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Abstract

The amount of hydrocarbon recovered can be considerably increased by �nding optimal

placement of non-conventional wells. For that purpose, theuse of optimization algorithms,

where the objective function is evaluated using a reservoirsimulator, is needed. Further-

more, for complex reservoir geologies with high heterogeneities, the optimization problem

requires algorithms able to cope with the non-regularity of the objective function. The

goal of this thesis was to develop an e�cient methodology fordetermining optimal well

locations and trajectories, that o�ers the maximum asset value using a technically feasible

number of reservoir simulations.

In this thesis, we show a successful application of the Covariance Matrix Adaptation -

Evolution Strategy (CMA-ES) which is recognized as one of the most powerful derivative-

free optimizers for continuous optimization. Furthermore, in order to reduce the number of

reservoir simulations (objective function evaluations),we design two new algorithms. First,

we propose a new variant of CMA-ES with meta-models, called the new-local-meta-model

CMA-ES (nlmm-CMA), improving over the already existing var iant of the local-meta-

model CMA-ES (lmm-CMA) on most benchmark functions, in part icular for population

sizes larger than the default one. Then, we propose to exploit the partial separability

of the objective function in the optimization process to de�ne a new algorithm called the

partially separable local-meta-model CMA-ES (p-sep lmm-CMA), leading to an important

speedup compared to the standard CMA-ES.

In this thesis, we apply also the developed algorithms (nlmm-CMA and p-sep lmm-CMA)

on the well placement problem to show, through several examples, a signi�cant reduction

of the number of reservoir simulations needed to �nd optimal well con�gurations. The

proposed approaches are shown to be promising when considering a restricted budget of

reservoir simulations, which is the imposed context in practice.

Finally, we propose a new approach to handle geological uncertainty for the well placement

optimization problem. The proposed approach uses only one realization together with

the neighborhood of each well con�guration in order to estimate its objective function

instead of using multiple realizations. The approach is illustrated on a synthetic benchmark

reservoir case, and is shown to be able to capture the geological uncertainty using a reduced

number of reservoir simulations.
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Chapter 1

Introduction

\Drill for oil? You mean drill into the

ground to try and �nd oil? You're crazy." {

this was what drillers who Edwin L. Drake1

tried to enlist to his project to drill for oil

in 1859, said.

\If you can draw it (the well), I can drill

it !" { this becomes the modern refrain of a

driller.

1.1 Problem statement

The state of the art in reservoir management has been recently greatly in
uenced by

technologies. Nowadays, drilling technologies have made great strides with the advances

achieved in directional drilling capabilities. Hence, reservoir engineers can take advantage

from the use of di�erent well architectures such as vertical, horizontal and more complex

con�gurations to enhance reservoir productivity, especially given the present price of oil

which is although continuing to 
uctuate in recent years, st ill above the US$40/barrel

(Fig. 1.1).

Environments, work areas and conditions in which oil and gas�elds are now being

discovered are much more complex and challenging. The existing �elds are becoming

more depleted and, therefore, are more marginal. Unless there is a way to optimize

their productivity and to take corrective actions, it would be hard to justify to continue

1Edwin L. Drake (1819 - 1880) was an American oil driller, popu larly credited with being the �rst to
drill for oil in the United States.
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1.1 Problem statement

Figure 1.1: Brent crude oil price (in US dollar), Oct 2007 - Sep 2011. Reprinted from
Index Mundi website, November 9, 2011.
[http://www.indexmundi.com/commodities/?commodity=c rude-oil-brent&months=60]

investing to produce these existing �elds for economic reasons [14]. On the other hand,

new discoveries also need an optimal production scheme to beeconomically viable.

One of the most important issues that must be addressed to maximize a given project's

asset value is to optimally decide where to drill wells. A well placement decision a�ects

the hydrocarbon recovery and thus the asset value of a project. In general, such a decision

is di�cult to make since an optimal placement depends on a large number of parameters

such as reservoir heterogeneities, faults and 
uids in place. Moreover, dealing with complex

well con�gurations, e.g., non-conventional wells, implies additional challenges such as the

concentration of investment and the well intervention di�c ulty 1.

The current approach, mostly used in the industry, is based on the so-called profes-

sional judgment made by reservoir engineers {requiring theunderstanding of the impact of

di�erent in
uencing engineering and geological parameters{ and con�rmed by a number

of reservoir simulation trials. However, the reservoir performance is in
uenced by non-

linearly correlated parameters, which may also evolve withtime. Hence, the professional

judgment approach, in general, fails to predict the best well con�gurations.

Recently, many e�orts were made to formulate the well placement decision as an opti-

mization problem: the objective function optimized, which is evaluated using a reservoir

simulator, evaluates the economics of the project; the parameters thought encode the posi-

tion of the di�erent wells (that include locations and traje ctories). We de�ne the location

of a given well as the position of the starting point of the well, and we de�ne the trajectory

of a given well as the positions of the mainbore and the laterals (if any). If the number of

wells to be placed and their type (injector or producer) is �xed, the parameters encoding

1Drilling a well costs in general from US$1 million to US$30 mi llion.
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the well positions are real numbers and the objective function f maps a subset ofRn

where n, the number of parameters, equals the sum of the number of parameters needed

to encode each well position that need to be placed. Formallywe want to �nd a vector of

parameter pmax 2 Rn such that:

f (pmax ) = max
p

f f (p)g ; (1.1)

where p denotes the vector of parameters to be optimized encoding the positions and

trajectories of the well con�guration. The vector pmax must be found using a technically

feasible number of reservoir simulations.

The well placement optimization problem is challenging as:

� The objective function, e.g., the net present value (NPV) isdi�cult to optimize. In

particular, it is multi-modal, i.e., with multiple local optima, non-convex and non-

smooth. An illustration can be found in [ 103] where the NPV of a single vertical

well placement is sampled to construct the objective function surface. The surface

is shown to be highly non-smooth and to contain several localoptima. In this

illustration, the problem dimension equals two and it has thus been possible to

sample all the points from a �ne grid spanning regularly the search space. However,

this becomes impossible for problem dimensions larger than3 as the number of

points, to keep a �ne discretization, would need to grow exponentially in the search

space dimension (this is referred ascurse of dimensionality) rendering the search

task di�cult.

� The problem is costly: a single function evaluation requires one reservoir simulation

which is often very demanding in CPU time (several minutes toseveral hours). The

a�ordable number of reservoir simulations is often then restricted.

� The problem involves in general optimizing undergeological uncertainty: the prob-

lem assumes that we have already de�ned a (or a number of) realistic geological

model(s). Each model is obtained using history matching which consists in the ad-

justment of the reservoir model until it closely reproducesthe past behavior of the

reservoir (historical production and pressures). However, history matching problem

is a mathematically ill-posed with non-unique solutions, i.e., several possible (gen-

erally equiprobable) geological models. Thus, taking intoaccount several geological

models introduces the problem of handling geological uncertainty which adds an

other challenge to the optimization of the objective function, in particular it leads

to a large increase of the number of performed reservoir simulations. In the context

of geological uncertainty which will be addressed in Chapter 6, we will denote by

3
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f the objective function to optimize, and let us consider a number Nr of geological

realizations denoted by (Ri ) i =1 ;��� ;Nr
. We denote by f (p; Ri ) the objective function

value on the well con�guration p on the realization Ri . Thus, we want to �nd a

vector of parameter pmax;R 2 Rn such that:

f R (pmax;R ) = max
p

�
f R (p)

	
; (1.2)

where f R is in general an averaged sum of the objective function evaluations on the

well con�guration p over all the realizations:

f R (p) =
1

Nr

NrX

i =1

f (p; Ri ) : (1.3)

Furthermore, constraints are imposed to guarantee the physical feasibility of the so-

lution wells, and thus to avoid very long wells or wells that violate common engineering

practices (e.g., wells outside the reservoir). Therefore,a constraint optimization problem

needs to be handled. Formally, when dealing with constraints, we want to �nd a vector of

parameter pmax 2 Rn such that:

(
f (pmax ) = max f (p)

s:t : hi (p) � di 8i = 1 ; � � � ; m
; (1.4)

where m is the number of constraints, di are real numbers andhi : Rn ! R are the

constraint functions that need to be satis�ed.

The main objective of this thesis is to propose a procedure for solving the well place-

ment optimization problem, in particular the well location s and trajectories optimization

problem. The proposed procedure must o�er the maximum assetvalue using a technically

feasible number of reservoir simulations. This implies to address the challenges explained

above namely:

(I) The non-smoothness, the multi-modality, the non-convexity and the high dimen-

sionality of the objective function;

(II) The expensive cost of the objective function;

(III) The geological uncertainty handling problem.

In this thesis, we will consider the well placement optimization problem as a black-box

optimization (also known as derivative-free optimization) problem. The black-box opti-

mization means that only the inputs and outputs of the objective function are observed,

and not its internal operations and processes. The black-box context is natural in our
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context since an objective function evaluation involves a reservoir simulation which corre-

sponds in general to a commercial software, in which the internal structure and code are

often unavailable.

We now review the critical points of current knowledge and methodological approaches

related to the well placement optimization.

1.2 Literature review

Many optimization algorithms exist to address the continuous optimization problem formu-

lated in Eq. (1.1). In this section, we give a survey of the existing continuous optimization

algorithms. Only some of these algorithms will be detailed depending on their importance

for this thesis. Other algorithms will be brie
y mentioned w ith their corresponding refer-

ences for more details. Then, a survey of studies describingexisting approaches used for

the well placement optimization problem will be given. A detailed literature review for

well placement optimization under geological uncertainty formulated in Eq. (1.2) will be

provided in Chapter 6.

1.2.1 Optimization algorithms

Optimization algorithms for non-linear continuous optimi zation can be divided depending

on the method they use to explore the search space. In the following, we enumerate a

number of selected representative algorithms divided intofour categories: deterministic

algorithms, stochastic algorithms, search algorithms using surrogates and hybrid algo-

rithms.

1.2.1.1 Deterministic methods

Deterministic algorithms include descent methods which use the explicit value of the gra-

dient or higher order derivatives of the objective function. If this information is not avail-

able, i.e., in case of black-box optimization, it can be approximated. Other deterministic

optimization techniques include trust region methods (e.g., [107]), direct pattern search

methods [80] and simplex methods [101]. A major drawback of deterministic optimization

methods is that they can easily get stuck in a local optimum.

� Descent methods : Descent methods are de�ned as iterative methods that need

the gradient of the objective function to search for a minimum of a given objective

function f . After �xing an initial point xk at iteration k, a new point is calculated

as follows:

xk+1 = xk + � kpk (1.5)
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where pk is the search direction at iteration k and � k denotes the step width. The

optimization process continues until reaching the convergence criterion. The search

direction can be calculated using a linear approximation (�rst order) of the target

function, i.e., pk = �r f (xk ). In this case, the method is called the steepest de-

scent method. A second order approach uses a quadratic approximation and leads

to methods referred to as Newton methods. Quasi-Newton methods are based on

Newton methods, but without computing the Hessian matrix. In this case, the search

direction pk = � ~H � 1
k r f (xk ), where ~Hk is an approximation of the Hessian matrix

in the current solution. The most popular quasi-Newton method is the Broyden-

Fletcher-Goldfarb-Shanno algorithm (BFGS) [31, 53, 61, 118].

If no explicit formula of the objective function is availabl e, derivatives are in general

approximated using methods such as �nite di�erence methods. An other way to

compute the gradients is by using adjoint methods. In contrast to �nite di�erence

methods, where the number of objective function evaluations required to estimate

the gradients grows linearly with the number of the parameters of the problem,

adjoint methods provide the gradients in a fraction of the computational time of

objective function evaluation. However, implementing adjoint methods requires a

deep understanding of the so-called simulation code (corresponding to the objective

function evaluation) which is not usually trivial for real- world problems. It also

requires having access to the simulation code, which is not usually available for real-

world problems. Adjoint methods are widely used in aerodynamics [81]. In the oil

and gas industry, it is still di�cult to apply adjoint method approaches, although

some research has already been performed in particular in the reservoir simulation

community [89].

� Trust region methods : Trust region methods, called also quadratic approximation

methods rely on an approximation of the objective function f with a quadratic

function which is supposed to be a reasonable approximationof f in a neighborhood

of the the current estimate. This neighborhood is called thetrust region. A state-

of-the-art trust region method is the NEW Unconstrained Opt imization Algorithm

(NEWUOA) [ 107] which is a derivative-free optimization method. At each iteration,

NEWUOA creates a quadratic model that interpolates the objective function f at m

points (usually m = 2n + 1, where n is the number of parameters to be optimized).

The quadratic model is then updated by minimizing it inside the trust region. A

more detailed presentation of trust region methods can be found in [91].
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1.2.1.2 Stochastic methods

Stochastic methods have been employed to mitigate the defect of deterministic methods

for di�cult functions to solve (e.g., non-smooth and multi- modal). In particular, stochas-

tic optimization algorithms aim at being more robust when dealing with multi-modal

objective functions. These methods include methods such assimulated annealing (SA)

[88, 124], particle swarm optimization (PSO) [86], simultaneous perturbation stochastic

algorithm (SPSA) [119] and evolutionary algorithms (EA). EAs which have received an

increasing interest has mainly three origins: genetic algorithms (GA) [ 78, 79], evolutionary

programming (EP) [56, 56] and evolution strategies (ES) [108, 117].

� Evolutionary algorithms (EA): An overview of evolutionary algorithms is pre-

sented in [15]. EAs are stochastic optimization algorithms inspired by biological

evolution. Starting with an initial population of points ca lled individuals and at

each iteration, candidate solutions evolve byselection, mutation and recombination

until reaching the stopping criteria with a satisfactory solution. This process is used

by the three origins of EAs, i.e., GA, EP and ES. Only two of them will be detailed

in this section: genetic algorithms and evolution strategies.

Genetic algorithms (GA) [ 78, 79] are stochastic search algorithms designed ini-

tially to deal with binary encoded individuals. For continu ous optimization, problem

variables can either be mapped to binary strings or other encoding can be adopted

such as real encoding. However, representing real vectors as bit strings leads to poor

performance [122].

Evolution strategies (ES) [108, 117]: besides the common principles shared with

other EAs, i.e., mutation, recombination and selection, during the optimization pro-

cess, ESs sample new individuals according to a multivariate normal distribution, and

use a self-learning mechanism to adapt its parameters called adaptive search. The

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [74] is the state-of-the-

art Evolution Strategy where the multivariate normal distr ibution has a mean and

a covariance matrix continually updated during the optimization process. Intensive

benchmarking of several derivative-free algorithms have established that CMA-ES

is one of the most e�cient method for dealing with di�cult num erical optimization

problems [70]. CMA-ES has also been applied to real-world problems [18, 42, 92, 94].

More details about CMA-ES are provided in Chapter 2.

� Simulated annealing (SA) [88, 124]: The name and the inspiration of simulated

annealing comes from annealing in metallurgy, a technique involving heating and

controlled cooling of a material to increase the size of its crystals and reduce their

defects. The algorithm avoids getting trapped in local optima by allowing moves
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that may lead to a deterioration in the objective function values. The SA algorithm

is outlined as follows. Given a candidate solutions, a neighbor random solution

s0 is accepted1 if (1) s0 is better than s with respect to the objective function or

(2) with a probability that depends on the change of the corresponding objective

function values and a control parameterT, called the temperature. Otherwise, if

none of the above conditions are met, the current solution remains unchanged. The

parameterT is gradually decreased to zero in the course of the optimization according

to a deterministic \cooling schedule". The performance of the simulated annealing

algorithm is very sensitive to the choice of the cooling schedule.

� Particle swarm optimization (PSO) [86]: PSO is an iterative population based

algorithm, inspired from movement of swarms of birds or insects searching for food

or protection. Each particle movement is in
uenced by its own experience (its best

found locality) and by the experience of the others (the bestfound locality of all

the particles). Based on these best found localities, the localities of the members

of the swarm and their velocities are adjusted. The performance of PSO are not

invariant with respect to rotations of the coordinate system, i.e., the performance of

PSO on non-separable, ill-conditioned functions declinesdramatically with increasing

condition numbers [75].

� Simultaneous perturbation stochastic algorithm (SPSA) [119]: SPSA is a

stochastic gradient approximation method, in which at eachiteration the parameters

are randomly perturbed, and the objective function is evaluated at the perturbed

points to estimate the gradient.

1.2.1.3 Search algorithms using surrogates

Search algorithms using surrogates, called proxy-modeling or meta-modeling in the lit-

erature, are based on approximating the objective functionby a an approximate model

(called also surrogate, proxy-model or meta-model). In thecontext of costly objective

functions, a surrogate can be considered as a computationally cheaper replacement of the

objective function. Thus, during the optimization processthe surrogate is constructed and

the objective function evaluations are replaced by evaluations on the surrogate [20, 83].

Search algorithms using surrogates needs to consider the so-called exploration-exploitation

trade-o� [ 58], i.e., evaluating more (respectively, less) candidate solutions using the \true"

objective function implies a better (respectively, worst) quality of the surrogate but on the

other hand a higher (respectively, reduced) computationalcost of the optimization.

1 If a candidate solution is accepted, it replaces the current solution

8



1.2 Literature review

The most popular surrogate models include polynomial response surfaces, Kriging

[90, 48], support vector machines [40] and arti�cial neural networks [ 110].

1.2.1.4 Hybrid methods

Several algorithms (two or more) from di�erent classes can be combined in order to form

the so-called hybrid methods. Hybridization aims at having a resulting algorithm which

contains the positive features of the combined algorithms.Several hybridizations have been

proposed in the literature in order to tackle speci�c applications. For instance, a review of

hybridization of genetic algorithms can be found in [46]. Also, a review of hybridization

of the particle swarm optimization can be found in [123].

1.2.2 Well placement optimization

Well placement optimization is a recent area of research that is gaining growing interest.

Di�erent methodologies have been used in the literature to tackle the well placement

problem.

On the one hand, approaches based on stochastic search algorithms were used, where

minimal assumptions on the problem are needed and that are thus more robust than

deterministic methods when dealing with rugged problems such as the well placement

problem. Simulated annealing (SA) was used in [19] for well placement and scheduling,

and in [85] for well placement. Particle swarm optimization (PSO) wasapplied in [103] for

the determination of optima well type and position. Genetic algorithm (GA) was applied

in [98, 47, 99, 33]. Simultaneous perturbation stochastic algorithm (SPSA) was used in

[16, 17]. In particular, in [ 17], a comparison between three optimization algorithms is

performed: the SPSA algorithm, the very fast simulated annealing (VFSA) and the �nite

di�erence gradient (FDG).

On the other hand, deterministic optimization methods were also used. Descent algo-

rithms were mostly used, in which adjoint methods were used for computing the gradients

[67, 114, 57, 125, 130]. Using descent methods implies that the underlying model of the

function needs to be smooth enough. In [67], the adjoint method is used to place an injec-

tor in a 2D oil-water reservoir with 4 producers already �xed in each of the four corners

grid blocks. Results show that the algorithm, as expected due to its deterministic aspect,

converges to a di�erent local optimum for every initial well location. In [114], the wells

are de�ned by continuous variables and the adjoint method istested on a few synthetic

water
ood optimization problems.

Search algorithms using surrogates, or proxy-modeling were also used in the literature.

In proxy-modeling the true objective function is replaced by a proxy-model, and di�erent

optimization techniques are applied to the proxy. Proxy-models include least squares and
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kriging [105], radial basis functions [50], quality maps [41, 100], and multiple regression

techniques (including kriging) [1]. Although proxy-modeling is an e�cient way to have an

approach with a reduced number of reservoir simulations, its application, with increasing

complexity of the solution space, is not recommended [132].

Stochastic algorithms have been combined with search algorithms using surrogates and

deterministic approaches to form hybrid algorithms: GA wit h a polytope algorithm and

kriging [63, 64], GA with a polytope algorithm, kriging and neural networks [65], GA with

neural networks, a hill climber and a near-well upscaling technique [129]. Results show

that a hybrid stochastic algorithm converges in general to areasonable solution with a

reduced number of evaluations compared to a pure stochasticalgorithm. The approaches

in [63, 64, 65, 129] build at each iteration a proxy-model, determine its maximum and

include the location of this maximum in the population (repl acing the worst individual) if

it is better than the best individual of the current populati on. In [10], a GA is de�ned, in

which at each iteration, only a prede�ned percentage of the individuals, chosen according

to a set of scenario attributes, is simulated. The objectivefunction of the non-simulated

points is estimated using a statistical proxy based on cluster analysis.

1.3 Thesis objectives and methodology

In this thesis the objective is to address the previously mentioned challenges (I), (II) and

(III) in Section 1.1, namely:

(I) The non-smoothness, the multi-modality, the non-convexity and the high dimen-

sionality of the objective function;

(II) The expensive cost of the objective function;

(III) The geological uncertainty handling problem.

Considering the state of the art in optimization, the choice of the CMA-ES algorithm

[74] seems a priori natural to address problem (I). Indeed, CMA-ES is recognized as one

of the most powerful derivative-free optimizers for continuous optimization [70]. CMA-ES

is both a fast and robust local search algorithm, exhibiting linear convergence on wide

classes of functions and a global search algorithm when playing with restart and increase

of population size. CMA-ES, in contrast to most other evolutionary algorithms, is a quasi

parameter-free algorithm1.

In the petroleum industry, CMA-ES have been applied only in two studies, to the

best of our knowledge, previous to this work: a characterization of fracture conductivities

1Only the population size is suggested to be adjusted by the user in order to account for the ruggedness
of the objective function landscape.
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from well tests inversion [32], a well placement optimization but with respect to simple at-

tributes (e.g., productivity indexes) [43]. A more recent application on the well placement

optimization was shown in [116, 115].

To tackle problem (II), we propose to investigate coupling the CMA-ES optimizer with

surrogates (or meta-models). In this context, we aim at de�ning an e�cient variant of

CMA-ES coupled with meta-models able to reduce signi�cantly the number of the reservoir

simulations. Furthermore, we aim at exploiting the knowledge about the optimization

problem, in particular the so-called partial separability of the objective function in order

to reduce more the number of reservoir simulations.

Finally, to tackle problem (III), we aim at de�ning an approac h (for CMA-ES) able

to capture the geological uncertainty with a signi�cantly r educed cost of reservoir simu-

lations. In this context, we aim at de�ning an approach that p erforms a small number

of reservoir simulations (typically one) for each well con�guration instead of performing

reservoir simulations on all possible geological realizations.

1.4 Summary of contributions

The following presents a summary of the contributions of this thesis.

We have tackled the problem (I) related to the non-smoothness, the multi-modality, the

non-convexity and the high dimensionality of the objective function in the well placement

problem, and we have shown:

A �rst successful application of CMA-ES on the well placement pr oblem. (Re-

sults published in [ 26, 24]) We propose a new methodology for well location and

trajectory optimization based on the population based stochastic search algorithm called

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [74]. We propose to use

a new adaptive penalization with rejection technique to handle constraints. Because ge-

netic algorithms are quite often the method of choice in petroleum industry, we show the

improvement of applying CMA-ES over a GA on the synthetic benchmark reservoir case

PUNQ-S3 [54]. To allow a fair comparison, both algorithms are used without parameter

tuning on the problem, standard settings are used for the GA and default settings for

CMA-ES. It is shown that our new approach outperforms the genetic algorithm: it leads

in general to both a higher net present value and a signi�cantreduction in the number of

reservoir simulations needed to reach a good well con�guration.
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After this application of CMA-ES on the well placement problem, we have tackled the

problem (II) related to the expensive cost of the objective function, and we have proposed

two new algorithms:

A new variant of CMA-ES with local meta-models. (Results publ ished in [ 22])

The local-meta-model CMA-ES (lmm-CMA) [ 87] coupling local quadratic meta-models

with the Covariance Matrix Adaptation Evolution Strategy i s investigated. The scaling

of the algorithm with respect to the population size is analyzed and limitations of the

approach for population sizes larger than the default one are shown. A new variant for

deciding when the meta-model is accepted is proposed {called the new-local-meta-model

CMA-ES (nlmm-CMA).

A new variant of CMA-ES with local meta-models for partially se parable func-

tions. (Results published in [ 23]) We propose a new variant of the covariance matrix

adaptation evolution strategy with local meta-models for optimizing partially separable

functions {called the partially separable local-meta-model CMA-ES (p-sep lmm-CMA).

We propose to exploit partial separability by building at each iteration a meta-model for

each element function (or sub-function) using a full quadratic local model. Our results

demonstrate that exploiting partial separability leads to an important speedup compared

to the standard CMA-ES. We show on the tested functions that the speedup increases

with increasing dimensions for a �xed dimension of the element function. On the stan-

dard Rosenbrock function the maximum speedup of� is reached in dimension 40 using

element functions of dimension 2, where� is the population size. We show also that higher

speedups can be achieved by increasing the population size.

Now, we have applied the two new proposed algorithms on the well placement problem

to achieve:

A signi�cant reduction of the number of reservoir simulations for th e well

placement problem. (Results published in [ 26, 24, 25]) We propose to apply

CMA-ES with local meta-models (nlmm-CMA) on the well placement problem, where

for each well con�guration in the population, an approximat e convex quadratic model is

built using true objective function evaluations collected during the optimization process.

Coupling CMA-ES with a meta-model leads to a signi�cant improvement, which was

around 20% for the synthetic benchmark reservoir case PUNQ-S3.

Moreover, we propose also to apply p-sep lmm-CMA on the well placement problem,

by building partially separated meta-models for each well or set of wells, which results in a

more accurate modeling. Results show that taking advantageof the partial separability of

12



1.5 Dissertation road-map

the objective function leads to a signi�cant decrease in thenumber of reservoir simulations

needed to �nd the \optimal" well con�guration, given a restr icted budget of reservoir

simulations.

We have also tackled the problem (III) related to the geological uncertainty handling,

and we have proposed:

A new approach to handle geological uncertainty for the well placem ent prob-

lem. We propose a new approach to handle geological uncertainty for the well placement

problem with a reduced number of reservoir simulations. We propose to use only one re-

alization together with the neighborhood of each well con�guration in order to estimate

its objective function instead of using multiple realizations. The approach is applied on

the synthetic benchmark reservoir case PUNQ-S3 and shown tobe able to capture the

geological uncertainty using a reduced number of reservoirsimulations.

1.5 Dissertation road-map

This thesis is structured as follows. Chapter2 gives a \theoretical" overview of the opti-

mization method used in this thesis: the Covariance Matrix Adaptation Evolution Strategy

(CMA-ES). An adaptive penalization technique to handle the optimization constraints is

also introduced and a combination of CMA-ES with meta-models is investigated to pro-

pose a new variant of CMA-ES with local-meta-models, calledthe new-local-meta-model

CMA-ES (nlmm-CMA).

In Chapter 3, the CMA-ES optimizer is applied on the well placement problem. The

improvement of applying CMA-ES over a GA on a synthetic benchmark reservoir case is

shown. In addition, the contribution of the CMA-ES with meta -models in reducing the

number of reservoir simulations is demonstrated on a numberof examples.

In Chapter 4, we propose a new variant of CMA-ES with local meta-models for optimiz-

ing partially separable functions, called the partially separable local-meta-model CMA-ES

(p-sep lmm-CMA).

In Chapter 5, the resulting approach (p-sep lmm-CMA) is applied on the well placement

problem.

Finally, in Chapter 6, the problem of dealing with uncertainty in well placement is

tackled. A new approach using the neighborhood of each well con�guration is proposed

and demonstrated on a synthetic benchmark reservoir case.

The thesis closes with the conclusions and a number of suggestions for future work.
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Chapter 2

CMA-ES and CMA-ES with

meta-models

This chapter is based on the paper [22]. It gives a detailed overview of the optimization

methods applied in Chapter 3 to the well placement problem. We present the CMA-ES

algorithm, a constraint handling needed for well placementand a new surrogate approach

that couples CMA-ES with meta-models. This latter approachmitigate some defects of the

local-meta-model CMA-ES (lmm-CMA). The di�erent de�ned me thodologies are tested

and validated on some mathematical test functions.

This chapter is structured as follows. Section2.1 gives an overview of the optimization

algorithm CMA-ES. In Section 2.2, we propose an adaptive penalization and rejection

technique in order to handle optimization constraints. Finally in Section 2.3, the reduction

of the number of evaluations is addressed by coupling CMA-ESwith meta-models.

In the following, we denote the objective function to be optimized by f : Rn ! R.

2.1 Covariance Matrix Adaptation - Evolution Strategy

The Covariance Matrix Adaptation - Evolution Strategy (CMA -ES) [74, 71] is an iterative

stochastic optimization algorithm where at each iteration, a population of candidate solu-

tions is sampled. In contrast to the classical presentationof population based stochastic

search algorithms (like genetic algorithms [78, 79]) where the di�erent steps of the algo-

rithms are described in terms of operators acting on the population (crossover, mutation),

the natural algorithm template for CMA-ES translates the evolution of the probability

distribution used to sample points at each iteration. Indeed, the algorithm loops over the

following steps:

1. sample a population of� candidate solutions (points ofRn )

2. evaluate the � candidate solutions onf

14



2.1 Covariance Matrix Adaptation - Evolution Strategy

3. adapt the sampling distribution (using the feedback fromf obtained at step 2.)

We see that this general template depends on a probability distribution (sampling distri-

bution) and on the update of this probability distribution. The sampling distribution in

CMA-ES is a multivariate normal distribution . In the next paragraphs we will give more

insights on multivariate normal distributions and their ge ometrical interpretation and then

explain how its update is performed at each iteration within CMA-ES.

Multivariate normal distributions A random vector of Rn distributed according to a

multivariate normal distribution is usually denoted by N(m; C) where m is a vector ofRn

and C an n � n symmetric positive de�nite matrix corresponding to the covariance matrix

of the random vector. The set of parameters (m; C) entirely determines the random vector.

Fig. 2.1 gives the geometric interpretation of a random vectorN(m; C) in two dimensions.

We visualize that m is the symmetry center of the distribution and that isodensity lines

are ellipsoid centered inm with main axes corresponding to eigenvectors ofC and lengths

determined by the square roots of the eigenvalues ofC. Fig. 2.1 depicts also points

sampled according to a multivariate normal distribution. A s expected, the spread of the

points follows the isodensity lines. A useful relation ism + N(0; C) = N(m; C) that

interprets m as the displacement from the origin0.

In CMA-ES, the mean vector represents the favorite solutionor best estimate of the

optimum, and the covariance matrix C characterizing the geometric shape of the distri-

bution de�nes where new solutions are sampled. Furthermore, an additional parameter is

added, which is the step-size� used as a global scaling factor for the covariance matrix.

Overall, in step 1. for CMA-ES, points are sampled accordingto:

m + � N(0; C) : (2.1)

The adaptation of m targets to �nd the best estimate of the optimum, the adaptati on of

C aims at learning the right coordinate system of the problem (rotation and scaling of the

main axes) and the adaptation of� aims at achieving fast convergence to an optimum and

preventing premature convergence. We will now describe howthe distribution is updated,

that is how the parameters m, � and C are updated in step 3. of the template.

Update of mean vector, covariance matrix and step-size We adopt here some

time-dependent notations. The iteration index is denoted g. Let (m (g) ; g 2 N) be the

sequence of mean vectors of the multivariate normal distribution generated by CMA-

ES and let (� (g) ; g 2 N) and (C (g) ; g 2 N) be respectively the sequences of step-sizes and
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2.1 Covariance Matrix Adaptation - Evolution Strategy
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Figure 2.1: Geometrical representation of a 2-dimensionalmultivariate normal distribution
N(m; C) where m = (2 ; 2)T and the covariance matrix C admits 1p

2
(1; 1) and 1p

2
(� 1; 1) as

normalized eigenvectors with respective eigenvalues 16 and 1. Depicted on each plot is the
mean vectorm and the ellipsoid isodentity lines de�ned as (x � m)T C � 1(x � m) = c where
the constant c equals 1 (inner line) and 3 (outer line). The main axes of the (isodensity)
ellipsoid are carried by eigenvectors ofC. The half lengths of the axis of the unit isodensity
lines ((x � m)T C � 1(x � m) = 1) are the square roots of the eigenvalues ofC.
Depicted on the 2nd, 3rd and 4th plots are samples among 10 (resp. 100 and 1000) samples
from N(m; C) falling into the box plot [ � 8; 12] � [� 8; 12].
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2.1 Covariance Matrix Adaptation - Evolution Strategy

covariance matrices. Assume thatm (g) ; � (g) ; C (g) are given, the� new points or individuals

are sampled in step 1. according to:

x (g)
i = m (g) + � (g) N i (0; C (g) )

| {z }
= y i

; for i = 1 ; � � � ; � : (2.2)

Those � individuals are evaluated in step 2. and ranked according tof :

f (x (g)
1:� ) � � � � � f (x (g)

� :� ) � � � � � f (x (g)
� :� ) ; (2.3)

where we use the notationx (g)
i :� for i th best individual.

The meanm (g) is then updated by taking the weighted mean of the best� individuals:

m (g+1) =
�X

i =1

! i x
(g)
i :� = m (g) + � (g)

�X

i =1

! i y i :� ; (2.4)

where y i :� = ( x (g)
i :� � m (g) )=� (g) . In general � = �

2 and (! i )1� i � � are strictly positive

and normalized weights, i.e., satisfying
�P

i =1
! i = 1. This update displaces the mean vector

toward the best solutions. The increment� (g) P �
i =1 ! i y i :� has an interpretation in terms of

(stochastic) approximation of the gradient with respect to m of a joint criterion J mapping

(m; �; C) to R and depending on quantiles of the objective functionf [9].

A measure characterizing the recombination used is calledthe variance e�ective selec-

tion mass and de�ned by � e� =
� �P

i =1
! i

2
� � 1

. The choice of the recombination type has

an important impact on the e�ciency of the algorithm [ 6]. The default weights are equal

to:

! i =
ln( � + 1) � ln( i )

� ln( � + 1) � ln( � !)
; for i = 1 ; � � � ; � : (2.5)

The update of the covariance matrix C (g) uses two mechanisms. First of all therank-

one update [74] using the so called evolution pathp (g)
c 2 Rn whose update is given by:

p (g+1)
c = (1 � cc)p (g)

c +
p

cc(2� cc)� e�
m (g+1) � m (g)

� (g)
; (2.6)

where cc 2)0; 1]. For the constant cc = 1, the evolution path points toward the descent

direction m ( g+1) � m ( g)

� ( g) and for cc 6= 1, the vector p (g)
c adds the steps followed by the mean

vector over the iterations using some normalization to dampen previous steps, so as not

to rely too much on old information. The vector p (g+1)
c gives a direction where we expect

to see good solutions. From the evolution path, the rank-onematrix p (g+1)
c p (g+1)

c
T

is

built and added to the covariance matrix (see Eq. (2.7)). Geometrically it deforms the

ellipsoid-density in the direction p (g+1)
c , i.e., the rank-one update increases the probability

to sample in the next iteration in the direction p (g+1)
c .
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2.1 Covariance Matrix Adaptation - Evolution Strategy

The second mechanism is therank-mu update [72] where the rank-mu matrix
�P

i =1
! i y i :� y T

i :� is added to the covariance matrix. This rank-mu matrix is also the stochastic

approximation of the gradient of the joint criterion J with respect to C [9]. The update

of the covariance matrix combines rank-one and rank-mu update and reads:

C (g+1) = (1 � ccov)C (g) +
ccov

� cov
p (g+1)

c p (g+1)
c

T

| {z }
rank-one update

+ ccov

�
1�

1
� cov

�
�

�X

i =1

! i y i :� y T
i :�

| {z }
rank-mu update

: (2.7)

The initial evolution path p (0)
c , cc, ccov and � cov are parameters of the algorithm. Default

values can be found in [71].

In addition to the covariance matrix adaptation, the step-size � (g) is controlled after

every iteration. To perform the adaptation, a conjugate evolution path p (g)
� 2 Rn at

generation g is updated according to:

p (g+1)
� = (1 � c� )p (g)

�

+
p

c� (2 � c� )� e� C (g) � 1
2 m ( g+1) � m ( g)

� ( g) :
(2.8)

The conjugate path di�ers from the evolution path in the dire ction of the steps added,

as in the conjugate path the normalized step m ( g+1) � m ( g)

� ( g) is multiplied by the matrix

C (g) � 1
2 1.

The step-size is adapted according to:

� (g+1) = � (g)exp

 
c�

d�

 
kp (g+1)

� k
EkN(0; I )k

� 1

!!

; (2.9)

where p (0)
� , c� and d� are parameters of the algorithm with default values de�ned in [71].

This update rule implements to increase the step-size when the length of the conjugate

evolution path is larger than the length it would have if selection would be random (this

length will then be equal to kN(0; I )k) and decrease it otherwise.

All the updates rely on the ranking determined by Eq. (2.3) only and not on the exact

value of the objective functions making the algorithm invariant to monotonic transforma-

tions of the objective functions that preserve the ranking of solutions.

On the class of functionsx 7! gM � f cq(x) where f cq is a convex quadratic function

and gM : R ! R a monotonically increasing function, the covariance matrix sequenceC (g)

becomes proportional to the inverse Hessian of the functionf cq(x), i.e., the algorithm is

able to learn second order information without using any derivatives.

1This di�erence is mainly technical in order to be able to comp are the length of the conjugate path at
di�erent iterations though the steps have been sampled with di�erent covariance matrices [ 74]
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2.1 Covariance Matrix Adaptation - Evolution Strategy

Step-size adaptation is important to achieve fast convergence corresponding to linear

convergence with rates close to optimal rates that can be achieved by evolution strategies

algorithms. In combination with covariance matrix adaptat ion, step-size adaptation al-

lows to achieve linear convergence on a wide range of functions including ill-conditioned

problems.

CMA-ES and EnOpt The ensemble-based optimization (EnOpt) [37, 36, 131] shares

similarities with CMA-ES. In the following, we brie
y prese nt the main idea of EnOpt as

well as the similarities and di�erences with CMA-ES. Original notations de�ned in [131]

have been changed in order to be in accordance with the notations used for CMA-ES.

In EnOpt, for every iteration, an ensemble of � points is sampled according to:

x (g+1)
i = m (g) + N i (0; CX ) for i = 1 ; � � � ; � ; (2.10)

whereN i (0; CX )1� i � � are � independent multivariate normal distributions with zero m ean

vector and covariance matrix CX . CX is a user speci�ed matrix, which remains constant

during the whole optimization process. Therefore, EnOpt adapts only the mean m (g) of

the distribution according to:

m (g+1) = m (g) + � (g)CX C (g)
X;J ; (2.11)

where � (g) is the step-size andC (g)
X;J is the cross-covariance between the population and

the approximate gradient of the objective function.

Hence, while EnOpt and CMA-ES shares some similarities, CMA-ES presents three

important advantages:

� CMA-ES adapts the covariance matrix used to sample its population to the landscape

of the objective function as shown above. However, EnOpt uses the same covari-

ance matrix during the whole optimization process which maylead to di�culties in

re�ning the search at the end of the optimization;

� CMA-ES uses a step-size adaptation mechanism where the step-size is increased or

decreased depending on the situation which is crucial to obtain linear convergence.

However, in EnOpt, the step-size is always decreased and thus too small values at

the beginning will be very detrimental for the convergence rate. Situations where

step-size should be increased (linear environment) are also sub-optimally handled;

� CMA-ES is invariant to monotonic transformations of the obj ective functions that

preserve the ranking of solutions, which represents a source of robustness of the

algorithm [59]. More particularly, this invariance of CMA-ES removes the need to
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2.2 Handling constraints with CMA-ES

tune the parameters of the algorithm according to the scale of the objective function,

which is in general a challenging task. However, EnOpt uses the exact values of

the objective function to update the mean of its search distribution which leads to

breaking the invariance that comparison-based algorithms, such as CMA-ES, have.

2.2 Handling constraints with CMA-ES

Several methods are used, in the literature, to handle constraints in stochastic optimization

algorithms. In general, unfeasible individuals can be rejected, penalized or repaired. In

the following, we brie
y discuss these alternatives. A moredetailed study and comparison

can be found in [96].

� Rejection of unfeasible individuals: Besides its simplicity and ease of implementation,

rejecting the unfeasible individuals, also called \death penalty" does not require any

parameter to be tuned. However, ignoring unfeasible individuals can prevent the

algorithm from �nding the region containing the optimum sol ution if it is close to

the feasible domain boundaries [95];

� Penalizing unfeasible individuals: Penalization is the most widespread approach used

to handle constraints. This method corresponds to a transformation of the optimiza-

tion problem: (
min f (x)

s:t : hi (x) � di 8i = 1 ; � � � ; m

) min f (x) +
mP

i =1
g(hi (x) � di ) ;

(2.12)

where m is the number of constraints and g(:) is the penalty function which is

non-negative, equal to zero inR� and increasing inR+ . In general, g(:) contains pa-

rameters to be tuned. These parameters depend on the problemto be optimized. A

solution to avoid the di�culty of tuning those parameters co nsists in using an adap-

tive penalization which does not require any user speci�ed constant. However, pe-

nalizing all unfeasible individuals implies evaluating all unfeasible individuals which

can be costly;

� Repairing unfeasible individuals: Another popular solution to handle constraints is

to repair each unfeasible individual before evaluating it. An important parameter

to be speci�ed is the probability of replacement of the unfeasible individual by the

repaired new feasible individual. Moreover, repairing introduces a new individual in

the population which may not obey to the adapted distribution, and hence may hold

up the optimization process of CMA-ES.
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2.2 Handling constraints with CMA-ES

Knowing the limitations of each of the constraint-handling approaches, the approach

used in the present work is a mixture between two approaches:adaptive penalization of the

marginally unfeasible individuals and rejection of only the unfeasible individuals far from

the boundaries of the feasible domain. Using this approach, rejecting only individuals far

from the feasible domain does not prevent the algorithm from�nding a solution near the

feasible domain boundaries, and by using adaptive penalization, the critical penalization

coe�cients are adapted automatically during the course of the search1.

A box constraint handling is presented in [73] in which the feasible space is a hypercube

de�ned by lower and upper boundary values for each parameter. In the following, this

approach is generalized in order to handle feasible spaces de�ned by lower and upper

boundary values for a sum of some of the parameters (e.g., to constrain the length of

multilateral wells).

Given an optimization problem with a dimension n, let us suppose we havem 2 N

constraints denoted by Sj ; 8j = 1 ; � � � ; m. For each constraint Sj , we de�ne Pj �

f 1; � � � ; ng such that a vector x = ( x i )1� i � n is feasible with respect to the constraintSj if:

v(j; � ) < q j =
X

p2 Pj

xp < v (j; +) ; (2.13)

where v(j; � ) and v(j; +) are the lower and upper boundaries de�ningSj . Constraints are

then handled as follows, when evaluating an individualx:

- Initializing weights : In the �rst generation, boundary weights 
 j are initialized to


 j = 0 ; 8j = 1 ; � � � ; m ;

- Setting weights: From the second generation upwards, if the distribution mean is unfea-

sible and weights are not set yet


 j  �
2� �t

� 2 1
n

nP

i =1
C ii

; 8j = 1 ; � � � ; m ; (2.14)

where � �t is the median from the last (20 + 3n
� ) generations of the interquartile range

of the unpenalized objective function evaluations andC ii is the i th diagonal element of

the covariance matrix. The term
�

� 2 1
n

nP

i =1
C ii

�
represents the mean of

�
� 2C ii

�
i =1 ;��� ;n

which will be used in Eq. (2.16) in order to normalize the square of the distance which is

(qfeas
j � qj )2 with respect to the covariance matrix adapted by CMA-ES ;

- Increasing weights: For each constraint Sj , if the distribution mean M j , i.e., the mean of

qj for the � individuals of the current generation, is out-of-bounds and the distance from

M j to the feasible domain, i.e., max(0; M j � v(j; +) ) + max(0 ; v(j; � ) � M j ) is larger than

1The penalization method depends in general on other parameters which are on the other hand much
less critical and which are tuned beforehand to be suitable for a wide range of problems [73].
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2.3 CMA-ES with local meta-models

� �
r

1
card( Pj )

P

p2 Pj

Cpp � max(1;
p

n
� e�

) then


 j  � 
 j � 1:1max(1 ;
� e�
10n ) ; 8j = 1 ; � � � ; m ; (2.15)

where card(Pj ) denotes the cardinality of the set Pj ;

- Evaluating the individual:

f (x)  � f (x) +
1
m

mX

j =1


 j
(qfeas

j � qj )2

� j
; (2.16)

where qfeas
j is the projection of qj on the feasible domain and � j =

exp

 

0:9

 
1

card( Pj )

P

p2 Pj

log(Cpp) � 1
n �

nP

i =1
log(C ii )

!!

.

An individual x, in the following, will be rejected and resampled if jqfeas
j � qj j >

p% � j v(j; +) � v(j; � ) j, where p% is a parameter to be chosen. In all runs presented in the

sequel,p% is chosen to be equal to 20%.

2.3 CMA-ES with local meta-models

Many real-world optimization problems are formulated in a black-box scenario where the

objective function to optimize may have noise, multiple optima and can be computationally

expensive. For expensive objective functions{several minutes to several hours for one

evaluation{a strategy is to couple evolutionary algorithms with meta-models or surrogates:

a model of f is built, based on \true" evaluations of f , and used during the optimization

process to save evaluations of the expensive objective function [83]. One key issue when

coupling EAs and meta-models is to decide when the quality ofthe model is good enough to

continue exploiting this model and when new evaluations on the \true" objective functions

should be performed, i.e., the exploration-exploitation trade-o� de�ned in Section 1.2.1.3.

Indeed, performing too few evaluations on the original objective function can result in

suboptimal solutions whereas performing too many of them can lead to a non e�cient

approach.

CMA-ES was coupled with local meta-models to de�ne the local-meta-model CMA-ES

(lmm-CMA) [ 87]. In the proposed algorithm, the quality of the meta-model is appraised

by tracking the change in the exact ranking of the best individuals. The lmm-CMA

algorithm has been evaluated on test functions using the default population size of CMA-

ES for unimodal functions and for some multi-modal functions and has been shown to

improve CMA-ES [87].

In this section, we review the lmm-CMA algorithm as de�ned in [87] in Section 2.3.1

and then we analyze the performance of lmm-CMA when using population sizes larger than
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2.3 CMA-ES with local meta-models

the default one in Section2.3.2. We show that tracking the exact rank-change of the best

solutions to determine when to re-evaluate new solutions isa too conservative criterion

and leads to a decrease of the speedup with respect to CMA-ES when the population

size is increased. Instead we propose in Section2.3.3 a less conservative criterion that we

evaluate on test functions to de�ne a new variant of CMA-ES with meta-models that we

call the new-local-meta-model CMA-ES (nlmm-CMA).

2.3.1 The local-meta-model CMA-ES (lmm-CMA)

The lmm-CMA algorithm [ 87] combines the CMA-ES with local meta-models by exploiting

the fact that the updates of CMA-ES only rely on the ranking of the � best solutions. An

iteration of lmm-CMA consists of one iteration of CMA-ES where the evaluation step on

the (true) objective function that usually determines the r anking of the � best solutions

is replaced by the approximate ranking procedure that outputs an approximate ranking

of the candidate solutions and that costs maximally� function evaluations on the (true)

objective function (the bene�t of the approach comes of course when it costs less than� ).

The mean value, covariance matrix and step-size of CMA-ES are then updated according

to the update equations de�ned by the standard CMA-ES.

2.3.1.1 Locally weighted regression

To build an approximate model of the objective function f , denoted by f̂ , we use a locally

weighted regression. During the optimization process, a database, i.e., a training set is

built by storing, after every evaluation on the true objecti ve function, points together with

their objective function values (x; y = f (x)). Assuming that the training set contains a

su�cient number m of couples (x; f (x)), let us consider an individual denotedq 2 Rn to

be evaluated with the approximate model, wheren is the dimension of the problem. We

begin by selecting thek nearest points (x j )1� j � k from the training set. The distance used

for this purpose exploits the natural metric de�ned by the covariance matrix of CMA,

namely the Mahalanobis distance with respect to the currentcovariance matrix C de�ned

for two given points z1 2 Rn and z2 2 Rn by dC (z1; z2) =
q

(z1 � z2)T C � 1 (z1 � z2).

We build with locally weighted regression an approximate objective function using (true)

evaluations (yj )1� j � k corresponding to thek selected nearest points toq.

The use of a full quadratic meta-model is suggested in [87]. Hence, using a vector

� 2 R
n ( n +3)

2 +1 , we de�ne f̂ as follows:

f̂ (x ; � ) = � T
�
x2

1; � � � ; x2
n ; � � � ; x1x2; � � � ;

xn� 1xn ; x1; � � � ; xn ; 1)T :
(2.17)
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2.3 CMA-ES with local meta-models

The full quadratic meta-model is built based on minimizing the following criterion with

respect to the vector of parameters� of the meta-model at q:

A(q) =
kX

j =1

� �
f̂ (x j ; � ) � yj

� 2
K

�
dC (x j ; q)

h

��
: (2.18)

The kernel weighting function K (:) is de�ned by K (� ) = (1 � � 2)2, and h is the bandwidth

de�ned by the distance of the kth nearest neighbor data point toq wherek must be greater

or equal to n(n+3)
2 + 1 for a full quadratic meta-model.

2.3.1.2 Approximate ranking procedure

To incorporate the approximate model built using the locally weighted regression, we use

the approximate ranking procedure [111]. This procedure decides whether the quality of

the model is good enough in order to continue exploiting thismodel or new true objective

function evaluations should be performed. The resulting method is called the local-meta-

model CMA-ES (lmm-CMA) [ 87] and is de�ned as follows. For a given generation, let

us denote individuals of the current population of CMA-ES by (x i )1� i � � , where � is the

population size. The following procedure is then performed:

1. build f̂ (x i ) for all individuals of the current population ( x i )1� i � � .

2. rank individuals according to their approximated value f̂ (x i ): ranking0.

3. evaluate the best ninit individuals with the true objective function and add their

evaluations to the training set.

4. for nic from 1 to
�

� � n init
nb

�
, we:

(a) build f̂ (x i )1� i � � .

(b) rank individuals according to their approximated value f̂ (x i )1: rankingn ic .

(c) if (ranking n ic = ranking n ic � 1), the meta-model is accepted.

(d) if the meta-model is accepted, we break. If not, weevaluate the best nb un-

evaluated individuals with the true objective function, add their evaluations to

the training set, and loop to step 4, until reaching the acceptance criterion of

the meta-model.

5. if (nic > 2), ninit = min( ninit + nb; � � nb) :

6. if (nic < 2), ninit = max( nb; ninit � nb) :

1Or true objective function if the individuals have been evalua ted on it.
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2.3 CMA-ES with local meta-models

Table 2.1: Test functions and their corresponding initial intervals and standard deviations.
The starting point is uniformly drawn from the initialized i nterval.
Name Function Init. � 0

Noisy Sphere f NSphere(x) = (
nP

i =1
x2

i ) exp (� N(0; 1)) [� 3; 7]n 5

Schwefel f Schw(x) =
nP

i =1
(

iP

j =1
x j )2 [� 10; 10]n 10

Schwefel1=4 f Schw1=4 (x) = ( f Schwefel (x))
1
4 [� 10; 10]n 10

Rosenbrock f Rosen (x) =
n� 1P

i =1

�
100:

�
x2

i � x i +1
� 2 + ( x i � 1)2

�
[� 5; 5]n 5

Ackley f Ack (x) = 20 � 20 exp
�
� 0:2

s
1
n

nP

i =1
x2

i

�
[1; 30]n 14.5

+ e � exp( 1
n

nP

i =1
cos (2�x i ))

Rastrigin f Rast (x) = 10n +
nP

i =1

�
x2

i � 10: cos (2�x i )
�

[1; 5]n 2

This procedure heavily exploits the rank-based property ofthe CMA-ES algorithm.

Initially, a number ninit of best individuals based on the meta-model is evaluated using

the true objective function and then added to the training set. A batch of nb individuals

is evaluated until satisfying the meta-model acceptance criterion: keeping the ranking of

each of the� best individuals based on the meta-model unchanged for two iteration cycles.

Hence, (ninit + nb � nic) individuals are evaluated every generation wherenic represents

the number of iteration cycles needed to satisfy the meta-model acceptance criterion. The

integer nb is chosen to be equal to max[1, (�10)] and ninit is initialized to � and adapted after

every generation. The minimum number of evaluations performed for a given generation,

which corresponds to the minimum value that ninit can reach, is then equal tonb.
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2.3 CMA-ES with local meta-models

Table 2.2: Success performance SP1, i.e., the average number of function evaluations
for successful runs divided by the ratio of successful runs,standard deviations of the
number of function evaluations for successful runs and speedup performance spu, to reach
f stop = 10 � 10 of lmm-CMA and nlmm-CMA. The ratio of successful runs is denoted
between brackets if it is< 1:0. Results with a constant dimensionn = 5 and an increasing
� are highlighted in grey.

Function n � � lmm-CMA spu nlmm-CMA spu CMA-ES
f Rosen 2 6 291 � 59 2:7 252 � 52 3:1 779 � 236

4 8 776 � 102 [0:95] 2:8 719 � 54 [0:85] 3:0 2185 � 359 [0:95]

5 8 1131 � 143 2:7 1014 � 94 [0:90] 3:0 3012 � 394 [0:90]

5 16 1703 � 230 [0:95] 2:0 901 � 64 3:7 3319 � 409

5 24 2784 � 263 1:4 1272 � 90 [0:95] 3:0 3840 � 256

5 32 3364 � 221 1:3 1567 � 159 2:9 4515 � 275

5 48 4339 � 223 1:3 1973 � 144 2:9 5714 � 297

5 96 6923 � 322 1:2 3218 � 132 2:5 7992 � 428

8 10 2545 � 233 [0:95] 2:1 2234 � 202 [0:95] 2:4 5245 � 644

f Schw 2 6 89 � 9 4:3 87 � 7 4:4 385 � 35

4 8 166 � 8 5:4 166 � 6 5:4 897 � 51

8 10 334 � 9 6:2 333 � 9 6:2 2078 � 138

16 12 899 � 40 5:9 855 � 30 6:2 5305 � 166

f Schw1=4 2 6 556 � 25 2:4 413 � 25 3:3 1343 � 72

4 8 1715 � 87 1:7 971 � 36 2:9 2856 � 135

5 8 2145 � 69 1:6 1302 � 31 2:7 3522 � 136

5 16 3775 � 137 1:3 1446 � 31 3:4 4841 � 127

5 24 5034 � 142 1:2 1825 � 45 3:4 6151 � 252

5 32 6397 � 174 1:2 2461 � 43 3:2 7765 � 227

5 48 8233 � 190 1:2 3150 � 58 3:2 10178 � 202

5 96 11810 � 177 1:2 4930 � 94 2:9 14290 � 252

8 10 4046 � 127 1:5 2714 � 41 2:2 5943 � 133

f NSphere 2 6 0:35 124 � 14 2:7 109 � 12 3:1 337 � 34

4 8 0:25 316 � 45 2:3 236 � 19 3:1 739 � 30

8 10 0:18 842 � 77 1:8 636 � 33 2:4 1539 � 69

16 12 0:13 2125 � 72 1:3 2156 � 216 1:3 2856 � 88

f Ack 2 5 302 � 43 [0:90] 2:6 227 � 23 3:5 782 � 114 [0:95]

5 7 1036 � 620 2:0 704 � 23 [0:90] 3:0 2104 � 117 [0:85]

10 10 2642 � 93 [0:90] 1:4 2066 � 119 [0:95] 1:8 3787 � 151 [0:95]

f Rast 2 50 898 � 160 [0:95] 2:7 524 � 48 [0:95] 4:7 2440 � 294 [0:75]

5 70 19911 � 599 [0:15] 0:6 9131 � 135 [0:15] 1:3 11676 � 711 [0:50]

5 140 6543 � 569 [0:80] 1:6 4037 � 209 [0:60] 2:6 10338 � 1254 [0:85]

5 280 10851 � 1008 [0:85] 1:3 4949 � 425 [0:85] 2:9 14266 � 1069
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2.3 CMA-ES with local meta-models
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Figure 2.2: Speedup of nlmm-CMA (4 ) and lmm-CMA ( � ) on (a) f Schw1=4 , (b) f Rosen and
(c) f Rast for dimension n = 5.

2.3.2 Evaluating lmm-CMA on increasing population size

2.3.2.1 Experimental procedure

The lmm-CMA and the other variants tested in this chapter are evaluated on the objective

functions presented in Table 2.1 corresponding to the functions used in [87] except two

functions: (1) the function f Schw1=4 where we compose the convex quadratic functionf Schw

by a strictly increasing mapping g : x 2 R 7! x1=4, introduced because we suspect that the

results on f Schw are arti�cial and only re
ect the fact that the model used in l mm-CMA

is quadratic and (2) the noisy sphere functionf NSphere whose de�nition has been modi�ed

following the recommendations of [82]. We have followed the experimental procedure in

[87] and performed for each test function 20 independent runs using an implementation

of lmm-CMA based on a java code of CMA-ES1 randomly initialized from initial inter-

vals de�ned in Table 2.1 and with initial standard deviations � 0 in Table 2.1 and other

standard parameter settings in [71]. The algorithm performance is measured using the

success performance SP1 used in [11]. SP1 is de�ned as the average number of evaluations

for successful runs divided by the ratio of successful runs,where a run is considered as

successful if it succeeds in reachingf stop = 10 � 10. Another performance measure that

might be used was the expected running time ERT [69] which is de�ned as the number of

function evaluations conducted in all runs (successful andunsuccessful runs) divided by

the ratio of successful runs. In this chapter, we opt for SP1 since the stopping criteria for

unsuccessful runs were not properly tuned which can a�ect the performance comparison.

We have reproduced the results for the lmm-CMA presented in [87, Table 3]. Those results

are presented in Table2.22.

1See http : ==www:lri :fr=� hansen=cmaesinmatlab :html :
2Experiments have been performed with k = n(n + 3) + 2 indicated in [ 87]. However we observed some

di�erences on f Rosen and f Schw with this value of k and found out that k = n ( n +3)
2 + 1 allows to obtain the

results presented in [87, Table 3]. We did backup this �nding by using the Matlab code pr ovided by Stefan
Kern.
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2.3 CMA-ES with local meta-models

2.3.2.2 Performances of lmm-CMA with increasing population size

In lmm-CMA, a meta-model is accepted if the exact ranking of the � best individuals

remains unchanged. However, this criterion is more and moredi�cult to satisfy when the

population size � and thus � (= �= 2) increases. We suspect that this can have drastic

consequences on the performances of lmm-CMA. To test our hypothesis we perform tests

for n = 5 on f Rosen, f Schw1=4 with � = 8 ; 16; 24; 32; 48; 96 and for f Rast for � =

70; 140; 280. The results are presented in Fig.2.2 and in Table 2.2 (rows highlighted in

grey). On f Rosen and f Schw1=4 , we observe, as expected that the speedup with respect to

CMA-ES drops with increasing � and is approaching 1. Onf Rast , we observe that the

speedup for� = 140 is larger than for � = 280 (respectively equal to 1:6 and 1:3).

2.3.3 A new variant of lmm-CMA

We propose now a new variant of lmm-CMA, the new-local-meta-model CMA-ES (nlmm-

CMA) that tackles the problem detected in the previous section.

2.3.3.1 A new meta-model acceptance criteria

We have seen that requiring the preservation of the exact ranking of the � best individuals

is a too conservative criterion for population sizes largerthan the default one to measure

the quality of meta-models. We therefore propose to replacethis criterion by the following

one: after building the model and ranking it, a meta-model isaccepted if it succeeds in

keeping, both the ensemble of� individuals and the best individual unchanged. In this

case, we ignore any change in the rank of each individual fromthe best � individuals,

except for the best individual which must be the same, as longas this individual is still an

element of the� best ensemble. Another criterion is added to the acceptanceof the meta-

model: once more than one fourth of the population is evaluated, the model is accepted if

it succeeds to keep the best individual unchanged. The proposed procedure is then de�ned

as follows. For a given generation, let us denote individuals of the current population of

CMA-ES by ( x i )1� i � � , where � is the population size. The following new approximate

ranking procedure is then performed:

1. build f̂ (x i ) for all individuals of the current population ( x i )1� i � � .

2. rank individuals according to their approximated value f̂ (x i ) and determine the �

best individuals set and the best individual.

3. evaluate the ninit best individuals with the true objective function and add their

evaluations to the training set.

4. for nic from 1 to
�

� � n init
nb

�
, we:
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2.3 CMA-ES with local meta-models

(a) build f̂ (x i )1� i � � .

(b) rank individuals according to their approximated value f̂ (x i )1 and determine

the � best individuals set and the best individual.

(c) if less than one fourth of the population is evaluated, the meta-model is accepted

if it succeeds in keeping boththe best individual and the ensemble of �

best individuals unchanged.

(d) if more than one fourth of the population is evaluated, the meta-model is ac-

cepted if it succeeds in keepingthe best individual unchanged.

(e) if the meta-model is accepted, we break. If not, weevaluate the nb best un-

evaluated individuals with the true objective function, add their evaluations to

the training set, and loop to step 4, until reaching the acceptance criterion of

the meta-model.

5. if (nic > 2), ninit = min( ninit + nb; � � nb) :

6. if (nic < 2), ninit = max( nb; ninit � nb) :

Considering only changes in the whole parent set, without taking into account the exact

rank of each individual, and setting an upper limit on the number of true objective function

evaluations was �rst proposed in [13]. The new variant is called nlmm-CMA in the sequel.

2.3.3.2 Evaluation of nlmm-CMA

The performance results of nlmm-CMA are presented in Table2.2 together with the ones of

lmm-CMA. Table 2.2 shows that onf Rast , the nlmm-CMA speedup is in between 2.5 and 5

instead of 1.5 and 3 for lmm-CMA, and onf Ack nlmm-CMA outperforms lmm-CMA with

speedups between 1.5 and 3.5 for nlmm-CMA and between 1.4 and3 for lmm-CMA. On

these functions, nlmm-CMA is signi�cantly more e�cient. Fo r the other tested functions

f Rast , f Schw and f Schw1=4 , nlmm-CMA is marginally more e�cient than the standard lmm-

CMA. In Fig. 2.2 and in Table 2.2 (highlighted rows), we evaluate the e�ect of increasing

� on nlmm-CMA using the same setting as in Section2.3.2.2. Using population sizes

larger than the default one, nlmm-CMA improves CMA-ES by a factor between 2.5 and

3.5 for all tested functions f Rosen, f Schw1=4 and f Rast . Therefore, nlmm-CMA maintains a

signi�cant speedup for � larger than the default one contrary to lmm-CMA which o�ers

a speedup approaching to 1 forf Rosen and f Schw1=4 and a decreasing speedup (from 1.6 to

1.3) when � increases (from 140 to 280) forf Rast .

1Or true objective function if the individuals have been evalua ted on it.
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2.3 CMA-ES with local meta-models

2.3.3.3 Impact of the recombination type

The choice of the recombination type has an important impacton the e�ciency of evolution

strategies in general [6] and CMA-ES in particular [ 74, 71]. In the previous section, all the

runs performed use the default weighted recombination typede�ned by Eq. ( 2.5). In the

new variant of lmm-CMA, the meta-model acceptance criterion does not take into account

the exact rank of each individual except the best one. By modifying the meta-model

acceptance criteria of lmm-CMA, a possible accepted meta-model may be a meta-model

that preserves the� best individuals set and the best individual but generates aranking

far from the \true" ranking, i.e., the one based on the true objective function. We now

compare nlmm-CMA using weighted recombination where weights are de�ned in Eq. (2.5)

and intermediate recombination where weights are all equalto 1=� : nlmm-CMA I . Results

are presented in Table2.3. The algorithm nlmm-CMA outperforms nlmm-CMA I in all

cases suggesting that even if the exact ranking is not taken into account for assessing the

quality of the meta-model in nlmm-CMA , this ranking is not ra ndom and still has an

amount of information to guide CMA-ES.

2.3.3.4 Impact of initial parameters

In the tests presented so far, the initial parameters of the approximate ranking procedure

are de�ned as follows: ninit is initialized at the beginning of the optimization process to

� , and nb is set to max[1; ( �
10)]. Every generation g, the number of initial individuals

evaluated ninit is adapted (increased or decreased) depending on the meta-model quality

(Steps 5. and 6. in the procedure de�ned in Section2.3.3.1). We denote by n(g)
init and

n(g)
ic the values of ninit and nic respectively at generationg. The number of evaluations

performed every generationg is (n(g)
init + n(g)

ic � nb). We quantify now the impact of the

initial values of (ninit and nb) on the total cost of the optimization process. The algorithm

nlmm-CMA is compared to a similar version where initial parameters are chosen as small

as possible, i.e.,n(0)
init and nb are equal to 1. Moreover, we consider two cases: (1) with

update denoted nlmm-CMA1, i.e., where initial parameters are adapted depending on the

iteration cycle number (Steps 5. and 6. in the procedure de�ned in Section2.3.3.1), and

(2) without update denoted nlmm-CMA 2, i.e., parameters are equal to 1 during the entire

optimization process (omitting steps 5. and 6. in the procedure de�ned in Section 2.3.3.1).

We note that in case (1), the number of evaluations for each generation g is
�

n(g)
init + n(g)

ic

�
.

In case (2), every generationg, lmm-CMA evaluates
�

1 + n(g)
ic

�
individuals, sincen(g)

init = 1.

The results on di�erent test functions are summarized in Table 2.3.

On the unimodal functions f Schw, f Schw1=4 , setting ninit and nb as small as possible in ev-

ery generation, is marginally more e�cient than the default de�nition of initial parameters

on small dimensions except for dimensionn = 8 and � = 10. On f Rosen, nlmm-CMA 2 is
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2.3 CMA-ES with local meta-models

the most e�cient compared to other approaches, except for dimensionn = 8 and � = 10

which can be justi�ed by a higher number of unsuccessful runscompared to other ap-

proaches. On the multi-modal function f Ack , modifying the initial parameter ninit does

not have an important impact on the speedup of lmm-CMA (between 1.5 and 4). However

on f Rast , using a small initial ninit decreases considerably the probability of success of the

optimization, from 0.95 to between 0.35 and 0.10 for dimension n = 2 and � = 50, and

from 0.60 to 0.10 for dimensionn = 5 and � = 140. These results con�rm the initial

parameter choice suggested in [87].
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Table 2.3: SP1, standard deviations of the number of function evaluations for successful runs and speedup performance spu, to reach
f stop = 10 � 10 of nlmm-CMA, nlmm-CMA I (intermediate recombination and default initial parameters), nlmm-CMA 1(default recombination,
initial values of ninit and nb set to 1) and nlmm-CMA2(default recombination type, ninit = 1 and nb = 1 during the whole optimization
process). The ratio of successful runs is denoted between brackets if it is < 1:0.

Function n � � nlmm-CMA spu nlmm-CMA I spu nlmm-CMA 1 spu nlmm-CMA 2 spu
f Rosen 2 6 252 � 52 3:1 357 � 67 2:2 250 � 80 3:1 229 � 53 3:4

4 8 719 � 54 [0:85] 3:0 833 � 100 2:6 596 � 55 3:7 575 � 68 3:8

8 10 2234 � 202 [0:95] 2:4 2804 � 256 [0:95] 1:9 2122 � 133 2:5 2466 � 207 [0:85] 2:1

f Schw 2 6 87 � 7 4:4 110 � 10 3:5 75 � 8 5:2 73 � 7 5:3

4 8 166 � 6 5:4 220 � 15 4:1 138 � 6 6:5 136 � 5 6:6

8 10 333 � 9 6:2 423 � 15 4:9 374 � 16 5:6 380 � 21 5:5

16 12 855 � 30 6:2 947 � 24 5:6 794 � 27 6:7 786 � 37 6:8

f Schw1=4 2 6 413 � 25 3:3 550 � 29 2:4 411 � 20 3:3 398 � 16 3:4

4 8 971 � 36 2:9 1320 � 76 2:2 938 � 32 3:1 909 � 30 3:1

8 10 2714 � 41 2:2 2714 � 257 2:2 2668 � 40 2:2 2677 � 36 2:2

f NSphere 2 6 :35 109 � 12 3:1 135 � 19 2:5 92 � 11 3:7 87 � 9 3:9

4 8 :25 236 � 19 3:1 306 � 40 2:4 216 � 16 3:4 219 � 16 3:4

8 10 :18 636 � 33 2:4 788 � 47 2:0 611 � 35 2:5 619 � 45 2:5

16 12 :13 2156 � 216 1:3 2690 � 421 1:1 2161 � 148 1:3 2195 � 142 1:3

f Ack 2 5 227 � 23 3:5 329 � 29 [0:85] 2:4 226 � 21 [0:95] 3:5 208 � 19 3:8

5 7 704 � 23 [0:90] 3:0 850 � 43 [0:90] 2:5 654 � 35 [0:95] 3:2 652 � 32 [0:95] 3:2

10 10 2066 � 119 [0:95] 1:8 2159 � 58 1:8 2394 � 52 [0:80] 1:6 1925 � 44 2:0

f Rast 2 50 524 � 48 [0:95] 4:7 796 � 68 [0:75] 3:1 569 � 26 [0:35] 4:3 1365 � 28 [0:10] 1:8

5 140 4037 � 209 [0:60] 2:6 5265 � 313 [0:55] 2:0 13685 � 257 [0:10] 0:8 7910 � 82 [0:10] 1:3
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2.4 Summary and discussions

2.4 Summary and discussions

In this chapter, we have introduced the stochastic optimizer CMA-ES, as well as an adap-

tive penalization with rejection technique in order to handle the optimization constraints.

We have explained that CMA-ES exhibits many invariances, a desirable property as it

implies the generalization of results from one function to aclass of functions and confer

thus robustness and wider applicability of the method. In particular, CMA-ES is a rank-

basedsearch algorithm exploiting the objective function only through the relative ranking

of solutions within the population. The rank-based property implies invariance of the

algorithm on the class of functions classf = f g � f; g : R ! R strictly increasingg for any

f : Rn ! R.

In order to improve its performance when dealing with costlyobjective functions, the

CMA-ES algorithm has been combined with local meta-models that are constructed using

points from the archive of solutions{called the training set{evaluated on the (expensive)

original objective function. The quality of the meta-models is appraised using an ap-

proximate ranking procedure that determines if the objective function predicted by the

meta-model is good enough or more points should be evaluatedon the original function.

The resulting algorithm is called the local-meta-model CMA-ES (lmm-CMA) [ 87] (Sec-

tion 2.3.1). In this chapter, the original acceptance criterion for the meta-models proposed

for lmm-CMA has been shown to be too conservative for increasing population sizes (Sec-

tion 2.3.2) and modi�ed in order to maintain a reasonable speed-up whenpopulation sizes

larger than the default one are used (Section2.3.3). The proposed new variant is called

the new-local-meta-model CMA-ES (nlmm-CMA).

In particular, we have investigated in this chapter the performances of the lmm-CMA

algorithm coupling CMA-ES with local meta-models. On f Rosen and f Schw1=4 , we have

shown that the speedup of lmm-CMA with respect to CMA-ES drops to one when the

population size � increases. This phenomenon has been explained by the too restrictive

condition used to stop evaluating new points dedicated at re�ning the meta-model, namely

requiring that the exact ranking of the � = �= 2 best solutions is preserved when evaluating

a new solution on the exact objective function. To tackle this problem, we have proposed

to relax the condition to: the set of � best solutionsis preserved andthe best individual

is preserved. The resulting new variant, nlmm-CMA outperforms lmm-CMA on the test

functions investigated and the speedup with CMA-ES is between 1.5 and 7. Moreover,

contrary to lmm-CMA it maintains a signi�cant speedup, betw een 2.5 and 4, when increas-

ing � on f Rosen, f Schw1=4 and f Rast . The study of the impact of the recombination weights

has shown that the default weights of CMA-ES are more appropriate than equal weights.

The in
uence of two parameters, nb and ninit , corresponding to the number of individu-

als evaluated respectively initially and in each iteration cycle has been investigated. We
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2.4 Summary and discussions

have seen that setting those parameters to 1 during the wholeoptimization process can

marginally improve the performances on uni-modal functions and some multi-modal test

functions. However it increases the likelihood to be stuck in local minima for the Rastrigin

function suggesting that the default parameter of lmm-CMA are still a good choice for

nlmm-CMA.
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Chapter 3

Well placement optimization with

CMA-ES and CMA-ES with

meta-models

This chapter is based on the papers [26, 24]. In this chapter, we apply the CMA-ES

algorithm to the well placement problem, with the adaptive penalization with rejection

technique (introduced in Chapter 2) to handle constraints. Because genetic algorithms are

quite often the method of choice in petroleum industry, we �rst show the improvement

of applying CMA-ES over a GA on the synthetic benchmark reservoir case PUNQ-S3. In

addition, because a reservoir simulation and thus the objective function is expensive, we

apply the nlmm-CMA algorithm introduced in the previous cha pter in order to save a

number of evaluations by building a model of the problem. We validate the approach on

the PUNQ-S3 case.

This chapter is structured as follows. Section3.1 describes the problem formulation.

In Section 3.2, CMA-ES is compared to a genetic algorithm on a synthetic reservoir case to

show the contribution of the proposed optimization method. In Section 3.3, the reduction

of the number of reservoir simulations is addressed by coupling CMA-ES with meta-models

and the contribution of the whole methodology, i.e., CMA-ES with meta-models is demon-

strated on a number of well location and trajectory optimization problems (with unilateral

and multilateral wells).

3.1 The well placement optimization problem formulation

In this section, we describe the well placement optimization problem and explain the

parameterization of the wells.

35



3.1 The well placement optimization problem formulation

3.1.1 Objective function

The quality of a well placement decision is evaluated using an objective function that we

aim at maximizing (good solutions have a high objective function value and we aim at

�nding the solution with the highest objective function val ue). The objective function as-

sociated with a well placement problem often evaluates the economic model of the decision

and takes into account di�erent costs such as prices of oil and gas, costs of drilling and

costs of injection and production of water. Another alternative is to use the cumulative oil

production or the barrel of oil equivalent (BOE). In this cha pter, the objective function

considered is the net present value NPV. Formally we want to �nd a vector of parameter

pmax such that:

NPV( pmax ) = max
p

f NPV( p)g : (3.1)

The NPV of a well con�guration and trajectory represented by a vector of parameter

p is calculated using two terms, the expected revenue associated to p denoted R and the

drilling and completing cost of p denotedCd which is subtracted to the revenue term, i.e.,:

NPV( p) = R(p) � Cd(p) : (3.2)

The revenue termR is de�ned by summing the revenues from produced oil over all the

wells, and subtracting the costs associated to produced water and to injected water. A

discount rate {called also an annual percentage rate{ is introduced to take into account the

risk and uncertainty and the time value of money, that is oil produced earlier contributes

more to the overall NPV. The detailed formula for the revenueterm reads:

R =
YX

n=1

0

B
@

1
(1 + APR )n

2

4
Qn;o

Qn;g

Qn;w a

3

5

T 2

4
Cn;o

Cn;g

Cn;w a

3

5

1

C
A ; (3.3)

whereQn;p is the �eld production of phase ph (either oil, gas or water denoted respectively

o, g, wa) at period n and Cn;p is the pro�t or loss associated to this production. The annual

percentage rate is denoted APR. The integer Y is the number ofdiscount periods (years).

For the drilling and completing cost term Cd, we use the approximate formula used in

[129] that proposes to estimate the drilling cost as the sum of twoterms: the �rst term

is proportional to the diameter of each lateral times the length of this lateral multiplied

the logarithm of this lateral (taking into account that the c ost is more than linear in the

length), the second term adds up a �xed cost per junction, i.e.,:

Cd =
NwX

w=1

 N latX

k=0

[A:dw : ln( lw):lw ]k;w

!

+
N junX

m=1

[Cjun ]m ; (3.4)
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3.1 The well placement optimization problem formulation

Table 3.1: Constants used to de�ne the net present value (NPV).
Constant Value
Cn;o 60 $ / barrel
Cn;w a -4 $ / barrel
Cn;g 0 $ / barrel
APR 0:1
A 1000
dw 0:1 m
Cjun 105 $

where k = 0 represents the mainbore,k > 0 represents the laterals,lw is the length of

the lateral (in ft), dw is the diameter of the mainbore (in ft), Nw is the number of wells

drilled, N lat is the number of laterals andA is a constant speci�c to the considered �eld

containing conversion factors. Cjun is the cost of milling the junction and N jun is the

number of junctions.

For this chapter, the constants used to de�ne the NPV in Eqs. (3.3) and (3.4) are given

in Table 3.1.

The computation of the NPV of a con�guration p requires to have a prediction of the

quantity of oil, water and gas (Qn;o , Qn;w a , Qn;g ) associated to p in order to compute

the revenueR given by Eq. (3.3). To compute those quantities we use a reservoir simula-

tion which represents the time consuming part in the computation of the NPV objective

function.

It is in general needed to impose di�erent constraints on thewell con�guration to avoid

�nding both undrillable wells and wells that violates common engineering practices. The

constraints handled in this thesis are as follows:

� maximum length of wells: lw < L max , for each wellw to be placed;

� all wells must be inside the reservoir grid: lw = l inside, for each wellw to be placed,

where l inside is the length of the well w inside the reservoir grid.

3.1.2 Well parameterization

In our approach, we want to be able to handle di�erent possible con�gurations of multi-

lateral wells. An illustrative scheme is given in Fig. 3.1. The terminology used to de�ne

each part of a multilateral well follows the terminology used in [77]. In general, a lateral

can be de�ned by a line connecting two points. The mainbore isde�ned through the

trajectory of its contiguous completed segments. Hence, wede�ne a sequence of points

where a deviation occurs (Pd;i)0� i� Ns where Ns is the number of segments. The starting

point P d;0 = P 0 of the mainbore called the heel is represented by its Cartesian coordinates
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3.1 The well placement optimization problem formulation

   

Pd;2 (rd;2, � d;2, ' d;2)

rb;1

rd;1

P0 (x0, y0, z0)

Pd;1 (rd;1, � d;1, ' d;1)

lb;1

Q1

rd;2

Pb;1 (lb;1, rb;1, � b;1, ' b;1)

Figure 3.1: An example of a single multilateral well parameterization with two segments
(Ns = 2) and one branch (Nb = 1).

(x0; y0; z0). Other intermediate points (P d;i)1� i� Ns� 1 and the ending point Pd;Ns called

the toe are represented by their corresponding spherical coordinate system (rd;i , � d;i , ' d;i)

with respect to the basis (Pd;i� 1, u r
d;i , u �

d;i , u '
d;i). We use spherical coordinates because

they allow for straightforward control of the well lengths by imposing a box constraint

whereas it would need to be handled by imposing a non linear constraint with Cartesian

coordinates.

The wells are parameterized in a way to handle a numberNb of branches and/or

laterals as well.

The branch or lateral j 2 [1; � � � ; Nb] is de�ned by locating its ending point Pb;j (lb;j ,

rb;j , � b;j , ' b;j ) where (rb;j , � b;j , ' b;j )1� j � Nb represents the spherical coordinates of Pb;j with

respect to the basis (Qj , u r
b;j , u �

b;j , u '
b;j ), Q j is the starting point of the branch or the lateral

j , and lb;j is the distance along the well between P0 and Qj .

The dimension Dw of the representation of a well denoted byw is as follows:

Dw = 3 (1 + Nw
s ) + 4 Nw

b : (3.5)

Hence, the dimensionD of the problem of placing Nw wells (wk )k=1 ;��� ;Nw is:

D =
NwX

k=1

Dwk : (3.6)

An example of a single well parameterization is shown in Fig.3.1. In this example,
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3.2 CMA-ES and a real-coded GA for the well placement problem

Ns is equal to two and Nb is equal to one. The mainbore is then represented by three

points P0 and (Pd;i)1� i� 2. The branch is represented by one point Pb;1. The corresponding

dimension of the optimization problem is 13.

3.2 CMA-ES and a real-coded GA for the well placement

problem

The choice of a stochastic optimization method was motivated by the ability of this type of

algorithms to deal with non-smooth, non-convex and multi-modal functions. In addition,

stochastic optimization does not require any gradients andcan be easily parallelized. So

far, the most popular stochastic approaches for tackling well placement have been genetic

algorithms encoding the real parameters to be optimized as bit-strings. However, it is know

in the stochastic algorithm community, that representing real vectors as bit strings leads to

poor performance [122]. Recently, a comparison between binary and real representations

on a well placement problem in a channelized synthetic reservoir model has been made,

showing that the continuous variant outperforms the binary one [33].

This section compares a real-coded GA with CMA-ES on a well placement problem.

To allow a fair comparison, both algorithms are used without parameter tuning. Indeed,

tuning an algorithm requires some extra objective functionevaluations that would need to

be taken into account otherwise. Default parameters are used for the CMA-ES algorithm 1

and typical parameter value for the GA.

3.2.1 Well placement using CMA-ES

The initial population is normally drawn using a mean vector uniformly drawn in the

reservoir. Parameters were de�ned according to default settings [71].

The population size� is an important parameter of CMA-ES [71]. The default popula-

tion size value equals 4+b3� ln(D )c, whereD is the dimension of the problem. Independent

restarts with increasing population size are suggested in [12]. In this thesis, the optimal

tuning of the population size was not addressed. However, due to the di�culty of the

problem at hand, we use a population size greater than the default value.

3.2.2 Well placement using GA

Genetic algorithms [78, 79] are stochastic search algorithms that borrow some concepts

from nature. Similar to CMA-ES, GAs are based on an initial population of individuals.

Each individual represents a possible solution to the problem at hand. Starting with

1At the exception of the population size where the default sett ing is known to be good for non-rugged
landscapes but needs to be increased otherwise [71].
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3.2 CMA-ES and a real-coded GA for the well placement problem

Table 3.2: GA parameters: the probabilities to apply GA operators, i.e., crossover and
mutation.

Constant Value
crossprob 0.7
mutprob 0.1

an initial population of points called individuals or chrom osomes, and at each iteration,

candidate solutions evolve by selection, mutation and recombination until reaching the

stopping criteria with a satisfactory solution. The correspondence between a solution

and its representation needs to be de�ned. In general, simple forms like an array or a

matrix of integer or bit elements are used. In this section, individuals are parameterized

as de�ned for CMA-ES (see Section3.1.2). Hence, well coordinates are de�ned using a

real encoding. Elitism is used to make sure that the best chromosome would survive to

the next generation. The used operators are de�ned as follows:

� The crossover starts with two parent chromosomes causing them to unite in points

to create two new elements. The greater chromosome �tness' rank, the higher prob-

ability it will be selected. After selecting the two parents, crossover is applied with a

probability denoted crossprob. To apply the crossover, we randomly draw an index i

between 1 andD and a numberc between 0 and 1. Let us denote the two parents by

(x1;j )1� j � D and (x2;j )1� j � D , then x1;i  c � x1;i + (1 � c) � x2;i and x2;i  c � x2;i

+ (1 � c) � x1;i .

� The mutation, instead, starts with one individual and randomly changes some of

its components. Mutation is applied to all chromosomes, except the one with the

best �tness value, with a probability of mutation denoted mu tprob. In this case, we

randomly draw an index i . Let us denote the selected chromosome by (x j )1� j � D ,

then x i  min i + c � (maxi � min i ), where mini and maxi are the minimum and

the maximum values that can be taken by thei th coordinate of the chromosome and

c is a number randomly drawn between 0 and 1.

The mutation and crossover probabilities are set to typicalvalues (see Table3.2)1.

To handle the constraints, the genetic algorithm is combined with the Genocop III

technique (Genetic Algorithm for Numerical Optimization o f Constrained Problems) [47].

This procedure maintains two separate populations. The �rst population called the search

population contains individuals which can be unfeasible. The second population, the

reference population, consists of individuals satisfyingall constraints (linear and non-

linear), called reference individuals. Feasible search individuals and reference individuals

1A good choice of the crossover probability is said to be in between 0:4 and 0:9 [128, 39], 0:6 and 0:8
[66], 0:6 and 0:95 [51, 55], 0:6 and 0:8 [120]. A good choice of the mutation probability is said to be in
between 0:001 and 0:1 [39, 51, 55], 0:005 and 0:05 [120], 0:05 and 0:1 [128].
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3.2 CMA-ES and a real-coded GA for the well placement problem

Figure 3.2: Elevation (in meters) and geometry of the PUNQ-S3 test case.

are evaluated directly using the objective function. However, unfeasible individuals are

repaired before being evaluated. More details about Genocop III can be found in [97].

3.2.3 Well placement performance

All tests performed in the present chapter are conducted on the PUNQ-S3 test case [54].

PUNQ-S3 is a case taken from a reservoir engineering study ona real �eld, and quali�ed as

a small-size industrial reservoir model. The model grid contains 19 cells in the x-direction,

28 cells in the y-direction and 5 cells in the z-direction. The cell sizes is 180m in the x and

y directions and 18m in the z-direction. We suppose that the �eld does not contain any

production or injection well initially. The elevation of th e �eld and its geometry is shown

in Fig. 3.2. We plan to drill two wells: one unilateral injector and one unilateral producer.

The dimension of the problem is then equal to 12(= 6� 2).

To compare results obtained by both CMA-ES and the genetic algorithm, 14 runs were

performed for each algorithm. A streamline simulator is used during the optimization. In

this comparison, a bottomhole pressure imposed on the producer is �xed to 80 bar, and a

bottomhole pressure imposed on the injector is �xed to 6.000bar which is too high. This

unrealistic value was used only for the sake of comparison between the two optimization

methods.

The population size is set to 40 for both algorithms. The stopping criterion is also the

same for both of the methods: a maximum number of iterations equal to 100. The size of

the reference population for Genocop III is set to 60. Well lengths are constrained with a

maximum well length L max = 1000 meters.
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Figure 3.3: The mean value of NPV (in US dollar) and its corresponding standard devi-
ation for well placement optimization using CMA-ES (solid line) and GA ( dashed line).
Fourteen runs are performed for each algorithm. Constraints are handled using an adaptive
penalization with rejection technique for CMA-ES and using Genocop III for GA.
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Figure 3.4: The mean number of unfeasible individuals per generation and its corre-
sponding standard deviation using CMA-ES with an adaptive penalization with rejection
technique. Here, we consider only unfeasible individuals far from the feasible domain, i.e.,
resampled individuals.
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Figure 3.5: The positions of solution wells found by 14 runs of CMA-ES projected on
the top face of the reservoir. Injectors are represented by (dashed line). Producers are
represented by (solid line).

Fig. 3.3shows the average performance and its standard deviation ofthe well placement

optimization using both algorithms measured by the overallbest objective function value.

It is clear that CMA-ES outperforms the GA: the genetic algorithm adds only 40% to the

best NPV obtained by a randomly sampled con�guration, i.e., in the �rst generation of

the optimization. However, CMA-ES adds 80%.

Fig. 3.4 shows that CMA-ES handles the used constraints successfully. The number

of well con�gurations resampled, i.e., far from the feasible domain, approaches to 0 at the

end of the optimization. Fig. 3.4 shows that after a number of iterations, the majority of

the well con�gurations generated by CMA-ES are either feasible or close to the feasible

domain.

Fig. 3.5 shows the positions of \optimum" wells obtained from 14 runsusing CMA-ES.

CMA-ES succeeds in de�ning in 11 runs of the 14 performed the same potential zone to

place the producer and the injector. This region gives an NPVbetween $1:99� 1010 and
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Figure 3.6: The positions of solution wells found by 14 runs of the GA projected on the top
face of the reservoir. Injectors are represented by (dashed line). Producers are represented
by (solid line).
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3.3 Application of CMA-ES with meta-models on the PUNQ-S3 case

$2:05� 1010. In the other three runs, CMA-ES �nds each time a di�erent loc al optimum

with NPV values equal to: $1:83� 1010, $1:95� 1010 and $2:05� 1010. Despite the large

number of local optima, CMA-ES succeeds in providing satisfactory results on 93 % of

the runs, if we consider that a run is satisfactory if it gives an NPV greater or equal to

$1:95� 1010.

For the genetic algorithm, 14 runs were performed to trace di�erent \optimum" well

con�gurations in Fig. 3.6. Well con�gurations are not concentrated in some well-de�ned

regions and have an NPV mean value equal to $1:68 � 1010 with a standard deviation

equal to 1:06� 109. The GA leads to well con�gurations dispersed over a large zone. The

maximum value of NPV obtained by the GA is equal to $1:86 � 1010 and it corresponds

to a well con�guration close to a well con�guration obtained by CMA-ES with an NPV

$2:05� 1010.

Results con�rm that CMA-ES is able to �nd in the majority of th e runs a solution in

the same potential region. In 93% of the runs on the considered test case, CMA-ES �nds

a well con�guration with a satisfactory NPV value. However, the GA has di�culties to

de�ne this potential region and seems to prematurely converge in di�erent regions. Pre-

mature convergence in the GA is most certainly due to the lackof mechanisms that (1)

would play the role of the step-size mechanism in CMA-ES which is able to increase the

step-size in linear environments and (2) would play the roleof the covariance matrix adap-

tation mechanism allowing to adapt the main search directions (elongate / shrink certain

directions and learn the principal axis of the problem) to solve e�ciently ill-conditioned

problems. Without this latter mechanism on ill-conditioned problems, it is common to

observe premature convergence.

3.3 Application of CMA-ES with meta-models on the PUNQ-

S3 case

In this section we apply CMA-ES with meta-models on the well placement optimization

problem. The proposed approach is able to handle di�erent possible well con�gurations as

de�ned in Section 3.1.2. The use of local meta-models instead of a global one is motivated

by the fact that we want the algorithm to be able to handle mult i-modal functions or

unimodal functions where a global quadratic model would model poorly the function.

In the following, we use the variant nlmm-CMA 2 de�ned in Section 2.3.3.4. For nlmm-

CMA 2, (1 + nic) individuals are evaluated for a given generation wherenic is the number

of iteration cycles needed to satisfy the meta-model acceptance criterion. In this section,

the performance of the approach is demonstrated on two cases.
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3.3 Application of CMA-ES with meta-models on the PUNQ-S3 case

Figure 3.7: The mean value of NPV (in US dollar) and its corresponding standard deviation
for well placement optimization using CMA-ES with meta-models (solid line) and CMA-
ES (dashed line). Ten runs are performed for each algorithm. Constraints are handled
using an adaptive penalization with rejection technique.

3.3.1 Placement of one unilateral producer and one unilater al injector

In this application, we consider a placement problem of one unilateral injector and one

unilateral producer on the PUNQ-S3 case. Parameters of the problem are the same as for

the example in Section3.2.3, except for the following di�erences:

� a commercial reservoir simulator is used to evaluate �eld productions of each phase

instead of the streamline simulator;

� the bottomhole pressure imposed on the producer is �xed to 150 bar;

� the bottomhole pressure imposed on the injector is �xed to 320 bar.

To de�ne the parameters of the meta-model, we choosek, the number of individuals

used to evaluate the meta-model, equal to 100. Meta-models are used when the training

set contains at least 160 couples of points with their evaluations. For each method, i.e.,

CMA-ES and CMA-ES with local meta-models (lmm-CMA), 10 runs were performed. The

evolution of the NPV mean value in term of the mean number of reservoir simulations is

represented in Fig.3.7.

Fig. 3.7 shows that, for the same number of reservoir simulations, combining CMA-

ES with meta-models allows to reach higher NPV values compared to CMA-ES, given a
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Figure 3.8: The mean number of reservoir simulations neededto reach a given NPV value
using CMA-ES with meta-models (solid line) and CMA-ES (dashed line). Ten runs are
performed for each algorithm.

restricted budget of reservoir simulations. A better representation is to show the mean

number of reservoir simulations needed to reach a certain value of NPV for CMA-ES and

for CMA-ES with meta-models (Fig. 3.8). To reach an NPV value of $9� 109, lmm-CMA

requires only 659 reservoir simulations, while CMA-ES requires 880 reservoir simulations.

If we consider that an NPV equal to $9� 109 is satisfactory, using meta-models reduces

the number of reservoir simulations by 25%. For an NPV value equal to $9:6 � 109,

the use of meta-models reduces the number of reservoir simulations by 19%. Figs. 3.7

and 3.8 highlight the contribution of meta-models in reducing the number of reservoir

simulations. Results show also that, in addition to reducing the number of objective

function evaluations, the method still succeeds in reaching high NPV values and results

are similar to those obtained by CMA-ES. As for the example inSection 3.2.3, the well

placement optimization still succeeds in identifying in the majority of the runs the same

potential region to contain optimum wells. In the following , we present detailed results

obtained only by one of the solution well con�gurations proposed by lmm-CMA. The

selected solution well con�guration is denotedoptimized con�g in the sequel. Optimized

con�g is then compared to two con�gurations designed after some trials in a way to

represent the decision of a reservoir engineer (denotedcon�g.1 and con�g.2 ). The locations

and trajectories of the considered well con�gurations are shown in Fig. 3.9.

The engineer's proposed con�gurations were de�ned according to the SoPhiH map

(Fig. 3.9) which represents the distribution of the hydrocarbon porevolume over thenlayers
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Figure 3.9: The SoPhiH map, with solution well con�guration obtained using CMA-ES
with meta-models (PROD-O, INJ-O) and two engineer's proposed well con�gurations
(PROD-1, INJ-1 and PROD-2, INJ-2).
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Figure 3.10: Production curves for an optimized solution using CMA-ES with meta-models
(optimized con�g.) and two engineer's proposed con�gurations (con�g.1 and con�g.2 ).
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layers de�ned by
n layersP

k=1
(Hk � � � So), where Hk is the gross thickness of the layerk, So is the

oil saturation and � is the porosity. PROD-c and INJ-c denote respectively the producer

and the injector corresponding to the well con�guration c. The well con�guration is either

con�g.1 , con�g.2 or optimized con�g denoted respectively 1, 2, O. Engineer's proposed

wells are horizontal wells where producers (PROD-1 = PROD-2) are placed in the top

layer (k = 1) and injectors in the bottom layer ( k = 5). However, producers and injectors

in optimized con�g are inclined wells placed in the layer (k = 3). The engineer's proposed

producer is placed in the region with the highest SoPhiH value.

Fig. 3.10 shows the production curves of the considered well con�gurations. The cu-

mulative oil production for optimized con�g, during the 11 simulated years equals 205

MMbbl. However, con�g.1 o�ers only 119 MMbbl and con�g.2 o�ers 102 MMbbl. There-

fore, the optimization methodology adds 72% to the best considered engineer's proposed

well con�guration. Optimized con�g o�ers also the smallest water cut (0.45 foroptimized

con�g , 0.57 for con�g.1 and 0.69 for con�g.2 ).

3.3.2 Placement of one multi-segment producer

In this application, we consider a placement problem of one multi-segment well on the

PUNQ-S3 case. We suppose that an injector is already placed in the reservoir. It corre-

sponds to the well denoted INJ-O in Fig. 3.9. We plan to drill a multi-segment well with

two completed segments. The dimension of the problem is thenequal to 9(= 6 + 3). The

di�erent parameters of the problem are the same as in the example in Section3.3.1, except

for the population size which is equal to 30. Ten runs were performed with a maximum

number of iterations equal to 100.

Fig. 3.11 shows the evolution of the average performance of the well placement, i.e.,

NPV mean values and the corresponding standard deviation. Optimizing the placement

of one multi-segment producer o�ers an NPV equal to $1:10� 109 � 4:37� 107. To reach

an NPV mean value of $1:10 � 109, the optimization process requires only 504 reservoir

simulations.

The positions of solution wells are shown in Figs.3.12 and 3.13. In this application,

the used methodology succeeds in reaching NPV values greater than $1:09 � 109 and in

de�ning an \optimum" well con�guration in the same potentia l region for all the performed

runs. Therefore, performing only one run can be conclusive and can ensure converging to

a solution well with a satisfactory NPV.
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Figure 3.11: The mean value of NPV (in US dollar) and its corresponding standard de-
viation for well placement optimization using CMA-ES with m eta-models of one multi-
segment well. Ten runs are performed.
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Figure 3.12: The positions of solution multi-segment producers found by 10 runs of CMA-
ES with meta-models. A zoom on the region containing the solution wells is performed.
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Figure 3.13: The positions of solution multi-segment producers found by 10 runs of CMA-
ES with meta-models projected on the top face of the reservoir. A zoom on the region
containing the solution wells is performed.

3.4 Summary and discussions

In this chapter, the stochastic optimization method CMA-ES was applied on a well place-

ment problem. A technique based on adaptive penalization with rejection was developed

to handle well placement constraints with CMA-ES. Results showed that this technique

ensures that after a number of iterations, the majority of well con�gurations generated

by CMA-ES are either feasible or close to the feasible domain. The optimization with

CMA-ES was compared to a GA which is the most popular method used in well place-

ment optimization in the literature. Both algorithms were u sed without parameter tuning

allowing for a direct fair comparison of the results. Indeedparameter tuning requires

extra function evaluations that should be taken into account when presenting comparison

results. In addition, we think that parameter tuning should be done by the designer of

the algorithm and not the user as it is unrealistic to waste expensive function evaluations

for correcting the weakness of the design phase. The CMA-ES example shows that pro-

viding parameter-free algorithms with robust setting is possible to achieve. CMA-ES was

shown to outperform the genetic algorithm on the PUNQ-S3 case by leading to a higher

net present value (NPV). Moreover, CMA-ES was shown to be able to de�ne potential

regions containing optimal well con�gurations. On the other hand, the genetic algorithm

converged to solutions located in di�erent regions for every performed run. In addition
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3.4 Summary and discussions

those solutions are associated to much smaller NPV values than the solutions found by

CMA-ES. On the PUNQ-S3 case, the mean NPV value found by GA is $1:68� 1010. How-

ever, the mean NPV value found by CMA-ES is $2:01 � 1010. The ability of CMA-ES to

�nd much higher NPV values and to converge to the same region of the search space, has

been explained by its advanced adaptation mechanism that allows the algorithm, on ill-

conditioned non-separable problems, to adapt in an e�cient way its sampling probability

distribution.

To tackle the computational issue related to the number of reservoir simulations per-

formed during the optimization, an application of nlmm-CMA algorithm is demonstrated

on the PUNQ-S3 case. The use of meta-models was shown to o�er similar results (solution

well con�gurations and the corresponding NPV values) as CMA-ES without meta-models

and moreover to reduce the number of simulations by 19-25% toreach a satisfactory NPV.

The comparison of the obtained results with some engineer'sproposed well con�gura-

tions showed that the proposed optimization methodology isable to provide better well

con�gurations in regions that might be di�cult to determine by reservoir engineers.

The results presented in this chapter has demonstrated the potential huge bene�t

of applying the CMA-ES methodology over more established stochastic techniques for

reservoir applications.
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Chapter 4

Local-meta-model CMA-ES for

partially separable functions

This chapter is based on the paper [23]. In this chapter, we propose a new variant of

the covariance matrix adaptation evolution strategy with l ocal meta-models for optimiz-

ing partially separable functions. We propose to exploit partial separability by building

at each iteration a meta-model for each element function (orsub-function) using a full

quadratic local model. The performance of the proposed algorithm is shown on a number

of mathematical test functions.

This chapter is structured as follows. Section4.1 de�nes a general notion of partial

separability. In Section 4.2, we propose a new variant of CMA-ES with meta-models for

partially separable functions. The performance of this variant is evaluated in Section 4.3

on a number of partially separable test functions. The choice of the number of points used

to build the meta-model is also described and the computational cost is discussed.

In the following, we denote the objective function to be optimized by f : Rn ! R.

4.1 Partial separability and problem modeling

A function f : Rn ! R is partially separable if it can be written as a sum of sub-functions,

also calledelement functions, each depending on a fewer number of variables. Often the

particular case where each sub-function depends on a subsetof variables of the original

function is de�ned as partial separability. For instance the Rosenbrock function in Table4.1

writes:

f (x) =
n� 1X

i =1

h(x i ; x i +1 ) ; (4.1)

where x = ( x i )1� i � n and h(x i ; x i +1 ) = � (x2
i � x i +1 )2 + ( x i � 1)2 and is thus partially

separable with each sub-function depending on the subset ofvariables [(x i ; x i +1 )] i =1 ;��� ;n � 1.

This particular case of partially separable function is considered for instance in [21, 38, 45].
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4.1 Partial separability and problem modeling

A more general de�nition, given in [102], considers that each sub-function can depend on

a number of variables that are alinear combination of a subset of variables.

In this thesis we consider a generalization of the previous de�nitions allowing non-

linear combinations of the subset of variables. More precisely a function f : Rn ! R is

said partially separable if there exists an integerN > 1, a set of integers (ni )1� i � N with

ni < n; for all i = 1 ; � � � ; N , a set of explicit functions (� i : Rn ! Rn i )1� i � N and a set

of functions (f i : Rn i ! R)1� i � N , such that f can be written as f (x) =
NP

i =1
f i (� i (x)).

The sub-functions or element functions (f i )1� i � N depend on a numberni of parameters

called element variables. The functions � i will be called mapping functions. Note that the

setting of [102] is recovered by taking � i = U i where U i is a linear mapping from Rn to

Rn i .

For a given partially separable function, there exists \theoretically" an in�nite number

of ways to de�ne the element functions and mapping functions. However, one has usually

a restricted knowledge about the structure of the problem that determines the modeling

choice. We can argue that we only know in general that the problem can be decomposed as

a sum of element functions depending on fewer variables, andthat there is thus no reason

to encode non-linearity in the variable dependencies. However, a motivating example for

our general de�nition is the well placement optimization problem, in which we will show in

Chapter 5 that a suitable way to model the objective function is to suppose that the pro�t

corresponding to a given well depends only on its location and on the distances of this well

to the others. Using the distances between the wells as an element variable implies using

a nonlinear combination of the parameters of the problem (see Chapter 5).

In the well placement problem also, the objective function is computed using a numer-

ical software (reservoir simulator) able to simulate for a given set of well placements the

quantity of oil, water and gas that can be extracted from each well. Consequently one

has access to the function value ofeach element function. In the following we will also

assume not only that the function is partially separable but also that one has access to the

function value of each element function. As argued above this assumption is reasonable as

it models the case for the well placement problem. History matching is another problem in

petroleum engineering in which this assumption is reasonable. In history matching prob-

lems, we want to adjust the reservoir model until it closely reproduces the past behavior

of the reservoir (historical production and pressures). For this problem also, we can de�ne

the objective function as a sum of a number of sub-functions de�ned for each well and

calculated when evaluating the objective function [44].

Exploiting partial separability or separability is a commo n approach to enhance perfor-

mances of optimization algorithms, in particular when dealing with large scale optimiza-

tion. For instance a trust region algorithm for minimizing p artially separable functions
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4.2 lmm-CMA for partially separable functions

Table 4.1: Test functions. For the block-rotated ellipsoid, Q is a 2� 2 rotation matrix
with each column being a uniformly distributed unit vector.

Name Function

Rosenbrock f �
Rosen (x) =

n� 1P

i =1

�
�:

�
x2

i � x i +1
� 2 + ( x i � 1)2

�

Rosenbrock
1
2 f �

Rosen1
2

(x) =
n� 1P

i =1

�
�:

�
x2

i � x i +1
� 2 + ( x i � 1)2

� 1
2

Block-rotated f �
BlockElli � 2D (x; y) =

2P

i =1

�
�

i � 1
n � 1 :(Q � (x; y))2

�

ellipsoid 2D

Block-rotated f �
BlockElli (x) =

n� 1P

i =1

�
f �

BlockElli � 2D (x i ; x i +1 )
�

ellipsoid

was proposed in [38]. Separability was also exploited within CMA-ES. A method where

the covariance matrix was constrained to be diagonal has been proposed in [109].

4.2 lmm-CMA for partially separable functions

This section introduces a new algorithm based on nlmm-CMA and exploiting the partial

separability of the objective function. This algorithm wil l be called the partially separable

local-meta-model CMA-ES (p-sep lmm-CMA).

In our proposed approach, the partial separability of the objective function is exploited

when building the meta-models. The optimization process de�ned by CMA-ES is not

altered. The idea behind exploiting the problem structure when building the meta-model,

is to improve the quality of the approximate model. Hence, the better the quality of

the model is, the easier the acceptance criteria can be satis�ed, the less evaluations are

performed.

Let us consider a partially separable functionf . As in Section 4.1, we consider that

f has N element functions (f i )1� i � N . For each element function, we associate a mapping

function � i such that f (x) =
NP

i =1
f i � � i (x). We suppose that when evaluating a pointx

on f , we have access to the evaluations (f i � � i (x))1� i � N as well.

In Chapter 2, an approximate function f̂ for a given objective function f is de�ned

using a locally weighted regression based on the training set containing both evaluated

points and their values on f . In this chapter, we propose to build a meta-model for each

element function f i that we denote by f̂ i . The meta-model f̂ of f is then de�ned by:

f̂ =
NX

i =1

f̂ i � � i : (4.2)

The meta-model f̂ i of each element function f i is built in a way quite similar to the
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4.2 lmm-CMA for partially separable functions

meta-model f̂ of f de�ned for the (n)lmm-CMA in Section 2.3.1.1. The training set is

built by storing for every evaluated point x, � i (x) and its corresponding values onf i , i.e.,

f i (� i (x)). Let us consider an individual q for which � i (q) 2 Rn i has to be evaluated on

the approximate model of f i . Assuming that the training set contains a su�cient number

mi of elements, we select theki 2 N nearest points (� i (x j ); j = 1 ; � � � ; ki ) to � i (q) using

the Mahalanobis distancedi with respect to a matrix C i , de�ned for a given point z 2 Rn

as:

di (� i(z); � i(q))=
q

(� i(z) � � i(q))T C i
� 1(� i(z) � � i(q)) ; (4.3)

whereC i is an ni � ni matrix adapted to the local shape of the landscape off i (see below).

Similarly to Section 2.3.1.1, a full quadratic meta-model is used. Using a vector� i 2

R
n i ( n i +3)

2 +1 , f̂ i is de�ned for a given point z 2 Rn , for which we denote � i (z) = (~u1; � � � ; ~un i )

as:

f̂ i
�
� i (z); � i

�
= � T

i ~zi
T ; (4.4)

where ~zi =
�
~u2

1; � � � ; ~u2
n i

; ~u1~u2; � � � ; ~un i � 1~un i ; ~u1; � � � ; ~un i ; 1
�
. The full quadratic meta-model

is built by minimizing the following criterion with resepct to � i :

B (q) =
k iX

j =1

"
�

f̂ i
�
� i (x j ); � i

�
� f i (� i (x j ))

� 2
� K

 
di

�
� i (x j ); � i (q)

�

h

!#

: (4.5)

K (:) is the kernel weighting function de�ned as in Section 2.3.1.1 by K (� ) = (1 � � 2)2,

and h is the bandwidth de�ned by the distance di of the kth
i nearest neighbor data point

to q. For a given element function,ki must be greater or equal toki; min = n i (n i +3)
2 + 1. ki

is chosen to be equal to 2� ki; min . The choice ofki will be discussed in Section4.3.3. The

su�cient size of the training set denoted above by mi must be then greater or equal toki .

Hence, the approximate function of f which corresponds to f̂ (x) =
NP

i =1
f̂ i (� i (x)) is

incorporated into CMA-ES using the approximate ranking procedure as detailed in Sec-

tion 2.3.

It remains now to describe how the matrices (C i )1� i � N are obtained. They are built

in an iterative manner. At each iteration, after the approxi mate ranking procedure, each

of the � candidate solutions denoted (X m )1� m� � and sampled according to Eq. (2.2) has

been either evaluated onf or has an associated approximate meta-models value given

by Eq. (4.2). Thus for each i , the vectors � i (X m ) 2 Rn i have either been evaluated on

f i or have an associated estimate off i provided by f̂ i . We then consider the vectors

� i (X m ) 2 Rn i for 1 � m � � and rank them according to ~f i where ~f i equalsf i if X m was

evaluated onf and f̂ i otherwise. The ordered� best solutions according to~f i are used as

input variables in Algorithm 1, to update the covariance matrix C i .
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4.3 Evaluation of p-sep lmm-CMA

Algorithm 1: CMA -Update(x1; � � � ; x � )

1. given parameters (! i )1� i � � , c� , cc, ccov, � cov, d� . Set � e� = 1=
�P

i =1
! i

2

2. given m 2 Rn , p � 2 Rn , pc 2 Rn , � 2 R and C 2 Rn� n from last iteration
3. m �  m

4. m  
�P

i =1
! i x i

5. p �  (1 � c� )p � +
p

c� (2 � c� )� e� C � 1
2 m � m �

�

6. pc  (1� cc)pc +
p

cc(2 � cc)� e�
m � m �

�

7. C � =
�P

i =1
! i

(x i � m � )( x i � m � )T

� 2

8. �  � � exp
�

c�
d�

�
kp � k

EkN(0;I )k � 1
��

9. C  (1 � ccov)C + ccov
� cov

pcpc
T + ccov

�
1 � 1

� cov

�
� C �
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Figure 4.1: (a) Average number of evaluations of the p-sep lmm-CMA on f 100
Rosen to reach

f stop for varying population sizes � = 
 � � default . (b) Average number of evaluations per
generation of the p-sep lmm-CMA onf 100

Rosen for varying population sizes � = 
 � � default .

In Algorithm 1, the parameters ( ! i )1� i � � , c� , cc, ccov, � cov, d� are chosen with default

values as de�ned in [71]. Initial values for p � , pc and C used in Algorithm 1 are also set

to default as in [71]. Initial values for m and � are set to � i (m (0) ) and � (0) where m (0)

and � (0) are the initial mean vector and step-size of (n)lmm-CMA. The idea behind this

adaptation procedure is the same as the one of the adaptive encoding proposed in [68].

However in adaptive encoding, step-size update is not needed and di�erent normalizations

for the weights depending on the step-length are introduced. Though we believe that the

adaptive encoding update is more robust numerically, it hasnot been tested for this thesis.
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4.3 Evaluation of p-sep lmm-CMA

Table 4.2: Modeling of the partially separable functions tested.
Name nM N f i (u = ( uj )1� j � nM ) � i (v = ( vj )1� j � n )
Rosenbrock 2 (n � 1) f i (u) = �:

�
u2

1 � u2
� 2 + ( u1 � 1)2 � i (v ) = ( vi ; vi +1 )

4 n� 1
3 f i (u) = �:

�
u2

1 � u2
� 2 + ( u1 � 1)2 � i (v ) = ( v3i � 2; v3i � 1;

+ �:
�
u2

2 � u3
� 2 + ( u2 � 1)2 v3i ; v3i +1 )

+ �:
�
u2

3 � u4
� 2 + ( u3 � 1)2

Rosenbrock
1
2 2 (n � 1) f i (u) =

�
�:

�
u2

1 � u2
� 2 + ( u1 � 1)2

� 1
2 � i (v ) = ( vi ; vi +1 )

Block-rotated 2 (n � 1) f i (u) = f �
BlockElli � 2D (u1; u2) � i (v ) = ( vi ; vi +1 )

ellipsoid

4.3 Evaluation of p-sep lmm-CMA

In this section we describe the functions used to evaluate p-sep lmm-CMA. We show

the performance of this method compared to CMA-ES. The optimal bandwidth used to

build the meta-model is also investigated and the computational cost of the approach is

discussed.

4.3.1 Test functions

The p-sep lmm-CMA is evaluated on the partially separable test functions f 1
Rosen, f 100

Rosen,

f 10000
Rosen, f 100

Rosen1
2

and f BlockElli de�ned in Table 4.1. For the block-rotated ellipsoid, Q is a

2� 2 rotation matrix sampled uniformly anew for every run performed. The performance of

the method is measured using the success performance SP1 de�ned as the average number

of evaluations for successful runs divided by the ratio of successful runs, needed to reach

a stopping objective value f stop = 10 � 10, except for f �
Rosen1

2
for which f stop = 10 � 5. We

perform 20 independent runs to measure SP1. The runs are randomly initialized in the

intervals [� 5; 5] for f 1
Rosen, f 100

Rosen, f 10000
Rosen and f 10000

Rosen1
2

and [� 10; 10] for f BlockElli . Each test

function is modeled by de�ning a number N of element functions, a numbernM of element

variables for each element function, a set of element functions denoted byf i : RnM ! R

and a set of mapping functions � i : Rn ! RnM , such that f =
NP

i =1
f i � � i . The modeling

of each test function is shown in Table4.2. The block-rotated ellipsoid function is de�ned

using quadratic element functions. For the other tested functions, the de�ned element

functions are not quadratic.

4.3.2 Performance of p-sep lmm-CMA

Results on the test functions are presented in Table4.3 showing the performance of p-sep

lmm-CMA compared to CMA-ES and to some tests with nlmm-CMA. For each test, by

de�ning the value of nM , we refer to the corresponding modeling de�ned in Table4.2. It is
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4.3 Evaluation of p-sep lmm-CMA

Table 4.3: Success performance SP1, i.e., the average number of function evaluations
for successful runs divided by the ratio of successful runs,standard deviations of the
number of function evaluations for successful runs and speedup performance spu, to reach
f stop = 10 � 10 of p-sep lmm-CMA, nlmm-CMA and CMA-ES (for f 100

Rosen1
2
, f stop = 10 � 5).

The ratio of successful runs is denoted between brackets if it is < 1:0. The number of
element variables of each element function is denoted bynM .

Function n nM � p-sep lmm-CMA spu nlmm-CMA spu CMA-ES
f 1

Rosen 4 2 8 189 � 13 5:1 297 � 20 3:2 964 � 192

8 2 10 308 � 20 6:5 932 � 52 2:2 2006 � 118

10 2 10 353 � 20 6:8 1482 � 169 1:6 2418 � 204

16 2 12 465 � 20 8:6 4023 � 310

20 2 12 548 � 34 9:1 4978 � 374

32 2 14 755 � 32 10:3 7777 � 347

40 2 15 871 � 41 11:2 9799 � 602

f 100
Rosen 4 2 8 485 � 47 [0:80] 4:7 647 � 67 [0:95] 3:5 2269 � 254 [0:85]

8 2 10 910 � 71 [0:80] 6:5 2602 � 264 [0:85] 2:3 5883 � 727 [0:90]

10 2 10 1006 � 99 [0:95] 7:6 3727 � 300 [0:90] 2:1 7644 � 765 [0:95]

16 2 12 1834 � 117 [0:90] 8:6 15781 � 1360 [0:85]

16 4 12 7162 � 1112 [0:95] 2:2 15781 � 1360 [0:85]

20 2 12 2533 � 361 [0:90] 10:4 26366 � 3249 [0:85]

32 2 14 4628 � 144 [0:95] 13:2 60948 � 2668 [0:90]

40 2 15 6527 � 226 [0:95] 15:2 99346 � 3502 [0:85]

f 10000
Rosen 4 2 8 1333 � 238 [0:95] 5:3 2637 � 715 [0:90] 2:7 7032 � 944 [0:90]

8 2 10 2745 � 246 6:6 10287 � 468 [0:85] 1:8 18216 � 1683 [0:95]

10 2 10 5552 � 429 [0:75] 4:5 16280 � 843 [0:85] 1:5 25037 � 3160 [0:95]

16 2 12 10583 � 398 [0:80] 5:9 62903 � 4441 [0:90]

20 2 12 14749 � 431 [0:90] 6:3 93545 � 6566 [0:95]

f 100
Rosen1

2
4 2 8 544 � 48 [0:70] 4:8 909 � 75 [0:75] 2:9 2620 � 342 [0:95]

8 2 10 1008 � 67 [0:80] 7:0 2549 � 262 [0:95] 2:8 7006 � 762

10 2 10 1299 � 178 [0:95] 10:4 4685 � 518 [0:90] 2:9 13517 � 1288 [0:75]

16 2 12 3346 � 223 [0:90] 9:9 33154 � 3568 [0:90]

20 2 12 6797 � 878 [0:85] 10:0 68136 � 5363 [0:80]

32 2 14 20751 � 2116 [0:85] 14:6 302039 � 40915 [0:65]

f 10000
BlockElli 4 2 8 226 � 11 6:6 1500 � 89

8 2 10 392 � 14 8:2 3220 � 196

10 2 10 472 � 17 8:7 4093 � 173

16 2 12 670 � 37 9:8 6566 � 284
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Figure 4.2: Success performance SP1 over the dimension of the problem on f �
Rosen, with

� = 1, 102 and 104 for dimensions in between 4 and 40. The dimension of the sub-functions
nM equals 2.
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4.3 Evaluation of p-sep lmm-CMA

clear that exploiting the partial separability within CMA- ES with meta-models improves

the performance of CMA-ES with a speedup in-between 4:5 and 15.

For element functions with �xed nM equal to 2, p-sep lmm-CMA o�ers an increasing

speedup with increasing dimensions of the problem as shown in Fig. 4.2. The algorithm

p-sep lmm-CMA performs better with increasing dimensions since it breaks the curse of

dimensionality when building the meta-model: for a problemof dimensionn, building the

meta-model is equivalent to building N meta-models of dimensionnM .

Using greater number of parameters for each separated meta-model decreases the

speedup obtained by the approach. Onf 100
Rosen for a dimension 16, the speedup, decreases

from 8:6 to 2:2 for corresponding values ofnM respectively equal to 2 and 4.

At each iteration at least nb function evaluations are performed on the true function in

order to check the accuracy of the meta-models. The parameter nb is set to max[1, ( �
10)].

This setting is introduced in order to be able to add a signi�cant amount of information

at each iteration by enriching the training set. It is in part icular important when dealing

with large population sizes. For increasing population sizes� , i.e., for increasing values of

� , we need an increasing number of points evaluated at each iteration cycle to be able to

have a signi�cant impact on the ranking of population.

Moreover, a better setting of nb would also depend on the dimension of the problem

as for increasing dimensions, i.e., for increasing numbersk (or ki ) of points to build the

meta-model, we need an increasing number of points evaluated at each iteration cycle to

be able to change signi�cantly the meta-model and then the ranking of the population.

The minimum number of evaluations performed at each iteration nb limits the speedup

that can be achieved by our approach. We show that for some test functions, we are able

to reach this maximum speedup of�=n b. For f 100
Rosen with n = 40 and for f 100

Rosen1
2

with

n = 20, we reach a speedup equal to� sincenb is equal to 1 in these tests.

Since we reach the maximal speedup allowed by the approach on the Rosenbrock

function, we asked ourselves whether we can further reduce the number of overall function

evaluations needed to reach a target by increasing the population size � . The default

population size denoted� default value equals 4+b3� ln(n)c. Fig. 4.1(a) shows the in
uence

of the population size on the performance of p-sep lmm-CMA. We perform 20 independent

runs on f 100
Rosen for dimensionsn = 4, 8, 10 and 16, andnM = 2 with f stop = 10 � 10. The

tested population sizes are written as� = 
 � � default where 
 is in-between 1 and 10.

Tests were performed with similar parameters:ninit initialized to � default and nb equal to

max[1, ( � default
10 )]. A training set containing ki elements randomly sampled is loaded at the

beginning of every run in order to use the meta-models from the �rst generation, for all

the tests. Results show that� = 4 � � default gives the minimum number of evaluations to

reach f stop and improves the performance by a factor between 1:5 and 2 over the default
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Figure 4.3: Average speedup with respect to CMA-ES to reachf stop with a varying number
of points used to build the meta-modelki = � � ki; min where ki; min = n i (n i +3)

2 + 1. Each
point corresponds to 20 runs performed.

population size. For 
 > 4, the performance of p-sep lmm-CMA stagnates. We observe in

Fig. 4.1(b) that the number of evaluations per generation increaseslinearly for increasing

population sizes.

4.3.3 Optimal bandwidth for building partially separated m eta-models

Let us consider an element functionf i with a number of element variablesni . The optimal

bandwidth depends on the number of pointski used to build the meta-model. As shown

in Section 4.2, ki must be greater or equal to ki; min = n i (n i +3)
2 + 1. In this section,

we investigate the in
uence of the choice ofki on the performance of p-sep lmm-CMA.

We perform 20 independent runs onf �
Rosen for � = 1, 102, 104 and f 100

Rosen1
2

for di�erent

dimensions in-between 4 and 40. Results are shown in Fig.4.3, where ki is written as

ki = � � ki; min for � = 1, 2, 3, 4 and 5. We �nd that for 14 tests over the 23 tests

performed on the test functions with di�erent dimensions, a good estimate of the optimal

� is equal to 2. Moreover, for the other tests, choosing a valueof � equal to 2 is a
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4.4 Summary and discussions

reasonable choice since it o�ers a speedup close to best one found, except for f 100
Rosen with

dimensions 10 and 16.

4.3.4 Computational cost

The internal cost of the optimization procedure is dominated by the evaluation of the

objective function and the construction of the meta-model.

For p-sep lmm-CMA, building a meta-model consists in �nding in the training set

the ki sorted nearest points to the point to be evaluated and then solving Eq. (4.5). Let

us consider a training set with a sizem. To �nd and sort the best ki points, we begin

by sorting the �rst ki points of the training set using a heapsort algorithm which has

a complexity of ki logki . Then, we compare the other (m � ki ) points with the selected

ki points until �nding its position which adds at worst a comple xity of ( m � ki ) � ki .

Thus, �nding and sorting the best ki points needsO(ki logki + ( m � ki )ki ) = O(m � ki ).

According to Section 4.3.3, the optimal bandwidth ki is equal to ni (ni + 3) + 2. Thus,

�nding and sorting the points to evaluate the meta-model needs O(m � n2
i ). Moreover,

solving Eq. (4.5) is dominated by a ki � ki matrix inversion and thus has a complexity of

n6
i .

Let us denote by Ne the number of evaluations on the true objective function andby

ce the complexity of one single objective function evaluation. Let us denote also byNm

the number of built meta-models. The complexity of p-sep lmm-CMA is then equal to:

Ne ce + Nm n2
i (m + n4

i ).

4.4 Summary and discussions

In this chapter we have investigated the exploitation of partial separability of the objective

function to enhance the performances of CMA-ES coupled withlocal meta-models. We

have de�ned p-sep lmm-CMA, a new variant of CMA-ES with meta-models for partially

separable functions. In this variant, we build separate meta-models for each element

function, instead of building one meta-model for the whole objective function. We have

shown that the speedup of p-sep lmm-CMA with respect to CMA-ES is in-between 4:5

and 15 for the tested functions. For f 100
Rosen with a dimension 40 and for f 100

Rosen1
2

with a

dimension 20, we reach a speedup equal to� which corresponds to the theoretical maximum

speedup allowed by the approach. In general, the maximum speedup that can be achieved

equals�=n b as at leastnb evaluations on the true function are performed at each iteration.

We have shown on the standard Rosenbrock function that increasing the population size

allows to decrease signi�cantly (by a factor between 1:5 and 2) the number of evaluations
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4.4 Summary and discussions

to reach a given target. The optimal population size on the Rosenbrock function is shown

to be equal to 4 � � default .
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Chapter 5

Partially separated meta-models

with CMA-ES for well placement

optimization

This chapter is based on the paper [25]. In the well placement optimization problem, the

objective function (e.g., the NPV) can usually be split into local components referring

to each of the wells that moreover depends in general on a smaller number of principal

parameters, and thus can be modeled as a partially separablefunction. In this chapter,

we propose to apply p-sep lmm-CMA (de�ned in Chapter 4) on the well placement prob-

lem, i.e., to exploit the partial separability of the object ive function when using CMA-ES

coupled with meta-models, by building partially separated meta-models. Thus, di�er-

ent meta-models are built for each well or set of wells, whichresults in a more accurate

modeling. The approach is shown on the PUNQ-S3 case.

This chapter is structured as follows. Section5.1 de�nes p-sep lmm-CMA for the

well placement problem. In Section5.2, we demonstrate the contribution of the proposed

approach in reducing the number of reservoir simulations onthe synthetic benchmark

reservoir case PUNQ-S3 [54].

5.1 p-sep lmm-CMA for well placement optimization

In this chapter, we propose to build a meta-model for each well or set of wells to be placed,

instead of one meta-model for all the wells.

In order to apply p-sep lmm-CMA (de�ned in Chapter 4), we need to de�ne the di�erent

element functions and their corresponding dependencies. As mentioned in Chapter 4, for

a given partially separable function, there exists \theoretically" an in�nite number of

ways to de�ne the element functions and mapping functions. However in this chapter, we

66



5.1 p-sep lmm-CMA for well placement optimization

propose to investigate building one meta-model for each well (already drilled and to be

drilled) approximating its NPV.

Let us consider a reservoir case with a numberNw of wells to be drilled. We sup-

pose that we have alsoNwd wells already drilled. We denote by (NPVi )1� i � Nw the NPVs

corresponding to the wells to be drilled and by (NPVi )(Nw +1) � i � (Nw + Nwd ) the NPVs cor-

responding to the wells already drilled.

Therefore, the objective function corresponding to the NPV of the �eld is equal to

the sum of the di�erent element functions corresponding to the NPV of each well, i.e.,

(NPV i )1� i � (Nw + Nwd ) .

Let us denote by f m1; � � � ; mNw g the number of parameters de�ning the position of

the wells to be placed, and by (W j 2 Rm j )1� j � Nw these parameters. Thus, the NPV, as

well as the NPVs corresponding to each well depends on (W j )1� j � Nw :

NPV =
Nw + NwdX

i =1

NPV i ; (5.1)

NPV
�
(W j )1� j � Nw

�
=

Nw + NwdX

i =1

NPV i
�
(W j )1� j � Nw

�
: (5.2)

As re
ected in the previous equation, in general, the NPVi of a given well i depends

on all the wells1, however, in order to use the p-sep lmm-CMA, we will assume that the

NPV i of a well essentially depends on a fewer number of parameters.

In this chapter, we will assume that the NPVi of a given well essentially depends on

the considered well and that the impact of other wells is represented only by distances

between the considered well and the others. For each well denoted by i , we de�ne the

following parameters:

� dpi : the minimum distance between the welli and the other producers;

� di i : the minimum distance between the welli and the other injectors.

The minimum distance between two wells is de�ned by the minimum Euclidean distance

between the two trajectories of the considered wells. In order to calculate the meta-

model, we now suppose that the NPVs of the wells to be drilled,i.e., (NPV i )1� i � Nw can

be approximated using only the parameters de�ning the location and trajectory of the

considered well and its corresponding dpi and dii . The NPV of the well already drilled,

i.e., (NPV i )(Nw +1) � i � (Nw + Nwd ) can be approximated using only two parameters: dpi and

di i .
1Except when dealing with non-communicating reservoir regio ns, and if each of the wells has to be

placed in one of these regions
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5.2 Application of p-sep lmm-CMA on the PUNQ-S3 case

Therefore, the built meta-model ^NPV can be written as follows:

^NPV
�
(W j )1� j � Nw

�
=

NwX

i =1

^NPV i (W i ; dpi ; di i )| {z }
2 Rm i � R� R

+
Nw + NwdX

i = Nw +1

^NPV i (dp i ; di i ) ; (5.3)

where ^NPV i denotes the meta-model approximating NPVi .

After that, to incorporate the built meta-model ^NPV into CMA-ES, we use the approx-

imate ranking procedure as described in the variant nlmm-CMA2 de�ned in Section 2.3.3.4

with only one di�erence related to the acceptance criterionof the meta-model: in this case,

we use a less conservative criterion in which the meta-modelis accepted if it succeeds in

keeping only the best well con�guration unchanged.

In the next section, we will see how the approach can be applied for a well placement

problem and the number of function evaluations that can be saved in the optimization

process.

5.2 Application of p-sep lmm-CMA on the PUNQ-S3 case

This section shows an application of p-sep lmm-CMA on the benchmark reservoir case

PUNQ-S3 [54]. This application is compared to the CMA-ES optimizer and to the variant

of CMA-ES with meta-models (nlmm-CMA) 1. As shown in previous examples, the model

contains 19� 28� 5 grid blocks. The elevation of the �eld is shown in Fig.3.2. An injection

well denoted I1 is already drilled. Fig. 5.1 represents the SoPhiH map which represents

the distribution of the hydrocarbon pore volume over the nlayers layers, and de�ned by
n layersP

k=1
(Hk � � � So), where Hk is the gross thickness of the layerk, So is the oil saturation

and � is the porosity. The location of I1 is also shown in Fig.5.1, where I1 is an inclined

well drilled in the layer 3.

We propose to drill 3 unilateral producers (denoted P1, P2 and P3) to maximize the

NPV. The dimension of the problem is then equal to: 6� 3 = 18. A producer limit

bottomhole pressure is �xed to 150 bar, and an injector limit bottomhole pressure is �xed

to 320 bar. A maximum length of 1000 m is imposed on the 3 producers to be drilled.

The population size� is set, for all the methods used, to 60. The di�erent optimizers are

run with a stopping criterion corresponding to a maximum number of reservoir simulations

equal to 1000. Other parameters of the optimization method were set to default settings.

As shown in Section5.1, the built meta-model for the element functions (NPVi ) i =1 ;��� ;3

will only depend on eight parameters(compared to eighteen if we would use all the original

variables), and the meta-model for the element function NPV4 will only depend on a single

1 In this chapter, we use the variant nlmm-CMA 2 (de�ned in Section 2.3.3.4), as used in Chapter 3.
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5.2 Application of p-sep lmm-CMA on the PUNQ-S3 case

Figure 5.1: The SoPhiH map with the location of the injector already drilled I1.
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Figure 5.2: The mean value of NPV (in US dollars) for well placement optimization
using CMA-ES with partially separated meta-models denotedp-sep lmm-CMA (solid line),
CMA-ES with meta-models denoted lmm-CMA (dash line) and CMA-ES (4 ). Ten runs
are performed for each method.

parameter1:

^NPV( P1; P2; P3) = ^NPV 1(P1; dp1; di1) + ^NPV 2(P2; dp2; di2)
+ ^NPV 3(P3; dp3; di3) + ^NPV 4(dp4) ;

(5.4)

where P i 2 R6 denotes the vector of parameters de�ning the position of thewell Pi .

The number of points used to build the partially separated meta-models, is chosen to be

equal to 90 (according to Section4.3.3), and the meta-model is used when the training set

(storing the performed evaluations) contains at least 150 elements, i.e., before performing

150 simulations, all the points are evaluated with the true objective function, and the

partially separated meta-model is not used.

Fig. 5.2 shows the average performance of the proposed method, i.e.,CMA-ES with

partially separated meta-models (p-sep lmm-CMA). Resultsare reported together with

those obtained using CMA-ES and CMA-ES with meta-models (nlmm-CMA). The per-

formance of each method is evaluated on ten independent runs, where for each run, we

report the best obtained NPV value after each generation. These values correspond to

true values of the objective function, i.e., obtained with a reservoir simulation2.

1Here, we have only one single parameter dpi , since the only injector we have is the considered injector.
2The CMA-ES with meta-models method ensures by construction that at least each generation the best
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5.2 Application of p-sep lmm-CMA on the PUNQ-S3 case

During the �rst iterations of the optimization, the perform ance of the 3 used algorithms

is equivalent. For p-sep lmm-CMA, the meta-model is used if the training set contains

at least 150 performed reservoir simulation results. Therefore, at the beginning of the

optimization, the meta-model is not used which justi�es the equivalent results for the

three optimizers.

For nlmm-CMA, building the meta-model requires more reservoir simulations com-

pared to partially separated meta-models. Non-partially separated meta-models depend

on 18 parameters. In the performed runs, the meta-model is built using 300 performed

reservoir simulations (k = 300) and used when the training set contains at least 350 ob-

jective function evaluations. Hence, before reaching 350 simulations, nlmm-CMA and

CMA-ES are equivalent.

Except at the beginning of the optimization in which all the optimizers are equiva-

lent, it is clear that CMA-ES with partially separated meta- models outperforms the other

methods, when considering a restricted budget of 1000 reservoir simulations. The context

of restricted budget of simulations is imposed to consider real applications in which the

number of simulations is generally limited to several hundreds or at most a few thousands,

due to the CPU time required by a simulation.

For a given number of reservoir simulations equal to 600, p-sep lmm-CMA is able to

�nd a well con�guration with an NPV equal to $1 :26 � 1010. However, CMA-ES reaches

only an NPV equal to $1:17� 1010 and nlmm-CMA o�ers only a maximum NPV equal to

$1:21� 1010. As a conclusion, using a restricted budget of reservoir simulations, exploiting

the partial separability allows reaching greater NPV values compared to CMA-ES and

nlmm-CMA.

To reach a value of NPV equal to $1:20� 1010, CMA-ES with partially separated meta-

models requires 370 reservoir simulations. However, to reach the same value of NPV, using

standard meta-models requires 510 reservoir simulations,and when using CMA-ES without

meta-models, we need 930 reservoir simulations. Therefore, using partially separated

meta-models saves 60% of the number of reservoir simulations compared to CMA-ES

(without meta-models). The contribution of exploiting the partial separability is shown

when comparing p-sep lmm-CMA with nlmm-CMA. Exploiting the partial separability

of the objective function saves 28% of the number of reservoir simulations compared to

CMA-ES with standard meta-models approach.

Fig. 5.3 shows one of the obtained solution well con�gurations, with an NPV value

equal to $1:38� 1010. Although, each of the performed runs proposes in general a di�erent

solution, the majority of the solution well con�gurations a re located in the same regions.

point is evaluated with the true objective function, i.e., e ach iteration, the best obtained well con�guration
is evaluated using a reservoir simulation.
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5.2 Application of p-sep lmm-CMA on the PUNQ-S3 case

Figure 5.3: The SoPhiH map with the location of the injector already drilled I1, and
solution producers (P1, P2 and P3).
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5.3 Summary and discussions

Fig. 5.4 shows a typical optimization process performed using CMA-ES with separated

meta-models, i.e., with p-sep lmmCMA. Fig. 5.4 shows the evolution of the NPV (the best

at each generation and the overall best) as well as the evolution of the parameters encoding

the three wells.

5.3 Summary and discussions

In this chapter we have shown on the synthetic benchmark reservoir case PUNQ-S3 that

using p-sep lmm-CMA algorithm leads to an important reduction of the number of reservoir

simulations (around 60%) compared to the optimizer CMA-ES.The important savings in

the number of reservoir simulations are justi�ed by the reduced number of parameters

required to build the meta-model of the element functions.

The proposed approach exploiting the partial separabilityof the objective function can

also be combined with any other stochastic optimizer, in order to reduce the computational

cost of the optimization.
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Figure 5.4: The evolution of the well placement optimization process on the PUNQ-S3
case using CMA-ES with partially separated meta-model, i.e., p-sep lmmCMA. The three
�gures depict one of the ten performed runs of p-sep lmm-CMA.In (a), the evolution of
the best overall NPV value (in red) and the best NPV obtained each generation (in blue)
is depicted. In (b), the evolution of the well trajectory par ameters, where each well is
plotted using a di�erent color representing three group of parameters is depicted. The
group of angles encoding each well is shown in the lower part of the �gure (values below
10). The group of well lengths is shown in the intermediate part of the �gure (the three
curves with values around 500). The group of Cartesian coordinates of the wells is shown
in the upper part of the �gure. In (c) the evolution of the well trajectory parameters on
the log-scale is depicted.
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Chapter 6

Well placement optimization

under geological uncertainty

In the well placement problem, as well as in many other �eld development optimization

problems, geological uncertainty is considered as a key source of risk a�ecting the viability

of �eld development projects. The problem arises when we have multiple possible geological

realizations of the reservoir. The multiple realizations are generated using geostatistical

techniques and in general deemed equiprobable. Let us consider an objective function to

optimize denoted by f and a numberNr of geological realizations denoted by (Ri ) i =1 ;��� ;Nr
.

The key issue here is that for each scenario, i.e., for each well con�guration when optimizing

well placement, we haveNr possible values of the objective function, one for each realization

where each will be denoted for a given well con�gurationx by f (x ; Ri ) corresponding to

a given realization Ri .

This chapter addresses the problem of how to de�ne the objective function to opti-

mize when dealing with uncertainty for well placement and whether we should perform

evaluations on all the possible realizations in order to de�ne the objective function.

This chapter is structured as follows. Section6.1 provides a detailed literature review

for well placement optimization under geological uncertainty. Section 6.2 de�nes a new

approach to handle geological uncertainty for well placement using the neighborhood. In

Section 6.3, we demonstrate the contribution of the proposed approach in capturing the

geological uncertainty and in reducing the number of reservoir simulations on the synthetic

benchmark reservoir case PUNQ-S3 [54].

6.1 Optimization under uncertainty: a literature review

The problem of optimization under geological uncertainty shares many similarities with

the problem of optimizing noisy functions.
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6.1 Optimization under uncertainty: a literature review

A function f : Rn ! R is said to be noisy if the only measurable value off on

x 2 Rn is a random variable that can be written as F(f(x); z) where f is a time-invariant

function and z is a noise often assumed to be normally distributed with a zero mean and

variance � 2, and denoted by N(0; � 2). The noise can be also de�ned di�erently (e.g.,

Cauchy distributed), and can be either additive or multipli cative. A common approach to

optimize noisy functions is to estimate the �tness function by the expected value de�ned

as follows:

f (x) =
Z + 1

�1
[F(f(x); z)] p(z) dz ; (6.1)

where p(z) is the probability density function of the noise. Thus, a common way to ap-

proximate the expected �tness function is by averaging overa number of random samples:

f (x) '
1

Ns

NsX

i =1

[F(f(x); zi )] ; (6.2)

where Ns denotes the number of samples called also the sample size.

In the context of �eld development optimization under geological uncertainty, we are

dealing with a �nite number of realizations, and the measurable �tness values correspond

to the values f (x ; Ri ) i =1 ;��� ;Nr . Therefore, the objective function corresponds in generalto:

f (x) =
1

Nr

NrX

i =1

[f (x ; Ri )] : (6.3)

However due to the expensive computational e�ort required to evaluate the objective

function over one realization Ri , the expected �tness function is often approximated in

a way to use a fewer number of samples instead of using all the realizations. Thus, one

common way to approximate the expected objective function here is again by averaging

over a number of samplesNs � Nr .

In the following, we brie
y review the existing approaches often used in optimization

under uncertainty. On the one hand we review the approaches de�ned by the optimiza-

tion community mainly to cope with noise but that can be extended to the di�erent �eld

development optimization under geological uncertainty. On the other hand we review the

approaches already applied in the petroleum community to cope with geological uncer-

tainty.

6.1.1 Optimization community

This section summarizes the di�erent ways to handle uncertainty within the evolution-

ary optimization community. A detailed overview of the existing approaches addressing

uncertainties in evolutionary optimization is presented in [84]. Let us suppose in this sec-
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6.1 Optimization under uncertainty: a literature review

tion then that the function f to optimize is a noisy function. The approaches to handle

uncertainty can be mainly divided into two categories.

6.1.1.1 Explicit Averaging

Using mean of several samples for each individual The simplest and the most

common way to address the uncertainty issue is to de�ne the objective function for each

point by averaging over a number of samples (Eq. (6.2)). Increasing the sample sizeNs is

equivalent to reducing the variance of estimating the objective function.

In general, the objective function is de�ned using an averaged sum of aconstant sample

size. In this case, for each single evaluation of the expected objective function, one needs

to evaluate the objective function on Ns samples.

In the context of costly objective functions, depending on the number of samples, there

is a compromise between the computational cost of the optimization and the accuracy of

the estimation of the objective function. Increasing (respectively, decreasing) the number

of samples tends to improve (respectively, worsen) the accuracy of the estimated objective

function, but on the other hand it tends also to increase (respectively, reduce) the com-

putational cost of the optimization. The idea of using an adapted sample sizeduring the

optimization was �rst proposed in [ 3, 4]. In [4], it is shown that adapting the number of

samples performs better than using constant sample sizes, and it is suggested to increase

the sample size with the generation number and to use a highernumber of samples for

individuals with higher estimated variance. An other way to adapt the sample size is

based on an individual's probability to be among a number of the best individuals [121].

Recently, an other approach relying on the rank based selection operators was proposed in

[73]. In [76], an adaptive uncertainty handling procedure is proposed,based on selection

races [93].

Using the neighborhood for each individual An alternative approach to de�ning

the objective function as an averaged sum of a number of samples (constant or adapted) is

to de�ne the objective function using the neighborhood points already evaluated [106, 29,

28, 27, 112, 113]. The general idea has �rst been suggested in [27] in which it is suggested

to estimate the �tness as a weighted average of the neighborhood with a linearly decreasing

weight function up to some �xed maximum distance. In [106, 28, 29], a locally weighted

regression is used for estimation. This technique is shown to be a good solution to improve

the accuracy of the estimated objective function without increasing the computational cost.
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6.1.1.2 Implicit Averaging

When increasing the population size, the probability to obtain similar points is higher.

Thus, a way to cope with noise is to simply increase the population size [52]. In this case,

with a large population size, the in
uence of noise on a givenpoint can be reduced due to

the evaluations on other similar points. Con
icting conclusions [52, 7, 8, 60] were shown

in the literature when comparing explicit averaging and implicit averaging.

6.1.2 Petroleum community

Several studies in the literature have addressed the problem of optimization under geolog-

ical uncertainty not only on the well placement problem but also on other �eld develop-

ment optimization problems. Optimization under geological uncertainty in the petroleum

community considers always a �nite number of realizationsNr and models the objective

function following Eq. (6.3). In the following we brie
y review the approaches to handle

uncertainty in optimization within the petroleum communit y.

To the best of our knowledge, all the studies that consider a number Nr multiple possi-

ble realizations of the reservoir, use the approach \Using mean of several samples for each

individual". Moreover, all the studies in the literature, e xcept the approach proposed in

[126] that will be detailed later, perform Nr reservoir simulations for every single objective

function evaluation. Although sharing this common similarity, the proposed approaches

introduce di�erent formulations of the objective function .

In [116, 115, 103, 35], the objective function is formulated as the expected value of

the net present value over all the realizations, as shown in Eq. (6.3). In [35], the authors

tackles the problem of closed-loop production optimization using the optimizer EnOpt

[37, 36] which is applied to the geological model ensemble updated by either EnKF [ 49] or

EnRML [ 62].

In [129, 2, 5], multiple geostatistical realizations of the reservoir are considered in the

formulation of the objective function:

f (x) =
1

Nr

NrX

i =1

[f (x ; Ri )] + r� ; (6.4)

wherer 2 R is the risk factor and � is the standard deviation of f on x over the realizations,

de�ned as follows:

� =

vu
u
t 1

Nr

NrX

i =1

(f (x ; Ri ) � h f (x)i )2 ; (6.5)

where:

hf (x)i =
1

Nr

NrX

i =1

[f (x ; Ri )] : (6.6)
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The term r� in Eq. (6.4) is used to take into account the decision maker's attitude

toward risk. A positive r indicates a risk-prone attitude, a negative r indicates a risk-

averse attitude and anr = 0 indicates a risk-neutral attitude. This formulation is c lose to

the formulations de�ned in [ 64, 104] using utility functions.

In [10], a more general formulation of the objective function is de�ned as follows. A

genetic algorithm is used, in which at each iteration only a prede�ned percentage of the

individuals, chosen according to a set of scenario attributes, is simulated. For the simulated

individuals, the authors in [10] propose to perform againNr reservoir simulations for each

well con�guration x in order to evaluate the values of f (x ; Ri ) on all realizations and

then to derive the cumulative distribution function cdf f f g on x. From this distribution,

the values of f 10(x), f 50(x) and f 90(x) are determined. The valuef 10 on x denotes the

value of f on x corresponding to a probability of 0:1, i.e., there is a probability 0:1 that

the value of f on x will be less than f 10 on x. The value f 10 on x can be written as

cdff f g� 1(0:1). The values f 50(x) and f 90(x) are de�ned in a way similar to f 10(x). The

objective function is then formulated as follows:

f (x) = r10f 10(x) + r50f 50(x) + r90f 90(x) ; (6.7)

where the parametersr10, r50 and r90 are de�ned according to the decision maker's attitude

toward risk. A risk-neutral attitude corresponds to the case where (r10, r50, r90) = (0,

1, 0) which may be similar to the de�nition in Eq. ( 6.3). However, a risk-averse investor

tends to increase the value ofr10, and a risk-prone investor tends to increase the value of

r90.

Another way to formulate the objective function under geological uncertainty is to

optimize the worst case scenario using a min-max problem formulation [30]. This approach

is used in [5] to optimize smart well controls.

The only approach selecting only a number of samples insteadof all the realizations

is de�ned in [126]. The approach is based on the so-called retrospective optimization

[34, 127] and divides the problem as a number of subproblems, where the initial solution

of the current subproblem is simply the returned solution from the previous subproblem.

Each point to be evaluated is approximated by the average over a number of realizations,

where the number of selected realizations is increased fromsubproblem to subproblem.

The approach implies then de�ning a sequence of samples. Theexample shown in [126]

considers a well placement problem on 104 permeability and porosity realizations and

therefore de�nes subproblems with a sequencef 20; 15; 10; 5g of iterations and a sequence

f 1; 5; 16; 21; 104g of sample sizes. Although the authors suggest further testing of the

overall framework to determine the appropriate sequence ofsample sizes, an answer can
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be the work on adapting automatically the sample sizes already proposed in [121, 73] but

still demanding in the number of objective function evaluations.

6.2 Well placement under uncertainty with CMA-ES using

the neighborhood

This section proposes a new approach to handle geological uncertainty for well placement.

The proposed approach focuses on reducing the uncertainty by using the objective function

evaluations of already evaluated individuals in the neighborhood. In this section, we

propose then to apply an approach based on using the neighborhood for each individual.

We de�ne a CMA-ES optimizing an estimated �tness de�ned on a given point using a

weighted average of a small number of evaluations on the considered point and a number of

evaluations already performed on the neighborhood (up to some �xed maximum distance)

with a decreasing weight function depending on the Mahalanobis distance with respect

to the covariance matrix C de�ned by CMA-ES. Although considering a Mahalanobis

distance with respect to � 2C is suspected to be a better choice (since we are using a �xed

maximum distance to select the neighbors), it has not been tested in this thesis.

Let us consider a well placement optimization problem with anumber of wells (pro-

ducers and/or injectors) to be placed. Let us denote byn the dimension of the problem,

i.e., the number of parameters needed to encode the wells to be placed. The wells to be

placed can be parameterized as de�ned in Section3.1.2. Without loss of generality, we will

consider in the sequel the NPV as the objective function thatwe aim to optimize, unless

otherwise explicitly stated. Thus, we want to �nd a vector of parameter pmax;R 2 Rn such

that:

NPV R (pmax;R ) = max
p

�
NPV R (p)

	
; (6.8)

where NPVR is the averaged sum of the NPVs of a given well con�guration represented

by a vector of parametersp over all the realizations:

NPV R (p) =
1

Nr

NrX

i =1

NPV( p; Ri ) : (6.9)

In the proposed approach, we de�ne a so-called estimated objective function that will be

optimized instead of the true objective function NPVR de�ned in Eq. ( 6.9). The estimated

function will be denoted in the sequel by NPVE . Thus in the proposed approach, contrary

to what is shown in Eq. (6.8), we will try to �nd the vector of parameter pmax;E 2 Rn

such that:

NPV E (pmax;E ) = max
p

�
NPV E (p)

	
: (6.10)
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6.2 Well placement under uncertainty with CMA-ES using the ne ighborhood

The simplest case in which solving Eq. (6.8) is equivalent to solving Eq. (6.10), is when

NPV E is a monotonic transformation of NPVR . However in this thesis, we do not aim to

de�ne an estimated objective function NPVE such that we can prove that Eq. (6.10) is

equivalent to Eq. (6.8). Our aim is that by solving Eq. ( 6.10), we can propose good points

with high NPV R values (see below for the de�nition of NPVE ).

To optimize NPV E , we propose to use the CMA-ES optimizer. During the optimization

process, we build a database {called also training set{ in which after every performed

reservoir simulation for a given point x on a realization R, we store the point x together

with its corresponding evaluation NPV(x; R).

It remains now to de�ne the estimated objective function NPV E for a given point (well

con�guration) denoted by a vector of parameters p:

1. At the beginning of the optimization and until reaching a given number Nsim of

performed reservoir simulations, we de�ne a number of reservoir simulations N1
s (�

Nr ) to be performed onp, and a set ofN1
s randomly drawn integers

�
j 1; � � � ; j N1

s

	
�

f 1; � � � ; Nrg. We perform then N1
s reservoir simulations on p on the realizations

(Ri ) i = j 1 ;��� ;j N 1
s
, and we add each of the obtained simulation results (p; NPV( p; Ri ))

to the training set.

The estimated objective function on the point p reads as follows:

NPV E (p) =
1

N1
s

N1
sX

i =1

NPV( p; Rj i ) : (6.11)

In this case, the evaluation of NPVE requires a numberN1
s of reservoir simulations.

2. If more than Nsim reservoir simulations are performed, we perform the following

steps.

We begin by de�ning a number of reservoir simulationsN2
s (� Nr ) to be performed on

p, and a set of randomly drawn integers
�

j 1; � � � ; j N2
s

	
� f 1; � � � ; Nrg. We perform

then N2
s reservoir simulations on p on the realizations (Ri ) i = j 1 ;��� ;j N 2

s
, and we add

each of the obtained simulation results (p; NPV( p; Ri )) to the training set.

We also de�ne a maximum number of neighbor pointsNn;max 2 N that can be used

in the de�nition of NPV E . We select then at most theNn;max nearest points to p

from the training set. Here, we select only the points with a distance less or equal

to a given �xed distance of selection denoted bydmax . We denote byNn the number

of selected points and by (x i )1� i � Nn
the selected points1. The distance used for this

1For each selected point x i for the training set, we have a corresponding evaluation on a given realiza-
tion. For the sake of notation simplicity we will denote the c orresponding stored evaluation by NPV( x i ; R i )
although it is not necessarily evaluated on realization R i .
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6.3 Application of CMA-ES using the neighborhood approach on the
PUNQ-S3 case

purpose is the Mahalanobis distance with respect to the current covariance matrix

C of CMA-ES de�ned for two given points z1 2 Rn and z2 2 Rn by dC (z1; z2) =q
(z1 � z2)T C � 1 (z1 � z2).

The estimated objective function on p reads as follows:

NPV E (p) =
1
S

2

4
N2

sX

i =1

(pi NPV( p; Rj i )) +
NnX

i =1

(~pi NPV( x i ; Ri ))

3

5 ; (6.12)

where pi = 1, ~pi =
�

1 �
�

dC (x i ;p )
dmax

� 2
� 2

and S =
P N2

s
i =1 pi +

P Nn
i =1 ~pi . In this case, the

evaluation of NPVE requires only a numberN2
s of reservoir simulations.

The parameters Nsim, N1
s, N2

s and Nn;max are not meant to be in the users' choice.

Typical values are Nn;max = 2 � Nr , Nsim = 2 � Nr , N1
s = 1 and N2

s = 1. A users' choice

is the maximum distance of selection for the neighborhooddmax , and which is a problem-

dependent constant. An investigation of the impact of the choice of dmax will be brie
y

shown in the next section through some examples.

An estimated standard deviation can also be included in the formulation of the esti-

mated objective function NPVE . In this case, the estimated objective function, which will

not be tested in this chapter, can be formulated as follows:

NPV E (p) = mE + r� E (p) ; (6.13)

where:

mE =
1
S

2

4
N2

sX

i =1

(pi NPV( p; Rj i )) +
NnX

i =1

(~pi NPV( x i ; Ri ))

3

5 ; (6.14)

and

� E (p) =

vu
u
u
t

1
S

2

4
N2

sX

i =1

�
pi (NPV( p; Rj i ) � mE )2

�
+

NnX

i =1

�
~pi (NPV( x i ; Ri ) � mE )2

�
3

5 : (6.15)

6.3 Application of CMA-ES using the neighborhood ap-

proach on the PUNQ-S3 case

In this section, we apply the CMA-ES using the neighborhood approach {that we will

call in the sequel the \using the neighborhood" approach{ onthe well placement prob-

lem on the benchmark reservoir case PUNQ-S3 [54]. As shown in previous examples in

Chapters 3 and 5, the model contains 19� 28 � 5 grid blocks, and the elevation and the

geometry of the �eld is shown in Fig. 3.2. We consider 20 geological realizations that will

82



6.3 Application of CMA-ES using the neighborhood approach on the
PUNQ-S3 case

0 1 2 3 4 5 6 7

x 10
4

4

5

6

7

8

9

10

11
x 10

9

Number of reservoir simulations

N
P

V
 (

T
ru

e 
va

lu
e)

Figure 6.1: The evolution of the well placement optimization process on the PUNQ-S3 case
using CMA-ES with the \using the mean of samples" approach. The best mean value of
the NPV over the 20 possible realizations, i.e., NPVR is shown. Three runs are performed.

be again denoted by (Ri ) i =1 ;��� ;20. Each realization de�nes one possible porosity map and

one possible permeability map. In these examples, the number of realization Nr is then

equal to 20.

We plan to drill two wells: one unilateral injector and one unilateral producer. The

dimension of the problem is then equal to 12(= 6� 2). In all the following applications,

we use CMA-ES as an optimization algorithm with a population size equal to 40.

As a reference approach, we perform three independent runs in which we optimize

the objective function NPV R as de�ned in Eq. (6.9). In this reference approach, we

perform for each well con�guration to be evaluated 20 reservoir simulations. The reference

approach will be called in the sequel the \using the mean of samples" approach. Fig. 6.1

shows the evolution of the best mean value of NPVR , i.e., the NPV over the 20 possible

realizations, for the three performed runs. The \using the mean of samples" approach is

shown to be able to reach a mean value of NPVR equal to $9� 109 using 15200 reservoir

simulations. It is able also to reach a mean value of NPVR equal to $9:3� 109 using 31200

reservoir simulations and a mean value of NPVR equal to $9:5 � 109 using 44400 reservoir

simulations.

To evaluate the \using the neighborhood" approach, we use typical values of the param-

etersNsim, N1
s, N2

s and Nn;max as de�ned in Section6.2, i.e., Nn;max = 2 � Nr , Nsim = 2 � Nr ,

N1
s = 1 and N2

s = 1. We begin by choosing the maximum distance of selection for the

neighborhooddmax equal to 4000.

Fig. 6.2 shows the evolution of the optimization process for three independent runs
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Figure 6.2: The evolution of the well placement optimization process on the PUNQ-S3
case using CMA-ES with the \using the neighborhood" approach, for three independent
runs in (a), (b) and (c). The evolutions of the best estimated objective function, i.e.,
NPV E are drawn with green lines. The evaluations on the true objective function over the
20 possible realizations, i.e., NPVR are depicted with red crosses. The maximum distance
of selection for the neighborhooddmax is equal to 4000.
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Figure 6.3: The evolution of the well placement optimization process on the PUNQ-S3
case using CMA-ES with the \using the neighborhood" approach for eight independent
runs. (a) shows the evolution of the evaluations on NPVR . (b) shows the evolution of the
best found evaluation on NPVR . The maximum distance of selection for the neighborhood
dmax is equal to 4000.
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of CMA-ES with the \using the neighborhood" approach. The evolutions of the best

estimated objective function, i.e., NPVE are drawn with green lines. During the optimiza-

tion process, each new overall best point found on NPVE , is evaluated on NPVR . The

evaluations performed on NPVR are depicted with red crosses. Fig.6.2 shows that when

optimizing NPV E , we are able to propose good points according to NPVR (points with

an NPVR greater than $9� 109). Moreover, NPVR tends to increase with an increasing

number of performed reservoir simulations.

Fig. 6.2(c) shows a particular run in which the best NPVE value found at the �rst

generation is equal to $9:7� 109. This value is calculated according to Eq. (6.11), and thus

calculated using only one single reservoir simulation (with one single random realization).

Indeed, with a single reservoir simulation to evaluate one point, the estimated objective

function can not in general propose a good point according toNPV R . Consequently, the

best point found at the �rst generation according to NPV E has a \bad" NPV R value

equal to $5:8 � 109. Thus, the optimization process does not propose for 112 iterations

a new overall best point to be evaluated on NPVR . The performance of this run can

be avoided either by evaluating more often points using NPVR 1 or simply by using more

reservoir simulations for each point to be evaluated at the beginning of the optimization,

i.e., choosingN1
s � 2.

We show in Fig. 6.3 the performance of eight independent runs of CMA-ES with the

\using the neighborhood" approach. Fig. 6.3(a) shows the evolution of the evaluations

performed on NPVR . The evaluated points correspond to the best overall pointsfound

during the optimization process of NPVE . Fig. 6.3(b) shows the evolution of the best

evaluation performed on NPVR . Seven runs out of the eight performed runs (88%) are

able to reach an NPVR value greater than to $9� 109, using a mean number of reservoir

simulations equal to 2851. Consequently the reduction of the number of reservoir simula-

tions to reach an NPVR greater than to $9� 109 when using the \using the neighborhood"

approach compared to the \using the mean of samples" approach is equal to 81%. Six

runs out of eight performed runs (75%) are able to reach a value of NPVR greater than

to $9:3 � 109, using a mean number of reservoir simulations equal to 4307, which o�ers a

reduction of the number of reservoir simulations when comparing to the \using the mean of

samples" approach equal to 86%. However, only two runs out ofthe eight performed runs

(25%) are able to reach a value of NPVR greater than to $9:5 � 109. The mean number

of reservoir simulations required to reach this value is 6160. Consequently the reduction

of the number of reservoir simulations to reach an NPVR greater than to $9:5 � 109 when

comparing to the \using the mean of samples" approach is again equal to 86%.

1For example, one can evaluate the best found point according to NPV E at each iteration on NPV R
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Figure 6.4: The evolution of the well placement optimization process on the PUNQ-S3
case using CMA-ES with the \using the mean of samples" approach and the \using the
neighborhood" approach. The evolution of the best found evaluation on NPV R for the
\using the neighborhood" approach is drawn with red lines. The evolution of the best
found evaluation on NPVR for the \using the mean of samples" approach is drawn with
blue lines. Three independent runs are performed for each approach. For the \using the
neighborhood" approach, the maximum distance of selectionfor the neighborhooddmax is
equal to 4000.
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Figure 6.5: The evolution of the well placement optimization process on the PUNQ-S3
case using CMA-ES with the \using the neighborhood" approach for four independent
runs. (a) shows the evolution of the evaluations on NPVR . (b) shows the evolution of the
best found evaluation on NPVR . The maximum distance of selection for the neighborhood
dmax is equal to 3000.
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Figure 6.6: The evolution of the well placement optimization process on the PUNQ-S3
case using CMA-ES with the \using the neighborhood" approach for four independent
runs. (a) shows the evolution of the evaluations on NPVR . (b) shows the evolution of the
best found evaluation on NPVR . The maximum distance of selection for the neighborhood
dmax is equal to 6000.

Three runs of CMA-ES with the \using the neighborhood" approach are shown together

with the three performed runs of CMA-ES with the \using the mean of samples" approach

in Fig. 6.4. Results show that although the \using the neighborhood" approach does not

guarantee �nding the best values of NPVR found by the \using the mean of samples"

approach when comparing with the \using the mean of samples"approach, the number of

reservoir simulations is reduced signi�cantly by more than 81%.

The impact of the choice of the maximum distance of selectionfor the neighborhood

dmax is shown in Figs.6.5 and 6.6. Comparing the results in Figs. 6.5, 6.3 and 6.6 (with

dmax = 3000, 4000 and 6000) shows that the approach is not very sensitive to the choice

of dmax .

In the sequel, we compare the \using the neighborhood" approach with another ap-

proach in which the estimated objective function to be optimized is equal to an evaluation

on a randomly chosen realization. This approach is called the \using one realization"

approach. In this approach, we also evaluate on NPVR only the overall new best points

found on the estimated objective function. Figs.6.7 and 6.8 show the evolution of the op-

timization process for three independent runs of CMA-ES with the \using one realization"

approach. In Fig. 6.7, the evolutions of the best estimated objective function are again

drawn with green lines. If we compare the \using the neighborhood" and the \using one

realization" approaches through Figs.6.2 and 6.7, it is clear that contrary to the \using the

neighborhood" approach which is shown to be able to capture the geological uncertainty,

the \using one realization" approach is shown to be not able to propose good points with

high NPV R . The three performed runs with the \using one realization" approach are not

able to reach an NPVR value greater than $9� 109.
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Figure 6.7: The evolution of the well placement optimization process on the PUNQ-S3
case using CMA-ES with the \using one realization" approach, for three independent runs
in (a), (b) and (c). The evolutions of the best estimated objective function (equal to an
evaluation on a randomly chosen realization) are drawn withgreen lines. The evaluations
on the true objective function over the 20 possible realizations, i.e., NPVR are depicted
with blue crosses.
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Figure 6.8: The evolution of the well placement optimization process on the PUNQ-S3
case using CMA-ES with the \using one realization" approach. The best mean value of
the NPV over the 20 possible realizations, i.e., NPVR is shown. Three runs are performed.

6.4 Summary and discussions

In this chapter, we have de�ned a new approach to handle geological uncertainty for well

placement using the objective function evaluations of already evaluated individuals in the

neighborhood. The proposed approach is compared to a reference approach using the

mean of samples of each individual. We have shown on the synthetic benchmark reservoir

case PUNQ-S3 that although the proposed approach does not guarantee �nding always

the best values found by the reference approach, the number of reservoir simulations is

reduced signi�cantly by more than 81%.
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Chapter 7

Conclusions and perspectives

7.1 Conclusions

In this thesis, we have contributed to the research area of optimizing well placement

(locations and trajectories of the wells to be drilled) by addressing the following challenges

(presented in Section1.3):

(I) The non-smoothness, the multi-modality, the non-convexity and the high dimen-

sionality of the objective function;

(II) The expensive cost of the objective function;

(III) The geological uncertainty handling problem.

The problem (I) was addressed in Chapter3 by applying the stochastic optimizer CMA-

ES. We have shown that CMA-ES outperforms the genetic algorithm on the PUNQ-S3 case

by leading to a higher net present value (NPV). Moreover, CMA-ES was shown to be able

to de�ne potential regions containing optimal well con�gur ations. The ability of CMA-ES

to �nd much higher NPV values and to converge to the same region of the search space, has

been explained by its advanced adaptation mechanism that allows the algorithm, on ill-

conditioned non-separable problems, to adapt in an e�cient way its sampling probability

distribution.

The problem (II) was addressed by de�ning two new algorithms aiming at reducing

the number of objective function evaluations, based on meta-models whose underlying

idea is to replace some (true) function evaluations during the optimization process by the

function values given by the meta-model. Meta-models can beconsidered as a computa-

tionally cheaper replacement of the objective function. This consideration is justi�ed by

the context of costly objective function for the well placement problem. The new-local-

meta-model CMA-ES, denoted nlmm-CMA (Chapter 2) was proposed in order to mitigate

some defects of the already existing local-meta-model CMA-ES (lmm-CMA) when dealing

with large population sizes. The partially separable local-meta-model CMA-ES, denoted
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