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Introduction

It has been realized in the last decade that con ned ultracotl atomic gases o er the
possibility to manipulate coherently entangled many-body quantum states. In particu-
lar, a major advantage provided by these type of systems is tb high degree of control
of the relevant experimental parameters, due to the ability of tailoring traps of various
geometry [1, 2] and of tuning the interatomic interactions [3]. This has a large interest
for applications in quantum information and quantum technology. Recent advances have
concerned applications to quantum simulators [4] and highsensitivity atom interferome-
try, which can be used for enhancing the precision in atomic locks and in magnetic eld
sensors [5{9].

In the latter eld, very promising results have been recently demonstrated with the
use of a Bose Josephson junction (BJJ) [5{9]. Such a system i®rmed by two modes
of a Bose-Einstein condensate, which may correspond eith¢o two internal states of the
condensed atoms in a single potential well or to two spatial} separated wave functions
in a double well. In an atom interferometer, the two modes of he condensate are left
evolving under the interaction with the physical quantity t o be measured, which causes a
relative phase shift' on the two modes. From measurements on the output state, e.gof
the relative population of the two modes, the phase shift carbe estimated. The Schwinger
representation [10] connects the creation and annihilatio operators& and &' (for i = 1;2)
of the bosons in the two modes to the three components of a celttive angular momentum
operator J = (Jy; 33; J3), in terms of which the operations composing the interferonetric
sequence can be described.

It has been proposed [11, 12] and experimentally demonstrat [7{9, 13] that Bose
Josephson junctions allow for the creation of atomic squeel states, in which the quantum
uctuations of the collective angular momentum operator in a certain direction are reduced
to the expense of the uctuations in another direction. Suchnon classical states can be
used in an interferometric prokp@l to improve the phase sesitivity ' reducing it below
the shot-noise limit ' / 1= N - the limit that one obtains using classical states,N
being the number of bosons [14, 15]. This prediction has beerecently experimentally
demonstrated in a Bose Josephson junction by C. Grosst al [8].

A further enhancement of the precision in atom-interferomdry has been predicted to
be reached by the use of macroscopic superpositions of atomcoherent states [15, 16].
These are highly entangled states, in which a macroscopic mber of particles is found in
a coherent superposition of di erent possible states - the \omponents" of the superpo-
sition. These states are often familiarly referred to as \Shrmedinger's cat states", and in
particular two-component superpositions are also known fom other quantum information



contexts as GHZ states [17{20]. Incidentally, macroscopicsuperpositions are predicted to
be a fundamental resource in quantum communication and quaium computation [21],
and their experimental realization would also serve as a fudamental test for quantum
mechanics at the macroscopic scale. In quantum interferomey, the phase uncertainty
which could be reached with the use of these states scalesdikl=N, and corresponds to
the \Heisenberg limit" - the highest possible phase sensitiity which can be reached with
linear interferometry [15, 16].

The experimental realization of these states is however chignging, because of their
fragility with respect to decoherence e ects induced by paricle losses [22, 23], phase noise
- due to stochastic uctuations of the energies of the two mods [24, 25], collisions with
thermal atoms [26, 27], interaction with the electromagnetc eld [28, 29], and random
uctuations of the trapping potentials [30]. The two former phenomena, in particular, are
the main noise sources in the experiments of Ref. [8, 9, 13].

In this thesis, we study protocols for the creation, detecton and exploitation in atom
interferometry of atomic squeezed states and macroscopiaiperposition in Bose Josephson
junctions, in the presence of phase noise and particle losse

After introducing in Chap.l the system under study - the Bose Josephson junction
- and its main features, we address in Chap.2 how squeezed &ta and macroscopic su-
perpositions can be created in a BJJ by means of dynamical anddiabatic methods, in
the absence of external noise sources. We especially focus dynamical protocols. We
rst demonstrate the formation of macroscopic superpositobns during the dynamics of the
BJJ which follows a quench of the coupling between the two mods; then, we address an
optimal control protocol, with the goal of lowering the time of formation of the super-
position states. In Chap.3 we study how macroscopic supersitions can be detected by
means of repeated measurements of the collective angular m@ntum operator in various
directions, which is an observable accessible in the expaenents. In Chap.4 we address
the applications to quantum metrology, studying the degreeof usefulnessfor sub-shot
noise interferometry of the quantum state produced during he quenched dynamics of the
BJJ. Finally, in Chap.5 we address the e ect of phase noise andarticle losses on the
above-mentioned protocols. We analyze how the presence obise a ects the formation
of squeezed states and macroscopic superpositions, studygi in detail the decoherence
processes to which the latter states undergo.

The results presented in this thesis have been the subject dbur scienti ¢ publica-
tions in Physical Review A [24, 25, 31, 32], and of one preprinrecently submitted for
publication [33].

Les gaz d'atomes ultrafroids o rent la possibilie de manipuler de faecon coterente
desetats intriqesa beaucoup de particules. En particulier, un avantage relevant de ce
type de sysemes est lenorme capaciea contrbler les pararetres exgerimentaux, tels
gue la forme du pege [1, 2] ou la force des ineractions iner-atomiques [3]. Cela a
un grand interét pour les applications en information quartique. Des proges ecents
ont concerre les simulateurs quantiques [4] et l'interEronetrie atomique a grande
sensibilie, qui peut étre utiliee pour augmenter la pecision des horloges atomiques
et des capteurs magretiques [5{9].

Dans ce dernier champ d'application, des esultats exgimentaux tes promet-




teurs ontet achewsa l'aide d'une jonction Josephson bosonique (BJJ) [5{9]. Ce
syseme est forme par deux modes d'un condensat de Bose-&stein, qui peuvent cor-
respondre soita deux etats internes distincts des atomescondenss, soit aux deux
fonctions d'ondes d'atomes spaes spatialement, dans o double puits de potentiel.
En interkronetrie atomique les deux modes du condensatevoluent sous l'e et de
l'interaction avec la quantie physique a mesurer; cela @use un dcephasage relatif
des deux modes. a partir de mesures sur letat de sortie, ppexemple de la dierence de
population entre les deux modes, le cephasage peut étretie®. La repesentation de
Schwinger [10] relie les operateurs de ceation et annihlation & et &' (aveci =1;2)
des bosons dans les deux modes aux trois composantes d'uerapeur de moment an-
gulaire collectif J' = (Jy;J%;J%), en termes du quel les operations qui composent la
fguence intereronetriqgue peuvent étre decrites.

Il aek propose [11, 12] et exgerimentalement cemontr e [7{9, 13] que les jonctions
Josephson bosoniques permettent de ceer desetats atomuies comprines, c'esta-dire
desetats dans lesquels les uctuations quantiques du momeangulaire collectif selon
une certaine diection sont eduites, au cetriment des uctuations dans la direction
perpendiculaire. Cesetats non-classiques peuvent étretilis dans une fquence in-
tererometrique pour areliorer la sensibiliepd_e phas e ' en la eduisant au dessous
de la limite quantique standard ' / 1= N, c'esta-dire la limite qu'on obtient en
utilisant desetats classiques,N etant le nombre de bosons [14, 15]. Cette pediction a
et ecemment cemontee experimentalement avec une jonction Josephson bosonique
par C. Gross et al [8].

Il aet pedit qu'il est possible d'obtenir une augmentation suppementaire de la
pecisiona l'aide de superpositions macroscopiques d'etats coterents [15, 16]. Celles-
ci sont desetats hautement intriques, dans lesquels lestames se trouvent dans une
superposition detats macroscopiquement dierents, les composantes de la superposi
tion. Cesetats sont familerement appeks \chats de Schmedinger”, et en particulier
des superpositions a deux composantes sont aussi connusrdad'autres contextes en
information quantique comme etats GHZ [17{20]. Par ailleurs, il est pedit que les
superpositions macroscopiques sont une ressource fondantale pour les communi-
cations quantiques et pour le calcul quantique [21], et leuealisation experimentale
serait aussi une epreuve pour la necanique quantique a ehelle macroscopique. En
inereronetrie atomique, la sensibilie de phase qui pourrait &tre achewea l'aide de
cesetats suit la lois dechelle 1=N, ce qui corresponda la \limite d'Heisenberg", c'est-
a-dire la meilleure sensibilie qui peut étre atteinte par intereronetrie lireaire [15, 16].

La ealisation experimentale de cesetats est reanmoins di cile,a cause de leur
fragilie face aux e ets de cecolerence induits par des pertes de particules [22, 23], par
le bruit de phase (d& aux uctuations stochastiques desegrgies des deux modes) [24,
25], par des collisions avec des atomes thermiques [26, 2Tes interactions avec les
champs electromagretiques [28, 29], ou des uctuations @&s potentiels ealisant le
pege [30]. En particulier, les deux premiers plenonenes sont les sources principales
de bruit dans les exgeriences de Refs. [8, 9, 13].

Dans cette tlese nous etudions des protocoles pour la cetion, la detection et
pour l'exploitation en interkronetrie atomique deta ts comprines d'une part et des
superpositions macroscopiques d'autre part, dans les jotions Josephson bosonigues,
en pesence de bruit de phase et pertes des particules.




Apes avoir introduit dans le premier chapitre le syseme etude, la jonction
Josephson bosonique, et ses caraceristiques principaenousetudions dans le chapitre
2 comment des etats comprimes et des superpositions macgropiques peuvent étre
cees dans une BJJ par des nethodes dynamiques et adiabajues, en absence de bruits
exerieurs. Nous nous focalisons particulerement sur les protocoles dynamiques. Nous
commercons par cemontrer que des superpositions macrospigues peuvent étre ceees
pendant la dynamique qui suit un arrét soudain du couplageuge \trempe") entre les
deux modes; par la suite, nous etudions un protocole de corfle optimal, dans le
but de eduire le temps de formation des superpositions. Das le chapitre 3 nous
etudions comment les superpositions macroscopiques peent étre ceteceesa l'aide de
mesures eetes du moment angulaire collectif selon dérentes directions, qui est une
observable accessible dans les experiences. Dans le chigp# nous abordons les appli-
cationsa la netrologie quantique, enetudiant le dege d'utilie pour l'interEronetrie
en dessous de la limite quantique standard de letat quardue produit pendant la dy-
namique de la BJJ. En n, dans le chapitre 5 nous abordons l'eet du bruit de phase
et de la perte de particules sur les protocoles mentionreslygs haut. Nous analysons
comment la pesence de bruit a ecte la formation des etats comprimes et des super-
positions macroscopiques, enetudiant en cetail le procesus de decoterence auxquels
ces derniers sont subjets.

Les esultats pesenes dans cette these ont fait I'objet de quatre publications sci-
enti ques dans Physical Review A [24, 25, 31, 32], et d'une prpublication [33]
ecemment soumise.




Contents

1 The Bose Josephson Junction 1

1.1 Quantum gases: an OVEIVIEW . . . . . . . . v v v i e e e e e . 2
1.1.1 Trapping qUaNtuM gQases . . . . . . . v v v i 3
1.1.2 Probing quantum gases . . . . . . . . .. 6

1.2 The Bose Josephson junction: experimental realizatiom . . . . . ... ... 6

1.3 Theoretical description: modelingthe BJJ . . . . .. .. .. ... .. .... 7
131 Theexternal BJJ . . . . ... .. . ... .. ... ... 7

1.3.2 Internal BJJ . . . . . . .. . e 10

1.4 Mappingonto aspinmodel . . .. ... ... . .. ... . 10

1.4.1 Rewriting the Hamiltonian . . . . . ... ... ... ......... 11
142 Fockstates . . . . . . . .. e 12

1.4.3 Atomic coherentstates . . . . . . . . ... ... ... 12

1.4.4 Experimental implementations of the observables . . . . . ... .. 14

1.5 Ground state properties . . . . . . . ... 15

151 Ground state ofthemodel . . . . . . ... ... ... ... ..... 5

1.5.2 Momentum distribution for the external BJJ . . . ... ... .. .. 17

1.6 The semi-classical limit . . . . ... ... ... ... ... ... ... 19

1.6.1 Semi-classical Hamiltonian and equations of motion . . . ... .. 19
1.6.2 Dynamical regimes . . . . . . . . . ... 22

2 Creation of entangled states in a Bose Josephson junction 27

2.1 Multiparticle entanglement . . . . . ... ... ... L o 28

2.2 Criteria for multiparticle entanglement . . . . . . . ... .. .. ... .... 28
2.2.1 Linear entropy . . . . . . . ... 29

2.3 Relevant multiparticle entangled statesinaBJJ .. ... .......... 30

2.3.1 Coherent spin squeezing and squeezed states . . . .. ... ... 30

2.3.2 Macroscopic superpositions of coherent states . . . .... . ... .. 31
23.3 Fockstates . . . ... ... 32

2.4 Adiabatic protocols for the creation of entangled stats in BJJs . . . . . .. 33

2.4.1 Spin squeezing inthe ground state . . . . ... ... ... ..... 34

2.4.2 Ground state of the attractive BEC . . . . ... ... ... ..... 34

2.5 Dynamical protocols . . . . . . . . . .. .. e 35

2.5.1 Creation of squeezed states and macroscopic superfiioss of phase

states by a quenched dynamics of the BJJ . . . . . ... ... .. .. 35

\Y



Vi CONTENTS
2.5.2 Dynamical creation of macroscopic superpositions im BJJ: semi-
classical argument . . . . . . .. .. ... e 39
2.5.3 Controlled dynamical creation of macroscopic supermgsitions in a BJJ 40
3 Detection of macroscopic superpositions 45
3.1 Quasi-probabilities distributions in phase space . . . ... .. .. ... ... 45
3.1.1 Husimidistribution Q . . .. ... ... ... ... .. ... .. ... 46
3.1.2 P representation . . . . ... ... 49
3.1.3 Wirepresentation . . . . . . . ... 49
3.2 Detection of macroscopic superpositions . . . ... ... ... ... .. .. 50
3.2.1 Distributions of the eigenvalues of angular momentunroperators in
the equatorial plane . . . . . .. .. ... ... .. 50
3.2.2 Quasi-probability distribution in spin variables . . . . ... ... .. 55
4 Exploitation of useful entangled states 61
4.1 Atom interferometry . . . . . . ... . 61
4.1.1 The general interferometric procedure . . . . . ... ... . .. .. 61
4.1.2 Use of squeezed states in atom interferometry . . . . . ... .. .. 64
4.1.3 Craner-Rao lower bound and quantum Fisher information . . . . . 64
4.1.4 Interplay usefulness in phase estimation and entangiment . . . . . . 67
4.2 Optimum coherent spin squeezing and quantum Fisher infonation . . . . . 70
4.3 Quantum Fisher information and spin squeezing in the grand state 70
4.3.1 Non-coupled modes . . .. .. ... .. .. ... .. 71
4.3.2 Non-interactingatoms . . . . . . . . . ... .. ... e 71
4.3.3 Intermediate regime . . . . . . .. ... 1
4.4 Quantum Fisher information and coherent spin squeezinguring the quenched
dynamics . . . . . L e e e 73
5 Decoherence of useful entangled states 79
5.1 Phasenoise . . . . . . . . . . . . e 80
51.1 Model . . . . . 80
5.1.2 Eect of phase noise onthe visibility . . . . ... ... ... ..... 83
5.1.3 E ect of phase noise on multicomponent macroscopic swgrpositions
ofphasestates . .. .. ... .. .. .. ... ... .. . e 83
5.1.4 Quantum Fisher information and coherent spin squeenrig during the
guenched dynamicsofthe BJJ . . . .. .. ... ... ... ..... 90
5.2 Particlelosses . . . . . . .. 97
5.2.1 Master equation for one-body particle losses . . . . . ... ... .. 98
5.2.2 Exact solution of the one body-losses master equatioby the char-
acteristic method . . . . .. ... ... .. ... 99
5.2.3 E ect of particle losses on the visibility . . . .. ... ........ 101
5.2.4 E ect of particle losses on squeezed states . . . . .. .. .... .. 102
5.2.5 E ect of one-body losses on macroscopic superpositierof phase states102
5.3 Treating phase noise and particle losses at the same time. . . . . . .. .. 107
6 Conclusions and perspectives 109
6.1 Conclusions . . . . . . . . ... e 09
6.2 Prospective VIEWS . . . . . . . . . o i 113



CONTENTS Vii

6.2.1 E cient reconstruction of macroscopic superpositions via measure-

ment of the momentum distribution . . . . . ... .. ... ..... 113
6.2.2 Particle losses and comparison with the experiments . . . . . . .. 114
6.2.3 Controlled creation of cat states in the presence of aim losses and
phase noise . . . . . . . . . ... 114
6.2.4 Dynamics in optical lattices . . . . . .. ... ... .. ........ 115
A Detection of macroscopic superpositions 117

A.1 Generating function of the distributions of the angular momentum opera-
tors eigenvalues for macroscopic superpositions and incelent mixtures of

phase states . . . . . . . . . . e e e e 117
A.2 E ect of time noise in the reconstruction of the probabili ty distribution P (r)118
A.3 Rewriting the quasi-probability distribution f(x;y) . . ... ... ... ... 119
A.4 Connection with the Wigner function. . . . . . ... ... ... .. ..... 120
B Coherent spin squeezing and quantum Fisher information 121
B.1 Demonstration of Eq.(4.39) for the spin squeezing paramter . . ... . .. 121
B.2 Determination of the time t when the optimization direction of the Fisher
information changes in the absence ofnoise . . ... ... ... ...... 122

C Quantum Fisher information and coherent spin squeezing at thermal

equilibrium 125
C.1 SqueezingatlT =0, K =0 . . ... ... i 125
C.2 Quantum Fisher information and coherent spin squeezingt thermal equi-
librium . . . . e 126
C.21 Limithngcase LK =0, =0 ... .. .. ... . ... ..., 127
C.2.2 Limitingcasell: =0. ... ... . . . ... 128
C.2.3 Intermediate regime . . . . . . . . ... 29
C.3 Remarks on the validity of the two-mode model . . . . .. ... .. ... .. 130
D Decoherence e ects induced by phase noise 133
D.1 Partial suppression of phase noise by spin-echo pulses ... . . . ... ... 133
D.2 Husimi distribution of a two-component macroscopic sugerposition in the
presence of phase noise . . . . . . .. ... ... L 32
D.2.1 Regime of validity of the approximation . . . .. ... ... .. ... 136
D.3 Squeezing as a function of the angle under the action of @se noise . . . . 136
D.4 Decoherence of a NOON state and a phase cat state under pba noise . . . 137
E Decoherence e ects induced by particle losses 141
E.1 Solution of the Master equation by the characteristic me¢hod . . . . . . .. 141
E.2 Full Husimi function for cat states in the presence of paticle losses . . . . . 142

E.3 Decoherence of a NOON state and a phase cat state under pale losses . 142
E.3.1 Solution of the master equation by the method of the cheacteristics 142
E.3.2 Decoherence of a NOON state via the method of quantum jops . . 144

E.4 Solution for two body losses . . . . . . . . . .. ... 147

Bibliography 147



Chapter

The Bose Josephson Junction

In this chapter we present the system studied in this thesis:a Bose Josephson Junction
(BJJ). This system, made out of bosons which can occupy two mades, is realized by
coupling two trapped Bose-Einstein condensates, allowingor an exchange of particles
between them. As we will briey recall in the following, the name \Josephson" comes
from the analogous superconducting system, in which Coopepairs tunnel through two
weakly coupled superconducting electrodes [34].

After a general introduction on quantum gases, we review thepossible experimental
realizations of a BJJ. Then, we detalil its theoretical desciption within the two-mode
approximation, presenting the ground state properties of his model. Among them, we
especially discuss the uctuations of the number operator @scribing the population im-
balance between the two-modes and the momentum distributia; these results have been
published in Ref. [31]. Finally, we introduce the semi-clasical approximation for the BJJ.

Dans ce chapitre, nous pesentons le syseme etude: la jonction Josephson
bosonique (BJJ). Ce syseme, compo® par des bosons qui peent occuper deux
modes, est eali® en couplant deux condensats de Bose-fiStein pegs, permet-

tant unechange de particules entre eux. Comme on le rappeli@ brevement dans
la suite, le nom \Josephson" est donne par analogie au sysie supraconducteur,
dans lequel des paires de Cooper peuvent passer par e et tur@tre deuxelectrodes
supraconductrices faiblement coupkes [34]. Apes une itroduction cererale sur les

gaz quantiques, nous rappelons les possibles ealisat®rexmrimentales d'une BJJ.
Ensuite, nous cetaillons sa description treorique dans & cadre de I'approximationa
deux modes, en pesentant les proprees de letat fondamental de ce modkle. Parmi
celles-ci, nous discutons en particulier les uctuations e I'ogerateur nombre qui

cecrit le desequilibre de population atomique entre les deux modes de la jonction;
ces esultats ontet publes en Ref. [31]. Enn, nous in troduisons |'approximation

semiclassique pour la BJJ.




2 The Bose Josephson Junction x1.1

1.1 Quantum gases: an overview

Quantum gases are ultracold metastable vapors of alkali atms in the quantum degenerate

[]egime. For such vapors the atomic densityn and the thermal De Broglie length 4 =

ﬁ satisfy the relation n 2 & 1. In this regime, since the thermal wavelength is

comparable to the inverse inter-particle density, Boltzmann statistics does not apply and
guantum mechanics is required for a proper description of tk system. We use the term
\metastable" in the sense that thermodynamic equilibrium, under these conditions of
temperatures and pressure, corresponds to the solid phaserfalkali atoms; to keep the
gaseous state, atoms need to be kept at very low density (whiic prevents three-body
collisions to happen), and far from any material wall, which would favor the formation of

molecules.

In a non-interacting Bose gas, as an e ect of its quantum statstics, at low temper-
atures all the particles \condense" in the lowest energy stge. This can be understood
as follows [35]. The average occupation of the single partie levels ; in an ideal gas of
bosons follows the distributionmi( ;T ) = 1=(e { 1)), in the grand-canonical ensemble.
The chemical potential is bounded from below by o to prevent negative occupation
numbers. When approaches g, the occupation of the lowest energy levelNg g
diverges (seg gure 1.1). The chemical potential is xed by the normalization condition
Nt(;T) iso M(;T)= N No. When the value of Nt( = o;T) is larger than
N, then the normalization condition is satis ed for values of < ¢, and the occupation
of the ground state is negligible (see again gure 1.1). SineNy( = ¢;T) is growing
monotonously with T, this happens at high temperatures. WhenNt( = o;T) <N,
in order to satisfy the normalization condition it is requir ed that 0, leading to a
macroscopic occupation of the lowest level. The conditiondr such a \condensation" is
hence given byNt( = ¢;T¢c) = N, which de nes the critical temperature [35].

Such a condensation in energy space, known as Bose-Einst&ondensation (BEC), has
been theoretically predicted by Bose and Einstein in 1925 and experimentally achieved
with a weakly-interacting gas for the rst time in 1995 (seventy years later) for Rubid-
ium [36] and Sodium [37], for which Eric Cornell, Carl Wiemam and Wolfgang Ketterle
earned the 2001 Nobel Prize in Physics. In subsequent yearmany other atomic species
have been condensed (namelyLi, “°Ca, “He, 3%K, 4K, 133Cs, 174yYDb, 52Cr, 84sr, 865y,
883r, H).

A rough estimate of the critical temperature below which the atomic gas undergoes
the BEC transition can be given via dimensional arguments: ér a uniform gas of free
particles in the degenerate regime, the relevant quantitis are the particle massm, the
density n, and the Plank constanth =2 ~. The only way to combine them to form an

energy is Jﬂfzs, which has to be compared to the energykg Tc, so that the estimate for
the critical temperature gives
~212=3
Tc=c ; 11
c=C i (1)

wherec is a dimensionless constant and its numerical value turns duto be approximately
3.3 for a Bose gas con ned in a three dimensional box [35]. Inx@eriments, however,
the typical con nement is rather harmonic. Let us indicate with ! g the frequency of the

harmonic potential. The density of the gas in the cloud can beestimated asn %, where

!Bose's paper dealt with photons; Einstein extended Bose's treatment to massive bosons.
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Figure 1.1: Number of particles out of the condensateNt and number of particles in
the condensateNg as a function of the chemical potential in the ideal gas model, from
Ref. [35].

N is the number of particle and R ke T
m!

2
is the size of the atomic cloud; then the

0

transition temperature is obtained substituting this expr ession for the density in Eq. (1.1)

kg Tc = Ci~! oN T3, (1.2)

where the constantC; is of the order of unity 2.

In practice, atomic gases are not ideal but often weakly inteacting. The atomic
interaction potential between atoms is the standard Van der Waals one, with a hard-
core repulsive part at short distances, which results from he Coulomb repulsion of the
two electronic clouds, and a weak attractive contribution at larger distances due to the
dipole-dipole interactions. However, at very low temperatires, interactions are properly
accounted by the s-wave scattering length a, as higher partial-wave contributions would
require to overcome the centrifugal barrier and are hence rgdigible. Under the diluteness
condition na® 1 a partial condensation takes place in a level modi ed with espgct to
the non-interacting ground state [35], but depleted even atT = 0 by a fraction / = na3.
In what follows, we will always suppose that the diluteness ondition is ful lled.

Typical parameters necessary to observe BEC involve tempatures of 10 100 nK
and densities of the order of 18 10"cm 3 (quite low compared to the typical density
of molecules in air at atmospheric pressure and room tempetare, of about 10'° cm 3).
Typically, these densities correspond to a number of atomsfal0® 10° con ned in spaces
of linear dimension of 10 m 1 mm. The lifetime of an atomic condensed cloud is about
10 seconds; this enables one to measure both static and dyna&al properties before loss
mechanisms, which we will discuss in Sec. 5.2, eventually dizoy the condensate.

1.1.1 Trapping quantum gases

In order to achieve the densities and temperatures requiretb observe the BEC, one has to
cool and to trap atoms. In typical experiments, the starting point is a room temperature

2A more rigorous calculation of the critical temperature for atoms con ned in a three dimensional
harmonic potential can be found in [35] and provides ks Tc = Ci~(! 1! 2! 3)¥*3N "%, where ! ; is the
angular frequency corresponding to the i direction and C; ' 0:94.
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Figure 1.2: Splitting of the hyper ne levels of Rb as a function of the magnetic eld.

atomic gas which is rst pre-cooled to about 10 K with a laser, then transferred into a
magnetic trap, and nally cooled down to hundreds of nK via evaporative cooling. The
way of combining the steps of cooling and trapping varies fron experiment to experiment,
but the physical principles exploited are generally based o the interaction of atoms with
electric and magnetic elds. A review of these methods can béund, for example, in [38].
We brie y review here the main mechanisms underlying the trgpping of alkali atoms, as
this will allow us to introduce some notions which will be usdul in the rest of the thesis.

1.1.1.a Hyper ne structure and magnetic traps

Magnetic trapping of neutral atoms relies on the use of the iteractions of their spin
properties with inhomogeneous magnetic elds. Alkali atons have a simple electronic
con guration, characterized by closed shells except for tle outermost, occupied by a single
electron. As the orbital momentum is zero in the ground state the total electronic angular
momentum J is equal to 1=2; the nuclear spinl depends on the isotope. Hence, there are
two possibilities for the resulting total angular momentum: F = | 1=2. In the absence
of an external magnetic eld, the interaction between the nuclear spin and the outermost
electron one (the hyper ne interaction, Hy; = A ™ J, where A is the relevant coupling
constant) removes the degeneracy of the two con gurations.

When an external magnetic eld is applied (say in the 2 direction) the total Hamilto-
nian is

H=AI J+2 5gJ,B(® (1.3)

where g is the Bohr magneton. Sincel” J = 1=2(12 + J?), the eigenstates of the
hyper ne Hamiltonian are eigenstates ofJ?;12; F2 and F,. Treating the magnetic eld as
a perturbation, to rst order the corrections to the energy | evels are

I’F,mFJZ BJZBJF,mFI =0 BME B B (14)

whereg, is the Landk factor and mg is the eigenvalue ofF,. The resulting splitting of 8’Rb
levels is depicted in gure 1.2. We obtain from Eq. (1.4) that the magnetic contribution to
the energy provides a potential energy B, where ; can be either positive or negative,
depending on the unperturbed hyper ne state. When the magnéic eld is inhomogeneous,
if the magnetic moment is positive, the atom is driven to regons of higher eld (these
states are referred to as \high- eld-seeker"), while if it is negative, it will move towards
regions of lower eld (\low- eld-seeker" states). Since the modulus of a static magnetic
eld cannot have a maximum in vacuum, high- eld seeker states can never be magnetically
trapped - they can be optically trapped, though. Thus, the task of constructing a magnetic
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trap relies on the design of magnetic eld con gurations with a local minimum, e.g. a
guadrupole potential. Recently a versatile way of implemeting magnetic trapping has
been provided by atom chips [39]. These are miniaturized cuent conductors which allow
for the generation of magnetic elds of almost arbitrary geametry. They can also combine
with optical methods, allowing for the generation of specia potentials such as lattices,
potential barriers, and single- or double-well potentials They have been recently used for
matter-wave interferometry [40], or for the generation of domic squeezed states [9, 41, 42].

1.1.1.b Optical traps

Another option for trapping atoms is the use of optical traps. These are based on the
following principle. Since the wavelength of the laser radition is much larger then the
atomic size, the interaction of the atom with the laser eld can be treated with high
accuracy in the dipole approximation, and can be expressedsa

V(gt)= D E(¥t); (1.5)

where D is the electric dipole andE(+;t) is the time-dependent oscillating electric eld.

The interaction given above produces a polarization (! ) of the atom oscillating with the

same frequency as the electric eld. Because of the Stark e dc atomic levels undergo
a shift which can be calculated with second order perturbatbn theory and which can be
regarded as an e ective potential

W= 5 (ERED: (16)

where the time average is taken because the frequency of thader eld is much higher
than the inverse typical time of the atomic motion. If the int ensity of the radiation eld
varies with the position, the interaction energy above gives rise to a force. The sign of the
polarizability and hence of the energy shift depends on therequency of the radiation, and
turns out to be positive above the characteristic dipole resnance frequency and negative
below, so that the atom will be attracted or repelled from the regions of higher eld,
depending on the frequency of the laser. Hence, by focusinglaser beam with frequency
detuned in such a way that the energy of a ground state atom has minimum in space,
it is possible to trap the atoms.

The main advantage of optical traps is that the trapping is not limited to specic
magnetic states (as it is in the case of magnetic traps). As wavill detail in Sec.1.2, this
has allowed to study spinor Bose-Einstein condensates, i.emixtures of atoms condensed
in di erent hyper ne states. A second advantage is the following: the interaction strength
can be tuned by applying a magnetic eld through the so called\Feschbach resonances" [3,
38]; this has been largely exploited in the experimental relizations of bosonic condensates
and also allowed to condense fermionic pairs, since interdons between fermions can be
adjusted to form weakly bound molecules [43, 44]. This is adbved by applying a uniform
magnetic eld to atoms in an optical trap. Thus, this techniq ue is impractical in magnetic
traps, where the inhomogeneity of the eld is necessary for tapping. Note however that
tunable interatomic interactions have been recently achiged with atoms in a magnetic trap
in the experiment of Ref. [9, 41], via manipulation of the spdial modes of the condensate
(see discussion in Sec.1.3.1, in particular Eq.(1.20)).
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1.1.2 Probing quantum gases

Quantum gases are most directly probed by accessing to thedensity pro le. One way to
measure the density is absorption imaging of an atomic cloudeleased from the trap and
allowed to expand freely [45]. Light at a resonant frequencyis shone across the cloud and
is absorbed passing through it; thus, by measuring the absqtion pro le, one can obtain
information about the density distribution. Note that this is a \two-dimensional column
density pro le", in the sense that the density is integrated over the directign of the light
beam: if the light beam is directed alongx, one can measuren(y;z) = dxn(x;y,;z).
This method is destructive, since absorption of light changs the internal state of atoms
and heats the cloud signi cantly. To study time-dependent phenomena, it is therefore
necessary to prepare a new cloud for each time point (\shot")

If the expansion occurs in absence of interactions, the deitg pro le after the expan-
sion at times t much larger than the inverse of the oscillator frequencies elated to the
con nement, !t 1, is proportional to the momentum distribution of the cloud before
the expansion (time of ight" imaging). A demonstration of this fact, as well as the
discussion of the interacting case, are discussed for exahepin Ref. [35, 46]. This is of-
ten exploited to obtain the initial momentum distribution o f the atomic cloud, with the
further advantage that measurements performed after the egansion of the condensate
provide a gain in spatial resolution.

An alternative technique is phase-contrast imaging. This &ploits the fact that the
refractive index of the gas depends on its density, and theffere, by allowing a laser beam
which is passed through the gas to interfere with a referencene, one can gain information
on the density prole of the gas by looking at the interference fringes produced. An
advantage of this method is that it is almost non destructive, and it is therefore possible
to study time-dependent phenomena using a single cloud.

1.2 The Bose Josephson junction: experimental realization S

The realization of the Josephson e ect with cold atoms has bee theoretically proposed

by J. Javanaien in 1986 [47] (ten years before the BEC realizion), who suggested that

\when two traps containing the condensates are brought clesto each other, an oscillatory
exchange of particles governed by the phase of the macrodcogave functions of the two
atomic gases should result." The analogy with the superconducting Josephson e ect has
been pursued in theoretical references [48{50], and in thexperimental work of Ref. [51]

(see also Sections 1.6.1.c and 1.6.2.c).

The rst experimental realization of a Josephson junction with bosons con ned in a
double-well potential was obtained in 2005 by Albiez et al. $2]. In their experiment,
the double-well potential was realized by superimposing a hree-dimensional harmonic
con nement and a one-dimensional optical lattice, thus opically trapping a thousand of
87Rb atoms. This system undergoes the name of \external Bose d@phson Junction", since
the two relevant modes correspond to the lowest-energy spitl modes in each well. Other
experiments realizing an external BJJ via optical trapping are reported in Ref. [51], while
a magnetic atom chip-based double-well potential has beenealized in the experiment of
Ref. [42].

Another possible experimental realization of a BJJ consiss of trapping in a single
harmonic potential a mixture of 8’Rb atoms in two distinct hyper ne states, which can be
coupled by means of a resonant radiofrequency-microwave ld. This realizes an \internal
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BJJ". Such a system has been experimentally achieved for therst time at JILA [53],
and has been later available also in Heidelberg [8] and in Munh [9, 41].

In both the external and the internal BJJs, the accessible okervables are typically
the number imbalance between the two modes, obtained by absption imaging as de-
scribed in Sec.1.1.2, and the \phase coherence" between th@o modes, i.e. the relative
phase between the wave functions of the atoms in the two modesThe latter property
is typically probed by tting a time-of- ight density prol e with a cosine function (see
Sec. 1.1.2, Egs.(1.44) and (1.55) and Refs. [54, 55]). Notéadt in each realization of such
an experiment the momentum distribution displays oscillations, which lead to the extrac-
tion of a specic value of the phase [54, 56, 57]. Roughly, tls happens because in the
thermodynamic limit the eigenstates of the momentum distribution have a well-de ned
phase [54], and hence a \phase" is built up in the measuremenprocess even if the two
condensates were initially independent; if this is the casethe phase obtained uctuates
from shot to shot. Hence, the determination of the existenceof a well-de ned relative
phase between the two modes requires averaging over many teations of the described
experiment 3.

In the remainder of this thesis, when having in mind experimetal aspects, we will focus
more speci cally on the Heidelberg experimental setups, decribed in Refs. [13, 52, 57]
(external BJJ) and [8, 61, 62] (internal BJJ).

1.3 Theoretical description: modeling the BJJ

We now introduce the theoretical model suitable for descriling the system presented in
the previous section. Its description in the quantum regimerequires in principle the use
of the general many-body Hamiltonian, describing a system binteracting bosons in an
external potential Vex: (¥). However, by means of the two-mode approximation on the etl
operator, its expression can be considerably simpli ed. Wepresent here the derivation of
the Hamiltonian in the two-mode approximation, following R efs. [35, 63].

1.3.1 The external BJJ

Let us rst focus on an external Bose Josephson junction. We tart from the general
many-body Hamiltonian,
Z 2
H o= dro—r Y@ 1o+ "Vea®l 0+
z %
d*r P EUEr T HT M 1.7)

NI

Where'{ ), /i\y(f-) are bosonic eld operators satisfying the standard commuation relation
TH:;™FE9 = 3¢ 79 and U(r 19 is the interaction potential. We may consider

for simplicity an external double-well potential Ve resulting from the superposition of a
three-dimensional harmonic con nement and a cosine potendl, i.e.

Vo 1+cos (1.8)

! 1 1 2X
Vea(r) = Smt "+ Smt Jy* + Smi 52+ i

Properly speaking, no hermitian operator is associated to the phase [58{60], and the notion of a
\well-de ned" phase is better formulated in terms of cohere nt state, as we shall de ne in Sec.1.4.3
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Figure 1.3: A schematic representation of the double well pential.

with d a parameter de ning the spatial periodicity of the potential, typically amounting
to a few micrometer. Such an external potential is sketchedn Fig.1.3. At the bottom of
each of the two central wells, the cosine potential can be exanded to the quadratic order,
leading to an e ective local harmonic Potential with an e ecti ve frequency along the axes
of the double well ! 7 ;, = 17+ %—. The single particle levels in such a double-well
potential satisfy the Schredinger equdgtion

st 24 Ven(®) (9= E (#): (19)

If the tunneling through the barrier is negligible, the solution is given by two degenerate
levels 1.2(¥) = ot *12) (Where +1., are the coordinates of the center of each well),
each of them being the displacement of ¢(¥), corresponding to the ground state of a
three-dimensional harmonic oscillator with frequencied .t ;! y;! ;. We will indicate the
energy of these two levels withEg. The inclusion of tunneling across the barrier lifts the
degeneracy. Treating the tunnelingK with degenerate perturbation theory, the energy
eigenstates are given by the symmetric and antisymmetric cmbinations

() = 191—5( 1(F)  2(9); (1.10)

with corresponding eigenvaluesE = Ep; K.

Now let us come back the many-body problem. Due to the diluteress of the gas,
the average distance between two particles is large with rgeect to the scattering length
a, and the microscopic details of the interaction potential do not need to be specied
anymore. We can therefore replace the true potentialU(r) by an e ective one Ugss (1)
without a ecting the analysis of the macroscopic properties of the gas, provided that
the e ective potential leads to the same scattering length. Lt is common to adopt as an
e ective potential the contact pseudo-potential

Uett (F T =g (+ O (1.11)
The parameter g is connected to the s-wave scattering lengtta in the Born approximation
by
(1.12)
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Using Eqg. (1.11), the Hamiltonian of the system becomes
Z
H(t) = dﬂ%r ML D+ Ve B+ IO AT AL (113)

Now, in the two-mode approximation we describe the many-bog state of the system by
giving the occupation number of the two single particle stats (1.10); this allows to write
the eld operator in the form

tH=m +®+a (¥ (1.14)

R
where we introduced the annihilation operatorsa* (t) = d® (¥){ #t). By means of
the simple transformation 8;., = pl—é (A+ & ) we are able to rewrite the eld operator as

T8 =" (M) +%8 2); (1.15)

where &;., annihilate particles in wells 1,2. Substituting Eq.(1.15) in the Hamiltonian
(1.13) and integrating over the spatial degrees of freedom & obtain

U U
Hex = Extes + Eotft + —rajalara + alalaos, K (a4 +aja)  (1.16)

where we have discarded the terms involving the overlap of th two modes. The parameters
entering in Eq.(1.16) are given by

Z 2
Ei=  dro—(r i)+ P(H)Vex
Z
U=g d i
Z 2
K= ro—(t 1(®r 2+ 1) 2(H)Vex

(1.17)

Hamiltonian (1.16) is a two-sites Bose Hubbard Hamiltonian and has been extensively
used to study the properties of bosonic Josephson junction&ee for instance Ref. [63]).

1.3.1.a \Validity of the two-mode approximation

As it was implicit in the previous discussion, two approximations are actually involved in
the two-mode approximation [63]. The rst is that the tunnel ing is weak (which allows
to treat it pertubatively at the single particle level), so t hat the single particle energy
spectrum is given by the rst two levels well separated from te higher ones. The second
one is that interactions are weak enough so that they do not a &t considerably the single
particle orbitals 1.2(+). Taking the case of isotropic wells! y_ ly 1, 1o thisis
a good approximation if both the tunneling energy and the interaction energy are much
smaller with respect to the trap frequency! o, which characterizes the oscillations of the
condensate within each trap, i.e.

K ~lg
NU; ~ g (1.18)
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For the temperature not to excite higher levels we have alsod assume the requirement
ke T ~lo.

If the interactions are not so weak, an improvement over suchan approximation is
obtained by taking as orbitals (¥) the time-independent solutions of the Gross-Pitaevski
equation (see Sec.1.6) wittN=2 atoms in each well, normalized to unity [48]. In a further
improvement, time-dependent orbitals are considered, wlih provides the parametersk
and with a dependence on the mode occupation, and leads them to wa during the
dynamical evolution [23].

A comparison of the two-mode model with the full quantum dynamics derived from the
Hamiltonian in Eqg.(1.7) via a MCTDHB analysis (multicon gu rational time-dependent
Hartree for bosons) has been carried out in Refs. [64, 65] fom one-dimensional Bose
Josephson junction, with the result that the two-mode dynamics qualitatively reproduces
the full quantum dynamics in a vast regime of the parameters.

1.3.2 Internal BJJ

For the internal case, the derivation of the two-mode model § analogous. The main
di erence with the external case is that the cross-interaction term, involving the overlap
of the two di erent atomic-species orbitals 1.2(+), cannot be neglected in this case, since
both of the two species are trapped in the the same harmonic gential. Furthermore, the
scattering length of atoms in di erent hyper ne states can be in principle di erent for the
two species, i.e.ai; 6 ayy a priori (which is e.g. the case of the state§F = 1;mg = 1i

and jF = 2;mg = 1i of 8Rb, used in the experiment of Ref. [8]). On the other
hand, this allows us to assume that the spatial mode of the twohyper ne states is the
same, i.e. 1(¥) ' 2(¥) " ofr), the latter being the spatial mode of the harmonic

potential. Furthermore, the K parameter represents here the coupling with microwave

and radiofrequency elds, which can be tuned both in amplitude and phase. In the basis

of the two hyper ne levels, the dipole operator in Eq.(1.5) readsD = d(&;Ya,+ 4,Y4;). By

decomposing also the oscillating electrical eldE = E* + E= with E = Ege '(K* ') jf

the eld is resonant for the hyper ne transition, in the rota ting-wave approximation we are

left with V = (Kd&Ya,+ K #&%4,), where weidentied K = & E* andK = & E .
Hence, in this case the Hamiltonian is

u u
Hine = E18J8; + E 888, + %a{a{alaﬁ 72&)2'6¥329.2+ Ualaaja, Kala+ K aja

(1.19)
with interaction parameters given by
Z Z
U=gi dri® g d&r 5
Z Z
Uz=g o i(f) 50 g2 dr §(); (1.20)

wheregj =4 ~2aj=m.

1.4 Mapping onto a spin model

The two-mode Hamiltonians (1.16) and (1.19) derived in the gevious section can be
mapped on a spin Hamiltonian, by means of the Schwinger repsentation [10]. After
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presenting this mapping, we introduce the state basis whichare suitable to describe the
system, and which we will extensively use throughout the preent thesis.

1.4.1 Rewriting the Hamiltonian

In the Schwinger representation [10], a system oN two-mode bosons can be mapped on
a system of N 1=2-spins. This mapping, suggested for the BJJ in Ref. [63], ibased on
the identi cation of the two modes of the BJJ, accessible to ech of the N bosons, with
two spin states, 1=2. As a consequence, a collective angular momentum operatean be
de ned in terms of the creation and annihilation operators of the bosons in the each of
the two modes. The ladder operators are de ned as

.j\+ = a{az
;= azal; (1.22)
leading to

i+
B\ = +T

RPN |
3= 2i

y y
= 611317261232; (1.22)

h i
In particular, the operators thus de ned satisfy the usual commutation relations J‘.J} =

Ik J where ik Is the Levi-Civita symbol, as well as the Heisenberg uncertaty relation
2 12 1hf i 2.
‘]i ‘]] Z k| y (123)

where J2 = hf?i h Jii? is the variance of the operator §2. From Eq.(1.22) we can
interpret the operator Jy as the tunneling operator, J'\y as the current operator and J,
as the population imbalance between the two wells, i.e. theelative number operator; in
the following we will often omit the adjective \relative”, r eferring to J, simply as to the
\number operator".

By means of Eq.(1.22), both Hamiltonians in Eqg.(1.16) and Eq(1.19) can then be

mapped on the spin-like Hamiltonian
R= J2 f, 2kJ (1.24)

where we have discarded a constant factor depending on the tal number of particles. For
the external BJJ is the half of the sum of the interaction energiesJ; in the two modes,
whereas for the internal BJJ = (U1 + Uy)=2 Uy, also depending on the inter-species
interaction Ui,. In both cases, is related to the dierence E = E, E; between the
energies of the two modes and to the di erence of the interactins by

= E+(N 1)Uy Up=2 (1.25)

We have considered here that the coupling in Eq.(1.19) is rdaand positive, in order
to map both the Hamiltonians in the same expression (1.24). Nte however that in
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the internal BJJ case it is possible to exploit, if needed, tle phase of the complex eld
K = jKje ' toengineer a more general form of the coupling term, leadinfrom Eq.(1.19)
toKe " &8+ K € &8 = j Kj(Jkcos Jysin ). We will use this property of the
internal BJJ in Chap.2, to provide a protocol for the e cient generation of macroscopic
superpositions. For the sake of completeness, we also memti that in the external BJJ
setup engineering a negative coupling constanK is also possible, by applying a drive to
the trapping potential [66, 67].

For = 0 the Hamiltonian (1.24) belongs to a class of models introdiced in nuclear
Physics by Lipkin, Meshkov and Glick [68], and also correspd of the continuous-kick
limit of the kicked top model [69].

1.4.2 Fock states

Supposing that the total number of bosonsN = aja; + aba, is constant!, the dimension
of the Hilbert space isN + 1. A basis for the Hilbert space is provided by the Fock states
jni j np=N=2+n;n,= N=2 ni (also called \Dicke states"), which are the eigenstates
of the number imbalance operator, i.e. they satisfy the equton
Jyjni = njni: (1.26)
The variable
N1 Ny
2
represents hence the imbalance in the occupations of the twmodes, and is bounded by
N=2 n N=2. For small imbalancen N=2, such states represent fragmented
states of the condensate, i.e. states in which the two singlparticle wave functions 1(¥)
and »(¥) are both macroscopically occupied. As the two wave functias are in this case
spatially separated, the phase coherence over the spatialktent of the entire system is
lost [70].

n=

(1.27)

1.4.3 Atomic coherent states

Another useful set of states for such a model is given b8 U(2) coherent states (also referred
to as \atomic coherent” states or \Bloch states"). In what fo llows we brie y review their
possible equivalent de nitions and their main properties, following Refs. [71, 72].

1.4.3.a De nition

SU(2) coherent states are de ned in terms of the Fock states 1.26) as

S VI AL (1.28)
j; 0= N ————ini | i .
= on=2 200 L+ P>
with = e ' tan =2, where the conventions for two angles are de ned in gure 4. An
equivalent expression for the same state is
 cosz&j+sinse &)
= P jOi; (1.29)

UNT

4This hypothesis will be released in Chapter 5, where we will treat particle losses.
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Figure 1.4: Bloch sphere and convention for the two angles and

from which it is apparent that in a coherent state all of the atoms occupy the same
one-particle state cos(=2) 1(f) + sin( =2)e ' (). It is therefore a macroscopically
occupied state, which realizes the closest classical anglosimilarly as quantum optics
coherent states.

1.4.3.b Visualization

A coherent state can be visualized as a circle on the Bloch sgne, whose center coordinates
is given by the expectation values of the angular momentum oprators, i.e.

hy j85j; i = NEsin Ccos
h, j&j; i = NEsin sin
hy j8bj; i = NEcos n: (1.30)

Since the quantum uctuations (the variance) of the angular momentum operators in
each direction in the plane tangential to the sphere in the pint h; jJj; i are givqp by
( J;)2 = N=2, as an order of magnitude for the radius of the circle we canake = N
Such uctuations are isotropic and \minimal", in the sense that they satisfy Eq. (1.23)
with the equal sign.

From the third line in Eq.(1.30) we see that the angle is related to the number
imbalance variable n by a cosine function (see also Fig.1.4). For example the cohent
state with =0, i.e. at the south pole of the Bloch sphere, corresponds téhe maximally
unbalanced Fock statejn = N=2i, while coherent states with = =2 lie on the equator
and correspond to an average symmetric occupation of the twonodes. The latter set of
states will be referred to in what follows asphase states

From Eq.(1.29) we see that the angle is the phase di erence between the two-modes.
This is better understood in the semi-classical limit of the two-mode BJJ model, which
will be developed in Sec.1.6.
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1.4.3.c Non orthonormality

The set of states introduced is not orthonormal but overcompete [71, 72]. Indeed, the
overlap of two coherent states is given by

NP4

o o . (1+ 92 .
S R O .

which tends to ( 9 ( 9 only in the large N limit.

1.4.3.d Coherent states as displacement of a reference state

Like their analog in quantum optics, SU(2) coherent states an be obtained from a refer-
ence state, for example the above mentioned south pole of thBloch spherejn = N7i,
via the action of a displacement operator [72], i.e.

L i gy — ﬂ T ﬂ
j; i=e'Jjn L R( )jn 0 (1.32)
with = =2 ',
Ji = Jsin fycos =T ¢ (1.33)

and ™ being the unit vector identifying the direction
f=sin R cos ¥ (1.34)

Hence, each atomic coherent state is the minimal eigenstatef the angular momentum op-
erator rotated with respect to J; by an angle around the direction f. Indeed, multiplying
each member of Eq. (1.26) fom = N=2 by R( ) and inserting the identity R( ) R( )
in the rst member, we obtain

ROSRO) 5500 Sis = Dji (1.35)
Equation (1.35) is analogous to the quantum optics equatiorj i = | i, inthe sense that

it is an eigenstate equation for the angular momentum operabr (annihilation operator)

Ji ().

1.4.4 Experimental implementations of the observables

Arbitrary rotations of the kind (1.33) can be experimentally implemented, in principle
both in the external and internal set-up. This requires switching o the interatomic
interaction, i.e. setting = 0. In the external model, this can be done by exploiting the
Feschbach resonance technique. In the internal set-up, baase of the combination of the
scattering lengthsa;; of the di erent atomic species in Rubidium, it is found that ty pically
is very small, and Feschbach resonances are rather employ&hen non-zero interactions
are desired [8, 62]. Then one exploits the linear part of the lmiltonian Eq.(1.24), to evolve
the state during a time which matches the desired angle of ration [73]. In particular, in
the internal set-up this is done in a very fast and controlledway by tuning the amplitude
and the phase of the resonant eld coupling the two modes. Maoe severe limitations in
the speed of such operations apply for the external BJJ setup62].
As a consequence, the angular momentum operator is an obsate accessible in ex-
periments for each generic direction: this can be achievedybmeasuring the population
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imbalance J;, between the two modes after proper rotations of the state ovethe Bloch
sphere [74]. For instance, the measurement of the angular nmeentum operator in a di-
rection contained in the equator as in Eg.(1.33) on the quantim state j i is achieved by
measuringJ; on the rotated state €J x=2¢J zj .

1.5 Ground state properties

In this section we brie y review the properties of the ground state of the Bose Josephson
junction, in the di erent regimes of the parameters of Hamiltonian (1.24). We present in
particular the calculation of the number uctuations and of the momentum distribution.

1.5.1 Ground state of the model

Let us de ne the dimensionless parameter
= N=(2K): (1.36)

Following Ref. [57, 75], three di erent regimes of the paraméers can be distinguished, in
which the ground state of the BJJ has di erent qualitative pro perties.

Rabi regime: 1 (strong coupling)

When the two modes are strongly coupled, a well de ned relatve phase is established
between them, while the number imbalance operator is uctuding. By this, we mean
that in this regime the ground state is close to a phase state.To be convinced of
this point, let us consider the limiting case = 0. In this lim it, from Eq.(1.24) it
is clear that the energy is minimal for the maximal eigenstag for the J; operator,
satisfying JyjN=2i, = N=2jN=2i,, i.e.

sti=jNEix=j = —=; =0i=j =1i; (1.37)

which coincides with the phase state parameterized by = 1, as expressed by the
last equality. The ground state (1.37) can be visualized itbh_e left panel of Fig. 1.5.
In this regime the number uctuations amountto J, = N=2.

Fock regime: N 2 (strong interactions)

In the strongly interacting regime, the ground state is clo® to a Fock state. In

the limiting situation 'l , the ground state is easily determined by completing

the square in Eq.(1.24), leading to the Hamiltonian in the nan coupled regimeH =
2

n - . The ground state in this case is the Fock state minimizing tre energy,

and hence it depends on the integer value of the energy imbatege between the two
modes renormalized by the interactions, i.e.

h i
in=Int — i ifj—j<X
J esi= : 2 ERE: (1.38)
jin=" i resp. for—> S or — < % .
In particular, for = 0 the ground state is the symmetric Fock statejn = 0i = jn; =

N=2;n, = N=2i, also saidTwin-Fock state [76]. In this regime, the number operator
has zero uctuations, while the phase is completely unde nel (see the right panel
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Figure 1.5: Visualization of the ground state of the BJJ on the Bloch sphere, as well as
distribution of the number operator in the various regimes d the parameters at =0,
taken from Ref. [62].

in Fig. 1.5). In Sec. 3.1 we will be able to reformulate this interms of the shape of
the Husimi distribution of a Fock state, which is a \crown", c ompletely isotropic in
the angle, and with a value of given by the last equation in the set (1.30).

Josephson regime 1 N 2

This intermediate regime is characterized by reduced numbre uctuations, while the
phase coherence is still quite large (see the middle panel igure 1.5) [57, 62]. We
shall see in Section 2.4.1 that the ground state of the BJJ inhis regime is a squeezed
state.

1.5.1.a Phase diagram of the number uctuations

In order to have a \pictorial view" of the di erent regimes for the ground state, we present
in Fig.1.6 the plot of the number uctuations in color scale, calculated numerically as a
function of the ratio between the coupling and the interactions, and of the asymmetry of
the BJJ . These ndings are contained in our work Ref. [31]. The blackblue colors cor-
respond to low number uctuations, while red-yellow colorsindicate high uctuations. We
see that this gure exhibits lobes, reminiscent of the phasediagram of the Bose-Hubbard
model [77, 78], in which the uctuations of the number n in the plane of the chemical
potential and the strength of the atomic interactions show the Mott-insulator/super uid
transition. Note however that our system does not display a eal phase transition but
rather a \crossover", because it involves only two modes, ad hence the lobes are not
bounded by a line which separates the two phases. Furthermer;, lobes do not refer to the
number of particles in each mode, but to the atomic population imbalance between the
two modes at constant total number of atoms. The presence ofobes is a consequence
of the double degeneracy of the spectrum of the Hamiltonian 1.24) in the regime of
strong interactions. Indeed, at half integer = (2 ) two degenerate Fock states minimize
the energy, resulting in enhanced number uctuations. Notealso that the size of the lobes
increases with increasing imbalance . This e ect is a direct consequence of the e ective
nonlinear Josephson coupling, which decreases as(2 ) approachesN=2 (see Eq.(1.53)),
and is absent in the analogous diagram for superconductingakephson junctions. The
green curve represents an analytical calculation of the nummer uctuations, obtained by
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Figure 1.6: Relative number uctuations in color scale as a finction of the parameters
=(2 ) (x-axes) and N°=(2) = 2 KN= (y-axes), for N = 12 bosons. The green line
corresponds to the value of the number uctuations of 02. From Ref. [31]

treating the coupling perturbatively to the second order, leading to

" #
: K 2 N np N4ng+1 N+ng % np 1
h 2= — 2 0 270 + 20 2 70 (1.39)
E. E
withand ng Int[ =(2 )JandE = 2(ng ng) 1 (see also appendix C.1).

1.5.2 Momentum distribution for the external BJJ

As we have anticipated in Sec.1.2, the coherence of the systeis re ected in the presence
of fringes in the momentum distribution. Let us now demonstrate this for the external
BJJ. With the use of Eq.(1.15), the one-body density matrix of the system in the two-mode
approximation is given by

X2
(£ =hYMTOIi= (PR (1.40)
i
The momentum distribution is properly de ned as the Fourier transform of the one-body
density matrix with respect to the relative variable + F9[35], and is thus given by
Z
_ 1 iB(E ) e 201
(=5 dedr®e PO (£ (1.41)
where we have set- = 1. Substituting the one-body density matrix (1.40) in Eq.( 1.41)
leads to
X2 Z Z

1 .
2 3=2 dre 'Pr i(f')

() T () g -

iij =1

X2

FLi(MIF[ ;(FI] haai; (1.42)
ihj =1
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Figure 1.7: Visibility =2 evaluated on the ground state and as a function of the paranter
N2=(2)=2 KN= for dierent values of N, and =0.

where F [h(r)] denotes the Fourier transform of the function h(r). In the symmetric
con guration, the spatial wave functions on each mode are egressed by 1.2(¥) = o(¥
g’l‘), and their Fourier transform can be easily computed as 1.2(p) = F[ o(* g)] =

e Px5 o(P), where we chose the axes along the two condensates being tReaxes, and
where o(p) = F[ o(¥)] is the Fourier transform of the mode. Then, substituting the
previous expression in Eq. (1.42) and using Eqg.(1.21) we ohin

n(p =j o(MiAN + P hfii+ e Pdnf i); (1.43)

where we have used the fact that ¢ is an even function. With the help of Egs. (1.22), we
can nally rewrite the momentum distribution (1.43) as

n(p = j o(Mi3(N + hfyi cos @xd) h Jyi sin (pcd)): (1.44)

In the ground state, there is no current owing across the two wells and hfyi is zero.
Therefore, from Eqg. (1.44), we see that the presence or absea of fringes in the momentum
distribution is determined by the expectation value of hi}i, and we expect deviations from
the smooth gaussian shape whehfyi is not zero. This quantity, renormalized by N=2, is
indeed called the \coherence factor" or \visibility", and i s denoted as [14, 57]

_ hiki
T ON=2"

(1.45)

This is not surprising due to the rst equality in Eq.(1.30), which shows that hi}i is

proportional to the cosine of the phase. Hence, it is maximaln the Rabi regime in which

the ground state is a phase statelffyi = N=2), while it is zero in the Fock regime in which

the phase is completely undetermined. In gure (1.7) we showthe numerical evaluation

of the visibility of the system hf}i=N and as function of the ratio N2=(2) =2 KN= , for
=0.

In Fig. 1.8 we pregent instead a numerical evaluation of the dngitudinal momentum
distribution  (px) = dpydp.n(p) for dierent values of the parameter . We see that,
according to Eq.(1.44) and to the considerations on the vidiility, the momentum distri-
bution exhibits fringes in the coherent regime of high coupihg, re ecting the existence of
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Figure 1.8: Momentum distribution for dierent values of the parameter N?=(2) =
2KN= ; the distribution exhibits fringes in the coherent regime while interference
e ects are washed out when the coupling is small. We usedN = 10, =1, K =

104,102 ,10 1 . As single particle wave fun%ion we choose the gaussiang(+) =
1=a3e**+¥*+2)=2 *) normalized to unity, with c= ("~ )2 and = d=10.

a well de ned relative phase between the two condensates, vile interference e ects are
washed out when the coupling is small.

The phase diagram for the uctuations h J2i of the \coherence factor" is complemen-
tary with respect to Fig. 1.6, as presented in Fig. 1.9. That s of course because of the
underlying uncertainty principle expressed by Eq.(1.23).

1.6 The semi-classical limit

1.6.1 Semi-classical Hamiltonian and equations of motion

Let us now address the mean eld approximation. If the numberof particles is large, the
uctuations are negligible with respect to the expectation value of the physical observables,
so that we are allowed to treat the eld operator as ac-number, i.e.

T i(wt): (1.46)

This complex eld is also called the order parameter or the condensate wave function
he replacement (1.46) in the Hamiltonian (1.13) leads to the energy functional E =
d3r[%jr 2+ Vext] j+ %j j*], which by using a variational principle generates the

equation [35]

2 2

+ Vext + 0 (r)jz =i~-@: (1.47)

2m

This non-linear time-dependent Schroedinger equation fothe wave function of the con-
densate is known as the \Gross-Pitaevskii" equation (GPE).It has been originally derived
in Refs. [79] and [80], and it is the main theoretical tool forinvestigating nonuniform dilute
Bose gases at low temperatures. One should not confuse thelgtion of the GPE (r),
which is normalized to the total number of particle in the condensate, with the many-body
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Figure 1.9: Fluctuations h J2i in color scale as a function of the parameters= (2 )
(x-axes) andN?=(2)=2 KN= . For N =12 bosons.
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wave function of the system, readily obtained from (r) taking the symmetric product
1 1 1
mB (F1; F2iil I ) = P (k) P (F2) P () s (1.48)

and which is normalized to unity [35].
In terms of the creation and annihilation operators, the redacement (1.46) amounts
to the identi cation 0

a'h &i' T me i (1.49)

wheren; and ; are the number of particles and the phase of the condensate isach mode.
With this prescription, the eld operator " in Eq. (1.15) is replaced by the classical eld

(F1) = 1(t) 2R+ 2t) 2o(F): (1.50)

Substituting the explicit two-mode expression for  given in Eq.(1.50) in the GPE,
the time evolution of the particle numbers n1., and of the phases 1.2 in each condensate
can be derived [48]. In order to proceed further, it is conveient to de ne the relative
variables

ny n2
2
= 2 1n (1.51)

n =

so that n represents the classical imbalance in the atomic populatio of the two wells,
coinciding with the de nition in Eq.(1.27), and is the relative phase between the two
condensates. In terms of these variables, the semi-clasalcequations of motion are

S
N 2
@ = 2K > nZsin (1.52a)
2n
N n2
2

in which n and are regarded as commuting variables, conjugate in the clagsl sense
of Poisson bracket, and in which the parametersK; and are dened as in Secs.1.3
and 1.4. This is a good approximation in the strongly coupled(Rabi) regime, and for
N 1. The corresponding semi-classical Hamiltonian is

S
2

N
H=n?2 n 2K > n2cos: (1.53)

1.6.1.a Equivalent derivation

An equivalent way of obtaining the semi-classical Hamiltorian (1.53) (and consequently
Egs. (1.52a) and (1.52b) is projecting the Hamiltonian Eq.(L.24) on the coherent state

Eq.(1.28), leading toh; jHj: i. Using the expectation values (1.30), by evaluating also
h; jJ%; i=n2(1 1=N)+ N=4 we obtain
s
A 1 N 2
h: jBj; i=n? 1 N noK o = n2cos; (1.54)
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where we used thatN sin =2 = P (N=2)2 n2, from Eq.(1.24).

Equation (1.54) reproduces toO (1=N) the mean eld result Eqg.(1.53) (the inessential
constant term N= 4 has been discarded). In particular, the equivalence of theoupling
operator projected over coherent states as in Eq.(1.30), tgpether with the coupling part
of the semi-classical Hamiltonian (1.53) justi es the interpretation of the angle of an
atomic coherent state as the physical phase di erence of theunction in the semi-classical
limit, as anticipated in Sec.1.4.3.

1.6.1.b Semi-classical momentum distribution

Similarly, by using the expectation values Eq.(1.30) we canobtain from Eq.(1.44) the
momentum distribution in the semiclassical limit
[

(M= oMPFN+2 % n2cos( + pd); (1.55)

as can be found in Ref. [54]. We see that, as we expected, the mentum distribution in
the semiclassical limit shows maximal fringes, corresporidg to the Rabi regime.

1.6.1.c Analogy with the superconducting case

By adding a constant term irrelevant for the d)dﬁamics, we canrewrite the semi-classical
> s, We
Hamiltonian (1.53) as H = n - 2K N7 > n2cos . We can then note the

similarity of Eq.(1.53) with the Hamiltonian of a superconducting Josephson junction in

a Cooper-pair box circuit (SJJ) Hsyy = Ec (n ng)2 E; cos [81], where the charging
energy Ec can be identi ed with the interaction energy , the role of the gate parameter
ng = CyVg=(2€) is played by , and the tunneling energyE; can be obtained by linearizing
the square-root term in (1.53), leading toKN . The presence of the latter term in Eq.(1.53)
represents the main di erence with the superconducting casein which strong charge
imbalances are suppressed by the external circuit, and oneaa only access the linear
regime. As a consequence, the classical SJJ system maps oretproblem of a rigid

pendulum, while the BJJ maps on the non-rigid pendulum, in which the length of the

pendulum depends on its momentum. This new feature is respaible for a rich variety of

dynamical regimes which are absent in the superconductingase, and which we recall in
the following sections.

1.6.2 Dynamical regimes

The full solution of Egs.(1.52a), (1.52b) can be given in tems of jacobian elliptic functions
and can be found in Ref. [49]. Let us restrict to the symmetriccase = 0, and describe
brie y the main features of such a solution. Before doing sowe need two ingredients: the
structure of the xed points of the system and the notion of Macroscopic Quantum Self
Trapping (MQST), which we introduce below.

1.6.2.a Fixed points

The xed points of the system, de ned as the values of the numker and phase variables
which remain constant during the evolution if chosen as inital conditions, can be easily
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identi ed by imposing @ = 0 and @n = 0 in the equations of motion (1.52a),(1.52b).
Depending on the parameter de ned in Eq.(1.36), this yield s the xed points

(i()Fo=( = =2, =0), stable;
(iIVF =( = =2, = ), stableif < 1 (Rabiregime) unstable if > 1 (Josephson
regime); in the latter case, two stable, xed points are locatd at
r !
(ii)F = n = NE 1 iz; = (Josephson regime only)

(1.56)

Indeed, at = 1 a bifurcation occurs in the model and the xed p oints of the system
change.

1.6.2.b Macroscopic quantum self trapping

Let us introduce the rescaled variablez = 2n=N, and rescale the Hamiltonian (1.53) by
the factor KN , obtaining the Hamiltonian given in Ref. [48]

H , P—
—— = =z 1 Zz2cos: 1.57
KN 2 ( )
Under certain conditions, trajectories in which the numberimbalance can not be reduced
to zero, i.e. for which the equationz(t) = 0 has no solution, are allowed. This regime is
known as macroscopic quantum self-trapping The condition to enter this regime can be
found using the fact that the energy is conserved during the eolution, i.e.

Hse =

p— p——
Hsc(0) = EZ(O)Z 1 z(0)2cos (0) = Ezz 1 z2cos (1.58)

which, solved for z?, gives
o h p i
2= = ( Hs(0) cos ) j cos | cof 2 He(0)+ 2 ; (1.59)

asking for z = 0 then leads from (1.59) to the condition

p
Hee(0) co$ = j cosj co? 2 He(0)+ 2 (1.60)
which after some algebras leads tgHs:(0)j = jcos j. It is then clear that for
Hsc(0) > 1 (1.61)

Eq.(1.60) has no solution, i.e.z(t) = 0 cannot be satis ed at any time (the other condition
H(0) < 1 has to be discarded because it is not allowed by Eq.(1.58))The condition for
the MQST therefore is (1.61).

1.6.2.c Dynamical regimes

We shall now review in what follows more in detail the possibé trajectories associated to
the di erent regimes [48, 49, 61].

In the in the Rabi regime (< 1), small oscillations around the two Xxed points Fq
and F are allowed. Their frequency can be obtained by linearizingeqgs.(1.52a,1.52b),
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leading respectively to! ¢ = 25 P 1+ for the oscillations around Fq (blue trajectories
in Fig.1.10a) andto! =2K 1 for the oscillations around F (red trajectories in
Fig.1.10a) .

For > 1, entering the Josephson regime, the trajectories aroun& become broader
(red trajectories in Fig.1.10b), while small oscillationsaround F appear (green trajecto-
ries in Fig.1.10b), which are an example of self-trapped trgectories as discussed in Sec.
1.6.2.b.

From EQq.(1.58) we see that for > 2, the condition for the MQST (1.61) can be
ful lled with no need for the phase to be con ned to a small interval around , and then
other MQST trajectories appear (orange trajectories in Fig1.10c), in which the phase is
growing with the time. For this reason these trajectories ae known as \running states",
and they are the analog of the AC Josephson e ect in supercondtting junctions [34, 51].

An experimental veri cation of all of the regimes presentedabove is given in Ref. [61],
from which Fig. 1.10 is taken.

1.6.2.d Equation of the separatrix

From the above discussion, it is clear that for each value > 1 there exists a special
trajectory which separates the macroscopic quantum selfrapping trajectories from the

oscillations in which the number imbalance can take the zerwalue. This special trajectory
passes throughF , is eight-shaped and is called the \separatrix" (black linein Figs. 1.10
b and c). The equation of the separatrix can be found from the I\QS'B condition given

in Eq.(1.61). By using the third line in Eq.(1.30) and the fact that = (N=2)2 nZ2 =

N sin =2, from EQq.(1.58) we nd that the condition (1.61) translate s in terms of the
variable and into

p
> cos’ 1 co® cos =1; (1.62)
or, by solving for sin ,
p
jsin j= lcos 1 cog 2+ 2 (1.63)
(for 2 only the plus sign can be taken, while for < 2 both signs are allowed). The

separatrix can be exploited to produce macroscopic superpitions of coherent states, as
will be detailed in Chapter 2.
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Figure 1.10: Experimental observation of the dynamical regmes of the BJJ, from Ref. [61].
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Chapter

Creation of entangled states in a Bose
Josephson junction

In this chapter we focus on the creation of entangled statesn Bose Josephson junctions.
After introducing in Sec. 2.1 the notion of multiparticle entanglement and some criteria
for its detection in bosonic systems, we will consider somepgci ¢ entangled states, such
as squeezed states, macroscopic superpositions of coharstates and Fock states. We
will then explain how it is possible to create such entangledstates in a BJJ. We will
rst brie y review the protocols to realize adiabatically s queezed states and macroscopic
superpositions of coherent states. Then, we will discuss oa known protocol leading
to the formation of squeezed states can be extended to creataacroscopic superpositions
of coherent states [31]. The latter result has been the sub@ of our work Ref.[31]. An
improved protocol involving optimum control will be nally presented; more details about
this work can be found in our pre-print Ref. [33]

Dans ce chapitre nous nous focalisons sur la ceation deats intriques dans les jonc-
tions Josephson bosoniques. Apes avoir introduit en Sec2.1 la notion d'intrication
pour des sysemesa grand nombre de particules et quelquesieres pour sa detection
dans les sysemes bosoniques, nous consicererons quedpetats intriques en par-
ticulier, tels que les etats comprines, les superpostios macroscopiques detats
colerents, et lesetats de Fock. Ensuite nous expliqueras comment il est possible de
ceer cesetats dans une BJJ. Nous rappellerons d'abord le protocoles permettants
de ealiser de facon adiabatique les etats comprines et les superpostions macro-
scopiques. Ensuite, nous discuterons comment un protocoldynamique connu qui
permet de ceer desetats comprines peut étre etendu paur gererer des superposi-
tions macroscopiques detats coterents [31]. Ce dernierasultat a fait I'objet de notre
publication Ref.[31]. Un protocole anelioe base sur le controle optimal sera enn
pesent; plus de cktails sur ce travail peuvent étre trouves dans la pre-publication
Ref. [33].

27
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2.1 Multiparticle entanglement

In this thesis we use the following de nition multiparticle entanglement [12, 82]: a general
density matrix ~ describing the state of theN atoms in the BJJ is said to be entangled if
it cannot be written as a separable density matrix, i.e. if

"G Asep; (2.1)

where X
1 2 N
Asep = pk,\(k) ,\(k) :::A(k ). (2.2)
k

gach density matrix "(k') referring to the i -boson, andp, 0 being a probability such that

« Pk = 1. Note that the states appearing in the de nition (2.2) are symmetric for the
exchange of particles. Indeed, the Nl + 1)-dimensional Hilbert space which accounts for
our system of indistinguishable bosons in the two-mode apmximation is the restriction
to the symmetric subspace of the Hilbert space of all the posisle 2N states which would
be obtained with N distinguishable two-mode particles (\qubits").

The de nition in EqQ.(2.2) leads to consider as entangled sore states for which the
non-separability is due to the symmetrization over the particles of the bosonic state. This
point has been a source of confusion and controversy [83{85$0me comments related to
this issue will be given in Sec.2.3.3.

Note also that a coherent state of the form (1.28) is separalgl according to the de nition
above, since by (1.32) it can be written as a product state, dgpite the fact that it is non-
separable according to the bipartition on the modes of the BJ (see table 2.3.3).

2.2 Criteria for multiparticle entanglement

Motivated by the fact that in the experiments only few moments hf¥i of the total distribu-
tion of the angular momentum operators are typically accesible, a full set of inequalities
allowing to witness entanglement by means of rst and secondnoments only has been
derived in Ref. [82]. These inequalities regroup several iteria which were derived inde-
pendently [12, 86]. Violation of any of the following inequdities implies entanglement:

w2+ nfgi s gz T2

(87 B2 B 5

e DN (B2

h [

N1 S2ec 57 gz NELD, (2.3)
These inequalities identify in the space of the expectatiorvalueshi2i; hf&i ; hfzzi a \polyp-
tote", represented in Fig.2.1 for N = 6 particles. If a state lies outside the polyptote, i.e.
if it violates one of the inequalities in Eq.(2.3), then it is necessarily entangled according
to the de nition (2.1), however inside the polyptote both separable and entangled states
can be found. These inequalities are however complete in thenacroscopic limit in the
sense that no other entangled states can be detected with opl rst and second moments
(see also remarks in Sec.4.1.4).
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Figure 2.1: Polyptote delimiting the set of entangled states. The points which lie outside
the polyptote violate one of inequalities in Eq.(2.3) and ae hence entangled according to
the de nition (2.1) (from Ref. [82]).

We remark that the inequalities (2.3) were originarily derived for a general state of
N -qubits, not necessarily symmetric like in the case of our stes of indistinguishable
particles. In Ref. [82] it has been proven that the inequalites in Eq.(2.3) can not only
detect bipartite entanglement (i.e. the non-separability of the reduced density matrix
a8 =1tri=1-niis A [Y), but they can also detect entangled states which have a sepable
two-body density matrix, despite the fact that they are based on rst and second moments
only [82].

A quantity which serves to estimate the number of non-separhle particles by disposing
only of rst and second moments as in Eq.(2.3), thedepth of entanglement has been
introduced in Ref. [87].

We stress that the criteria provided by Egs. (2.3) are not regricted to pure states,
but they are valid for a general density matrix.

Finally we mention that these inequalities have been recery generalized to the case
of a system of N -\qudits" (i.e., individual particles which can occupy mor e than two
states) [88].

2.2.1 Linear entropy

We just mention here an entanglement measure commonly usedif pure states, which
guanti es the bipartite entanglement of a subsystem " = tr g ~ with the rest of the system,
Ng =1tr o™ This is known as theVon Neumann Entropy Sy (®a) = tr(®alog”a) [30, 89],
satisfying Sy ("“a) = Sn("g). The linearization of Sy (") leads to the linearized entropy

Sn(Ma) =1 tr(*3): (2.4)

o illustrate this fact, a non-symmetric state of distingui shable particles was chosen in Ref. [82]. We
note that this is also true for the W state, which will be discu ssed in Sec.2.3.3; such a state belongs rather
to the symmetric (bosonic) subspace, is genuinely multipartite entangled and is detected by the inequalities
(2.3).
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Taking the subsystem to be a single particle, the linearizedentropy can be related to the
expectation values of collective spins as [69]

Sy = % 1 %(hfxi2+ hfyi2 + hfzi?) : (2.5)

Its values range from O for separable states to=® for maximally entangled states.

2.3 Relevant multiparticle entangled states in a BJJ

We focus in the following on speci ¢ entangled states such asqueezed states, macroscopic
superpositions of coherent states and Fock states, introdting their main features.
2.3.1 Coherent spin squeezing and squeezed states

Let us introduce the coherent spin squeezing parametery as in Ref. [12]. This parameter
is related to the angular-momentum uctuations along the direction f according to

h [ 2
r21 Ainij\n = &1 (2.6)
hj\pl|2+ hj\pzlz
where
Pr = cos R+sin ¢
P = cos sin ®+cos cos $+sin 2 (2.7)
are the unit vectors perpendicular to
A=sin sin ® sin cos $+cos 2; (2.8)

and hi=tr( ~,) is the expectation value in state %,.
A state " is said to becoherent spin squeezedr simply squeezedn the direction fi
if the corresponding coherent spin squeezing parameter dates

h i
§ Adn < (2.9)

Hence, in a squeezed state the uctuations of the angular momntum operator are reduced
in a certain direction, at the expense of the orthogonal diretion, so that the uncertainty
principle Eq.(1.23) is still satis ed with the equal sign, as it happens for squeezed states
in guantum optics.

As pointed out in Ref. [82], the squeezing criterion Eq.(2.9 is equivalent to the last
inequality in Eg.(2.3) in the limit of large number of partic les. Hence, squeezed states are
multiparticle entangled in the sense of Sec.2.1, which wasaglier demonstrated in Ref. [12].

Squeezed states have been realized in BJJ systems in the eximeents of Refs. [6, 8, 9,
13]. In Sec.4.1.2 we will see how squeezed states can be emgptbin atomic interferometry
to overcome classical limits of precision. In this context,it is common to express squeezing
in decibel, i.e. 3; =10log,, 2.

In order to quantify the intrinsic correlations of a quantum state, regardless of the
direction in which the correlations are manifest, we will introduce an optimized version of
the coherent spin squeezing parameter in Sec.4.2.
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2.3.1.a Other de nitions of spin squeezing

An alternative de nition of spin squeezing has been introdwed by Kitagawa and Ueda in
Ref. [11]. According to their de nition, the state is squeezd in a certain direction 1t if

h [ 2
2o Amidn = % (2.10)
In the case in which the direction of minimal uctuations is t he 2 direction, the state
is said to be \number squeezed" [13, 90]. According to this daition, any Fock state
is squeezed along the tirection, including the coherent states at the poles. The nain
di erence with respect to the de nition in Eq.(2.6) is indeed that in (2.10) the expectation
value of the spin in the direction perpendicular to the one ofsqueezing does not appear in
the denominator, and hence the \coherence" of the state, maaing the expectation value
of the total spin hfli, is not taken into account. The two de nitions coincide when the
expectation value of the spin operators in the perpendicula directions is maximal, i.e.
when hfy,i2 + hfy,i?2 = N2=4, as can be seen by comparing Eq.(2.6) and (2.10). Note
that when this is not the case the two de nitions may instead lead to drastically di erent
results. Consider for example a coherent state, say the phasstatej = =2; = 0i; for
this state the coherent spin squeezing (2.6) is minimized inthe (yOz) plane and its value
is = 2=1. The incoherent version (2.10) instead allows to take thedirection & as
minimizing direction, leading to best squeezing S;X =0.
We remark furthermore that the condition analogous to Eq.(2.9), i.e.
h i
S;n /\m;J\n <1 (2.11)

generally does not imply entanglement. A counter-example s indeed provided by any
coherent state, e.g. the ones at the poles, which are numbemgseezed but separable.
However, if Eq.(2.11) is satis ed for a certain direction # and simultaneously hJ,i = 0,
then it implies entanglement in the sense of Eq.(2.1) [86]. Tis can be seen by noticing
that for symmetric states hfZi + hfZi + hf2i = N(N +2) =4, so that the second inequality
in Eg.(2.3) can be rewritten as

4( Jn)? 1 4n3,i2
N N2

(2.12)

the violation of which renders the criterion Eq.(2.11) provided hl,i = 0.

It has also been demonstrated that violation of Eq.(2.12) fo symmetric states consti-
tutes a necessary and su cient condition for bipartite entanglement. As a corollary, for
the states which satisfy hl,i = 0, the condition (2.11) is also a necessary and su cient
condition for bipartite entanglement, which is not the casefor Eq.(2.9).

2.3.2 Macroscopic superpositions of coherent states

In the context of this thesis, we will designate with the term macroscopic superpositiona

superposition of two or more coherent states. Since in eachoberent state all the atoms
are in the same one-particle state as described in Sec 1.4,&h a superposition of coherent
states is a superposition of macroscopically distinguishale con gurations, also said a
\Schmdinger's cat state". We will often use this equivalent more familiar designation in

the following.
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For example, the state
. . 1 . __ :
] Nooni = P—E(J =0; =0i+j =; =0i) (2.13)

is the superposition of the two coherent states at the polesfothe Bloch sphere. Such a
state is also know as a \NOON state", because of its e%Ji_valetrexpression on the basis of
the mode occupationjny; n,i, which givesj nooni =1= 2(jN; Oi + jO;Ni). The rotation
of the previous state by =2 around an axes in the &0y) plane leads to the two-component
\phase cat state" p—é(j = =2, i+] = =2; + 1i)i.e. the superposition of two coherent
states located on the equator of the Bloch sphere. In particlar, rotation around the y
axes leads to the state

. 1 o .
] pHasel = P—E(J = =2 =0i+j = =2 = i) (2.14)

Such states are highly entangled. The NOON state is maximayl entangled both in
the sense of the bipartition on the BJJ-modes and on the parttles, i.e. according to
the de nition (2.1) (see Table 2.3.3). The other two-comporent cat states, such as the
two-component phase cat state (2.14), are maximally entanigd on the particles and in
the sense of a bipartition according to a combination of the nodes which depends on the
coherent states composing the superposition, as expresseyg Eq.(1.29).

Two-component macroscopic superposition states are knowfrom other contexts as
GHZ states (see [17{20] and references therein). They are minally entangled states
according to many entanglement measures, e.g. the lineaegzl entropy de ned in Eq.(2.5),
which takes the maximal value Sy = 1=2; indeed, since such states are genuinelM -
entangled, then each single particle is (maximally) entantged with the others. They also
maximize the quantum Fisher information, an entanglement parameter which will be in-
troduced in Sec.4.1.3. Note however that forN > 2 the de nition of a multipartite
entanglement measure is not univocal, and there exist mulfiartite entanglement mea-
sures for which such states are not the maximally entangled mes, such as the geometric
entanglement [91, 92] or the \Quantumness" [93].

Macroscopic superpositions do not violate any of the equatins (2.3). This is because,
as recalled in Sec.2.2, such inequalities are based on extaon values depending only on
two-body correlations between patrticles of the state, whib for the NOON or GHZ states
are consistent with those of a separable state (contrarily 6 W states). Information from
N -order moments Iikehﬂi\'i is needed to verify entanglement in a N-particle macroscofgi
superposition (see also Chap. 3).

2.3.3 Fock states

The Fock states introduced in Eq.(1.26) are also entangledni the sense of Eq.(2.1) (indeed
they violate the third inequality in Eqg.(2.3)), except for n = N=2, where one recovers the
coherent states at the poles of the Bloch sphere, which are parable as already mentioned.
For example, in the Fock states labeled byn = N=2 1 all the particles except one occupy
the same of the two modes, which leads in rst quantization to

jn=N=2 1i= pﬁ(JZ; 105200+ 1,21 10000 + o+ 15111500020, (2.15)

where we have taken the case = N=2 1. Such a state is know as a W state [94], and
is also genuinelyN -particle entangled. Increasing the number of \excitations" allows to
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Phase state ( =1) | Twin-Fock state | Phase cat state
N N
@)l + )N joi a2 &) jOi @M + 2o
Eq.(1.28) Eq.(1.26) Eq.(2.14)
two-mode entanglement yes no yes
N -particle entanglement no yes yes

Table 2.1: Entanglement of a phase state, a Fock state and a ntaoscopic superpaosition
with respect to the bipartition on the modes or on the patrticles.

span the other Fock states, reaching half way the symmetric tate (in the sense of the
population of the two modes), i.e. the Twin-Fock state jn = 0i. For N = 2, the latter
state reads in rst quantization

ji=p=(jLa+j2;1): (2.16)

St

Egs. (2.15) and (2.16) allow us to stress that such states arpot entangled in the sense
of a partition on the two modes but in the sense of the partition on the particles due to
the symmetrization of the bosonic state [76, 85, 95] (see tdé 2.3.3). Some authors in the
qguantum information community use di erent de nitions with respect to Eq.(2.1), and
reject that Fock states are \entangled”, claiming that the correlations coming from the
symmetrization of the wave function of indistinguishable particles are \unphysical" [20,
83]. The main reason for this is that such correlations cannbbe exploited to do quantum
computation since individual particles cannot be individually addressed, nor could be Bell
inequalities violated (see [85] and references therein). ufthermore, such correlations do
not a ect the physical observables when the particles are takn far apart each other [10].
However other authors [76, 85] stress the fact that entanglment due to the symmetrization
can be a useful resource every times that \collective local merations" only are required,
i.e of the type

X
Ho= AW (2.17)
i=1
instead of \local" operations A|(<I) 2. An example of a quantum information protocol in
which only collective local operations are required is phas estimation, which will be
discussed in Sec.4.1.3. The issue of the entanglement fordistinguishable particles in this

context, as well as the dependence of the correlations on thgpatial distance between the
two modes when also internal degrees of freedom are involveate discussed in Ref. [85].

2.4 Adiabatic protocols for the creation of entangled state S
in BJJs

We now review methods for the generation of entangled statesn a BJJ, starting with
adiabatic methods.

ZNote that the nomenclature \local" for operation of the type "ﬁ" was introduced for spin systems, in
which i labels the spin site, individually addressable (see e.g. [6]). However in the external Bose Josephson
set-up the operators "y are non-local in the sense of space, i.e. it is not true that the matrix element
over eigenstates of the position hrj”x.y j1=°i is proportional to (¥ 1=°).
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2.4.1 Spin squeezing in the ground state

As can be seen in Fig.1.6, the ground state of the BJJ in the rdge in which the interac-
tions are dominant with respect to the tunneling (see Sec. 5.1) is number squeezed. With
the numerical values considered in the gure for the total number of particles,N =12, the
number squeezing condition Eq.(2.11) reads (J,)? < 3, always satis ed in the regime
plotted in the gure. Indeed only in the limiting case in whic h the interactions are zero
the state would not be number squeezed, reaching its worst Vae S;Z =1 for the phase
statej = =2; =0i ( =1), corresponding to the ground state in the Rabi regime. In
particular Fock states, yielding the ground state along thex axes of the diagram presented
in the gure, are also number squeezed according to the de rtion in Eq.(2.10).

It can be shown that in the squeezing regions the ground statés indeed coherent spin
squeezed [96]. A plot of the coherent spin squeezing leads @oresult qualitatively similar
to Fig.1.6. On the axes = 0 of the diagram in Fig.1.6, the coherent spin squeezing in
the 2-direction decreases from 1 for the phase state = =2; =0i, corresponding to the
Rabi regime, to zero, deeply inside the Fock regime. Despitéhe fact that the coherence
of the state goes to zero atk = 0, the coherent spin squeezing reaches a minimum value
when the ground state becomes eventually a Fock state. This iV be demonstrated in
Sec.4.3, where we will discuss the implications of ground ate squeezing for quantum
metrology.

Hence, one could think of preparing the state as a coherent ate, and then lowering
the coupling between the two modes adiabatically, enteringthe squeezing regime. In an
external BJJ the decrease of the coupling between the two mask can be realized by
increasing the barrier separating the two wells. The conditons for adiabaticity of the
splitting process have been discussed in Ref. [97], in whidie spatial dependence of the
mode functions on the form of the potential has been taken inb account with a variational
ansatz. An experiment of this type has been performed with anexternal BJJ by the
group of M. Oberthaler in Heidelberg, as reported in Ref. [1R leading to a squeezing of

2= 3:8dB. 3. The measurement of the number uctuations and of the coherece factor

allowed to experimentally determine both the coherent spinsqueezing and the Ueda spin
squeezing. The dependence of the actual squeezing on the rpimg time has also been
addressed in the same work (see also Ref. [90] for further digssions). Limitations due to

the temperature are discussed in Ref. [62], and will be alsodalressed in Appendix C.

2.4.2 Ground state of the attractive BEC

A macroscopic superposition of two coherent states (Eq.(24.3)) can be in principle created
by preparing the system in a coherent state and by tuning the nteratomic interactions
adiabatically to strongly negative values [28, 98, 99]. Ths could be achieved by exploit-
ing Feschbach resonances, as recalled in Chap.1l. Indeedetlyground state of the model
Hamiltonian (1.24) in the regime of strongly attractive int eractions and for symmetric
modes = 0 is exactly the NOON state; this is easily understood notidng that in this
regime the energy is minimized by the con gurations in whichall the atoms occupy the
same mode, and the two situations corresponding to the maximl occupation of each of
the two modes are degenerate.

3Technically this result has been achieved with a slightly le ss shallow harmonic potential, which leads
to the occupation of six neighboring wells. The analogous measurement for the rigorously double-well
set-up leads to 2:3dB
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However this method su ers from some disadvantages. For insince, the strength of
the interactions should not increase above a critical threkold, otherwise the gas becomes
unstable, and collapses under the e ect of the attraction ammg the atoms [28, 98]. On the
other hand, since the rst excited state is separated from tte ground state by an energy

, too weak an interaction renders perfect adiabaticity di c ult to reach. Issues related to
the experimental feasibility of such a protocol are discussd in Ref. [98].

2.5 Dynamical protocols

2.5.1 Creation of squeezed states and macroscopic superpos itions of
phase states by a quenched dynamics of the BJJ

Let us now address how one can dynamically create squeezedatts and macroscopic
superpositions of coherent states in a BJJ by a quenched dymaics. Let us take as initial
state a coherent state,j i. We focus for the moment on the case of an even total number
of particles, and = 0 (symmetric modes). Let us consider the situation where a guench"
occurs, i.e. the coupling between the two modes is suddenlydtched o . Then the system
evolves under the interaction part of the Hamiltonian only, i.e.

H= J% (2.18)

Equation (2.18) is analogous to the Kerr Hamiltonian in quartum optics Hyerr / A(h 1),
where it is the photon number [95, 100]. Note also that the Hamiltonian (2.18) conserves
the number operator. Hence, the dynamics takes place on a pallel of the Bloch sphere
corresponding to the angle which parameterizes the initial coherent state, i.e. such hat

= e ! tan =2. In particular, if we take as initial state the phase statej = =2, =
0i = j =1i, which as we have seen corresponds to the ground state of thelBin the
Rabi regime, the dynamics is restricted to the equator of theBloch sphere.

A qualitative picture of the dynamics of the state under the action of the Hamiltonian
(2.18) view from the top of the Bloch sphere is given in Fig.22. By using the expansion
of the coherent state on the Fock states given in Eq.(1.28) tk action of the time evolution
operator on the state can be expressed as

=2 1=2 N
j(t)i:eij\zztji: N NN m+ >
m= N=2 2

2
- imi: 2.19
tmooqe 2y (219

As it can be seen from Eq.(2.19), the state of the system is p@&dic as a function of time.
Indeed, when all the phase® im %t gre equal to 1, the BJJ is found in the initial coherent
state. This happens forTeyen = 2 = T. Decomposing the time evolution operator as
e (1332 gllows us to discuss qualitatively the e ect of the atomic interactions on the
initial coherent state. This operator indeed performs a rotation around the z-axes, but
with a speed which depends onf,. To x the ideas, consider e.g. the case of an initial
phase state with =1, i.e. placed on the equator of the Bloch sphere. In a semitassical
picture in which the uncertainty associated to the initial coherent state is assimilated to a
classical distribution of points, the result is that points above the equator evolve rotating
in one direction, while points under the equator are rotatedin the other direction; the
farther they are from the center, the faster is their evolution. Hence, as a result, the state
is stretched along the equator of the Bloch sphere. This leaglat short times to a coherent
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Figure 2.2: Dynamics of the state on the parallel at angle of the Bloch sphere (top view)
under the action of the Hamiltonian (2.18), taken from Ref. [95].

spin squeezed state (see panel (b) in Fig.2.2). The value ohé squeezing parameter as
well as the direction of optimization have been determined m Ref. [11]. In section 4.4
we will present an equivalent derivation of these results. A a consequence of this phase
di usion, the visibility  (t) introduced in Eq.(1.45) decreases, and a simple calculain
yields (here for =1)

D = nhic= Jeod + 2L (2.20)

At later times, the classical distribution of points lls th e entire parallel of the Bloch
sphere (see panel c) of Fig.2.2). Quantum-mechanically, terference e ects take place. Let
us discuss this point more in detail, considering speci c tines corresponding to fractions
of the period T astq = T=2q), with g an even integer. From Eq.(2.19), the state at times
tq is given by

NZZ N 1=2 m+ N? . m 2
j (ty)i= N — € "o jmi: (2.21)
me N2 2 M 1+ 27
m 2
Let us denote the phase factor in the previous expression by "o Ug(m). The

function Ug(m) is periodic in m with period g, as can be readily veri ed by evaluating
2

[ _(m+q)?

explicitly Ug(m+ q) = e =( 1Y% e = Ug(m). Therefore the function Ug(m)
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can be expanded according to the discrete Fourier seriés

X 1 - 2 km
Ug(m)= e ' a u (2.22)
k=0
with
1 X1
Ug = = ok(m); (2.23)
q m=0

m 2 . 2km

“a € a . These coe cients can be re-written by
k2P )

4 5a(m+ k)= € a 3% g(m). Hence we obtain

where we have de nedgc(m) = e i
P
noticing that = & % g(m) =

from Eq.(2.23)
. 2
U = Uge @ (2.24)

P P im 2
_ 1 _ q 1l _q_ ql | = —

where we have de nedup = 1=0q 20 9o(m)=1=q ,,€ ¢ . Substituting expres-

sions (2.22) and (2.24) in Eq.(2.21) and exchanging the twolgms we obtain

%1 2k
j (tg)i=uo oje S (2.25)
k=0
where we de nedeiw = ¢k. Hence, the system at timedq is found in a superposition
of coherent states, located symmetrically on the parallel 6the Bloch sphere at azimutal
angle - the equator if = 1. This result has been published in our work [31], and

simultaneously in Ref.[101].

This e ect was rst described for quantum-optics coherent states by B. Yurke in
Ref. [102], and in the context of superconducting Josephsajunctions by C. C. Gerry [103].
The formation of macroscopic superpositions of coherent stes has also been addressed in
optical lattices trapping cold atoms in the N -sites Bose-Hubbard model in Ref. [104] (see
also discussion in Chap.6). For example, at timet, the system is in the two-component
macroscopic superposition

i (t2)i = pl—z e T4 i+ OV (2.26)

for =1, this is a \phase cat" state, which only di ers from Eq.(2.1 4) by the presence of
a relative phase between the components (see also panel g) kig.2.2).

The expression of the macroscopic superpositions with an @adnumber of components
g analogous to Eq.(2.25) is

Xt P2k
j (ti = Ho &je @ 9|

k=0
1 inN X! . m (m 1)

g = —e2 e '  d
q m=0
ik(N+k+1)

& = € q : (2.27)

P  2kn
4The_general de nition is the following: if f(n) = f(n + L), then f(n) = tzole '%uk with

i 2 kn
u= L et f(n)
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As a special case, note that Eq. (2.27) forg = 1 yields a coherent state reversed with
respect to the initial one, i.e. rotated by (see also panel i) in Fig.2.2), appearing at a
half of the period t; = T=2. Such a time interval is said \revival" time because att; the
visibility given in Eq.(2.20) takes the initial value 1.

The higher is the number of components of cat state of the form(2.25),(2.27), the
shorter is the time at which it appear. For instance, for = 1 we can estimate time
of formation of the \rst" (in chronological order) multico mponent supechEition by
the following simple argument: the largest number of phase tates of size N=2 (see
Sec.1.4.3.b) W@h canpb_e put on the equator of the Bloch sphe of radius N=2 is
Onax = 2N="N =2 ~ N. The time of formation of the multicomponent superposi-
tion with the highest number of phase states istis = T=20max), leading to

trs sz N: (2.28)

Since a decrease in the visibility (2.20) is associated to # appearance of cat state, the
time ts is also known asphase di usion time.

Other cat states can form at other fractions of the period, eg. at times t; = T=2q+
1) [31]. Note that in the case of an odd total number of partices N, the period is
Todd = = = T=2[101]. The times of formation of cat states correspond to te ones of
the even N case; the components of these states are however rotated i parallel of
the Bloch sphere with respect to the even case [25, 101].

As a nal remark, we point out that states similar to the ones described by Egs.(2.25)
and (2.27) are generated in the dynamics of an ensemble dof two-level atoms in a dis-
persive cavity [105].

2.5.1.a E ect of an asymmetry on the BJJ parameters

We discuss here the e ect of an imbalance , describing an asymmetry of the two modes
of the BJJ as de ned in Eq.(1.25), over the creation of cat stdes. This is readily found by
noticing that the interaction part J‘ZZ and the asymmetry part J; in the Hamiltonian
(1.24) commute. Hence, the state in the presence of imbalaecis given by

j (i =e ! Ok O, (2.29)

where j ©@(t)i is the state of the symmetric two-mode system at timet under the
action of the Hamiltonian (2.18), as given in Eq.(2.19), and where we have de ned
(1) gd ( ), taking into account a possible time-variation of the asymmetry pa-
rameter . From Eq.(2.29) one deduces that at each timd the e ect of such an asymmetry
is a rigid rotation of the state around the z-axes of the Bloch sphere (i.e., in the equatorial
plane for the initial coherent state with = 1) with respect to the symmetric case, by an
angle which depends on time.
Consider as an example the sinusoidal driving (t) = o+ sin('t ). Using Eq.(2.29),
the angle of rotation of the cat state formed at time tq is given by (tq) = tg( o+
(1 cos(t g))=('t ¢)). In particular, for frequency and drive amplitudes such that the
condition (tg) =2 is matched, the g-component cat state is formed as if no drive were
applied®.
The e ect of a stochastic uctuation of the asymmetry  on the formation of macro-
scopic superpositions of phase states will be explicitly ewsidered in Sec.5.1.3.

®In Ref. [67] such a sinusoidal drive has been studied for the eternal BJJ in the context of transport,
by looking at the time-averaged transferred population aft er preparing the system in an initial state in
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2.5.2 Dynamical creation of macroscopic superpositions in a BJJ: semi-
classical argument

A protocol for the dynamical creation of a NOON state has beensuggested in Ref. [108].
Contrarily to the proposal for the creation of macroscopic siperpositions of phase states
presented in Sec.2.5.1, such a protocol makes use of a nomezeoupling between the two
modes of the BJJ. The prediction is based on a semi-classicargument, relying on the
mean- eld dynamics of the system introduced in Sec.1.6, ands briey reviewed here
below.

Let us consider as initial state of the quantum dynamics a cobrent state identi ed by
the angles ( = =2; = ), i.e. the phase statej = 1i, which is centered inF F{s_ee
Eq.(1.56)). As recalled in Sec. 1.4.3.b, the width associad to its uctuationsis = N.
In the semi-classical picture introduced in Sec.2.5.1, sica state can be viewed as a cloud
of points evolving according to the classical trajectories As we have seen in Sec.1.6, for

> 1 (Josephson and Fock regime) the separatrix passes acrdss. Hence in this regimes
the initial wave packet evolves along the separatrix by spliting into two outgoing parts,
one stretching towards the northern hemisphere of the Bloctsphere, and the other one in
the southern part.

Depending on the value of the parameter de ned in Eq.(1.36) the following two
gualitatively di erent situations can occur. As can be seen fom Eq.(1.63), in the strong
coupling regime, for 1 2, the maximal separation of the two outgoing wave packets
is obtained for sin [ = ], i.e. for = arcsin2— (see the separa]srix in Fig.1.10b),
corresponding qualitatively to a superposition of two coheent states 1= 2(j +; = i+
j ; = 1)[108]. In the weak coupling regime, E,e. for 2, the maximal separation is
obtained at sin [ = 0], which gives cos + =2= 1 (see the separatrix in Fig.1.10c),
leading to a superposition of two Fock states of the form £ 2(jn = N=2cos +i + jn =

N=2cos +i) [108].

Precisely at = 2 the separatrix touches the two poles of the Bloch sphere, leading to
the best possible superposition state, i.e. the NOON state igen in Eqg.(2.13) (note indeed
that for this value of we obtain + = ) [33, 108].

The time T, that it takes for a point initially in F to travel along the separatrix and
reach one of the poles of the Bloch sphere is [108]

IN(BN) |

T.'
C N )

(2.30)
which can be taken as an estimation of the time of formation ofthe macroscopic super-
position.

The accuracy of the semi-classical argument presented abe\has been checked by per-
forming a quantum calculation of the time evolution of the system under the Hamiltonian
(1.24) with parameters corresponding to =2 and = 0 [108]. A calculation of the
delity, i.e. the projection of the state produced on the perfect superposition given in

which all the atoms are in the same well. The tunneling probab ility exhibits resonances as a function
of the driving frequency, reminiscent of the Shapiro-steps in SJJ. To observe this phenomenon the two
modes of the BJJ must be coupled, which induces a more compliated dynamics than the one described
in EqQ.(2.29), as the coupling part does not commute with the r est of the Hamiltonian. Indeed, it has also
been shown that such driven coupled dynamics induces chaosii the classical regime, being related to the
appearance of entanglement in the quantum regime in Ref. [106]. The transport by driving in such systems
has also been addressed in Ref. [107].
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Eq.(2.13)
F1=jh noonj (1)ij? (2.31)

(to be evaluated at the time T, of formation of the superposition) allows to estimate the
quality of the state produced. Such a calculation leads e.gto F1 =0:1394 for =1 and

N =300 [33, 108], i.e. the delity is quite low, which means that the state formed is only
approximatively a NOON state (see second panel in Fig.2.4).We mention that various

other quantities, more sensitive to the existence of coherees in the superposition than the
delity, can be computed to testify the \catness" of the stat e produced [33]. Among them,
we cite the probability distributions of the eigenvalues of angular momentum operators
in various directions, which we will extensively treat in Chap. 3, or the quantum Fisher
information, which will be discussed in Chap.4.

We note that the time of formation of the NOON state estimated in Eq.(2.30) is much
shorter than the time t, required to form a two-component macroscopic superpositio
of phase states by thequenched dynamicsof the BJJ presented in Sec.2.5.1, providing
therefore a speed up with respect to the use of that protocol ad leading to a substantial
advantage in experiments. Indeed, the fragility of superpsition states with a macroscopic
number of particles with respect to decoherence induced byarious mechanisms renders
challenging their experimental realization. Issues relatd to the decoherence of macro-
scopic superpositions will be explicitly addressed in Chap5. Here we only wish to stress
the interest in providing a protocol to create macroscopic giantum superpositions in the
shortest time possible, i.e. before decoherence becomes etige, and the question arises
whether the solution proposed in Ref. [108] is optimized. Tis question is addressed in
the following section.

2.5.3 Controlled dynamical creation of macroscopic superp ositions in a
BJJ

In order to study the optimized production of macroscopic siperpositions, we have de-
veloped a protocol of optimal control in collaboration with D. Sugny and M. Lapert [33].
The general idea is to consider that the parameters of the Haiiitonian (1.24) can be
tuned during the time evolution, in order to reach a certain target state (in our case, a
macroscopic superposition) in the minimum time possible, o with the best possible -
delity within a xed time. Since in the internal BJJ setup the coupling K is e ciently
controllable both in amplitude and sign by tuning a resonant eld, instantaneously with
respect to the other time scales of the problem [8, 62] (seesa Chap. 1), we choose to
keep xed the parameter and to useK as control eld. We will have in mind the inter-
nal BJJ setup, which appears more suitable for the experimetal implementation of our
control protocol. In the following we will use a dimensionless version of the couplingKk ,
ie. ! =2= =4 K=(N ). In terms of this parameter the optimal separatrix of the static
protocol presented in the previous section is identi ed by! =1.

2.5.3.a Geometric optimal control approach

We rst tackle the problem by means of geometric optimal control theory [109]. In a
summarized way, geometric optimal control is a vast domain vere the optimal control
problems are solved by using tools of geometry and Hamiltomin dynamics. Due to its
geometric framework, this method is intrinsically limited to systems with few degrees of
freedom. Since as we have seen in Sec.1.6 in the semi-claaisiinit the BJJ is described
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in terms of two classical conjugated variables, i.e. the palr and azimuthal angles of the
Bloch sphere of radiusN=2, the tools of geometric optimal control theory can be appléed.

In particular, we solve our time-optimal control problem by applying the Pontryagin
Maximum Principle (PMP) [33, 109], which requires to set a baund, m, on the amplitude
of the control eld: among all the functions ! (t) allowing to reach the target state, the
optimal solution is the one minimizing a given cost, here theduration of the control,
within the bound m on the dimensionless parametet .

We consider as initial classical state a point on the Bloch spere at a distance from
( = =2, = ), corresponding to the extremum point on the uncertainty circle of the
phase statej = =2; = i -the same initial phase state of the protocol presented in
Sec. 2.5.2. Without loss of generality, we can choose this jrd in the upper hemisphere.
Then, the optimal sequence to reach in minimum time the northpole of the Bloch sphere
is computed. By symmetry of the dynamical equations, the pait of the lower hemisphere
symmetric with respect to S of the initial state reaches simultaneously the south pole.
This classical simultaneous control leads in the quantum dmain to the creation of a
superposition state.

The minimum time Tmin for the generation of a macroscopic superposition with this
protocol can be estimated analytically form ! +1 | and results inversely proportional to
the total number of particles as the time T, in Eq.(2.30), di ering from it by a numerical
factor. The calculation of T, as well as a numerical comparison betweefi; and Tmin
are detailed in Ref. [33], resulting inTmin . Te.

The solutions for the optimal elds obtained for three bounds on the eld amplitude
I, namely m = 1; 2; 100, are reported in the second panel of Fig.2.3. Fom =1
we recover the solution of Ref. [108], which is only composedf a constant eld - in
the control terminology, a \bang pulse". More complicated solutions can be constructed
when the bound m takes larger values. The respective optimal trajectoriesn the phase
space, parameterized by the coordinates and (see Fig. 2.3, and also Refs. [48, 61, 108])
under the eld solution ! (t) are displayed in Fig.2.3. In particular, taking as in Sec.25.2
N =300, for m = 100 we reach the target in atime T i, = 0:0236, while form =1 from
Eq.(2.30) one obtains T . = 0:0259. The corresponding delities with the statej nooni,
obtained by calculating numerically the time-evolution of the quantum state under the
solution eld ! (t), are equal toF; = 0:116 form = 100, while we recall from Sec.2.5.2 that
F,=0:139 form = 1. Table 2.2 lists the numerical results obtained with this approach.
Other guantities, sensitive to the correlations, are compted in Ref. [33]. A visualization
on the Bloch sphere of the state created is provided in the send panel of Fig.2.4.

Our control protocol can be generalized to create a phase cat puase i (see Eq.(2.14))
in addiction to the state j nooni, Which is not possible in the original non-controlled
proposal of Ref. [108]. Arguments analogous to the case of aODN state can be used to
describe the optimal trajectories reaching the statej puasei. Switching the sign of the
control eld is required here, though, which could be implemented by tuning the microwave
and radio-frequency elds as explained in Sec.1.4. Numera results comparable with
those for the statej nooni are obtained for the minimum time and the projections at
various values of the bound, as reported in Table 29

The conclusion of this analysis is that both the minimum time of formation of macro-
scopic superpositions and the respective delities obtaied with the geometric control
protocol developed are comparable to the ones of the static ethod of Ref. [108]. The

5The projection on the phase cat state, analogous to Eq.(2.31), is de ned as F» = jhCatzj (t)ij2.
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Figure 2.3: (top) Plot in the ( ; ) plane of the optimal trajectory in the semi-classical
model for the boundsm = 1, m =2 and m = 100 in blue (dark), green (light gray) and red
(dark gray) respectively. The target state is the cat statej nooni. The dashed blue, red
and green lines represent the position of the separatrix fothe di erent bounds. (bottom)
Evolution of the corresponding control elds ! (t), as a function of the dimensionless time

t.

Figure 2.4: Plot of the projections on the Bloch sphere, (i.e the Husimi function Q(; )=
jh: j ij2 introduced in Sec.3.1) of the initial state j = 2;0i (left), the nal states with the
geometric solution form =1 and t = Ty, (middle) and with the fully quantum numerical

approach with t = 10 T (right).
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latter method is hence almost optimal for the creation of a NODN state based on a
semi-classical approach, though leading to a poor delity. To obtain better results, an-
other approach able to tackle the fully quantum character ofthe problem has to be used,
possibly relaxing a little the time constraint, as detailed in the next section.

NOON PHASE
m 1 2 100 1 2 100
t( 10 3) 259 246 236 255 246 236
Fio 0.139 0.122 0.116 0.091 0.100 0.116

Table 2.2: Numerical results of the semi-classical controbrotocol for three dierent
bounds, m = 1, 2 and 100. The control duration (t) and the delity ( F) are given
for the two cat statesj nooni (NOON state) and j puasei (Phase state).

2.5.3.b Fully numerical approach

As we have seen in the previous section, the e ciency of the ofimal solution based on
the semi-classical approach is limited in the original quatum domain. We now determine
the solution of the initial quantum problem by using a purely numerical approach, namely
the monotonic convergent algorithm, which is a standard appoach to solve the optimality
equations in quantum mechanics [110].

In this case, we shall rather consider variousxed control durations, namely TO0 =
Te; 5T and 10T, multiple of the minimum time T, of the static control protocol, and we
maximize the projection onto the target state at time t = T In the following computa-
tions, we have chosen as parameters of the quantum system=1 and N = 300.

In order to guide the numerical optimization, we use the georatric solution as a trial
solution for the numerical algorithm. This allows to design a nal optimal solution close
to the geometric one. Due to the proximity of the results obtaned at di erent values of
the bound, we can consider as initial eld of the algorithm the constant eld ! (t) =1 in
the interval [0;: TY, corresponding to the boundm = 1 of the geometric protocol.

Very good results are obtained, with a nal projection larger than 0.88 and 0.99 on
the target state j nooni for TO= 5T, and T®= 10 T, respectively. The solution eld
for this latter case is presented in Fig. 2.5. A visualizatiommn on the Bloch sphere of the
NOON state created is provided in the third panel of Fig. 2.4. Note that waiting a time
10T, with the control eld ! = 1 of Ref.[108] would not lead to any improvement, as
the quantum state would keep on evolving further from the conguration in the second
panel of Fig.4, refocussing at some point in the initial coheent state (the state is indeed
periodic). The time T, is thus the optimum time for creating a cat state with ! = 1. For
such a time interval, a projection of 0.2548 is reached with he numerical optimum control
protocol, which yields an improvement over the result of Ref[108], at the price of a more
complicated solution.

The same computation has been done for the target stat¢ pyasei, taking again as
initial condition for the algorithm the geometrical optima | solution at m = 1 (which is no
longer static), with a total duration increased by a factor of 1, 5 and 10 as before. The
di erent numerical results are listed in Table 2.3.
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To conclude, we have demonstrated that by means of a fully nurerical optimization
approach it is possible to create a NOON state with a very highdelity in a time ten times
larger than the time of formation of the NOON state in Ref.[108], which led to a very low
delity. Note that this time interval can still lead to a sign i cative speed-up with respect
to the protocol based on the quenched dynamics of the BJJ prested in Sec.2.5.1, where
t, = =(2 ) was independent on the number of atoms.

Figure 2.5: Plot of the eld solution for T = 10 T.. The horizontal solid line is the solution
of Ref.[108], which is taken as a trial eld of the algorithm.

NOON PHASE
n 1 5 10 1 5 10
Fio 0255 0.880 0.994 0.245 0.903 0.989

Table 2.3: Same as Table 2.2 but for the quantum protocol. Theparameter n represents
the ratio of the control duration over the time T. (see main text).

2.5.3.c Experimental feasibility

Let us discuss the experimental feasibility of our control potocol, starting with the bound
on the control. Having in mind the internal BJJ setup (and in p articular the experiments
of Ref.[8, 62]), typical bounds on the parametelK are 0< K < 2 KHz, and a typical value

for is 2 0:13Hz. Fixing this value for the interactions translates the maximum
value of the control eld which we have used, i.e.! =100, into the value of the coupling,
K 1:95KHz for N = 300 particles, which is within the limit accessible expermentally.

Furthermore, the control eld can be switched fast comparedwith the other time scales
of the experiments. Note that, from a theoretical point of view, it would be possible to
include in our protocol some spectral constraints on the comol eld [33]. Hence, in ideal
conditions it would be possible to implement our control praocol.

However, in realistic conditions the experiments are a ect@ by the presence of noise,
which induces dissipation and decoherence, as will be disssed in Chap. 5. Such noise
sources have not been taken into account in our protocol, angnay change signi catively
the quantum state reached with the help of the designed conwl eld. In particular,
with qualitative arguments we have estimated that, given the experimental parameters of
Ref. [8], the atom loss dissipation rate should be lowered bg factor 1000 in order to allow
the formation of macroscopic superposition at 1. without losing any atom - a single loss
event causes the decoherence of the NOON state, as it will behewn in Appenxix E.3.
Further discussions are provided in the conclusive sectionf Ref. [33].



Chapter

Detection of macroscopic superpositions

The entanglement witnesses presented in the previous chagt allow to detect the pres-
ence of entanglement by measuring the collective angular rmentum operator in various
directions. However, these inequalities do not give any irdrmation about the structure
of the entangled state. In this chapter, we provide some tod which allow to visualize
the quantum state of the system, and detect its entanglementn the case of macroscopic
superpositions. After brie y presenting the theory of quas-probability distributions for
the SU(2) symmetry group \borrowed" from quantum optics, we introduce the probabil-
ity distributions of the eigenstates of angular momentum operators in various directions,
and we show how they can be used to obtain information about tle quantum state of the
system. These results are the subject of our publication Ref32].

Les crieres que nous avons pesents dans le chapitre pedent permettent de
cetecter l'intrication a l'aide de mesures du moment angulaire collectif dans
dierentes directions. Cependant, ces iregalies ne donnent pas d'information sur
la structure de letat intrique. Dans ce chapitre, nous donnons des outils permettant
de visualiser letat quantique du syseme, et de cetecter l'intricati on pour le cas des
superpositions macroscopiques detats colerents. Apes avoir brevement pesent
la theorie des distributions de quasi-probabilie pour le groupe de synetrie SU(2)
\emprung" a l'optigue quantique, nous introduisons la d istribution de probabilie
des valeurs propres de I'oerateur de moment angulaire dandierents directions, et
nous montrons que celle-ci peut étre utilie pour obtenide l'information sur letat
guantique du syseme. Ces esultats ont fait I'objet de note publication Ref.[32].

3.1 Quasi-probabilities distributions in phase space

In guantum optics it can be useful, in order to visualize the quantum state of the system,
to introduce quasi-probability distributions in phase space - for the electromagnetic eld
in a caviy,_the complex plane Ba_rameterized by the amplitude = x + ip, where X* =

(A+®)= 2andp=("a &)=(i 2) are the quadratures of the eld. These distributions
are thus simultaneous functions of the semiclassical vartdes x and p, associated with
non-commuting observables [72]. Three such phase-spaceresentations can be de ned,

45
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namely the Husimi function Q, the Sudahrsan distribution P, and the Wigner function W,

each of them in bijective correspondence with the density maix of the system [72, 111].
Knowledge of each of these representations allows in pringle to calculate the other ones
by convolution with coherent state overlap functions (similar to Eqg.(1.31)), even if the

explicit calculation may be impractical (see Ref.[111] andSec.3.1.2). An interesting feature
of these representations is that they allow to convert the céulation of quantum averages
to calculations of integrals over phase space. Their de nibbns can be adapted for the
SU(2) algebra, such as to render them suitable to describe ousystem of N bosons in
two modes [71, 72, 111, 112]. As we have seen in the previousapters, the classical
phase space is in this case the Bloch sphere, which can be pareterized by means of the
angular variables and . In the following we present the de nition of SU(2) phase spae
distributions.

3.1.1 Husimi distribution Q
The Husimi function is de ned as [71, 72]
Q(; )=nh; jij; i (3.1)

R
with the normalization condition ('\'4;1) d Q(; )=1. When the system is in a pure
state, i.e. = ih j, the Husimi function reduces to the projection over a coherst state,
namelyQ(: )= jh: j ij2. Letus give some examples.

3.1.1.a Husimi distribution of a Fock state

The Husimi distribution of the Fock state jni is readily calculated by means of Egs.(1.4.3)
and (3.1), and reads

QM(; )=

1 N ) 2(n+ NT)
+

_ - 0 .
@+an? ;)N %+n 2T 3 QM(): (3.2)

As anticipated in Sec.1.5.1, this distribution does not degnd on the angle but only on
, and for each value ofn it is peaked at = arccos( 2n=N) according to the third line
in Eq.(1.30). The Husimi distribution for various Fock stat es is illustrated in Fig. 3.1.

3.1.1.b Husimi distribution of a coherent state

Due to the de nition (3.1), the Husimi distribution of a cohe rent state is simply calculated
by using the expression of the overlap between two coherentates Eq.(1.31). For example,
for the phase statej = ; =0i we obtain

Q(; )=jh; j =5 :OijZ:ZiN(usin cos )N: (3.3)

which displays a peak centered around the values = ; = 0 parameterizing the coherent
state under consideration.
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Figure 3.1: Husimi function Q" ( ) of Fock statesjni forn= 5, 4::;5 (with N = 10),
as given in Eq.(3.2) (panels from left to right, from top to bottom).

3.1.1.c Husimi distribution of cat states

The Husimi distribution of a cat state is also readily obtained by using Egs.(2.25),(2.27)
and the de nition (3.1). For phase cat states we will make usein what follows of the
restriction of the Husimi distribution to the equator of the Bloch sphere, i.e. Q( )

Q( = =2; ). This function displays as many peaks as there are compon&nin the
superposition, as can be seen in Fig. 3.2. Some examples obpacted Husimi distributions
for macroscopic superpositions are given in Ref.[105] andhiour work [32]. In Sec.5.1.3.b
we will calculate this function explicitly for a two-component cat state formed in the
presence of phase noise.

Although the Husimi phase distribution is in one-to-one corespondence with the full
density matrix, from a \visual" point of view in practice iti s almost insensitive to the dif-
ference between a coherent superposition of phase statesdatie corresponding incoherent
mixture of the same coherent states, equally weighted. Thids because due to Eq.(3.1)
the Husimi distribution can be seen as the diagonal of the desity matrix represented over
coherent states, while the contributions which allow to diginguish a macroscopic superpo-
sition from an incoherent mixture are o -diagonal. This point will be extensively analyzed
in Sec.5.1.3.a. As an illustration of this fact, Fig. 3.2 (tgp panel) shows the Husimi dis-
tribution for a three-component superposition of phase stées and for the corresponding
incoherent mixture, the tiny di erence between the two being illustrated in the inset. The
need for developing tools to distinguish between coherentuperpositions and incoherent
mixtures has brought us analyze the eigenvalue distributios which will be presented in
Sec. 3.2.1.
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Figure 3.2: Top panel: section of the Bloch sphere on the equearial plane = =2, param-
eterized by the angle . The dots indicate schematically the phase of the three cohent
states which give rise to the superposition, and correspontb the maxima in the Husimi
distribution illustrated in the bottom panel. The vector r de nes a generic direction of the
angular momentum operator for which the probability distri bution P (r) is considered.
Our convention for the x;y axes is also indicated. Bottom panel: Dimensionless Husimi
distribution Q( = =2; ) for a three-component superposition of phase states (saliline)
and for the corresponding incoherent mixture (dashed line) as a function of the phase

for N=20 particles. The inset shows a zoom of the same function atmd =2 =3,
illustrating the di erence between the superposition state and the incoherent mixture.
From Ref.[32].
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3.1.2 P representation

The P distribution is de ned by the implicit relation
Z
= P(; )i ihy jd (3.4)

with the normalization condition ( N + 1) =(4 )RP( ; )d =171, 72].

By projecting Eq.(3.4) over coherent states, one can see thiahe Q and P representa-
tions are related by a \convolution", in which the overlap between coherent states plays
the role of a transfer function, i.e.

Z

Q(; )= P(% 9%h; j°% %% : (3.5)
This relation can be inverted, leading to (see Eq.(4.9) in R&[112])

Z
XX 2s+1+1) (2s I)! 00 000 00 000 00

P(; )= Gser e mG ) d im0 @)

1=0 m=

where Y., (; ) are the spherical harmonics [71].
This relation allows us to remark explicitly that, due to the overcompleteness of coher-

ent states, the o -diagonal information h ¢ § j: i can be entirely reconstructed solely by
employing the diagonal informationh; j j; i, this latter being the Husimi distribution.
Indeed from Eq.(3.4) we obtain
VA
ho; (] J, | — d OOP( 00; O(Sho; (] 00; OOih 00; OO.J’ I, (37)

which, by the use of Eq.(3.6), allows to relaten ¢ § j; ito Q(; ).

3.1.3 W representation

The Wigner function for the SU(2) group is de ned as [113, 114

h i
W(; )=t wh )n (3.8)

where the Wigner operator W ; ) is de ned in terms of the spherical tensors'f‘\lf,\,I =

P .m0
21+1 J Jim® g, -7
7 mmee 3 Cimam 19im3hm; Jj as

w = s 2 T (3.9)
1 mI:OM:I M " |

Here CJJ;;]T;?;M are the Clebsh-Gordan coe cients and we have explicitly indicated the

representation J in the Fock states jJ;mi. The Wigner function of Fock states, coher-
ent states and squeezed states are explicitly calculated iRRef.[113], while an analogous
calculation for macroscopic superpositions is reported irRef.[29]. In Ref.[115] an experi-
mental tomographic reconstruction of a squeezed state Wiger function in a BJJ has been
presented.
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An alternative de nition of the Wigner function for systems described within a SU(2)
formalism has been provided in Ref.[116]. The connection wh the usual Wigner function
has also been established by the same authors [114]. In thatork, the Wigner operator
analogous to Eq.(3.9) is de ned as

Z
Ws(%) = dys( )Y e *Y; (3.10)
Su(2)
where = jyj and y= = (sin sin; sin cos; cos ), with O , 0 and
0 2 , %2 Rg, ands( ) is a measure; possible choices are the unity measus¢ ) = 1

[116], the left and right invariant measure s( ) = 3 sin? 5 [114], and the De Haar measure

S( )= SHaar( ) = 2% sin? 5 [116]. Then, the Wigner function is obtained from the Wigner
operator as 7 h |

Wi(%) = tr [As(%)"] = dyg )tr e¥In e PV (3.11)
SU(2)

Among the interesting features of the Wigner function we metion the overlap property,
which allows to express the overlap of two states by means ohe integral of the product
of their Wigner functions. Taking for instance the de nitio n (3.11), this property reads

Z
hjiizs dxWg (W, (%) (3.12)

R3

with Wg (%) = h jWs(x)j i ands( )s( ) = Shaar( ) = 5% sin? 5. Note that as a particular
case, when the statg i is a generic coherent state, equation (3.12) allows to expss the
Husimi distribution (3.1) as an integral of the product of th e Wigner function with the
Wigner function of a coherent state.

Negativities and oscillations of the Wigner function are gaerally ascribed to the pres-
ence of entanglement in the quantum state [29, 117{119], andeveral works attempt
to characterize the non-classicality of a quantum state by neans of the negativity of
the Wigner function [29, 117{123] (as well as by the non-exience of a well-behaved P
function[124, 125]).

3.2 Detection of macroscopic superpositions

We focus here on the detection of macroscopic superpositisnof phase states created
during the quenched dynamics of the BJJ, i.e. the states give in EQs.(2.25), (2.27),
for various numbers of componentsg, with =1 (j = =2; = 0i is thus the initial
state). We address in particular the question of how to distnguish them from mixtures of
coherent states. Our approach, substantially di erent from the one of Ref. [101] which is
devoted to map out the Husimi distribution, is based on the aralysis of the distributions
of angular momentum eigenvalues. The results of this work & presented in Ref. [32].

3.2.1 Distributions of the eigenvalues of angular momentum operators
in the equatorial plane

Consider the probability distribution of the eigenvalues r (taking integer values in the
interval [ N=2;N=2]) of the spin operator J\, satisfying Jyjri = rjri, where ris the
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generic direction in the (xOy) plane de ned in Eq.(1.33) (see also the bottom panel in
Fig.3.2). This probability distribution for a pure state is given by

P (r)=jhrj ij? (3.13)

for a generic density matrix PA(r) = Tr(™ jrihrj). Indeed, we shall see that the shape of
the distribution P (r) re ects the phase content of the state projected along the dtection
speci ed by the vector

It is instructive to calculate the probability distributio n P (r) starting from its gener-
ating function, de ned as

h()=rte Fi=piOcsn dyeos)i=HR()i (3.14)
where = e ', R( ) is the displacement operator introduced in Eq.(1.32), andh::i
indicates the quantum average over the state of the system. & a statistical mixture

h()=tr % - The function h ( ) generates the moments of the distribution, since

k

hi¥i = ik di h()j=o: (3.15)
Let us consider for simplicity a pure statej i. Expanding Eq.(3.14) in terms of the
eigenstatesjri of J; yields
S S
h ()= e '"jhjrij?= e'"P (r): (3.16)
r= N=2 r= N=2

The probability distribution P (r) is then readily obtained as Fourier coe cients relative

to the expansion (3.16). 7

P (r)= zi h () d; (3.17)

note that clearly from the de nition (3.14) it follows that h ( +2 )= h ( ), which allows
to take nite extrema in the integral of Eq.(3.17). This appr oach, based on thdull counting
statistics of the probability distribution P (r), allows us to stress that the knowledge of
P (r) contains the information equivalent to the knowledge of al the moments of the
distribution itself. In turn, the latter are known once the g enerating function is known,
as shown by Eq.(3.15) [126].

The generating function Eq.(3.14) can be calculated analyitally both for coherent
superpositions and incoherent mixtures. The calculation $ detailed in Appendix A.1. We
obtain as a nal result for the generating functions

hmixt( ) - = (318)

h i 2k N
: iy isin_ s _ain 2K
jCOSzj |S|n2 sign Cos2 sin a 3
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for the incoherent mixture and

hcatS( ) — hmixt( ) (319)
X 1 22 (kK9
+ jroj 2 —ek:ko jcossj 1+e '
k6 k0=0 2 2
h i N

0
'&.{., )

) ) |( 2k
+SINn — SIgN COS— e a q
2 59 2

+

e Gty )

for the coherent superposition, in the case of an odd numberfaomponentsq (the even-
case is given in Appendix A.1).

As an example, we focus on the three-component superpositig (t3)i given in Eq.(2.27),
formed at a time tz = T=6 during the quenched dynamics of the BJJ, as we have seen in
Sec.2.5.1. Considering also the corresponding mixture, wealculate the probability distri-
butions of the eigenvalues in thex and y direction, namely P - 5(r) and P (r) respectively,
by using Eq.(3.17) and (3.19). As illustrated in the top pands of Fig.3.3, these distri-
butions are peaked around the semiclassical values given ig.(1.30), i.e., in the specic
casehfyi = (N=2)cos( =3), (N=2)cos( ) and hfji = (N=2)sin( =3), (N=2)sin( ).
The distribution P - ,(r) displays a noticeable di erence between the mixture and theco-
herent superposition: the latter displays oscillations whch are absent in the former. The
presence of fringes in the distribution of the eigenvaluesfaangular momentum operators
for superposition states was also noticed in the context of e dynamics of the quantum
non-linear rotor by Sanders [127]. The functionP (r) instead does not display fringes for
the three-component superposition because its componento not overlap when projected
along the y-direction (see Fig.3.2, bottom panel); as a result no inteference e ect takes
place in this case.

This analysis extends to higher-component superpositionésee for instance the bottom
panels of Fig.3.3, in which we plot theP _ ,(r) and P (r) probability distributions for the
four-component cat statej (ta)i).

We note that the two-component phase cat statej (to)i given in EQ.(2.26) (with

= 1), cannot instead be distinguished from the correspondiny incoherent mixture by
this method, due to the speci ¢ form of its state components §ee Section 3.2.1.b).

Finally, the full counting statistics of the operator J; could also be de ned, but does
not yield any useful information about the considered supepositions of phase states as it
coincides with the binomial distribution P — (r) = ZiN N7N+r of the initial coherent state.
This can be easily understood since, as mentioned in Sec.215 the quenched dynamics
leading to the creation of phase cat states conserves the nuyer operator, and hence all
of its moments.

3.2.1.a Experimental realization of this method

For each choice of the angle the probability distribution P (r) can be experimentally
accessed by repeated measurements of the corresponding atey momentum operator J; .

Indeed, since the eiggﬁstates of; form an orthonormal basis, each superposition state
decomposes a$ 4i = 1\':2 N=2 cijri with ¢! = trj 4i. Then, according to the postulates

of quantum mechanics, after a (projective) measurement off; the state jumps to the state
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Figure 3.3: Top panels: eigenvalue distributionP (r) corresponding toJy ( = =2) and
J\y ( = ) for the three-component coherent superposition (black Ines) as well as for the

incoherent mixture of the same phase states (red lines) wittN = 20. The vertical lines
correspond to the semiclassical values fonfyi and hfyi for the coherent states entering
the superposition. Bottom panels: analogous distributiors for the four-component case.
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jri with probability P (r) = jcfj? and the corresponding outcome of the measurement is.
The full distribution P (r) is obtained by repeating this procedure many times, each tne
preparing the system in the same initial staté:. The measurement off; for a generic angle

can be achieved by measuring the population imbalancd’, between the two modes after
proper rotations of the state over the Bloch sphere, as expiaed in Sec. 1.4.4.

One of the rst questions arising about the experimental feaibility of this protocol,
which would provide an interesting extension of our work, ishow robust the probability
distributions of cat states are, if we take into account a posible error in the times at
which the shots (i.e., the measurements off}) are taken. A rough estimate of that e ect
is provided in Appendix A.2.

In Sec.5.1.3.c we will discuss how the probability distribdions P (r) for macroscopic
superpositions are a ected by the presence of noise.

3.2.1.b Detection of the NOON state

In Reference [128] a similar method has been proposed for thdetection of a NOON
state as the one given in Eq.(2.13), or with a possible relatie phase between the two
components, i.e.

. . _(j =0; =0i+€j =; =0i)
] NooN I'= P= :

2
In this case, the probability distribution P (r) corresponds to the pro le of the NOON
state when projected on an axes in the equatorial plane, andan be more easily calculated
by rotating both the superposition state and the eigenstates of the angular momentum
operators by =2 on the Bloch sphere, i.e. by transforming the eigenstategri in Fock

states and the statej noon 1 in a phase cat state with components along the direction

(3.20)

identied by ,j puase. 1 =(j = =2 i+€ j = =2 + i)= 2. Thus we obtain
1 N w0 wo
j noon 1= M) puase. 1= o e (T*M 14 (1)FM . (3.21)
which leads to h i
L (%)
P(r)= N N7+r l+cos ( 1)\ : (3.22)

As seen in Eq.(3.22), the probability distribution P (r) does not depend on the direction
and hence is isotropic in the &Oy) plane. The contrast of the interference fringes depends
on the relative phase between the two components of the state. Note in particular hat
for = =2 the distribution P (r) does not display any fringes, despite the fact that it is
a macroscopic superposition. A similar argument can be appd to explain the absence
of fringes in the distribution P - ,(r) for the two-component phase state. For = 0 the
contrast is maximal and we obtain

1 N PR
ST N if r is even
2N 1 Sy

P(r)=
(r) if r is odd

(3.23)

Technically, in typical experiments the system is destroye d after a measurement of J; . Therefore, one
should model the process by a Positive Operator Valued Measue (POVM) rather than by a projective
measurement [89]. However, here we are only interested in tre outcomesr. These are predicted to be the
same for both POVM and projective measurements, even if the latter do not describe properly the state
of the system after the measurement.
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This corresponds to a binomial envelope centered at = 0, with interference fringes having
a unit spacing.

3.2.2 Quasi-probability distribution in spin variables

In our work, Ref. [32], we have addressed the issue of the twdimensional (2D) tomo-
graphic reconstruction f (x;y) of the phase content of a state in the &Oy) plane. This
is based on the concept of the Radon transform, also exploitein medical imaging [129{
132]. The same principle has been also used for coherent supesitions with cavity
photons [133]. The idea is to obtain a 2D distribution function f (x;y) using all the
one-dimensional projectionsP (r) at each in the interval [0;2 ].

We de ne the two-dimensional distribution f (x;y) by the implicit expression

Z, Zi 2
P (r)= . f(x;y)ds = . dx . dyf (x;y) (r xsin + ycos ); (3.24)

wheres = xcos + ysin =T pp with T= xR + y§ and p; identi es the direction in the

equatorial plane of the Bloch sphere perpendicular tar *as expressed by the rst line of
Eq.(2.7). Equation (3.24) can be inverted using the de nition of the generating function
in Eq. (3.16). In order to do this, it is convenient to expressP (r) as the Fourier transform
of a non-periodic characteristic function, obtained by muliplying it by a window () of
width 2 . Namely, we de ne

R()=h(C) ;0 (3.25)
with [ . () = %(H( (+ )+ H( ))), and H (x) the Heaviside function. This
modi ed generating function is related to the probability d istribution as

Z,
m()= P (r)e '" dr; (3.26)
1

and inversely P (r) = Zi Ri A(; )€'d . An important remark is that the physical
values ofP (r) are only the ones taken for integer values of the variable, which correspond
to the eigenvalues of a certain angular momentum operator daed by . In between, it
assumes interpolating values; in the same way, for>N=2 orr< N=2, P (r) oscillates

in such a way so to recover zero for integers values of (see Fig.3.4).
Now we seek the explicit expression of (X;y) in terms of the characteristic function

h ( ). We substitute Eq.(3.24) in Eq.(3.%§) and we use the integal representation of the
delta function, (r xsin +ycos )= , g (r xsin +ycos) ohtaining

z, 2z, z

4] = d dxdvf (x: d_' i( !'")rg i (xsin ycos ). 3.27
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Figure 3.4: Eigenvalue distribution P (r) corresponding to Jx ( = =2) for the four-
component coherent superposition (solid lines) withN = 40. The red dots are the physical
values corresponding to the discrete eigenvalues, also reged in Fig.3.3, while the blue
line shows the extension on the real eld of the functionP (r).

Using that ;= ; e 'C "rdr= (! ) and performing the integral in d! , yields?
Z,
dxdyf (x;y)e i (xsin ycos ) —

()

1
F [f(x;y)]( sin; cos ): (3.29)

We have now to invert the Fourier transform in Eq.(3.29). De ning the variables

sin = Iy
cos = ly; (3.30)
readily leads us to
2Z 4
fy)= o dlydt i ()t (3.31)
The de nition (3.30) implies that j j = | 12+ 17 and = arctan :—; . Rewriting

Eq.(3.31) in terms of these variables makes appear the Jac@n of the transformation,
and we obtain

f(X,y) — - d J J dn ( )ei (sin x cosy)
2 1 0
1 A Z o
— 2_ d J J . dh ( )el (sin x cosy); (332)
2 We choose here the de nitions: .
FIEO)I(N) = Zi ' dxf (x)e™
z, ! .
F lo()(x) = dig (1)e ™ : (3.28)

1
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fooy)= 5 ZRC @ tROJle 202y ) | Wip)= 22N u[rB( e 202 P
R()=ed 7 = K+idy B()=e® & a=% ip
ji=R()] Ji = 1t+i2 ji=D()jo = 1+
Ry e Ry _

1 dXFOGy) = P(y) = hyjnyi 1 XW(x;p) = P(p) = hpj"pi
R e R, o
1 adyf(x;y) = P(x) = lxjhjxi 1 dpW(x;p) = P(x) = hxj"jxi

Table 3.1: Comparison illustrating the analogies bqgveen he 2D diﬁributiq@ function
f (x;y) and the quantum-optics Wigner function. By Cd2 we mean , d 02 d. We
denoted hereP (r) as P(y) and P - ,(r) as P(x) and the eigenstates satisfyingj\x;yjri =
riri asjxi and jyi respectively, which should be taken on integer values only.

where in the last step we made use of Eq.(3.25). It is possibleo rewrite EQ.(3.32) in
terms of the natural intervals of de nition of the variables and , according to Ref.[71].
The calculation, detailed in Appendix A.3, yields as a nal result
. 2 z,
. - - i (xsin ycos ).
f(x;y) 22 , d . dh ()€ : (3.33)

Equation (3.33) represents a quasi-probability distribution for the non-commuting op-
erators Jy and Jy. It is closely analogous to the quantum optics Wigner functon, which
also can be expressed from the characteristic function of # probability distribution of
the quadratures (see Table 3.1, and also Eq.(3.8) in Ref.[13). In terms of SU(2) Wigner
functions it could be regarded as the two-dimensional projetion on the equatorial plane
of the Bloch sphere of the Wigner function de ned in Eq.(3.1). Indeed, as shown in Ap-
pendix A.4, integrating Eq.(3.11) along the variable x3 renders a two-dimensional function
with structure similar to Eq.(3.33).

Figure 3.5 illustrates the 2D quasi-probability distribut ion f (x;y) for the three and
four component coherent superpositions, and for the corrgmnding incoherent mixtures.
In the top left panel f (x;y) shows three pronounced maxima in correspondence with
the coherent states composing the three-component macrospic superposition. It also
displays oscillations between the maxima, due to interferaces between the components.
The 2D quasi-probability function evaluated for the corresponding incoherent mixture
(bottom left) also exhibits the main peaks but the fringes are strongly suppressed, the
small remaining oscillations being intrinsically due to the de nition of the function f (x;y)
as a Fourier transform in angular variables on a compact inteval.
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Figure 3.5: Dimensionless 2D quasi-probability distribuion f (x;y) in the (x0y) plane
(dimensionless) for the three- (left panels) and four- (ridht panels) component coherent
superpositions with N = 20 particles (top panels), and for the corresponding incolerent
mixtures (bottom panels).

Figure 3.6: Sectionsf (x; 0) of the quasi-probability distributions of Fig. 3.5 (solid line) in
the direction y = 0 for the-three component superposition (left) and the four-component
superposition (right). The dashed line represents the quasprobability function f (x;0)
for the corresponding incoherent mixture of the same three @herent states.
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Figure 3.7: Reconstruction of the Husimi distribution Q( = =2; ) of a four component
superposition with N = 20 by means of the overlap property in terms of the function
f (x;y). The red dots correspond to the points reconstructed this vay, while the solid blue
curve is the exact Husimi function.

A complete tomographic protocol allowing for the full reconstruction of the quantum
state requires the measurement of angular momentum operats in all the directions of
the Bloch sphere, and not only in the equatorial plane (see Rg115, 131, 134]).

Although the function f (x;y) is not in one-to-one correspondence with the state of
the system, for the speci ¢ superpositions of phase states kich we consider here it yields
the main information about the phase structure of the state, and shares many properties
with a Wigner function. For example, the de nition (3.24) au tomatically implies that the
marginal probability distribution P (r) can be obtained by integration of f (x;y) along
the perpendicular direction, in analogy to the quantum optics Wigner function (see Table
3.1, and Eq.(A.43)-(A-44) in Ref.[135]).

Furthermore, the phase pro le of the state (i.e., the Husimi distribution on the equa-
tor of the Bloch sphere Q( = =2; )) can be qualitatively reconstructed by exploit-
ing the overlap property similarly to Eq.(3.12). An indicat ion of this fact for the four-
component cat state is provided in Fig.3.7. The reconstrudion shown therein is however

Bnly qualitative because we have used as an estlr’r]gte of Ighe phe pro le the function
2

~ ~ 1 kx). 2(ky)
x yI ey (xy), wheref(xiy) = 5= 7 «x y kx ky 1 W 1(2),%
eV 1(kx)e x 2(ky) js a discretized version of the functionf (x;y), and where the sum-
mation interval is taken to be a square instead of a circle.

Note also that the two-dimensional probability distributi onf (x;y) could be in principle
experimentally reconstructed. This should be done by recostructing the P (r) along
many di erent directions with the protocol presented in Sec.3.2.1.a; the knowledge of the
values assumed by this function for integerg allows to reconstructh ( ) with the use of
Eq.(3.16); then, the two-dimensional distribution f (X;y) can be reconstructed by using the
Radon inverse transformation given in Eq.(3.33). Note thata direct inversion of Eq.(3.24)
to obtain f (x;y) from P (r) would involve an improper integral, to be taken in the sense
of a principal value [130].

In the case of an external BJJ set-up, a more direct fashion tabtain the 1D pro les
P (r) in any direction of the (x0y) plane could be implemented, based on the measurement
of the atomic momentum distribution. This idea is drawn from the similarity between
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the expression for the momentum distribution in the two-mode model, Eq.(1.44), and
the expression for the angular momentum operator in the plae (xOy), Eq.(1.33). This
follow-up of our work is described in Chap. 6.



Chapter

Exploitation of useful entangled states

In this chapter we introduce atom interferometry, and we reall the criterium which de nes
the usefulness of a quantum state for phase estimation. In pécular, we recall that
squeezed states, macroscopic superposition states and kostates are useful quantum
states, and can be used in metrology to outperform the claseal limit of precision. In
this spirit, we then quantify the usefulness of various staes of the BJJ: rst, its ground
state, and then the states which are created during its time golution under the quenched
dynamics introduced in Sec.2.5.1. The details of the latteranalysis can also be found in
our work Ref.[25].

Dans ce chapitre nous introduisons linterEronetrie at omique, et nous rappelons
le crieres qui ke nissent l'utilie d'unetat quantiq ue pour l'estimation de phase.
En particulier nous rappelons que les etats comprinmes, l&s superpositions detats
colerents et lesetats de Fock sont desetats quantiquestiles, qui peuvent étre utilies
en netrologie pour surmonter la limite standard de pecision. Dans cet esprit, nous
guanti ons ensuite l'utilie de plusieurs etats quantig ues de la BJJ; tout d'abord,
de son etat fondamental, et ensuite des etats qui sont ces pendant levolution
dynamique trempee introduite en section 2.5.1. Les cetals de cette analyse peuvent
aussi étre trouves dans notre publication Ref.[25].

4.1 Atom interferometry

4.1.1 The general interferometric procedure

The goal in interferometry, which is part of the theory of estimation of a parameter is
to estimate an unknown phase shift' with the highest possible precision. Since there
is no observable associated with the phase shift, some othebservable is measured in
the output state; out of one or more such measurements, the aginal phase shift is then
inferred.

In atom interferometry, an input state is rst transformed i nto a superposition of two
modes, analogous to the two arms of an optical interferomete These modes acquire
distinct phases' 1 and' , during the subsequent quantum evolution. They are are nally

recombined to read out interference fringes, from which thephase dierence' ="' 4 >

61
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is inferred. The interferometric sequence can be describeldy means of rotation matrices
acting on the two-mode vector state, that is, by SU(2) rotation matrices in the Schwinger
representation introduced in Sec.1.4 [74]; the generatorsf the rotations are the angular-
momentum operators Jy, J}, and J, de ned in Eq.(1.22). The total number N of atoms
in the condensate is assumed to be xed.

Let us give a practical example. Consider as an initial stateof the interferometric
sequence the state in which all atoms are initially in one of he two modes - say, the mode
j = 1. The input state is then the Fock state jn = N=2i, coinciding with the coherent
state at the north pole of the Bloch sphere; an interferometic sequence with a di erent
initial state is analyzed for instance in Ref. [74]. A rotation of the atomic state around
the y-axes by an angle of = 2 radians is then applied to the input state, leading to the
phase statej = =2; = 0i. As explained in Chap. 1, this amounts in the internal
BJJ set-up to the application of a =2 pulse with frequency in resonance with the two
internal levels, while in the external BJJ set-up a rotation around J\y would be possible by
combining successive rotations aroundfy and J,. This plays the role of a beam splitter
in optical interferometers. Then the state is rotated around the z-axes by the free time
evolution, the phase accumulation being due to a di erent enegy shift between the two
states. For instance, placing an external BJJ in the verticd direction provides an energy
di erence of the two modes proportional to the gravity constant g [136]. This rotation
is the analog of the di erent phase paths in the two arms of an opical interferometer.
Finally, by recombining the two paths, the state is rotated again around the y-axes by
an angle of =2 radians. The consecutive rotations of the input state on tke Bloch
sphere are represented in Fig.4.1. The interferometric segnce can thus be described by
a succession of three rotations, and the output state of theihear interferometer is

i ooui = ezl T Hdah) iz e T i, (4.1)

wherej i,i is the input state, assumed here to be pure. Note that perforrnng rotations of
the kind presented in this section requires the non-linear ¢rm in the Hamiltonian (1.24)
to be ine ective. In the internal BJJ set-up the rotations are typically realized fast enough
to neglect the non-linear e ects induced by the interactions[8], while in the external set-
up Feschbach resonances may be employed. The residual e ect mteractions on the
interferometric sequence has been recently addressed in Re[137, 138].

In a typical experiment one has access to the probability digibution associated with
the operator J, measured with respect to the output state. Note however thatdue to the
argument presented in Sec.1.4.4 in practice the angular moantum in any direction can
be detected, by means of a suitable further rotation of the gantum state preceeding the
measurement off;. The quantum distribution of the measured observable depeds on the
phase shift' . In the simple example under consideration, the average vak hf3ioy in the
output state gives

Wyiow = hinje Hye " Hj i

, : ) N
cos' hfyiin +sin ' hfyii = ECOS‘; (4.2)

which displays Ramsey fringes as a function of the phase shif , and in the last step
we have made use of Eq.(1.26) for the input state consideredThe variance ( J\Z)gut =
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W20 (Wyiow)? reads
( 32 = hje 232 "5 i cod nfi;,
sin?' hffijn +cos' sin' I3y + JyJ2)iin

N .,
= —sin®": 4.3
" (4.3)
The phase shift is then determined by means of a statistical #timator, i.e. an arbitrary
function ' ¢st(n1; N2; i Ny ) of the m outcomes of the measurements on the output state,

in our example of the observabIeJ‘z. Such an estimator is said to beunbiased if, when
repeating many times the experiment, the average value obtaed corresponds to the true
value of the phasezshift, i.e.

Hoesti =  dnadnoiidng' est(na;no;iisnm)P(ngnog;nmj' ) =5 (4.4)
where for independent measurements the probability of the otcomes (1;nz; i nNm)
under the phase shift' can be expressed as a product of thikelihoods

P(Nj' )= jmj owii? = jnje " Fj i (4.5)
i.e. P(ng;ng;inmj' )= 2 P(nij' ) 1. An example of unbiased estimator is the max-
imum likelihood ' y_ , i.e. the value of' which maximizesP (ny;nz;:::nmj' ) 2. Details

about the practical experimental determination of the likelihoods and the construction of
the corresponding estimator can be found in Ref. [139].
The phase precision, given by the mean square uctuations

(" )2 = dnidnadnm (M oestt ' est(N1; N2; :::::;nm))z; (4.6)

depends on the chosen estimator, on the input state and on theneasurement performed
on the output state. For the maximum likelihood estimator a possible choice is to take
the 30 % con dence interval.

A heuristic argument to calculate the phase precision, vall when the input state is
gaussian (as e.g. it is the case for coherent states and squed states) is based on linear
error propagation, which yields [14, 74]

L— ( J\Z)OUt .
dm\ziout:dl -
In particular, for the input coherent state jn = N=2i that we are considering in our
example, Egs.(4.2) and (4.3), Eq.(4.7) render
1

"= U pest= Pﬁ " SN, (4.8)

corresponding to the shot-noise limit [15], i.e. the typical precision obtained with the use
of coherent states. Here the su x \best" indicates that in ou r example of interferometric

scheme expressed by Eq.(4.1), the observablf which we are supposing to measure in
the output state yields the most precise estimation. We shdl clarify and generalize this

point it in Sec.4.1.3.

(4.7)

1We have denoted the average in Eq.(4.4) via an integral to be more general and include the case of
continuous outcomes. In the case of our experiment the values of the output are discrete and the integral
can be replaced by a summation.

2An alternative unbiased estimator, more suitable than the m aximum likelihood in the case in which
only few outcomes are available, is a baesyan estimator [16]
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Figure 4.1: Rotations on the Bloch sphere in the interferomé&ic scheme: the input co-
herent state at the north pole (green disk) is rotated aroundthe y-axes by an angle =2
(blue disk) and afterwards around the z-axes by the unkown phase (black disk). The
precision ' on the estimation of ' is larger than the size’ N=2 of the disk, representing
the angular momentum uctuations, divided by the radius N=2 of the sphere. In the
output state (red disk) the number operator is measured.

4.1.2 Use of squeezed states in atom interferometry

If instead of a coherent state we use as input state for the irgrferometer a squeezed state,
an enhanced precision in the inferred phase can be obtained4]. The squeezed state
should be suitably chosen, such that in the output state the uctuations in the measured
direction are reduced. This can be intuitively understood lty looking at Fig. 4.2: the
squeezing in they direction is translated in reduced uctuations of J, in the output
state, which lead to an enhancement of the precision in the pase estimation according to
Eq.(4.7). Indeed, it can be proved thatfor a squeezed state

" best = pn_W: A ' SN, (4.9)

where we recall that 4 is the squeezing parameter, de ned in Eq.(2.6). It follows hat the
squeezing condition 4 < 1implies ' pest < ' sn. Indeed, Eq.(2.9) provides a su cient
(but not necessary for more general states) condition for sorshot noise sensitivity [14] - in
addition to being a su cient condition for multiparticle en tanglement, as seen in Sec.2.3.1.
We stress that to take a full advantage of such a resource, thangular momentum operator
must be measured in the direction of squeezing in the output tate.

4.1.3 Craner-Rao lower bound and quantum Fisher informati on
The output state of a more general atom interferometer is
Nout() = € " Innne Iy (4.10)

where %, is the input density matrix and ‘h the unit vector representing the e ective
rotation axes associated with a given interferometric seqence. The likelihood is now
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Figure 4.2: Rotations on the Bloch sphere in the interferomé&ic scheme when the input
state is a squeezed state: the input state, squeezed alongédly direction (green ellipse),
is rotated around the y-axes by an angle =2 (blue ellipse) and afterwards around the
z-axes by the unknown phase' (black disk). The precision ' on the estimation of
' is of the order of the thinner axes of the ellipse, representig the angular momentum
uctuations, divided by the radius N=2 of the sphere. In the output state (red disk)
the number operator is measured, which renders clear that tB number uctuations are
smaller as compared to a coherent state.

P(j )=t E( )*u], whereE( ) is a general positive operator satisfyinng E()= 1.

It can be demonstrated [140] that a general bound - theCraner-Rao lower bound -
exists on the phase precision (') de ned in Eqg.(4.6), which under the hypothesis of
independent measurements and unbiased estimator reads

1
' F— = (4.11)
P F Ain;\j\n
h i R
where m is the number of measurements andc ~,;J, = d ——L1  is the

P( jr ) @P(@.j')
Fisher information [140]. This quantity clearly depends on the measurement( ) per-
formed on the output state. We can de ne the quantum Fisher information as the max-
imum value taken by the Fisher information optimizing over all possible measurements
E( ) [140, 141), i.e.
h i h i X 2
Fq /\In;j\n = maxXe )F Ain;\]’\n =2 7(%_‘_[::;:

I;m;p|+pm>0

jhljJhjmij 2 ; (4.12)

fj lig being an orthonormal basis diagonalizing § = P | pjlihlj (with pp 0 and P (o=
1). The calculation is detailed in Ref. [140], where it is ale demonstrated that the general
operator E () which optimizes the Fisher information reduces to a projetive measurement
- in our simple scheme, to the measurement of the collectiversyular momentum operator
in some direction. Note that the quantum Fisher information (4.12) still depends on the
input state and on the direction f of the interferometer.
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h i h i
Substituting the inequality F A ;Jn Fo “n;Jdn in EQ.(4.13) leads to a more
advantageous bound on the phase precision, i.e. the best mision that can be achieved
in principle for a given input state "j,
1
(" Jbest = F———,; (4.13)
P m Fo Ain;J\n

also called thequantum Crarer-Rao lower bound The saturation of the bound (4.13)
requires both a suitable classical post-processing on thm outcomes of the measurements
(e.g. the maximum likelihood estimation in the limit of larg e m [140]) and the knowledge
of the optimum observable to measure. This latter task can bedi cult as the optimum
measurement may depend on the phase shift itself [140, 141].

For pure input states j i,i, the quantum Fisher information given in Eq.(4.12) reduces
to the quantum uctuation ( Jn)2= h injd2j ini h injdnj ini2 of Iy,

h i

Fo i ini;dn =4( Jn)?: (4.14)

This allows to reinterpret the Cranmer-Rao lower bound (4.13) as a generalized uncertainty

principle
BN —91: ; (4.15)

2'm
in which the generator J;, of the transformation (4.10) and the phase shift' play the
role of two conjugate variables -' being here not an observable but a parameter [140].
For instance, for the phase statej ni = ] = =2; i the quantum uctuations in the
directions = 4, ¥, and 2 are equal to (N sin® )=4, (N cos )=4, and N=4, respectively.
According to (4.15), for this state the best precision that aan be achieved on the phase
shift for m = 1 corresponds to the shot-noise limit in Eq.(4.8).
Due to Eq.(4.13), the inequality
h [
Fo “midh >N (4.16)

is a necessary and su cient condition for sub-shot noise sesitivity (' Jpest < (' )sn-
In what follows, the input states satisfying this inequality are called useful states for
interferometry (or, more brie y, \useful states").

4.1.3.a Interpretation of the quantum Fisher information

The quantum Fisher information is related to the Bures distance [142]

dBures (M1: %) = 2(1 P F ("1 ™)); (4.17)
where q
F ("1 7%) = (tr] M M) (4.18)

is the delity, via the relation
dzBures(Ain; M) = FQ[Ain;\j\n](d' )? (4.19)

when two neighboring states are considered, one displaced/lil' from the other on the
curve (4.10) parameterized by' , i.e. &y = e 99 n A €dY 0 [140]. While Eq.(4.19) holds
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for a general density matrix, it is particularly simple to pr ove it for pure states. Consider
the displaced pure state

jgize i@ id J, %J’E)j ini: (4.20)

Then the delity (4.18) reduces to the overlap of the two states (as we have already seen
in Eq.(2.31)), and is given by

L Foli ini;J
FCmi e)=dhni aii? 1 (@)% d2=1 (@)2Felmlidl g
where in the last step we made use of Eq.(4.14). Substitutiomf Eq.(4.21) in the de nition
of the Bures metric (4.17) yields Eq.(4.19).

From Eq.(4.19) it can be seen that the quantum Fisher informadion has the meaning

daures (Min ;"' ) 2

of the square of a \speed"Fq["n; Jnl= , at which the state evolves along

the curve de ned by Eq.(4.10) in the space of density matrice when the parameter’
is varied [16, 140]: if one increases starting from ' = 0, the larger is quantum Fisher
information of the input state *i,, the faster the state (4.10) becomes distinguishable from
n, the smaller is the change in the parameter which can be detected. This is further
seen from Eq.(4.18), in which we see that the statg g i beccﬁ‘n_es orthogonal fromj i
when (d' )?Fq  1; for Fg N, this happens for d' 1= N, while for Fg N2,
ihinj ¢ij2 0O already for d' 1=N. Hence the bound (4.13) relates the problem of
estimating a phase shift in an interferometer to the problemof distinguishing neighboring
quantum states [140].

The link between the quantum Fisher information and the distinguishability of quan-
tum states has also been applied to study the Zeno e ect in Ref[143].

4.1.4 Interplay usefulness in phase estimation and entangl ement

It can be shown [15, 16] that for any separable input state {3, FQ[’\in;J‘ﬂ] N, so that
(4.16) is a su cient condition for ~ i, to be entangled according to the de nition in Eq.(2.1).
In other words, Fo N is an entanglement witness.

It is worthwhile to stress that the inequality (4.16) is not a necessary condition for
entanglement: indeed, there exists entangled states whicare not useful for interferometry,
that is, with a Fisher information Fo N [16, 76]. The criteria for entanglement and
sub-shot noise sensitivity are summarized in Table 4.1.4.

Because of the criterium (4.16) and the bound (4.13), the quatum Fisher information
can be seen as an entanglement parameter, quantifying the amunt of quantum corre-
lations useful for interferometry. Note however that Fq is not a proper entanglement
measure, because it violates one of the postulates which argpically required in the
de nition of a measure [144] - namely, it can increase underdcal operations [76].

The quantum Fisher information is bounded by N 2. This is easy to show for pure states
by noticing that the largest square uctuation of J}, in Eq.(4.14) is smaller or equal to
N 2=4 (see [15]); for mixed states this follows from the convexjt of Fg (see [16]). According

3strictly speaking, the term \witness" only applies for pure states, where Fo is an observable, being
given by the uctuations of the angular momentum operator. F or mixed states, the entanglement criterium
(4.16) still holds, but Fq is given by the more complicated expression (4.12).
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Phase estimation Entanglement
FQ [Ain] >N, ( ' )best < ( ‘ )SN FQ [/\ln] >N ) Nin Asep
2 [Ain] < 1) ( ' )best < ( ‘ )SN 2 [Ain] < 1) "n Asep

Table 4.1: Necessary and/or su cient conditions for sub-shot noise phase sensitivity in
an atom interferometer and multiparticle entanglement in terms of the quantum Fisher
information and spin-squeezing parameter.

to Eqg.(4.13), the best sensitivity that can be achieved in Inear interferometers [145] is

then
1

( "Dbest=( "HHL N (4.22)

This corresponds to the so-calledHeisenberg limit As it will become clear in the next
paragraph, this limit can be reached using highly entangledatoms as input state.

4.1.4.a Macroscopic superpositions

Macroscopic superpositions such as the NOON state de ned irEq.(2.13) provide an ex-
ample of states which are useful for interferometry accordig to the criterium (4.16), but
which are not recognized as useful by the squeezing critenn (2.9). Indeed, with the use
of Eq.(4.14) it is easy to derive
h i
Fo j nooni;J; = N2 (4.23)

which substituted in the quantum Craner-Rao lower bound (4.13) yields the highest
possible phase resolution, expressed by the Heisenberg Itin4.22).

It is instructive to compare this result with the value of the quantum Fisher information
for a statistical mixture of the same states, Nono = (jN; OihN; Qj + jO; N ihO; Nj)=2. The
latter is found with the help of Eq.(4.12) to be equal to N in all directions i in the (xOy)
plane and to vanish in the direction 2. Therefore, the scaling ofFq like N 2 for "nooN =
i noonih noonj is due to the presence of the o -diagonal terms Qoon ANONO =
(JN; OihO;Nj + jO;NihN; 0))=2. In Chap. 5 we will make use of this di erent scaling of
the quantum Fisher information with N, depending on the presence or absence of the
o -diagonal terms, to quantify the e ect of decoherence on macoscopic superpositions.

The two-component phase cat state shares the same value of é¢hquantum Fisher
information as for the NOON state, since it is simply a rotation of the NOON state on
the Bloch sphere, and entanglement is conserved bygollective local operations [76] (see
also section 4.2). The quantum Fisher information for macr@copic superpositions with a
larger number of components will be explicitly calculated h Sec.4.4.

The fact that macroscopic superpositions are useful for intrferometry can be ascribed
to the fact that their likelihood probabilities de ned in Eq .(4.5) display substructures
of order 1=N, which translates into a small angle of rotation needed to mé&e the state
orthogonal to the initial one [16]. For instance, for a NOON gate, the state shifted in the
J, direction by an angle' reads

"=y e

Nive
17

NlZ
NP4

o N,
j outi = € oo (4.24)
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which apart from a global phase factor is the same state as thene in Eq.(3.20), with

= N' . Its likelihood probabilities according to any direction in the (xOy) plane are
hence given by Eq.(3.22) with = N' , which as a function of' displays fast oscillations.
As a consequence, the overlajh inj ouij > = cos?(N'= 2) vanishes at' 1=N.

Finally, we note that the fact that the NOON state is recognized as entangled by
the Fisher information criterium, which for pure states reads 4( J,)2 > N according to
Eqgs.(4.14) and (4.16), may seem in contradiction with the satement that the inequalities
(2.3) are complete in the sense de ned in Sec.2.2: i.e., thahere is no other inequality
based on rst and second moments only capable of detecting ¢éangled states which are
not already detected by Eq.(2.3). It is indeed readily veri ed that the NOON state does
not violate such inequalities. The solution of this apparen \paradox" relies on the fact
that Eqg.(4.14) only holds for pure states; however, in order to establish that the state
under consideration is pure, and hence that Eq.(4.14) can bapplied, one should dispose
of higher moments, e.g. performing a quantum tomography, sdhat the contradiction is
removed [146].

41.4b Fock states

The quantum Fisher information of a Fock state can also be calulated with the use of
Eq.(4.14), and yields h i

Fo jni; & =N NE+1 2n? (4.25)

in any direction r of the (xOy) plane de ned by Eq.(1.33) 4. In particular, the twin-Fock
state jn = 0i is highly entangled as

Folin :Oi;j\r]: N N§+l (4.26)

is of orderN 2, and leads thus to the Heisenberg limit. The extremal Fock satesn = N=2,
instead, become separable as they coindice with the coherestates at the poles, so that
Folin= %i;%1=N.

In connection with the discussion presented in Sec.2.3.3,ewemark that in Ref. [85] the
dependence is studied of the quantum Fisher information of &ock state on the spatial
separation of the wells of a BJJ, when the degrees of freedonotbe exploited for sub
shot-noise interferometry are additional (internal) degrees of freedom.

4.1.4.c Squeezed states

The property that squeezed states are useful for interferoratry beyond the shot noise
limit, discussed in Sec.4.1.2, is readily demonstrated usg the concept of quantum Fisher
information. Indeed, as we shall see in Secs.4.4 and 4.3.he quantum Fisher information
of a squeezed state is approximatively given byfrq ' F [16, 25], where the parametel~
is de ned as

F == (4.27)

This indicates that for squeezed states the parameter§g and provide essentially the
same information (see also Fig.4.4). Furthermore, for thes states the Fisher information

“For what concerns the z-direction, since Fock states are eigenstates of the % operator, we obtain
instead Fq[jni; 3] =0 for each n.
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is maximum in a direction perpendicular to the one of minimum squeezing. This has a
clear physical interpretation: when the state is squeezedthe quantum Fisher information
is maximum in the direction of highest angular momentum uctuations, which is perpen-
dicular to the direction of lowest uctuations yielding the best squeezing (see Fig.4.2 for
a sketch).

Use of Eq.(4.13) yields Eq.(4.9) for the phase uncertaintydemonstrating the usefulness
of squeezed states for atom interferometry.

4.2 Optimum coherent spin squeezing and quantum Fisher
information

As it is clear from the previous discussion, both the quantumFisher information Fq

and the coherent spin squeezing parameter depend on the direction of the genera-
tor which de nes the interferometric sequence (4.10). For nstance, for a NOON state
Foli nooni;Jx] = Foli nooni;Jy]l = N, while Eq.(4.23) shows that the NOON state is
maximally entangled. Hence, in order to quantify the usefulcorrelations of a quantum

state, one needs to optimizeFq and over all the possible directions by de ning [76]
h [
2 [Ain] mnin r% [Ain] ; I:Q [Ain] mnaX I:Q Nns \j\n : (4-28)

Let us consider the 3 3 real symmetric covariance matrix [%n] with matrix elements

X (P pm)?

h i
<e HjJijmihmjJ:jli 4.29
O P jJijmihm;jJj (4.29)

NI =

i [Nin]=

Emp i+ pm>0

where fj lig is the orthonormal eigenbasis of {§ as in Eq.(4.12). According to standard
linear algebra, the maximum ofFQ["m;J\n] =4(M; [Nan]h) over all unit vectors f is equal

to
Fo[Nn]l =4 max: (4.30)

max being the largest eigenvalue of the matrix [Nn]. In the following it will be useful to
de ne also the matrix

Gi[ S+ i h findji (4.31)

whereh::i =tr( ::: %), with * being the system density matrix. Note that for pure input
states | ini the matrix j [| ini] reduces to the matrix Gj [j inih inj], which is easier to
compute than the more general expression (4.29). The optimm quantum Fisher informa-
tion is then given (up to a factor four) by the largest uncertainty of the angular momentum
operators J,, (see Eq.(4.14)).

For the sake of brevity, in the following we will omit both the adjective "optimum"
and the explicit dependence on the input state, designatinghe optimum coherent spin
squeezing and the optimum quantum Fisher information respetively by 2 and Fq, unless
where source of confusion.

4.3 Quantum Fisher information and spin squeezing in the
ground state

In this section, we calculate the squeezing parameter and th quantum Fisher information
in the ground state of the BJJ, modeled by the two-mode Hamilbnian (1.24). This pro-
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vides an indication of the usefulness of the ground state ofite BJJ for sub-shot noise phase
estimation in atom interferometry. The extension of the previous scenario to include the
e ect of temperature within the same simple two-mode model isdiscussed in Appendix C.

Let us focus on the case of symmetric modes = 0, corresponding to the vertical
section of the number uctuation phase diagram presented inFig.1.6. We start with the
analysis of the limiting cases, namely the limit of non-interacting atoms and the limit of
non-coupled modes, for which an analytical solution can be jvided; we will then turn
to the general case, to be addressed numerically.

4.3.1 Non-coupled modes

In the limit K = 0 (left bottom point in the diagram of Fig.1.6), the ground s tate is
the twin Fock state jn = 0i, as explained in Sec.1.5.1. Hence, the optimum quantum
Fisher information is given by Eq.(4.26), displaying aN? scaling, and it is optimum in
any direction contained in the (xOy) plane. The ground state in this regime is thus highly
\usefully" entangled.

The coherent spin squeezing along the axes in the same regime is an indeterminate
expression, since the coherence factor in the denominatorf &q.(2.6) vanishes, as well as
the number uctuations in the numerator. The limiting value for K ! 0 can be calculated
with second order perturbation theory. The calculation, detailed in Appendix C.1, yields
as a result that the ground state displays the largest squeeag degree of the phase diagram
in this limit, as anticipated in Sec.(2.4.1), namely

5 1

= - 4.32
i (4.32)

(see also Ref. [96]). Evaluating the Fisher-like paramete(4.27) yieldsF = Fq, given by
Eq.(4.26), showing that in this regime the two parameters povide the same information,
according to the discussion presented in Sec.4.1.4.c.

4.3.2 Non-interacting atoms

The ground state of the system in the limit of non-interacting atoms is, as already ex-
pressed by Eq.(1.37), the maximum eigenstate ofy, i.e. the coherent statej = 1i. Then
the ground state in this regime is separable, and the Fishemformation is Fo = N, opti-
mum in the plane (yOz). Correspondingly, the squeezing is isotropic in the plangxOy)
and its value is 2 = 1.

4.3.3 Intermediate regime

In the general case in which the parametersKk and of the Hamiltonian (1.24) are
competing, the values of the optimum quantum Fisher informaion and of the optimum
coherent spin squeezing have to be determined numericallylhe result is shown in Fig.4.3.
As already mentioned in Sec. 2.4.1, the ground state of the BDis always a squeezed state
at any point of the phase diagram with 6 0. Hence, for the discussion in Sec. 4.3.1,
Fo and provide the same information, which translates into the fad that no substantial
di erence can be seen between the two numerical curves.
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Figure 4.3: N = 10. Optimum quantum Fisher information (blue) and optimum Fisher-
like measureN= 2 (purple) as a function ofr = K= ( =1)at T =0. Top panels: zoom
at shorter r = K= scales. Blue gridline:K =0; =0 limit given by Eq.(4.26). Orange
gridline: shot noise limit Fo = N ( =0).



Qudantum Fisher information and coherent spin squeezing dung the quenched dynami&s

To summarize, the analysis based on the quantum Fisher infonation allows us to
conclude that, increasing the ratio between the tunneling ad the interactions, the ground
state undergoes a cross-over from a highly entangled statet &trong interactions (with
Fo' N 2=2) to a separable state (with Fo = N) when the coupling is dominating. This
analysis reminds of the studies of Refs. [147, 148], where antanglement measure is
used to analyze phase transitions in spin systems: by changj the external elds and the
coupling, the ground state crosses over from an entangled ate to a fully factorizable one.

A di erent use of the quantum Fisher information in the context of phase transitions
has been made in Ref. [149]. There, a metric based on the Fighinformation is used to
detect the line of phase transition, using the fact that perpendicularly to such a line the
state is changing with a maximal \speed".

The Fisher information in the ground state of the BJJ has also been studied in
Refs.[150{152], to explore the cross-over of the model whethe sign of the interatomic
interactions is changed from positive to negative.

4.4 Quantum Fisher information and coherent spin squeez-
ing during the quenched dynamics

We now address the question how much the quantum states prodred during the quenched
dynamics of the BJJ presented in Sec.2.5.1 are useful for iatferometry. For this purpose,
based on the discussion of the previous sections, we eval@athe quantum Fisher informa-
tion and the coherent spin squeezing parameter. The resultpresented in this section are
reported in Ref. [25]. In this section we are going to use thewsx \(0)" for the dynamical
quantities calculated in the absence of noise, in order to @gtinguish them from the same
guantities calculated in the presence of noise, which will b presented in the next chapter.

Since the atoms are in a pure statg ©(t)i during all the dynamical evolution, the
covariance matrix (© (t) associated with this state is thus given by Eq.(4.31), and aa-
lytical expressions can be obtained for the quantum Fisherriformation and the coherent
spin squeezing as a function of time.

We consider in particular the case of an initial coherent stae with =1, i.e. the
phase statej = =2; =0i. Thus, the quenched dynamics takes place along the equator
of the Bloch sphere only, and the average value of the numbemerator is zero at all times,
as we have seen in Sec.2.5.1. Furthermore, the state is alstways symmetric with respect
to the y direction. Hence, use of Eqgs. (2.19) leads to

hfy (1)i©@ = hfy1)i©@ =o0; (4.33)

whereh:i{o) =tr( ::MO(t)). Using also Eq.(2.20), the angular-momenta covariance mtrix
(4.31) reads

1
20 0 0
OC)= 0 NN Dcod 22) (N+1) NN Deod 2( ysin( )
0 N D codl 2( )sin( ) N

(4.34)
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where we have introduced the rescaled time =2 t=T = t and
h i
Oy h( 53O = N§ (N 1)cod 22 )+(N+1) 2NcogN V() : (4.35)

The two other eigenvalues of the matrix (4.34) are given in tems of its elements 50) by
r

2
o O, 9 O 0 iy 02

= : 4.36

5 (4.36)

or, more explicitly,
N
90y = g (N Deod' 2@2)+(N+3)
q

(N 1) (coN 2(2) 1)2+16co?™N 2 ( )sin?( ) : (4.37)

We remark that the matrix (4.34) has the property that its eig envalues at times and
(and, similarly, at 2 ) coincide, hence it su ces to discuss its behavior at times
t belonging to the interval [0; T=4] (i.e., 2 [0; =2]).
According to Eq.(4.30), the quantum Fisher information is given by the largest eigen-
value,

Fo( )=4max ©O(); 9() : (4.38)

We demonstrate in Appendix B.1 that the coherent spin squeeing (2.6) is always optimum
along a direction contained in the (yOz) plane. The optimal spin squeezing parameter

(4.28) is thus related to the lowest eigenvalue (0)( ) of the submatrix @ 0( ) obtained
by removing the rst line and column in the matrix (4.34). Usi ng Egs.(4.33) and (2.20),
we obtain

490y

N @)

The direction of optimum squeezing is given by the eigenvectr associated with the eigen-

value © ,

@2 )= (4.39)

AQ)=mOC)y=" sin @()g9+cos 9()2: (4.40)

From the diagonalization of the matrix (@ we nd

0 1
(0) (0) (0)
yZ (yy ) A

[ |
0)2 0 0 0)2 0 0
Py 2 @Ry O

i al

n® = @o4 : (4.41)

©
© - "o and then to the angle

which, via comparison with Eq.(4.40), leads to tan

of optimization of the squeezing parameter
!

9
yy |
. (0)
= :—2Larctan 4y J:0i (4.42)

0 0
hffl() h J2i©
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wheref ; g denotes the anticommutator, and where in the second step wedve used the
trigonometric identity tan2 x = 2tanx=(1  tan?x).

The direction of optimization ’h,(zo) of the quantum Fisher information is either given

by % (if )(<0) > £0)) or by the eigenvector M\E,O) associated with the eigenvalue £0) (if
>(<0) < 50)). The latter condition is satis ed at times shorter than t , see Appendix B.2.

As both these eigenvectors are orthogonal t® (since the matrix © is symmetric),
it follows that coherent spin squeezing and quantum Fisherformation are optimized in
perpendicular directions.

Figure 4.4: a) Coherent spin squeezing and b) quantum Fishemformation during the
guenched dynamics of a BJJ withN = 100 atoms as a function of time (in units of the
revival time T) in the absence of noise. The dashed line in the second panatpresents
the parameter F = N= 2. Horizontal and vertical gridlines in panel a): minimum of
the coherent spin squeezing and corresponding timénin (see text). ¢) Non-optimized
guantum Fisher information along the x-axes (dashed line) and they-axes (dotted line).
For comparison, the optimum quantum Fisher information of panel b) is also shown (gray
solid line). The vertical gridlines correspond from right to left to the time t = tg of
formation of the rst macroscopic superposition, see Eq.(28);tot = t , see Appendix B.2;
andtot = T=4 tts. The horizontal gridline shows the shot-noise leveFq = N. d) Angles

© in Eq.(4.42) (dashed line) and (FO) (solid line) giving the optimizing direction for the
spin squeezing and the quantum Fisher information as a fundbn of time.

At short times, when the state of the system is a squeezed stat(see panels (a) and (b)
in Fig. 4.4), this can be understood again with the argument dscussed in Sec.4.1.4.c; i.e.
that for a squeezed state the quantum Fisher information is naximum in the direction
of maximal angular momentum uctuations, perpendicularly to the direction of lowest
uctuations yielding the best squeezing. In this short-time regime, the two parameters
provide essentially the same information. This fact can be isualized in panel (b) of
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Fig. 4.4, in which at short times the Fisher information (4.38) and squeezing parameter
F = N= 2, calculated with the help of Egs.(4.39), (4.35), (2.20) and(4.37) are shown to
coincide. A rigorous demonstration of this fact can be foundn Ref.[25].

Attime ©) =31%6N 2% the squeezing parameter reaches its minimum value, {2 )2
(3=N)?3=2, as was calculated in Ref.[11].

At larger times, the squeezing parameter grows to values layer than one (that is,
F decreases and becomes smaller thad). This does not imply that the atomic state
is not useful for interferometry since, as described in Se4.1.2, the squeezing criterion
is only a su cient condition for useful entanglement [16]. Indeed, the quantum Fisher
information increases above the shot noise levefg = N until it reaches a plateau, at
a time of order of t;s given in Eq. (2.28), corresponding to the appearance of the rst
macroscopic superposition. The value of the Fisher informgon on the plateau can be
easily calculated since in the time regimet t T=4 t with t t;5, the covariance
matrix (4.34) takes the simple following form in the limit N 1

1
IN(N +1) 0 0
OCy @ 0 IN(N+1) 0 A (4.43)
0 ZN
Hence the Fisher information has a plateau at the value
0 N(N +1)
FP() = e (4.44)

We have shown in Appendix B.1 that if N is even, the optimizing direction n(FO)( ) of the
Fisher information changes as increases from the {Oz)-plane to the x-axes at the time

' arccos(E 3) de ned by >((0)( )= 50)( ). Note, however, that any direction in the
(xOy)-plane gives a Fisher information almost equal to the optimzed valueN (N +1) =2, as
it is clear from the structure of the matrix (4.43), leading t o almost degenerate eigenvalues

>(<0) and 50). This re ects the structure of multicomponent superpositions, symmetric in
the (yOx) plane. This result is visualized in panel c) of Fig.4.4, diplaying the Fisher
information in the directions & and Y.

It is seen in Fig.4.4 that Fo displays a sharp maximum att = t, = T=4, in corre-
spondence to the two-component macroscopic superpositiof2.26), which has the highest
possible Fisher informationFq = N2, as expected in view of the discussion in Sec.4.1.4.a.
As one approaches the two-component superpaosition, the ophizing direction changes to
the x-axes, which is the direction of maximal angular momentum uctuations for the state
(2.26).

In panel d) of Fig.4.4, the angle © giving the direction of highest spin squeezing in the
(yOz) plane is represented as a function of time together with thecorresponding angle

(FO) for the Fisher information, which gives the optimizing direction h(FO) of the Fisher
information according to Eq.(2.8). Table 4.4 summarizes tle aforementioned results.

To recapitulate, during the quenched dynamics of the BJJ, sarting from a (separable)
phase state, due to non-linear interactions entangled stas are formed. The characteristic
time for squeezing scales as / N 273, which leads to typical values of the quantum
Fisher information of Fo  F / N 533 while the rst macroscopic superpositions appear
att/ N 72, leading to a scalingFq / N2. The quantum Fisher information reaches its
maximum value Fo = N 2att=t,= =2 (independent onN), in correspondence of the
formation of the two-component superposition. Hence, in tle perspective of exploiting
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Time Optimum quantum Fisher information Fqg Optimizing direction
t=0 N N degenerate in yOz) plane
\.1 S —

0o t. & 4O0) N1+ N2iN 14+ N2 cos Q)9 sin Q)2
+t tmin 4 9() (see above) 'y
tmin <t . tfs 3N <Fq. 0:432N°7 K
ts t t Fo' N(N+1)=2 "
t <t T N(N+1)=2. Fq Fq(T=4)= N? 2
Time Optimum coherent spin squeezingF =72 Optimizing direction
t=0 N degenerate in yOz) plane
0 t. & F' Fo sin Q)9 +cos Q1) 2
Nt tmin N<F  F (tmin)=2N5>33 23 '
tmin <t . ts Ne ¥2. F < 2N®533 2= A

t ot N=3N=2 1 F N A
t <t O<F <N=3\21 -

Table 4.2: Optimum coherent spin squeezing parameter, opthum gquantum Fisher infor-
mation and corresponding optimizing directions during the quenched dynamics of a Bose
Josephson junction in the absence of noise fax 1. The arrows indicate whether the
function is increasing or decreasing with time in a given tine interval. In this Table, N
is taken to be even. The calculation of the numerical prefaatrs and the short-time, large
N expansion ofFq in the second and third line can be found in Ref.[25].

the gquantum state created during the quenched dynamics usig it as an input state of
an atomic interferometer, in the absence of any noise soursehe highest phase resolution
is reached using the state formed at = t, = =2 - the two-component phase state. In
Chap. 5 we will address the question how this situation is moded by the presence of
noise.
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Chapter

Decoherence of useful entangled states

Cold atoms experiments are a ected by various noise sourcesyhich limit the lifetime of
the condensate and induce spurious e ects, eventually men#ug the feasibility of quantum
information protocols. The main sources of noise in cold atms experiments are particle
losses [22, 23], phase noise [24, 25], collisions with theslratoms [26, 27], interaction with
the electromagnetic eld [28, 29], and random uctuations of the trapping potentials [30].

In this work we will focus on two sources of noise: phase noisad particle losses, which
seem to be the major noise sources in the experiments of Ref8, 9, 13]. We will focus in
particular on their e ect on the creation of useful states (squeezed states and macroscopic
superpositions) based on the quenched dynamics of the BJJtiroduced in Chap.2. We will
address how much the useful quantum correlations of such stes, which allow in principle
to outperform the classical limit of precision in the interferometric applications presented
in Chap.4, are degraded by the presence of noise. We will addss the e ect of phase
noise in Sec. 5.1, while particle losses are discussed in SB@2. The concluding section 5.3
presents an analytical method to treat both noise sources othe same footing.

Before starting with this program we remark that in this chap ter we will focus on the
e ect of phase noise and particle losses on thpreparation of the useful input state only.
For studies of the e ect of noise during the rotations of the interferometric procedure
presented in Chap. 4, or during the measurements, see referees [153] and [145].

Les experiences d'atomes froids sont a ecees par plusi@rs sources de bruit, qui
limitent le temps de vie du condensat et qui induisent des ets non dsies, en
menacant la faisabilie des protocoles d'information quantique. Les principales sources
de bruit sont la perte de particules [22, 23], le bruit de phas[24, 25], les collisions avec
les atomes thermiques [26, 27], l'interaction avec les chaps electromagretiques [28,
29], et les uctuations akatoires des potentiels de pegge [30].

Dans cette these nous nous focaliserons sur deux sources Heuit: le bruit de phase
et la perte de particules, qui semblent étre les sources deuit dominantes dans les
experiences des Refs. [8, 9, 13].

Nous focaliserons en particulier sur leur e et sur la ceation détats quantiques
utiles etats comprimes et superpositions macroscopiqes) base sur la dynamique
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trempee de la jonction introduite dans le chapitre 2. Nous dorderons comment les
corelations utiles de cesetats, qui permettent de surmater la limite de pecision
standard dans les applications a l'interkronetrie pr esenees dans le chapitre 4, sont
cegrackes par la pesence de bruit. Nous aborderons I'eet du bruit de phase dans la
Sec. 5.1, tandis que les pertes de particules seront exaries en Sec. 5.2. La section
conclusive pesente une nethode analytique qui permet déraiter ces deux sources de
bruit en méme temps.

Avant de commencer avec ce programme, nous faisons remarqugue dans ce
chapitre nous nous interessonsa I'e et du bruit de phase etde la perte de particules
sur la peparation de letat quantique utile seulement. Pour desetudes de & et du
bruit pendant les rotations qui composent la squence int&ronetrique pesente dans
le chapitre 4, ou pendant les mesures, nous renvoyons auxBeences [153] et [145].

5.1 Phase noise

In this section we consider the e ects of phase noise on the stas formed during the
guenched dynamics of the BJJ. The original work associated ith this subject is presented
in our Refs.[24, 25]. First, we model phase noise, and we aryak its e ect on the visibility.
Then, we show that macroscopic superpositions of phase st@s$ in BJJs are relatively
robust with respect to phase noise, their decoherence rateding independent on the total
number of atoms in the condensate. Then, we show that these tm-lived states can
be useful in interferometry to improve phase sensitivity een in the presence of phase
noise, by calculating the quantum Fisher information and the coherent spin squeezing as
introduced in the previous chapter. In particular, we compae the best possible phase
sensitivity obtained with the state of the BJJ at the times of formation of macroscopic
superpositions to the one obtained at earlier times when scgezed states are produced.
This allows us to determine which are the most useful quantunstates for interferometric
applications in the presence of phase noise. Throughout tkichapter, in the same notation
as in the previous one, we will denote by a sux \(@" the quantities calculated in the
absence of noise.

5.1.1 Model

Phase noise is caused by a randomly uctuating energy di erege E (t) between the two
modes, which is modeled by taking the parameter in the Hamiltonian (1.24) as stochas-
tically time-dependent. In the single-well experiment [8] (internal BJJ), such a noise is
induced by uctuations of the magnetic eld, which by quadratic Zeeman e ect cause a
shift in the hyper ne energies (see EQq.(1.3)), whereas in tk double-well experiment [13]
(external BJJ) it is induced by uctuations of the orientati on of the laser beam producing
the double-well potential with respect to the trapping potential (see rstline in Eq.(1.17)).
We will be especially interested in the e ect of phase noise othe production of useful en-
tangled states (squeezed states and macroscopic supergasis of phase states) during the
guenched dynamics of the BJJ, according to the protocol repded in Sec.(2.5.1). Hence,
we focus on the time-dependent Hamiltonian

Ho= 57 ok (5.1)



x5.1 Phase noise 81

Note that by the de nition (1.25) also a uctuation of the int eraction dierence U; U,
would provide a stochastically varying term (t) in the Hamiltonian (5.1). We will however
neglect such uctuations, as this seems justi ed in the expeiments [8, 9, 13].

5.1.1.a Derivation of the density matrix in the presence of phase noise

Even in presence of phase noise, the time evolution followgnthe quench can be exactly
integrated, since the noise term (t)J; commutes with the noiseless Hamiltonian J'\z2 [24].
For a given realization of the stochastic process (t), the state of the atoms at time t is
given by EQ.(2.29); i.e, the e ect of a uctuating energy imbalance in a single realization
is a rotation of }Qte state j ©(t)i formed in the absence of noise, given in Eq.(2.19), by a
phase (t) = od () around the z axes. R

The system density matrix is then obtained by (t) = j (t)ih (t)j= dP[ ]j (t)ih (t)j,
where the overline denotes the average over the noise reations. The introduction of
the distribution probability for the ranozlom angle (1),

fFGit)= dP[ (0] ( (1) (5.2)

allows to write it as Z,
Nty= df (jt)e O Tz (5.3)

1

where A9 (t) = j O(t)ih ©(t)j is the density matrix in the absence of noise. Let us
compute explicitly the probability distribution f (;t ) of the angle (t), de nedin Eq.(5.2)
as an average over the noise realizations induced by the futicnal P[ (t)]. By Fourier
expansion we have
z Z, L2 Z, | |
f(;t)y= dP[ (1)] ()d =5 dP[ (V)] due v Wl : (54)
0 1

— R i
We are left with the evaluation of the Fourier transform of th e averagee v () = dP[ (t)]e v O,
This is readily done under the hypothesis of a gaussian noissince for gaussian variables

— —_ u2_ .
with =0 one haseV =e 2z °, the average in Eg.(5.4) can be worked out as

el (0 = giu((® Meu O

_ e B M2 u (. (5.5)
Let us introduce the noise correlation function
—_— 2 2
h(; 9= () (9 = E() E(9 E- (5.6)
where = E+(N 1)(U, U;)=2. Note that h(; 9 depends only on the time di erence

Opy the stationarity of the stochastic process (t), which also implies (t)= (0) ;
moreover, h(; 9 decreases to zero at su ciently long times. De ning also the variance
Z t z t
a?t)=  d d N 9 (5.7)
0 0
- FETRC) 2Ry Rig o 9 ut w2 a2(t) yu T ;
allows to rewrite Eq.(5.5) ase U () = g 2 od od ™ Jgut = g Fa(dut gypsti-
tution of this expression in (5.4) leads to
VA
171t i+ Tu. v
fit)= o dud( * Dug 22 . (5.8)
1
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which, after performing the gaussian integral, gives nally

(+1)?
F(it)= p— e 770 (5.9)
2al(t)

Equation (5.9) is a gaussian distribution, in which the noise parametera(t) plays the role
of the variance. From Eqgs.(5.3) and (5.9) we can see that the ect of phase noise after
averaging over many realizations of the stochastic process(t) is a spread of the state
with respect to the noisless case, combined with a possibldgid rotation around the 2
axes if 6 0. A visualization of such an e ect is represented in Fig.5.3(where = 0) for
a two-component and a four-component phase cat states.

By projecting Eq.(5.3) on the Fock basisfj nig we obtain

a’(t)y(n _n9?
2

mjAt)ind = e gt MYmjr0 (t)jng: (5.10)

Equation (5.10) contains all the information about the state formed in the presence of
phase noise. Several peculiar properties of phase noise ile deduced by the structure
of Eq.(5.10) in Secs.5.1.2-5.1.4. Notice that under our hypthesis, a(t) and thus the
decoherence factor (given by the rst exponential in the right-hand side of Eq.(5.10)) is
independent on the number of atomsN in the BJJ. This is in contrast with the usual
scenario for decoherence which predicts stronger decohe® as the number of particles
in the system is increased. As a consequence of this fact, nrascopic superpositions of
phase states, of the form (2.25),(2.27), are robust againgbhase noise, as will be detailed
in Sec.5.1.3 below. A generalization of this model to treat nn gaussian noise is discussed
in Ref.[24].

5.1.1.b Variance in di erent noise regimes

Before analyzing the e ect of phase noise on the state of the aims we brie y discuss the
properties of the noise variancea(t). First, let us note that Eq.(5.7) can be rewritten as
z, Z
aty=2 d  dh( % (5.11)
0 0
Let us denote byt the largest time such thath( )' h(0)= (0)? 2 and by T. the
characteristic time at which h( ) vanishes. If the time evolution occurs on a short scale
such that t <t ¢ then the colored nature of the noise plays an important role fion-markov
regime) and from Eq.(5.11) we obtain
z, 2z
a’(t)' 2 d d %)= h)t>= 2% (5.12)
0 0

If instead the time evolution occurs on a time scale much largr than the noise correlation
time T. we obtain the same result as for white noise,
Z,
a’(t)' 2t h(y)dy; (5.13)
0

which corresponds to the Markov approximation.

The e ect of phase noise can be patrtially suppressed by using so-called spin-echo
protocol [154]. This strategy was followed in a recent expeément [8]. The analysis dis-
cussed in Sec. 5.1.1.a can be adapted to take into account thiesidual e ect of phase noise
when spin echo pulses are applied, see Appendix D.1.
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5.1.2 E ect of phase noise on the visibility

Under the e ect of the noise, the visibility (1.45) acquires an additional decaying factor
due to the above-mentioned phase spreading. Indeed, one dgsobtains from (5.10)

(1) = Ngtr[/\(t)\j\x] =e Feos T O (5.14)

The dephasing factor e a(1)=2 displays a Gaussian decay at short timeg  t;, corre-

sponding to the universal regime of Ref. [93], and an expondial decay at long times

t T. (Markov regime). A Gaussian decay of the visibility (5.14) has been observed
experimentally in the internal BJJ even at small values of the interactions [62]. This

indicates that in the time regime 0 t. tss in which the experiment was performed the
phase noise has strong time correlations (colored noise)presponding to a non-markovian
regime. An estimate of the noise is extracted from the t of the visibility decay data in

Fig.4.15 of Ref. [62] to our prediction given by Eq.(5.14). The resulting value for the

noise correlations ish(O)l=2 ' 8Hz, obtained for a small value of the interactions , thus

in a regime in which the decay is mainly due to the phase noise.The e ect of phase

noise on the visibility decay in this regime is shown in Fig.51, for experimentally relevant

parameters [62].

1.0|_.‘ ___.____--;~~ T T T]
O,8r R ~~-~-‘~-~~~--
_, 0.6}
T
0.4}
0.2}
0.0k . . . : 2
0.00 0.05 0.10 0.15 0.20 0.2¢
t L
Figure 5.1: Visibility (t) as a function of time (in units of seconds) for = 0:05Hz,

0:13Hz, 0:25Hz (from top to bottom), N = 400. Solid lines: decay of (t) in Eq.(5.14)
in the limit t 1and t 1 with a?(t) = h(0)t? and h(0)} = 8Hz. Dashed lines:
decay of ©(t) under the unitary evolution only. For small values of the interactions the
decay is mainly due to the phase noise.

5.1.3 E ect of phase noise on multicomponent macroscopic su perposi-
tions of phase states

We proceed now to study the nature of the state of the atoms undr phase noise at the
speci c times tq which in the noiseless BJJ correspond to the formation of mulcomponent
superpositions of phase states. We rst illustrate the e ect of the noise on the structure of
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the density matrix, then we visualize our results by means othe probability distributions
of the eigenvalues of the angular momentum operators prested in Sec.3.2.1.

5.1.3.a Structure of the density matrix in the Fock basis

In the absence of noise the quenched dynamics of the Bose Jpkson junction leads to
the formation of coherent superpositions withg components as given by Egs.(2.25),(2.27).
The corresponding density matrix "9 (tq) = | ©(tg)ih ©(ty)j has the form O (t,) =

kKO ’\(k?()o(tq), where the indicesk and k®label the various components of the superposition
and ’\fi)o(tq) = q 1ck;qcko;qj =2, kqlh=2, yogj. For general decoherence processes one
expects that, by increasing the intensity of the noise, ©) (tq) will evolve into the statistical
mixture of phase states "(k?() (tg); moreover, the larger the atom numberN the weaker
should be the noise strength at which this occurs [155]. It wa found in [24] that for
the phase noise considered in Sec.5.1.1.a the actual sceioafor decoherence is di erent
from the usual one. Indeed, the typical noise intensity at which the coherences between
distinct phase statesj = 2, (.qi are lost turns out to be independent on the atom number.
This is a consequence of the fact that the decoherence facta(t) is independent onN, as
shown in Sec.5.1.1.a. Furthermore, for superpositions wit a large number of components
g, this intensity is larger than the noise intensity at which phase relaxation occurs. In
what follows we discuss the origin of this fact.

Since the noise is expected to destroy correlations betweedi erent components of

the macroscopic superposition, we decompose the density inix in its diagonal (intra-
component) and o -diagonal (intercomponent) parts, focussng on the latter one to quan-

tify the decoherence. We have then @ = A + 20 \yhere

% 1
0 0
Ditg=" Qte) (5.15)
k=0
and .
X
0 0
o (tg) = Nolta): (5.16)
k:k%=0; k6 kO

Let us consider for simplicity the caseq,N evep; the general case can be found in Ref.[25].
Using Egs.(2.25) and (1.28) and the identity {_» €k M =d = qif n = n® modulo g
and 0 otherwise, the matrix elements of f,O) (tg) in the Fock basis are

8 1 1
21 N 2 N 2
+ +

(O e s — if %= n+
mirP (tind = 2N N4 Napo Pa (5.17)
"0 if N6 n mod g
wherepis an integer. By using ’f)og(tq)z e i Ji=q = =2 =0ih = =2, =0j& ¥
"go) (tg), we also get
8
20 if "°= n+ pq
mj/\(()od) (tq)jnq = eia(n(IZ n2) N 3 N 3 £ 106 g (5.18)
: T N? +n N7 +no ITn n mod g
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The use of Eq.(5.10) allows to obtain the corresponding exmssions in the presence of
noise,

. . agtn 9?2 .
jgod(tg)ind = e = 2 mj"fféd(tq)mq (5.19)

up to a phase factor irrelevant for decoherence, witteg ~ a(tg). In the strong noise limit
aqg 1, the o -diagonal part ” o4 of the atom density matrix vanishes whereas the diagonal
part *4 tends to a matrix which is diagonal in the Fock basis,

Nty ! ™M

N=2
1 ':'L jnihnj (5.20)

n

This means that for large noise intensity (or for long times) the phase is uniformly
spread on [Q2 ], as is the case for Fock states (Fig.5.3, right panels).

From Egs.(5.17) and (5.18) we obtain a peculiar result, i.e. that the diagonal part
of the atom density matrix decays faster than the o -diagonal part for increasing noise
strengths [24]. This is readily explained by examining the gucture of the noiseless density
matrices in Egs.(5.17) and (5.18). The rst o -diagonal elements of “4(tg) in the Fock
basis are those for whictn®= n g while the rst o -diagonal elements of " o4(tq) satisfy
n®= n 1. Hence, it results from Eq.(5.19) that the o -diagonal elements of % vanish
at the noise scalea ' 1=q while the o -diagonal elements of %y vanish at the larger
noise scalea ' 1. In other words, the noise is more e ective in letting %4 converge to
A than in suppressing 34, and this e ect is more pronounced the higher is the number
of components in the superposition. An illustration of such anomalous decoherence is
given in Fig.5.2. The middle panels show that for intermedide noise strengths, 4 has
already acquired its asymptotic diagonal form (5.20), whike 7,4 has not yet vanished. As
we will see in Sec.5.1.4 below, these results imply that, fomoderate strengths of phase
noise, macroscopic superpositions are formed and provideigntum correlations useful for
interferometry.

5.1.3.b  Husimi distribution

The phase relaxation of macroscopic superpositions of phasstates can be visualized by
means of the projected Husimi distribution Q( = =2; ) introduced in Sec.3.1.1.c. For
a two-component phase cat state it is particularly simple to calculate this function, as it
is exactly given by the diagonal part of the density matrix "4(t2) only. The calculation is
reported in Appendix D.2, and gives as aresult for =0, N 1, andN ¥ a,
N 1=2

P

2a3

Q5 )= TaZQcost 3 ;e ; (5.21)

1
with 3 the Theta function [156] and Qcost = P ((15++'N\' )) the distribution of the state
(5.20) (see Appendix D.2). Q( =2; ) is plotted for various values of a, in Fig.5.3. In the
absence of noise it shows peaks at = 0 and , which correspond to the two coherent
states of the superposition. The peaks are smeared at increimg a, and nallyat a, 1

the Husimi distribution reaches the at prole Q(=2; )= Qcost-
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Figure 5.2: Matrix elements of the diagonal (intracomponen) part ” 4(t3) (panels a),c),e))
and the o -diagonal (inter-component) part ~ 4(t3) (panels b),d),f)) of the density matrix
in the Fock basis at time t = t3 as the noise is increased fronaz = 0 (a),b)) to az3 =0:9
(c),d)) and az = 2:9 (e),)).
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0.6 0. 0.
0.4 0.4 0.4
0.2 0.2\/\/ 0.2
O.0 5 b O.0 5 b O.0 5 b

Figure 5.3: Phase relaxation of theq = 4 and q = 2 macroscopic superpositions in the
presence of noise sketched along the equator= =2 of the Bloch sphere. Top panels:
q=4(ts = T=8) and a, = 0, 0:64, 205 @rom left to right). Middle panels: g = 2
(to = T=4) for the same noise intensities 01 d h( ) in the Markov regime (a; = O,
0:9, 29). The circle sizes illustrate qualitatively the phase didribution f (;t 2.4). For
intermediate noise (middle column), the superposition is toser to the steady state (last
column) for q = 4 than for g = 2. Bottom panels: Husimi distribution Q( = =2; ) for

q = 2 for the same values ofa,. Here =0 and N = 10.
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5.1.3.c  Angular momentum distributions

The anomalous decoherence of the atomic state can be visuadid by plotting the prob-
ability distribution P (r) of the eigenvalues of the angular momentum operatorsf; =
JX sin J\y cos in an arbitrary direction of the equatorial plane of the Bloch sphere. In-
deed, as presented in Sec.3.2.1, the presence of correlasoamong the components of the
superposition formed at time tq is revealed by interference fringes in these distributions
which would be absent if the atoms would be in a statistical mkture of phase states.

The probability distribution of J) in the state ~ can be calculated by a straightforward
generalization of the calculation in Sec. 3.2.1 as the Fouer coe cient of the characteristic
function h (;t)=tr[ e Jr N(t)], namely,

1 Z
P(in= o> dh( t)e’ (5.22)

For the quenched dynamics of the Bose Josephson junction irhe presence of noise, the
characteristic function reads

N2
h ()= Gno()M"@ ()inG Dron( 55 ) (5.23)

nn%= N=2
where gono(t) = e @M 19?2t 1) gnd Do( ; ;) is the matrix element of the

rotation operator e 'J in the Fock basis, which is given by (see e.g. [71], Eq. (D6))

mian:ZXnO;N:2+ng 1 1
Dan( ;)= mie ¥ jni= Coc T N
k=max fO;n n% z z
N ! ] 2k+n® n N+n n® 2k . 4
M- N - sin = cos— gl (M),
(3 n% KI(ZF+n Kkki(k+no n) 2 2

The probability distribution in the absence of noise derivad in Sec. 3.2.1 is recovered by
setting gnno(t) = 1 in Eq.(5.23).

As an example, the distribution P ,(r;t3) = jhn, = rj ©(t3)ij2 of the eigenvalues
of Jy (satisfying Jxjny = ri = rjn, = ri) is shown in Fig.5.4 for the three-component
superposition of phase states, for = 0. As we have presented in Sec.3.2.1, in the absence
of noise (panel a)) its pro le displays two peaks corresponihg to the projections on the
x-axes of the phase state§ = =2, = y3i, k3= , =3 (the \phase content" of
the state, accounted for by %(t3)) and interference fringes, due to the coherences between
these phase states (contained in gy(t3)). In the presence of noise (b)-c)), the phase
pro le of each component of the superposition spreads and th characteristic peaks of
the distribution are smeared out (phase relaxation). At strong noise intensities, 3(tq)
approaches the steady-state given by the density matrix (80), which is symmetric in the
(xOy)-plane. As a consequence, the corresponding probability istribution P (r; 1)

P(r; 1) =tr[~ 1 jny = rihny = rj] is independent on . In the semi-classical limit N

1, this distribution can be easily calculated sinceJ} takes the valuesN cos =2 in the
phase statesj =2; i apart from small relative uctuations of the order of 1= N (see
Eq.(1.30)). Hence, recalling that /4 is a statistical mixture of the states j =2; i with
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Figure 5.4: Probability distribution P -(r;t3) of the eigenvalues ofJy for the three-
component coherent superposition (solid lines) at incredag noise strength fromaz = 0
(@), to a3 =0:9 (b) and az = 2:9 (c) with N = 20 atoms. The blue dashed curves indicate

the large-noise intensity and largeN limit given by Eq.(5.24).
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equal probabilities (see Eq.(5.20)),

22 N 1 1
P(rr1)=c d Ecos r = —q? (5.24)
0 N r2
2

where ¢ is a normalization factor. The semi-circle law (5.24) is indcated by the blue
dashed curve in panel c) of Fig.5.4. For nite N, one nds

b1ye N1 Beior bader
el +r [N +1]

N|Z

On the other hand, the vanishing of %4(tq) tends to diminish the contrast of the
fringes in the distribution P (r;t), until they are completely washed out in the asymptotic
distribution (panel c) of Fig.5.4). The fact that phase relaxation occurs at a lower noise
strength than decoherence is evident in the panel b), wherelhte pro le of P (r;t) is close
to the asymptotic distribution P(r; 1 ) corresponding to 4 , while interference fringes due
to "oq(tq) are still visible.

The surprising fact that decoherence is not enhanced by in@asing the atom number
N is speci c to the noise considered. Indeed, such a noise is pled perpendicularly to
the equator of the Bloch sphere where the phase states of thaigerpositions lay. As a
result, the noise is insensitive to the separation betweenhese states, which scales with
N. However, such superpositions are very fragile under a naésapplied parallel to the
equatorial plane, which resolves the separation between #h components. This yields an
indication as to which classical noise to reduce to preservihe coherence in superpositions
of the phase states: this is the noise in directions paralleto this plane. For example,
stochastic uctuations on the tunnel amplitude K ICgive rise to rapid decoherence of the
macroscopic superpositionj =1li+ € j = 1i)= 2 ata rate increasing with the atom
number, without inducing relaxation. By rotation of the sam e argument, the same fate is
followed by a NOON state under the action of phase noise, as will show in Appendix
D.4.

5.1.4 Quantum Fisher information and coherent spin squeezi ng during
the quenched dynamics of the BJJ

We present in this section the calculation of the useful quatum correlations which are

formed during the quenched dynamics of the Bose Josephsonrjation, when phase noise
is a ecting the system. Hence, in analogy with what the calcuhtion presented in Sec.4.4
for the noiseless case, we evaluate the quantum Fisher inforation and the coherent spin

squeezing parameter as a function of time. We take for simptity =0.

5.1.4.a Coherent spin squeezing in the presence of phase noise

For coherent spin squeezing the calculation can be carriedud analytically. We start with

the observation that even in the presence of noisdafyit = hiyi; = 0 and more generally
the angular-momentum covariance matrix G de ned in Eq.(4.31) has the same structure
as the matrix (4.34) in the noiseless case. Therefore, the guments used in Appendix B.1
can be taken over to the noisy case. We thus conclude that thegsieezing parameter 2 is
minimum in the (yOz)-plane, and is given by Eq.(4.39), evaluated for the corrgsonding
quantities in the presence of noise. In particular, the barevisibility (@, Eq.(2.20), should
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be replaced by the visibility in the presence of noise which is given in Eq.(5.14) with
=0, and © by the lowest eigenvalueG of the restriction of the covariance matrix G
to the (yOz)-plane.

We are now going to computeG and the spin squeezing parameter explicitly. In
order to do so, we need to perform the averages in the presencd noise using the full
density matrix ~(t): h::i¢ =tr( :::™(t)). These are related to those in the absence of noise
according to Z,

Mic= df (;t)re Ffie’ #i? (5.25)
1
where the expectation value inside the integral is taken forthe pure statej © (t)i in the
absence of noise. The rotated angular momentum operators ithe above expectation value
are equal to cos Jy  sin Jj, sin J} +cos J, and J, for i = x;y, and z, respectively.
A similar derivation holds for hiJj; Jjgi; = tr[* (t)f Ji; Jj g]. We are left with integrals of
trigonometric functions with the gaussian envelope given § Eq.(5.9), yielding the result

: o _ N
h%i, = hfzzlg):z
. 1 e 20 1+e 22°0)
Wi, = fhflegohihfy%t
htdy: Frgic = e @¥O2hid); J50i©
hidy; Jygic = hif; Jy0ii =0 (5.26)

Finally, the submatrix matrix GYt) reads

0 2 :
% e OM Deodt 2@)+(N+D) e NN Dood 2()sin() ,

-@ 8 .2
GY) le ZIN(N 1)cost 2( )sin( ) N
(5.27)
Thus, by Egs.(4.39), (5.14) and (5.27), one has
h
2.\ — 1 a?( ) 2 2%( )
() 207 e (N Dcod 22 )+ ()N +3) (5.28)

(N 1)) 1 e 2*()cod 2(2 ))2+16e @()co@N 2 ( )sin?( ) :

The angle which identi es the optimal squeezing direction & given by Eq.(4.42), in which
the matrix ©° should be replaced byG°

We proceed by illustrating our results for the squeezing paameter in the presence of
phase noise. For the calculations we have chosen a noise rangf direct experimental
relevance, as extracted from the t of the visibility decay data mentioned in Sec.5.1.2
(see also caption of Fig.5.1 and forthcoming Sec. 6.2.2). Fdhe noise variancea?( ) we
have taken the short-time behaviora?( ) = ( = )? 2 expressed by Eq.(5.12) since the
experimental visibility exhibits a gaussian decay even forsmall interactions [62] (see
Sec.5.1.2). The squeezing parameter as a function of time shown in Fig.5.5-a). As
seen in the gure, the presence of noise degrades the squewgi as its minimum value
increases at increasing noise strength. We also notice thahe time for optimal squeezing
tmin is slightly shorter than in the noiseless case. Analytical stimates of the minimum
value reached by the squeezing parameter and of the correspading time can be found in
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Figure 5.5: Coherent spin squeezing and quantum Fisher infonation in the presence
of noise as a function of time in units of T during the quenched dynamics of a BJJ.
The parameters used areN = 100, = Hz. a) Spin squeezing 2 for (from top to
bottom) = 15;10;5, and OHz. Horizontal and vertical gridlines: minimum of 2
and corresponding timetmn. b) Fisher information Fq for (from top to bottom) =
0;0:4;1;2;5;10, and 15 H_z; the horizontal and vertical gridlines correspndto Fo = N(N +
1)=2 andt = t;s = T= N. ¢) Zoom on the quantum Fisher information (solid lines) and
F = N= 2 (dashed lines) for =0:2;5;10, and 15Hz (from top to bottom). d) Angles
r and  giving the optimizing direction of Fq (solid lines) and 2 (dashed lines) as a

function t=T, for the same noise levels.
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Ref.[25]. The angle (t) which identi es the optimizing squeezing direction is represented
in dashed lines for various noise levels in Fig.5.5-d).

In the experiments of Refs.[8, 9], aected by phase noise, thesqueezing degree has
been measured at a xed time, as a function of the angle. This motivates the theoretical
calculation of the curve 2( ), which is reported in appendix D.3.

5.1.4.b Quantum Fisher information in the presence of phase noise

The evaluation of the optimum quantum Fisher information (4.29) requires a numerical
diagonalization of the density matrix ~(t) given by Eq.(5.10). For the time dependence of
a®(t) we take again the short-time approximation given in Eq.(5.12), even if there is no
experimental evidence that justi es such a choice at times  T. This choice corresponds
to the worst possible scenario for decoherence, as in the mavian regime the dependence
of a?(t) is weaker (see Eq.(5.13)) [24]. The behavior oFq as a function of time in the
presence of noise results from the competition of two phenoena: (i) in the absence of
noise, at short times the quantum Fisher information grows fom itsdni_tial value Fo = N
to the plateau value Fo = N(N +1)=2 in a time interval t;s T= N which shrinks as
N becomes larger, and (ii) the decoherence exponemf(t) is independent onN and also
grows with time. As a result, Fo reaches a local maximum at a timetymax  tsr, with a
value which increases withN and decreases with the noise uctuation 2.

The quantum Fisher information as a function of time for various noise levels is shown
in Fig. 5.5. The short-time evolution is similar to the one found for the noiseless case, the
accumulation of noise correlations being not yet e ective. h particular, one observes that
Fo coincides with the squeezing parameteF = N= 2 at su ciently small times (panel
c). For not too large noise intensities,Fq displays a plateau at those times which in the
noiseless BJJ correspond to the formation of macroscopic perpositions. The value on
the plateau is smaller than in the absence of noise but it is $i much above the shot noise
level Fo = N. This indicates the presence of useful correlations whichemain in spite of
the decoherence e ects induced by the noise. This e ect is duea the robustness of the
multicomponent superpositions with respect to phase noisaliscussed in Sec.5.1.3 above.
For higher noise levels, the width of the plateau is reduced rad the peak att, T=4
corresponding to the two-component superposition in the abence of noise disappears
completely, meaning that decoherence has washed out the uséquantum correlations at
t> (three bottom curves in the Fig.5.5-b)). In the limit of very large noise intensities the
Fisher information at times tq of formation of g-component superpositions in the noiseless
BJJ is degenerate in the &Oy) plane and tends to the asymptotic value

N(N 1)

FolM 1= ————
ol™ ] N2

(5.29)

which can be readily obtained from Eqs.(4.30) and (5.20). Asllustrated in Fig.5.6, apart
from short times and around the peak att,, the optimization direction is in the ( xOy)-
plane and Fq is almost degenerate in all directions of this plane, as in te noiseless case.

As a partial summary, the analysis of the time evolution of the quantum Fisher infor-
mation indicates the build-up of useful quantum correlations at times beyond the spin-
squeezing regime. In the following we quantify this e ect by sudying the dependence of
Fo with the noise strength and the particle number.
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Figure 5.6: Direction-dependent quantum Fisher information in the presence of noise as
a function of time in units of T during the quenched dynamics of a BJJ withN = 100
atoms and = Hz for: a) = 2Hz, b) 5Hz, ¢) 10Hz and d) 15Hz, calculated along
the % direction (dashed lines), they‘directﬂpi(dotted lines) and the optimizing direction
(light-gray solid line). Afteratime t T= N (left vertical gridlines) the three values are
almost the same, showing that the Fisher information is almat degenerate in the &Qy)
plane, except aroundt = T=4 if Fo has a peak at this value (panel a)). The vertical and
horizontal gridlines represent the timest = t;s andt = T=4 t;s and the value of the
Fisher information in the limit of large noise intensities given by Eq.(5.29).



x5.1 Phase noise 95

Figure 5.7: Values of the Fisher information at its local maxmum at time thax (solid line,
circle markers), at time t, (dot-dashed line, star markers) and at the timety,, of maximal
squeezing (long-dashed line, blue cross markers) in a logdmmic scale, as a function of the
energy uctuation (in Hz). For comparison we also plot the squeezing parameteF =
N= 2 at the time tm, (dashed line, green cross markers) in a logarithmic scale. r@lines,
from top to bottom: Heisenberg limit N2 (solid), approximate value (2=3%73)N5=3 of
F (tmin) in the absence of noise, see Sec.4.4 (dashed), shot noiseiti(solid), and limit of
Fq for large noise intensities (solid) given by Eq.(5.29). Theparameters used areN = 400
and = Hz.

5.1.4.c Quantum correlations vs particle number and phase noise

Figure 5.7 showsFq(t) on a logarithmic scale, evaluated at the timet = t,  T=4 of
formation of the two-component superposition in the noiseéss BJJ, as well as the max-
imum (Fg)max Of Fg(t) in the time interval 0 <t < T= 8. This maximum corresponds
roughly to the value at the plateau in Fig.5.5, that is, to the value of Fg(t) at the times
of formation of the rst multicomponent superpositions. It can be seen that in the range
of noise considered Fq)max Stays above the shot noise level, and is also larger than the
value Fqo(tmin) at the time tmin oOf highest squeezing. The two-component superposition,
formed much after the superpositions with a large number of omponents, appears to be
too much degraded by noise to lead to any advantage in interf@mmetry with respect to sep-
arable states. Hence, in this regime multicomponent macrapic superpositions provide
a convenient alternative to both the squeezed states and théwvo-component macroscopic
superposition.

We next study the scaling of the quantum Fisher information with the particle number,
taken at the time tynax as before. As it is illustrated in Fig.5.8, at this time Fq displays a
power-law behaviorFq N with an exponent depending on the noise strength. This
exponent is extracted from a log-linear t of the numerical data, varying N between 50
and 4001, the latter value being realistic in the experiments [8]. We notice that in the
noise range considered is larger or equal to 53, which is the exponent corresponding to
the squeezed state at = tn, in the absence of noise (see Sec.4.4). For the chosen intelrva
of noise strengths, the analysis of the scalingrq = cN is meaningful as the multiplying
constant ¢, which also depends on the noise, is large enough to ensureathFq (tmax)

1We cannot exclude here that slightly di erent values of  would appear for larger N's.
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Figure 5.8: a) Quantum Fisher information evaluated at the time of its local maximum
tmax (blue solid line) and at the time t, (blue dashed line) as a function of the number
of particles N for = 15Hz, as compared to the shot noise limit (black solid line)
Panels b),c),d),e): same as in a) in a semi-logarithmic scal for various noise strengths

=2;5;10, and 15Hz (from left to right and top to bottom). f) Exponent , extracted
by a log-linear t of the data in a), as a function of the energy uctuations (in Hz) for
t = tmax (solid line, circle markers) and fort = t, (dot-dashed line, star markers). We
used = Hz.
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N, as shown in the rst panel in Fig.5.8. This con rms the potential improvement in
interferometry given by the state at time tax with respect to the use of squeezed states
in the presence of phase noise. For comparison, we also shawetscaling ofFq at the time
to. At that time,  decays faster with the noise strength, reaching rapidly theshot noise
limit =1. This is due to the fact that the noise exponent a?(t) increases with time.

To recapitulate, multicomponent superpositions of phase &tes appear to be \twice"
robust against phase noise: 1) because of the independendete decoherence rate on the
particle number, a feature shared with the two-component sperposition; 2) because they
are formed at short times/ 1= N, when the noise correlations did not become e ective
yet for decoherence (for experimentally relevant values oficise ); this is not the case for
the two-component superposition, formed att, = =(2 ). As a consequence, the analysis
based on the quantum Fisher information has indicated thesestates as the most suitable
for interferometric applications when phase noise is a ecting the preparation of the input
state based on the quenched dynamics of the BJJ.

To conclude this section, we mention that a work similar in sprit has been presented in
Ref.[19], in which a new class of entangled states has beenasin to be more robust than
the two-component macroscopic superposition against deterence, induced by a single
particle (qubit) process. Analogously to our multicomponent superposition states, these
states are still highly entangled and lead to advantage ovethe use of classical resources
for quantum technology applications.

5.2 Particle losses

Several loss processes can induce the simultaneous expaoisiof one, two or even three
particles out of the condensate. One-body loss processeseagenerally due to scattering
with impurities; spin-relaxation is instead a two-body process, in which two atoms collide
and can change their spin state, with a high kinetic energy gen which ejects them out of
the trap [157]; nally, when three atoms collide two of them form a molecule, and again
the third acquires a large kinetic energy which overcomes té trap height [158, 159].

Generally, atom losses in optical lattices are theoreticdy treated by means of the

master equation in the Lindblad form [160]
i h i X h i h i
@'= - HO;n e M R A L G N C L (5.30)
k

where m = 1;2;3 is the order of the loss process,a)™ is the annihilation operator
destroying m atoms at site k and (™ is the loss rate. This loss rate has been measured
in 8Rb for m = 1 and m = 3 [161], while two-body collisions have been studied in
Ref. [157]. Equation (5.30) generally implies the rotatingwave approximation and it only
describes the dynamics in the Markov regime. A microscopic erivation of the master
equation (5.30) can be found form = 3 in Ref. [159] and for m = 1 in Ref. [162].

We will focus here on the e ect of one-body atom losses, and we illv particularly
study their e ect on the qguenched dynamics of the bosonic Jogghson junction and on the
formation of Schroedinger cat states. In this particular example of quantum dynamics it
is possible to solve the master equation exactly with analyital techniques. This analytical
solution has been provided for one-body losses in Ref.[16@2] the case of symmetric wells
and interaction energies ( = 0). In what follows we generalize this treatment to the
asymmetric case 6 0, where can be a time-varying parameter, which will allow us in
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Sec.5.3 to treat particle losses and phase noise at the samiene. An analytical solution
of the master equation for the quenched dynamics in the presee of two-body and three-
body losses is also available [163]. Further results on twbedy losses will be given in
appendix E.4.

5.2.1 Master equation for one-body particle losses

For the case of one-body lossesr( = 1), we present here and in the following section the
analytical solution for the density matrix. We rename ; the density matrix in the
presence of one-body losses is referred to as The master equation of the BJJ is given
by the two-site case of Eq.(5.30),
i h [ X2 h i h i
@ = - HO;~ + a el + anel (5.31)
k=1

For the external BJJ, the unitary Hamiltonian H© appearing in Eq.(5.31) is given by
Eq.(1.16), with K =0

X X U,
HO = Egfact  Saa(aag (5.32)
k=1 k=1

where (E1 E»)(t) can be time dependent. As initial state of the dynamics we t&e as

usual the phase statej = =2, =0i = &5 o 2ik:N ki, belonging to the

(N + 1)-dimensional Hilbert space of N bosons, as explained in Sec.1.4.2, wheit¢ is the
initial total number of particles (not necessarily even).

During the dynamics of the BJJ, a&soon as particle losses beme e ective, other
sub-spaces of the total Fock spacél = Nm=0 H (M) become populated (wherem labels
the (m + 1)-dimensional Hilbert space associated withm particles), possibly involving
also the vacuum statejOi in which no atoms are left. The dimension of the total Hilbert

ace to which the BJJ has access in the presence of one-boagses is hence dint{) =
mzo(m +1) = %(N + 1)(N + 2). For this larger space we can still use the Fock basis
jn1;noi, but here n; + ny, does not necessarily sum tdN, rather it can take any integer
value between 0 andN . In what follows we will denote the general density matrix eement
in this basis as tﬂ'p hng=Kk;ny= 1+ pjNt)jny = k+ rno = li.
Projection of the master equation (5.31) on the Fock basis yglds

| | y U |
@ ttlp = i (Eap Ear)+ ?2p(p 1) %r(r 1) (r+p) t-'l-llp
: (0]
©(iudp 21) iz TED0 e D) i
n 0
. P .
+ iUk 2k) fp+2 0 (kD)D) (0 0 (5:39)

while the expansion of the initial state on the Fock basis leds to the initial condition

el 1 N2 N 2
k

0= 5 K+ r

kil+p 2l np k+rN I (5.34)

The e ect of the cross-interaction term ulza{a1a§a2 appearing in the Hamiltonian of the
k+r;l

internal BJJ Eq.(1.19) adds to the master equation (5.33) the term  iUga(kr  Ir) .
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Hence, we see in EQ.(5.33) that this term can be treated by a mormalization of the
interaction constants U; ! U;  Upp=2 with i =1;2.

Note that the presence of the term ., in Eq.(5.34) expresses the absence of correla-
tions between sub-spaces at di erent particle numbers in theinitial state. Since no such
correlation will be built during the dynamics described by Eq.(5.31), the state will never
be a coherent superposition of states at di erent particle number. This implies that the
only non-zero elements of the density matrix satisfyn; + n, = n$+ n3  m, which la-
bels the m-particles sub-space. This allows for the decomposition itblocks of the density

matrix, as
X X

A= "n = Wm m; (5.35)

m=0 m=0
where we de ned the normalized density matrix in the m-supspace m = *m=tr[*n]. The
resulting block structure of the density matrix is represerted in the rst panel of Fig.5.9

(see also Sec.5.2.2).

5.2.2 Exact solution of the one body-losses master equation by the char-
acteristic method

In this paragraph we generalize the solution of the master agation (5.34), presented in
Ref.[162], to the caseE; 6 E,, U; 6 U,. Let us introduce the generating function

2 r
oy = xyt CEDEEP e g, (5.36)

k;l

from which the elements of the density matrix can be retrieve by derivation as

AkEnl gy 1 "0 0O t)-
o1 (kiN(k + )I(1 + 1)) 3 @Ghy(0:0:0): (5:37)

By multiplying Eq.(5.34) by xXy' and summing over k;|, the master equation can be
expressed in terms of the generating functiorh;, as
_— . Uo Uy ;
@y, = i (Eap EON)* Zpp 1) (1) (r+p) b
+ [(iUr 2 )x+2 ]@hp+[( iUzr 2)y+2 ]1@hp: (5.38)
R
Let us de ne the shifted generating function h, = e o c(rip; )d Hr, where the parameter

c(r; p;t) is given hy

, U U
qrpit) =i (Ex(hp EaN)+ PP 1) —r(r 1) + (r+p:  (539)
The further de nitions

allow us to rewrite the master equation (5.38) as a linear patial di erential equation of
the rst order

@hﬂb = ( l;rX+2 )@h{)"'( 2;py+2 )@ﬁl{; (5'41)
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The solution for H},, obtained with the methods of the characteristics as in Ref[162], is
reported in appendix E.1, and reads

. . (N 1)
1 NI N r)e wto2 0 (2 2p)e zet
oG yst) = o ' + , "
p(Yit) 2NN ) Lr 2p "
(5.42)
Then, by use of Eq.(5.37), we obtain the solution for the deniy matrix
(Er E2()dr 2 (Dt kt Ity 2t
AkFEL Nle of=t =2 € 2 e urkleg arfte
fal+p NNt k  DIKII(K+ )]+ 1)) 2
> > (N r k1)
T(l e t) + T(l e 2 t) rp ; (543)
ir ir

where we have also used that the combination of parameters2>“r(r 1) appearing in the
de nition (5.39) when p = r can be rewritten as Y,%r(r 1) = 2 (1 1)+2 .
We can rewrite the solution (5.43) in a simpli ed form by using that, accordingly to

the discussion in Sec.5.2.1, due to the term,, we havek + r + | = k+ | + p= m, which
leads to

R | 2 mt
Ak+rm o (k+r) — "(E1 E2)( )dr N'e
k:m k (t) e o 2(N m)(N m)! (5.44)
. - N
1 e 2tgduirt . 1 e 2tg iUart ( m/)\(O) k+rm (k+r)(t)_
1 U= )  1+iUr=(2 ) m K '

Here 7O (t) = j O (t)ih ©(t)j is the density matrix corresponding to the unitary evolu-
tion under the Hamiltonian (5.32) with m particles and E; = E», i.e.

fb)k+r;m (k+r)

1
1 m2 m 2 Yy ,
km K (t)= om Kk e! 2 0 Dl itatm k0 Ui, (5 45)

B K+r

The reason to separate the contribution due to an energy imbkance E;  E, from the
unitary part will become clear in %ec.5.3. U
Note thatfor m = N thefactor 2-(1 e 2+ 2 (1 e =) e Eq.(5.44)
is equal to 1, and the e ect of particley losses on the corkespaﬁng block is only to \dump"
it (i.e., to reduce its weight), without a ecting its inner dy namics, which then corresponds
to the unitary dynamics.
From Eq.(5.44) we can calculate the weights of each block ofhie density matrix,
appearing in Eq.(5.35). The diagonal elements are identi & by r = 0, which leads to

km K N le 2mt
km k()= 55
2"(N m)lkli(m  k)!

1 e 2H)(N m); (5.46)

from which the weights wy, can be immediately obtained as

km k _ N le 2 mt

km k — m(l e 2t)(N m): (547)

X
Wm =t["m]= ()
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Figure 5.9: Density matrix in the Fock basis of the total Hilb ert space (left panel), and
weights of the density matrix as a function of the label of thesubspace, i.e. the number of
particles m (right panel). Values of the parameters:N =10, T =0:25,U; = U, =4 Hz,
t=to.

From Eq.(5.47) we can calculate the decay of the average atomumber with time,
which is given by
X XN
i = Wmm = e 2M (1 e 2)(N Mmpm = Ne 2t (5.48)
m=0 m=0 m
Equation (5.48) shows that, as expected for one-body losseshe atom number decays
exponentially with time, with a decay rate given by

5.2.3 E ect of particle losses on the visibility

The visibility in the presence (H one-body atom losses can bealculated by generalizing
Eq.(2.20) to (t) = tr[* ()T ]= [~ (@)Wt~ ()M,], where in the denominator we have
replacedN by the averages of the atom numbem{* in each modei = 1;2. This calculation
has been performed in Ref. [162] for optical lattices. The tw-site case yields

( ) N 1
2+ Ssin(t)+(5)%cos(t) e 2t
2
A short-time expansion of Eq.(5.49) to the third order for t 1 leads to
1 2 12,2
1b0dy(t). @ > 2, 5 3)(N 1) » e(N DL L 2+2 3]: (5.50)

In Eq.(5.50) we recognize the gaussian decay of the visibi§i due to the atomic interactions
(the unitary part), which also appears in the short-time expansion of Eq.(2.20), while we
see that atom losses provide a positive (cubic) correction® the visibilty. This counterin-
tuitive e ect is due in our model to the fact that the sites occupations in the denominator
decrease under the e ect of particle losses. However, we exgtethis e ect to disappear in

a more rigorous derivation in which the dependence of the mioscopic parameters of the
BJJ from the particle number would be taken into account (seediscussions in Secs.1.3.1.a
and 6.2.2).
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5.2.4 E ect of particle losses on squeezed states

The e ect of particle losses on squeezed states in the bosonitosephson junction has
already been addressed in Refs.[23, 164] for one, two and #®-body losses. In Ref.[164]
the optimum particle number and the optimum trap frequency allowing to reach the
highest possible squeezing in the presence of atom lossevddeen determined, while in
Ref.[23] the best squeezing degree has been calculated whee spatial dynamics of the
bimodal condensate cannot be neglected.

5.2.5 E ect of one-body losses on macroscopic superpositio ns of phase
states

We now focus on the formation of macroscopic superpositionsf phase states when one-
body losses are a ecting the BJJ. We want to perform some kind & \spectroscopy" of
the density matrix at the speci c times of formation of macroscopic superpositions, in the
spirit of Ref.[28], with the use of Eq.(5.35) and of the soluton Eq.(5.44). For instance, let
us x t=1tq T=2q), whereT = Teven =2 = is the period of the quantum state when
the initial particle number N is even. Forqg = 2, in the absence of noise the state att,
is a two-component cat state. We want to see whether the statet this time is the sum
of terms in which each represents a two-component cat statenithe space ofm particles.
In order to do so, we analyze di erent quantities: the delity , the Husimi function and
the quantum Fisher information. From the discussion at the end of Sec.5.2.2 we already
partially know the answer: the block with m = N will be a perfect cat state. We study
in this section the character of the other blocks of the dendy matrix.

5.2.5.a Fidelity

Let us consider the state of the system at the timet,, corresponding to the two-component
macroscopic superposition. First, we plot the delity of density matrix ~ ,, of each subspace

at p particles, with a perfect m-particle cat state. We dene thus Fn  F [7; ’\Sﬁ)] =
— 0 —

Tr[ "Eﬂ)_m ’\Eﬂ) )]?, where ’(n?) = ﬁ?)ih ,(T?)j is perfect the two-component cat state in

the space ofm particles, and we recall that , = *=tr[*]. Then using ,\519)2 = "fﬂ) and
tr[’\fﬂ)] =1 we obtain

+1
Fm=h Qj i 9Qi= A (% )= (n; nY: (5.51)

n;n %=1

The delities F, are plotted for m = 0;1;::::N = 10 in Fig.5.10. As we expected,
since we have de nedF, referring to the density matrices in each block renormalize by
the respective weight, we haveFy = 1 (trivially, also Fg = 1 for the vacuum state), as
the block at m = N is only dumped by particle losses.

Quite remarkably, we nd that the lower blocks with m < N , which are populated only
by the loss mechanism, have a non-zero delity with the corrsponding two-component
m-particle cat state. Hence, we nd that the loss process tramsfers some quantum corre-
lations 2.

2Using Eq.(5.44) we have demonstrated that the delity of eac h block of the density matrix renormalized
by its weight —,, for m 6 N with the density matrix of a perfect cat state increases in the limit of in nite
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Figure 5.10: Fidelity of each block of the density matrix with an m-particle two-component

cat state. The red line corresponds to the total delity de n ed in Eq.(5.52). Values of the
parameters:N =10, T =0:25,U; = U, =4 Hz, t = t,.

Note that the delity of the total density matrix with the two -component cat state
formed in the absence of losses withN particles ’\(,\?) (to) is trivially given by the weight
wyn expressed by EqQ.(5.47), due to the orthonormality of Fock sates at dierent m.
Mathematically, expliciting the time-dependence of the density matrix, we have at all
times

+1
FI (1); ") = AN (n%n;t) n(nnSt) = Fywn (t) = wy (t) = e 2N (5.52)

n;n %=1

to be evaluated att = t, = T=4 for the delity with the two-component cat state. The
total delity corresponds to the red horizontal line in Fig. 5.10, coinciding with the last
weight in the second panel of Fig. 5.9 by Eq.(5.52).

Note that, since no inner dynamics a ects the block atm = N (a part from a global
dumping), as already said att, — corresponds to a perfect two-component phase cat
state, displaying in particular non-diagonal terms at r 6 0. Hence, no other way to
eliminate these o -diagonal elements exists apart from loweng the weight of the block at
m = N, which means that the decoherence rate coincides with the duaping of this block
-i.e.,, 2N, at it results from the last equality in Eq.(5.52).

We may ask whether the e ect of a purely lossy dynamics would egally a ect the
BJJ if initially prepared either in a NOON state, or in a two-c omponent phase cat state.
This question is a rmatively answered in appendix E.3, in contrast with what we have
found for the case of phase noise (see appendix D.4).

5.2.5.b Projected Husimi distribution

We now visualize the results presented in the previous sean by plotting the Husimi
function in each subspace. In order to compare the Husimi fuations corresponding to
subspaces at di erent particle numberm, we de ne

Qn() Qm( == )=

2’ Normpm

loss rate . However, in that limit the weights of each block except m =0 go to zero, and this happens
faster than the speed at which a —,, tends to a cat state, so that we recover a physically meaningful result.

mhj mj im (5.53)
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Figure 5.11: First three panels: Husimi distribution Qn( = =2; ) (see EQq.(5.53)) at
t = t, for m = 10;9; 8 respectively. Last panel: All previous curves now at the sae scale,
plus (gray dashed line) total Husimi distribution Q( = =2; ) (see Eq.(3.1)) att = t,.

Values of the parameters:N =10, T =0:25,U; = U, =4 Hz, t = t,.

where p
[m+ 2]

2 Q cost (5.54)

is a normalizing factor obtaingg with the requirement that the Husimi function Qn( )
associated with 4 (m) Zi djimmhijis equal to 1, andj i, is the phase state
parameterized by the angle in the space ofm particles (the constant Qcost has already
been introduced in Sec.5.1.3.b).

We plot the Husimi functions Qy for m = N;N 1N 2 in Fig. 5.11. Form =
10 we recover the Husimi function of a perfect cat state with D particles, due to the
aforementioned e ect of simple \dumping" of the N -th block of the density matrix. For
m = 9; 8 we see that the structure of these curves still displays tw@eaks, corresponding
to the components of the cat state. These peaks are placed at 2 and 3=2 for m = 9,
corresponding to the rotated components of a cat state with a odd number of particles
[101]. Note however the di erent scale on they-axes in the rst, second and third panel
in Fig. 5.11; we also nd that Qg( ) and Qg( ) are quite di erent from the corresponding
Husimi functions of perfect two-component cat states g,he atter are not shown here). As a
result, the pro le of the total Husimi function Q( )= -0 WmQm( ) (gray curve in the
last panel in Fig. 5.11) is smeared out, already for intermedhte values of the decoherence
rate T =0:25.

Since the dynamics in the presence of particle losses is nobrserving the number
imbalance operator, there is a \leaking" of the state along e direction also. Hence, it
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can be instructive to consider also the full Husimi distribution Q(; ). This is addressed
in appendix E.2.

5.2.5.c Quantum Fisher information

We want now to quantify the e ect of particle losses on the usefil quantum correlations of
the state of the system as a function of time. To do this, we calulate the quantum Fisher
information as a function of time, after optimizing it over all of the possible directions.
Since the number of particles is uctuating, we follow Ref.[L65], and calculate the Fisher
information as

X
Fol? Jnl= Wi Fo[ m; Jnl; (5.55)
m=0
in analogy with the other quantities calculated in the previous sections. In Ref. [165] it
has been shown that in the presence of a super selection rulehigh forbids coherences
between subspaces at di erent numbers of particles the prewus expression is bounded by
hih2i and the following implication holds:

Fo[? Jn]> i )  ~entangled (5.56)

The Fisher information in each subspace at xedm is then calculated with the use of
Eq.(4.12), which in terms of the sub-space density matrix §, reads

xn 2
Foltmidhl= P q 2 (557)
kizo P T Pk

wherejki are the orthonormalized eigenstates which diagonalize thdensity matrix, satis-
fying ~mjki = pkjki. Then, we optimize Eq.(5.55) over all the possible directias J,. We
choose to perform the optimization after the summation specied in Eq.(5.55) because
this choice seems to us physically more relevant: summing gtead Fisher informations op-
timized at each m in Eq.(5.55) would give an indication of the usefulness of tle state ~in
interferometric experiments in which the densities matrices %, associated with subspaces
at di erent m would be transformed with respect to di erent directions, which seems hard
to be realized in experiments.

In Fig. 5.12 we show the quantum Fisher information for variaus loss rate , for N = 10.
The black dashed line is the shot noise limitFq for the initial number of particles N; the
regions in which Fq is larger than this reference line are such that sub-shot nee phase
estimation could be in principle performed even in the presece of particles losses. The
gray dotted line is F = N= 2, where 2 is the coherent spin squeezing, showing when the
guantum state is in principle more useful than a squeezed sta even in the presence of
losses (note that here the squeezing is plotted in the ideabksless case).

The presence of relatively high correlations at long times \Wich can be seen in Fig. 5.12
is associated with our choice of a small initial number of paticles. The plot of Fq for
the same parameters, repeated in the case & = 100, displays a more dramatic e ect of
losses for the same noise parameter, as can be seen in Fig.3%.IThis can be related to
the fact that the decay rate of the delity with the state form ed in the absence of losses
scales likeN (see Eq.(5.52)).

Finally, in connection with the results of Sec.5.1.4.c, we wuld like to perform a scaling
analysis of the quantum Fisher information as a function of he average number of particles
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Figure 5.12: Quantum Fisher information given in Eq.(5.55) optimized over J, as a func-
tion of t=T, for T = 0;0:05;0:15;0:25 from top to bottom. The dashed lines represent
the corresponding average number of atoms as a function ofrtie. Black dashed line: shot
noise limit N. Gray dotted line: coherent spin squeezing parameter?=N in the absence
of losses. Value of the parametersN =10, U; = U, =4 Hz.
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Figure 5.13: Quantum Fisher information given in Eq.(5.55) optimized over J, as a func-
tion of t=T, for T = 0;0:05;0:25 from top to bottom. Gray dotted line: coherent spin

squeezing parameter 2=N in the absence of losses. Values of the parameterl = 100,
U =U,=4 Hz.
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hhi in the present case of a uctuating total number of particles. This could still be done,
but it would provide less clear indications with respect to the case of phase noise, as in
this caseFq is bounded byFq[? Ju] h m?i, involving the expectation value of a di erent
operator (m?) [165]. Note also that in this case the bound on the highest pssible phase

estimation has to be modied as max p—

i —A— (p being here the number of

measurements) [165].

5.3 Treating phase noise and particle losses at the same
time

Since in real experiments both particle losses and phase rsa@ are acting simultaneously, it
is important to develop a treatment allowing to calculate the density matrix of the system
including both sources of noise. We proceed in this directio.

As we deduced in Sec.5.1.2, and as we have already done in Set.4, we are going
here to assume that phase noise is strongly correlated in théime-regime of interest,
leading e.g. to the production of squeezed states and macrospic superpositions. During
this time regime, losses are a ecting the system. We assume hee that the phase noise
process (t) =(E, E;)(t)in one realization is constant during the characteristic time for
losses £ , i.e. that t; 1 (wheret. is the correlation time for phase noise introduced
in Sec.5.1.1.b). Hence, we can consider the solution of the amter equation (5.44) as
\quenched" with respect to phase noise, i.e. as the solutiorof the lossy dynamics in one
realization of the phase noise process. We can indicate it i a \Q" su x, i.e. we rename
Mo C @ 1 ASER E (1) in Eq.(5.44), which gives

ket Nie | rg =770 ¢ Do yikig g 2t
Rucip = NNt k  DIKUI(K+ r)(l + 1)) %
Z (1 e wH+ @1 e =Y rp (5.58)
1r 2;r
Rt Rt
where we have also dened (t)=(E2 Ej)and (E1 E)( )d = o ()d (1).

The sign di erence with respect to the analogous de nition in Sec. 5.1.1.a is due to the
fact that in this basis (we recall that ’\Qk”' hni=Kna= 1+ pj“gjny=k+rny=1li)
in terms of the number imbalancen = (n1  ny)=2, wehave o n9=((k 1| r) (k+

r 1)=2= r, tobe compared to Eq.(5.10).

Then, (E1 E»)(t) appearing in Eq.(5.58) is considered to be randomly uctuaing,
and we have to average with respect to phase noise. The avereg are performed as in
Sec. 5.1.1.a, and the averaged density matrix is given by

z Z

Oaap= POl G, = df () gl (5.59)

wheref (;t) is de ned as in Eq.(5.4) with the replacement ! , and reads f(;t) =
(+ 12

;Za(t)e 220, with a?(t) given by Eq.(5.7)andh( 9= ( )( 9 e E() E(9
“EZis identical to the correlation function de ned in Sec. 5.11.a, while = ~ E+(N

1)(U2 U1)=2.
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Substituting the expression off ( ;t ) in Eq.(5.59) and performing the gaussian integral
yields as nal result the density matrix of the system in the presence of both phase noise
(red contribution) and particle losses (blue contribution)

a()2r2 Nle 2mt 1 e 2tgUit 1 g 2tg iUt (N.M)
— +
TN (N myl 1 U= ) | L1+ iUr=(2)

,\(k?znk+kr;m (k+ r)(t);

k+rm (k+r) _ it
A
km K t = € "e

from which we see that in the density matrix in the presence oboth one-atom losses and
phase noise these two respective contributions appear famtized.
This allows to write the visibility in the presence of both noise sources as

(22

(t) =€ % lbody(t); (5.60)

where 1p04y IS given in Eq.(5.49) and we have taken = 0. A discussion of the possibility
to compare this expression to the measured decay of the vigilty is presented in Sec. 6.2.2.



Chapter

Conclusions and perspectives

6.1 Conclusions

In this thesis we have considered the bosonic Josephson juian in the quantum regime
in the framework of the two-mode approximation, studying in particular some aspects
connected to quantum information.

Starting with the characterization of the system, in Chap.1 [31] we have studied its
\phase diagram", by calculating the uctuations of number i mbalance operator as a func-
tion of the ratio between the coupling and inter-atomic interactions, and the asymmetry
of the two modes. We have shown that such a phase diagram displs a lobe structure,
due to the degeneracy of neighboring Fock states in the stragly interacting regime. The
size of the lobes increases at increasing asymmetry, as a caguence of a reduction of the
e ective coupling; this non-linear e ect is absent in supercanducting Josephson junctions.

In Chap.2 [31, 33] we have shown that the dynamics driven by tle interatomic inter-
actions only (\quenched dynamics"), starting from a single coherent state, leads to the
creation of macroscopic superposition of coherent statesThese superpositions are placed
in planes parallel to the equator of the Bloch sphere - the eqator of the Bloch sphere
itself if the initial coherent state is number balanced (\phase state") - and they appear at
fractions tq = T=2q) of the period T =2 = , with a number of componentsg which varies
in time (this result has been also reported in Ref.[101]). Wehave later shown that the
creation of macroscopic superpositions can be optimized byneans of an optimal control
protocol: a two-component phase cat state (as well as a NOONtate) can be created with
a very high delity ( 99%) in a time T%= cT,, where T,/ 1=N depends inversely on the
atom number, and c is a constant (depending in principle on the particle numbe). For
instance, c= 10 for N = 300, leading to an advantage over the quenched dynamics-tsed
protocol in terms of the time of formation of the superposition. A proper scaling analysis
of the constant c as a function of the number of particles is still to be carriedout.

In Chap.3 [32] we have addressed the detection of macroscepsuperpositions of phase
states. We have shown that the probability distributions of the eigenvalues of the collec-
tive angular momentum operator in various directions are sitable to detect qualitatively
these states. Indeed these probability distributions allav to access the phase content of
the state, and to distinguish macroscopic superpositions fophase states from incoherent
mixtures, as for the latter the probability distributions d o not display fringes. Based on
the Radon transform, we have shown that the knowledge of thes probability distribu-

109
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tions in each direction of the equatorial plane of the Bloch ghere allows to reconstruct a
two-dimensional distribution, analogous to phase-space idtributions, yielding the major
information about macroscopic superposition states.

In Chap.4 [25] we have addressed the applications to quantuninterferometry. We
have computed the quantum Fisher information and the squeeing parameter as a func-
tion of time during the quenched dynamics of the BJJ, optimizng them with respect to
all the possible unitary transformations describing a linear interferometer. This analysis
yields qualitatively the same result as reported in Ref.[1§, indicating the two component
macroscopic superposition as the most useful state in ideatonditions. However, note
that in Ref.[16] the quantum Fisher information and the coherent spin squeezing were not
optimized. The optimization was for us important in view of t he analysis of the decoher-
ence process presented in Chap.5, in order to assign via thesgntum Fisher information
a value to the correlations of the superpaositions - an intrirsec property of the state.

In Chap.5 [25] we have studied how the useful quantum corret#ons created during the
guenched dynamics of the BJJ are a ected by the presence of ne¢, such as phase noise
and particle losses. First, we have derived an exact solutio for the quantum state of the
system at any time during the quenched dynamics in the presere of phase noise. The for-
mation of macroscopic superpositions of phase states has ére shown to be robust against
phase noise, since decoherence occurs at a rate of the samdesras phase relaxation,
independently of the total number of particles. As a conseqance of this anomalously slow
decoherence, a scaling analysis of the optimum quantum Figr information with the num-
ber of particles has allowed us to conclude that, for a realt&c choice of noise strengths,
multicomponent superpositions are more useful for interfeometry than either the two-
component superposition or squeezed states. These supegitions are built during the
dynamical evolution of a noiseless junction at times longethan for squeezed states, but
still depending inversely on the totﬁlﬂumber of particles, the rst macroscopic superpo-
sition being formed at a time/ 1= N. This is not the case for the two-component cat
state, which is formed at T=4 independent onN, and is thus more a ected by the presence
of noise. Hence, in experiments aimed at preparing a usefutate for interferometric appli-
cations based on the quenched dynamics of the BJJ, despite (:hpresencepoia decoherence
source such as phase noise it would be convenient to wait uhtimes / 1= N, beyond the
regime of spin squeezing, and reach the regime of formationf ¢he rst multicomponent
macroscopic superpositions.

We have then considered the e ect of one-body particle lossesn the production of
cat states. We have generalized the exact solution of the desity matrix presented in
Ref.[162] to the case in which an asymmetry in the parameter®f the BJJ is taken into
account. Then, we have carried out a \spectroscopy" of the dasity matrix, revealing
that the states with lost particles, which are mixed in the total density matrix to the
state in the absence of losses, still display some \cat-likefeatures. For instance, their
Husimi distribution displays peaks, even if smoothened, caoesponding to the components
of the superposition. The analysis of how much the useful quaum correlation built up
during the dynamics are a ected by particle losses has been @sible only in a qualitative
fashion, as no easy scaling relation of the Fisher informatin with the particle number
can be de ned in this case. Finally, we have shown that it is p@sible to treat one-body
particle losses and phase noise analytically at the same tim This result can be extended
in principle to the case of two- and three-body losses, and igmportant in view of an
accurate comparison with the experiments.

Our study con rms the BJJ as a versatile and promising systemin quantum metrology
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and for other applications in quantum information.

Dans cette these nous avons consicke la jonction Josepkon bosonique dans le
egime quantique dans le cadre de l'approximationa deux nodes, enetudiant en par-
ticulier certains aspects en relation avec l'information quantique.

En commercant par la caracerisation du syseme, dans le premier chapitre nous
avons etude son \diagramme de phase", en calculant les utuations de l'ogerateur
de nombre relatif en fonction du rapport entre le couplage etes interactions inter-
atomiques, et de l'asynetrie des deux modes. Nous avons nienque ce diagramme
de phase pesente une structurea lobes, cause par la dererescence detats de Fock
adjacents dans la limite de hautes interactions. La dimensin des lobes augmente
avec l'asynetrie, comme congquence de la eduction du ouplage e ectif; cet e et
non-lireaire ne se trouve pas dans les jonctions Josephsosupraconductrices.

Dans le chapitre 2 [31, 33] nous avons monte que la dynamiguegie par les inter-
actions interatomiques seulement (dynamique \trempee"), en demarrant avec un seul
etat coterent, portea la ceation de superpositions ma croscopiques détats colterents.
Ces superpositions sont places sur des plans paralklea lequateur de la sptere de
Bloch, notamment le plan equatorial méme si letat coterent initial est symetrique
guanta occupation atomique moyenne (etat de phase"). Cesetats apparaissenta des
tempsty = T=2q) fractions de la geriode T =2 = , et ont un nombre de composantes
g qui varient dans le temps (ce esultat aee cemontee galement dans la Ref.[101]).
Nous avons ensuite monte que la ceation des superpositins macroscopiques peut
étre optimige a l'aide d'un protocole de contréle optim al: une superposition de deux
etats de phase (tout comme unetat NOON) peut &tre ceee avec une tes grande
celie ( 99%) dans un tempsT®= cT,, @ T./ 1=N cepend inversement du nom-
bre d'atomes, etc est une constante (qui cepends en principe du nombre d'atoss).
Par exemple,c = 10 pour N = 300, ce qui conduita un avantage par rapporta la
dynamique trempee en terme du temps de formation de la supeosition. Une analyse
cetailee de la loi dechelle suivie par la constante ¢ avec le nombre d'atomes n'a pas
encoreee e ectiee.

Dans le chapitre 3 [32] nous avons aborte la detection desuperpositions macro-
scopique detats de phase. Nous avons monte que les disutions de probabilie des
valeurs propres de l'operateur de moment angulaire collgif dans dierentes directions
sont convenables pour cetecter qualitativement cesetat En e et ces distributions de
probabilie permettent de carackriser la distribution de la phase de letat, et de dis-
tinguer des superpositions macroscopiques des nelangascolerents, puisque pour ces
dernéeres les distributions de probabilie n'ont pas de franges. En s'appuyant sur la
transformation de Radon, nous avons monte que la connaisance de ces distributions
de probabilie dans toutes les directions du planequatoial permet de construire une
distribution bi-dimensionnelle, analogue aux distributons sur I'espace des phases, qui
porte les informations essentielles pour lesetats de supeosition macroscopique.

Dans le chapitre 4 [25] nous avons abora les applicationa l'intereronetrie. Nous
avons calcuk l'information de Fisher et le paranetre de compression en fonction du
temps pendant la dynamique trempee de la BJJ, en les optim@nt par rapport aux
possibles transformations unitaires qui decrivent un intereronetre lireaire. Cette
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analyse apporte qualitativement les mémes esultats comunigues en Ref.[16], indi-
guant que letat le plus utile dans des conditions iccalesest la superposition de deux
etats colerents. C'est tout de mémea noter que en Ref.[1§ l'information de Fisher et
le paranetre de compression netaient pas optimiges. L'optimisation etait pour nous
importante en vue de l'analyse du processus de decolereacpesent dans le chapitre
5, pour pouvoir assignera l'aide de l'information de Fisher une valeur aux corelations
de la superposition, qui sont une propree intrineque de I'etat.

Dans le chapitre 5 [25] nous avons etude comment les corelations quantiques
ceees pendant la dynamique trempee de la BJJ sont aectees par la pesence de
bruits exernes, tels que le bruit de phase et la perte de pdcules. Dans un pre-
mier temps, nous avons cerive une solution exacte pour derire letat quantique du
sysemea tout temps pendant la dynamique trempee en pesence de bruit de phase.
Nous avons monte que la formation des superpositions maoscopiques detats de
phase est robuste visa-vis du bruit de phase, etant dons que la decolerence survient
avec la méme vitesse que la relaxation, et que cette vitesse cepend pas du nombre
d'atomes. Comme conequence de cette cecolerence lenteyne analyse dechelle de
l'information de Fisher optimale avec le nombre d'atomes nas a permis de conclure
gue pour un choix ealiste de la force du bruit, les superpagsonsa beaucoup de com-
posantes sont plus utiles pour l'intereronetrie que la superpositiona deux composantes
d'une part, et lesetats comprines d'autre part. Ces supermsitions apparaissent pen-
dant levolution dynamique en I'absence de bruita des tenps plus longs par rapports
a ceux desetats comprines, mais qui cependent encore irversement du nombre, total
d'atomes, etant donre que la premere superposition se brmea un temps/ 1= N.
Ceci n'est pas le cas pour la superposition macroscopique aetix composantes, qui est
fornreea T= independamment de N, et qui donc est plus a ecee par la pesence
de bruit. Donc, dans des exgeriences qui auraient pour but & peparer unetat utile
pour l'interkrometrie en reposant sur la dynamigue trem gee de la jonction Josephson
bosonique, mape_la pesence de bruit de phase il seraitanvenable d'attendre jusqua
un temps/ 1= N, au-deh de le egime de spin squeezing, rejoignant la gime de
formation des superpositions macroscopiques.

Ensuite, nous avons consicee I'e et des pertesa une particule sur la production
detats de chat de Schroedinger. Nous avons grerali® la solution pour la matrice
densie pesenee en Ref.[162] au cas ai une asynetrie dans les paranetres de la
BJJ est prise en compte. Nous avons fait ainsi une \spectrogipie" de la matrice
densie qui a ek que lesetats ai des particules ontet perdues, qui sont nelangs
dans la matrice densie avec letat en I'absence de perte d particules, ont encore des
caraceristiqgues en commun avec desetats de chat. Par exaple, leur distribution de
Husimi possde encore des pics, toutefois amortis, qui coespondent aux composantes
de la superposition. L'analyse de comment les corelationsutiles produites pendant
la dynamique sont a ectes par la perte de particules a et possible seulement de
manere qualitative, puisqu'il n'est pas simple de ¢ ni r dans ce cas une loi dechelle
pour l'information de Fisher avec le nombre de particules. B n, nous avons monte
gu'il est possible de traiter analytiqguement les pertesa ne particule et le bruit de phase
en méme temps. Ce esultat peut étre en principe etendu aucas de pertesa deux et
trois corps, et il est important dans la perspective d'une coparaison quantitative avec
les experiences.
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Nosetudes con rment que la jonction Josephson de Bose estrusyseme promet-
teur pour la netrologie et pour d'autres applications en information quantique.

6.2 Prospective views

Several aspects in the eld of bosonic Josephson junctionsesderve to be further investi-
gated, especially regarding their application in quantum metrology, towards the imple-
mentation of a Heisenberg-limited interferometer, or the realization of Schroedinger's cat
states, among others. A few theoretical questions in partialar appear as natural exten-
sions of the present thesis. We provide in the following the dtailed list.

6.2.1 E cient reconstruction of macroscopic superpositio ns via mea-
surement of the momentum distribution

By looking at expression (1.44) and at the expression of the ragular momentum operator
Jy given in Eq.(1.33) one immediately notes their mutual similrity. A very natural
guestion which arises is therefore the following: is it pogble to reconstruct the angular
momentum eigenvalues distributions in thex vy plane P (r) introduced in Chap.3 by
measuring the momentum distribution?

Let us consider the operator version of Eq.(1.44),

0B = o(BI*(N + Jicos pxd) Iy sin (pxd)); (6.1)

where M(p)i = n(p) gives Eq.(1.44). As seen in Eq.(6.1), each value of the mom&um
px selects a direction in thex y plane of the angular momentum space. For instance,
xing pxd = (we note by p the three-dimensional vectors satisfying this condition)
leads tor{(pyd = ) = j o(p)i3(N + J). Suppose that a one shot measurement of the
observabler(p) is performed. Hence, under knowledge of the gaussian eneglej o(p)j?
and of the total number of particles N, from the eigenvalue of{pxd = ) we can extract
an eigenvalue ofJy. Analogously, the value at M(p,d = =2) yields an eigenvalue for
J\, and so on, for each direction. In practice, for each shot thecurve n(g) should be
devided in bins; the center of each bin identi es a directionin angular momentum space,
while the count in each bin provides an outcome for an angulatmomentum operator.
Repeating many times this procedure would allow to reconstuct the histograms for the
angular momentum operators eigenvalues distributions in grious directions of thex vy
plane P (r) as explained in Chap.3 (see Fig.3.3), and if wished the twalimensional quasi-
probability distribution f (x;y).

What is surprising with this procedure is that outcomes of olbservables which are not
mutually commuting could be apparently simultaneously obtained with a single shot of
the momentum distribution h(p). We expect such a procedure to be realizable in the
regime in which the number of particles is large.

A possible recipe to demonstrate the feasability of this prtocol is based on ref-
erences [166, 167]. By using theN -point probability distribution P (+q;+®;:#n) =
h™Y (1) Y(+2)::: V() “(#n ) “(£1)i corresponding to the state of interest, one could sim-
ulate various shots of the spatial disribution of N -particles after a time of ight, analo-
gously to Refs. [166, 167]. The momentum distribution wouldbe obtained from it via
the scaling law n(pt=m) = n(+¥) [35, 46]. Since this procedure attempts to map out the
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correlations in the equatorial plane of the Bloch sphere, itis more useful for states with
a structure in that plane, as indeed phase cat states (see Cipa3). A similar procedure
has been followed in Ref.[101] to map out the phase pro le (e., the projected Husimi
distribution Q( =2; )) of a phase cat state.

Once the simulation described above has shown the reliabiji of this method, one could
try an experimental veri cation by using available data for the momentum distribution,
e.g. by reconstructing the distributions P (r) in various directions for a phase state. A
further questions which arises in this context is how the reslution in the directions which
can be reconstructed is related to the total number of partides and to the number of
measurements. A nite resolution on the spatial measuremenof the particles (size of the
detectors) should be also taken into account (see Ref.[166]

6.2.2 Particle losses and comparison with the experiments

Although in Sec.5.3 we have developed a treatment to includ¢he e ect of particle losses
and phase noise on the same footing, and we dispose of an anidgl expression for the
visibility in the presence of both noise sources, a direct aoparison with experimental
data seems to be dicult. There are mainly two reasons for this: rst of all, one would
need to dispose of su ciently good data in order to decide whch loss process is the most
important between one-, two- or three-body losses. This cdd be done e.g. by means
of a t of the visibility expression in the presence of di erent kind of losses separately,
and by looking at which one present the best agreement. To dohis, an expression of
the visibility in the presence of two- and three-body lossesainalogous to Eq.(5.60) should
be derived, which seems to be feasable (one could also think deriving an expression
including the e ect of several sources of losses at the samentie). Secondly, a precise
comparison with the experiments would also require to take mto account the dependence
of the relevant parameters which enter the BJJ model on the péticle number (and on the
site occupation in the case of the external BJJ), according @ the discussion presented in
Sec.1.3.1.a. Despite the fact that we have neglected this gendence in our derivation, the
t of the visibility decay for the internal set-up that we hav e mentioned in Sec.5.1.2, which
allowed us to extract an estimate for the noise correlation @inction in the non-markov
regime, is still qualitatively meaningful. An argument as to why this is the case relies on
the fact that at short times the contribution of the unitary d ynamics to the damping of the
visibility in Eq.(5.14) depends on the factor N ?; in the set-up of Ref.[8], an experimental
estimaBoQof the dependence of the interaction constant from the particle number yields

/ 1= N, so that that the product N ? is approximatively constant at varying N. As a
consequence, the visibility decay is not a ected by particlelosses in a rst approximation
[168]. A guantitative investigation of this point would be n evertheless interesting.

6.2.3 Controlled creation of cat states in the presence of at om losses
and phase noise

As we have mentioned in Ch.2, the present decoherence rate the experiments is too high
to permit the creation of cat states by means of the quenched yhamics of the BJJ, or even
by means of our optimal control protocol presented in Sec.’5.3 (see also Ref.[33]). Once
the main sources of noise and their decoherence rates havedreidenti ed (see comments
above), an ambitious project would be thus to provide a protaol for the controlled creation
of cat states, able to take into account the e ect of phase nois and patrticle losses, with the
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objective of making the experimental realization of such sates possible. One could think
to proceed in an analogous way as presented in Sec.2.5.3: trdy a pre-study based on a
geometrical approach. To do this, one could use a semi-cldasal model for the dynamics
of the BJJ in the presence of atom losses and phase noise, asvdpped in Ref.[169]. A
veri cation of the validity of such a protocol by a full numer ical calculaton of the delity
should clearly follow. Then, the geometrical solution for the control eld K (t) could be
again used as a trial for a full numerical algorythm. Such a fll numerical calculation
would be probably a challenging task, since as we have seen 8ec.5.2 the dimension of
the total Hilbert space when losses are a ecting the system saes asN 2.

6.2.4 Dynamics in optical lattices

A further extension of our work would be to study the quantum dynamics of a M -site

optical lattice, occupied by N bosons. For instance, one could generalize the calculatioof

the quantum state produced after a quench which we have pres#ed for the two-sites case
in Ch.2, in the case of aM -site lattice. An approximated version of such a calculation has
been carried out [101, 104, 170], in which the initial \superuid” state (the M —s'ktf version
of the strongly couplelg state for the BJJ) is described by theproduct statej i = !\11 j il

wherej i = el j?=2 n p%jnii is the Glauber coherent state in the sitei. This is a good
approximation in the case in which the total particle number and the number of sites are
large, which is not always the case in experiments [170]. Werppose to use a formalism
based on generalized SU(M) coherent states [27, 162]. In dua framework, a generalized
coherent state is de ned as the displacement of a referencdate as

P
jyi R(3)JN; 0:0::::0i = e k=2 Vi YuJKijN: 0; 0::::: O
|
TR U
= p:l Xk& (6.2)
© k=l

where the SU(M) generatorsJj, = a8y satisfy Jik; Tl = Jin km  Jk nj, X1 = cosjyj

and xx = Py for k 2 [27]. Note the analogy of Eq.(6.2) with Egs.(1.32) and
(1.29), which are recovered wherM = 2 by setting y = =2e ' . The ground state of

the Hamiltonian (5.32) is given by Eq.(6.2) with xx = 1 for each k [162, 170]. The rst

purpose would be to show that under a quench, after a fractiorof the period the state is

found in a superposition of generalized coherent states ohe form (6.2).

This formalism also allows to treat the 4-mode set-up advaned in Ref.[171], in which
two atomic species are trapped in a double-well external pantial, so that four modes
are naturally involved. Such a system is a promising tool to @monstrate entanglement
between spatially separated parties, as in the Einstein-Pdolski-Rosen paradox [171, 172].
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Appendix

Detection of macroscopic superpositions

A.1 Generating function of the distributions of the angu-
lar momentum operators eigenvalues for macroscopic
superpositions and incoherent mixtures of phase states

Let us now evaluate explicitely the generating function (314) for the g-component cat
state and the corresponding statistical mixture of coherenstates. In the following we will
assume thatN is even. With the de niton = =2e ' [71] and by using Egs.(2.25), the
generating function for cat states with an even number of corponents can be rewritten
as
Xix? 2k 0 2k
heas( )= h (tje ™ I (tg)i = juoi? he “wjed e Wi (A1)
k=0 k°=0
From the disentangling theorem (Eqg. (A5) in Ref.[71]) we hawe

edr I — o T g log(1+] ) Tzg S (A.2)

The operator e 3+ acts on the coherent state on the right sides of Eq.(A.2) as almanging
in the amplitude of the coherent states, due to

P E O I
edji= ——j + i
1+j 5™
hje &=L 1 _n (A3)
1+j 99"

(similarly for the left hand side of Eq.(A.2)). Then, we need to calculate the action of the
operator e 32 over two general coherent states, which gives
h Ye ¥j i =
1 1 N=2 N=2 N 1=2 N 1=2
(1+j N2+ jHN=2 +

n= N=2m= N=2
- e N2 0
e peas) e T ©

N,
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Using Eqgs.(A.3) and (A.4), equation (A.2) becomes

.. l 1 N N
hGed Tji= _ e 7 1+4( + ) O e (A.5)
@+j AN?a+j 9N
with
= —tanj j
jtani ]
= log 1+] j? (A.6)

Substituting equations (A.5) and (A.6) in Eq.(A.1) and using =1, we obtain nally for
evenq

e XX 2k 2k O N
N CCo 1+ e " + e q e (A.7)
2 k=0 k0=0

h05( ) = juoi?

while the mean over the corresponding mixture gives

; le 7 X1 2k L2k N
hmxt () = q 2 1+ e''a + e e (A.8)
k=0
and, for odd q
5 X 1 X 1 . . . 0 . N
he2( ) = jeoj? & 1+ e'a i+ du i e
k=0 k0=0
. 5x1 . . . . N
h™ () = }ezNZ 1+ e 5 i34 d&tig e (A.9)
q k=0
This can be further simpli ed as
h™Xt ()= = jcos—j+ isin= sign cos= sin —
a5 2 2 2 q
hcatS( ): hmixt( ) (A]_O)
X1 2 (k k9 h [ . 0 .
+juoj? Ck—ﬁkO jecos=j 1+e ' 4 +sin = sign cos= dF ) e i)
kekoo 2 2 2 2

for an even number of components, while for an oddj one obtains Eqgs.(3.18) and (3.19)
of the main text.

A.2 E ect of time noise in the reconstruction of the prob-
ability distribution P (r)
In order to roughly estimate the e ect on the reconstruction of the prole P (r) of an error

in the time at which the measurements of the angular momentunoperators are performed,
we extract Nmeas Values oft distributed normally with a variance 2 around the time tq at
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M =20, g = 3, nmeas = 20

0,4 ‘
L — P(nx) s=0 |
- — P(nx) s =T/50
— P(nx) s =T/20
0,3 P(nx) s = T/10| |
0,21 -
oal — 1 [
= |
0 | 11 D T . | ! -
-10 -5 0 5 10
r
Figure A.1: Eigenvalue distribution P (r) corresponding to Jx ( = =2) for the three-

component coherent superposition withN = 20, in the case in which an error in the time
of the measurement is taken into account, at various values fothe variance of the time
distribution.

(t tg)? _
which the g-component cat state is formed, i.e. according top(t;tg) = e 272 :(p 2 ).
Then, we averageP (r;t) = jhrj (t)ij? wherej (t)i is given by Eq.(2.19), obtaining thus

l N)ﬁeas

meas

P (rtg) = N P (rt): (A.12)

i=1

Such an estimate is correct only in the limit of an in nite num ber of measurement, which
allows to sample many times each timd, and to perfectly reconstruct each probability dis-
tribution P (r;t). We illustrate the estimate (A.11) in Fig.(A.1). We see that a standard
deviation = 1=N is somehow critical, in the sense that for lower standard deiations the
probability distribution still displais the peaks corresp onding to the cat state, while for
higher values the recognition of such state fails.

A.3 Rewriting the quasi-probability distribution f(x;y)

The probability distribution f (x;y) of Eq.(3.32) can be rewritten to change the interval
of integration. To do this, we rst separate the contributio n for positive and negative
in Eq.(3.32), obtaining

, Z Z

d dh ()& 6inx cosy) 4 (A.12)

f(xy)= > . .
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with
Z, 4 4 4
| = d( ) dh ()ei (sin x cosy) — dOO dh ( %eio(sinx cosy);
0 0 0
(A.13)
where we set = . Let us drop the prime. Due to the de nition of the generating
function Eq.(3.14), the following property follows:
h ( )e i (sinx cosy) — I’Ei (Jx sin  Jy cos )ie i (sin x cosy)
= he i (Ixsin( + ) Jycos( + ))iei (sin( + )x cos( + )y)
= h, ( )ei (sin( + )x cos( + )y). (A.14)
This allows to rewrite Eq.(A.13), dening also °= + | as
4 4
| = d dh ( )ei(sinx cosy)
0 0
4 Z,
= d d % ()g 6in * cos ). (A.15)
0

Substitution of Eqg.(A.15) in Eq.(A.12) yields to equation ( 3.33) of the main text.

A.4  Connection with the Wigner function

Referring to the de nition in Eq.(3.11) taken from Ref.[116], let us consider the projection
along the equator, i.e.

Z, z h i Z
dxsWs(%) = dyg( )tr eYTA e 1(xayitxay2) dxge *3v3
7 Sﬁl(z) , 1

@) | dyd @i g lbanead (yy) (A.16)

Ws(X1; X2)
1

Now, with the parametrization of Ref.[116] we have

y1 = sin sin
y» = sin cos
y3 = COS: (A.17)
Since
(ya)= ( cos)= —2; (A.18)
hence from Eq.(A.16) we obtain
Z Z Z ~
Ws(X1;X2) = ds() dsin d—2
h [
tr ei (sin sin J x+sin cosJy)A e i (x1sin sin +x2sin cos )
Z h i
— dds ( )tl’ ei (sin J x+cos J y) A e i (x1sin +Xx32cos ); (A.19)

which clearly displais the same structure as Eq.(3.33).



Appendix

Coherent spin squeezing and quantum
Fisher information

B.1 Demonstration of Eq.(4.39) for the spin squeezing pa-
rameter

In the following we show that the spin squeezing parameter 2(t) in a Bose Josephson
junction is always optimized along a direction contained inthe (yOz)-plane.

Let us observe that the angular momentum covariance matrixG(t) de ned by Eq.(4.31)
has vanishing matrix elementsGyy (t) = Gx.(t) = 0. In fact, in the absence of noise this
matrix G(t) = ©(t) is given by Eq.(4.34), and we have seen in Sec. 5.1.4 that itrpserves
the same structure in the presence of phase noise. Due to th&pecial structure of G(t),
the uctuations of the angular momentum operator along an arbitrary direction n given
by Eq.(2.8) is

X

( JIn(1)? niGj (t)n; (B.1)

X
= sin? sin® G 4 (1) + niGj (t)n;
ij=y;z

iy =xy;z

The sum overi;j in the second line can be written as (SiR cog + cos? AT GYt)AC
where we introduced the notation Gqt) for the two-by-two submatrix of G(t) in the plane
(yOz) and the normalized vector

nyg + n;2

n= p
= 2
cog +cCos

(B.2)

sin?

in this plane. Furthermore, we observe that during the dynanics of the noisy junction
one hashfyit = hf}i; = 0 at all times. As a consequence, the expectation values ofhe
angular momentum operators along the directions de ned by K).(2.7) are given by

hfp, it cos hiyiy
hf,it =  cos sin hiiy: (B.3)
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Combining these results and using the fact thatG, (t) 0, we obtain from Eq.(2.6)

N ()2, sin? si? Gy (t) . o 0
t) = + WY GHt)N
4 At 1 sin® sin? L0
G (t) = min AT GYt)n° (B.4)

= min NATG(t)A
n2(y0z)

where (t) = 2hf}i;=N is the visibility and G (t) the smallest eigenvalue ofGXt). Since

it is clear that the inequality in Eq.(B.4) is an equality for A equal to the corresponding

eigenvector i* (t) of G (t), this demonstrates that the squeezing is minimized along a
direction fi (t) contained in the (yOz)-plane. Combining Egs.(4.28) and (B.4), we obtain

that the optimum coherent spin squeezing is given by Eq.(4.9).

B.2 Determination of the time t when the optimization di-
rection of the Fisher information changes in the absence
of noise

If the number N of atoms is even, the direction of optimization ri‘(FO) of the Fisher informa-
tion in a noiseless Bose Josephson junction is alongaxis at the time t, = T=4 of formation
of the superposition of the two phase state§ = =2; =0i andj = =2; = i. These
phase states are indeed diametrically opposite on the equat of Bloch sphere along this
axis. Sincerr(FO)( ) = ’hfro)( ) is in the (yOz)-plane at times =2 t=T 1 (see Sec.4.4),
the optimizing direction thus changes abruptly from the (yOz)-plane to the x-axis at some
time  2]0; =2[ satisfying

OCy= D) (B.5)

In this appendix we determine  explicitely in the limit of large total atom number

N, supposed to be even. We may infer from the previous discussi that is neither
close to 0 nor close to=2. Consequently, we look for a solution of the implicit equaton
(B.5) inthe interval 2 [N ;=2 N ], being a positive exponent strictly smaller
than 1=2. Introducing the variables u cos() 2 [O;cosN ) and v cos(2) 2
[ cos(N );cos(N )], we obtain with the help of Egs.(4.35) and (4.37)

490 Q) _
< =
+2(N Du?N 4@ ud)+ Oo(Nu™ 8+ O(NvNN 4):

(N DN 2+ Nu?N ? (B.6)

Setting 50)( )= >((0)( ) gives the equation

N 2
2 u—lz =2 uzm—i+ oe N *): (B.7)
For large N, the right-hand side of Eq.(B.7) is strictly larger than one and is of the order
of unity. Hence the solution must satisfyj2 u 4j> land2 u 2' 1. We may exclude
the positive sign as the valuesu = 1 correspondto ' Oor = _outside the studied
time interval. The relevant solution u of Eq.(B.7) is thus close to & 3 and smaller than
this number. Let us note that for odd N's, such a solution does not exist; indeed, in this
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case Eq.(B.5) has no solution (see Sec.4.4). Let us sat= 1=(p 3(1L+ )). Then from
Eq.(B.7) we obtain

oN 2)In(1+6 +0( ?)) — g+ O()+ O Ni (B.8)

from which we nd
1.2
Y 3

In terms of the dimensionless time we get

1
1+0 — :
S (B.9)

1 In(5=3) 1
= arccos p—§ + —+ 0 —

N N (B.10)
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Appendix C

Quantum Fisher information and coherent
spin squeezing at thermal equilibrium

C.1 Squeezingat T=0,K =0

The squeezing in the ground state of the BJJ atk = 0 is an indeterminate expression.
To evaluate its limiting value, we use the perturbation theory to the second order with
unperturbed Hamiltonian By = J2, and B, = 2K J}. The ground state is the only
non-degenerate state for the unperturbed Hamiltonian. Theexcited two-fold degenerate
levels are given by

§ Wi = jni 2K (0)17“”('0)jm|
mén En Em
29 . . q N ~ 3
K Zztn+l 3 n . 7 n+l F+n .
= + —4 +1i + 1i5
jni G+ D) jn+1i o+ D) jin 1
while the ground state expansion yields
i Pi=joi 2K _midiini jmi = j0i + b(j 1 + 1) (C.1)
EO £O
mén =N m
q

~N . N L. . 1). (1).
where we de nedb= % % +1 % the normalization is xed by h Wi Wi=@+2).
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WA O
Indicating with hOi % with the use of Eq.(C.1) we obtain
s
. 2b N N
= —+1 —
U 1+20) 2 2
hyi = hizi=0
1 N N N N
W2l = ——— N —+1 +2P N —+1 + — 1 —+2
x! A1+ 20 2 2 2 2
1 N N N
2l = ——— N —+1 P = 1 —+2
y! A(1+219) 2 2 2
o
hgi = 1+20)
W3yl = 30 =0,
b N N
hyJd,i = ——— —+1 —
y-z! i(1+20) 2 2

(C.2)

Due to Egs.(C.2), we nd that the direction which optimizes t he squeezing iz. With the
de nition (2.6) we then obtain

2_ 2 N 28, N 2b?
z

= : C.3
hfiz+ hfyiz 42 S +1 Y (©3)

which renders Eq.(4.32) of the main text.

C.2 Quantum Fisher information and coherent spin squeez-
ing at thermal equilibrium

We want to calculate the Fisher information and the squeezig (optimized over all the
possible directions) at thermal equilibrium whenT = ﬁ is non zero, at =0, in the
framework of the two-mode Hamiltonan (1.24) modeling the b@onic Josephson junction.
As for Sec.4.3 of the main text, this provides an indication & the usefulness of the equi-
librium state of the BJJ for sub-shot noise phase estimationin atom interferometry, when
the temperature is nite. We focus again on the case of symmetc modes =0.

The density matrix at temperature T is

X
A= pyjkink] (C.4)

k

wherejki are the N + 1 eigenstates which diagonalize the Hamiltonian Eq.(1.2% H jki =
Ejki, and the pxs are given by the Gibbs distribution

e Ex

z (C.5)

Pk =

P
with Z the partition function Z = e Ex,
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100-

-50

- 100"

Figure C.1: Energy spectrum from the Hamiltonian diagonalization as a function ofr =
K= ,with N =10, =0. For r 0 the spectrum is quadratic (see Sec.C.2.1), while for
r 1 the level spacing is linear (see Sec.C.2.2).

To compute the Fisher information, we use the covariance maix (4.29) introduced in
Sec.4.2. In reference to EQq.(4.29), we introduce the notatin

&; (I k) = HjJijkihkjJ;jli; (C.6)
which allows to rewrite the covariance matrix as

1X (o p)?
L= = —g (I;k): C.7
[ C]u 2 » pl + pk a,j( ) ( )
As we have done in Sec.4.3, we rst tackle in the next followilg two subsections the
limiting cases of the problem, namely the limit K = 0 and = 0. We will address

numerically the general case.

C.21 Limitingcasel: K =0, =0

In this limit the Hamiltonian is reduced to K = J‘ZZ, with as eigenstates the Fock states
given by Eq.(1.26), with double degeneracy except the grout state n = 0. Therefore

Z=1+2 e " (C.8)
n=1
P
and "= Z, pajnihnj with p, = e " ?=Z. From (C.6) it is easy to calculate
1 N N N N
ex (k) = 1 (E+k+1)(5 k) I;k+1+(5 k+1)(3+k) k 1
ey(k) = ex(hk)
1 N N N N
ey(hk) = y (E+k+1)(5 K) 1k+1 (E k+1)(3+k) Lk 1

(C.9)


















































































































