not reqire explana-
tions, and the type of an uninterpreted symbol is found usingits rst index:
we nd the corresponding depvarmapin v using varmap_find , and use its

178

rst projection, i.e. the reied type. Now that we have this function, we
can de ne the interpretation of a symbol, which we call lookup :

De nition lookup (f : symbol) : Jookup_type fK:=
match f with
| Unint ty _idx s idx)
let (d, vs) =
2(varmap_find defvm ty idx v) in
varmap_find d s idx vs
| Cst z) z
| Op Plus) Zplus | Op Minus) Zminus ...
end.

This function is dependently-typed and for all symbol f, returns an object
whose type is the interpretation of the rei ed type lookup type f . The
interpretation of arithmetic symbols is straightforward, and as for uninter-
preted symbols, thedepvarmapcontaining the symbol is retrieved using the
rst index, its second component is retrieved with the projection » and the
second index is used to nd the Coq value corresponding to thesymbol in
the inner varmap. Note that the default passed to that secondvarmap_find

is the value stored along the inner varmap in thedepvarmap Coq is able to
verify that this function indeed returns an object of type Jlookup_type fK
for all f.

8.2.3 Terms

Once symbols are de ned, the type of rei ed terms is simply:

Inductive term : Set =
| app (f : symbol) (It : list term).

The expected type of a rei ed term can be de ned by the following recursivél
function:

Nested Fixpoint type of (t : term) : type =
match t with
| app f 1) types of | (lookup_type f)
end
with types_of (| : terms) (ret : type) : type :=
match | with
| nil) ret
| cons _ 1)
match ret with
| typeArrow _ to) types of |t

3This syntax for recursive functions is not standard: Cog nor mally does not allow
xpoints through a nested inductive (in this case, list) to b e written in the usual way; we
wrote an extension to allow this.

	Introduction

