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Abstract

The amount of hydrocarbon recovered can be considerably imeased by nding optimal
placement of non-conventional wells. For that purpose, theuse of optimization algorithms,
where the objective function is evaluated using a reservoisimulator, is needed. Further-
more, for complex reservoir geologies with high heterogeitis, the optimization problem
requires algorithms able to cope with the non-regularity ofthe objective function. The
goal of this thesis was to develop an e cient methodology fordetermining optimal well
locations and trajectories, that o ers the maximum asset vdue using a technically feasible
number of reservoir simulations.

In this thesis, we show a successful application of the Covance Matrix Adaptation -
Evolution Strategy (CMA-ES) which is recognized as one of tle most powerful derivative-
free optimizers for continuous optimization. Furthermore, in order to reduce the number of
reservoir simulations (objective function evaluations),we design two new algorithms. First,
we propose a new variant of CMA-ES with meta-models, calledtie new-local-meta-model
CMA-ES (nlmm-CMA), improving over the already existing var iant of the local-meta-
model CMA-ES (Imm-CMA) on most benchmark functions, in particular for population
sizes larger than the default one. Then, we propose to explbihe partial separability
of the objective function in the optimization process to de ne a new algorithm called the
partially separable local-meta-model CMA-ES (p-sep Imm-QVA), leading to an important
speedup compared to the standard CMA-ES.

In this thesis, we apply also the developed algorithms (nImmCMA and p-sep Imm-CMA)
on the well placement problem to show, through several examps, a signi cant reduction
of the number of reservoir simulations needed to nd optimal well con gurations. The
proposed approaches are shown to be promising when considey a restricted budget of
reservoir simulations, which is the imposed context in pratice.

Finally, we propose a new approach to handle geological undgainty for the well placement
optimization problem. The proposed approach uses only oneealization together with
the neighborhood of each well con guration in order to estimate its objective function
instead of using multiple realizations. The approach is ilustrated on a synthetic benchmark
reservoir case, and is shown to be able to capture the geolagil uncertainty using a reduced
number of reservoir simulations.
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Chapter 1

Introduction

\Drill for oil? You mean drill into the
ground to try and nd oil? You're crazy." {
this was what drillers who Edwin L. Drake?!
tried to enlist to his project to drill for oil
in 1859, said.

\If you can draw it (the well), | can drill
it I" { this becomes the modern refrain of a

driller.

1.1 Problem statement

The state of the art in reservoir management has been recentl greatly in uenced by
technologies. Nowadays, drilling technologies have madereat strides with the advances
achieved in directional drilling capabilities. Hence, regrvoir engineers can take advantage
from the use of di erent well architectures such as vertical horizontal and more complex
con gurations to enhance reservoir productivity, especidly given the present price of oil
which is although continuing to uctuate in recent years, still above the US$40/barrel
(Fig. 1.2).

Environments, work areas and conditions in which oil and gaselds are now being
discovered are much more complex and challenging. The exisg elds are becoming
more depleted and, therefore, are more marginal. Unless the is a way to optimize
their productivity and to take corrective actions, it would be hard to justify to continue

1Edwin L. Drake (1819 - 1880) was an American oil driller, popu larly credited with being the rst to
drill for oil in the United States.



1.1 Problem statement

Figure 1.1: Brent crude oil price (in US dollar), Oct 2007 - Se@ 2011. Reprinted from
Index Mundi website, November 9, 2011.
[ http:/www.indexmundi.com/commodities/?commodity=c rude-oil-brent&months=60]

investing to produce these existing elds for economic reamns [L4]. On the other hand,
new discoveries also need an optimal production scheme to leonomically viable.

One of the most important issues that must be addressed to marize a given project's
asset value is to optimally decide where to drill wells. A wel placement decision a ects
the hydrocarbon recovery and thus the asset value of a projéc In general, such a decision
is di cult to make since an optimal placement depends on a large number of parameters
such as reservoir heterogeneities, faults and uids in plage. Moreover, dealing with complex
well con gurations, e.g., non-conventional wells, implies additional challenges such as the
concentration of investment and the well intervention dic ulty*.

The current approach, mostly used in the industry, is based a the so-called profes-
sional judgment made by reservoir engineers {requiring thainderstanding of the impact of
di erent in uencing engineering and geological parameteis{ and con rmed by a number
of reservoir simulation trials. However, the reservoir peformance is in uenced by non-
linearly correlated parameters, which may also evolve withtime. Hence, the professional
judgment approach, in general, fails to predict the best wdl con gurations.

Recently, many e orts were made to formulate the well placenent decision as an opti-
mization problem: the objective function optimized, which is evaluated using a reservoir
simulator, evaluates the economics of the project; the panaeters thought encode the posi-
tion of the di erent wells (that include locations and traje ctories). We de ne the location
of a given well as the position of the starting point of the wel, and we de ne the trajectory
of a given well as the positions of the mainbore and the latens (if any). If the number of
wells to be placed and their type (injector or producer) is xed, the parameters encoding

Drilling a well costs in general from US$1 million to US$30 mi llion.



1.1 Problem statement

the well positions are real numbers and the objective functhn f maps a subset ofR"
where n, the number of parameters, equals the sum of the number of pameters needed
to encode each well position that need to be placed. Formallyve want to nd a vector of
parameter pmax 2 R" such that:

F(Pmax) = max 1 (p)g (1.1)

where p denotes the vector of parameters to be optimized encoding # positions and
trajectories of the well con guration. The vector pmax must be found using a technically
feasible number of reservoir simulations.

The well placement optimization problem is challenging as:

The objective function, e.g., the net present value (NPV) isdi cult to optimize. In
particular, it is multi-modal, i.e., with multiple local optima, non-convex and non-
smooth An illustration can be found in [103 where the NPV of a single vertical
well placement is sampled to construct the objective functon surface. The surface
is shown to be highly non-smooth and to contain several locabptima. In this
illustration, the problem dimension equals two and it has thus been possible to
sample all the points from a ne grid spanning regularly the sarch space. However,
this becomes impossible for problem dimensions larger tha® as the number of
points, to keep a ne discretization, would need to grow expmentially in the search
space dimension (this is referred asurse of dimensionality) rendering the search
task di cult.

The problem is costly: a single function evaluation requires one reservoir simaltion
which is often very demanding in CPU time (several minutes toseveral hours). The
a ordable number of reservoir simulations is often then resricted.

The problem involves in general optimizing undergeological uncertainty. the prob-
lem assumes that we have already de ned a (or a number of) reatic geological
model(s). Each model is obtained using history matching whih consists in the ad-
justment of the reservoir model until it closely reproducesthe past behavior of the
reservoir (historical production and pressures). Howeverhistory matching problem
is a mathematically ill-posed with non-unique solutions, ie., several possible (gen-
erally equiprobable) geological models. Thus, taking intoaccount several geological
models introduces the problem of handling geological uncéainty which adds an
other challenge to the optimization of the objective function, in particular it leads
to a large increase of the number of performed reservoir sinfations. In the context
of geological uncertainty which will be addressed in Chapte 6, we will denote by
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f the objective function to optimize, and let us consider a nunber N, of geological
realizations denoted by Ri);-;. .y,- We denote byf (p;R;i) the objective function
value on the well con guration p on the realization R;. Thus, we want to nd a
vector of parameter pmax:r 2 R" such that:

fR(pmaX;R):m%X fRp) (1.2)

wheref R is in general an averaged sum of the objective function evahations on the
well con guration p over all the realizations:

R - 1 X . .
fRp)= - f(PiR) : (13)

Ny i=1
Furthermore, constraints are imposed to guarantee the phyal feasibility of the so-
lution wells, and thus to avoid very long wells or wells that violate common engineering
practices (e.g., wells outside the reservoir). Thereforea constraint optimization problem
needs to be handled. Formally, when dealing with constraingé, we want to nd a vector of
parameter pmax 2 R" such that:

f (Pmax) = max f (p)

: ; (1.4)
st: hi(p) d 8 =1; ;m

where m is the number of constraints, di are real numbers andh; : R" | R are the
constraint functions that need to be satis ed.

The main objective of this thesis is to propose a procedure fosolving the well place-
ment optimization problem, in particular the well location s and trajectories optimization
problem. The proposed procedure must o er the maximum assevalue using a technically
feasible number of reservoir simulations. This implies to ddress the challenges explained
above namely:

() The non-smoothness, the multi-modality, the non-convexity and the high dimen-
sionality of the objective function;

(I) The expensive cost of the objective function;
(1) The geological uncertainty handling problem.

In this thesis, we will consider the well placement optimizdion problem as a black-box
optimization (also known as derivative-free optimization) problem. The black-box opti-
mization means that only the inputs and outputs of the objective function are observed,
and not its internal operations and processes. The black-bo context is natural in our



1.2 Literature review

context since an objective function evaluation involves a eservoir simulation which corre-
sponds in general to a commercial software, in which the intanal structure and code are
often unavailable.

We now review the critical points of current knowledge and méhodological approaches
related to the well placement optimization.

1.2 Literature review

Many optimization algorithms exist to address the continuous optimization problem formu-
lated in Eq. (1.1). In this section, we give a survey of the existing continuog optimization
algorithms. Only some of these algorithms will be detailed @pending on their importance
for this thesis. Other algorithms will be brie y mentioned w ith their corresponding refer-
ences for more details. Then, a survey of studies describingxisting approaches used for
the well placement optimization problem will be given. A detailed literature review for
well placement optimization under geological uncertainty formulated in Eq. (1.2) will be
provided in Chapter 6.

1.2.1 Optimization algorithms

Optimization algorithms for non-linear continuous optimi zation can be divided depending
on the method they use to explore the search space. In the fallving, we enumerate a
number of selected representative algorithms divided intofour categories: deterministic
algorithms, stochastic algorithms, search algorithms usig surrogates and hybrid algo-

rithms.

1.2.1.1 Deterministic methods

Deterministic algorithms include descent methods which ue the explicit value of the gra-
dient or higher order derivatives of the objective function. If this information is not avail-

able, i.e., in case of black-box optimization, it can be appoximated. Other deterministic
optimization techniques include trust region methods (e.g, [107]), direct pattern search
methods [BO] and simplex methods [L01]. A major drawback of deterministic optimization

methods is that they can easily get stuck in a local optimum.

Descent methods : Descent methods are de ned as iterative methods that need
the gradient of the objective function to search for a minimum of a given objective
function f . After xing an initial point xy at iteration k, a new point is calculated
as follows:

Xk+1 = Xkt kPk (1.5)
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where py is the search direction at iteration k and  denotes the step width. The
optimization process continues until reaching the convergnce criterion. The search
direction can be calculated using a linear approximation ( rst order) of the target
function, i.e., px = r f(xx). In this case, the method is called the steepest de-
scent method. A second order approach uses a quadratic appfionation and leads
to methods referred to as Newton methods. Quasi-Newton methds are based on
Newton methods, but without computing the Hessian matrix. In this case, the search
direction py = H, r f (x«), where Hy is an approximation of the Hessian matrix
in the current solution. The most popular quasi-Newton method is the Broyden-
Fletcher-Goldfarb-Shanno algorithm (BFGS) [31, 53, 61, 11§.

If no explicit formula of the objective function is availabl e, derivatives are in general
approximated using methods such as nite di erence methods An other way to
compute the gradients is by using adjoint methods. In contrat to nite di erence
methods, where the number of objective function evaluatios required to estimate
the gradients grows linearly with the number of the parametas of the problem,
adjoint methods provide the gradients in a fraction of the canputational time of
objective function evaluation. However, implementing adpint methods requires a
deep understanding of the so-called simulation code (corsponding to the objective
function evaluation) which is not usually trivial for real- world problems. It also
requires having access to the simulation code, which is notawally available for real-
world problems. Adjoint methods are widely used in aerodynanics [81]. In the oil
and gas industry, it is still dicult to apply adjoint method approaches, although
some research has already been performed in particular in ghreservoir simulation
community [89)].

Trust region methods : Trust region methods, called also quadratic approximation
methods rely on an approximation of the objective function f with a quadratic
function which is supposed to be a reasonable approximatioof f in a neighborhood
of the the current estimate. This neighborhood is called thetrust region. A state-
of-the-art trust region method is the NEW Unconstrained Optimization Algorithm
(NEWUOA) [ 107] which is a derivative-free optimization method. At each iteration,
NEWUOA creates a quadratic model that interpolates the objective function f at m
points (usually m =2n + 1, where n is the number of parameters to be optimized).
The quadratic model is then updated by minimizing it inside the trust region. A
more detailed presentation of trust region methods can be fond in [91].
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1.2.1.2 Stochastic methods

Stochastic methods have been employed to mitigate the defeof deterministic methods
for di cult functions to solve (e.g., non-smooth and multi- modal). In particular, stochas-
tic optimization algorithms aim at being more robust when dealing with multi-modal

objective functions. These methods include methods such asimulated annealing (SA)
[88, 124, particle swarm optimization (PSO) [8€], simultaneous perturbation stochastic
algorithm (SPSA) [119 and evolutionary algorithms (EA). EAs which have received an
increasing interest has mainly three origins: genetic algathms (GA) [ 78, 79, evolutionary
programming (EP) [56, 56] and evolution strategies (ES) [LO§ 117].

Evolutionary algorithms (EA): An overview of evolutionary algorithms is pre-
sented in [L5]. EAs are stochastic optimization algorithms inspired by hiological
evolution. Starting with an initial population of points ca lled individuals and at
each iteration, candidate solutions evolve byselection mutation and recombination
until reaching the stopping criteria with a satisfactory solution. This process is used
by the three origins of EAs, i.e., GA, EP and ES. Only two of them will be detailed
in this section: genetic algorithms and evolution strateges.

Genetic algorithms  (GA) [78, 79] are stochastic search algorithms designed ini-
tially to deal with binary encoded individuals. For continu ous optimization, problem
variables can either be mapped to binary strings or other enading can be adopted
such as real encoding. However, representing real vectors &it strings leads to poor
performance [L27.

Evolution strategies  (ES) [108 117: besides the common principles shared with
other EAs, i.e., mutation, recombination and selection, duing the optimization pro-
cess, ESs sample new individuals according to a multivaria normal distribution, and
use a self-learning mechanism to adapt its parameters calfeadaptive search. The
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [74] is the state-of-the-
art Evolution Strategy where the multivariate normal distr ibution has a mean and
a covariance matrix continually updated during the optimization process. Intensive
benchmarking of several derivative-free algorithms have stablished that CMA-ES
is one of the most e cient method for dealing with di cult num erical optimization
problems [70]. CMA-ES has also been applied to real-world problems1[8, 42, 92, 94].
More details about CMA-ES are provided in Chapter 2.

Simulated annealing (SA) [88, 124: The name and the inspiration of simulated
annealing comes from annealing in metallurgy, a techniquenvolving heating and
controlled cooling of a material to increase the size of its nystals and reduce their
defects. The algorithm avoids getting trapped in local optima by allowing moves
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that may lead to a deterioration in the objective function values. The SA algorithm
is outlined as follows. Given a candidate solutions, a neighbor random solution
sPis accepted if (1) sCis better than s with respect to the objective function or
(2) with a probability that depends on the change of the corresponding objective
function values and a control parameterT, called the temperature. Otherwise, if
none of the above conditions are met, the current solution renains unchanged. The
parameterT is gradually decreased to zero in the course of the optimizain according
to a deterministic \cooling schedule". The performance of tie simulated annealing
algorithm is very sensitive to the choice of the cooling schdule.

Particle swarm optimization (PSO) [86]: PSO is an iterative population based
algorithm, inspired from movement of swarms of birds or insets searching for food
or protection. Each particle movement is in uenced by its own experience (its best
found locality) and by the experience of the others (the bestfound locality of all
the particles). Based on these best found localities, the Iwalities of the members
of the swarm and their velocities are adjusted. The performace of PSO are not
invariant with respect to rotations of the coordinate system, i.e., the performance of
PSO on non-separable, ill-conditioned functions declinedramatically with increasing
condition numbers [75)].

Simultaneous perturbation stochastic algorithm (SPSA) [119: SPSA is a
stochastic gradient approximation method, in which at eachiteration the parameters
are randomly perturbed, and the objective function is evalwated at the perturbed
points to estimate the gradient.

1.2.1.3 Search algorithms using surrogates

Search algorithms using surrogates, called proxy-modelgn or meta-modeling in the lit-
erature, are based on approximating the objective functionby a an approximate model
(called also surrogate, proxy-model or meta-model). In thecontext of costly objective
functions, a surrogate can be considered as a computationiglcheaper replacement of the
objective function. Thus, during the optimization processthe surrogate is constructed and
the objective function evaluations are replaced by evaluabns on the surrogate PO, 83.
Search algorithms using surrogates needs to consider the-salled exploration-exploitation
trade-o [ 58], i.e., evaluating more (respectively, less) candidate dotions using the \true"
objective function implies a better (respectively, worst) quality of the surrogate but on the
other hand a higher (respectively, reduced) computationalcost of the optimization.

If a candidate solution is accepted, it replaces the current solution
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The most popular surrogate models include polynomial respase surfaces, Kriging
[90, 48], support vector machines 0] and arti cial neural networks [ 110.

1.2.1.4 Hybrid methods

Several algorithms (two or more) from di erent classes can e combined in order to form
the so-called hybrid methods. Hybridization aims at having a resulting algorithm which

contains the positive features of the combined algorithms.Several hybridizations have been
proposed in the literature in order to tackle speci ¢ applications. For instance, a review of
hybridization of genetic algorithms can be found in §6]. Also, a review of hybridization

of the particle swarm optimization can be found in [123.

1.2.2 Well placement optimization

Well placement optimization is a recent area of research thiis gaining growing interest.
Di erent methodologies have been used in the literature to tackle the well placement
problem.

On the one hand, approaches based on stochastic search algbms were used, where
minimal assumptions on the problem are needed and that are ths more robust than
deterministic methods when dealing with rugged problems sch as the well placement
problem. Simulated annealing (SA) was used in19] for well placement and scheduling,
and in [85] for well placement. Particle swarm optimization (PSO) wasapplied in [103 for
the determination of optima well type and position. Genetic algorithm (GA) was applied
in [98, 47, 99, 33]. Simultaneous perturbation stochastic algorithm (SPSA) was used in
[16, 17]. In particular, in [ 17], a comparison between three optimization algorithms is
performed: the SPSA algorithm, the very fast simulated annaling (VFSA) and the nite
di erence gradient (FDG).

On the other hand, deterministic optimization methods were also used. Descent algo-
rithms were mostly used, in which adjoint methods were useddr computing the gradients
[67, 114, 57, 125 13(. Using descent methods implies that the underlying model bthe
function needs to be smooth enough. Ing7], the adjoint method is used to place an injec-
tor in a 2D oil-water reservoir with 4 producers already xed in each of the four corners
grid blocks. Results show that the algorithm, as expected da to its deterministic aspect,
converges to a di erent local optimum for every initial well location. In [114], the wells
are de ned by continuous variables and the adjoint method istested on a few synthetic
water ood optimization problems.

Search algorithms using surrogates, or proxy-modeling weralso used in the literature.
In proxy-modeling the true objective function is replaced by a proxy-model, and di erent
optimization techniques are applied to the proxy. Proxy-models include least squares and
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kriging [109, radial basis functions p0], quality maps [41, 100, and multiple regression
techniques (including kriging) [1]. Although proxy-modeling is an e cient way to have an
approach with a reduced number of reservoir simulations, is application, with increasing
complexity of the solution space, is not recommendedlj37.

Stochastic algorithms have been combined with search algiéhms using surrogates and
deterministic approaches to form hybrid algorithms: GA with a polytope algorithm and
kriging [63, 64], GA with a polytope algorithm, kriging and neural networks [65], GA with
neural networks, a hill climber and a near-well upscaling tehnique [L129. Results show
that a hybrid stochastic algorithm converges in general to areasonable solution with a
reduced number of evaluations compared to a pure stochastialgorithm. The approaches
in [63, 64, 65, 129 build at each iteration a proxy-model, determine its maximum and
include the location of this maximum in the population (replacing the worst individual) if
it is better than the best individual of the current populati on. In [10], a GA is de ned, in
which at each iteration, only a prede ned percentage of the mdividuals, chosen according
to a set of scenario attributes, is simulated. The objectivefunction of the non-simulated
points is estimated using a statistical proxy based on clustr analysis.

1.3 Thesis objectives and methodology

In this thesis the objective is to address the previously metioned challenges (1), (II) and
(1) in Section 1.1, namely:

() The non-smoothness, the multi-modality, the non-convexity and the high dimen-
sionality of the objective function;

(I) The expensive cost of the objective function;
(1) The geological uncertainty handling problem.

Considering the state of the art in optimization, the choice of the CMA-ES algorithm
[74] seems a priori natural to address problem (I). Indeed, CMAES is recognized as one
of the most powerful derivative-free optimizers for contiruous optimization [70]. CMA-ES
is both a fast and robust local search algorithm, exhibiting linear convergence on wide
classes of functions and a global search algorithm when playg with restart and increase
of population size. CMA-ES, in contrast to most other evolutionary algorithms, is a quasi
parameter-free algorithmt.

In the petroleum industry, CMA-ES have been applied only in two studies, to the
best of our knowledge, previous to this work: a characterizaon of fracture conductivities

1Only the population size is suggested to be adjusted by the use in order to account for the ruggedness
of the objective function landscape.

10
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from well tests inversion [32], a well placement optimization but with respect to simple at-
tributes (e.g., productivity indexes) [43]. A more recent application on the well placement
optimization was shown in [L16, 115.

To tackle problem (I1), we propose to investigate coupling the CMA-ES optimizer with
surrogates (or meta-models). In this context, we aim at de nng an e cient variant of
CMA-ES coupled with meta-models able to reduce signi cantly the number of the reservoir
simulations. Furthermore, we aim at exploiting the knowledge about the optimization
problem, in particular the so-called partial separability of the objective function in order
to reduce more the number of reservoir simulations.

Finally, to tackle problem (lIl), we aim at de ning an approac h (for CMA-ES) able
to capture the geological uncertainty with a signi cantly r educed cost of reservoir simu-
lations. In this context, we aim at de ning an approach that p erforms a small number
of reservoir simulations (typically one) for each well con guration instead of performing
reservoir simulations on all possible geological realizains.

1.4 Summary of contributions

The following presents a summary of the contributions of this thesis.

We have tackled the problem (1) related to the non-smoothnes, the multi-modality, the
non-convexity and the high dimensionality of the objective function in the well placement
problem, and we have shown:

A rst successful application of CMA-ES on the well placement pr oblem. (Re-
sults published in [ 26, 24]) We propose a new methodology for well location and
trajectory optimization based on the population based stotastic search algorithm called
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [74]. We propose to use
a new adaptive penalization with rejection technique to hardle constraints. Because ge-
netic algorithms are quite often the method of choice in petoleum industry, we show the
improvement of applying CMA-ES over a GA on the synthetic benchmark reservoir case
PUNQ-S3 [54]. To allow a fair comparison, both algorithms are used withat parameter
tuning on the problem, standard settings are used for the GA ad default settings for
CMA-ES. It is shown that our new approach outperforms the geretic algorithm: it leads
in general to both a higher net present value and a signi cantreduction in the number of
reservoir simulations needed to reach a good well con guraon.

11
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After this application of CMA-ES on the well placement problem, we have tackled the
problem (lI) related to the expensive cost of the objective tinction, and we have proposed
two new algorithms:

A new variant of CMA-ES with local meta-models. (Results publ ished in [ 22])

The local-meta-model CMA-ES (Imm-CMA) [87] coupling local quadratic meta-models
with the Covariance Matrix Adaptation Evolution Strategy i s investigated. The scaling
of the algorithm with respect to the population size is analyzed and limitations of the
approach for population sizes larger than the default one a shown. A new variant for
deciding when the meta-model is accepted is proposed {callethe new-local-meta-model
CMA-ES (nimm-CMA).

A new variant of CMA-ES with local meta-models for partially se parable func-
tions. (Results published in[  23]) We propose a new variant of the covariance matrix
adaptation evolution strategy with local meta-models for gotimizing partially separable
functions {called the partially separable local-meta-mocl CMA-ES (p-sep Imm-CMA).
We propose to exploit partial separability by building at each iteration a meta-model for
each element function (or sub-function) using a full quadratic local model. Our results
demonstrate that exploiting partial separability leads to an important speedup compared
to the standard CMA-ES. We show on the tested functions that the speedup increases
with increasing dimensions for a xed dimension of the elemet function. On the stan-
dard Rosenbrock function the maximum speedup of is reached in dimension 40 using
element functions of dimension 2, where is the population size. We show also that higher
speedups can be achieved by increasing the population size.

Now, we have applied the two new proposed algorithms on the weplacement problem
to achieve:

A signi cant reduction of the number of reservoir simulations for th e well
placement problem. (Results published in [ 26, 24, 25]) We propose to apply
CMA-ES with local meta-models (nImm-CMA) on the well placement problem, where
for each well con guration in the population, an approximate convex quadratic model is
built using true objective function evaluations collected during the optimization process.
Coupling CMA-ES with a meta-model leads to a signi cant improvement, which was
around 20% for the synthetic benchmark reservoir case PUNGES.

Moreover, we propose also to apply p-sep Imm-CMA on the well lacement problem,
by building partially separated meta-models for each well o set of wells, which results in a
more accurate modeling. Results show that taking advantagef the partial separability of

12
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the objective function leads to a signi cant decrease in thenumber of reservoir simulations
needed to nd the \optimal” well con guration, given a restr icted budget of reservoir
simulations.

We have also tackled the problem (l11) related to the geologcal uncertainty handling,
and we have proposed:

A new approach to handle geological uncertainty for the well placem ent prob-
lem. We propose a new approach to handle geological uncertaintyf the well placement
problem with a reduced number of reservoir simulations. We popose to use only one re-
alization together with the neighborhood of each well con guration in order to estimate
its objective function instead of using multiple realizations. The approach is applied on
the synthetic benchmark reservoir case PUNQ-S3 and shown tbe able to capture the
geological uncertainty using a reduced number of reservoisimulations.

1.5 Dissertation road-map

This thesis is structured as follows. Chapter2 gives a \theoretical" overview of the opti-
mization method used in this thesis: the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES). An adaptive penalization technique to handle the optimization constraints is
also introduced and a combination of CMA-ES with meta-modek is investigated to pro-
pose a new variant of CMA-ES with local-meta-models, calledhe new-local-meta-model
CMA-ES (nlmm-CMA).

In Chapter 3, the CMA-ES optimizer is applied on the well placement probem. The
improvement of applying CMA-ES over a GA on a synthetic benchmark reservoir case is
shown. In addition, the contribution of the CMA-ES with meta -models in reducing the
number of reservoir simulations is demonstrated on a numbeof examples.

In Chapter 4, we propose a new variant of CMA-ES with local meta-models fooptimiz-
ing partially separable functions, called the partially sgarable local-meta-model CMA-ES
(p-sep Imm-CMA).

In Chapter 5, the resulting approach (p-sep Imm-CMA) is applied on the wdl placement
problem.

Finally, in Chapter 6, the problem of dealing with uncertainty in well placement is
tackled. A new approach using the neighborhood of each wellon guration is proposed
and demonstrated on a synthetic benchmark reservoir case.

The thesis closes with the conclusions and a number of sugdims for future work.
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Chapter 2

CMA-ES and CMA-ES with
meta-models

This chapter is based on the paperZ2]. It gives a detailed overview of the optimization
methods applied in Chapter 3 to the well placement problem. We present the CMA-ES
algorithm, a constraint handling needed for well placementand a new surrogate approach
that couples CMA-ES with meta-models. This latter approach mitigate some defects of the
local-meta-model CMA-ES (Imm-CMA). The di erent de ned me thodologies are tested
and validated on some mathematical test functions.

This chapter is structured as follows. Section2.1 gives an overview of the optimization
algorithm CMA-ES. In Section 2.2, we propose an adaptive penalization and rejection
technique in order to handle optimization constraints. Finally in Section 2.3, the reduction
of the number of evaluations is addressed by coupling CMA-ESvith meta-models.

In the following, we denote the objective function to be optimized by f :R" ! R.

2.1 Covariance Matrix Adaptation - Evolution Strategy

The Covariance Matrix Adaptation - Evolution Strategy (CMA -ES) [74, 71] is an iterative
stochastic optimization algorithm where at each iteration, a population of candidate solu-
tions is sampled. In contrast to the classical presentationof population based stochastic
search algorithms (like genetic algorithms 8, 79]) where the di erent steps of the algo-
rithms are described in terms of operators acting on the poplation (crossover, mutation),
the natural algorithm template for CMA-ES translates the evolution of the probability
distribution used to sample points at each iteration. Indeed, the algorithm loops over the
following steps:

1. sample a population of candidate solutions (points of R")

2. evaluate the candidate solutions onf

14
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3. adapt the sampling distribution (using the feedback fromf obtained at step 2.)

We see that this general template depends on a probability ditribution (sampling distri-

bution) and on the update of this probability distribution. The sampling distribution in

CMA-ES is a multivariate normal distribution . In the next paragraphs we will give more
insights on multivariate normal distributions and their ge ometrical interpretation and then

explain how its update is performed at each iteration within CMA-ES.

Multivariate normal distributions A random vector of R" distributed according to a
multivariate normal distribution is usually denoted by N(m;C) wherem is a vector of R"
and C ann n symmetric positive de nite matrix corresponding to the covariance matrix
of the random vector. The set of parameters fn; C) entirely determines the random vector.
Fig. 2.1 gives the geometric interpretation of a random vectorN(m; C) in two dimensions.
We visualize that m is the symmetry center of the distribution and that isodensity lines
are ellipsoid centered inm with main axes corresponding to eigenvectors o€ and lengths
determined by the square roots of the eigenvalues o€. Fig. 2.1 depicts also points
sampled according to a multivariate normal distribution. A s expected, the spread of the
points follows the isodensity lines. A useful relation ism + N(0;C) = N(m;C) that
interprets m as the displacement from the originO.

In CMA-ES, the mean vector represents the favorite solutionor best estimate of the
optimum, and the covariance matrix C characterizing the geometric shape of the distri-
bution de nes where new solutions are sampled. Furthermorgan additional parameter is
added, which is the step-size used as a global scaling factor for the covariance matrix.
Overall, in step 1. for CMA-ES, points are sampled accordingo:

m+ N(O;C) : (2.2)

The adaptation of m targets to nd the best estimate of the optimum, the adaptati on of
C aims at learning the right coordinate system of the problem (otation and scaling of the
main axes) and the adaptation of aims at achieving fast convergence to an optimum and
preventing premature convergence. We will now describe howhe distribution is updated,
that is how the parametersm, and C are updated in step 3. of the template.

Update of mean vector, covariance matrix and step-size We adopt here some
time-dependent notations. The iteration index is denotedg. Let (m(®;g 2 N) be the
sequence of mean vectors of the multivariate normal distrintion generated by CMA-
ES and let ( (9:g2 N) and (C(@;g 2 N) be respectively the sequences of step-sizes and
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Figure 2.1: Geometrical representation of a 2-dimensionahultivariate normal distribution
N(m;C)wherem = (2;2)T and the covariance matrix C admits pl—é(l; 1) and pl—é( 1;1) as
normalized eigenvectors with respective eigenvalues 16 drl. Depicted on each plot is the
mean vectorm and the ellipsoid isodentity linesdenedas k m)'C (x m)= cwhere
the constant ¢ equals 1 (inner line) and 3 (outer line). The main axes of the icodensity)
ellipsoid are carried by eigenvectors o€. The half lengths of the axis of the unit isodensity
lines (x m)TC 1(x m)=1) are the square roots of the eigenvalues o€C.

Depicted on the 2nd, 3rd and 4th plots are samples among 10 (sp. 100 and 1000) samples
from N(m;C) falling into the box plot [ 8;12] [ 8;12].
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covariance matrices. Assume tham(9; (9):C(9) are given, the new points orindividuals
are sampled in step 1. according to:

@ = M@+ @ N (0 C@): Lo
X; m* + l\l._(O{ZC_? fori=1; ; : (2.2)

=Yi

Those individuals are evaluated in step 2. and ranked according td :
f(xi?) f(x?) f9) 2:3)

where we use the notationxi(?) for i™ best individual.
The meanm(9 is then updated by taking the weighted mean of the best individuals:

X X
n,](g+1) - I le(g) = m(g) + (9 Livie (24)
i=1 i=1
wherey;. = (xi(?) m@)= (9. In general = 5 and ('i)1 i are strictly positive
P
and normalized weights, i.e., satisfying !; = 1. This update displaces the mean vector

i=1 P
toward the best solutions. The increment (@ ._, 1jy;. has an interpretation in terms of
(stochastic) approximation of the gradient with respect to m of a joint criterion J mapping
(m; ; C)to R and depending on quantiles of the objective functionf [9].

A measure characterizing the recombination used is callethe variance e ective selec-
1

tion mass and dened by = o i2 . The choice of the recombination type has

i=1
an important impact on the e ciency of the algorithm [ 6]. The default weights are equal

to:
In( +1) In(i)

I = (1 (5 fori=1; ; : (2.5)

The update of the covariance matrix C(9 uses two mechanisms. First of all therank-

one update[74] using the so called evolution pathp((;g) 2 R" whose update is given by:

P mt) m
pEY =1 pP+ @ ) e g (2.6)

where ¢; 2)0;1]. For the constant c; = 1, the evolution path points toward the descent

direction w and for ¢ 6 1, the vector p((;g) adds the steps followed by the mean

vector over the iterations using some normalization to damgn previous steps, so as not

to rely too much on old information. The vector p(cg+1) gives a direction where we expect

(@+1) @) T
c

to see good solutions. From the evolution path, the rank-onematrix pe =’ p s

built and added to the covariance matrix (see Eq. @.7)). Geometrically it deforms the

ellipsoid-density in the direction p(cg+1) , i.e., the rank-one update increases the probability

to sample in the next iteration in the direction p£9+1) .
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The second mechanism is therank-mu update [72] where the rank-mu matrix
' Liyi y,T is added to the covariance matrix. This rank-mu matrix is also the stochastic
Iazéproximation of the gradient of the joint criterion J with respect to C [9]. The update
of the covariance matrix combines rank-one and rank-mu updge and reads:

1 X

T
C(g+1) - (1 CCOV)C(g) + Ceov p((:g"'l) pgg"'l) + Ceov 1 | iYi yIT . (27)

| cov {7 } | cov {7 i=1 }
rank-one update rank-mu update

The initial evolution path p((;o), Ce, Ccov @Nd oy are parameters of the algorithm. Default

values can be found in 71].

In addition to the covariance matrix adaptation, the step-size (9 is controlled after
every iteration. To perform the adaptation, a conjugate evdution path p(g) 2 R" at
generation g is updated according to:

p(g"'l) =1 ¢ )p(g)

2.8
P eE o) co ineh o 29)

The conjugate path di ers from the evolution path in the dire ction of the steps added,
as in the conjugate path the normalized stepw is multiplied by the matrix
clo 21

The step-size is adapted according to:

c kp(g+1) Kk

(g+1) — (g)exp di EikN(OI)k 1 ; (29)

where p(o), ¢ andd are parameters of the algorithm with default values de ned in [71].
This update rule implements to increase the step-size whenhe length of the conjugate
evolution path is larger than the length it would have if selection would be random (this
length will then be equal to kN(O; 1)k) and decrease it otherwise.

All the updates rely on the ranking determined by Eq. (2.3) only and not on the exact
value of the objective functions making the algorithm invariant to monotonic transforma-
tions of the objective functions that preserve the ranking d solutions.

On the class of functionsx 7! gu fcq(X) where fcq is a convex quadratic function
andgy : R! R amonotonically increasing function, the covariance matrk sequenceC (9
becomes proportional to the inverse Hessian of the functiori.q(x), i.e., the algorithm is
able to learn second order information without using any deivatives.

1This di erence is mainly technical in order to be able to comp are the length of the conjugate path at
di erent iterations though the steps have been sampled with di erent covariance matrices [ 74]
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2.1 Covariance Matrix Adaptation - Evolution Strategy

Step-size adaptation is important to achieve fast convergece corresponding to linear
convergence with rates close to optimal rates that can be adbved by evolution strategies
algorithms. In combination with covariance matrix adaptat ion, step-size adaptation al-
lows to achieve linear convergence on a wide range of functie including ill-conditioned

problems

CMA-ES and EnOpt The ensemble-based optimization (EnOpt) B7, 36, 131] shares
similarities with CMA-ES. In the following, we brie y prese nt the main idea of EnOpt as
well as the similarities and di erences with CMA-ES. Original notations de ned in [13]]
have been changed in order to be in accordance with the notatins used for CMA-ES.

In EnOpt, for every iteration, an ensemble of points is sampled according to:

Xi(g+1) = m(g) + Ni(O;CX) for i =1; B (210)

whereN;(0;Cx); i are independent multivariate normal distributions with zero m ean
vector and covariance matrix Cx . Cx is a user speci ed matrix, which remains constant
during the whole optimization process. Therefore, EnOpt adpts only the mean m(9 of
the distribution according to:

m) = m©@ 4+ (9)CxC§f§)J : (2.11)

where (@ is the step-size andC% is the cross-covariance between the population and

the approximate gradient of the objective function.
Hence, while EnOpt and CMA-ES shares some similarities, CMAES presents three
important advantages:

CMA-ES adapts the covariance matrix used to sample its popudtion to the landscape
of the objective function as shown above. However, EnOpt usethe same covari-
ance matrix during the whole optimization process which maylead to di culties in
re ning the search at the end of the optimization;

CMA-ES uses a step-size adaptation mechanism where the stegize is increased or
decreased depending on the situation which is crucial to olain linear convergence.
However, in EnOpt, the step-size is always decreased and tlsutoo small values at
the beginning will be very detrimental for the convergence ate. Situations where
step-size should be increased (linear environment) are alssub-optimally handled;

CMA-ES is invariant to monotonic transformations of the objective functions that
preserve the ranking of solutions, which represents a souecof robustness of the
algorithm [59]. More particularly, this invariance of CMA-ES removes the need to
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2.2 Handling constraints with CMA-ES

tune the parameters of the algorithm according to the scale bthe objective function,
which is in general a challenging task. However, EnOpt useshe exact values of
the objective function to update the mean of its search distibution which leads to
breaking the invariance that comparison-based algorithmssuch as CMA-ES, have.

2.2 Handling constraints with CMA-ES

Several methods are used, in the literature, to handle consdints in stochastic optimization
algorithms. In general, unfeasible individuals can be rejeted, penalized or repaired. In
the following, we brie y discuss these alternatives. A moredetailed study and comparison
can be found in P6@).

Rejection of unfeasible individuals: Besides its simpli¢y and ease of implementation,
rejecting the unfeasible individuals, also called \death penalty” does not require any
parameter to be tuned. However, ignoring unfeasible indiviluals can prevent the
algorithm from nding the region containing the optimum sol ution if it is close to
the feasible domain boundaries95];

Penalizing unfeasible individuals: Penalization is the mat widespread approach used
to handle constraints. This method corresponds to a transfamation of the optimiza-

tion problem:
min f (x)
st:hij(x) d 8i = 1F;h ;m (2.12)
) minf(x)+ g(hi(x) d) ;
i=1

where m is the number of constraints and g(:) is the penalty function which is
non-negative, equal to zero inR and increasing inR. . In general, g(:) contains pa-
rameters to be tuned. These parameters depend on the probleno be optimized. A
solution to avoid the di culty of tuning those parameters co nsists in using an adap-
tive penalization which does not require any user speci ed onstant. However, pe-
nalizing all unfeasible individuals implies evaluating al unfeasible individuals which
can be costly;

Repairing unfeasible individuals: Another popular solution to handle constraints is
to repair each unfeasible individual before evaluating it. An important parameter

to be speci ed is the probability of replacement of the unfeaible individual by the

repaired new feasible individual. Moreover, repairing intoduces a new individual in
the population which may not obey to the adapted distribution, and hence may hold
up the optimization process of CMA-ES.
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2.2 Handling constraints with CMA-ES

Knowing the limitations of each of the constraint-handling approaches, the approach
used in the present work is a mixture between two approachesadaptive penalization of the
marginally unfeasible individuals and rejection of only the unfeasible individuals far from
the boundaries of the feasible domainUsing this approach, rejecting only individuals far
from the feasible domain does not prevent the algorithm from nding a solution near the
feasible domain boundaries, and by using adaptive penalizen, the critical penalization
coe cients are adapted automatically during the course of the searcH.

A box constraint handling is presented in [73] in which the feasible space is a hypercube
de ned by lower and upper boundary values for each parameter In the following, this
approach is generalized in order to handle feasible spaces ded by lower and upper
boundary values for a sum of some of the parameters (e.g., tooastrain the length of
multilateral wells).

Given an optimization problem with a dimension n, let us suppose we havan 2 N

constraints denoted by S;; 8 = 1; ;m. For each constraint S;, we de ne P;
f1, ;ngsuch that a vectorx = (Xj)1 i n is feasible with respect to the constraintS; if:
X
Vi )<A= Xp<V(e (2.13)
P2 P;

where v y and v;. ) are the lower and upper boundaries de ningS;. Constraints are

then handled as follows, when evaluating an individualx:

- Initializing weights: In the rst generation, boundary weights ; are initialized to
j=0;8 =1; ;m;

- Setting weights From the second generation upwards, if the distribution mean is unfea-
sible and weights are not set yet

8 =1; ;m; (2.14)

where ; is the median from the last (20 + 2") generations of the interquartile range

of the unpenalized objective function evaluations andC; is the it" diagonal element of
. . P

the covariance matrix. The term 2% Cii represents the mean of 2Cj 21

i=1
which will be used in Eqg. (2.16) in order to normalize the square of the distance which is

n

(o;eaS g )2 with respect to the covariance matrix adapted by CMA-ES ;

- Increasing weights For each constraint Sj, if the distribution mean M;j, i.e., the mean of
g for the individuals of the current generation, is out-of-bounds arl the distance from
M; to the feasible domain, i.e., max(QM; v(j;+))+ max(0 Vi) M;) is larger than

1The penalization method depends in general on other parameters which are on the other hand much
less critical and which are tuned beforehand to be suitable for a wide range of problems [73].
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2.3 CMA-ES with local meta-models

1 T

pP—
@ L, Cpp max(l; —*) then
j

j j o Lima®ise); o gj=1; ;m; (2.15)

where card®;) denotes the cardinality of the setP; ;
- Evaluating the individual:

Xn feas 2
IO O T S . Ly 2.16)

i=1 .

where ¢f** is the projecton of ¢ on  the feasible domain and ; =

. 1 P 1 P
exp 09 card(P) log(Cpp) 7 _ log(Cii)
p2P; 1

An individual x, in the following, will be rejected and resampled iqufeas gj >
pP% j Vg4 Vv Hl, wherep% is a parameter to be chosen. In all runs presented in the
sequel,p% is chosen to be equal to 20%.

2.3 CMA-ES with local meta-models

Many real-world optimization problems are formulated in a black-box scenario where the
objective function to optimize may have noise, multiple optima and can be computationally
expensive. For expensive objective functions{several mines to several hours for one
evaluation{a strategy is to couple evolutionary algorithms with meta-models or surrogates:
a model off is built, based on \true" evaluations of f, and used during the optimization
process to save evaluations of the expensive objective futien [83]. One key issue when
coupling EAs and meta-models is to decide when the quality ofhe model is good enough to
continue exploiting this model and when new evaluations on he \true" objective functions
should be performed, i.e., the exploration-exploitation rade-o de ned in Section 1.2.1.3
Indeed, performing too few evaluations on the original objetive function can result in
suboptimal solutions whereas performing too many of them ca lead to a non e cient
approach.

CMA-ES was coupled with local meta-models to de ne the locaimeta-model CMA-ES
(Imm-CMA) [ 87]. In the proposed algorithm, the quality of the meta-model is appraised
by tracking the change in the exact ranking of the best individuals. The Imm-CMA
algorithm has been evaluated on test functions using the deult population size of CMA-
ES for unimodal functions and for some multi-modal functiors and has been shown to
improve CMA-ES [87].

In this section, we review the Imm-CMA algorithm as de ned in [87] in Section 2.3.1
and then we analyze the performance of Inm-CMA when using pagation sizes larger than
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2.3 CMA-ES with local meta-models

the default one in Section2.3.2 We show that tracking the exact rank-change of the best
solutions to determine when to re-evaluate new solutions is too conservative criterion
and leads to a decrease of the speedup with respect to CMA-EShe&n the population
size is increased. Instead we propose in Sectigh3.3 a less conservative criterion that we
evaluate on test functions to de ne a new variant of CMA-ES with meta-models that we
call the new-local-meta-model CMA-ES (nlmm-CMA).

2.3.1 The local-meta-model CMA-ES (Imm-CMA)

The Imm-CMA algorithm [ 87] combines the CMA-ES with local meta-models by exploiting
the fact that the updates of CMA-ES only rely on the ranking of the best solutions. An
iteration of Imm-CMA consists of one iteration of CMA-ES where the evaluation step on
the (true) objective function that usually determines the ranking of the best solutions
is replaced by the approximate ranking procedure that outpus an approximate ranking
of the candidate solutions and that costs maximally function evaluations on the (true)
objective function (the bene t of the approach comes of couse when it costs less than ).
The mean value, covariance matrix and step-size of CMA-ES & then updated according
to the update equations de ned by the standard CMA-ES.

2.3.1.1 Locally weighted regression

To build an approximate model of the objective function f , denoted byf", we use a locally
weighted regression. During the optimization process, a dabase, i.e., a training set is
built by storing, after every evaluation on the true objective function, points together with
their objective function values (x;y = f (x)). Assuming that the training set contains a
su cient number m of couples &;f (x)), let us consider an individual denotedq 2 R" to
be evaluated with the approximate model, wheren is the dimension of the problem. We
begin by selecting thek nearest points (x;), ik from the training set. The distance used
for this purpose exploits the natural metric de ned by the covariance matrix of CMA,
namely the Mahalanobis distance with respect to the currentc&variance matrix C de ned

for two given points z; 2 R" and z, 2 R" by dc (z1;22) = (21 2z2)' C 1(z1 2zo).
We build with locally weighted regression an approximate okective function using (true)
evaluations (y;), ik corresponding to thek selected nearest points tag.

The use of a full quadratic meta-model is suggested in8[7/]. Hence, using a vector

n(n+3)
2Rz *1 we de ne f" as follows:

f'ox; )= T x% X3 ixaxao;

2.17
Xn 1XniX1, X 1)T (2.17)

23



2.3 CMA-ES with local meta-models

The full quadratic meta-model is built based on minimizing the following criterion with
respect to the vector of parameters of the meta-model atq:

Xk »
Al@) = (x5 ) K w (2.18)

The kernel weighting function K (:)isdened by K( )=(1  ?)?, and h is the bandwidth
de ned by the distance of the k™ nearest neighbor data point toq wherek must be greater
or equal to @ + 1 for a full quadratic meta-model.

2.3.1.2 Approximate ranking procedure

To incorporate the approximate model built using the locally weighted regression, we use
the approximate ranking procedure [L11]. This procedure decides whether the quality of
the model is good enough in order to continue exploiting thismodel or new true objective
function evaluations should be performed. The resulting méhod is called the local-meta-
model CMA-ES (Imm-CMA) [ 87] and is de ned as follows. For a given generation, let
us denote individuals of the current population of CMA-ES by (xi); ; , where s the
population size. The following procedure is then performed

1. build f’\(xi) for all individuals of the current population ( Xj); ;
2. rank individuals according to their approximated value f’\(xi): rankingo.

3. evaluate the best nj,;; individuals with the true objective function and add their
evaluations to the training set.

4. for nic from 1 to % , we:
(a) build f*(x;),
(b) rank individuals according to their approximated value " (x;): rankingn, -

(c) if (ranking n, = ranking ., 1), the meta-model is accepted.

(d) if the meta-model is accepted, we break. If not, weevaluate the best n, un-
evaluated individuals with the true objective function, add their evaluations to
the training set, and loop to step 4, until reaching the acceptance criterion of
the meta-model.

5. if (Nic > 2), Ninir = MiN( Nipit + Np; Np)

6. if (Nic < 2), Ninit = Max(Np; Nipit~ Np)

1Or true objective function if the individuals have been evalua ted on it.
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2.3 CMA-ES with local meta-models

Table 2.1: Test functions and their corresponding initial intervals and standard deviations.
The starting point is uniformly drawn from the initialized i nterval.

Name Function Init. 0
P
Noisy Sphere fnsphere(x) = ( x?)exp( N(0;1)) [ 37" 5
i=1
P P )
Schwefel f schw(X) = ( xp) [ 10,10" 10
i=1 j=1
SchwefeP*  fo, (X)) = (fschmetel (X)) [ 10,10P 10
1
Rosenbrock  fresen(X) = 100 X?  Xi+1 2+(xi l)2 [ 55" 5
i=1 IS
P
Ackley fack (X) = 20 20exp 02 1 «x? [1; 301 14.5
i=1
P
+e exp(; cos(2xi))
i=
P
Rastrigin f Rast (X) = 10n+ x2  10:cos(2x i) [1,5]" 2

This procedure heavily exploits the rank-based property ofthe CMA-ES algorithm.
Initially, a number nj,;; of best individuals based on the meta-model is evaluated usg
the true objective function and then added to the training s&. A batch of ny individuals
is evaluated until satisfying the meta-model acceptance dterion: keeping the ranking of
each of the best individuals based on the meta-model unchanged for twieration cycles
Hence, Qinit + Np hjc) individuals are evaluated every generation wherenjc represents
the number of iteration cycles needed to satisfy the meta-mdel acceptance criterion. The
integer ny, is chosen to be equal to max[1,{5)] and niyit is initialized to  and adapted after
every generation. The minimum number of evaluations perfomed for a given generation,
which corresponds to the minimum value that nj,;; can reach, is then equal tony,.
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2.3 CMA-ES with local meta-models

Table 2.2: Success performance SP1, i.e., the average numbef function evaluations
for successful runs divided by the ratio of successful runsstandard deviations of the
number of function evaluations for successful runs and speep performance spu, to reach
fstop = 10 10 of Imm-CMA and nimm-CMA. The ratio of successful runs is dended
between brackets if it is< 1:0. Results with a constant dimensionn =5 and an increasing

are highlighted in grey.

Function | n Imm-CMA spu nimm-CMA spu CMA-ES
f Rosen 2 6 291 59 27 | 252 52 31 779 236
4 8 776 102 [095] 28 | 719 54 [0:85] 30 | 2185 359 [0:95]
5 8 1131 143 27 1014 94 [0:90] 30 3012 394 [0:90]
5 16 1703 230 [0:95] 2.0 901 64 37 3319 409
5 24 2784 263 14 1272 90 [0:95] 30 3840 256
5 32 3364 221 1:3 1567 159 229 4515 275
5 48 4339 223 1:3 1973 144 220 5714 297
5 96 6923 322 1:2 3218 132 25 7992 428
8 10 2545 233 [095] 21 |2234 202 [0:95] 24 | 5245 644
f schw 2 6 89 4:3 87 4:4 385 35
4 8 166 5:4 166 5:4 897 51
8 10 334 6:2 333 62 | 2078 138
16 12 899 40 59 | 855 30 62 | 5305 166
f sopwi 2 6 556 25 24 | 413 25 33 | 1343 72
4 8 1715 87 17 | 971 36 29 | 2856 135
5 8 2145 69 1:6 1302 31 2.7 3522 136
5 16 3775 137 1:3 1446 31 34 4841 127
5 24 5034 142 1:2 1825 45 34 6151 252
5 32 6397 174 1:2 2461 43 32 7765 227
5 48 8233 190 1:2 3150 58 32 10178 202
5 96 11810 177 1:2 4930 94 229 14290 252
8 10 4046 127 15 | 2714 41 22 | 5943 133
f Nsphere 2 6 o035 124 14 27 | 109 12 31 337 34
4 8 o025| 316 45 23 | 236 19 31 739 30
8 10 o1s 842 77 18 | 636 33 24 | 1539 69
16 12 o0a13| 2125 72 13 | 2156 216 13 | 2856 88
f ack 2 5 302 43 [0:90] 26 | 227 23 35 782 114  [0:95]
5 7 1036 620 20 | 704 23 [090] 30 | 2104 117  [0:85]
10 10 2642 93 [0:90] 14 |2066 119 [0:95] 18 | 3787 151  [0:95]
f Rast 2 50 898 160 [095] 27 | 524 48 [0:95] 47 | 2440 294  [0:75]
5 70 19911 509 [0:15] 06 9131 135 [0:15] 1.3 11676 711 [0:50]
5 140 6543 569 [0:80] 1.6 4037 209 [0:60] 2:6 10338 1254 [0:85]
5 280 10851 1008 [0:85] 1.3 4949 425 [0:85] 2.9 14266 1069
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Figure 2.2: Speedup of nlmm-CMA @ ) and Imm-CMA () on (@) f g4+ (0) fRosen and
(c) frast for dimensionn =5.

2.3.2 Evaluating Imm-CMA on increasing population size

2.3.2.1 Experimental procedure

The Imm-CMA and the other variants tested in this chapter are evaluated on the objective
functions presented in Table 2.1 corresponding to the functions used in §7] except two
functions: (1) the function fg = where we compose the convex quadratic functiofischy
by a strictly increasing mapping g : x 2 R 7! x4, introduced because we suspect that the
results onfgeny are arti cial and only re ect the fact that the model used in | mm-CMA
is quadratic and (2) the noisy sphere functionf nsphere Whose de nition has been modi ed
following the recommendations of 82. We have followed the experimental procedure in
[87] and performed for each test function 20 independent runs usg an implementation
of Imm-CMA based on a java code of CMA-ES randomly initialized from initial inter-
vals de ned in Table 2.1 and with initial standard deviations ¢ in Table 2.1 and other
standard parameter settings in [f1]. The algorithm performance is measured using the
success performance SP1 used if]]. SP1 is de ned as the average number of evaluations
for successful runs divided by the ratio of successful runsyhere a run is considered as
successful if it succeeds in reachinfsipp = 10 10 Another performance measure that
might be used was the expected running time ERT $9] which is de ned as the number of
function evaluations conducted in all runs (successful andinsuccessful runs) divided by
the ratio of successful runs. In this chapter, we opt for SP1isice the stopping criteria for
unsuccessful runs were not properly tuned which can a ect tle performance comparison.
We have reproduced the results for the Imnm-CMA presented in§7, Table 3]. Those results
are presented in Table2.22.

1See http : ==www:lri:fr= hanserccmaesinmatlab :html :

2Experiments have been performed with k = n(n+3)+2 indicated in [ 87]. However we observed some
di erences on fresen and f schw With this value of k and found out that k = @ + 1 allows to obtain the
results presented in [87, Table 3]. We did backup this nding by using the Matlab code pr ovided by Stefan
Kern.
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2.3 CMA-ES with local meta-models

2.3.2.2 Performances of Imm-CMA with increasing population size

In Imm-CMA, a meta-model is accepted if the exact ranking of he best individuals
remains unchanged. However, this criterion is more and morei cult to satisfy when the
population size and thus (= =2) increases. We suspect that this can have drastic
consequences on the performances of Imm-CMA. To test our hygihesis we perform tests
Schwi with = 8; 16; 24, 32, 48 96 and for frast for =
70; 140, 280. The results are presented in Fig2.2 and in Table 2.2 (rows highlighted in
grey). On frosen and f g, =, We observe, as expected that the speedup with respect to

fOf n = 5 on fRosen, f

CMA-ES drops with increasing and is approaching 1. Onfrast, We observe that the
speedup for = 140 is larger than for =280 (respectively equal to 16 and 13).

2.3.3 A new variant of Imm-CMA

We propose now a new variant of Imnm-CMA, the new-local-metamodel CMA-ES (nImm-
CMA) that tackles the problem detected in the previous sectbn.

2.3.3.1 A new meta-model acceptance criteria

We have seen that requiring the preservation of the exact raking of the best individuals
is a too conservative criterion for population sizes largetthan the default one to measure
the quality of meta-models. We therefore propose to replacthis criterion by the following
one: after building the model and ranking it, a meta-model isaccepted if it succeeds in
keeping, both the ensemble of individuals and the best individual unchanged. In this
case, we ignore any change in the rank of each individual fronthe best individuals,
except for the best individual which must be the same, as longs this individual is still an
element of the best ensemble. Another criterion is added to the acceptancef the meta-
model: once more than one fourth of the population is evaluatd, the model is accepted if
it succeeds to keep the best individual unchanged. The promed procedure is then de ned
as follows. For a given generation, let us denote individua of the current population of
CMA-ES by (Xxj); ; , where is the population size. The following new approximate
ranking procedure is then performed:

1. build f*(x;) for all individuals of the current population (Xi)q

2. rank individuals according to their approximated value f"(x;) and determine the
best individuals set and the best individual.

3. evaluate the nj,t best individuals with the true objective function and add their
evaluations to the training set.

4. for njc from 1 to % , we:
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2.3 CMA-ES with local meta-models

(a) build f*(xi), |

(b) rank individuals according to their approximated value f"(x;)! and determine
the best individuals set and the best individual.

(c) ifless than one fourth of the population is evaluated, the meta-model is accepted
if it succeeds in keeping boththe best individual and the ensemble of
best individuals unchanged.

(d) if more than one fourth of the population is evaluated, the meta-model is ac-
cepted if it succeeds in keepinghe best individual  unchanged.

(e) if the meta-model is accepted, we break. If not, weevaluate the n, best un-
evaluated individuals with the true objective function, add their evaluations to
the training set, and loop to step 4, until reaching the acceptance criterion of
the meta-model.

5. if (Nic > 2), Nipit = MiN( Nipit + Np; Np)

6. if (Nic < 2), Ninit = Max(Np; Ninit~ Np) -

Considering only changes in the whole parent set, without t&ing into account the exact
rank of each individual, and setting an upper limit on the number of true objective function
evaluations was rst proposed in [L3]. The new variant is called nimm-CMA in the sequel.

2.3.3.2 Evaluation of nlmm-CMA

The performance results of nimm-CMA are presented in Table2.2 together with the ones of
Imm-CMA. Table 2.2 shows that onf gast, the nNlmm-CMA speedup is in between 2.5 and 5
instead of 1.5 and 3 for Imm-CMA, and onf px NImMmM-CMA outperforms Imm-CMA with
speedups between 1.5 and 3.5 for nimm-CMA and between 1.4 arifor Inm-CMA. On
these functions, nimm-CMA is signi cantly more e cient. Fo r the other tested functions
fRast, fschw and f ¢, =4, NIMM-CMA is marginally more e cient than the standard Imm-
CMA. In Fig. 2.2 and in Table 2.2 (highlighted rows), we evaluate the e ect of increasing
on nlmm-CMA using the same setting as in Section2.3.2.2 Using population sizes
larger than the default one, nimm-CMA improves CMA-ES by a factor between 2.5 and

3.5 for all tested functions f rosen, f = and frast. Therefore, nnimm-CMA maintains a

Schw
signi cant speedup for larger than the default one contrary to Imm-CMA which o ers
a speedup approaching to 1 forf rosen and f o=+ and a decreasing speedup (from 1.6 to

1.3) when increases (from 140 to 280) foff rast.

1Or true objective function if the individuals have been evalua ted on it.
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2.3 CMA-ES with local meta-models

2.3.3.3 Impact of the recombination type

The choice of the recombination type has an important impacton the e ciency of evolution
strategies in general §] and CMA-ES in particular [ 74, 71]. In the previous section, all the
runs performed use the default weighted recombination typede ned by Eq. (2.5). In the
new variant of Imm-CMA, the meta-model acceptance criterion does not take into account
the exact rank of each individual except the best one. By modying the meta-model
acceptance criteria of Inm-CMA, a possible accepted meta-mdel may be a meta-model
that preserves the best individuals set and the best individual but generates aranking
far from the \true" ranking, i.e., the one based on the true objective function. We now
compare nimm-CMA using weighted recombination where weigts are de ned in Eq. (2.5
and intermediate recombination where weights are all equato 1= : nimm-CMA | . Results
are presented in Table2.3. The algorithm nimm-CMA outperforms nimm-CMA | in all
cases suggesting that even if the exact ranking is not takemto account for assessing the
quality of the meta-model in nimm-CMA , this ranking is not ra ndom and still has an
amount of information to guide CMA-ES.

2.3.3.4 Impact of initial parameters

In the tests presented so far, the initial parameters of the @proximate ranking procedure
are de ned as follows: nj,; is initialized at the beginning of the optimization processto
, and ny is set to max[L (35)]. Every generation g, the number of initial individuals
evaluated nj,;; is adapted (increased or decreased) depending on the metaedel quality
(Steps 5. and 6. in the procedure de ned in Section2.3.3.7). We denote by nl(r?,{ and
ni(f) the values of njyiy and njc respectively at generationg. The number of evaluations

performed every generationg is (n{% + n{@ n,). We quantify now the impact of the
initial values of (nj,i: and ny) on the total cost of the optimization process. The algorithm

nimm-CMA is compared to a similar version where initial parameters are chosen as small
)

as possible, i.e.n;;; and n, are equal to 1. Moreover, we consider two cases: (1) with
update denoted nimm-CMA, i.e., where initial parameters are adapted depending on th
iteration cycle number (Steps 5. and 6. in the procedure de red in Section2.3.3.1), and
(2) without update denoted nimm-CMA ,, i.e., parameters are equal to 1 during the entire
optimization process (omitting steps 5. and 6. in the procedre de ned in Section 2.3.3.1).
We note that in case (1), the number of evaluations for each geeration g is n{® + ni(cg)

init
In case (2), every generatiorg, Inm-CMA evaluates 1+ ni(cg) individuals, since nl(r?li =
The results on di erent test functions are summarized in Table 2.3.
On the unimodal functions f schw, f g1, SEttiNG Ninit and ny, as small as possible in ev-
ery generation, is marginally more e cient than the default de nition of initial parameters

on small dimensions except for dimensiom = 8 and = 10. On fRresen, NIMM-CMA 5 is
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2.3 CMA-ES with local meta-models

the most e cient compared to other approaches, except for dmensionn =8 and =10
which can be justi ed by a higher number of unsuccessful runscompared to other ap-
proaches. On the multi-modal function f o, modifying the initial parameter nj,; does
not have an important impact on the speedup of Imm-CMA (between 1.5 and 4). However
on f rast, using a small initial n;,;; decreases considerably the probability of success of the
optimization, from 0.95 to between 0.35 and 0.10 for dimensin n = 2 and = 50, and
from 0.60 to 0.10 for dimensionn = 5 and = 140. These results conrm the initial
parameter choice suggested ing[7].
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Table 2.3: SP1, standard deviations of the number of function evaluations for successful runs and speedup performancels to reach
fstop = 10 10 of Nimm-CMA, nimm-CMA | (intermediate recombination and default initial parameters), nlmm-CMA 1(default recombination,
initial values of nj,; and np set to 1) and nimm-CMA »(default recombination type, ninr = 1 and n, = 1 during the whole optimization
process). The ratio of successful runs is denoted betweendmkets if it is < 1:0.

Function | n nimm-CMA  spu nimm-CMA |, spu nimm-CMA 1  spu nimm-CMA >  spu
f Rosen 2 6 252 52 31| 357 67 2:2 250 80 31| 229 53 34
4 8 719 54 [0:85] 30| 833 100 26 596 55 37 | 575 68 38
8 10 2234 202 [0:95] 24 |2804 256 [0:95] 19| 2122 133 25 | 2466 207 [0:85] 21
f schw 2 6 87 7 44| 110 10 35 75 8 5:2 73 7 5:3
4 8 166 6 54| 220 15 41 138 6 65 | 136 5 6:6
8 10 333 9 62| 423 15 49 374 16 56 | 380 21 55
16 12 855 30 62| 947 24 5:6 794 27 67 | 786 37 6:8
f sonwi 2 6 413 25 33| 550 29 24| 411 20 33| 398 16 34
4 8 971 36 2:9 11320 76 2:2 938 32 31| 909 30 31
8 10 2714 41 2212714 257 22| 2668 40 22 | 2677 36 2:2
fnsphere | 2 6 :35| 109 12 31| 135 19 2:5 92 11 37 87 9 39
4 8 25| 236 19 31| 306 40 2:4 216 16 34 | 219 16 34
8 10 18| 636 33 24| 788 47 20| 611 35 25 | 619 45 2:5
16 12 :13|2156 216 13| 2690 421 11| 2161 148 13 | 2195 142 13
f Ack 2 5 227 23 35| 329 29 [0:85] 24 226 21 [095] 35 | 208 19 38
5 7 704 23 [090] 30| 850 43 [0:90] 25 654 35 [0:95] 32 | 652 32 [095] 32
10 10 2066 119 [0:95] 1:8|2159 58 18| 2394 52 [0:80] 1.6 | 1925 44 2:0
f Rast 2 50 524 48 [0:95] 47| 796 68 [0:75] 31 569 26 [0:35] 43 | 1365 28 [0:10] 18
5 140 4037 209 [0:60] 2:6|5265 313 [055] 2:0|13685 257 [0:10] 0:8 | 7910 82 [0:10] 13

S|opow-evw [ 30| YIMm S3I-VIND £°¢



2.4 Summary and discussions

2.4 Summary and discussions

In this chapter, we have introduced the stochastic optimiz& CMA-ES, as well as an adap-
tive penalization with rejection technique in order to handle the optimization constraints.

We have explained that CMA-ES exhibits many invariances, a esirable property as it
implies the generalization of results from one function to aclass of functions and confer
thus robustness and wider applicability of the method. In paticular, CMA-ES is a rank-
basedsearch algorithm exploiting the objective function only through the relative ranking
of solutions within the population. The rank-based property implies invariance of the
algorithm on the class of functions clas§ = fg f; g : R! R strictly increasingg for any
f:R"1 R.

In order to improve its performance when dealing with costly objective functions, the
CMA-ES algorithm has been combined with local meta-models hat are constructed using
points from the archive of solutions{called the training se{evaluated on the (expensive)
original objective function. The quality of the meta-models is appraised using an ap-
proximate ranking procedure that determines if the objective function predicted by the
meta-model is good enough or more points should be evaluatesh the original function.
The resulting algorithm is called the local-meta-model CMAES (Imm-CMA) [ 87] (Sec-
tion 2.3.1). In this chapter, the original acceptance criterion for the meta-models proposed
for Imm-CMA has been shown to be too conservative for increasg population sizes (Sec-
tion 2.3.2) and modi ed in order to maintain a reasonable speed-up wherpopulation sizes
larger than the default one are used (Sectior2.3.3). The proposed new variant is called
the new-local-meta-model CMA-ES (nimm-CMA).

In particular, we have investigated in this chapter the performances of the Imm-CMA
algorithm coupling CMA-ES with local meta-models. On fresen and fg, =, we have
shown that the speedup of Imm-CMA with respect to CMA-ES drops to one when the
population size increases. This phenomenon has been explained by the too testive
condition used to stop evaluating new points dedicated at rening the meta-model, namely
requiring that the exactranking ofthe = =2 best solutions is preserved when evaluating
a new solution on the exact objective function. To tackle this problem, we have proposed
to relax the condition to: the set of best solutionsis preserved andthe best individual
is preserved. The resulting new variant, nimm-CMA outperfoms Imm-CMA on the test
functions investigated and the speedup with CMA-ES is betwen 1.5 and 7. Moreover,
contrary to Imm-CMA it maintains a signi cant speedup, betw een 2.5 and 4, when increas-
ing  on frosens fgeput @Nd frast. The study of the impact of the recombination weights
has shown that the default weights of CMA-ES are more appropiate than equal weights.
The in uence of two parameters, np and nj; , corresponding to the number of individu-
als evaluated respectively initially and in each iteration cycle has been investigated. We
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2.4 Summary and discussions

have seen that setting those parameters to 1 during the whol@ptimization process can
marginally improve the performances on uni-modal functiors and some multi-modal test
functions. However it increases the likelihood to be stuckn local minima for the Rastrigin
function suggesting that the default parameter of Imm-CMA are still a good choice for

nimm-CMA.
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Chapter 3

Well placement optimization with
CMA-ES and CMA-ES with
meta-models

This chapter is based on the papersd6, 24]. In this chapter, we apply the CMA-ES
algorithm to the well placement problem, with the adaptive penalization with rejection
technique (introduced in Chapter 2) to handle constraints. Because genetic algorithms are
quite often the method of choice in petroleum industry, we rst show the improvement
of applying CMA-ES over a GA on the synthetic benchmark resevoir case PUNQ-S3. In
addition, because a reservoir simulation and thus the objetive function is expensive, we
apply the nimm-CMA algorithm introduced in the previous chapter in order to save a
number of evaluations by building a model of the problem. We walidate the approach on
the PUNQ-S3 case.

This chapter is structured as follows. Section3.1 describes the problem formulation.
In Section 3.2, CMA-ES is compared to a genetic algorithm on a synthetic resrvoir case to
show the contribution of the proposed optimization method. In Section 3.3, the reduction
of the number of reservoir simulations is addressed by coujplg CMA-ES with meta-models
and the contribution of the whole methodology, i.e., CMA-ES with meta-models is demon-
strated on a number of well location and trajectory optimization problems (with unilateral
and multilateral wells).

3.1 The well placement optimization problem formulation

In this section, we describe the well placement optimizatiom problem and explain the
parameterization of the wells.
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3.1 The well placement optimization problem formulation

3.1.1 Objective function

The quality of a well placement decision is evaluated using ia objective function that we
aim at maximizing (good solutions have a high objective funtion value and we aim at
nding the solution with the highest objective function val ue). The objective function as-
sociated with a well placement problem often evaluates the @nomic model of the decision
and takes into account di erent costs such as prices of oil ad gas, costs of drilling and
costs of injection and production of water. Another alternative is to use the cumulative oil
production or the barrel of oil equivalent (BOE). In this cha pter, the objective function
considered is the net present value NPV. Formally we want to nd a vector of parameter
Pmax such that:

NPV(Pmax) = m%x fNPV(p)g : (3.1)

The NPV of a well con guration and trajectory represented by a vector of parameter
p is calculated using two terms, the expected revenue asso¢él to p denoted R and the
drilling and completing cost of p denoted C4 which is subtracted to the revenue term, i.e.,:

NPV(p) = R(p) Ca(p) : (3.2)

The revenue termR is de ned by summing the revenues from produced oil over all he
wells, and subtracting the costs associated to produced wat and to injected water. A
discount rate {called also an annual percentage rate{ is intoduced to take into account the
risk and uncertainty and the time value of money, that is oil produced earlier contributes
more to the overall NPV. The detailed formula for the revenueterm reads:

0 2 312 31
XY 1 n:o n;o
= %)(1+ APR)N 4 Qug 2 4 Cuy 5 : (3.3)
n=1 Qn;wa ana

where Qnp is the eld production of phase ph (either oil, gas or water denoted respectively
0, g, W) at period n and Cy,p is the pro t or loss associated to this production. The annud
percentage rate is denoted APR. The integer Y is the number ofliscount periods (years).

For the drilling and completing cost term Cg4, we use the approximate formula used in
[129 that proposes to estimate the drilling cost as the sum of twoterms: the rst term
is proportional to the diameter of each lateral times the lergth of this lateral multiplied
the logarithm of this lateral (taking into account that the ¢ ost is more than linear in the
length), the second term adds up a xed cost per junction, i.e,:

|
Kw Nlat ) 'XU”
Cq = [Adw:In(lw)lwlew, +  [Cjunlm ; (3.4)
w=1l k=0 m=1
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3.1 The well placement optimization problem formulation

Table 3.1: Constants used to de ne the net present value (NPV).

Constant Value

Cn:o 60 $/ barrel
Chwa -4 $/ barrel
Chig 0 $/ barrel
APR 0:1

A 1000

dy 01 m

Ciun 10 $

where k = 0 represents the mainbore,k > 0 represents the laterals,l,, is the length of
the lateral (in ft), d,, is the diameter of the mainbore (in ft), Ny is the number of wells
drilled, Nig is the number of laterals andA is a constant speci ¢ to the considered eld
containing conversion factors. Cjy, is the cost of milling the junction and Nj,, is the
number of junctions.

For this chapter, the constants used to de ne the NPV in Egs. (3.3) and (3.4) are given
in Table 3.1

The computation of the NPV of a con guration p requires to have a prediction of the
quantity of oil, water and gas (Qn;o, Qnw., Qn;g) associated top in order to compute
the revenueR given by Eq. (3.3). To compute those quantities we use a reservoir simula-
tion which representsthe time consuming part in the computation of the NPV objective
function.

It is in general needed to impose di erent constraints on thewell con guration to avoid
nding both undrillable wells and wells that violates common engineering practices. The
constraints handled in this thesis are as follows:

maximum length of wells: |, <L max, for each wellw to be placed;

all wells must be inside the reservoir grid: |y = linsige, for each wellw to be placed,
where lisige is the length of the well w inside the reservoir grid.

3.1.2 Well parameterization

In our approach, we want to be able to handle di erent possibke con gurations of multi-

lateral wells. An illustrative scheme is given in Fig. 3.1 The terminology used to de ne
each part of a multilateral well follows the terminology used in [77]. In general, a lateral
can be de ned by a line connecting two points. The mainbore isde ned through the

trajectory of its contiguous completed segments. Hence, wee ne a sequence of points
where a deviation occurs (R:i)o i n, Where Ng is the number of segments. The starting
point P 4.0 = P o of the mainbore called the heel is represented by its Cartean coordinates
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3.1 The well placement optimization problem formulation

Po (Xo, Yo, Zo)

Pd;l (rd;l: d;1s ' d;l)

Pb;l (Ib;11 rb;li b;1s ' b;l)

Pa2 (ra;2, 20 " a;2)

Figure 3.1: An example of a single multilateral well parametrization with two segments
(Ns = 2) and one branch (Np = 1).

(Xo0; Yo; Zo). Other intermediate points (Pgi)1 i no 1 @and the ending point Py.n, called
the toe are represented by their corresponding spherical @vdinate system (q:i, d:i, " d:i)
with respect to the basis (Py;i 1, Ug;, Ugss u;j;i). We use spherical coordinates because
they allow for straightforward control of the well lengths by imposing a box constraint
whereas it would need to be handled by imposing a non linear ewtraint with Cartesian
coordinates.

The wells are parameterized in a way to handle a numbemMN, of branches and/or
laterals as well.

The branch or lateral j 2 [1;,  ;Np] is de ned by locating its ending point Py;j (Ip;,
v, by, bj) Where (o, b, " bj)1 j N, represents the spherical coordinates of B with
respect to the basis (Q, u[);j, Ups u'b;j), Qj is the starting point of the branch or the lateral
j, and lp; is the distance along the well between B and Q.

The dimensionD,, of the representation of a well denoted byw is as follows:

Dw=3(1+ NY)+4 NY : (3.5)

Hence, the dimensionD of the problem of placing Ny, wells (Wy)k=1: N, IS:

Ww
D= Dy, : (3.6)
k=1

An example of a single well parameterization is shown in Fig3.1. In this example,
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3.2 CMA-ES and a real-coded GA for the well placement problem

Ns is equal to two and Ny, is equal to one. The mainbore is then represented by three
points Pg and (Pg:i)1 i 2. The branch is represented by one point B.;. The corresponding
dimension of the optimization problem is 13.

3.2 CMA-ES and a real-coded GA for the well placement
problem

The choice of a stochastic optimization method was motivate by the ability of this type of
algorithms to deal with non-smooth, non-convex and multi-modal functions. In addition,
stochastic optimization does not require any gradients andcan be easily parallelized. So
far, the most popular stochastic approaches for tackling wi placement have been genetic
algorithms encoding the real parameters to be optimized asibstrings. However, it is know
in the stochastic algorithm community, that representing real vectors as bit strings leads to
poor performance [127. Recently, a comparison between binary and real represeations
on a well placement problem in a channelized synthetic reseoir model has been made,
showing that the continuous variant outperforms the binary one B3].

This section compares a real-coded GA with CMA-ES on a well @cement problem.
To allow a fair comparison, both algorithms are used without parameter tuning. Indeed,
tuning an algorithm requires some extra objective functionevaluations that would need to
be taken into account otherwise. Default parameters are uskfor the CMA-ES algorithm *

and typical parameter value for the GA.

3.2.1 Well placement using CMA-ES

The initial population is normally drawn using a mean vector uniformly drawn in the
reservoir. Parameters were de ned according to default sdings [71].

The population size is an important parameter of CMA-ES [71]. The default popula-
tion size value equals 4463 In(D)c, whereD is the dimension of the problem. Independent
restarts with increasing population size are suggested inlp]. In this thesis, the optimal
tuning of the population size was not addressed. However, dato the diculty of the
problem at hand, we use a population size greater than the defilt value.

3.2.2 Well placement using GA

Genetic algorithms [78, 79] are stochastic search algorithms that borrow some concept
from nature. Similar to CMA-ES, GAs are based on an initial population of individuals.
Each individual represents a possible solution to the prol#m at hand. Starting with

1 At the exception of the population size where the default sett ing is known to be good for non-rugged
landscapes but needs to be increased otherwise[1].
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3.2 CMA-ES and a real-coded GA for the well placement problem

Table 3.2: GA parameters: the probabilities to apply GA operators, i.e., crossover and
mutation.

Constant Value
crossprob 0.7
mutprob 0.1

an initial population of points called individuals or chromosomes, and at each iteration,
candidate solutions evolve by selection, mutation and recmbination until reaching the
stopping criteria with a satisfactory solution. The correspondence between a solution
and its representation needs to be de ned. In general, sim@ forms like an array or a
matrix of integer or bit elements are used. In this section, ndividuals are parameterized
as de ned for CMA-ES (see Section3.1.2). Hence, well coordinates are de ned using a
real encoding. Elitism is used to make sure that the best chrmosome would survive to
the next generation. The used operators are de ned as follos:

The crossover starts with two parent chromosomes causing #m to unite in points
to create two new elements. The greater chromosome tness'ank, the higher prob-
ability it will be selected. After selecting the two parents, crossover is applied with a
probability denoted crossprob. To apply the crossover, weandomly draw an indexi
between 1 andD and a numberc between 0 and 1. Let us denote the two parents by
(Xgj)1 j o and (X2;j)1 j b, then xy; c X3 +(1 © XgziandXy; C Xz
+(1 © Xy

The mutation, instead, starts with one individual and randomly changes some of
its components. Mutation is applied to all chromosomes, exept the one with the
best tness value, with a probability of mutation denoted mu tprob. In this case, we
randomly draw an index i. Let us denote the selected chromosome byx(): j b,
then x; min; + ¢ (max; min;), where min; and max are the minimum and
the maximum values that can be taken by thei" coordinate of the chromosome and
¢ is a number randomly drawn between 0 and 1.

The mutation and crossover probabilities are set to typicalvalues (see Table3.2)?.

To handle the constraints, the genetic algorithm is combing with the Genocop Il
technique (Genetic Algorithm for Numerical Optimization o f Constrained Problems) §7].
This procedure maintains two separate populations. The rg population called the search
population contains individuals which can be unfeasible. he second population, the
reference population, consists of individuals satisfyingall constraints (linear and non-
linear), called reference individuals. Feasible search @ividuals and reference individuals

1A good choice of the crossover probability is said to be in between Q4 and 0:9 [128, 39], 0:6 and 0:8
[66], 0:6 and 0:95 [51, 55], 0:6 and 0:8 [120]. A good choice of the mutation probability is said to be in
between 0001 and Q1 [39, 51, 55], 0:005 and Q05 [12(], 0:05 and 0.1 [12§].
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3.2 CMA-ES and a real-coded GA for the well placement problem

Figure 3.2: Elevation (in meters) and geometry of the PUNQ-S test case.

are evaluated directly using the objective function. Howeer, unfeasible individuals are
repaired before being evaluated. More details about Genogolll can be found in [97].

3.2.3 Well placement performance

All tests performed in the present chapter are conducted onhe PUNQ-S3 test cased4].
PUNQ-S3 is a case taken from a reservoir engineering study amreal eld, and quali ed as
a small-size industrial reservoir model. The model grid cotains 19 cells in the x-direction,
28 cells in the y-direction and 5 cells in the z-direction. Tte cell sizes is 180m in the x and
y directions and 18m in the z-direction. We suppose that the eld does not contain any
production or injection well initially. The elevation of th e eld and its geometry is shown
in Fig. 3.2 We plan to drill two wells: one unilateral injector and one unilateral producer.
The dimension of the problem is then equal to 12(=6 2).

To compare results obtained by both CMA-ES and the genetic ajorithm, 14 runs were
performed for each algorithm. A streamline simulator is usé during the optimization. In
this comparison, a bottomhole pressure imposed on the prodwer is xed to 80 bar, and a
bottomhole pressure imposed on the injector is xed to 6.00ar which is too high. This
unrealistic value was used only for the sake of comparison beeen the two optimization
methods.

The population size is set to 40 for both algorithms. The stoping criterion is also the
same for both of the methods: a maximum number of iterations qual to 100. The size of
the reference population for Genocop Il is set to 60. Well lagths are constrained with a

maximum well length L nax = 1000 meters.
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3.2 CMA-ES and a real-coded GA for the well placement problem
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Figure 3.3: The mean value of NPV (in US dollar) and its correponding standard devi-
ation for well placement optimization using CMA-ES (solid line) and GA (dashed ling.
Fourteen runs are performed for each algorithm. Constrains are handled using an adaptive
penalization with rejection technique for CMA-ES and using Genocop Il for GA.
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Figure 3.4: The mean number of unfeasible individuals per geeration and its corre-
sponding standard deviation using CMA-ES with an adaptive penalization with rejection
technique. Here, we consider only unfeasible individualsaf from the feasible domain, i.e.,
resampled individuals.
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Figure 3.5: The positions of solution wells found by 14 runs b CMA-ES projected on
the top face of the reservoir. Injectors are represented bydashed ling. Producers are
represented by &olid line).

Fig. 3.3shows the average performance and its standard deviation dlfie well placement
optimization using both algorithms measured by the overallbest objective function value.
It is clear that CMA-ES outperforms the GA: the genetic algorithm adds only 40% to the
best NPV obtained by a randomly sampled con guration, i.e., in the rst generation of
the optimization. However, CMA-ES adds 80%.

Fig. 3.4 shows that CMA-ES handles the used constraints successfyll The number
of well con gurations resampled, i.e., far from the feasibé domain, approaches to 0 at the
end of the optimization. Fig. 3.4 shows that after a number of iterations, the majority of
the well con gurations generated by CMA-ES are either feadble or close to the feasible
domain.

Fig. 3.5 shows the positions of \optimum™ wells obtained from 14 runsusing CMA-ES.
CMA-ES succeeds in de ning in 11 runs of the 14 performed the @me potential zone to
place the producer and the injector. This region gives an NPVbetween $199 10 and
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Figure 3.6: The positions of solution wells found by 14 runs bthe GA projected on the top
face of the reservoir. Injectors are represented bydashed ling. Producers are represented
by (solid line).
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3.3 Application of CMA-ES with meta-models on the PUNQ-S3 case

$2:05 10%9. In the other three runs, CMA-ES nds each time a di erent loc al optimum
with NPV values equal to: $1:83 10, $1:95 10'° and $205 10'°. Despite the large
number of local optima, CMA-ES succeeds in providing satisdctory results on 93 % of
the runs, if we consider that a run is satisfactory if it givesan NPV greater or equal to
$195 10

For the genetic algorithm, 14 runs were performed to trace derent \optimum™ well
con gurations in Fig. 3.6. Well con gurations are not concentrated in some well-de ned
regions and have an NPV mean value equal to $68 10 with a standard deviation
equal to 1:06 10°. The GA leads to well con gurations dispersed over a large zoe. The
maximum value of NPV obtained by the GA is equal to $1:86 10'° and it corresponds
to a well con guration close to a well con guration obtained by CMA-ES with an NPV
$205 10

Results con rm that CMA-ES is able to nd in the majority of th e runs a solution in
the same potential region. In 93% of the runs on the considerktest case, CMA-ES nds
a well con guration with a satisfactory NPV value. However, the GA has di culties to
de ne this potential region and seems to prematurely convege in di erent regions. Pre-
mature convergence in the GA is most certainly due to the lackof mechanisms that (1)
would play the role of the step-size mechanism in CMA-ES whik is able to increase the
step-size in linear environments and (2) would play the roleof the covariance matrix adap-
tation mechanism allowing to adapt the main search directims (elongate / shrink certain
directions and learn the principal axis of the problem) to sdve e ciently ill-conditioned
problems. Without this latter mechanism on ill-conditioned problems, it is common to
observe premature convergence.

3.3 Application of CMA-ES with meta-models on the PUNQ-
S3 case

In this section we apply CMA-ES with meta-models on the well dacement optimization
problem. The proposed approach is able to handle di erent pasible well con gurations as
de ned in Section 3.1.2 The use of local meta-models instead of a global one is motted
by the fact that we want the algorithm to be able to handle multi-modal functions or
unimodal functions where a global quadratic model would moel poorly the function.
In the following, we use the variant nimm-CMA , de ned in Section 2.3.3.4 For nimm-
CMA ,, (1 + nj¢) individuals are evaluated for a given generation whereni; is the number
of iteration cycles needed to satisfy the meta-model accepnce criterion. In this section,
the performance of the approach is demonstrated on two cases
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3.3 Application of CMA-ES with meta-models on the PUNQ-S3 case

Figure 3.7: The mean value of NPV (in US dollar) and its correponding standard deviation
for well placement optimization using CMA-ES with meta-models (solid line) and CMA-
ES (dashed ling. Ten runs are performed for each algorithm. Constraints ae handled
using an adaptive penalization with rejection technique.

3.3.1 Placement of one unilateral producer and one unilater al injector

In this application, we consider a placement problem of one nilateral injector and one
unilateral producer on the PUNQ-S3 case. Parameters of the qoblem are the same as for
the example in Section3.2.3 except for the following di erences:

a commercial reservoir simulator is used to evaluate eld poductions of each phase
instead of the streamline simulator;

the bottomhole pressure imposed on the producer is xed to 16 bar;

the bottomhole pressure imposed on the injector is xed to 3D bar.

To de ne the parameters of the meta-model, we choose&, the number of individuals
used to evaluate the meta-model, equal to 100. Meta-modelsra used when the training
set contains at least 160 couples of points with their evalutions. For each method, i.e.,
CMA-ES and CMA-ES with local meta-models (Imm-CMA), 10 runs were performed. The
evolution of the NPV mean value in term of the mean number of reervoir simulations is
represented in Fig.3.7.
Fig. 3.7 shows that, for the same number of reservoir simulations, ambining CMA-

ES with meta-models allows to reach higher NPV values compad to CMA-ES, given a
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Figure 3.8: The mean number of reservoir simulations needetb reach a given NPV value
using CMA-ES with meta-models (solid line) and CMA-ES (dashed ling. Ten runs are
performed for each algorithm.

restricted budget of reservoir simulations. A better representation is to show the mean
number of reservoir simulations needed to reach a certain yae of NPV for CMA-ES and
for CMA-ES with meta-models (Fig. 3.8). To reach an NPV value of $9 10°, Inm-CMA
requires only 659 reservoir simulations, while CMA-ES reqires 880 reservoir simulations.
If we consider that an NPV equal to $9 10° is satisfactory, using meta-models reduces
the number of reservoir simulations by 25%. For an NPV value qual to $9:6 1(°,
the use of meta-models reduces the number of reservoir simatlons by 19%. Figs.3.7
and 3.8 highlight the contribution of meta-models in reducing the number of reservoir
simulations. Results show also that, in addition to reducirg the number of objective
function evaluations, the method still succeeds in reachig high NPV values and results
are similar to those obtained by CMA-ES. As for the example inSection 3.2.3 the well
placement optimization still succeeds in identifying in the majority of the runs the same
potential region to contain optimum wells. In the following, we present detailed results
obtained only by one of the solution well con gurations proposed by Imm-CMA. The
selected solution well con guration is denotedoptimized con g in the sequel. Optimized
cong is then compared to two con gurations designed after some tials in a way to
represent the decision of a reservoir engineer (denotemn g.1 and con g.2 ). The locations
and trajectories of the considered well con gurations are Bown in Fig. 3.9.

The engineer's proposed con gurations were de ned accordig to the SoPhiH map
(Fig. 3.9) which represents the distribution of the hydrocarbon porevolume over thenjayers
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3.3 Application of CMA-ES with meta-models on the PUNQ-S3 case

Figure 3.9: The SoPhiH map, with solution well con guration obtained using CMA-ES
with meta-models (PROD-O, INJ-O) and two engineer's propoed well con gurations
(PROD-1, INJ-1 and PROD-2, INJ-2).
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Figure 3.10: Production curves for an optimized solution uing CMA-ES with meta-models
(optimized con g.) and two engineer's proposed con gurations €on g.1 and con g.2).
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3.3 Application of CMA-ES with meta-models on the PUNQ-S3 case

layers de ned by P (Hk So), Where H is the gross thickness of the layek, S, is the
oil saturation andkzlis the porosity. PROD-c and INJ-c denote respectively the producer
and the injector corresponding to the well con guration ¢. The well con guration is either
cong.1l, cong.2 or optimized con g denoted respectively 1, 2, O. Engineer's proposed
wells are horizontal wells where producers (PROD-1 = PROD-2 are placed in the top
layer (k = 1) and injectors in the bottom layer ( k = 5). However, producers and injectors
in optimized con g are inclined wells placed in the layer k = 3). The engineer's proposed
producer is placed in the region with the highest SoPhiH vale.

Fig. 3.10 shows the production curves of the considered well con guréons. The cu-
mulative oil production for optimized con g, during the 11 simulated years equals 205
MMbbl. However, con g.1 o ers only 119 MMbbl and con g.2 o ers 102 MMbbl. There-
fore, the optimization methodology adds 72% to the best congered engineer's proposed
well con guration. Optimized con g o ers also the smallest water cut (0.45 foroptimized
cong, 0.57 forcong.1 and 0.69 forcon g.2).

3.3.2 Placement of one multi-segment producer

In this application, we consider a placement problem of one miti-segment well on the
PUNQ-S3 case. We suppose that an injector is already placedithe reservoir. It corre-
sponds to the well denoted INJ-O in Fig. 3.9. We plan to drill a multi-segment well with
two completed segments. The dimension of the problem is theequal to 9(= 6 + 3). The
di erent parameters of the problem are the same as in the exarple in Section3.3.1, except
for the population size which is equal to 30. Ten runs were pdormed with a maximum
number of iterations equal to 100.

Fig. 3.11 shows the evolution of the average performance of the well atement, i.e.,
NPV mean values and the corresponding standard deviation. @timizing the placement
of one multi-segment producer o ers an NPV equal to $110 10° 4:37 10’. To reach
an NPV mean value of $110 10° the optimization process requires only 504 reservoir
simulations.

The positions of solution wells are shown in Figs3.12 and 3.13 In this application,
the used methodology succeeds in reaching NPV values greatthan $1:09 10° and in
de ning an \optimum" well con guration in the same potentia | region for all the performed
runs. Therefore, performing only one run can be conclusiveral can ensure converging to
a solution well with a satisfactory NPV.
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Figure 3.11: The mean value of NPV (in US dollar) and its corresponding standard de-
viation for well placement optimization using CMA-ES with m eta-models of one multi-
segment well. Ten runs are performed.
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Figure 3.12: The positions of solution multi-segment prodeers found by 10 runs of CMA-
ES with meta-models. A zoom on the region containing the soltion wells is performed.
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Figure 3.13: The positions of solution multi-segment prodeers found by 10 runs of CMA-
ES with meta-models projected on the top face of the reservoi A zoom on the region
containing the solution wells is performed.

3.4 Summary and discussions

In this chapter, the stochastic optimization method CMA-ES was applied on a well place-
ment problem. A technique based on adaptive penalization wh rejection was developed
to handle well placement constraints with CMA-ES. Results siowed that this technique
ensures that after a number of iterations, the majority of wdl con gurations generated
by CMA-ES are either feasible or close to the feasible domain The optimization with
CMA-ES was compared to a GA which is the most popular method ued in well place-
ment optimization in the literature. Both algorithms were u sed without parameter tuning
allowing for a direct fair comparison of the results. Indeedparameter tuning requires
extra function evaluations that should be taken into accournt when presenting comparison
results. In addition, we think that parameter tuning should be done by the designer of
the algorithm and not the user as it is unrealistic to waste eyensive function evaluations
for correcting the weakness of the design phase. The CMA-ESxample shows that pro-
viding parameter-free algorithms with robust setting is possible to achieve. CMA-ES was
shown to outperform the genetic algorithm on the PUNQ-S3 cas by leading to a higher
net present value (NPV). Moreover, CMA-ES was shown to be al# to de ne potential
regions containing optimal well con gurations. On the other hand, the genetic algorithm
converged to solutions located in di erent regions for evey performed run. In addition
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3.4 Summary and discussions

those solutions are associated to much smaller NPV values #n the solutions found by
CMA-ES. On the PUNQ-S3 case, the mean NPV value found by GA is $:68 10'°. How-
ever, the mean NPV value found by CMA-ES is $201 100, The ability of CMA-ES to
nd much higher NPV values and to converge to the same region bthe search space, has
been explained by its advanced adaptation mechanism that #bws the algorithm, on ill-
conditioned non-separable problems, to adapt in an e cient way its sampling probability
distribution.

To tackle the computational issue related to the number of reservoir simulations per-
formed during the optimization, an application of nimm-CMA algorithm is demonstrated
on the PUNQ-S3 case. The use of meta-models was shown to o einsilar results (solution
well con gurations and the corresponding NPV values) as CMAES without meta-models
and moreover to reduce the number of simulations by 19-25% toeach a satisfactory NPV.
The comparison of the obtained results with some engineer'proposed well con gura-
tions showed that the proposed optimization methodology isable to provide better well
con gurations in regions that might be di cult to determine by reservoir engineers.

The results presented in this chapter has demonstrated the ptential huge benet
of applying the CMA-ES methodology over more established sichastic techniques for
reservoir applications.
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Chapter 4

Local-meta-model CMA-ES for
partially separable functions

This chapter is based on the paper 23]. In this chapter, we propose a new variant of
the covariance matrix adaptation evolution strategy with | ocal meta-models for optimiz-
ing partially separable functions. We propose to exploit patial separability by building
at each iteration a meta-model for each element function (orsub-function) using a full
quadratic local model. The performance of the proposed algdhm is shown on a number
of mathematical test functions.

This chapter is structured as follows. Section4.1 de nes a general notion of partial
separability. In Section 4.2, we propose a new variant of CMA-ES with meta-models for
partially separable functions. The performance of this varant is evaluated in Section4.3
on a number of partially separable test functions. The choie of the number of points used
to build the meta-model is also described and the computatioal cost is discussed.

In the following, we denote the objective function to be optimized by f : R"! R.

4.1 Partial separability and problem modeling

A function f : R" ! R s partially separable if it can be written as a sum of sub-furctions,
also calledelement functions each depending on a fewer number of variables. Often the
particular case where each sub-function depends on a subsef variables of the original
function is de ned as partial separability. For instance the Rosenbrock function in Table4.1
writes: % 1
f(x)= h(Xi;Xi+1) ; (4.1)
i=1
where x = (Xi)1 i n and h(xi;Xj+1) = (X2  Xi+1)2+(xi 1)? and is thus partially
separable with each sub-function depending on the subset eariables [(Xi; Xij+1)]i=1: i 1.
This particular case of partially separable function is corsidered for instance in P1, 38, 45).
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4.1 Partial separability and problem modeling

A more general de nition, given in [102), considers that each sub-function can depend on
a number of variables that are alinear combination of a subset of variables.

In this thesis we consider a generalization of the previous @l nitions allowing non-
linear combinations of the subset of variables. More precily a functionf : R" ! R is
said partially separable if there exists an integerN > 1, a set of integers ;)1 i n Wwith
n<n; foralli =1; ;N, a set of explicit functions ( ' : R" I R"); ; y and a set

of functions (f; : R" ! R); ; n, such that f can be written asf (x) = _lu fi( '(x)).
The sub-functions or element functions §i); i n depend on a numbern; olf_lparameters
called element variables The functions ' will be called mapping functions Note that the
setting of [107] is recovered by taking ' = U' whereU' is a linear mapping from R" to
RM.

For a given partially separable function, there exists \theoretically" an in nite number
of ways to de ne the element functions and mapping functions However, one has usually
a restricted knowledge about the structure of the problem that determines the modeling
choice. We can argue that we only know in general that the prokem can be decomposed as
a sum of element functions depending on fewer variables, antthat there is thus no reason
to encode non-linearity in the variable dependencies. Hower, a motivating example for
our general de nition is the well placement optimization problem, in which we will show in
Chapter 5 that a suitable way to model the objective function is to suppose that the pro t
corresponding to a given well depends only on its location ahon the distances of this well
to the others. Using the distances between the wells as an etent variable implies using
a nonlinear combination of the parameters of the problem (se Chapter 5).

In the well placement problem also, the objective function 8 computed using a numer-
ical software (reservoir simulator) able to simulate for a gven set of well placements the
quantity of oil, water and gas that can be extracted from each well Consequently one
has access to the function value okach element function In the following we will also
assume not only that the function is partially separable but also that one has access to the
function value of each element function As argued above this assumption is reasonable as
it models the case for the well placement problem. History m&ching is another problem in
petroleum engineering in which this assumption is reasondb. In history matching prob-
lems, we want to adjust the reservoir model until it closely reproduces the past behavior
of the reservoir (historical production and pressures). Fo this problem also, we can de ne
the objective function as a sum of a number of sub-functions € ned for each well and
calculated when evaluating the objective function p4].

Exploiting partial separability or separability is a commo n approach to enhance perfor-
mances of optimization algorithms, in particular when dealng with large scale optimiza-
tion. For instance a trust region algorithm for minimizing p artially separable functions
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4.2 Imm-CMA for partially separable functions

Table 4.1: Test functions. For the block-rotated ellipsoid, Q is a 2 2 rotation matrix
with each column being a uniformly distributed unit vector.

Name Function
Rosenbrock  fgocen(X) = COXE X (X 1)
i=
1 Pl 2 ) 2
Rosenbrock fRosen% (x) = I X2 Xy CH(x 177

Block-rotated  f g i 2p (X1Y) = ,FZ TIQ  (xY))?
ellipsoid 2D =

P 1
Block-rotated  fopouei (X) = Fapaei 2o (XiiXi+1)
ellipsoid -

was proposed in Bgl. Separability was also exploited within CMA-ES. A method where
the covariance matrix was constrained to be diagonal has beeproposed in [L09.

4.2 Imm-CMA for partially separable functions

This section introduces a new algorithm based on nimm-CMA an exploiting the partial
separability of the objective function. This algorithm wil | be called the partially separable
local-meta-model CMA-ES (p-sep Imm-CMA).

In our proposed approach, the partial separability of the oljective function is exploited
when building the meta-models. The optimization process deed by CMA-ES is not
altered. The idea behind exploiting the problem structure when building the meta-model,
is to improve the quality of the approximate model. Hence, the better the quality of
the model is, the easier the acceptance criteria can be sated, the less evaluations are
performed.

Let us consider a partially separable functionf. As in Section 4.1, we consider that
f hasN element functions ;)1 i n. For each element function, we associate a mapping

function ' such that f (x) = _FN fi '(x). We suppose that when evaluating a pointx
on f, we have access to the el\_/;Iuationsf( '(x))1 i n as well.

In Chapter 2, an approximate function f* for a given objective function f is de ned
using a locally weighted regression based on the training seontaining both evaluated
points and their values onf . In this chapter, we propose to build a meta-model for each

element function f; that we denote byf'}. The meta-modelf" of f is then de ned by:
f'=  f 1. (4.2)
The meta-model f; of each element functionf; is built in a way quite similar to the
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4.2 Imm-CMA for partially separable functions

meta-model f* of f de ned for the (n)lmm-CMA in Section 2.3.1.1 The training set is
built by storing for every evaluated point x, '(x) and its corresponding values orf;, i.e.,
fi( '(x)). Let us consider an individual g for which (q) 2 R" has to be evaluated on
the approximate model off;. Assuming that the training set contains a su cient number
m; of elements, we select th&; 2 N nearest points ( i(Xj);j =1; ki) to (q)using
the Mahalanobis distanced; with respect to a matrix Cj, de ned for a given point z 2 R"

as:
. . a4 — _ _ .

d( '@); ()= (@ i@)'ci (i@ @); (4.3)

whereC; is ann; n; matrix adapted to the local shape of the landscape of; (see below).
Similarly to Section 2.3.1.], a full quadratic meta-model is used. Using a vector ; 2

ML f s de ned for a given point z 2 R", for which we denote '(z) = (41,  ;th,)
as:

i '@ =z’ ; (4.4)

wherez = u%; ;uﬁi;ulbrz; s 1bhn, st ;1 . The full quadratic meta-model

is built by minimizing the following criterion with resepct to j:

o #
B=_ ) ') f( ') K

j=1

!
d (i) '(a)
h

(4.5)

K (:) is the kernel weighting function de ned as in Section2.3.1.1by K( ) = (1 2)2,
and h is the bandwidth de ned by the distance d; of the ki nearest neighbor data point
to q. For a given element function, ki must be greater or equal tok;: min = w +1. K
is chosen to be equal to 2 k;.min. The choice ofk; will be discussed in Sectio.3.3 The
su cient size of the training set denoted above by m; must be then greater or equal tok;.

Hence, the approximate function off which corresponds tof’\(x) = _IN f’}( H(x)) is
incorporated into CMA-ES using the approximate ranking procedure as Id:(letailed in Sec-
tion 2.3

It remains now to describe how the matrices C;)1 ; n are obtained. They are built
in an iterative manner. At each iteration, after the approxi mate ranking procedure, each
of the candidate solutions denoted K )1 m and sampled according to Eq. 2.2) has
been either evaluated onf or has an associated approximate meta-models value given
by Eq. (4.2). Thus for eachi, the vectors '(X,) 2 R™ have either been evaluated on
fi or have an associated estimate of; provided by fi. We then consider the vectors

"(Xm)2R"Mforl m and rank them according to fj wherefj equalsf; if X, was

evaluated onf and f} otherwise. The ordered best solutions according tof§ are used as
input variables in Algorithm 1, to update the covariance matrix C;.
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Number of evaluations

4.3 Evaluation of p-sep Imm-CMA

Algorithm 1: CMA  -Update(x1;
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Figure 4.1: (a) Average number of evaluations of the p-sep I-CMA on f 299
default - (D) Average number of evaluations per
generation of the p-sep Imm-CMA onf 290 for varying population sizes =

fstop for varying population sizes

In Algorithm 1, the parameters (! )1

Rosen

lC ’CC’ CCOV1

Rosen

default -

cov, d are chosen with default

values as de ned in [71]. Initial values for p , pc and C used in Algorithm 1 are also set

to default as in [71]. Initial values for m and

aresetto '(m@)and © wherem©

and © are the initial mean vector and step-size of (n)lmm-CMA. The idea behind this

adaptation procedure is the same as the one of the adaptive ending proposed in §8].

However in adaptive encoding, step-size update is not needeand di erent normalizations

for the weights depending on the step-length are introduced Though we believe that the

adaptive encoding update is more robust numerically, it hasot been tested for this thesis.

58




4.3 Evaluation of p-sep Imm-CMA

Table 4.2: Modeling of the partially separable functions tested.

Name nym N fi(u=(uj)1 j ny) iv=(v)1 n)
Rosenbrock 2 @ 1)|fi(u) = : u? up +(u; 1)° (V) = (ViiVise1)
4 g |fi(u) = uZ up P+ (up 1) i(V)=(Vvs 2;V3i 1

. 2 2 .
+: U3 uz “+(ux 1) V3i; V3i+1)

+: U2 ug P+(ug 1)
T

Rosenbrock 2 (n 1) |fi(u) Woup P+ (up 12 7| (V) =(Viivis1)

Block-rotated 2 (n 1)[fi(u) = fgomen 2o (U1 U2) i(V) = (Vi;Vis1)
ellipsoid

4.3 Evaluation of p-sep Imm-CMA

In this section we describe the functions used to evaluate gep Imm-CMA. We show
the performance of this method compared to CMA-ES. The optimal bandwidth used to
build the meta-model is also investigated and the computatbnal cost of the approach is
discussed.

4.3.1 Test functions
The p-sep Imlm-CMA is evaluated on the partially separable test functions f 3 .o, 252,

f 20000 féggen% and fgocen de ned in Table 4.1. For the block-rotated ellipsoid, Q is a

2 2 rotation matrix sampled uniformly anew for every run performed. The performance of
the method is measured using the success performance SP1 ded as the average number
of evaluations for successful runs divided by the ratio of sccessful runs, needed to reach

Rosens
perform 20 independent runs to measure SP1. The runs are ramanly initialized in the

intervals [ 5;5] for f 3 cen A%, f 2990 and f égggg% and [ 10;10] for f gjockeni - Each test

a stopping objective valuefgop = 10 10, except for f

function is modeled by de ning a number N of element functions, a numbemy, of element
variables for each element function, a set of element funabins denoted byf; : R"™ | R

M .
and a set of mapping functions ; : R"! R™ such that f = fi '. The modeling

i=1
of each test function is shown in Table4.2. The block-rotated ellipsoid function is de ned
using quadratic element functions. For the other tested furctions, the de ned element
functions are not quadratic.

4.3.2 Performance of p-sep Imm-CMA

Results on the test functions are presented in Tablet.3 showing the performance of p-sep
Imm-CMA compared to CMA-ES and to some tests with nlmm-CMA. For each test, by
de ning the value of ny, we refer to the corresponding modeling de ned in Table4.2. It is
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4.3 Evaluation of p-sep Imm-CMA

Table 4.3: Success performance SP1, i.e., the average numba function evaluations

for successful runs divided by the ratio of successful runsstandard deviations of the
number of function evaluations for successful runs and speep performance spu, to reach
fstop = 10 10 of p-sep Imm-CMA, nimm-CMA and CMA-ES (for fég‘s’en;, fstop = 10 ).

The ratio of successful runs is denoted between brackets if is < 1:0.2 The number of
element variables of each element function is denoted by .

Function | n npy p-sep Imm-CMA spu| nimm-CMA spu CMA-ES
f 2 osen 4 2 8 189 13 51| 297 20 32 964 192
8 2 10 308 20 6.5 932 52 2:2 2006 118
10 2 10 353 20 68| 1482 169 16 2418 204
16 2 12 465 20 8:6 4023 310
20 2 12 548 34 91 4978 374
32 2 14 755 32 10:3 7777 347
40 2 15 871 41 11:2 9799 602
f2o0,, 4 2 8 485 47 [0:80] 47| 647 67 [0:95] 35| 2269 254  [0:85]
8 2 10 910 71 [080] 65| 2602 264 [0:85] 2:3 5883 727  [0:90]
10 2 10| 1006 99 [095] 76| 3727 300 [0:90] 21 7644 765  [0:95]
16 2 12| 1834 117 [0:90] 86 15781 1360 [0:85]
16 4 12| 7162 1112 [095] 2:2 15781 1360 [0:85]
20 2 12| 2533 361 [0:90] 10:4 26366 3249 [0:85]
32 2 14| 4628 144 [0:95] 13:2 60948 2668 [0:90]
40 2 15| 6527 226 [0:95] 15:2 99346 3502 [0:85]
f 20000 4 2 8| 1333 238 [0:95] 53| 2637 715 [090] 27| 7032 944  [0:90]
8 2 10| 2745 246 66| 10287 468 [0:85] 1:8| 18216 1683 [0:95]
10 2 10| 5552 429 [0:75] 45| 16280 843 [0:85] 15| 25037 3160 [0:95]
16 2 12| 10583 398 [0:80] 59 62903 4441 [0:90]
20 2 12| 14749 431 [0:90] 6:3 93545 6566 [0:95]
éggen% 4 2 8 544 48 [070] 48| 909 75 [075] 29| 2620 342 [0:95]
8 2 10| 1008 67 [0:80] 7:0| 2549 262 [0.95) 28| 7006 762
10 2 10| 1299 178 [0:95] 10:4 | 4685 518 [0:90] 2:9| 13517 1288 [0.75]
16 2 12| 3346 223 [0:90] 9:9 33154 3568 [0:90]
20 2 12| 6797 878 [0:85] 10:0 68136 5363 [0:80]
32 2 14| 20751 2116 [0:85] 14:6 302039 40915 [0:65]
f 20000 4 2 8 226 11 6:6 1500 89
8 2 10 392 14 8:2 3220 196
10 2 10 472 17 8.7 4093 173
16 2 12 670 37 9.8 6566 284
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4.3 Evaluation of p-sep Imm-CMA

clear that exploiting the partial separability within CMA- ES with meta-models improves
the performance of CMA-ES with a speedup in-between % and 15.

For element functions with xed ny equal to 2, p-sep Imm-CMA o ers an increasing
speedup with increasing dimensions of the problem as showm iFig. 4.2. The algorithm
p-sep Imm-CMA performs better with increasing dimensions Bice it breaks the curse of
dimensionality when building the meta-model: for a problemof dimensionn, building the
meta-model is equivalent to building N meta-models of dimensiomy, .

Using greater number of parameters for each separated met@model decreases the
speedup obtained by the approach. Orf Fgggen for a dimension 16, the speedup, decreases
from 8:6 to 2:2 for corresponding values ohy, respectively equal to 2 and 4.

At each iteration at least ny, function evaluations are performed on the true function in
order to check the accuracy of the meta-models. The parameteny, is set to max[1, (;5)]-
This setting is introduced in order to be able to add a signi cant amount of information
at each iteration by enriching the training set. It is in part icular important when dealing
with large population sizes. For increasing population sies , i.e., for increasing values of

, we need an increasing number of points evaluated at each itation cycle to be able to
have a signi cant impact on the ranking of population.

Moreover, a better setting of ny would also depend on the dimension of the problem
as for increasing dimensions, i.e., for increasing numbets (or k;) of points to build the
meta-model, we need an increasing number of points evaluadeat each iteration cycle to
be able to change signi cantly the meta-model and then the ranking of the population.

The minimum number of evaluations performed at each iteratbn ny limits the speedup
that can be achieved by our approach. We show that for some tedunctions, we are able
to reach this maximum speedup of =n . For f2%9 with n = 40 and for féggen% with
n = 20, we reach a speedup equal to sinceny is equal to 1 in these tests.

Since we reach the maximal speedup allowed by the approach orhé Rosenbrock
function, we asked ourselves whether we can further reducéné number of overall function
evaluations needed to reach a target by increasing the popation size . The default
population size denoted getaur Value equals 4+b3 In(n)c. Fig. 4.1(a) shows the in uence
of the population size on the performance of p-sep Imm-CMA. W& perform 20 independent
runs on f 390 for dimensionsn = 4, 8, 10 and 16, andny = 2 with fgop = 10 0. The
tested population sizes are written as = defaut Where is in-between 1 and 10.
Tests were performed with similar parameters:nj,;; initialized to  gerauir @and ny equal to
max[1, (-a-)]. A training set containing k; elements randomly sampled is loaded at the
beginning of every run in order to use the meta-models from tk rst generation, for all
the tests. Results show that =4 default gives the minimum number of evaluations to

reachfswop and improves the performance by a factor between 5 and 2 over the default
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Figure 4.3: Average speedup with respect to CMA-ES to reachisip wWith a varying number
of points used to build the meta-modelk; = Ki-min where K- min = m + 1. Each
point corresponds to 20 runs performed.

population size. For > 4, the performance of p-sep Imm-CMA stagnates. We observe in
Fig. 4.1(b) that the number of evaluations per generation increasedinearly for increasing

population sizes.

4.3.3 Optimal bandwidth for building partially separated m eta-models

Let us consider an element functionf; with a number of element variablesn;. The optimal
bandwidth depends on the number of pointsk; used to build the meta-model. As shown
in Section 4.2, ki must be greater or equal toKimin = M + 1. In this section,
we investigate the in uence of the choice ofk; on the performance of p-sep Imm-CMA.
We perform 20 independent runs onf g ., for =1, 102, 10* and féggen% for di erent
dimensions in-between 4 and 40. Results are shown in Figt.3, where k; is written as
ki = Kimn for =1, 2, 3, 4 and 5. We nd that for 14 tests over the 23 tests
performed on the test functions with di erent dimensions, a good estimate of the optimal
is equal to 2. Moreover, for the other tests, choosing a valuef equal to 2 is a
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reasonable choice since it o0 ers a speedup close to best ormufd, except for f 292, with

dimensions 10 and 16.

4.3.4 Computational cost

The internal cost of the optimization procedure is dominated by the evaluation of the
objective function and the construction of the meta-model.

For p-sep Imm-CMA, building a meta-model consists in nding in the training set
the k; sorted nearest points to the point to be evaluated and then slving Eq. (4.5). Let
us consider a training set with a sizem. To nd and sort the best k; points, we begin
by sorting the rst k; points of the training set using a heapsort algorithm which has
a complexity of kilogk;. Then, we compare the other fm  k;) points with the selected
ki points until nding its position which adds at worst a comple xity of (m  k;)  kj.
Thus, nding and sorting the best k; points needsO(k;logk; + (m  kj)kj) = O(m k;).
According to Section 4.3.3 the optimal bandwidth k; is equal to nj(n; + 3) + 2. Thus,
nding and sorting the points to evaluate the meta-model needs O(m  n?). Moreover,
solving Eg. (4.5) is dominated by ak; ki matrix inversion and thus has a complexity of
nd.

Let us denote by N the number of evaluations on the true objective function andby
Ce the complexity of one single objective function evaluation Let us denote also byNp,
the number of built meta-models. The complexity of p-sep ImMmCMA is then equal to:
Ne Ce + Ny n?(m + nf).

4.4 Summary and discussions

In this chapter we have investigated the exploitation of pattial separability of the objective
function to enhance the performances of CMA-ES coupled withHocal meta-models. We
have de ned p-sep Imm-CMA, a new variant of CMA-ES with meta-models for partially
separable functions. In this variant, we build separate me&a-models for each element
function, instead of building one meta-model for the whole bjective function. We have
shown that the speedup of p-sep Imm-CMA with respect to CMA-ES is in-between 45

and 15 for the tested functions. Forf33%,, with a dimension 40 and forf 120 , with a
osens

dimension 20, we reach a speedup equal towhich corresponds to the theoretical maximum
speedup allowed by the approach. In general, the maximum smelup that can be achieved
equals =n y, as at leastny, evaluations on the true function are performed at each iteréion.

We have shown on the standard Rosenbrock function that incrasing the population size
allows to decrease signi cantly (by a factor between 15 and 2) the number of evaluations
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to reach a given target. The optimal population size on the R@enbrock function is shown
to be equal to 4 default -
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Chapter 5

Partially separated meta-models
with CMA-ES for well placement
optimization

This chapter is based on the paperZ5]. In the well placement optimization problem, the
objective function (e.g., the NPV) can usually be split into local components referring
to each of the wells that moreover depends in general on a smat number of principal

parameters, and thus can be modeled as a partially separabl@inction. In this chapter,

we propose to apply p-sep Imm-CMA (de ned in Chapter 4) on the well placement prob-
lem, i.e., to exploit the partial separability of the objective function when using CMA-ES
coupled with meta-models, by building partially separated meta-models. Thus, dier-

ent meta-models are built for each well or set of wells, whiclresults in a more accurate
modeling. The approach is shown on the PUNQ-S3 case.

This chapter is structured as follows. Section5.1 de nes p-sep Imm-CMA for the
well placement problem. In Section5.2, we demonstrate the contribution of the proposed
approach in reducing the number of reservoir simulations onthe synthetic benchmark
reservoir case PUNQ-S344].

5.1 p-sep Imm-CMA for well placement optimization

In this chapter, we propose to build a meta-model for each welor set of wells to be placed,
instead of one meta-model for all the wells.

In order to apply p-sep Imm-CMA (de ned in Chapter 4), we need to de ne the di erent
element functions and their corresponding dependencies. sAmentioned in Chapter 4, for
a given partially separable function, there exists \theordically" an in nite number of
ways to de ne the element functions and mapping functions. Hbwever in this chapter, we
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5.1 p-sep Imm-CMA for well placement optimization

propose to investigate building one meta-model for each welalready drilled and to be
drilled) approximating its NPV.

Let us consider a reservoir case with a numbeN,, of wells to be drilled. We sup-
pose that we have alsdN,q wells already drilled. We denote by (NPV;); ; n, the NPVs
corresponding to the wells to be drilled and by (NPVi)(n,,+1) i (Nw+N.g) the NPVs cor-
responding to the wells already drilled.

Therefore, the objective function corresponding to the NPV of the eld is equal to
the sum of the di erent element functions corresponding to the NPV of each well, i.e.,
(NPVi)1 i (Ny+Ngg)-

Let us denote by fms; ;my,9 the number of parameters de ning the position of
the wells to be placed, and by W; 2 R™); ; n, these parameters. Thus, the NPV, as
well as the NPVs corresponding to each well depends ol\(j)1 j n, :

NWX Nwd

NPV NPV; ; (5.1)

i=1

NWXNWd
NPV (Wj)lj Nw — NPVi (Wj)lj Nw . (52)
i=1

As re ected in the previous equation, in general, the NPV, of a given welli depends
on all the wellst, however, in order to use the p-sep Imm-CMA, we will assume tht the
NPV, of a well essentially depends on a fewer number of parameters

In this chapter, we will assume that the NPV, of a given well essentially depends on
the considered well and that the impact of other wells is repesented only by distances
between the considered well and the others. For each well deted by i, we de ne the

following parameters:
dpi: the minimum distance between the welli and the other producers;
di;: the minimum distance between the welli and the other injectors.

The minimum distance between two wells is de ned by the mininum Euclidean distance
between the two trajectories of the considered wells. In ordr to calculate the meta-
model, we now suppose that the NPVs of the wells to be drilledj.e., (NPV;); i n, Can
be approximated using only the parameters de ning the locaton and trajectory of the
considered well and its corresponding dpand dij. The NPV of the well already drilled,
i.e., (NPVi)(ny+1) i (Nw+N,g) CaN be approximated using only two parameters: dp and
di;.

1Except when dealing with non-communicating reservoir regio ns, and if each of the wells has to be
placed in one of these regions
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5.2 Application of p-sep Imm-CMA on the PUNQ-S3 case

Therefore, the built meta-model NPV can be written as follows:

Ww NWXNwd
NPV (Wj)1j n, = NPV (Wi glpi:dliy + NPV (dp;;dii) ;  (5.3)

i=1 i=Nw+1

2R™i R R

where NPV, denotes the meta-model approximating NPV,.

After that, to incorporate the built meta-model NPV into CMA-ES, we use the approx-
imate ranking procedure as described in the variant nimm-CNMA» de ned in Section 2.3.3.4
with only one di erence related to the acceptance criterionof the meta-model: in this case,
we use a less conservative criterion in which the meta-mode$ accepted if it succeeds in
keeping only the best well con guration unchanged.

In the next section, we will see how the approach can be appléefor a well placement
problem and the number of function evaluations that can be saed in the optimization
process.

5.2 Application of p-sep Imm-CMA on the PUNQ-S3 case

This section shows an application of p-sep Imm-CMA on the beochmark reservoir case
PUNQ-S3 [54]. This application is compared to the CMA-ES optimizer and to the variant
of CMA-ES with meta-models (nlmm-CMA) 1. As shown in previous examples, the model
contains 19 28 5 grid blocks. The elevation of the eld is shown in Fig.3.2. An injection
well denoted I1 is already drilled. Fig. 5.1 represents the SoPhiH map which represents
the distribution of the hydrocarbon pore volume over the njayers layers, and de ned by
P (Hk So), where Hy is the gross thickness of the layek, S, is the oil saturation
aknzd1 is the porosity. The location of I1 is also shown in Fig.5.1, where I1 is an inclined
well drilled in the layer 3.

We propose to drill 3 unilateral producers (denoted P1, P2 ad P3) to maximize the
NPV. The dimension of the problem is then equal to: 6 3 = 18. A producer limit
bottomhole pressure is xed to 150 bar, and an injector limit bottomhole pressure is xed
to 320 bar. A maximum length of 1000 m is imposed on the 3 produgrs to be drilled.

The population size is set, for all the methods used, to 60. The di erent optimize's are
run with a stopping criterion corresponding to a maximum number of reservoir simulations
equal to 1000. Other parameters of the optimization method vere set to default settings.

As shown in Section5.1, the built meta-model for the element functions (NPV;)i=1: 3
will only depend on eight parameters(compared to eighteen if we would use all the original
variables), and the meta-model for the element function NP\4 will only depend on a single

1In this chapter, we use the variant nlmm-CMA  (de ned in Section 2.3.3.4), as used in Chapter 3.
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5.2 Application of p-sep Imm-CMA on the PUNQ-S3 case

Figure 5.1: The SoPhiH map with the location of the injector aready drilled I1.
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Figure 5.2: The mean value of NPV (in US dollars) for well pla@ment optimization
using CMA-ES with partially separated meta-models denotedp-sep Imm-CMA (solid line),
CMA-ES with meta-models denoted Imm-CMA (dash line) and CMA-ES (4 ). Ten runs
are performed for each method.

parameter':

NPV(P1;Po;P3) = NPVy(P1;dpy;diz)+ NPV (P2 dp,;dis)

+ NPV 3(P3; dps; diz) + NPV 4(dp,) ; (5.4)

where P; 2 R® denotes the vector of parameters de ning the position of thewell P;.

The number of points used to build the partially separated meda-models, is chosen to be
equal to 90 (according to Sectior4.3.3), and the meta-model is used when the training set
(storing the performed evaluations) contains at least 150 kements, i.e., before performing
150 simulations, all the points are evaluated with the true djective function, and the
partially separated meta-model is not used.

Fig. 5.2 shows the average performance of the proposed method, i.&CMA-ES with
partially separated meta-models (p-sep Imm-CMA). Resultsare reported together with
those obtained using CMA-ES and CMA-ES with meta-models (nmm-CMA). The per-
formance of each method is evaluated on ten independent rupsvhere for each run, we
report the best obtained NPV value after each generation. These values correspond to
true values of the objective function, i.e., obtained with areservoir simulation?.

YHere, we have only one single parameter dp, since the only injector we have is the considered injector.
2The CMA-ES with meta-models method ensures by construction that at least each generation the best
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5.2 Application of p-sep Imm-CMA on the PUNQ-S3 case

During the rst iterations of the optimization, the perform ance of the 3 used algorithms
is equivalent. For p-sep Imm-CMA, the meta-model is used if he training set contains
at least 150 performed reservoir simulation results. Thertore, at the beginning of the
optimization, the meta-model is not used which justi es the equivalent results for the
three optimizers.

For nimm-CMA, building the meta-model requires more reserwir simulations com-
pared to partially separated meta-models. Non-partially sparated meta-models depend
on 18 parameters. In the performed runs, the meta-model is bit using 300 performed
reservoir simulations (k = 300) and used when the training set contains at least 350 ob-
jective function evaluations. Hence, before reaching 350imulations, nimm-CMA and
CMA-ES are equivalent.

Except at the beginning of the optimization in which all the optimizers are equiva-
lent, it is clear that CMA-ES with partially separated meta- models outperforms the other
methods, when considering a restricted budget of 1000 resair simulations. The context
of restricted budget of simulations is imposed to consider @al applications in which the
number of simulations is generally limited to several hundeds or at most a few thousands,
due to the CPU time required by a simulation.

For a given number of reservoir simulations equal to 600, pep Imm-CMA is able to
nd a well con guration with an NPV equal to $1 :26 10'. However, CMA-ES reaches
only an NPV equal to $1:17 10*° and nimm-CMA o ers only a maximum NPV equal to
$1:21 10'°. As a conclusion, using a restricted budget of reservoir simiations, exploiting
the partial separability allows reaching greater NPV values compared to CMA-ES and
nimm-CMA.

To reach a value of NPV equal to $120 10'°, CMA-ES with partially separated meta-
models requires 370 reservoir simulations. However, to rea the same value of NPV, using
standard meta-models requires 510 reservoir simulationgnd when using CMA-ES without
meta-models, we need 930 reservoir simulations. Therefarausing partially separated
meta-models saves 60% of the number of reservoir simulatisncompared to CMA-ES
(without meta-models). The contribution of exploiting the partial separability is shown
when comparing p-sep Imm-CMA with nimm-CMA. Exploiting the partial separability
of the objective function saves 28% of the number of reservoisimulations compared to
CMA-ES with standard meta-models approach.

Fig. 5.3 shows one of the obtained solution well con gurations, withan NPV value
equal to $1:38 10%°. Although, each of the performed runs proposes in general ai érent
solution, the majority of the solution well con gurations a re located in the same regions.

point is evaluated with the true objective function, i.e., e ach iteration, the best obtained well con guration
is evaluated using a reservoir simulation.
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5.2 Application of p-sep Imm-CMA on the PUNQ-S3 case

Figure 5.3: The SoPhiH map with the location of the injector aready drilled 11, and
solution producers (P1, P2 and P3).
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Fig. 5.4 shows a typical optimization process performed using CMA-E with separated
meta-models, i.e., with p-sep InmCMA. Fig. 5.4 shows the evolution of the NPV (the best
at each generation and the overall best) as well as the evolidn of the parameters encoding
the three wells.

5.3 Summary and discussions

In this chapter we have shown on the synthetic benchmark resgoir case PUNQ-S3 that
using p-sep Imm-CMA algorithm leads to an important reduction of the number of reservoir
simulations (around 60%) compared to the optimizer CMA-ES. The important savings in
the number of reservoir simulations are justi ed by the reduced number of parameters
required to build the meta-model of the element functions.

The proposed approach exploiting the partial separability of the objective function can
also be combined with any other stochastic optimizer, in orer to reduce the computational
cost of the optimization.
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Figure 5.4: The evolution of the well placement optimization process on the PUNQ-S3
case using CMA-ES with partially separated meta-model, i.e p-sep InmCMA. The three
gures depict one of the ten performed runs of p-sep Imm-CMA.In (a), the evolution of
the best overall NPV value (in red) and the best NPV obtained each generation (in blue)
is depicted. In (b), the evolution of the well trajectory parameters, where each well is
plotted using a di erent color representing three group of parameters is depicted. The
group of angles encoding each well is shown in the lower partfahe gure (values below
10). The group of well lengths is shown in the intermediate p& of the gure (the three
curves with values around 500). The group of Cartesian cooridates of the wells is shown
in the upper part of the gure. In (c) the evolution of the well trajectory parameters on
the log-scale is depicted.
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Chapter 6

Well placement optimization
under geological uncertainty

In the well placement problem, as well as in many other eld deelopment optimization
problems, geological uncertainty is considered as a key sme of risk a ecting the viability
of eld development projects. The problem arises when we haw multiple possible geological
realizations of the reservoir. The multiple realizations ae generated using geostatistical
techniques and in general deemed equiprobable. Let us codsr an objective function to
optimize denoted byf and a numberN, of geological realizations denoted byRi);=;. .\,
The key issue here is that for each scenario, i.e., for each ieon guration when optimizing
well placement, we haveN, possible values of the objective function, one for each reiahtion
where each will be denoted for a given well con gurationx by f (x;R;) corresponding to
a given realization R;.

This chapter addresses the problem of how to de ne the objedte function to opti-
mize when dealing with uncertainty for well placement and wrether we should perform
evaluations on all the possible realizations in order to dene the objective function.

This chapter is structured as follows. Section6.1 provides a detailed literature review
for well placement optimization under geological uncertainty. Section 6.2 de nes a hew
approach to handle geological uncertainty for well placemst using the neighborhood. In
Section 6.3, we demonstrate the contribution of the proposed approachn capturing the
geological uncertainty and in reducing the number of resersir simulations on the synthetic
benchmark reservoir case PUNQ-S35].

6.1 Optimization under uncertainty: a literature review

The problem of optimization under geological uncertainty shares many similarities with
the problem of optimizing noisy functions.
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A function f : R" I R is said to be noisy if the only measurable value of on
X 2 R" is a random variable that can be written as F(f(x);z) where f is a time-invariant
function and z is a noise often assumed to be normally distributed with a zes mean and
variance 2, and denoted by N(0; 2). The noise can be also de ned dierently (e.g.,
Cauchy distributed), and can be either additive or multipli cative. A common approach to
optimize noisy functions is to estimate the tness function by the expected value de ned
as follows: Z.,

f(x)= . [F(f(x); 2] p(2)dz ; (6.1)

where p(z) is the probability density function of the noise. Thus, a common way to ap-
proximate the expected tness function is by averaging overa number of random samples:

1 X
LG Ryl L UG ) (6.2)
S .
i=1
where Ns denotes the number of samples called also the sample size.
In the context of eld development optimization under geological uncertainty, we are
dealing with a nite number of realizations, and the measurable tness values correspond

to the valuesf (x; Ri)i=1: :n,. Therefore, the objective function corresponds in generato:

1 X
f0= 5 [FOGRID (6.3)
i=1
However due to the expensive computational e ort required b evaluate the objective
function over one realization Rj, the expected tness function is often approximated in
a way to use a fewer number of samples instead of using all thesalizations. Thus, one
common way to approximate the expected objective function fere is again by averaging
over a number of samplesNs  N;.

In the following, we brie y review the existing approaches dten used in optimization
under uncertainty. On the one hand we review the approaches elned by the optimiza-
tion community mainly to cope with noise but that can be extended to the di erent eld
development optimization under geological uncertainty. Cn the other hand we review the
approaches already applied in the petroleum community to cpe with geological uncer-
tainty.

6.1.1 Optimization community

This section summarizes the di erent ways to handle uncertanty within the evolution-
ary optimization community. A detailed overview of the existing approaches addressing
uncertainties in evolutionary optimization is presented in [84]. Let us suppose in this sec-
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tion then that the function f to optimize is a noisy function. The approaches to handle
uncertainty can be mainly divided into two categories.

6.1.1.1 Explicit Averaging

Using mean of several samples for each individual The simplest and the most
common way to address the uncertainty issue is to de ne the ofective function for each
point by averaging over a number of samples (EqQ. &.2). Increasing the sample sizeNs is
equivalent to reducing the variance of estimating the objetive function.

In general, the objective function is de ned using an averagd sum of aconstant sample
size In this case, for each single evaluation of the expected obgtive function, one needs
to evaluate the objective function on Ng samples.

In the context of costly objective functions, depending on he number of samples, there
is a compromise between the computational cost of the optindation and the accuracy of
the estimation of the objective function. Increasing (resgectively, decreasing) the number
of samples tends to improve (respectively, worsen) the aceacy of the estimated objective
function, but on the other hand it tends also to increase (repectively, reduce) the com-
putational cost of the optimization. The idea of using an adapted sample siz&luring the
optimization was rst proposed in [3, 4]. In [4], it is shown that adapting the number of
samples performs better than using constant sample sizesnd it is suggested to increase
the sample size with the generation number and to use a highenumber of samples for
individuals with higher estimated variance. An other way to adapt the sample size is
based on an individual's probability to be among a number of te best individuals [L21].
Recently, an other approach relying on the rank based seleitin operators was proposed in
[73]. In [76], an adaptive uncertainty handling procedure is proposedpased on selection
races P3.

Using the neighborhood for each individual An alternative approach to de ning

the objective function as an averaged sum of a number of sam@é (constant or adapted) is
to de ne the objective function using the neighborhood poirts already evaluated [LO6, 29,

28, 27, 112, 113. The general idea has rst been suggested in2[7] in which it is suggested
to estimate the tness as a weighted average of the neighboitod with a linearly decreasing
weight function up to some xed maximum distance. In [106, 28, 29|, a locally weighted
regression is used for estimation. This technique is showrotbe a good solution to improve
the accuracy of the estimated objective function without increasing the computational cost.
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6.1.1.2 Implicit Averaging

When increasing the population size, the probability to obtain similar points is higher.
Thus, a way to cope with noise is to simply increase the populéon size [(2]. In this case,
with a large population size, the in uence of noise on a giverpoint can be reduced due to
the evaluations on other similar points. Con icting conclusions b2, 7, 8, 60] were shown
in the literature when comparing explicit averaging and implicit averaging.

6.1.2 Petroleum community

Several studies in the literature have addressed the probia of optimization under geolog-
ical uncertainty not only on the well placement problem but also on other eld develop-
ment optimization problems. Optimization under geologicd uncertainty in the petroleum

community considers always a nite number of realizationsN, and models the objective
function following Eg. (6.3). In the following we brie y review the approaches to handle
uncertainty in optimization within the petroleum communit .

To the best of our knowledge, all the studies that consider a amber N, multiple possi-
ble realizations of the reservoir, use the approach \Using rean of several samples for each
individual". Moreover, all the studies in the literature, e xcept the approach proposed in
[124] that will be detailed later, perform N, reservoir simulations for every single objective
function evaluation. Although sharing this common similarity, the proposed approaches
introduce di erent formulations of the objective function .

In [116, 115 103 35, the objective function is formulated as the expected vale of
the net present value over all the realizations, as shown in g (6.3). In [35], the authors
tackles the problem of closed-loop production optimizatimn using the optimizer EnOpt
[37, 36] which is applied to the geological model ensemble updatedybeither EnKF [ 49] or
EnRML [62].

In [129, 2, 5], multiple geostatistical realizations of the reservoir ae considered in the
formulation of the objective function:

X

(0= HOGRY+ T ; 64
Mi=1

wherer 2 R is the risk factor and is the standard deviation off on x over the realizations,

de ned as follows:

U &
-t Ni (FOGRi) hfx)i)?; (6.5)

where:

1 X
H (x)i = N If (x;Ri)] : (6.6)
Mi=1
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The term r in Eq. (6.4) is used to take into account the decision maker's attitude
toward risk. A positive r indicates a risk-prone attitude, a negativer indicates a risk-
averse attitude and anr = 0 indicates a risk-neutral attitude. This formulation is c lose to
the formulations de ned in [64, 104] using utility functions.

In [10], a more general formulation of the objective function is dened as follows. A
genetic algorithm is used, in which at each iteration only a pede ned percentage of the
individuals, chosen according to a set of scenario attribugs, is simulated. For the simulated
individuals, the authors in [10] propose to perform againN, reservoir simulations for each
well con guration x in order to evaluate the values off (x;R;) on all realizations and
then to derive the cumulative distribution function cdf ff g on x. From this distribution,
the values off 10(x), f 59(x) and f %°(x) are determined. The valuef 19 on x denotes the
value of f on x corresponding to a probability of G:1, i.e., there is a probability 0:1 that
the value of f on x will be less thanf19 on x. The value f1° on x can be written as
cdfff g 1(0:1). The valuesf °0(x) and f %(x) are de ned in a way similar to f 19(x). The

objective function is then formulated as follows:
f(x) = raof 22(x) + rsof 2°(x) + roof °(x) ; (6.7)

where the parameters 19, rsp and rgg are de ned according to the decision maker's attitude
toward risk. A risk-neutral attitude corresponds to the case where 19, 'so, ro0) = (O,
1, 0) which may be similar to the de nition in Eq. ( 6.3). However, a risk-averse investor
tends to increase the value of 1o, and a risk-prone investor tends to increase the value of
r90-

Another way to formulate the objective function under geolaogical uncertainty is to
optimize the worst case scenario using a min-max problem fonulation [30]. This approach
is used in p] to optimize smart well controls.

The only approach selecting only a number of samples insteadf all the realizations
is dened in [126. The approach is based on the so-called retrospective optiization
[34, 127] and divides the problem as a number of subproblems, where thinitial solution
of the current subproblem is simply the returned solution from the previous subproblem.
Each point to be evaluated is approximated by the average owea number of realizations,
where the number of selected realizations is increased fromubproblem to subproblem.
The approach implies then de ning a sequence of samples. Thexample shown in 2§
considers a well placement problem on 104 permeability and grosity realizations and
therefore de nes subproblems with a sequencé20; 15; 10; 5g of iterations and a sequence
f1;5;16;21; 1049 of sample sizes. Although the authors suggest further testig of the

overall framework to determine the appropriate sequence ofample sizes, an answer can
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6.2 Well placement under uncertainty with CMA-ES using the ne ighborhood

be the work on adapting automatically the sample sizes alredy proposed in [L21, 73] but
still demanding in the number of objective function evaluations.

6.2 Well placement under uncertainty with CMA-ES using
the neighborhood

This section proposes a hew approach to handle geological certainty for well placement.
The proposed approach focuses on reducing the uncertaintyyusing the objective function
evaluations of already evaluated individuals in the neighlwrhood. In this section, we
propose then to apply an approach based on using the neighblood for each individual.
We de ne a CMA-ES optimizing an estimated tness de ned on a given point using a
weighted average of a small number of evaluations on the coitered point and a number of
evaluations already performed on the neighborhood (up to sme xed maximum distance)
with a decreasing weight function depending on the Mahalanbis distance with respect
to the covariance matrix C de ned by CMA-ES. Although considering a Mahalanobis
distance with respect to 2C is suspected to be a better choice (since we are using a xed
maximum distance to select the neighbors), it has not been teted in this thesis.

Let us consider a well placement optimization problem with anumber of wells (pro-
ducers and/or injectors) to be placed. Let us denote byn the dimension of the problem,
i.e., the number of parameters needed to encode the wells toebplaced. The wells to be
placed can be parameterized as de ned in Sectio.1.2 Without loss of generality, we will
consider in the sequel the NPV as the objective function thatwe aim to optimize, unless
otherwise explicitly stated. Thus, we want to nd a vector of parameter pmax:r 2 R" such
that:

NPVF (pmaxg) =max  NPVE(p) (6.8)

where NPVR s the averaged sum of the NPVs of a given well con guration reresented
by a vector of parametersp over all the realizations:
1 X
NPVR(p) = N 1 NPV(p;R;) : (6.9)
i=
In the proposed approach, we de ne a so-called estimated obgtive function that will be
optimized instead of the true objective function NPVR de ned in Eq. (6.9). The estimated
function will be denoted in the sequel by NP\E. Thus in the proposed approach, contrary
to what is shown in Eq. (6.8), we will try to nd the vector of parameter pmaxe 2 R"
such that:
NPV E (Pmaxe) = max NPVE(p) (6.10)

80



6.2 Well placement under uncertainty with CMA-ES using the ne ighborhood

The simplest case in which solving Eq. §.8) is equivalent to solving Eq. (6.10), is when
NPV E is a monotonic transformation of NPVR. However in this thesis, we do not aim to
de ne an estimated objective function NPVE such that we can prove that Eq. (6.10) is
equivalent to Eq. (6.8). Our aim is that by solving Eq. (6.10), we can propose good points
with high NPV R values (see below for the de nition of NPVF).

To optimize NPV &, we propose to use the CMA-ES optimizer. During the optimizdion
process, we build a database {called also training set{ in with after every performed
reservoir simulation for a given point x on a realization R, we store the point x together
with its corresponding evaluation NPV(x; R).

It remains now to de ne the estimated objective function NPV E for a given point (well
con guration) denoted by a vector of parametersp:

1. At the beginning of the optimization and until reaching a given number Ngjy, of
performed reservoir simulations, we de ne a number of resewir simulations N (
N;) to be performed onp, and a set ofN: randomly drawn integers j1; ;] N2
f1,  ;N,g. We perform then N! reservoir simulations onp on the realizations
(Ri)izjq; Ny and we add each of the obtained simulation resultsfg; NPV(p;Ri))
to the training set.

The estimated objective function on the point p reads as follows:

1
1 X

NPVE (p) = NI NPV(p;R;j,) : (6.11)
S j=1

In this case, the evaluation of NP\E requires a numberN? of reservoir simulations.

2. If more than Ngi, reservoir simulations are performed, we perform the followng

steps.

We begin by de ning a number of reservoir simulationsN2 ( Ny) to be performed on
p, and a set of randomly drawn integers j1; ;jnz  f L ;Nrg. We perform
then N2 reservoir simulations onp on the realizations (Ri)i=j,: iz and we add
each of the obtained simulation results p; NPV(p;R;)) to the training set.

We also de ne a maximum number of neighbor pointsN,.max 2 N that can be used
in the de nition of NPV E. We select then at most the Nn:max Nearest points to p
from the training set. Here, we select only the points with a dstance less or equal
to a given xed distance of selection denoted bydnyax. We denote by N, the number
of selected points and by ki), ; \, the selected points. The distance used for this

1For each selected pointx; for the training set, we have a corresponding evaluation on a given realiza-
tion. For the sake of notation simplicity we will denote the ¢ orresponding stored evaluation by NPV( x;; Ri)
although it is not necessarily evaluated on realization R;.
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6.3 Application of CMA-ES using the neighborhood approach on the
PUNQ-S3 case

purpose is the Mahalanobis distance with respect to the cuent covariance matrix
& of CMA-ES de ned for two given points z; 2 R" and z, 2 R" by dc (z1;22) =
(z1 22)'C Y(z1 22).

The estimated objective function onp reads as follows:

3
E 1 g X'n
NPVE(p)= g4 (ANPV(P:R; )+ (p NPV(XiiRi))S ; (6.12)
i=1 i=1
d o 2 2 P N2 P N
wherepi =1, pp= 1  dexip) andS= 5 p+ 2B Inthis case, the

max

evaluation of NPVE requires only a numberN?Z of reservoir simulations.

The parameters Ngim, N2, N2 and Np:max are not meant to be in the users' choice.
Typical values are Np:max =2 Ny, Nsim =2 Ny, Nl =1 and N2 = 1. A users' choice
is the maximum distance of selection for the neighborhoodlnax, and which is a problem-
dependent constant. An investigation of the impact of the cloice of dmax Will be briey
shown in the next section through some examples.

An estimated standard deviation can also be included in the érmulation of the esti-
mated objective function NPVE . In this case, the estimated objective function, which will
not be tested in this chapter, can be formulated as follows:

NPVE(p)= mE +r E(p) ; (6.13)
where: 2 3
E 1 %S Xin
m== <4 (ENPV(PR; )+ (B NPV(XiiRi)® ; (6.14)
i=1 i=1
and
\é 2)@3 X 3
E —{J 14 . EN2 . E\2 5.
=t g pi (NPV(p;Rj) m=)” + p (NPV(xi;R;) mE)* 5: (6.15)
i=1 i=1

6.3 Application of CMA-ES using the neighborhood ap-
proach on the PUNQ-S3 case

In this section, we apply the CMA-ES using the neighborhood aproach {that we will

call in the sequel the \using the neighborhood" approach{ onthe well placement prob-
lem on the benchmark reservoir case PUNQ-S35]. As shown in previous examples in
Chapters 3 and 5, the model contains 19 28 5 grid blocks, and the elevation and the
geometry of the eld is shown in Fig. 3.2 We consider 20 geological realizations that will
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Figure 6.1: The evolution of the well placement optimization process on the PUNQ-S3 case
using CMA-ES with the \using the mean of samples" approach. The best mean value of
the NPV over the 20 possible realizations, i.e., NP\R is shown. Three runs are performed.

be again denoted by Ri);=;. .- Each realization de nes one possible porosity map and
one possible permeability map. In these examples, the numbeof realization N, is then
equal to 20.

We plan to drill two wells: one unilateral injector and one unilateral producer. The
dimension of the problem is then equal to 12(=6 2). In all the following applications,
we use CMA-ES as an optimization algorithm with a population size equal to 40.

As a reference approach, we perform three independent runs iwhich we optimize
the objective function NPVR as dened in Eq. (6.9). In this reference approach, we
perform for each well con guration to be evaluated 20 reserwir simulations. The reference
approach will be called in the sequel the \using the mean of saples" approach. Fig.6.1
shows the evolution of the best mean value of NP¥, i.e., the NPV over the 20 possible
realizations, for the three performed runs. The \using the mean of samples" approach is
shown to be able to reach a mean value of NP¥ equal to $9 10° using 15200 reservoir
simulations. It is able also to reach a mean value of NP¥ equal to $33 10° using 31200
reservoir simulations and a mean value of NPW equal to $95 10° using 44400 reservoir
simulations.

To evaluate the \using the neighborhood" approach, we use tpical values of the param-
etersNgim, NI, N2 and Np:max as de ned in Section6.2, i.e., Np:max =2 Ny, Nsim =2 N,
NI =1 and N2 = 1. We begin by choosing the maximum distance of selection fothe
neighborhooddmayx equal to 4000.

Fig. 6.2 shows the evolution of the optimization process for three idependent runs

83



6.3 Application of CMA-ES using the neighborhood approach on the

PUNQ-S3
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Figure 6.2: The evolution of the well placement optimization process on the PUNQ-S3
case using CMA-ES with the \using the neighborhood" approad, for three independent
runs in (a), (b) and (c). The evolutions of the best estimated objective function, i.e.,
NPVE are drawn with green lines. The evaluations on the true objetive function over the
20 possible realizations, i.e., NP\ are depicted with red crosses. The maximum distance
of selection for the neighborhooddmnax is equal to 4000.
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Figure 6.3: The evolution of the well placement optimization process on the PUNQ-S3
case using CMA-ES with the \using the neighborhood" approat for eight independent
runs. (a) shows the evolution of the evaluations on NP\R. (b) shows the evolution of the
best found evaluation on NPVR. The maximum distance of selection for the neighborhood

dmax is equal to 4000.
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PUNQ-S3 case

of CMA-ES with the \using the neighborhood" approach. The evolutions of the best
estimated objective function, i.e., NPVE are drawn with green lines. During the optimiza-
tion process, each new overall best point found on NPY, is evaluated on NP\R. The
evaluations performed on NP\R are depicted with red crosses. Fig6.2 shows that when
optimizing NPV E, we are able to propose good points according to NP¥ (points with

an NPVR greater than $9 10°). Moreover, NPVR tends to increase with an increasing
number of performed reservoir simulations.

Fig. 6.2(c) shows a particular run in which the best NPVE value found at the rst
generation is equal to $97 10°. This value is calculated according to Eq. 6.11), and thus
calculated using only one single reservoir simulation (wilh one single random realization).
Indeed, with a single reservoir simulation to evaluate one pint, the estimated objective
function can not in general propose a good point according ttNPV R. Consequently, the
best point found at the rst generation according to NPV E has a \bad" NPV R value
equal to $58 10°. Thus, the optimization process does not propose for 112 itations
a new overall best point to be evaluated on NPWR. The performance of this run can
be avoided either by evaluating more often points using NP1 or simply by using more
reservoir simulations for each point to be evaluated at the leginning of the optimization,
i.e., choosingNy 2.

We show in Fig. 6.3 the performance of eight independent runs of CMA-ES with the
\using the neighborhood" approach. Fig. 6.3(a) shows the evolution of the evaluations
performed on NPVR. The evaluated points correspond to the best overall pointsfound
during the optimization process of NPVE. Fig. 6.3(b) shows the evolution of the best
evaluation performed on NPVR. Seven runs out of the eight performed runs (88%) are
able to reach an NP\R value greater than to $9 10°, using a mean number of reservoir
simulations equal to 2851. Consequently the reduction of tb number of reservoir simula-
tions to reach an NPVR greater than to $9 10° when using the \using the neighborhood"
approach compared to the \using the mean of samples" approdtis equal to 81%. Six
runs out of eight performed runs (75%) are able to reach a vale of NPVR greater than
to $9:3 10°, using a mean number of reservoir simulations equal to 4307, kich o ers a
reduction of the number of reservoir simulations when compgng to the \using the mean of
samples" approach equal to 86%. However, only two runs out athe eight performed runs
(25%) are able to reach a value of NPV greater than to $95 10°. The mean number
of reservoir simulations required to reach this value is 616. Consequently the reduction
of the number of reservoir simulations to reach an NP\® greater than to $9:5 10° when
comparing to the \using the mean of samples" approach is agai equal to 86%.

1For example, one can evaluate the best found point according to NPVE at each iteration on NPV R
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Figure 6.4: The evolution of the well placement optimization process on the PUNQ-S3
case using CMA-ES with the \using the mean of samples" approdt and the \using the

neighborhood" approach. The evolution of the best found evluation on NPV R for the

\using the neighborhood" approach is drawn with red lines. The evolution of the best
found evaluation on NPVR for the \using the mean of samples" approach is drawn with
blue lines. Three independent runs are performed for each gpoach. For the \using the

neighborhood" approach, the maximum distance of selectiorior the neighborhood dmax is

equal to 4000.
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Figure 6.5: The evolution of the well placement optimization process on the PUNQ-S3
case using CMA-ES with the \using the neighborhood" approat for four independent
runs. (a) shows the evolution of the evaluations on NP\WR. (b) shows the evolution of the
best found evaluation on NPVR. The maximum distance of selection for the neighborhood
dmax is equal to 3000.
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Figure 6.6: The evolution of the well placement optimization process on the PUNQ-S3
case using CMA-ES with the \using the neighborhood" approat for four independent

runs. (a) shows the evolution of the evaluations on NP\R. (b) shows the evolution of the

best found evaluation on NPVR. The maximum distance of selection for the neighborhood
dmax is equal to 6000.

Three runs of CMA-ES with the \using the neighborhood" approach are shown together
with the three performed runs of CMA-ES with the \using the me an of samples" approach
in Fig. 6.4. Results show that although the \using the neighborhood" approach does not
guarantee nding the best values of NP\R found by the \using the mean of samples"
approach when comparing with the \using the mean of samples'approach, the number of
reservoir simulations is reduced signi cantly by more than 81%.

The impact of the choice of the maximum distance of selectiorfor the neighborhood
dmax IS shown in Figs.6.5 and 6.6. Comparing the results in Figs. 6.5, 6.3 and 6.6 (with
dmax = 3000, 4000 and 6000) shows that the approach is not very seitise to the choice
of dmax.

In the sequel, we compare the \using the neighborhood" apprach with another ap-
proach in which the estimated objective function to be optimized is equal to an evaluation
on a randomly chosen realization. This approach is called th \using one realization"
approach. In this approach, we also evaluate on NP% only the overall new best points
found on the estimated objective function. Figs.6.7 and 6.8 show the evolution of the op-
timization process for three independent runs of CMA-ES wih the \using one realization”
approach. In Fig. 6.7, the evolutions of the best estimated objective function ae again
drawn with green lines. If we compare the \using the neighbohood" and the \using one
realization" approaches through Figs.6.2and 6.7, it is clear that contrary to the \using the
neighborhood" approach which is shown to be able to capturehe geological uncertainty,
the \using one realization" approach is shown to be not able © propose good points with
high NPVR. The three performed runs with the \using one realization" approach are not
able to reach an NP\R value greater than $9 10°.
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Figure 6.7: The evolution of the well placement optimization process on the PUNQ-S3
case using CMA-ES with the \using one realization" approach for three independent runs
in (&), (b) and (c). The evolutions of the best estimated objective function (equal to an

evaluation on a randomly chosen realization) are drawn withgreen lines. The evaluations
on the true objective function over the 20 possible realizabns, i.e., NPVR are depicted
with blue crosses.
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Figure 6.8: The evolution of the well placement optimization process on the PUNQ-S3
case using CMA-ES with the \using one realization" approach The best mean value of
the NPV over the 20 possible realizations, i.e., NP\R is shown. Three runs are performed.

6.4 Summary and discussions

In this chapter, we have de ned a new approach to handle geolgical uncertainty for well

placement using the objective function evaluations of alrady evaluated individuals in the

neighborhood. The proposed approach is compared to a refaree approach using the
mean of samples of each individual. We have shown on the syngtic benchmark reservoir
case PUNQ-S3 that although the proposed approach does not gwantee nding always

the best values found by the reference approach, the numberfaeservoir simulations is
reduced signi cantly by more than 81%.
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Chapter 7

Conclusions and perspectives

7.1 Conclusions

In this thesis, we have contributed to the research area of djmizing well placement
(locations and trajectories of the wells to be drilled) by addressing the following challenges
(presented in Sectionl.3):

() The non-smoothness, the multi-modality, the non-convexity and the high dimen-
sionality of the objective function;

(I The expensive cost of the objective function;
(I1) The geological uncertainty handling problem.

The problem (1) was addressed in Chapter3 by applying the stochastic optimizer CMA-
ES. We have shown that CMA-ES outperforms the genetic algothm on the PUNQ-S3 case
by leading to a higher net present value (NPV). Moreover, CMA-ES was shown to be able
to de ne potential regions containing optimal well con gur ations. The ability of CMA-ES
to nd much higher NPV values and to converge to the same regio of the search space, has
been explained by its advanced adaptation mechanism that #bws the algorithm, on ill-
conditioned non-separable problems, to adapt in an e cient way its sampling probability
distribution.

The problem (II) was addressed by de ning two new algorithms aiming at reducing
the number of objective function evaluations, based on metanodels whose underlying
idea is to replace some (true) function evaluations during he optimization process by the
function values given by the meta-model. Meta-models can beonsidered as a computa-
tionally cheaper replacement of the objective function. Ths consideration is justi ed by
the context of costly objective function for the well placement problem. The new-local-
meta-model CMA-ES, denoted nimm-CMA (Chapter 2) was proposed in order to mitigate
some defects of the already existing local-meta-model CMAS (Imm-CMA) when dealing
with large population sizes. The partially separable localmeta-model CMA-ES, denoted
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