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Introduction

It has been realized in the last decade that con�ned ultracold atomic gases o�er the
possibility to manipulate coherently entangled many-body quantum states. In particu-
lar, a major advantage provided by these type of systems is the high degree of control
of the relevant experimental parameters, due to the ability of tailoring traps of various
geometry [1, 2] and of tuning the interatomic interactions [3]. This has a large interest
for applications in quantum information and quantum technology. Recent advances have
concerned applications to quantum simulators [4] and high-sensitivity atom interferome-
try, which can be used for enhancing the precision in atomic clocks and in magnetic �eld
sensors [5{9].

In the latter �eld, very promising results have been recently demonstrated with the
use of a Bose Josephson junction (BJJ) [5{9]. Such a system isformed by two modes
of a Bose-Einstein condensate, which may correspond eitherto two internal states of the
condensed atoms in a single potential well or to two spatially separated wave functions
in a double well. In an atom interferometer, the two modes of the condensate are left
evolving under the interaction with the physical quantity t o be measured, which causes a
relative phase shift ' on the two modes. From measurements on the output state, e.g.of
the relative population of the two modes, the phase shift canbe estimated. The Schwinger
representation [10] connects the creation and annihilation operatorsâi and ây

i (for i = 1 ; 2)
of the bosons in the two modes to the three components of a collective angular momentum
operator Ĵ = ( Ĵx ; Ĵz; Ĵz), in terms of which the operations composing the interferometric
sequence can be described.

It has been proposed [11, 12] and experimentally demonstrated [7{9, 13] that Bose
Josephson junctions allow for the creation of atomic squeezed states, in which the quantum
uctuations of the collective angular momentum operator in a certain direction are reduced
to the expense of the uctuations in another direction. Such non classical states can be
used in an interferometric protocol to improve the phase sensitivity � ' reducing it below
the shot-noise limit � ' / 1=

p
N - the limit that one obtains using classical states,N

being the number of bosons [14, 15]. This prediction has beenrecently experimentally
demonstrated in a Bose Josephson junction by C. Grosset al [8].

A further enhancement of the precision in atom-interferometry has been predicted to
be reached by the use of macroscopic superpositions of atomic coherent states [15, 16].
These are highly entangled states, in which a macroscopic number of particles is found in
a coherent superposition of di�erent possible states - the \components" of the superpo-
sition. These states are often familiarly referred to as \Schr•odinger's cat states", and in
particular two-component superpositions are also known from other quantum information

i
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contexts as GHZ states [17{20]. Incidentally, macroscopicsuperpositions are predicted to
be a fundamental resource in quantum communication and quantum computation [21],
and their experimental realization would also serve as a fundamental test for quantum
mechanics at the macroscopic scale. In quantum interferometry, the phase uncertainty
which could be reached with the use of these states scales like 1=N, and corresponds to
the \Heisenberg limit" - the highest possible phase sensitivity which can be reached with
linear interferometry [15, 16].

The experimental realization of these states is however challenging, because of their
fragility with respect to decoherence e�ects induced by particle losses [22, 23], phase noise
- due to stochastic uctuations of the energies of the two modes [24, 25], collisions with
thermal atoms [26, 27], interaction with the electromagnetic �eld [28, 29], and random
uctuations of the trapping potentials [30]. The two former phenomena, in particular, are
the main noise sources in the experiments of Ref. [8, 9, 13].

In this thesis, we study protocols for the creation, detection and exploitation in atom
interferometry of atomic squeezed states and macroscopic superposition in Bose Josephson
junctions, in the presence of phase noise and particle losses.

After introducing in Chap.1 the system under study - the Bose Josephson junction
- and its main features, we address in Chap.2 how squeezed states and macroscopic su-
perpositions can be created in a BJJ by means of dynamical andadiabatic methods, in
the absence of external noise sources. We especially focus on dynamical protocols. We
�rst demonstrate the formation of macroscopic superpositions during the dynamics of the
BJJ which follows a quench of the coupling between the two modes; then, we address an
optimal control protocol, with the goal of lowering the time of formation of the super-
position states. In Chap.3 we study how macroscopic superpositions can be detected by
means of repeated measurements of the collective angular momentum operator in various
directions, which is an observable accessible in the experiments. In Chap.4 we address
the applications to quantum metrology, studying the degreeof usefulnessfor sub-shot
noise interferometry of the quantum state produced during the quenched dynamics of the
BJJ. Finally, in Chap.5 we address the e�ect of phase noise andparticle losses on the
above-mentioned protocols. We analyze how the presence of noise a�ects the formation
of squeezed states and macroscopic superpositions, studying in detail the decoherence
processes to which the latter states undergo.

The results presented in this thesis have been the subject offour scienti�c publica-
tions in Physical Review A [24, 25, 31, 32], and of one preprint recently submitted for
publication [33].

Les gaz d'atomes ultrafroids o�rent la possibilit�e de manipuler de fa�con coh�erente
des �etats intriqu�es �a beaucoup de particules. En particulier, un avantage relevant de ce
type de syst�emes est l'�enorme capacit�e �a contrôler les param�etres exp�erimentaux, tels
que la forme du pi�ege [1, 2] ou la force des int�eractions inter-atomiques [3]. Cela a
un grand interêt pour les applications en information quantique. Des progr�es r�ecents
ont concern�e les simulateurs quantiques [4] et l'interf�erom�etrie atomique �a grande
sensibilit�e, qui peut être utilis�ee pour augmenter la pr�ecision des horloges atomiques
et des capteurs magn�etiques [5{9].

Dans ce dernier champ d'application, des r�esultats exp�erimentaux tr�es promet-



iii

teurs ont �et�e achev�es �a l'aide d'une jonction Josephson bosonique (BJJ) [5{9]. Ce
syst�eme est form�e par deux modes d'un condensat de Bose-Einstein, qui peuvent cor-
respondre soit �a deux �etats internes distincts des atomescondens�es, soit aux deux
fonctions d'ondes d'atomes s�epar�es spatialement, dans un double puits de potentiel.
En interf�erom�etrie atomique les deux modes du condensat �evoluent sous l'e�et de
l'interaction avec la quantit�e physique �a mesurer; cela cause un d�ephasage relatif'
des deux modes. �a partir de mesures sur l'�etat de sortie, par exemple de la di��erence de
population entre les deux modes, le d�ephasage peut être estim�e. La repr�esentation de
Schwinger [10] relie les op�erateurs de cr�eation et annihilation âi et ây

i (avec i = 1 ; 2)
des bosons dans les deux modes aux trois composantes d'un op�erateur de moment an-
gulaire collectif Ĵ = ( Ĵx ; Ĵz; Ĵz), en termes du quel les op�erations qui composent la
s�equence interf�erom�etrique peuvent être d�ecrites.

Il a �et�e propos�e [11, 12] et exp�erimentalement d�emontr� e [7{9, 13] que les jonctions
Josephson bosoniques permettent de cr�eer des �etats atomiques comprim�es, c'est-�a-dire
des �etats dans lesquels les uctuations quantiques du moment angulaire collectif selon
une certaine dir�ection sont r�eduites, au d�etriment des  uctuations dans la direction
perpendiculaire. Ces �etats non-classiques peuvent être utilis�es dans une s�equence in-
terf�erom�etrique pour am�eliorer la sensibilit�e de phas e � ' en la r�eduisant au dessous
de la limite quantique standard� ' / 1=

p
N , c'est-�a-dire la limite qu'on obtient en

utilisant des �etats classiques,N �etant le nombre de bosons [14, 15]. Cette pr�ediction a
�et�e r�ecemment d�emontr�ee exp�erimentalement avec une jonction Josephson bosonique
par C. Gross et al [8].

Il a �et�e pr�edit qu'il est possible d'obtenir une augmentat ion suppl�ementaire de la
pr�ecision �a l'aide de superpositions macroscopiques d' �etats coh�erents [15, 16]. Celles-
ci sont des �etats hautement intriqu�es, dans lesquels les atomes se trouvent dans une
superposition d'�etats macroscopiquement di��erents, les composantes de la superposi-
tion. Ces �etats sont famili�erement appel�es \chats de Schr•odinger", et en particulier
des superpositions �a deux composantes sont aussi connus dans d'autres contextes en
information quantique comme �etats GHZ [17{20]. Par ailleurs, il est pr�edit que les
superpositions macroscopiques sont une ressource fondamentale pour les communi-
cations quantiques et pour le calcul quantique [21], et leurr�ealisation exp�erimentale
serait aussi une �epreuve pour la m�ecanique quantique �a �echelle macroscopique. En
int�erf�erom�etrie atomique, la sensibilit�e de phase qui pourrait être achev�ee �a l'aide de
ces �etats suit la lois d'�echelle 1=N, ce qui correspond �a la \limite d'Heisenberg", c'est-
�a-dire la meilleure sensibilit�e qui peut être atteinte par interf�erom�etrie lin�eaire [15, 16].

La r�ealisation exp�erimentale de ces �etats est n�eanmoins di�cile, �a cause de leur
fragilit�e face aux e�ets de d�ecoh�erence induits par des pertes de particules [22, 23], par
le bruit de phase (dû aux uctuations stochastiques des �energies des deux modes) [24,
25], par des collisions avec des atomes thermiques [26, 27],des interactions avec les
champs �electromagn�etiques [28, 29], ou des uctuations des potentiels r�ealisant le
pi�ege [30]. En particulier, les deux premiers ph�enom�enes sont les sources principales
de bruit dans les exp�eriences de Refs. [8, 9, 13].

Dans cette th�ese nous �etudions des protocoles pour la cr�eation, la d�etection et
pour l'exploitation en interf�erom�etrie atomique d'�eta ts comprim�es d'une part et des
superpositions macroscopiques d'autre part, dans les jonctions Josephson bosoniques,
en pr�esence de bruit de phase et pertes des particules.
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Apr�es avoir introduit dans le premier chapitre le syst�eme �etudi�e, la jonction
Josephson bosonique, et ses caract�eristiques principales, nous �etudions dans le chapitre
2 comment des �etats comprim�es et des superpositions macroscopiques peuvent être
cr�e�es dans une BJJ par des m�ethodes dynamiques et adiabatiques, en absence de bruits
ext�erieurs. Nous nous focalisons particuli�erement sur les protocoles dynamiques. Nous
commen�cons par d�emontrer que des superpositions macroscopiques peuvent être cr�e�ees
pendant la dynamique qui suit un arrêt soudain du couplage (une \trempe") entre les
deux modes; par la suite, nous �etudions un protocole de contrôle optimal, dans le
but de r�eduire le temps de formation des superpositions. Dans le chapitre 3 nous
�etudions comment les superpositions macroscopiques peuvent être d�etect�ees �a l'aide de
mesures r�ep�et�ees du moment angulaire collectif selon di��erentes directions, qui est une
observable accessible dans les exp�eriences. Dans le chapitre 4 nous abordons les appli-
cations �a la m�etrologie quantique, en �etudiant le degr�e d' utilit�e pour l'interf�erom�etrie
en dessous de la limite quantique standard de l'�etat quantique produit pendant la dy-
namique de la BJJ. En�n, dans le chapitre 5 nous abordons l'e�et du bruit de phase
et de la perte de particules sur les protocoles mentionn�es plus haut. Nous analysons
comment la pr�esence de bruit a�ecte la formation des �etats comprim�es et des super-
positions macroscopiques, en �etudiant en d�etail le processus de d�ecoh�erence auxquels
ces derniers sont subjets.

Les r�esultats pr�esent�es dans cette th�ese ont fait l'objet de quatre publications sci-
enti�ques dans Physical Review A [24, 25, 31, 32], et d'une pr�e-publication [33]
r�ecemment soumise.
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Chapter 1
The Bose Josephson Junction

In this chapter we present the system studied in this thesis:a Bose Josephson Junction
(BJJ). This system, made out of bosons which can occupy two modes, is realized by
coupling two trapped Bose-Einstein condensates, allowingfor an exchange of particles
between them. As we will briey recall in the following, the n ame \Josephson" comes
from the analogous superconducting system, in which Cooperpairs tunnel through two
weakly coupled superconducting electrodes [34].

After a general introduction on quantum gases, we review thepossible experimental
realizations of a BJJ. Then, we detail its theoretical description within the two-mode
approximation, presenting the ground state properties of this model. Among them, we
especially discuss the uctuations of the number operator describing the population im-
balance between the two-modes and the momentum distribution; these results have been
published in Ref. [31]. Finally, we introduce the semi-classical approximation for the BJJ.

Dans ce chapitre, nous pr�esentons le syst�eme �etudi�e: la jonction Josephson
bosonique (BJJ). Ce syst�eme, compos�e par des bosons qui peuvent occuper deux
modes, est r�ealis�e en couplant deux condensats de Bose-Einstein pi�eg�es, permet-
tant un �echange de particules entre eux. Comme on le rappellera bri�evement dans
la suite, le nom \Josephson" est donne par analogie au syst�eme supraconducteur,
dans lequel des paires de Cooper peuvent passer par e�et tunnel entre deux �electrodes
supraconductrices faiblement coupl�ees [34]. Apr�es une introduction g�en�erale sur les
gaz quantiques, nous rappelons les possibles r�ealisations exp�erimentales d'une BJJ.
Ensuite, nous d�etaillons sa description th�eorique dans le cadre de l'approximation �a
deux modes, en pr�esentant les propri�et�es de l'�etat fondamental de ce mod�ele. Parmi
celles-ci, nous discutons en particulier les uctuations de l'op�erateur nombre qui
d�ecrit le d�es�equilibre de population atomique entre les deux modes de la jonction;
ces r�esultats ont �et�e publi�es en Ref. [31]. En�n, nous in troduisons l'approximation
semiclassique pour la BJJ.

1
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1.1 Quantum gases: an overview

Quantum gases are ultracold metastable vapors of alkali atoms in the quantum degenerate
regime. For such vapors the atomic densityn and the thermal De Broglie length � dB =q

~2

mK B T satisfy the relation n� 3 & 1. In this regime, since the thermal wavelength is
comparable to the inverse inter-particle density, Boltzmann statistics does not apply and
quantum mechanics is required for a proper description of the system. We use the term
\metastable" in the sense that thermodynamic equilibrium, under these conditions of
temperatures and pressure, corresponds to the solid phase for alkali atoms; to keep the
gaseous state, atoms need to be kept at very low density (which prevents three-body
collisions to happen), and far from any material wall, which would favor the formation of
molecules.

In a non-interacting Bose gas, as an e�ect of its quantum statistics, at low temper-
atures all the particles \condense" in the lowest energy state. This can be understood
as follows [35]. The average occupation of the single particle levels � i in an ideal gas of
bosons follows the distribution n i (�; T ) = 1 =(e� (� � � i ) ), in the grand-canonical ensemble.
The chemical potential � is bounded from below by � 0 to prevent negative occupation
numbers. When � approaches� 0, the occupation of the lowest energy levelN0 � n0

diverges (see �gure 1.1). The chemical potential is �xed by the normalization condition
NT (�; T ) �

P
i 6=0 ni (�; T ) = N � N0. When the value of NT (� = � 0; T) is larger than

N , then the normalization condition is satis�ed for values of � < � 0, and the occupation
of the ground state is negligible (see again �gure 1.1). Since NT (� = � 0; T) is growing
monotonously with T, this happens at high temperatures. WhenNT (� = � 0; T) < N ,
in order to satisfy the normalization condition it is requir ed that � � � 0, leading to a
macroscopic occupation of the lowest level. The condition for such a \condensation" is
hence given byNT (� = � 0; TC ) = N , which de�nes the critical temperature [35].

Such a condensation in energy space, known as Bose-EinsteinCondensation (BEC), has
been theoretically predicted by Bose and Einstein in 19251 and experimentally achieved
with a weakly-interacting gas for the �rst time in 1995 (seventy years later) for Rubid-
ium [36] and Sodium [37], for which Eric Cornell, Carl Wiemann and Wolfgang Ketterle
earned the 2001 Nobel Prize in Physics. In subsequent years,many other atomic species
have been condensed (namely7Li, 40Ca, 4He, 39K, 41K, 133Cs, 174Yb, 52Cr, 84Sr, 86Sr,
88Sr, H).

A rough estimate of the critical temperature below which the atomic gas undergoes
the BEC transition can be given via dimensional arguments: for a uniform gas of free
particles in the degenerate regime, the relevant quantities are the particle massm, the
density n, and the Plank constant h = 2 � ~. The only way to combine them to form an
energy is ~2n2=3

m , which has to be compared to the energykB TC , so that the estimate for
the critical temperature gives

TC = c
~2n2=3

mkB
; (1.1)

wherec is a dimensionless constant and its numerical value turns out to be approximately
3.3 for a Bose gas con�ned in a three dimensional box [35]. In experiments, however,
the typical con�nement is rather harmonic. Let us indicate with ! 0 the frequency of the
harmonic potential. The density of the gas in the cloud can beestimated asn � N

R3 , where

1Bose's paper dealt with photons; Einstein extended Bose's treatment to massive bosons.
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Figure 1.1: Number of particles out of the condensateNT and number of particles in
the condensateN0 as a function of the chemical potential � in the ideal gas model, from
Ref. [35].

N is the number of particle and R �
�

kB T
m! 2

0

� 1=2
is the size of the atomic cloud; then the

transition temperature is obtained substituting this expr ession for the density in Eq. (1.1)

kB TC = C1~! 0N 1=3; (1.2)

where the constantC1 is of the order of unity 2.
In practice, atomic gases are not ideal but often weakly interacting. The atomic

interaction potential between atoms is the standard Van der Waals one, with a hard-
core repulsive part at short distances, which results from the Coulomb repulsion of the
two electronic clouds, and a weak attractive contribution at larger distances due to the
dipole-dipole interactions. However, at very low temperatures, interactions are properly
accounted by the s-wave scattering length a, as higher partial-wave contributions would
require to overcome the centrifugal barrier and are hence negligible. Under the diluteness
condition na3 � 1 a partial condensation takes place in a level modi�ed with respect to
the non-interacting ground state [35], but depleted even atT = 0 by a fraction /

p
na3.

In what follows, we will always suppose that the diluteness condition is ful�lled.
Typical parameters necessary to observe BEC involve temperatures of 10� 100 nK

and densities of the order of 1013 � 1014cm� 3 (quite low compared to the typical density
of molecules in air at atmospheric pressure and room temperature, of about 1019 cm� 3).
Typically, these densities correspond to a number of atoms of 103 � 106 con�ned in spaces
of linear dimension of 10�m � 1 mm. The lifetime of an atomic condensed cloud is about
10 seconds; this enables one to measure both static and dynamical properties before loss
mechanisms, which we will discuss in Sec. 5.2, eventually destroy the condensate.

1.1.1 Trapping quantum gases

In order to achieve the densities and temperatures requiredto observe the BEC, one has to
cool and to trap atoms. In typical experiments, the starting point is a room temperature

2A more rigorous calculation of the critical temperature for atoms con�ned in a three dimensional
harmonic potential can be found in [35] and provides kB TC = C1~(! 1 ! 2 ! 3)1=3N 1=3 , where ! i is the
angular frequency corresponding to the i direction and C1 ' 0:94.
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Figure 1.2: Splitting of the hyper�ne levels of Rb as a function of the magnetic �eld.

atomic gas which is �rst pre-cooled to about 10�K with a laser, then transferred into a
magnetic trap, and �nally cooled down to hundreds of nK via evaporative cooling. The
way of combining the steps of cooling and trapping varies from experiment to experiment,
but the physical principles exploited are generally based on the interaction of atoms with
electric and magnetic �elds. A review of these methods can befound, for example, in [38].
We briey review here the main mechanisms underlying the trapping of alkali atoms, as
this will allow us to introduce some notions which will be useful in the rest of the thesis.

1.1.1.a Hyper�ne structure and magnetic traps

Magnetic trapping of neutral atoms relies on the use of the interactions of their spin
properties with inhomogeneous magnetic �elds. Alkali atoms have a simple electronic
con�guration, characterized by closed shells except for the outermost, occupied by a single
electron. As the orbital momentum is zero in the ground state, the total electronic angular
momentum J is equal to 1=2; the nuclear spinI depends on the isotope. Hence, there are
two possibilities for the resulting total angular momentum: F = I � 1=2. In the absence
of an external magnetic �eld, the interaction between the nuclear spin and the outermost
electron one (the hyper�ne interaction, Hhf = A ~I � ~J , where A is the relevant coupling
constant) removes the degeneracy of the two con�gurations.

When an external magnetic �eld is applied (say in the ẑ direction) the total Hamilto-
nian is

H = A ~I � ~J + 2 � B Jz B (~r) (1.3)

where � B is the Bohr magneton. Since~I � ~J = 1=2 (I 2 + J 2), the eigenstates of the
hyper�ne Hamiltonian are eigenstates ofJ 2; I 2; F 2 and Fz. Treating the magnetic �eld as
a perturbation, to �rst order the corrections to the energy l evels are

hF; mF j2� B JzB jF; mF i = gL � B mF B � � � F B (1.4)

wheregL is the Land�e factor and mF is the eigenvalue ofFz. The resulting splitting of 87Rb
levels is depicted in �gure 1.2. We obtain from Eq. (1.4) that the magnetic contribution to
the energy provides a potential energy� � i B , where� � i can be either positive or negative,
depending on the unperturbed hyper�ne state. When the magnetic �eld is inhomogeneous,
if the magnetic moment is positive, the atom is driven to regions of higher �eld (these
states are referred to as \high-�eld-seeker"), while if it is negative, it will move towards
regions of lower �eld (\low-�eld-seeker" states). Since the modulus of a static magnetic
�eld cannot have a maximum in vacuum, high-�eld seeker states can never be magnetically
trapped - they can be optically trapped, though. Thus, the task of constructing a magnetic
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trap relies on the design of magnetic �eld con�gurations with a local minimum, e.g. a
quadrupole potential. Recently a versatile way of implementing magnetic trapping has
been provided by atom chips [39]. These are miniaturized current conductors which allow
for the generation of magnetic �elds of almost arbitrary geometry. They can also combine
with optical methods, allowing for the generation of special potentials such as lattices,
potential barriers, and single- or double-well potentials. They have been recently used for
matter-wave interferometry [40], or for the generation of atomic squeezed states [9, 41, 42].

1.1.1.b Optical traps

Another option for trapping atoms is the use of optical traps. These are based on the
following principle. Since the wavelength of the laser radiation is much larger then the
atomic size, the interaction of the atom with the laser �eld can be treated with high
accuracy in the dipole approximation, and can be expressed as

V (~r; t ) = � ~D � ~E(~r; t ); (1.5)

where ~D is the electric dipole and ~E(~r; t ) is the time-dependent oscillating electric �eld.
The interaction given above produces a polarization� (! ) of the atom oscillating with the
same frequency as the electric �eld. Because of the Stark e�ect, atomic levels undergo
a shift which can be calculated with second order perturbation theory and which can be
regarded as an e�ective potential

U(~r) = �
1
2

� (! )E 2(~r; t ); (1.6)

where the time average is taken because the frequency of the laser �eld is much higher
than the inverse typical time of the atomic motion. If the int ensity of the radiation �eld
varies with the position, the interaction energy above gives rise to a force. The sign of the
polarizability and hence of the energy shift depends on the frequency of the radiation, and
turns out to be positive above the characteristic dipole resonance frequency and negative
below, so that the atom will be attracted or repelled from the regions of higher �eld,
depending on the frequency of the laser. Hence, by focusing alaser beam with frequency
detuned in such a way that the energy of a ground state atom hasa minimum in space,
it is possible to trap the atoms.

The main advantage of optical traps is that the trapping is not limited to speci�c
magnetic states (as it is in the case of magnetic traps). As wewill detail in Sec.1.2, this
has allowed to study spinor Bose-Einstein condensates, i.e. mixtures of atoms condensed
in di�erent hyper�ne states. A second advantage is the following: the interaction strength
can be tuned by applying a magnetic �eld through the so called\Feschbach resonances" [3,
38]; this has been largely exploited in the experimental realizations of bosonic condensates
and also allowed to condense fermionic pairs, since interactions between fermions can be
adjusted to form weakly bound molecules [43, 44]. This is achieved by applying a uniform
magnetic �eld to atoms in an optical trap. Thus, this techniq ue is impractical in magnetic
traps, where the inhomogeneity of the �eld is necessary for trapping. Note however that
tunable interatomic interactions have been recently achieved with atoms in a magnetic trap
in the experiment of Ref. [9, 41], via manipulation of the spatial modes of the condensate
(see discussion in Sec.1.3.1, in particular Eq.(1.20)).
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1.1.2 Probing quantum gases

Quantum gases are most directly probed by accessing to theirdensity pro�le. One way to
measure the density is absorption imaging of an atomic cloudreleased from the trap and
allowed to expand freely [45]. Light at a resonant frequencyis shone across the cloud and
is absorbed passing through it; thus, by measuring the absorption pro�le, one can obtain
information about the density distribution. Note that this is a \two-dimensional column
density pro�le", in the sense that the density is integrated over the direction of the light
beam: if the light beam is directed alongx, one can measuren(y; z) =

R
dx n(x; y; z).

This method is destructive, since absorption of light changes the internal state of atoms
and heats the cloud signi�cantly. To study time-dependent phenomena, it is therefore
necessary to prepare a new cloud for each time point (\shot").

If the expansion occurs in absence of interactions, the density pro�le after the expan-
sion at times t much larger than the inverse of the oscillator frequencies related to the
con�nement, ! i t � 1, is proportional to the momentum distribution of the cloud before
the expansion (\time of ight" imaging). A demonstration of this fact, as well as the
discussion of the interacting case, are discussed for example in Ref. [35, 46]. This is of-
ten exploited to obtain the initial momentum distribution o f the atomic cloud, with the
further advantage that measurements performed after the expansion of the condensate
provide a gain in spatial resolution.

An alternative technique is phase-contrast imaging. This exploits the fact that the
refractive index of the gas depends on its density, and therefore, by allowing a laser beam
which is passed through the gas to interfere with a referenceone, one can gain information
on the density pro�le of the gas by looking at the interference fringes produced. An
advantage of this method is that it is almost non destructive, and it is therefore possible
to study time-dependent phenomena using a single cloud.

1.2 The Bose Josephson junction: experimental realization s

The realization of the Josephson e�ect with cold atoms has been theoretically proposed
by J. Javanaien in 1986 [47] (ten years before the BEC realization), who suggested that
\when two traps containing the condensates are brought close to each other, an oscillatory
exchange of particles governed by the phase of the macroscopic wave functions of the two
atomic gases should result.". The analogy with the superconducting Josephson e�ect has
been pursued in theoretical references [48{50], and in the experimental work of Ref. [51]
(see also Sections 1.6.1.c and 1.6.2.c).

The �rst experimental realization of a Josephson junction with bosons con�ned in a
double-well potential was obtained in 2005 by Albiez et al. [52]. In their experiment,
the double-well potential was realized by superimposing a three-dimensional harmonic
con�nement and a one-dimensional optical lattice, thus optically trapping a thousand of
87Rb atoms. This system undergoes the name of \external Bose Josephson Junction", since
the two relevant modes correspond to the lowest-energy spatial modes in each well. Other
experiments realizing an external BJJ via optical trapping are reported in Ref. [51], while
a magnetic atom chip-based double-well potential has been realized in the experiment of
Ref. [42].

Another possible experimental realization of a BJJ consists of trapping in a single
harmonic potential a mixture of 87Rb atoms in two distinct hyper�ne states, which can be
coupled by means of a resonant radiofrequency-microwave �eld. This realizes an \internal
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BJJ". Such a system has been experimentally achieved for the�rst time at JILA [53],
and has been later available also in Heidelberg [8] and in Munich [9, 41].

In both the external and the internal BJJs, the accessible observables are typically
the number imbalance between the two modes, obtained by absorption imaging as de-
scribed in Sec.1.1.2, and the \phase coherence" between thetwo modes, i.e. the relative
phase between the wave functions of the atoms in the two modes. The latter property
is typically probed by �tting a time-of-ight density pro�l e with a cosine function (see
Sec. 1.1.2, Eqs.(1.44) and (1.55) and Refs. [54, 55]). Note that in each realization of such
an experiment the momentum distribution displays oscillations, which lead to the extrac-
tion of a speci�c value of the phase [54, 56, 57]. Roughly, this happens because in the
thermodynamic limit the eigenstates of the momentum distribution have a well-de�ned
phase [54], and hence a \phase" is built up in the measurementprocess even if the two
condensates were initially independent; if this is the case, the phase obtained uctuates
from shot to shot. Hence, the determination of the existenceof a well-de�ned relative
phase between the two modes requires averaging over many realizations of the described
experiment 3.

In the remainder of this thesis, when having in mind experimental aspects, we will focus
more speci�cally on the Heidelberg experimental setups, described in Refs. [13, 52, 57]
(external BJJ) and [8, 61, 62] (internal BJJ).

1.3 Theoretical description: modeling the BJJ

We now introduce the theoretical model suitable for describing the system presented in
the previous section. Its description in the quantum regimerequires in principle the use
of the general many-body Hamiltonian, describing a system of interacting bosons in an
external potential Vext (~r). However, by means of the two-mode approximation on the �eld
operator, its expression can be considerably simpli�ed. Wepresent here the derivation of
the Hamiltonian in the two-mode approximation, following R efs. [35, 63].

1.3.1 The external BJJ

Let us �rst focus on an external Bose Josephson junction. We start from the general
many-body Hamiltonian,

H =
Z

d3r
~2

2m
r 	̂ y(~r)r 	̂( ~r) + 	̂ y(~r)Vext (~r)	̂( ~r) +

+
1
2

Z
d3r

Z
d3r 0	̂ y(~r)	̂ y(~r 0)U(r � r 0)	̂( ~r)	̂( ~r 0) (1.7)

where	̂( ~r), 	̂ y(~r) are bosonic �eld operators satisfying the standard commutation relationh
	̂( ~r); 	̂ y(~r 0)

i
= � 3(~r � ~r 0), and U(r � r 0) is the interaction potential. We may consider

for simplicity an external double-well potential Vext resulting from the superposition of a
three-dimensional harmonic con�nement and a cosine potential, i.e.

Vext (~r) =
1
2

m! 2
xx2 +

1
2

m! 2
yy2 +

1
2

m! 2
zz2 +

V0

2

�
1 + cos

�
2�x

d

��
; (1.8)

3Properly speaking, no hermitian operator is associated to t he phase [58{60], and the notion of a
\well-de�ned" phase is better formulated in terms of cohere nt state, as we shall de�ne in Sec.1.4.3
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Figure 1.3: A schematic representation of the double well potential.

with d a parameter de�ning the spatial periodicity of the potentia l, typically amounting
to a few micrometer. Such an external potential is sketched in Fig.1.3. At the bottom of
each of the two central wells, the cosine potential can be expanded to the quadratic order,
leading to an e�ective local harmonic potential with an e�ecti ve frequency along the axes
of the double well ! 2

xef f = ! 2
x + V04� 2

md2
dw

. The single particle levels in such a double-well

potential satisfy the Schr•odinger equation

�
�

~
2m

r 2 + Vext (~r)
�

� (~r) = E� (~r): (1.9)

If the tunneling through the barrier is negligible, the solution is given by two degenerate
levels � 1;2(~r) = � 0(~r � ~r1;2) (where ~r1;2 are the coordinates of the center of each well),
each of them being the displacement of� 0(~r), corresponding to the ground state of a
three-dimensional harmonic oscillator with frequencies! xef f ; ! y ; ! z. We will indicate the
energy of these two levels withE0. The inclusion of tunneling across the barrier lifts the
degeneracy. Treating the tunnelingK with degenerate perturbation theory, the energy
eigenstates are given by the symmetric and antisymmetric combinations

� � (~r) =
1

p
2

(� 1(~r) � � 2(~r)) ; (1.10)

with corresponding eigenvaluesE � = E0 � K .
Now let us come back the many-body problem. Due to the diluteness of the gas,

the average distance between two particles is large with respect to the scattering length
a, and the microscopic details of the interaction potential do not need to be speci�ed
anymore. We can therefore replace the true potentialU(r ) by an e�ective one Uef f (r )
without a�ecting the analysis of the macroscopic properties of the gas, provided that
the e�ective potential leads to the same scattering length. It is common to adopt as an
e�ective potential the contact pseudo-potential

Uef f (~r � ~r 0) = g� (~r � ~r 0): (1.11)

The parameter g is connected to the s-wave scattering lengtha in the Born approximation
by

g =
4� ~2a

m
: (1.12)
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Using Eq. (1.11), the Hamiltonian of the system becomes

H (t) =
Z

d3r [
~2

2m
r 	̂ y(~r)r 	̂( ~r) + 	̂ y(~r)Vext (~r)	̂( ~r) +

g
2

	̂ y(~r)	̂ y(~r)	̂( ~r)	̂( ~r)]: (1.13)

Now, in the two-mode approximation we describe the many-body state of the system by
giving the occupation number of the two single particle states (1.10); this allows to write
the �eld operator in the form

	̂( ~r) = â+ � + (~r) + â� � � (~r); (1.14)

where we introduced the annihilation operatorsâ� (t) =
R

d3r� �
� (~r)	̂( ~r; t ). By means of

the simple transformation â1;2 = 1p
2

(â+ � â� ) we are able to rewrite the �eld operator as

	̂( ~r) = â1� 1(~r) + â2� 2(~r); (1.15)

where â1;2 annihilate particles in wells 1; 2. Substituting Eq.(1.15) in the Hamiltonian
(1.13) and integrating over the spatial degrees of freedom we obtain

Hext = E1ây
1â1 + E2ây

2â2 +
U1

2
ây

1ây
1â1â1 +

U2

2
ây

2ây
2â2â2 � K (ây

2â1 + ây
1â2) (1.16)

where we have discarded the terms involving the overlap of the two modes. The parameters
entering in Eq.(1.16) are given by

E i =
Z

d3r
~2

2m
(r � i (~r))2 + � 2

i (~r)Vext

Ui = g
Z

d3r� 4
i (~r)

K = �
Z

d3r
~2

2m
(r � 1(~r)r � 2(~r)) + � 1(~r)� 2(~r)Vext

(1.17)

Hamiltonian (1.16) is a two-sites Bose Hubbard Hamiltonian, and has been extensively
used to study the properties of bosonic Josephson junctions(see for instance Ref. [63]).

1.3.1.a Validity of the two-mode approximation

As it was implicit in the previous discussion, two approximations are actually involved in
the two-mode approximation [63]. The �rst is that the tunnel ing is weak (which allows
to treat it pertubatively at the single particle level), so t hat the single particle energy
spectrum is given by the �rst two levels well separated from the higher ones. The second
one is that interactions are weak enough so that they do not a�ect considerably the single
particle orbitals � 1;2(~r). Taking the case of isotropic wells! xef f � ! y � ! z � ! 0, this is
a good approximation if both the tunneling energy and the interaction energy are much
smaller with respect to the trap frequency ! 0, which characterizes the oscillations of the
condensate within each trap, i.e.

K � ~! 0

NUi � ~! 0: (1.18)
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For the temperature not to excite higher levels we have also to assume the requirement
kB T � ~! 0.

If the interactions are not so weak, an improvement over suchan approximation is
obtained by taking as orbitals � i (~r) the time-independent solutions of the Gross-Pitaevski
equation (see Sec.1.6) withN=2 atoms in each well, normalized to unity [48]. In a further
improvement, time-dependent orbitals are considered, which provides the parametersK
and � with a dependence on the mode occupation, and leads them to vary during the
dynamical evolution [23].

A comparison of the two-mode model with the full quantum dynamics derived from the
Hamiltonian in Eq.(1.7) via a MCTDHB analysis (multicon�gu rational time-dependent
Hartree for bosons) has been carried out in Refs. [64, 65] fora one-dimensional Bose
Josephson junction, with the result that the two-mode dynamics qualitatively reproduces
the full quantum dynamics in a vast regime of the parameters.

1.3.2 Internal BJJ

For the internal case, the derivation of the two-mode model is analogous. The main
di�erence with the external case is that the cross-interaction term, involving the overlap
of the two di�erent atomic-species orbitals � 1;2(~r), cannot be neglected in this case, since
both of the two species are trapped in the the same harmonic potential. Furthermore, the
scattering length of atoms in di�erent hyper�ne states can be in principle di�erent for the
two species, i.e.a11 6= a22 a priori (which is e.g. the case of the statesjF = 1 ; mF = 1 i
and jF = 2 ; mF = � 1i of 87Rb, used in the experiment of Ref. [8]). On the other
hand, this allows us to assume that the spatial mode of the twohyper�ne states is the
same, i.e. � 1(~r) ' � 2(~r) ' � 0(r ), the latter being the spatial mode of the harmonic
potential. Furthermore, the K parameter represents here the coupling with microwave
and radiofrequency �elds, which can be tuned both in amplitude and phase. In the basis
of the two hyper�ne levels, the dipole operator in Eq.(1.5) reads ~D = ~d(â1

yâ2 + â2
yâ1). By

decomposing also the oscillating electrical �eld~E = ~E + + ~E � with ~E � = ~E0e� i (~k�~r � !t ) , if
the �eld is resonant for the hyper�ne transition, in the rota ting-wave approximation we are
left with V = � (K â1

yâ2 + K � â2
yâ1), where we identi�ed K = � ~d� ~E + and K � = � ~d� ~E � .

Hence, in this case the Hamiltonian is

H int = E1ây
1â1 + E2ây

2â2 +
U1

2
ây

1ây
1â1â1 +

U2

2
ây

2ây
2â2â2 + U12ây

1â1ây
2â2 � K ây

1â2 + K � ây
2â1

(1.19)
with interaction parameters given by

Ui = gii

Z
d3r� 4

i (~r) � gii

Z
d3r� 4

0(~r)

U12 = g12

Z
d3r� 2

1(~r)� 2
2(~r) � g12

Z
d3r� 4

0(~r); (1.20)

where gij = 4 � ~2aij =m.

1.4 Mapping onto a spin model

The two-mode Hamiltonians (1.16) and (1.19) derived in the previous section can be
mapped on a spin Hamiltonian, by means of the Schwinger representation [10]. After
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presenting this mapping, we introduce the state basis whichare suitable to describe the
system, and which we will extensively use throughout the present thesis.

1.4.1 Rewriting the Hamiltonian

In the Schwinger representation [10], a system ofN two-mode bosons can be mapped on
a system ofN 1=2-spins. This mapping, suggested for the BJJ in Ref. [63], isbased on
the identi�cation of the two modes of the BJJ, accessible to each of the N bosons, with
two spin states, � 1=2. As a consequence, a collective angular momentum operatorcan be
de�ned in terms of the creation and annihilation operators of the bosons in the each of
the two modes. The ladder operators are de�ned as

Ĵ+ = ay
1â2

Ĵ� = ay
2â1; (1.21)

leading to

Ĵx =
Ĵ+ + Ĵ�

2

Ĵy =
Ĵ+ � Ĵ�

2i

Ĵz =
ây

1â1 � ây
2â2

2
: (1.22)

In particular, the operators thus de�ned satisfy the usual commutation relations
h
Ĵ i ; Ĵ j

i
=

i� ijk Ĵk where� ijk is the Levi-Civita symbol, as well as the Heisenberg uncertainty relation

� J 2
i � J 2

j �
1
4

hĴk i 2; (1.23)

where � J 2
i = hĴ 2

i i � h Ĵ i i 2 is the variance of the operator Ĵ 2
i . From Eq.(1.22) we can

interpret the operator Ĵx as the tunneling operator, Ĵy as the current operator and Ĵz

as the population imbalance between the two wells, i.e. the relative number operator; in
the following we will often omit the adjective \relative", r eferring to Ĵz simply as to the
\number operator".

By means of Eq.(1.22), both Hamiltonians in Eq.(1.16) and Eq.(1.19) can then be
mapped on the spin-like Hamiltonian

Ĥ = � Ĵ 2
z � � Ĵz � 2K Ĵx (1.24)

where we have discarded a constant factor depending on the total number of particles. For
the external BJJ � is the half of the sum of the interaction energiesUi in the two modes,
whereas for the internal BJJ � = ( U1 + U2)=2 � U12, also depending on the inter-species
interaction U12. In both cases,� is related to the di�erence � E = E2 � E1 between the
energies of the two modes and to the di�erence of the interactions by

� = � E + ( N � 1)(U2 � U1)=2: (1.25)

We have considered here that the coupling in Eq.(1.19) is real and positive, in order
to map both the Hamiltonians in the same expression (1.24). Note however that in
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the internal BJJ case it is possible to exploit, if needed, the phase of the complex �eld
K = jK je� i to engineer a more general form of the coupling term, leadingfrom Eq.(1.19)
to Ke � i ây

1â2 + K � ei ây
2â1 = �j K j(Ĵx cos� � Ĵy sin � ). We will use this property of the

internal BJJ in Chap.2, to provide a protocol for the e�cient generation of macroscopic
superpositions. For the sake of completeness, we also mention that in the external BJJ
setup engineering a negative coupling constantK is also possible, by applying a drive to
the trapping potential [66, 67].

For � = 0 the Hamiltonian (1.24) belongs to a class of models introduced in nuclear
Physics by Lipkin, Meshkov and Glick [68], and also correspond of the continuous-kick
limit of the kicked top model [69].

1.4.2 Fock states

Supposing that the total number of bosonsN = ay
1a1 + ay

2a2 is constant4, the dimension
of the Hilbert space isN + 1. A basis for the Hilbert space is provided by the Fock states
jni � j n1 = N=2+ n; n2 = N=2� ni (also called \Dicke states"), which are the eigenstates
of the number imbalance operator, i.e. they satisfy the equation

Ĵz jni = njni : (1.26)

The variable
n =

n1 � n2

2
(1.27)

represents hence the imbalance in the occupations of the twomodes, and is bounded by
� N=2 � n � N=2. For small imbalance n � � N=2, such states represent fragmented
states of the condensate, i.e. states in which the two single-particle wave functions � 1(~r)
and � 2(~r) are both macroscopically occupied. As the two wave functions are in this case
spatially separated, the phase coherence over the spatial extent of the entire system is
lost [70].

1.4.3 Atomic coherent states

Another useful set of states for such a model is given bySU(2) coherent states (also referred
to as \atomic coherent" states or \Bloch states"). In what fo llows we briey review their
possible equivalent de�nitions and their main properties, following Refs. [71, 72].

1.4.3.a De�nition

SU(2) coherent states are de�ned in terms of the Fock states (1.26) as

j�; � i =
N=2X

n= � N=2

�
N

N
2 + n

� 1
2 � n+ N

2

(1 + j� j2)
N
2

jni � j � i (1.28)

with � = e� i� tan �=2, where the conventions for two angles are de�ned in �gure 1.4. An
equivalent expression for the same state is

j�; � i =

�
cos �

2 ây
1 + sin �

2e� i� ây
2

� N

p
N !

j0i ; (1.29)

4This hypothesis will be released in Chapter 5, where we will t reat particle losses.
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Figure 1.4: Bloch sphere and convention for the two angles� and � .

from which it is apparent that in a coherent state all of the atoms occupy the same
one-particle state cos(�=2)� 1(~r) + sin( �=2)e� i� � 2(~r). It is therefore a macroscopically
occupied state, which realizes the closest classical analog, similarly as quantum optics
coherent states.

1.4.3.b Visualization

A coherent state can be visualized as a circle on the Bloch sphere, whose center coordinates
is given by the expectation values of the angular momentum operators, i.e.

h�; � jĴx j�; � i =
N
2

sin � cos�

h�; � jĴy j�; � i =
N
2

sin � sin �

h�; � jĴz j�; � i = �
N
2

cos� � n: (1.30)

Since the quantum uctuations (the variance) of the angular momentum operators in
each direction in the plane tangential to the sphere in the point h�; � j ~J j�; � i are given by
(� J i )2 = N=2, as an order of magnitude for the radius of the circle we can take � =

p
N .

Such uctuations are isotropic and \minimal", in the sense t hat they satisfy Eq. (1.23)
with the equal sign.

From the third line in Eq.(1.30) we see that the angle � is related to the number
imbalance variable n by a cosine function (see also Fig.1.4). For example the coherent
state with � = 0, i.e. at the south pole of the Bloch sphere, corresponds tothe maximally
unbalanced Fock statejn = � N=2i , while coherent states with � = �= 2 lie on the equator
and correspond to an average symmetric occupation of the twomodes. The latter set of
states will be referred to in what follows asphase states.

From Eq.(1.29) we see that the angle� is the phase di�erence between the two-modes.
This is better understood in the semi-classical limit of the two-mode BJJ model, which
will be developed in Sec.1.6.
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1.4.3.c Non orthonormality

The set of states introduced is not orthonormal but overcomplete [71, 72]. Indeed, the
overlap of two coherent states is given by

h�
0
; �

0
j�; � i =

�
(1 + � � � 0)2

(1 + j� j2)(1 + j� 0j2)

� N
2

; (1.31)

which tends to � (� � � 0)� (� � � 0) only in the large N limit.

1.4.3.d Coherent states as displacement of a reference state

Like their analog in quantum optics, SU(2) coherent states can be obtained from a refer-
ence state, for example the above mentioned south pole of theBloch spherejn = � N

2 i ,
via the action of a displacement operator [72], i.e.

j�; � i = e� i� Ĵ r jn = �
N
2

i � R̂(� )jn = �
N
2

i ; (1.32)

with � = �=2e� i� ,
Ĵr = Ĵx sin � � Ĵy cos� = ~J � r̂ (1.33)

and r̂ being the unit vector identifying the direction

r̂ = sin � x̂ � cos� ŷ: (1.34)

Hence, each atomic coherent state is the minimal eigenstateof the angular momentum op-
erator rotated with respect to Ĵz by an angle� around the direction r̂ . Indeed, multiplying
each member of Eq. (1.26) forn = � N=2 by R̂(� ) and inserting the identity R̂(� )� 1R̂(� )
in the �rst member, we obtain

R̂(� )ĴzR̂(� )� 1j�; � i � Ĵr j�; � i = �
N
2

j�; � i : (1.35)

Equation (1.35) is analogous to the quantum optics equation̂aj� i = � j� i , in the sense that
it is an eigenstate equation for the angular momentum operator (annihilation operator)
Ĵr (â).

1.4.4 Experimental implementations of the observables

Arbitrary rotations of the kind (1.33) can be experimentall y implemented, in principle
both in the external and internal set-up. This requires switching o� the interatomic
interaction, i.e. setting � = 0. In the external model, this can be done by exploiting the
Feschbach resonance technique. In the internal set-up, because of the combination of the
scattering lengthsaij of the di�erent atomic species in Rubidium, it is found that ty pically
� is very small, and Feschbach resonances are rather employedwhen non-zero interactions
are desired [8, 62]. Then one exploits the linear part of the Hamiltonian Eq.(1.24), to evolve
the state during a time which matches the desired angle of rotation [73]. In particular, in
the internal set-up this is done in a very fast and controlledway by tuning the amplitude
and the phase of the resonant �eld coupling the two modes. More severe limitations in
the speed of such operations apply for the external BJJ setup[62].

As a consequence, the angular momentum operator is an observable accessible in ex-
periments for each generic direction: this can be achieved by measuring the population



x1.5 Ground state properties 15

imbalance Ĵz between the two modes after proper rotations of the state over the Bloch
sphere [74]. For instance, the measurement of the angular momentum operator in a di-
rection contained in the equator as in Eq.(1.33) on the quantum state j i is achieved by
measuringĴz on the rotated state ei�J x =2ei�J z j i .

1.5 Ground state properties

In this section we briey review the properties of the ground state of the Bose Josephson
junction, in the di�erent regimes of the parameters of Hamilt onian (1.24). We present in
particular the calculation of the number uctuations and of the momentum distribution.

1.5.1 Ground state of the model

Let us de�ne the dimensionless parameter

� = �N= (2K ): (1.36)

Following Ref. [57, 75], three di�erent regimes of the parameters can be distinguished, in
which the ground state of the BJJ has di�erent qualitative pro perties.

� Rabi regime: � � 1 (strong coupling)

When the two modes are strongly coupled, a well de�ned relative phase is established
between them, while the number imbalance operator is uctuating. By this, we mean
that in this regime the ground state is close to a phase state.To be convinced of
this point, let us consider the limiting case � = 0. In this lim it, from Eq.(1.24) it
is clear that the energy is minimal for the maximal eigenstate for the Ĵx operator,
satisfying Ĵx jN=2i x = N=2jN=2i x , i.e.

j GS i = j
N
2

i x = j� =
�
2

; � = 0 i = j� = 1 i ; (1.37)

which coincides with the phase state parameterized by� = 1, as expressed by the
last equality. The ground state (1.37) can be visualized in the left panel of Fig. 1.5.
In this regime the number uctuations amount to � Jz =

p
N=2.

� Fock regime: � � N 2 (strong interactions)

In the strongly interacting regime, the ground state is close to a Fock state. In
the limiting situation � ! 1 , the ground state is easily determined by completing
the square in Eq.(1.24), leading to the Hamiltonian in the non coupled regimeH =

�
�

n � �
2�

� 2
. The ground state in this case is the Fock state minimizing the energy,

and hence it depends on the integer value of the energy imbalance between the two
modes renormalized by the interactions, i.e.

j GS i =

(
jn = Int

h
�

2�

i
i if j �

2� j < N
2

jn = � N
2 i resp. for �

2� > N
2 or �

2� < � N
2 .

(1.38)

In particular, for � = 0 the ground state is the symmetric Fock state jn = 0 i = jn1 =
N=2; n2 = N=2i , also saidTwin-Fock state [76]. In this regime, the number operator
has zero uctuations, while the phase is completely unde�ned (see the right panel
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Figure 1.5: Visualization of the ground state of the BJJ on the Bloch sphere, as well as
distribution of the number operator in the various regimes of the parameters at � = 0,
taken from Ref. [62].

in Fig. 1.5). In Sec. 3.1 we will be able to reformulate this interms of the shape of
the Husimi distribution of a Fock state, which is a \crown", c ompletely isotropic in
the � angle, and with a value of � given by the last equation in the set (1.30).

� Josephson regime: 1 � � � N 2

This intermediate regime is characterized by reduced number uctuations, while the
phase coherence is still quite large (see the middle panel in�gure 1.5) [57, 62]. We
shall see in Section 2.4.1 that the ground state of the BJJ in this regime is a squeezed
state.

1.5.1.a Phase diagram of the number uctuations

In order to have a \pictorial view" of the di�erent regimes for the ground state, we present
in Fig.1.6 the plot of the number uctuations in color scale, calculated numerically as a
function of the ratio between the coupling and the interactions, and of the asymmetry of
the BJJ � . These �ndings are contained in our work Ref. [31]. The black/blue colors cor-
respond to low number uctuations, while red-yellow colors indicate high uctuations. We
see that this �gure exhibits lobes, reminiscent of the phasediagram of the Bose-Hubbard
model [77, 78], in which the uctuations of the number n in the plane of the chemical
potential and the strength of the atomic interactions show the Mott-insulator/superuid
transition. Note however that our system does not display a real phase transition but
rather a \crossover", because it involves only two modes, and hence the lobes are not
bounded by a line which separates the two phases. Furthermore, lobes do not refer to the
number of particles in each mode, but to the atomic population imbalance between the
two modes at constant total number of atoms. The presence of lobes is a consequence
of the double degeneracy of the spectrum of the Hamiltonian (1.24) in the regime of
strong interactions. Indeed, at half integer �= (2� ) two degenerate Fock states minimize
the energy, resulting in enhanced number uctuations. Notealso that the size of the lobes
increases with increasing imbalance� . This e�ect is a direct consequence of the e�ective
nonlinear Josephson coupling, which decreases as�= (2� ) approachesN=2 (see Eq.(1.53)),
and is absent in the analogous diagram for superconducting Josephson junctions. The
green curve represents an analytical calculation of the number uctuations, obtained by
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Figure 1.6: Relative number uctuations in color scale as a function of the parameters
�= (2� ) (x-axes) and N 2=(2�) = 2 KN=� (y-axes), for N = 12 bosons. The green line
corresponds to the value of the number uctuations of 0:2. From Ref. [31]

treating the coupling perturbatively to the second order, leading to

h� Ĵ 2
z i =

�
K
�

� 2
" � N

2 � �n0
� � N

2 + �n0 + 1
�

E+
+

� N
2 + �n0

� � N
2 � �n0 � 1

�

E �

#

(1.39)

with and �n0 � Int [ �= (2� )] and E � = � 2(n0 � �n0) � 1 (see also appendix C.1).

1.5.2 Momentum distribution for the external BJJ

As we have anticipated in Sec.1.2, the coherence of the system is reected in the presence
of fringes in the momentum distribution. Let us now demonstrate this for the external
BJJ. With the use of Eq.(1.15), the one-body density matrix of the system in the two-mode
approximation is given by

� (~r; ~r 0) = h	̂ y(~r)	̂( ~r 0)i =
2X

i;j

� �
i (~r)� j (~r 0)hâi

yâj i : (1.40)

The momentum distribution is properly de�ned as the Fourier transform of the one-body
density matrix with respect to the relative variable ~r � ~r 0 [35], and is thus given by

n(~p) =
1

2� 3

Z
d~rd~r 0e� i~p(~r � ~r 0) � (~r; ~r 0); (1.41)

where we have set~ = 1. Substituting the one-body density matrix (1.40) in Eq.( 1.41)
leads to

n(~p) =
2X

i;j =1

�
1

2� 3=2

Z
d~re� i~p~r � �

i (~r)
� �

1

2� 3=2

Z
d~r 0ei~p ~r 0

� j (~r 0)
�

hâi
yâj i =

=
2X

i;j =1

F [� i (~r)]F [� j (~r 0)]� hâi
yâj i ; (1.42)
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Figure 1.7: Visibility �= 2 evaluated on the ground state and as a function of the parameter
N 2=(2�) = 2 KN=� for di�erent values of N , and � = 0.

where F [h(r )] denotes the Fourier transform of the function h(r ). In the symmetric
con�guration, the spatial wave functions on each mode are expressed by� 1;2(~r) = � 0(~r �
d
2 î ), and their Fourier transform can be easily computed as� 1;2(~p) = F [� 0(~r � d

2)] =

e� ip x
d
2 � 0(~p), where we chose the axes along the two condensates being thex-axes, and

where � 0(~p) = F [� 0(~r)] is the Fourier transform of the mode. Then, substituting t he
previous expression in Eq. (1.42) and using Eq.(1.21) we obtain

n(~p) = j� 0(~p)j2(N + eip x dhĴ+ i + e� ip x dhĴ� i ); (1.43)

where we have used the fact that� 0 is an even function. With the help of Eqs. (1.22), we
can �nally rewrite the momentum distribution (1.43) as

n(~p) = j� 0(~p)j2(N + hĴx i cos (pxd) � h Ĵy i sin (pxd)) : (1.44)

In the ground state, there is no current owing across the two wells and hĴy i is zero.
Therefore, from Eq. (1.44), we see that the presence or absence of fringes in the momentum
distribution is determined by the expectation value of hĴx i , and we expect deviations from
the smooth gaussian shape whenhĴx i is not zero. This quantity, renormalized by N=2, is
indeed called the \coherence factor" or \visibility", and i s denoted as [14, 57]

� =
hĴx i
N=2

: (1.45)

This is not surprising due to the �rst equality in Eq.(1.30), which shows that hĴx i is
proportional to the cosine of the phase. Hence, it is maximalin the Rabi regime in which
the ground state is a phase state (hĴx i = N=2), while it is zero in the Fock regime in which
the phase is completely undetermined. In �gure (1.7) we showthe numerical evaluation
of the visibility of the system hĴx i =N and as function of the ratio N 2=(2�) = 2 KN=� , for
� = 0.

In Fig. 1.8 we present instead a numerical evaluation of the longitudinal momentum
distribution � (px ) =

R
dpydpzn(~p) for di�erent values of the parameter �. We see that,

according to Eq.(1.44) and to the considerations on the visibility, the momentum distri-
bution exhibits fringes in the coherent regime of high coupling, reecting the existence of
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Figure 1.8: Momentum distribution for di�erent values of the parameter N 2=(2�) =
2KN=� �  ; the distribution exhibits fringes in the coherent regime while interference
e�ects are washed out when the coupling is small. We usedN = 10, � = 1, K =
10� 4� , 10� 2� , 10� 1� . As single particle wave function we choose the gaussian� 0(~r) =
1=c3e(x2+ y2+ z2)=(2� 2 ) normalized to unity, with c = (

p
�� )1=2 and � = d=10.

a well de�ned relative phase between the two condensates, while interference e�ects are
washed out when the coupling is small.

The phase diagram for the uctuations h� Ĵ 2
x i of the \coherence factor" is complemen-

tary with respect to Fig. 1.6, as presented in Fig. 1.9. That is of course because of the
underlying uncertainty principle expressed by Eq.(1.23).

1.6 The semi-classical limit

1.6.1 Semi-classical Hamiltonian and equations of motion

Let us now address the mean �eld approximation. If the numberof particles is large, the
uctuations are negligible with respect to the expectation value of the physical observables,
so that we are allowed to treat the �eld operator as ac-number, i.e.

	̂( ~r; t ) !  i (~r; t ): (1.46)

This complex �eld is also called the order parameter or the condensate wave function.
The replacement (1.46) in the Hamiltonian (1.13) leads to the energy functional E =R

d3r [ ~2

2m jr  j2 + Vext j j + g
2 j j4], which by using a variational principle generates the

equation [35]

�
~2r 2

2m
 + Vext  + gj (r )j2 = i~@t  : (1.47)

This non-linear time-dependent Schroedinger equation forthe wave function of the con-
densate is known as the \Gross-Pitaevskii" equation (GPE).It has been originally derived
in Refs. [79] and [80], and it is the main theoretical tool forinvestigating nonuniform dilute
Bose gases at low temperatures. One should not confuse the solution of the GPE  (r ),
which is normalized to the total number of particle in the condensate, with the many-body
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Figure 1.9: Fluctuations h� Ĵ 2
x i in color scale as a function of the parameters�= (2� )

(x-axes) and N 2=(2�) = 2 KN=� . For N = 12 bosons.
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wave function of the system, readily obtained from (r ) taking the symmetric product

	 MB ( ~r1; ~r2:::; ~rN ) =
�

1
p

N
 ( ~r1)

� �
1

p
N

 ( ~r2)
�

:::::
�

1
p

N
 ( ~rN )

�
; (1.48)

and which is normalized to unity [35].
In terms of the creation and annihilation operators, the replacement (1.46) amounts

to the identi�cation
âi ! h âi i '

p
n i ei� i �  i (1.49)

wheren i and � i are the number of particles and the phase of the condensate ineach mode.
With this prescription, the �eld operator  ̂ in Eq. (1.15) is replaced by the classical �eld

 (~r; t ) =  1(t)� 1(~r) +  2(t)� 2(~r): (1.50)

Substituting the explicit two-mode expression for  given in Eq.(1.50) in the GPE,
the time evolution of the particle numbers n1;2 and of the phases� 1;2 in each condensate
can be derived [48]. In order to proceed further, it is convenient to de�ne the relative
variables

n =
n1 � n2

2
� = � 2 � � 1; (1.51)

so that n represents the classical imbalance in the atomic population of the two wells,
coinciding with the de�nition in Eq.(1.27), and � is the relative phase between the two
condensates. In terms of these variables, the semi-classical equations of motion are

@t n = � 2K

s �
N
2

� 2

� n2 sin � (1.52a)

@t � = 2 �
�

n �
�
2�

�
+ K

2n
q � N

2

� 2
� n2

cos� (1.52b)

in which n and � are regarded as commuting variables, conjugate in the classical sense
of Poisson bracket, and in which the parametersK; � and � are de�ned as in Secs.1.3
and 1.4. This is a good approximation in the strongly coupled(Rabi) regime, and for
N � 1. The corresponding semi-classical Hamiltonian is

H = �n 2 � �n � 2K

s �
N
2

� 2

� n2 cos�: (1.53)

1.6.1.a Equivalent derivation

An equivalent way of obtaining the semi-classical Hamiltonian (1.53) (and consequently
Eqs. (1.52a) and (1.52b) is projecting the Hamiltonian Eq.(1.24) on the coherent state
Eq.(1.28), leading to h�; � jĤ j�; � i . Using the expectation values (1.30), by evaluating also
h�; � jĴ 2

z j�; � i = n2 (1 � 1=N) + N=4 we obtain

h�; � jĤ j�; � i = �n 2
�

1 �
1
N

�
� �n � 2K

s �
N
2

� 2

� n2 cos�; (1.54)
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where we used thatN sin �=2 =
p

(N=2)2 � n2, from Eq.(1.24).
Equation (1.54) reproduces toO (1=N) the mean �eld result Eq.(1.53) (the inessential

constant term �N= 4 has been discarded). In particular, the equivalence of thecoupling
operator projected over coherent states as in Eq.(1.30), together with the coupling part
of the semi-classical Hamiltonian (1.53) justi�es the interpretation of the � angle of an
atomic coherent state as the physical phase di�erence of the junction in the semi-classical
limit, as anticipated in Sec.1.4.3.

1.6.1.b Semi-classical momentum distribution

Similarly, by using the expectation values Eq.(1.30) we canobtain from Eq.(1.44) the
momentum distribution in the semiclassical limit

n(~p) = j� 0(~p)j2(N + 2

s �
N
2

� 2

� n2 cos (� + pxd)) ; (1.55)

as can be found in Ref. [54]. We see that, as we expected, the momentum distribution in
the semiclassical limit shows maximal fringes, corresponding to the Rabi regime.

1.6.1.c Analogy with the superconducting case

By adding a constant term irrelevant for the dynamics, we canrewrite the semi-classical

Hamiltonian (1.53) as H = �
�

n � �
2�

� 2
� 2K

q � N
2

� 2
� n2 cos� . We can then note the

similarity of Eq.(1.53) with the Hamiltonian of a superconducting Josephson junction in
a Cooper-pair box circuit (SJJ) HSJJ = EC (n � ng)2 � EJ cos� [81], where the charging
energyEC can be identi�ed with the interaction energy � , the role of the gate parameter
ng = CgVg=(2e) is played by � , and the tunneling energyEJ can be obtained by linearizing
the square-root term in (1.53), leading toKN . The presence of the latter term in Eq.(1.53)
represents the main di�erence with the superconducting case, in which strong charge
imbalances are suppressed by the external circuit, and one can only access the linear
regime. As a consequence, the classical SJJ system maps on the problem of a rigid
pendulum, while the BJJ maps on the non-rigid pendulum, in which the length of the
pendulum depends on its momentum. This new feature is responsible for a rich variety of
dynamical regimes which are absent in the superconducting case, and which we recall in
the following sections.

1.6.2 Dynamical regimes

The full solution of Eqs.(1.52a), (1.52b) can be given in terms of jacobian elliptic functions
and can be found in Ref. [49]. Let us restrict to the symmetriccase� = 0, and describe
briey the main features of such a solution. Before doing so,we need two ingredients: the
structure of the �xed points of the system and the notion of Macroscopic Quantum Self
Trapping (MQST), which we introduce below.

1.6.2.a Fixed points

The �xed points of the system, de�ned as the values of the number and phase variables
which remain constant during the evolution if chosen as initial conditions, can be easily
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identi�ed by imposing @t � = 0 and @t n = 0 in the equations of motion (1.52a),(1.52b).
Depending on the parameter � de�ned in Eq.(1.36), this yield s the �xed points

(i ) F0 = ( � = �= 2; � = 0), stable;

(ii ) F� = ( � = �= 2; � = � ), stable if � < 1 (Rabi regime) unstable if � > 1 (Josephson

regime); in the latter case, two stable �xed points are located at

(iii ) F� =

 

n� = �
�

N
2

� r

1 �
1

� 2 ; � = �

!

(Josephson regime only):

(1.56)

Indeed, at � = 1 a bifurcation occurs in the model and the �xed p oints of the system
change.

1.6.2.b Macroscopic quantum self trapping

Let us introduce the rescaled variablez = 2n=N , and rescale the Hamiltonian (1.53) by
the factor KN , obtaining the Hamiltonian given in Ref. [48]

H sc =
H

KN
=

�
2

z2 �
p

1 � z2 cos�: (1.57)

Under certain conditions, trajectories in which the number imbalance can not be reduced
to zero, i.e. for which the equationz(t) = 0 has no solution, are allowed. This regime is
known as macroscopic quantum self-trapping. The condition to enter this regime can be
found using the fact that the energy is conserved during the evolution, i.e.

H sc(0) =
�
2

z(0)2 �
p

1 � z(0)2 cos� (0) =
�
2

z2 �
p

1 � z2 cos� (1.58)

which, solved for z2, gives

z2 =
2

� 2

h
(� H sc(0) � cos2 � ) � j cos� j

p
cos2 � � 2� H sc(0) + � 2

i
; (1.59)

asking for z = 0 then leads from (1.59) to the condition

� H sc(0) � cos2 � = �j cos� j
p

cos2 � � 2� H sc(0) + � 2; (1.60)

which after some algebras leads tojH sc(0)j = j cos� j. It is then clear that for

H sc(0) > 1 (1.61)

Eq.(1.60) has no solution, i.e.z(t) = 0 cannot be satis�ed at any time (the other condition
H (0) < � 1 has to be discarded because it is not allowed by Eq.(1.58)).The condition for
the MQST therefore is (1.61).

1.6.2.c Dynamical regimes

We shall now review in what follows more in detail the possible trajectories associated to
the di�erent regimes [48, 49, 61].

In the in the Rabi regime (� < 1), small oscillations around the two �xed points F0

and F� are allowed. Their frequency can be obtained by linearizingEqs.(1.52a,1.52b),
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leading respectively to ! 0 = 2K
p

1 + � for the oscillations around F0 (blue trajectories
in Fig.1.10a) and to ! � = 2K

p
1 � � for the oscillations around F� (red trajectories in

Fig.1.10a) .
For � > 1, entering the Josephson regime, the trajectories aroundF� become broader

(red trajectories in Fig.1.10b), while small oscillationsaround F� appear (green trajecto-
ries in Fig.1.10b), which are an example of self-trapped trajectories as discussed in Sec.
1.6.2.b.

From Eq.(1.58) we see that for � > 2, the condition for the MQST (1.61) can be
ful�lled with no need for the phase to be con�ned to a small int erval around � , and then
other MQST trajectories appear (orange trajectories in Fig.1.10c), in which the phase is
growing with the time. For this reason these trajectories are known as \running states",
and they are the analog of the AC Josephson e�ect in superconducting junctions [34, 51].

An experimental veri�cation of all of the regimes presentedabove is given in Ref. [61],
from which Fig. 1.10 is taken.

1.6.2.d Equation of the separatrix

From the above discussion, it is clear that for each value � > 1 there exists a special
trajectory which separates the macroscopic quantum self-trapping trajectories from the
oscillations in which the number imbalance can take the zerovalue. This special trajectory
passes throughF� , is eight-shaped and is called the \separatrix" (black line in Figs. 1.10
b and c). The equation of the separatrix can be found from the MQST condition given
in Eq.(1.61). By using the third line in Eq.(1.30) and the fact that

p
(N=2)2 � n2 =

N sin�=2, from Eq.(1.58) we �nd that the condition (1.61) translate s in terms of the
variable � and � into

�
2

cos2 � �
p

1 � cos2 � cos� = 1 ; (1.62)

or, by solving for sin� ,

j sin � j = �
1
�

cos� �
1
�

p
cos2 � � 2� + � 2 (1.63)

(for � � 2 only the plus sign can be taken, while for � < 2 both signs are allowed). The
separatrix can be exploited to produce macroscopic superpositions of coherent states, as
will be detailed in Chapter 2.
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Figure 1.10: Experimental observation of the dynamical regimes of the BJJ, from Ref. [61].
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Chapter 2
Creation of entangled states in a Bose
Josephson junction

In this chapter we focus on the creation of entangled states in Bose Josephson junctions.
After introducing in Sec. 2.1 the notion of multiparticle entanglement and some criteria
for its detection in bosonic systems, we will consider some speci�c entangled states, such
as squeezed states, macroscopic superpositions of coherent states and Fock states. We
will then explain how it is possible to create such entangledstates in a BJJ. We will
�rst briey review the protocols to realize adiabatically s queezed states and macroscopic
superpositions of coherent states. Then, we will discuss how a known protocol leading
to the formation of squeezed states can be extended to createmacroscopic superpositions
of coherent states [31]. The latter result has been the subject of our work Ref.[31]. An
improved protocol involving optimum control will be �nally presented; more details about
this work can be found in our pre-print Ref. [33]

Dans ce chapitre nous nous focalisons sur la cr�eation d'�etats intriqu�es dans les jonc-
tions Josephson bosoniques. Apr�es avoir introduit en Sec.2.1 la notion d'intrication
pour des syst�emes �a grand nombre de particules et quelquescrit�eres pour sa d�etection
dans les syst�emes bosoniques, nous consid�ererons quelques �etats intriqu�es en par-
ticulier, tels que les �etats comprim�es, les superpostions macroscopiques d'�etats
coh�erents, et les �etats de Fock. Ensuite nous expliquerons comment il est possible de
cr�eer ces �etats dans une BJJ. Nous rappellerons d'abord les protocoles permettants
de r�ealiser de fa�con adiabatique les �etats comprim�es et les superpostions macro-
scopiques. Ensuite, nous discuterons comment un protocoledynamique connu qui
permet de cr�eer des �etats comprim�es peut être �etendu pour g�en�erer des superposi-
tions macroscopiques d'�etats coh�erents [31]. Ce dernier r�esultat a fait l'objet de notre
publication Ref.[31]. Un protocole am�elior�e bas�e sur le contrôle optimal sera en�n
pr�esent�e; plus de d�etails sur ce travail peuvent être trouv�es dans la pre-publication
Ref. [33].

27
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2.1 Multiparticle entanglement

In this thesis we use the following de�nition multiparticle entanglement [12, 82]: a general
density matrix �̂ describing the state of theN atoms in the BJJ is said to beentangled if
it cannot be written as a separable density matrix, i.e. if

�̂ 6= �̂ sep; (2.1)

where
�̂ sep =

X

k

pk �̂ (1)
k � �̂ (2)

k : : : �̂ (N )
k ; (2.2)

each density matrix �̂ (i )
k referring to the i th -boson, andpk � 0 being a probability such thatP

k pk = 1. Note that the states appearing in the de�nition (2.2) are symmetric for the
exchange of particles. Indeed, the (N + 1)-dimensional Hilbert space which accounts for
our system of indistinguishable bosons in the two-mode approximation is the restriction
to the symmetric subspace of the Hilbert space of all the possible 2N states which would
be obtained with N distinguishable two-mode particles (\qubits").

The de�nition in Eq.(2.2) leads to consider as entangled some states for which the
non-separability is due to the symmetrization over the particles of the bosonic state. This
point has been a source of confusion and controversy [83{85]; some comments related to
this issue will be given in Sec.2.3.3.

Note also that a coherent state of the form (1.28) is separable according to the de�nition
above, since by (1.32) it can be written as a product state, despite the fact that it is non-
separable according to the bipartition on the modes of the BJJ (see table 2.3.3).

2.2 Criteria for multiparticle entanglement

Motivated by the fact that in the experiments only few moments hĴ k
i i of the total distribu-

tion of the angular momentum operators are typically accessible, a full set of inequalities
allowing to witness entanglement by means of �rst and secondmoments only has been
derived in Ref. [82]. These inequalities regroup several criteria which were derived inde-
pendently [12, 86]. Violation of any of the following inequalities implies entanglement:

hĴ 2
x i + hĴ 2

y i + hĴ 2
z i �

N (N + 2)
4

(� Ĵx )2 + (� Ĵy)2 + (� Ĵz)2 �
N
2

hĴ 2
i i + hĴ 2

j i �
N
2

� (N � 1)(� Ĵk )2

(N � 1)
h
(� Ĵ i )2 + (� Ĵ j )2

i
� h Ĵ 2

k i +
N (N � 2)

4
: (2.3)

These inequalities identify in the space of the expectationvalueshĴ 2
x i ; hĴ 2

y i ; hĴ 2
z i a \polyp-

tote", represented in Fig.2.1 for N = 6 particles. If a state lies outside the polyptote, i.e.
if it violates one of the inequalities in Eq.(2.3), then it is necessarily entangled according
to the de�nition (2.1), however inside the polyptote both separable and entangled states
can be found. These inequalities are however complete in themacroscopic limit in the
sense that no other entangled states can be detected with only �rst and second moments
(see also remarks in Sec.4.1.4).
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Figure 2.1: Polyptote delimiting the set of entangled states. The points which lie outside
the polyptote violate one of inequalities in Eq.(2.3) and are hence entangled according to
the de�nition (2.1) (from Ref. [82]).

We remark that the inequalities (2.3) were originarily derived for a general state of
N -qubits, not necessarily symmetric like in the case of our states of indistinguishable
particles. In Ref. [82] it has been proven that the inequalities in Eq.(2.3) can not only
detect bipartite entanglement (i.e. the non-separability of the reduced density matrix
�̂ A;B = tr i =1 :::N;i 6= A;B [�̂ ]), but they can also detect entangled states which have a separable
two-body density matrix, despite the fact that they are based on �rst and second moments
only [82]1.

A quantity which serves to estimate the number of non-separable particles by disposing
only of �rst and second moments as in Eq.(2.3), thedepth of entanglement, has been
introduced in Ref. [87].

We stress that the criteria provided by Eqs. (2.3) are not restricted to pure states,
but they are valid for a general density matrix.

Finally we mention that these inequalities have been recently generalized to the case
of a system of N -\qudits" (i.e., individual particles which can occupy mor e than two
states) [88].

2.2.1 Linear entropy

We just mention here an entanglement measure commonly used for pure states, which
quanti�es the bipartite entanglement of a subsystem ^� A = tr B �̂ with the rest of the system,
�̂ B = tr A �̂ . This is known as theVon Neumann Entropy SN (�̂ A ) = � tr( �̂ A log�̂ A ) [30, 89],
satisfying SN (�̂ A ) = SN (�̂ B ). The linearization of SN (�̂ A ) leads to the linearized entropy

SN (�̂ A ) = 1 � tr( �̂ 2
A ): (2.4)

1To illustrate this fact, a non-symmetric state of distingui shable particles was chosen in Ref. [82]. We
note that this is also true for the W state, which will be discu ssed in Sec.2.3.3; such a state belongs rather
to the symmetric (bosonic) subspace, is genuinely multipar tite entangled and is detected by the inequalities
(2.3).
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Taking the subsystem to be a single particle, the linearizedentropy can be related to the
expectation values of collective spins as [69]

SN =
1
2

�
1 �

4
N 2 (hĴx i 2 + hĴy i 2 + hĴz i 2)

�
: (2.5)

Its values range from 0 for separable states to 1=2 for maximally entangled states.

2.3 Relevant multiparticle entangled states in a BJJ

We focus in the following on speci�c entangled states such assqueezed states, macroscopic
superpositions of coherent states and Fock states, introducing their main features.

2.3.1 Coherent spin squeezing and squeezed states

Let us introduce the coherent spin squeezing parameter� n̂ as in Ref. [12]. This parameter
is related to the angular-momentum uctuations along the direction n̂ according to

� 2
n̂

h
�̂ in ; Ĵn

i
=

N (� Ĵn )2

hĴp1 i 2 + hĴp2 i 2
; (2.6)

where

p̂1 = cos � x̂ + sin � ŷ

p̂2 = � cos� sin � x̂ + cos � cos� ŷ + sin � ẑ (2.7)

are the unit vectors perpendicular to

n̂ = sin � sin � x̂ � sin � cos� ŷ + cos � ẑ; (2.8)

and h�i = tr( ��̂ in ) is the expectation value in state ^� in .
A state �̂ in is said to becoherent spin squeezed, or simply squeezedin the direction n̂

if the corresponding coherent spin squeezing parameter satis�es

� 2
n̂

h
�̂ in ; Ĵn

i
< 1: (2.9)

Hence, in a squeezed state the uctuations of the angular momentum operator are reduced
in a certain direction, at the expense of the orthogonal direction, so that the uncertainty
principle Eq.(1.23) is still satis�ed with the equal sign, as it happens for squeezed states
in quantum optics.

As pointed out in Ref. [82], the squeezing criterion Eq.(2.9) is equivalent to the last
inequality in Eq.(2.3) in the limit of large number of partic les. Hence, squeezed states are
multiparticle entangled in the sense of Sec.2.1, which was earlier demonstrated in Ref. [12].

Squeezed states have been realized in BJJ systems in the experiments of Refs. [6, 8, 9,
13]. In Sec.4.1.2 we will see how squeezed states can be employed in atomic interferometry
to overcome classical limits of precision. In this context,it is common to express squeezing
in decibel, i.e. � 2

dB = 10 log10 � 2.
In order to quantify the intrinsic correlations of a quantum state, regardless of the

direction in which the correlations are manifest, we will introduce an optimized version of
the coherent spin squeezing parameter in Sec.4.2.
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2.3.1.a Other de�nitions of spin squeezing

An alternative de�nition of spin squeezing has been introduced by Kitagawa and Ueda in
Ref. [11]. According to their de�nition, the state is squeezed in a certain direction n̂ if

� 2
U;n̂

h
�̂ in ; Ĵn

i
=

4(� Ĵn )2

N
: (2.10)

In the case in which the direction of minimal uctuations is t he ẑ direction, the state
is said to be \number squeezed" [13, 90]. According to this de�nition, any Fock state
is squeezed along the ^z direction, including the coherent states at the poles. The main
di�erence with respect to the de�nition in Eq.(2.6) is indeed that in (2.10) the expectation
value of the spin in the direction perpendicular to the one ofsqueezing does not appear in
the denominator, and hence the \coherence" of the state, meaning the expectation value
of the total spin hĴ i , is not taken into account. The two de�nitions coincide when the
expectation value of the spin operators in the perpendicular directions is maximal, i.e.
when hĴp̂1 i 2 + hĴp̂2 i 2 = N 2=4, as can be seen by comparing Eq.(2.6) and (2.10). Note
that when this is not the case the two de�nitions may instead lead to drastically di�erent
results. Consider for example a coherent state, say the phase state j� = �= 2; � = 0 i ; for
this state the coherent spin squeezing (2.6) is minimized inthe (yOz) plane and its value
is � 2

y = � 2
z = 1. The incoherent version (2.10) instead allows to take thedirection x̂ as

minimizing direction, leading to best squeezing� 2
U;x = 0.

We remark furthermore that the condition analogous to Eq.(2.9), i.e.

� 2
U;n̂

h
�̂ in ; Ĵn

i
< 1; (2.11)

generally does not imply entanglement. A counter-example is indeed provided by any
coherent state, e.g. the ones at the poles, which are number squeezed but separable.
However, if Eq.(2.11) is satis�ed for a certain direction n̂ and simultaneously hJn i = 0,
then it implies entanglement in the sense of Eq.(2.1) [86]. This can be seen by noticing
that for symmetric states hĴ 2

x i + hĴ 2
y i + hĴ 2

z i = N (N + 2) =4, so that the second inequality
in Eq.(2.3) can be rewritten as

4(� Jn )2

N
� 1 �

4hJn i 2

N 2 ; (2.12)

the violation of which renders the criterion Eq.(2.11) provided hJn i = 0.
It has also been demonstrated that violation of Eq.(2.12) for symmetric states consti-

tutes a necessary and su�cient condition for bipartite entanglement. As a corollary, for
the states which satisfy hJn i = 0, the condition (2.11) is also a necessary and su�cient
condition for bipartite entanglement, which is not the case for Eq.(2.9).

2.3.2 Macroscopic superpositions of coherent states

In the context of this thesis, we will designate with the term macroscopic superpositiona
superposition of two or more coherent states. Since in each coherent state all the atoms
are in the same one-particle state as described in Sec 1.4, then a superposition of coherent
states is a superposition of macroscopically distinguishable con�gurations, also said a
\Schr•odinger's cat state". We will often use this equivalent more familiar designation in
the following.
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For example, the state

j NOON i =
1

p
2

(j� = 0 ; � = 0 i + j� = �; � = 0 i ) (2.13)

is the superposition of the two coherent states at the poles of the Bloch sphere. Such a
state is also know as a \NOON state", because of its equivalent expression on the basis of
the mode occupationjn1; n2i , which gives j NOON i = 1=

p
2(jN; 0i + j0; N i ). The rotation

of the previous state by�= 2 around an axes in the (x0y) plane leads to the two-component
\phase cat state" 1p

2
(j� = �= 2; � i + j� = �= 2; � + � i ) i.e. the superposition of two coherent

states located on the equator of the Bloch sphere. In particular, rotation around the y
axes leads to the state

j PHASE i =
1

p
2

(j� = �= 2; � = 0 i + j� = �= 2; � = � i ): (2.14)

Such states are highly entangled. The NOON state is maximally entangled both in
the sense of the bipartition on the BJJ-modes and on the particles, i.e. according to
the de�nition (2.1) (see Table 2.3.3). The other two-component cat states, such as the
two-component phase cat state (2.14), are maximally entangled on the particles and in
the sense of a bipartition according to a combination of the modes which depends on the
coherent states composing the superposition, as expressedby Eq.(1.29).

Two-component macroscopic superposition states are knownfrom other contexts as
GHZ states (see [17{20] and references therein). They are maximally entangled states
according to many entanglement measures, e.g. the linearized entropy de�ned in Eq.(2.5),
which takes the maximal value SN = 1=2; indeed, since such states are genuinelyN -
entangled, then each single particle is (maximally) entangled with the others. They also
maximize the quantum Fisher information, an entanglement parameter which will be in-
troduced in Sec.4.1.3. Note however that forN > 2 the de�nition of a multipartite
entanglement measure is not univocal, and there exist multipartite entanglement mea-
sures for which such states are not the maximally entangled ones, such as the geometric
entanglement [91, 92] or the \Quantumness" [93].

Macroscopic superpositions do not violate any of the equations (2.3). This is because,
as recalled in Sec.2.2, such inequalities are based on expectation values depending only on
two-body correlations between particles of the state, which for the NOON or GHZ states
are consistent with those of a separable state (contrarily to W states). Information from
N -order moments like hĴ N

k i is needed to verify entanglement in a N-particle macroscopic
superposition (see also Chap. 3).

2.3.3 Fock states

The Fock states introduced in Eq.(1.26) are also entangled in the sense of Eq.(2.1) (indeed
they violate the third inequality in Eq.(2.3)), except for n = � N=2, where one recovers the
coherent states at the poles of the Bloch sphere, which are separable as already mentioned.
For example, in the Fock states labeled byn = � N=2� 1 all the particles except one occupy
the same of the two modes, which leads in �rst quantization to

jn = N=2 � 1i =
1

p
N

(j2; 1; 1; 1;:::1i + j1; 2; 1; 1;:::1i + ::: + j1; 1; 1; 1;:::2i ); (2.15)

where we have taken the casen = N=2 � 1. Such a state is know as a W state [94], and
is also genuinelyN -particle entangled. Increasing the number of \excitations" allows to



x2.4 Adiabatic protocols for the creation of entangled states inBJJs 33

Phase state (� = 1) Twin-Fock state Phase cat state

(ây
1 + ây

2)N j0i â
yN

2
1 â

yN
2

2 j0i (âyN
1 + âyN

2 )j0i
Eq.(1.28) Eq.(1.26) Eq.(2.14)

two-mode entanglement yes no yes
N -particle entanglement no yes yes

Table 2.1: Entanglement of a phase state, a Fock state and a macroscopic superposition
with respect to the bipartition on the modes or on the particles.

span the other Fock states, reaching half way the symmetric state (in the sense of the
population of the two modes), i.e. the Twin-Fock state jn = 0 i . For N = 2, the latter
state reads in �rst quantization

j i =
1

p
2

(j1; 2i + j2; 1i ) : (2.16)

Eqs. (2.15) and (2.16) allow us to stress that such states arenot entangled in the sense
of a partition on the two modes, but in the sense of the partition on the particles, due to
the symmetrization of the bosonic state [76, 85, 95] (see table 2.3.3). Some authors in the
quantum information community use di�erent de�nitions with respect to Eq.(2.1), and
reject that Fock states are \entangled", claiming that the correlations coming from the
symmetrization of the wave function of indistinguishable particles are \unphysical" [20,
83]. The main reason for this is that such correlations cannot be exploited to do quantum
computation since individual particles cannot be individually addressed, nor could be Bell
inequalities violated (see [85] and references therein). Furthermore, such correlations do
not a�ect the physical observables when the particles are taken far apart each other [10].
However other authors [76, 85] stress the fact that entanglement due to the symmetrization
can be a useful resource every times that \collective local operations" only are required,
i.e of the type

Ĵk =
NX

i =1

�̂ (i )
k : (2.17)

instead of \local" operations �̂ (i )
k

2. An example of a quantum information protocol in
which only collective local operations are required is phase estimation, which will be
discussed in Sec.4.1.3. The issue of the entanglement for indistinguishable particles in this
context, as well as the dependence of the correlations on thespatial distance between the
two modes when also internal degrees of freedom are involvedare discussed in Ref. [85].

2.4 Adiabatic protocols for the creation of entangled state s
in BJJs

We now review methods for the generation of entangled statesin a BJJ, starting with
adiabatic methods.

2Note that the nomenclature \local" for operation of the type �̂ ( i )
k was introduced for spin systems, in

which i labels the spin site, individually addressable (see e.g. [76]). However in the external Bose Josephson
set-up the operators �̂ x;y are non-local in the sense of space, i.e. it is not true that the matrix element
over eigenstates of the position h~rj�̂ x;y j~r

0
i is proportional to � (~r � ~r

0
).
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2.4.1 Spin squeezing in the ground state

As can be seen in Fig.1.6, the ground state of the BJJ in the regime in which the interac-
tions are dominant with respect to the tunneling (see Sec. 1.5.1) is number squeezed. With
the numerical values considered in the �gure for the total number of particles, N = 12, the
number squeezing condition Eq.(2.11) reads (�Jz)2 < 3 , always satis�ed in the regime
plotted in the �gure. Indeed only in the limiting case in whic h the interactions are zero
the state would not be number squeezed, reaching its worst value � 2

U;z = 1 for the phase
state j� = �= 2; � = 0 i (� = 1), corresponding to the ground state in the Rabi regime. In
particular Fock states, yielding the ground state along thex axes of the diagram presented
in the �gure, are also number squeezed according to the de�nition in Eq.(2.10).

It can be shown that in the squeezing regions the ground stateis indeed coherent spin
squeezed [96]. A plot of the coherent spin squeezing leads toa result qualitatively similar
to Fig.1.6. On the axes� = 0 of the diagram in Fig.1.6, the coherent spin squeezing in
the ẑ-direction decreases from 1 for the phase statej� = �= 2; � = 0 i , corresponding to the
Rabi regime, to zero, deeply inside the Fock regime. Despitethe fact that the coherence
of the state goes to zero atK = 0, the coherent spin squeezing reaches a minimum value
when the ground state becomes eventually a Fock state. This will be demonstrated in
Sec.4.3, where we will discuss the implications of ground state squeezing for quantum
metrology.

Hence, one could think of preparing the state as a coherent state, and then lowering
the coupling between the two modes adiabatically, enteringthe squeezing regime. In an
external BJJ the decrease of the coupling between the two modes can be realized by
increasing the barrier separating the two wells. The conditions for adiabaticity of the
splitting process have been discussed in Ref. [97], in whichthe spatial dependence of the
mode functions on the form of the potential has been taken into account with a variational
ansatz. An experiment of this type has been performed with anexternal BJJ by the
group of M. Oberthaler in Heidelberg, as reported in Ref. [13], leading to a squeezing of
� 2

z = � 3:8dB. 3. The measurement of the number uctuations and of the coherence factor
allowed to experimentally determine both the coherent spinsqueezing and the Ueda spin
squeezing. The dependence of the actual squeezing on the ramping time has also been
addressed in the same work (see also Ref. [90] for further discussions). Limitations due to
the temperature are discussed in Ref. [62], and will be also addressed in Appendix C.

2.4.2 Ground state of the attractive BEC

A macroscopic superposition of two coherent states (Eq.(2.13)) can be in principle created
by preparing the system in a coherent state and by tuning the interatomic interactions
adiabatically to strongly negative values [28, 98, 99]. This could be achieved by exploit-
ing Feschbach resonances, as recalled in Chap.1. Indeed, the ground state of the model
Hamiltonian (1.24) in the regime of strongly attractive int eractions and for symmetric
modes� = 0 is exactly the NOON state; this is easily understood noticing that in this
regime the energy is minimized by the con�gurations in which all the atoms occupy the
same mode, and the two situations corresponding to the maximal occupation of each of
the two modes are degenerate.

3Technically this result has been achieved with a slightly le ss shallow harmonic potential, which leads
to the occupation of six neighboring wells. The analogous measurement for the rigorously double-well
set-up leads to � 2:3dB
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However this method su�ers from some disadvantages. For instance, the strength of
the interactions should not increase above a critical threshold, otherwise the gas becomes
unstable, and collapses under the e�ect of the attraction among the atoms [28, 98]. On the
other hand, since the �rst excited state is separated from the ground state by an energy
� , too weak an interaction renders perfect adiabaticity di�c ult to reach. Issues related to
the experimental feasibility of such a protocol are discussed in Ref. [98].

2.5 Dynamical protocols

2.5.1 Creation of squeezed states and macroscopic superpos itions of
phase states by a quenched dynamics of the BJJ

Let us now address how one can dynamically create squeezed states and macroscopic
superpositions of coherent states in a BJJ by a quenched dynamics. Let us take as initial
state a coherent state,j� i . We focus for the moment on the case of an even total number
of particles, and � = 0 (symmetric modes). Let us consider the situation where a \quench"
occurs, i.e. the coupling between the two modes is suddenly switched o�. Then the system
evolves under the interaction part of the Hamiltonian only, i.e.

H = � Ĵ 2
z : (2.18)

Equation (2.18) is analogous to the Kerr Hamiltonian in quantum optics H kerr / n̂(n̂ � 1),
where n̂ is the photon number [95, 100]. Note also that the Hamiltonian (2.18) conserves
the number operator. Hence, the dynamics takes place on a parallel of the Bloch sphere
corresponding to the angle� which parameterizes the initial coherent state, i.e. such that
� = e� i� tan �=2. In particular, if we take as initial state the phase state j� = �= 2; � =
0i = j� = 1 i , which as we have seen corresponds to the ground state of the BJJ in the
Rabi regime, the dynamics is restricted to the equator of theBloch sphere.

A qualitative picture of the dynamics of the state under the action of the Hamiltonian
(2.18) view from the top of the Bloch sphere is given in Fig.2.2. By using the expansion
of the coherent state on the Fock states given in Eq.(1.28) the action of the time evolution
operator on the state can be expressed as

j (t)i = e� i� Ĵ 2
z t j� i =

N=2X

m= � N=2

�
N

N
2 + m

� 1=2 � m+ N
2

(1 + j� j2)
N
2

e� i�m 2 t jmi : (2.19)

As it can be seen from Eq.(2.19), the state of the system is periodic as a function of time.
Indeed, when all the phasese� i�m 2 t are equal to 1, the BJJ is found in the initial coherent
state. This happens forTeven = 2 �=� � T . Decomposing the time evolution operator as
e� i (�t Ĵz )Ĵz allows us to discuss qualitatively the e�ect of the atomic interactions on the
initial coherent state. This operator indeed performs a rotation around the z-axes, but
with a speed which depends onĴz. To �x the ideas, consider e.g. the case of an initial
phase state with � = 1, i.e. placed on the equator of the Bloch sphere. In a semi-classical
picture in which the uncertainty associated to the initial coherent state is assimilated to a
classical distribution of points, the result is that points above the equator evolve rotating
in one direction, while points under the equator are rotated in the other direction; the
farther they are from the center, the faster is their evolution. Hence, as a result, the state
is stretched along the equator of the Bloch sphere. This leads at short times to a coherent
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Figure 2.2: Dynamics of the state on the parallel at angle� of the Bloch sphere (top view)
under the action of the Hamiltonian (2.18), taken from Ref. [95].

spin squeezed state (see panel (b) in Fig.2.2). The value of the squeezing parameter as
well as the direction of optimization have been determined in Ref. [11]. In section 4.4
we will present an equivalent derivation of these results. As a consequence of this phase
di�usion, the visibility � (t) introduced in Eq.(1.45) decreases, and a simple calculation
yields (here for � = 1)

N
2

� (t) = hĴx i t =
N
2

cosN � 1
� 2�t

T

�
: (2.20)

At later times, the classical distribution of points �lls th e entire parallel of the Bloch
sphere (see panel c) of Fig.2.2). Quantum-mechanically, interference e�ects take place. Let
us discuss this point more in detail, considering speci�c times corresponding to fractions
of the period T as tq = T=(2q), with q an even integer. From Eq.(2.19), the state at times
tq is given by

j (tq)i =
N=2X

m= � N=2

�
N

N
2 + m

� 1=2 � m+ N
2

(1 + j� j2)
N
2

e� i �m 2

q jmi : (2.21)

Let us denote the phase factor in the previous expression bye� i �m 2

q � Uq(m). The
function Uq(m) is periodic in m with period q, as can be readily veri�ed by evaluating

explicitly Uq(m + q) = e� i � ( m + q) 2

q = ( � 1)qe� i �m 2

q = Uq(m). Therefore the function Uq(m)
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can be expanded according to the discrete Fourier series4

Uq(m) =
q� 1X

k=0

e� i 2�km
q uk (2.22)

with

uk =
1
q

q� 1X

m=0

gk (m); (2.23)

where we have de�nedgk (m) = e� i �m 2

q ei 2�km
q . These coe�cients can be re-written by

noticing that
P q� 1

m=0 gk (m) =
P q� 1

m=0 gk (m + k) = ei �k 2

q
P q� 1

m=0 g0(m). Hence we obtain
from Eq.(2.23)

uk = u0ei� k 2

q (2.24)

where we have de�nedu0 = 1=q
P q� 1

m=0 g0(m) = 1 =q
P q� 1

m=0 e� i �m 2

q . Substituting expres-
sions (2.22) and (2.24) in Eq.(2.21) and exchanging the two sums we obtain

j (tq)i = u0

q� 1X

k=0

ck je� i 2�k
q � i (2.25)

where we de�nedei �k ( N + k )
q = ck . Hence, the system at timestq is found in a superposition

of coherent states, located symmetrically on the parallel of the Bloch sphere at azimutal
angle � - the equator if � = 1. This result has been published in our work [31], and
simultaneously in Ref.[101].

This e�ect was �rst described for quantum-optics coherent states by B. Yurke in
Ref. [102], and in the context of superconducting Josephsonjunctions by C. C. Gerry [103].
The formation of macroscopic superpositions of coherent states has also been addressed in
optical lattices trapping cold atoms in the N -sites Bose-Hubbard model in Ref. [104] (see
also discussion in Chap.6). For example, at timet2 the system is in the two-component
macroscopic superposition

j (t2)i =
1

p
2

�
e� i�= 4j� i + ei�= 4(� 1)N=2j � � i

�
; (2.26)

for � = 1, this is a \phase cat" state, which only di�ers from Eq.(2.1 4) by the presence of
a relative phase between the components (see also panel g) inFig.2.2).

The expression of the macroscopic superpositions with an odd number of components
q analogous to Eq.(2.25) is

j (tq)i = ~u0

q� 1X

k=0

~ck je� i 2�k
q � i �

q � i

~u0 =
1
q

e
i�N
2q

q� 1X

m=0

e� i �m ( m � 1)
q

~ck = ei �k ( N + k +1)
q : (2.27)

4The general de�nition is the following: if f (n) = f (n + L ), then f (n) =
P L � 1

k =0 e� i 2�kn
L uk with

uk = 1
L

P L � 1
n =0 ei 2�kn

L f (n)
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As a special case, note that Eq. (2.27) forq = 1 yields a coherent state reversed with
respect to the initial one, i.e. rotated by � (see also panel i) in Fig.2.2), appearing at a
half of the period t1 = T=2. Such a time interval is said \revival" time because at t1 the
visibility given in Eq.(2.20) takes the initial value 1.

The higher is the number of components of cat state of the form(2.25),(2.27), the
shorter is the time at which it appear. For instance, for � = 1 we can estimate time
of formation of the \�rst" (in chronological order) multico mponent superposition by
the following simple argument: the largest number of phase states of size

p
N=2 (see

Sec.1.4.3.b) which can be put on the equator of the Bloch sphere of radius N=2 is
qmax ' 2�N=

p
N = 2 �

p
N . The time of formation of the multicomponent superposi-

tion with the highest number of phase states ist fs = T=(2qmax ), leading to

t fs � T=
p

N: (2.28)

Since a decrease in the visibility (2.20) is associated to the appearance of cat state, the
time t fs is also known asphase di�usion time.

Other cat states can form at other fractions of the period, e.g. at times ~tq = T=(2q +
1) [31]. Note that in the case of an odd total number of particles N , the period is
Todd = �=� = T=2 [101]. The times of formation of cat states correspond to the ones of
the even� N case; the components of these states are however rotated in the parallel of
the Bloch sphere with respect to the even case [25, 101].

As a �nal remark, we point out that states similar to the ones described by Eqs.(2.25)
and (2.27) are generated in the dynamics of an ensemble ofN two-level atoms in a dis-
persive cavity [105].

2.5.1.a E�ect of an asymmetry on the BJJ parameters

We discuss here the e�ect of an imbalance� , describing an asymmetry of the two modes
of the BJJ as de�ned in Eq.(1.25), over the creation of cat states. This is readily found by
noticing that the interaction part � Ĵ 2

z and the asymmetry part � Ĵz in the Hamiltonian
(1.24) commute. Hence, the state in the presence of imbalance is given by

j (t)i � = e� i� (t )Ĵz j (0) (t)i ; (2.29)

where j (0) (t)i is the state of the symmetric two-mode system at time t under the
action of the Hamiltonian (2.18), as given in Eq.(2.19), and where we have de�ned
� (t) � �

Rt
0 d� � (� ), taking into account a possible time-variation of the asymmetry pa-

rameter � . From Eq.(2.29) one deduces that at each timet the e�ect of such an asymmetry
is a rigid rotation of the state around the z-axes of the Bloch sphere (i.e., in the equatorial
plane for the initial coherent state with � = 1) with respect to the symmetric case, by an
angle which depends on time.

Consider as an example the sinusoidal driving� (t) = � 0 + � sin(!t ). Using Eq.(2.29),
the angle of rotation of the cat state formed at time tq is given by � (tq) = � tq(� 0 +
� (1 � cos(!t q))=(!t q)). In particular, for frequency and drive amplitudes such that the
condition � (tq) = 2 � is matched, the q-component cat state is formed as if no drive were
applied5.

The e�ect of a stochastic uctuation of the asymmetry � on the formation of macro-
scopic superpositions of phase states will be explicitly considered in Sec.5.1.3.

5 In Ref. [67] such a sinusoidal drive has been studied for the external BJJ in the context of transport,
by looking at the time-averaged transferred population aft er preparing the system in an initial state in
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2.5.2 Dynamical creation of macroscopic superpositions in a BJJ: semi-
classical argument

A protocol for the dynamical creation of a NOON state has beensuggested in Ref. [108].
Contrarily to the proposal for the creation of macroscopic superpositions of phase states
presented in Sec.2.5.1, such a protocol makes use of a non-zero coupling between the two
modes of the BJJ. The prediction is based on a semi-classicalargument, relying on the
mean-�eld dynamics of the system introduced in Sec.1.6, andis briey reviewed here
below.

Let us consider as initial state of the quantum dynamics a coherent state identi�ed by
the angles (� = �= 2; � = � ), i.e. the phase statej� = � 1i , which is centered in F� (see
Eq.(1.56)). As recalled in Sec. 1.4.3.b, the width associated to its uctuations is � =

p
N .

In the semi-classical picture introduced in Sec.2.5.1, such a state can be viewed as a cloud
of points evolving according to the classical trajectories. As we have seen in Sec.1.6, for
� > 1 (Josephson and Fock regime) the separatrix passes acrossF� . Hence in this regimes
the initial wave packet evolves along the separatrix by splitting into two outgoing parts,
one stretching towards the northern hemisphere of the Blochsphere, and the other one in
the southern part.

Depending on the value of the parameter � de�ned in Eq.(1.36) the following two
qualitatively di�erent situations can occur. As can be seen from Eq.(1.63), in the strong
coupling regime, for 1� � � 2, the maximal separation of the two outgoing wave packets
is obtained for sin� [� = � ], i.e. for � � = � arcsin 2� �

� (see the separatrix in Fig.1.10b),
corresponding qualitatively to a superposition of two coherent states 1=

p
2(j� + ; � = � i +

j� � ; � = � i ) [108]. In the weak coupling regime, i.e. for � � 2, the maximal separation is
obtained at sin � [� = 0], which gives cos� + = 2=�

p
� � 1 (see the separatrix in Fig.1.10c),

leading to a superposition of two Fock states of the form 1=
p

2(jn = N=2 cos� + i + jn =
� N=2 cos� + i ) [108].

Precisely at � = 2 the separatrix touches the two poles of the Bloch sphere, leading to
the best possible superposition state, i.e. the NOON state given in Eq.(2.13) (note indeed
that for this value of � we obtain � + = � ) [33, 108].

The time Tc that it takes for a point initially in F� to travel along the separatrix and
reach one of the poles of the Bloch sphere is [108]

Tc '
� ln(8N )

N
; (2.30)

which can be taken as an estimation of the time of formation ofthe macroscopic super-
position.

The accuracy of the semi-classical argument presented above has been checked by per-
forming a quantum calculation of the time evolution of the system under the Hamiltonian
(1.24) with parameters corresponding to � = 2 and � = 0 [108]. A calculation of the
�delity, i.e. the projection of the state produced on the perfect superposition given in

which all the atoms are in the same well. The tunneling probab ility exhibits resonances as a function
of the driving frequency, reminiscent of the Shapiro-steps in SJJ. To observe this phenomenon the two
modes of the BJJ must be coupled, which induces a more complicated dynamics than the one described
in Eq.(2.29), as the coupling part does not commute with the r est of the Hamiltonian. Indeed, it has also
been shown that such driven coupled dynamics induces chaos in the classical regime, being related to the
appearance of entanglement in the quantum regime in Ref. [106]. The transport by driving in such systems
has also been addressed in Ref. [107].
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Eq.(2.13)
F1 = jh NOON j (t)ij 2 (2.31)

(to be evaluated at the time Tc of formation of the superposition) allows to estimate the
quality of the state produced. Such a calculation leads e.g.to F1 = 0 :1394 for � = 1 and
N = 300 [33, 108], i.e. the �delity is quite low, which means that the state formed is only
approximatively a NOON state (see second panel in Fig.2.4).We mention that various
other quantities, more sensitive to the existence of coherences in the superposition than the
�delity, can be computed to testify the \catness" of the stat e produced [33]. Among them,
we cite the probability distributions of the eigenvalues of angular momentum operators
in various directions, which we will extensively treat in Chap. 3, or the quantum Fisher
information, which will be discussed in Chap.4.

We note that the time of formation of the NOON state estimated in Eq.(2.30) is much
shorter than the time t2 required to form a two-component macroscopic superposition
of phase states by thequenched dynamicsof the BJJ presented in Sec.2.5.1, providing
therefore a speed up with respect to the use of that protocol and leading to a substantial
advantage in experiments. Indeed, the fragility of superposition states with a macroscopic
number of particles with respect to decoherence induced by various mechanisms renders
challenging their experimental realization. Issues related to the decoherence of macro-
scopic superpositions will be explicitly addressed in Chap. 5. Here we only wish to stress
the interest in providing a protocol to create macroscopic quantum superpositions in the
shortest time possible, i.e. before decoherence becomes e�ective, and the question arises
whether the solution proposed in Ref. [108] is optimized. This question is addressed in
the following section.

2.5.3 Controlled dynamical creation of macroscopic superp ositions in a
BJJ

In order to study the optimized production of macroscopic superpositions, we have de-
veloped a protocol of optimal control in collaboration with D. Sugny and M. Lapert [33].
The general idea is to consider that the parameters of the Hamiltonian (1.24) can be
tuned during the time evolution, in order to reach a certain target state (in our case, a
macroscopic superposition) in the minimum time possible, or with the best possible �-
delity within a �xed time. Since in the internal BJJ setup the coupling K is e�ciently
controllable both in amplitude and sign by tuning a resonant �eld, instantaneously with
respect to the other time scales of the problem [8, 62] (see also Chap. 1), we choose to
keep �xed the parameter � and to useK as control �eld. We will have in mind the inter-
nal BJJ setup, which appears more suitable for the experimental implementation of our
control protocol. In the following we will use a dimensionless version of the couplingK ,
i.e. ! = 2=� = 4 K=(�N ). In terms of this parameter the optimal separatrix of the static
protocol presented in the previous section is identi�ed by! = 1.

2.5.3.a Geometric optimal control approach

We �rst tackle the problem by means of geometric optimal control theory [109]. In a
summarized way, geometric optimal control is a vast domain where the optimal control
problems are solved by using tools of geometry and Hamiltonian dynamics. Due to its
geometric framework, this method is intrinsically limited to systems with few degrees of
freedom. Since as we have seen in Sec.1.6 in the semi-classical limit the BJJ is described



x2.5 Dynamical protocols 41

in terms of two classical conjugated variables, i.e. the polar and azimuthal angles of the
Bloch sphere of radiusN=2, the tools of geometric optimal control theory can be applied.

In particular, we solve our time-optimal control problem by applying the Pontryagin
Maximum Principle (PMP) [33, 109], which requires to set a bound, m, on the amplitude
of the control �eld: among all the functions ! (t) allowing to reach the target state, the
optimal solution is the one minimizing a given cost, here theduration of the control,
within the bound m on the dimensionless parameter! .

We consider as initial classical state a point on the Bloch sphere at a distance� from
(� = �= 2, � = � ), corresponding to the extremum point on the uncertainty circle of the
phase statej� = �= 2; � = � i - the same initial phase state of the protocol presented in
Sec. 2.5.2. Without loss of generality, we can choose this point in the upper hemisphere.
Then, the optimal sequence to reach in minimum time the northpole of the Bloch sphere
is computed. By symmetry of the dynamical equations, the point of the lower hemisphere
symmetric with respect to S of the initial state reaches simultaneously the south pole.
This classical simultaneous control leads in the quantum domain to the creation of a
superposition state.

The minimum time Tmin for the generation of a macroscopic superposition with this
protocol can be estimated analytically for m ! + 1 , and results inversely proportional to
the total number of particles as the time Tc in Eq.(2.30), di�ering from it by a numerical
factor. The calculation of Tmin as well as a numerical comparison betweenTc and Tmin

are detailed in Ref. [33], resulting inTmin . Tc.
The solutions for the optimal �elds obtained for three bounds on the �eld amplitude

! , namely m = 1 ; 2; 100, are reported in the second panel of Fig.2.3. Form = 1
we recover the solution of Ref. [108], which is only composedof a constant �eld - in
the control terminology, a \bang pulse". More complicated solutions can be constructed
when the bound m takes larger values. The respective optimal trajectories in the phase
space, parameterized by the coordinates� and � (see Fig. 2.3, and also Refs. [48, 61, 108])
under the �eld solution ! (t) are displayed in Fig.2.3. In particular, taking as in Sec.2.5.2
N = 300, for m = 100 we reach the target in a time �T min = 0 :0236, while form = 1 from
Eq.(2.30) one obtains�T c = 0 :0259. The corresponding �delities with the state j NOON i ,
obtained by calculating numerically the time-evolution of the quantum state under the
solution �eld ! (t), are equal toF1 = 0 :116 form = 100, while we recall from Sec.2.5.2 that
F1 = 0 :139 for m = 1. Table 2.2 lists the numerical results obtained with this approach.
Other quantities, sensitive to the correlations, are computed in Ref. [33]. A visualization
on the Bloch sphere of the state created is provided in the second panel of Fig.2.4.

Our control protocol can be generalized to create a phase catj PHASE i (see Eq.(2.14))
in addiction to the state j NOON i , which is not possible in the original non-controlled
proposal of Ref. [108]. Arguments analogous to the case of a NOON state can be used to
describe the optimal trajectories reaching the statej PHASE i . Switching the sign of the
control �eld is required here, though, which could be implemented by tuning the microwave
and radio-frequency �elds as explained in Sec.1.4. Numerical results comparable with
those for the state j NOON i are obtained for the minimum time and the projections at
various values of the bound, as reported in Table 2.26.

The conclusion of this analysis is that both the minimum time of formation of macro-
scopic superpositions and the respective �delities obtained with the geometric control
protocol developed are comparable to the ones of the static method of Ref. [108]. The

6The projection on the phase cat state, analogous to Eq.(2.31), is de�ned as F 2 = jhCat 2 j (t )ij 2 .
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Figure 2.3: (top) Plot in the ( �; � ) plane of the optimal trajectory in the semi-classical
model for the boundsm = 1, m = 2 and m = 100 in blue (dark), green (light gray) and red
(dark gray) respectively. The target state is the cat state j NOON i . The dashed blue, red
and green lines represent the position of the separatrix forthe di�erent bounds. (bottom)
Evolution of the corresponding control �elds ! (t), as a function of the dimensionless time
�t .

Figure 2.4: Plot of the projections on the Bloch sphere, (i.e. the Husimi function Q(�; � ) =
jh�; � j ij 2 introduced in Sec.3.1) of the initial state j�= 2; 0i (left), the �nal states with the
geometric solution form = 1 and t = Tmin (middle) and with the fully quantum numerical
approach with t = 10 Tc (right).
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latter method is hence almost optimal for the creation of a NOON state based on a
semi-classical approach, though leading to a poor �delity. To obtain better results, an-
other approach able to tackle the fully quantum character of the problem has to be used,
possibly relaxing a little the time constraint, as detailed in the next section.

NOON PHASE
m 1 2 100 1 2 100

�t (� 10� 3) 25.9 24.6 23.6 25.5 24.6 23.6
F1;2 0.139 0.122 0.116 0.091 0.100 0.116

Table 2.2: Numerical results of the semi-classical controlprotocol for three di�erent
bounds, m = 1, 2 and 100. The control duration (�t ) and the �delity ( F ) are given
for the two cat states j NOON i (NOON state) and j PHASE i (Phase state).

2.5.3.b Fully numerical approach

As we have seen in the previous section, the e�ciency of the optimal solution based on
the semi-classical approach is limited in the original quantum domain. We now determine
the solution of the initial quantum problem by using a purely numerical approach, namely
the monotonic convergent algorithm, which is a standard approach to solve the optimality
equations in quantum mechanics [110].

In this case, we shall rather consider various�xed control durations, namely T0 =
Tc; 5Tc and 10Tc, multiple of the minimum time Tc of the static control protocol, and we
maximize the projection onto the target state at time t = T0. In the following computa-
tions, we have chosen as parameters of the quantum system� = 1 and N = 300.

In order to guide the numerical optimization, we use the geometric solution as a trial
solution for the numerical algorithm. This allows to design a �nal optimal solution close
to the geometric one. Due to the proximity of the results obtained at di�erent values of
the bound, we can consider as initial �eld of the algorithm the constant �eld ! (t) = 1 in
the interval [0; T0], corresponding to the boundm = 1 of the geometric protocol.

Very good results are obtained, with a �nal projection larger than 0.88 and 0.99 on
the target state j NOON i for T0 = 5 Tc and T0 = 10 Tc, respectively. The solution �eld
for this latter case is presented in Fig. 2.5. A visualization on the Bloch sphere of the
NOON state created is provided in the third panel of Fig. 2.4. Note that waiting a time
10Tc with the control �eld ! = 1 of Ref.[108] would not lead to any improvement, as
the quantum state would keep on evolving further from the con�guration in the second
panel of Fig.4, refocussing at some point in the initial coherent state (the state is indeed
periodic). The time Tc is thus the optimum time for creating a cat state with ! = 1. For
such a time interval, a projection of 0.2548 is reached with the numerical optimum control
protocol, which yields an improvement over the result of Ref.[108], at the price of a more
complicated solution.

The same computation has been done for the target statej PHASE i , taking again as
initial condition for the algorithm the geometrical optima l solution at m = 1 (which is no
longer static), with a total duration increased by a factor of 1, 5 and 10 as before. The
di�erent numerical results are listed in Table 2.3.
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To conclude, we have demonstrated that by means of a fully numerical optimization
approach it is possible to create a NOON state with a very high�delity in a time ten times
larger than the time of formation of the NOON state in Ref.[108], which led to a very low
�delity. Note that this time interval can still lead to a sign i�cative speed-up with respect
to the protocol based on the quenched dynamics of the BJJ presented in Sec.2.5.1, where
t2 = �= (2� ) was independent on the number of atoms.

Figure 2.5: Plot of the �eld solution for T = 10 Tc. The horizontal solid line is the solution
of Ref.[108], which is taken as a trial �eld of the algorithm.

NOON PHASE
n 1 5 10 1 5 10

F1;2 0.255 0.880 0.994 0.245 0.903 0.989

Table 2.3: Same as Table 2.2 but for the quantum protocol. Theparameter n represents
the ratio of the control duration over the time Tc (see main text).

2.5.3.c Experimental feasibility

Let us discuss the experimental feasibility of our control protocol, starting with the bound
on the control. Having in mind the internal BJJ setup (and in p articular the experiments
of Ref.[8, 62]), typical bounds on the parameterK are 0< K < 2� KHz, and a typical value
for � is � � 2� � 0:13Hz. Fixing this value for the interactions translates the maximum
value of the control �eld which we have used, i.e.! = 100, into the value of the coupling,
K � � �1:95KHz for N = 300 particles, which is within the limit accessible experimentally.
Furthermore, the control �eld can be switched fast comparedwith the other time scales
of the experiments. Note that, from a theoretical point of view, it would be possible to
include in our protocol some spectral constraints on the control �eld [33]. Hence, in ideal
conditions it would be possible to implement our control protocol.

However, in realistic conditions the experiments are a�ected by the presence of noise,
which induces dissipation and decoherence, as will be discussed in Chap. 5. Such noise
sources have not been taken into account in our protocol, andmay change signi�catively
the quantum state reached with the help of the designed control �eld. In particular,
with qualitative arguments we have estimated that, given the experimental parameters of
Ref. [8], the atom loss dissipation rate should be lowered bya factor 1000 in order to allow
the formation of macroscopic superposition at 10Tc without losing any atom - a single loss
event causes the decoherence of the NOON state, as it will be shown in Appenxix E.3.
Further discussions are provided in the conclusive sectionof Ref. [33].



Chapter 3
Detection of macroscopic superpositions

The entanglement witnesses presented in the previous chapter allow to detect the pres-
ence of entanglement by measuring the collective angular momentum operator in various
directions. However, these inequalities do not give any information about the structure
of the entangled state. In this chapter, we provide some tools which allow to visualize
the quantum state of the system, and detect its entanglementin the case of macroscopic
superpositions. After briey presenting the theory of quasi-probability distributions for
the SU(2) symmetry group \borrowed" from quantum optics, we introduce the probabil-
ity distributions of the eigenstates of angular momentum operators in various directions,
and we show how they can be used to obtain information about the quantum state of the
system. These results are the subject of our publication Ref.[32].

Les crit�eres que nous avons pr�esent�es dans le chapitre pr�ec�edent permettent de
d�etecter l'intrication �a l'aide de mesures du moment angulaire collectif dans
di��erentes directions. Cependant, ces in�egalit�es ne don nent pas d'information sur
la structure de l'�etat intriqu�e. Dans ce chapitre, nous donnons des outils permettant
de visualiser l'�etat quantique du syst�eme, et de d�etecter l'intricati on pour le cas des
superpositions macroscopiques d'�etats coh�erents. Apr�es avoir bri�evement pr�esent�e
la th�eorie des distributions de quasi-probabilit�e pour le groupe de sym�etrie SU(2)
\emprunt�e" �a l'optique quantique, nous introduisons la d istribution de probabilit�e
des valeurs propres de l'op�erateur de moment angulaire dans di��erents directions, et
nous montrons que celle-ci peut être utilis�ee pour obtenir de l'information sur l'�etat
quantique du syst�eme. Ces r�esultats ont fait l'objet de notre publication Ref.[32].

3.1 Quasi-probabilities distributions in phase space

In quantum optics it can be useful, in order to visualize the quantum state of the system,
to introduce quasi-probability distributions in phase space - for the electromagnetic �eld
in a cavity, the complex plane parameterized by the amplitude � = x + ip, where x̂ =
(â + ây)=

p
2 and p̂ = ( â � ây)=(i

p
2) are the quadratures of the �eld. These distributions

are thus simultaneous functions of the semiclassical variables x and p, associated with
non-commuting observables [72]. Three such phase-space representations can be de�ned,

45
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namely the Husimi function Q, the Sudahrsan distribution P, and the Wigner function W ,
each of them in bijective correspondence with the density matrix of the system [72, 111].
Knowledge of each of these representations allows in principle to calculate the other ones
by convolution with coherent state overlap functions (similar to Eq.(1.31)), even if the
explicit calculation may be impractical (see Ref.[111] andSec.3.1.2). An interesting feature
of these representations is that they allow to convert the calculation of quantum averages
to calculations of integrals over phase space. Their de�nitions can be adapted for the
SU(2) algebra, such as to render them suitable to describe our system of N bosons in
two modes [71, 72, 111, 112]. As we have seen in the previous chapters, the classical
phase space is in this case the Bloch sphere, which can be parameterized by means of the
angular variables � and � . In the following we present the de�nition of SU(2) phase space
distributions.

3.1.1 Husimi distribution Q

The Husimi function is de�ned as [71, 72]

Q(�; � ) = h�; � j� j�; � i ; (3.1)

with the normalization condition (N +1)
4�

R
d
 Q(�; � ) = 1. When the system is in a pure

state, i.e. � = j ih j, the Husimi function reduces to the projection over a coherent state,
namely Q(�; � ) = jh�; � j ij 2. Let us give some examples.

3.1.1.a Husimi distribution of a Fock state

The Husimi distribution of the Fock state jni is readily calculated by means of Eqs.(1.4.3)
and (3.1), and reads

Q(n)(�; � ) =
1

(1 + tan 2
� �

2

�
)N

�
N

N
2 + n

� �
tan2

�
�
2

�� 2(n+ N
2 )

= Q(n) (� ): (3.2)

As anticipated in Sec.1.5.1, this distribution does not depend on the angle� but only on
� , and for each value ofn it is peaked at � = arccos(� 2n=N ) according to the third line
in Eq.(1.30). The Husimi distribution for various Fock stat es is illustrated in Fig. 3.1.

3.1.1.b Husimi distribution of a coherent state

Due to the de�nition (3.1), the Husimi distribution of a cohe rent state is simply calculated
by using the expression of the overlap between two coherent states Eq.(1.31). For example,
for the phase statej� = �

2 ; � = 0 i we obtain

Q(�; � ) = jh�; � j� =
�
2

; � = 0 ij 2 =
1

2N (1 + sin � cos� )N ; (3.3)

which displays a peak centered around the values� = �
2 ; � = 0 parameterizing the coherent

state under consideration.
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Figure 3.1: Husimi function Q(n) (� ) of Fock states jni for n = � 5; � 4:::; 5 (with N = 10),
as given in Eq.(3.2) (panels from left to right, from top to bottom).

3.1.1.c Husimi distribution of cat states

The Husimi distribution of a cat state is also readily obtained by using Eqs.(2.25),(2.27)
and the de�nition (3.1). For phase cat states we will make usein what follows of the
restriction of the Husimi distribution to the equator of the Bloch sphere, i.e. Q(� ) �
Q(� = �= 2; � ). This function displays as many peaks as there are components in the
superposition, as can be seen in Fig. 3.2. Some examples of projected Husimi distributions
for macroscopic superpositions are given in Ref.[105] and in our work [32]. In Sec.5.1.3.b
we will calculate this function explicitly for a two-compon ent cat state formed in the
presence of phase noise.

Although the Husimi phase distribution is in one-to-one correspondence with the full
density matrix, from a \visual" point of view in practice it i s almost insensitive to the dif-
ference between a coherent superposition of phase states and the corresponding incoherent
mixture of the same coherent states, equally weighted. Thisis because due to Eq.(3.1)
the Husimi distribution can be seen as the diagonal of the density matrix represented over
coherent states, while the contributions which allow to distinguish a macroscopic superpo-
sition from an incoherent mixture are o�-diagonal. This poin t will be extensively analyzed
in Sec.5.1.3.a. As an illustration of this fact, Fig. 3.2 (top panel) shows the Husimi dis-
tribution for a three-component superposition of phase states and for the corresponding
incoherent mixture, the tiny di�erence between the two being illustrated in the inset. The
need for developing tools to distinguish between coherent superpositions and incoherent
mixtures has brought us analyze the eigenvalue distributions which will be presented in
Sec. 3.2.1.
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Figure 3.2: Top panel: section of the Bloch sphere on the equatorial plane � = �= 2, param-
eterized by the angle� . The dots indicate schematically the phase of the three coherent
states which give rise to the superposition, and correspondto the maxima in the Husimi
distribution illustrated in the bottom panel. The vector r̂ de�nes a generic direction of the
angular momentum operator for which the probability distri bution P� (r ) is considered.
Our convention for the x; y axes is also indicated. Bottom panel: Dimensionless Husimi
distribution Q(� = �= 2; � ) for a three-component superposition of phase states (solid line)
and for the corresponding incoherent mixture (dashed line), as a function of the phase
� for N =20 particles. The inset shows a zoom of the same function around � = 2 �= 3,
illustrating the di�erence between the superposition state and the incoherent mixture.
From Ref.[32].
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3.1.2 P representation

The P distribution is de�ned by the implicit relation

� =
Z

P(�; � )j�; � ih�; � jd
 ; (3.4)

with the normalization condition ( N + 1) =(4� )
R

P(�; � )d
 = 1 [71, 72].
By projecting Eq.(3.4) over coherent states, one can see that the Q and P representa-

tions are related by a \convolution", in which the overlap between coherent states plays
the role of a transfer function, i.e.

Q(�; � ) =
Z

P(� 0; � 0)jh�; � j� 0; � 0ij 2d
 : (3.5)

This relation can be inverted, leading to (see Eq.(4.9) in Ref.[112])

P(�; � ) =
2JX

l=0

lX

m= � l

(2s + l + 1)!
(2s + l)!

(2s � l )!
(2s)!

Yl;m (�; � )
Z

d

000

Y �
l;m (�

000
; �

000
)Q(�

000
; �

000
); (3.6)

where Yl;m (�; � ) are the spherical harmonics [71].
This relation allows us to remark explicitly that, due to the overcompleteness of coher-

ent states, the o�-diagonal information h� 0; � 0j� j�; � i can be entirely reconstructed solely by
employing the diagonal information h�; � j� j�; � i , this latter being the Husimi distribution.
Indeed from Eq.(3.4) we obtain

h� 0; � 0j� j�; � i =
Z

d

00
P(�

00
; �

00
)h� 0; � 0j�

00
; �

00
ih�

00
; �

00
j�; � i ; (3.7)

which, by the use of Eq.(3.6), allows to relateh� 0; � 0j� j�; � i to Q(�; � ).

3.1.3 W representation

The Wigner function for the SU(2) group is de�ned as [113, 114]

W (�; � ) = tr
h

^w(�; � )�̂
i

; (3.8)

where the Wigner operator ŵ(�; � ) is de�ned in terms of the spherical tensors T̂ J
l;M =

q
2l+1
2J +1

P J
m;m 0= � J CJ ;m0

J;m ;l;M jJ; m0ihm; J j as

ŵ(�; � ) =
2�

p
2J + 1

2JX

l=0

lX

M = � l

Yl;M (�; � )T̂ J
l;M : (3.9)

Here CJ ;m0

J;m ;l;M are the Clebsh-Gordan coe�cients and we have explicitly indicated the
representation J in the Fock states jJ; mi . The Wigner function of Fock states, coher-
ent states and squeezed states are explicitly calculated inRef.[113], while an analogous
calculation for macroscopic superpositions is reported inRef.[29]. In Ref.[115] an experi-
mental tomographic reconstruction of a squeezed state Wigner function in a BJJ has been
presented.
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An alternative de�nition of the Wigner function for systems described within a SU(2)
formalism has been provided in Ref.[116]. The connection with the usual Wigner function
has also been established by the same authors [114]. In that work, the Wigner operator
analogous to Eq.(3.9) is de�ned as

ŵs(~x) =
Z

SU(2)
d~ys(� )ei~y � ~J e� i~x �~y; (3.10)

where � = j~yj and ~y=� = (sin � sin �; sin � cos�; cos� ), with 0 � � � � , 0 � � � � and
0 � � � 2� , ~x 2 R3, and s(� ) is a measure; possible choices are the unity measures(� ) = 1
[116], the left and right invariant measure s(� ) = 1

2 sin2 �
2 [114], and the De Haar measure

s(� ) = sHaar (� ) = 1
2� 2 sin2 �

2 [116]. Then, the Wigner function is obtained from the Wigner
operator as

Ws(~x) = tr [ ŵs(~x)�̂ ] =
Z

SU(2)
d~ys(� )tr

h
ei~y ~J �̂

i
e� i~x~y : (3.11)

Among the interesting features of the Wigner function we mention the overlap property,
which allows to express the overlap of two states by means of the integral of the product
of their Wigner functions. Taking for instance the de�nitio n (3.11), this property reads

jh	 j� ij 2 /
Z

R3

d~xW 	
s (~x)W �

~s (~x) (3.12)

with W 	
s (~x) = h	 jŵs(~x)j	 i and s(� )~s(� ) = sHaar (� ) = 1

2� 2 sin2 �
2 . Note that as a particular

case, when the statej� i is a generic coherent state, equation (3.12) allows to express the
Husimi distribution (3.1) as an integral of the product of th e Wigner function with the
Wigner function of a coherent state.

Negativities and oscillations of the Wigner function are generally ascribed to the pres-
ence of entanglement in the quantum state [29, 117{119], andseveral works attempt
to characterize the non-classicality of a quantum state by means of the negativity of
the Wigner function [29, 117{123] (as well as by the non-existence of a well-behaved P
function[124, 125]).

3.2 Detection of macroscopic superpositions

We focus here on the detection of macroscopic superpositions of phase states created
during the quenched dynamics of the BJJ, i.e. the states given in Eqs.(2.25), (2.27),
for various numbers of componentsq, with � = 1 ( j� = �= 2; � = 0 i is thus the initial
state). We address in particular the question of how to distinguish them from mixtures of
coherent states. Our approach, substantially di�erent from the one of Ref. [101] which is
devoted to map out the Husimi distribution, is based on the analysis of the distributions
of angular momentum eigenvalues. The results of this work are presented in Ref. [32].

3.2.1 Distributions of the eigenvalues of angular momentum operators
in the equatorial plane

Consider the probability distribution of the eigenvalues r (taking integer values in the
interval [ � N=2; N=2]) of the spin operator Ĵr , satisfying Ĵr jr i = r jr i , where r̂ is the
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generic direction in the (xOy) plane de�ned in Eq.(1.33) (see also the bottom panel in
Fig.3.2). This probability distribution for a pure state is given by

P� (r ) = jhr j ij 2; (3.13)

for a generic density matrix �̂ , P �̂
� (r ) = Tr( �̂ jr ihr j). Indeed, we shall see that the shape of

the distribution P� (r ) reects the phase content of the state projected along the direction
speci�ed by the vector r̂ .

It is instructive to calculate the probability distributio n P� (r ) starting from its gener-
ating function, de�ned as

h� (� ) = he� i� Ĵ r i = ĥe� i� (Jx sin � � Jy cos� ) i = hR̂(� )i (3.14)

where � = �e � i� , R̂(� ) is the displacement operator introduced in Eq.(1.32), andh:::i
indicates the quantum average over the state of the system. For a statistical mixture
h� (� ) = tr

h
�̂e � i� Ĵ r

i
. The function h� (� ) generates the moments of the distribution, since

hĴ k
r i = i k

�
d
d�

� k

h� (� ) j� =0 : (3.15)

Let us consider for simplicity a pure state j i . Expanding Eq.(3.14) in terms of the
eigenstatesjr i of Ĵr yields

h� (� ) =
N=2X

r = � N=2

e� i�r jh jr ij 2 =
N=2X

r = � N=2

e� i�r P� (r ): (3.16)

The probability distribution P� (r ) is then readily obtained as Fourier coe�cients relative
to the expansion (3.16).

P� (r ) =
1

2�

Z �

� �
h� (� )ei�r d� ; (3.17)

note that clearly from the de�nition (3.14) it follows that h� (� +2 � ) = h� (� ), which allows
to take �nite extrema in the integral of Eq.(3.17). This appr oach, based on thefull counting
statistics of the probability distribution P� (r ), allows us to stress that the knowledge of
P� (r ) contains the information equivalent to the knowledge of all the moments of the
distribution itself. In turn, the latter are known once the g enerating function is known,
as shown by Eq.(3.15) [126].

The generating function Eq.(3.14) can be calculated analytically both for coherent
superpositions and incoherent mixtures. The calculation is detailed in Appendix A.1. We
obtain as a �nal result for the generating functions

hmixt
� (� ) =

1
q

q� 1X

k=0

(3.18)

�
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�
2
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�
2
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q
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�� N
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for the incoherent mixture and

hcats
� (� ) = hmixt

� (� ) (3.19)

+ j~u0j2
q� 1X

k6= k0=0

~ck ~c�
k0

2N
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j cos

�
2
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�

1 + e� i 2� ( k � k 0)
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+ sin
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2

sign
h
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�
2

i �
ei ( 2�k 0

q + �
q � � ) � e� i ( 2�k

q + �
q � � )

�� N

for the coherent superposition, in the case of an odd number of componentsq (the even-q
case is given in Appendix A.1).

As an example, we focus on the three-component superposition j (t3)i given in Eq.(2.27),
formed at a time t3 = T=6 during the quenched dynamics of the BJJ, as we have seen in
Sec.2.5.1. Considering also the corresponding mixture, wecalculate the probability distri-
butions of the eigenvalues in thex and y direction, namely P�= 2(r ) and P� (r ) respectively,
by using Eq.(3.17) and (3.19). As illustrated in the top panels of Fig.3.3, these distri-
butions are peaked around the semiclassical values given inEq.(1.30), i.e., in the speci�c
casehĴx i = ( N=2) cos(� �= 3), (N=2) cos(� ) and hĴy i = ( N=2) sin(� �= 3), (N=2) sin(� ).
The distribution P�= 2(r ) displays a noticeable di�erence between the mixture and theco-
herent superposition: the latter displays oscillations which are absent in the former. The
presence of fringes in the distribution of the eigenvalues of angular momentum operators
for superposition states was also noticed in the context of the dynamics of the quantum
non-linear rotor by Sanders [127]. The functionP� (r ) instead does not display fringes for
the three-component superposition because its componentsdo not overlap when projected
along the y-direction (see Fig.3.2, bottom panel); as a result no interference e�ect takes
place in this case.

This analysis extends to higher-component superpositions(see for instance the bottom
panels of Fig.3.3, in which we plot theP�= 2(r ) and P� (r ) probability distributions for the
four-component cat state j (t4)i ).

We note that the two-component phase cat state j (t2)i given in Eq.(2.26) (with
� = 1), cannot instead be distinguished from the corresponding incoherent mixture by
this method, due to the speci�c form of its state components (see Section 3.2.1.b).

Finally, the full counting statistics of the operator Ĵz could also be de�ned, but does
not yield any useful information about the considered superpositions of phase states as it
coincides with the binomial distribution P� =0 (r ) = 1

2N

� N
N
2 + r

�
of the initial coherent state.

This can be easily understood since, as mentioned in Sec.2.5.1, the quenched dynamics
leading to the creation of phase cat states conserves the number operator, and hence all
of its moments.

3.2.1.a Experimental realization of this method

For each choice of the angle� the probability distribution P� (r ) can be experimentally
accessed by repeated measurements of the corresponding angular momentum operator Ĵr .
Indeed, since the eigenstates of̂Jr form an orthonormal basis, each superposition state
decomposes asj qi =

P N=2
r = � N=2 cq

r jr i with cq
r = hr j qi . Then, according to the postulates

of quantum mechanics, after a (projective) measurement of̂Jr the state jumps to the state
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Figure 3.3: Top panels: eigenvalue distributionP� (r ) corresponding to Ĵx (� = �= 2) and
Ĵy (� = � ) for the three-component coherent superposition (black lines) as well as for the
incoherent mixture of the same phase states (red lines) withN = 20. The vertical lines
correspond to the semiclassical values forhĴx i and hĴy i for the coherent states entering
the superposition. Bottom panels: analogous distributions for the four-component case.
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jr i with probability P� (r ) = jcq
r j2 and the corresponding outcome of the measurement isr .

The full distribution P� (r ) is obtained by repeating this procedure many times, each time
preparing the system in the same initial state1. The measurement ofĴr for a generic angle
� can be achieved by measuring the population imbalancêJz between the two modes after
proper rotations of the state over the Bloch sphere, as explained in Sec. 1.4.4.

One of the �rst questions arising about the experimental feasibility of this protocol,
which would provide an interesting extension of our work, ishow robust the probability
distributions of cat states are, if we take into account a possible error in the times at
which the shots (i.e., the measurements of̂Jr ) are taken. A rough estimate of that e�ect
is provided in Appendix A.2.

In Sec.5.1.3.c we will discuss how the probability distributions P� (r ) for macroscopic
superpositions are a�ected by the presence of noise.

3.2.1.b Detection of the NOON state

In Reference [128] a similar method has been proposed for thedetection of a NOON
state as the one given in Eq.(2.13), or with a possible relative phase between the two
components, i.e.

j NOON � i =
(j� = 0 ; � = 0 i + ei� j� = �; � = 0 i )

p
2

: (3.20)

In this case, the probability distribution P� (r ) corresponds to the pro�le of the NOON
state when projected on an axes in the equatorial plane, and can be more easily calculated
by rotating both the superposition state and the eigenstates of the angular momentum
operators by �= 2 on the Bloch sphere, i.e. by transforming the eigenstatesjr i in Fock
states and the state j NOON � i in a phase cat state with components along the direction
identi�ed by � , j PHASE �;� i = ( j� = �= 2; � i + ei� j� = �= 2; � + � i )=

p
2. Thus we obtain

hr j NOON � i = hnj PHASE �;� i =
1

2
N +1

2

�
N

N
2 + n

� 1
2

e� i� ( N
2 + n)

h
1 + ei� (� 1)( N

2 + n)
i

; (3.21)

which leads to

P� (r ) =
1

2N

�
N

N
2 + r

� h
1 + cos� (� 1)( N

2 + r )
i

: (3.22)

As seen in Eq.(3.22), the probability distribution P� (r ) does not depend on the direction�
and hence is isotropic in the (xOy) plane. The contrast of the interference fringes depends
on the relative phase� between the two components of the state. Note in particular that
for � = �= 2 the distribution P� (r ) does not display any fringes, despite the fact that it is
a macroscopic superposition. A similar argument can be applied to explain the absence
of fringes in the distribution P�= 2(r ) for the two-component phase state. For� = 0 the
contrast is maximal and we obtain

P� (r ) =

(
1

2N � 1

� N
N
2 + r

�
if r is even

0 if r is odd
(3.23)

1Technically, in typical experiments the system is destroye d after a measurement of Ĵr . Therefore, one
should model the process by a Positive Operator Valued Measure (POVM) rather than by a projective
measurement [89]. However, here we are only interested in the outcomesr . These are predicted to be the
same for both POVM and projective measurements, even if the latter do not describe properly the state
of the system after the measurement.
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This corresponds to a binomial envelope centered atn = 0, with interference fringes having
a unit spacing.

3.2.2 Quasi-probability distribution in spin variables

In our work, Ref. [32], we have addressed the issue of the two-dimensional (2D) tomo-
graphic reconstruction f (x; y) of the phase content of a state in the (xOy) plane. This
is based on the concept of the Radon transform, also exploited in medical imaging [129{
132]. The same principle has been also used for coherent superpositions with cavity
photons [133]. The idea is to obtain a 2D distribution function f (x; y) using all the
one-dimensional projectionsP� (r ) at each � in the interval [0 ; 2� ].

We de�ne the two-dimensional distribution f (x; y) by the implicit expression

P� (r ) =
Z 1

�1
f (x; y)ds =

Z + 1

�1
dx

Z + 1

�1
dyf (x; y)� (r � x sin � + y cos� ); (3.24)

where s = x cos� + y sin � = ~l � p̂1 with ~l = xx̂ + yŷ and p̂1 identi�es the direction in the
equatorial plane of the Bloch sphere perpendicular to ^r , as expressed by the �rst line of
Eq.(2.7). Equation (3.24) can be inverted using the de�nition of the generating function
in Eq. (3.16). In order to do this, it is convenient to expressP� (r ) as the Fourier transform
of a non-periodic characteristic function, obtained by multiplying it by a window � (� ) of
width 2� . Namely, we de�ne

~h� (� ) = h� (� )� [� �;� ](� ); (3.25)

with � [� �;� ](� ) = 1
2 (H (� (� + � ) + H (� � � ))), and H (x) the Heaviside function. This

modi�ed generating function is related to the probability d istribution as

~h� (� ) =
Z 1

�1
P� (r )e� i�r dr; (3.26)

and inversely P� (r ) = 1
2�

R1
�1

~h(�; � )ei�r d� . An important remark is that the physical
values ofP� (r ) are only the ones taken for integer values of the variabler , which correspond
to the eigenvalues of a certain angular momentum operator de�ned by � . In between, it
assumes interpolating values; in the same way, forr > N= 2 or r < � N=2, P� (r ) oscillates
in such a way so to recover zero for integers values ofr (see Fig.3.4).

Now we seek the explicit expression off (x; y) in terms of the characteristic function
h� (� ). We substitute Eq.(3.24) in Eq.(3.26) and we use the integral representation of the
delta function, � (r � x sin � + y cos� ) =

R1
�1

d!
2� ei! (r � x sin � + y cos� ) , obtaining

~h� (� ) =
Z 1

�1
dr

Z 1

�1
dxdyf (x; y)

Z
d!
2�

e� i (� � ! )r e� i! (x sin � � y cos� ) : (3.27)
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Figure 3.4: Eigenvalue distribution P� (r ) corresponding to Ĵx (� = �= 2) for the four-
component coherent superposition (solid lines) withN = 40. The red dots are the physical
values corresponding to the discrete eigenvalues, also reported in Fig.3.3, while the blue
line shows the extension on the real �eld of the functionP� (r ).

Using that 1
2�

R1
�1 e� i (� � ! )r dr = � (! � � ) and performing the integral in d! , yields2

~h� (� ) =
Z 1

�1
dxdyf (x; y)e� i� (x sin � � y cos� ) =

= F � [f (x; y)] ( � sin �; � � cos� ): (3.29)

We have now to invert the Fourier transform in Eq.(3.29). De� ning the variables

� sin � = ! x

� � cos� = ! y ; (3.30)

readily leads us to

f (x; y) =
�

1
2�

� 2 Z 1

�1
d! xd! y~h� (� )ei (! x x+ ! y y) : (3.31)

The de�nition (3.30) implies that j� j =
q

! 2
x + ! 2

y and � = arctan
�

� ! x
! y

�
. Rewriting

Eq.(3.31) in terms of these variables makes appear the Jacobian of the transformation,
and we obtain

f (x; y) =
�

1
2�

� 2 Z 1

�1
d� j� j

Z �

0
d� ~h� (� )ei� (sin �x � cos�y )

=
�

1
2�

� 2 Z �

� �
d� j� j

Z �

0
d�h � (� )ei� (sin �x � cos�y ) ; (3.32)

2 We choose here the de�nitions:

F [f (x)] ( ! ) =
1

2�

Z 1

�1
dxf (x)ei!x

F � [g(! )] ( x) =
Z 1

�1
d!g (! )e� i!x : (3.28)
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f (x; y) =
� 1

2�

� 2 R
C d2� tr[ �̂ R̂(� )]e� 2i (x� 2 + y� 1 ) W (x; p) =

� 1
�

� 2 R
d2� tr[ �̂ D̂ (� )]e� 2i (x� 2 � p� 1)

R̂(� ) = e� Ĵ+ � � � Ĵ � Ĵ+ = Ĵx + i Ĵy D̂ (� ) = e� ây � � � â ây = x̂ � i p̂

j� i = R̂(� )j � J i � = � 1 + i� 2 j� i = D̂ (� )j0i � = � 1 + i� 2

R1
�1 dxf (x; y) = P(y) = hyj�̂ jyi

R1
�1 dxW (x; p) = P(p) = hpj�̂ jpi

R1
�1 dyf (x; y) = P(x) = hxj�̂ jxi

R1
�1 dpW(x; p) = P(x) = hxj�̂ jxi

Table 3.1: Comparison illustrating the analogies between the 2D distribution function
f (x; y) and the quantum-optics Wigner function. By

R
C d2� we mean

R�
0 d��

R2�
0 d� . We

denoted hereP� (r ) as P(y) and P�= 2(r ) as P(x) and the eigenstates satisfyingĴx;y jr i =
r jr i as jxi and jyi respectively, which should be taken on integer values only.

where in the last step we made use of Eq.(3.25). It is possibleto rewrite Eq.(3.32) in
terms of the natural intervals of de�nition of the variables � and � , according to Ref.[71].
The calculation, detailed in Appendix A.3, yields as a �nal result

f (x; y) =
1

(2� )2

Z �

0
�d�

Z 2�

0
d� h � (� )ei� (x sin � � y cos� ) : (3.33)

Equation (3.33) represents a quasi-probability distribution for the non-commuting op-
erators Jx and Jy . It is closely analogous to the quantum optics Wigner function, which
also can be expressed from the characteristic function of the probability distribution of
the quadratures (see Table 3.1, and also Eq.(3.8) in Ref.[131]). In terms of SU(2) Wigner
functions it could be regarded as the two-dimensional projection on the equatorial plane
of the Bloch sphere of the Wigner function de�ned in Eq.(3.11). Indeed, as shown in Ap-
pendix A.4, integrating Eq.(3.11) along the variable x3 renders a two-dimensional function
with structure similar to Eq.(3.33).

Figure 3.5 illustrates the 2D quasi-probability distribut ion f (x; y) for the three and
four component coherent superpositions, and for the corresponding incoherent mixtures.
In the top left panel f (x; y) shows three pronounced maxima in correspondence with
the coherent states composing the three-component macroscopic superposition. It also
displays oscillations between the maxima, due to interferences between the components.
The 2D quasi-probability function evaluated for the corresponding incoherent mixture
(bottom left) also exhibits the main peaks but the fringes are strongly suppressed, the
small remaining oscillations being intrinsically due to the de�nition of the function f (x; y)
as a Fourier transform in angular variables on a compact interval.
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Figure 3.5: Dimensionless 2D quasi-probability distribution f (x; y) in the ( x0y) plane
(dimensionless) for the three- (left panels) and four- (right panels) component coherent
superpositions with N = 20 particles (top panels), and for the corresponding incoherent
mixtures (bottom panels).

Figure 3.6: Sectionsf (x; 0) of the quasi-probability distributions of Fig. 3.5 (soli d line) in
the direction y = 0 for the-three component superposition (left) and the four-component
superposition (right). The dashed line represents the quasi-probability function f (x; 0)
for the corresponding incoherent mixture of the same three coherent states.
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Figure 3.7: Reconstruction of the Husimi distribution Q(� = �= 2; � ) of a four component
superposition with N = 20 by means of the overlap property in terms of the function
f (x; y). The red dots correspond to the points reconstructed this way, while the solid blue
curve is the exact Husimi function.

A complete tomographic protocol allowing for the full reconstruction of the quantum
state requires the measurement of angular momentum operators in all the directions of
the Bloch sphere, and not only in the equatorial plane (see Ref.[115, 131, 134]).

Although the function f (x; y) is not in one-to-one correspondence with the state of
the system, for the speci�c superpositions of phase states which we consider here it yields
the main information about the phase structure of the state, and shares many properties
with a Wigner function. For example, the de�nition (3.24) au tomatically implies that the
marginal probability distribution P� (r ) can be obtained by integration of f (x; y) along
the perpendicular direction, in analogy to the quantum optics Wigner function (see Table
3.1, and Eq.(A.43)-(A-44) in Ref.[135]).

Furthermore, the phase pro�le of the state (i.e., the Husimi distribution on the equa-
tor of the Bloch sphere Q(� = �= 2; � )) can be qualitatively reconstructed by exploit-
ing the overlap property similarly to Eq.(3.12). An indicat ion of this fact for the four-
component cat state is provided in Fig.3.7. The reconstruction shown therein is however
only qualitative because we have used as an estimate of the phase pro�le the function
P

x
P

y
~f  (x; y) ~f � (x; y), where ~f (x; y) =

� 1
2�

� 2 � x � y
P P

kx =1
P P

ky =1
~W

�
� 1(kx )

2 ; � 2 (ky )
2

�

� e� iy� 1(kx )e� ix� 2 (ky ) is a discretized version of the functionf (x; y), and where the sum-
mation interval is taken to be a square instead of a circle.

Note also that the two-dimensional probability distributi on f (x; y) could be in principle
experimentally reconstructed. This should be done by reconstructing the P� (r ) along
many di�erent directions with the protocol presented in Sec.3.2.1.a; the knowledge of the
values assumed by this function for integersr allows to reconstruct h� (� ) with the use of
Eq.(3.16); then, the two-dimensional distribution f (x; y) can be reconstructed by using the
Radon inverse transformation given in Eq.(3.33). Note thata direct inversion of Eq.(3.24)
to obtain f (x; y) from P� (r ) would involve an improper integral, to be taken in the sense
of a principal value [130].

In the case of an external BJJ set-up, a more direct fashion toobtain the 1D pro�les
P� (r ) in any direction of the ( x0y) plane could be implemented, based on the measurement
of the atomic momentum distribution. This idea is drawn from the similarity between
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the expression for the momentum distribution in the two-mode model, Eq.(1.44), and
the expression for the angular momentum operator in the plane (xOy), Eq.(1.33). This
follow-up of our work is described in Chap. 6.



Chapter 4
Exploitation of useful entangled states

In this chapter we introduce atom interferometry, and we recall the criterium which de�nes
the usefulness of a quantum state for phase estimation. In particular, we recall that
squeezed states, macroscopic superposition states and Fock states are useful quantum
states, and can be used in metrology to outperform the classical limit of precision. In
this spirit, we then quantify the usefulness of various states of the BJJ: �rst, its ground
state, and then the states which are created during its time evolution under the quenched
dynamics introduced in Sec.2.5.1. The details of the latteranalysis can also be found in
our work Ref.[25].

Dans ce chapitre nous introduisons l'interf�erom�etrie at omique, et nous rappelons
le crit�eres qui d�e�nissent l'utilit�e d'un �etat quantiq ue pour l'estimation de phase.
En particulier nous rappelons que les �etats comprim�es, les superpositions d'�etats
coh�erents et les �etats de Fock sont des �etats quantiques utiles, qui peuvent être utilis�es
en m�etrologie pour surmonter la limite standard de pr�ecision. Dans cet esprit, nous
quanti�ons ensuite l'utilit�e de plusieurs �etats quantiq ues de la BJJ; tout d'abord,
de son �etat fondamental, et ensuite des �etats qui sont cr�e�es pendant l'�evolution
dynamique tremp�ee introduite en section 2.5.1. Les d�etails de cette analyse peuvent
aussi être trouv�es dans notre publication Ref.[25].

4.1 Atom interferometry

4.1.1 The general interferometric procedure

The goal in interferometry, which is part of the theory of estimation of a parameter, is
to estimate an unknown phase shift ' with the highest possible precision. Since there
is no observable associated with the phase shift, some otherobservable is measured in
the output state; out of one or more such measurements, the original phase shift is then
inferred.

In atom interferometry, an input state is �rst transformed i nto a superposition of two
modes, analogous to the two arms of an optical interferometer. These modes acquire
distinct phases' 1 and ' 2 during the subsequent quantum evolution. They are are �nally
recombined to read out interference fringes, from which thephase di�erence' = ' 1 � ' 2

61
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is inferred. The interferometric sequence can be describedby means of rotation matrices
acting on the two-mode vector state, that is, by SU(2) rotation matrices in the Schwinger
representation introduced in Sec.1.4 [74]; the generatorsof the rotations are the angular-
momentum operators Ĵx , Ĵy , and Ĵz de�ned in Eq.(1.22). The total number N of atoms
in the condensate is assumed to be �xed.

Let us give a practical example. Consider as an initial stateof the interferometric
sequence the state in which all atoms are initially in one of the two modes - say, the mode
j = 1. The input state is then the Fock state jn = N=2i , coinciding with the coherent
state at the north pole of the Bloch sphere; an interferometric sequence with a di�erent
initial state is analyzed for instance in Ref. [74]. A rotation of the atomic state around
the y-axes by an angle of�= 2 radians is then applied to the input state, leading to the
phase state j� = �= 2; � = 0 i . As explained in Chap. 1, this amounts in the internal
BJJ set-up to the application of a �= 2 pulse with frequency in resonance with the two
internal levels, while in the external BJJ set-up a rotation around Ĵy would be possible by
combining successive rotations aroundĴx and Ĵz. This plays the role of a beam splitter
in optical interferometers. Then the state is rotated around the z-axes by the free time
evolution, the phase accumulation being due to a di�erent energy shift between the two
states. For instance, placing an external BJJ in the vertical direction provides an energy
di�erence of the two modes proportional to the gravity constant g [136]. This rotation
is the analog of the di�erent phase paths in the two arms of an optical interferometer.
Finally, by recombining the two paths, the state is rotated again around the y-axes by
an angle of � �= 2 radians. The consecutive rotations of the input state on the Bloch
sphere are represented in Fig.4.1. The interferometric sequence can thus be described by
a succession of three rotations, and the output state of the linear interferometer is

j out i = e� i �
2 Ĵy e� i' Ĵz ei �

2 Ĵy j in i = e� i' Ĵx j in i ; (4.1)

wherej in i is the input state, assumed here to be pure. Note that performing rotations of
the kind presented in this section requires the non-linear term in the Hamiltonian (1.24)
to be ine�ective. In the internal BJJ set-up the rotations are typically realized fast enough
to neglect the non-linear e�ects induced by the interactions [8], while in the external set-
up Feschbach resonances may be employed. The residual e�ect of interactions on the
interferometric sequence has been recently addressed in Refs. [137, 138].

In a typical experiment one has access to the probability distribution associated with
the operator Ĵz measured with respect to the output state. Note however thatdue to the
argument presented in Sec.1.4.4 in practice the angular momentum in any direction can
be detected, by means of a suitable further rotation of the quantum state preceeding the
measurement ofĴz . The quantum distribution of the measured observable depends on the
phase shift ' . In the simple example under consideration, the average value hĴz i out in the
output state gives

hĴz i out = h in jei' Ĵx Ĵze� i' Ĵx j in i

= cos ' hĴz i in + sin ' hĴy i in = �
N
2

cos'; (4.2)

which displays Ramsey fringes as a function of the phase shift ' , and in the last step
we have made use of Eq.(1.26) for the input state considered.The variance (� Ĵz)2

out =
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hĴ 2
z i out � (hĴz i out )2 reads

(� Ĵz)2
out = h in jei' Ĵx Ĵ 2

z e� i' Ĵx j in i � cos2 ' hĴ 2
z i in

= sin 2 ' hĴ 2
y i in + cos ' sin ' h(Ĵz Ĵy + Ĵy Ĵz)i in

=
N
4

sin2 ': (4.3)

The phase shift is then determined by means of a statistical estimator, i.e. an arbitrary
function ' est(n1; n2; :::::; nm ) of the m outcomes of the measurements on the output state,
in our example of the observableĴz . Such an estimator is said to beunbiased if, when
repeating many times the experiment, the average value obtained corresponds to the true
value of the phase shift, i.e.

h' esti =
Z

dn1dn2:::dnm ' est(n1; n2; :::::; nm )P(n1; n2; :::::; nm j' ) = '; (4.4)

where for independent measurements the probability of the outcomes (n1; n2; :::::; nm )
under the phase shift ' can be expressed as a product of thelikelihoods

P(nj' ) = jhnj out ij 2 = jhnje� i' Ĵx j in ij 2; (4.5)

i.e. P(n1; n2; :::::; nm j' ) =
Q m

i =1 P(n i j' ) 1. An example of unbiased estimator is the max-
imum likelihood ' ML , i.e. the value of ' which maximizesP(n1; n2; :::::; nm j' ) 2. Details
about the practical experimental determination of the likelihoods and the construction of
the corresponding estimator can be found in Ref. [139].

The phase precision, given by the mean square uctuations

(� ' )2 =
Z

dn1dn2:::dnm (h' esti � ' est(n1; n2; :::::; nm ))2; (4.6)

depends on the chosen estimator, on the input state and on themeasurement performed
on the output state. For the maximum likelihood estimator a possible choice is to take
the 30 % con�dence interval.

A heuristic argument to calculate the phase precision, valid when the input state is
gaussian (as e.g. it is the case for coherent states and squeezed states) is based on linear
error propagation, which yields [14, 74]

� ' =
(� Ĵz)out

dhĴz i out =d'
: (4.7)

In particular, for the input coherent state jn = N=2i that we are considering in our
example, Eqs.(4.2) and (4.3), Eq.(4.7) render

� ' = � ' best =
1

p
N

� � ' SN ; (4.8)

corresponding to theshot-noise limit [15], i.e. the typical precision obtained with the use
of coherent states. Here the su�x \best" indicates that in ou r example of interferometric
scheme expressed by Eq.(4.1), the observablêJz which we are supposing to measure in
the output state yields the most precise estimation. We shall clarify and generalize this
point it in Sec.4.1.3.

1We have denoted the average in Eq.(4.4) via an integral to be more general and include the case of
continuous outcomes. In the case of our experiment the values of the output are discrete and the integral
can be replaced by a summation.

2An alternative unbiased estimator, more suitable than the m aximum likelihood in the case in which
only few outcomes are available, is a baesyan estimator [16].
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Figure 4.1: Rotations on the Bloch sphere in the interferometric scheme: the input co-
herent state at the north pole (green disk) is rotated aroundthe y-axes by an angle�= 2
(blue disk) and afterwards around the z-axes by the unkown phase' (black disk). The
precision � ' on the estimation of ' is larger than the size

p
N=2 of the disk, representing

the angular momentum uctuations, divided by the radius N=2 of the sphere. In the
output state (red disk) the number operator is measured.

4.1.2 Use of squeezed states in atom interferometry

If instead of a coherent state we use as input state for the interferometer a squeezed state,
an enhanced precision in the inferred phase can be obtained [14]. The squeezed state
should be suitably chosen, such that in the output state the uctuations in the measured
direction are reduced. This can be intuitively understood by looking at Fig. 4.2: the
squeezing in they direction is translated in reduced uctuations of Ĵz in the output
state, which lead to an enhancement of the precision in the phase estimation according to
Eq.(4.7). Indeed, it can be proved that for a squeezed state

� ' best =
� n̂p
N

= � n̂ � ' SN ; (4.9)

where we recall that � n̂ is the squeezing parameter, de�ned in Eq.(2.6). It follows that the
squeezing condition� n̂ < 1 implies � ' best < � ' SN . Indeed, Eq.(2.9) provides a su�cient
(but not necessary for more general states) condition for sub-shot noise sensitivity [14] - in
addition to being a su�cient condition for multiparticle en tanglement, as seen in Sec.2.3.1.
We stress that to take a full advantage of such a resource, theangular momentum operator
must be measured in the direction of squeezing in the output state.

4.1.3 Cram�er-Rao lower bound and quantum Fisher informati on

The output state of a more general atom interferometer is

�̂ out (' ) = e� i' Ĵn �̂ inei' Ĵn ; (4.10)

where ^� in is the input density matrix and n̂ the unit vector representing the e�ective
rotation axes associated with a given interferometric sequence. The likelihood is now
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Figure 4.2: Rotations on the Bloch sphere in the interferometric scheme when the input
state is a squeezed state: the input state, squeezed along the y direction (green ellipse),
is rotated around the y-axes by an angle�= 2 (blue ellipse) and afterwards around the
z-axes by the unknown phase' (black disk). The precision � ' on the estimation of
' is of the order of the thinner axes of the ellipse, representing the angular momentum
uctuations, divided by the radius N=2 of the sphere. In the output state (red disk)
the number operator is measured, which renders clear that the number uctuations are
smaller as compared to a coherent state.

P(� j' ) = tr[ Ê (� )�̂ out ], where Ê (� ) is a general positive operator satisfying
R

d� Ê (� ) = 1.
It can be demonstrated [140] that a general bound - theCram�er-Rao lower bound -

exists on the phase precision (�' ) de�ned in Eq.(4.6), which under the hypothesis of
independent measurements and unbiased estimator reads

� ' �
1

p
m

r

F
h
�̂ in ; Ĵn

i ; (4.11)

where m is the number of measurements andF
h
�̂ in ; Ĵn

i
=

R
d� 1

P (� j ' )
�

@P( � j ' )
@'

� 2 is the

Fisher information [140]. This quantity clearly depends on the measurementÊ (� ) per-
formed on the output state. We can de�ne the quantum Fisher information as the max-
imum value taken by the Fisher information optimizing over all possible measurements
Ê (� ) [140, 141], i.e.

FQ

h
�̂ in ; Ĵn

i
= max Ê (� )F

h
�̂ in ; Ĵn

i
= 2

X

l;m;p l + pm > 0

(pl � pm )2

pl + pm
jhl jĴn jmij 2 ; (4.12)

fj l ig being an orthonormal basis diagonalizing ^� in =
P

l pl jl ihl j (with pl � 0 and
P

l pl =
1). The calculation is detailed in Ref. [140], where it is also demonstrated that the general
operator Ê (� ) which optimizes the Fisher information reduces to a projective measurement
- in our simple scheme, to the measurement of the collective angular momentum operator
in some direction. Note that the quantum Fisher information (4.12) still depends on the
input state and on the direction n̂ of the interferometer.
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Substituting the inequality F
h
�̂ in ; Ĵn

i
� FQ

h
�̂ in ; Ĵn

i
in Eq.(4.13) leads to a more

advantageous bound on the phase precision, i.e. the best precision that can be achieved
in principle for a given input state �̂ in

� ' � (� ' )best =
1

p
m

r

FQ

h
�̂ in ; Ĵn

i ; (4.13)

also called the quantum Cram�er-Rao lower bound. The saturation of the bound (4.13)
requires both a suitable classical post-processing on them outcomes of the measurements
(e.g. the maximum likelihood estimation in the limit of larg e m [140]) and the knowledge
of the optimum observable to measure. This latter task can bedi�cult as the optimum
measurement may depend on the phase shift itself [140, 141].

For pure input states j in i , the quantum Fisher information given in Eq.(4.12) reduces
to the quantum uctuation (� Jn )2 = h in jĴ 2

n j in i � h  in jĴn j in i 2 of Ĵn ,

FQ

h
j in i ; Ĵn

i
= 4(� Jn )2 : (4.14)

This allows to reinterpret the Cram�er-Rao lower bound (4.13) as a generalized uncertainty
principle

� ' � Jn �
1

2
p

m
; (4.15)

in which the generator Ĵn of the transformation (4.10) and the phase shift ' play the
role of two conjugate variables -' being here not an observable but a parameter [140].
For instance, for the phase statej in i = j� = �= 2; � i the quantum uctuations in the
directions n̂ = x̂, ŷ, and ẑ are equal to (N sin2 � )=4, (N cos2 � )=4, and N=4, respectively.
According to (4.15), for this state the best precision that can be achieved on the phase
shift for m = 1 corresponds to the shot-noise limit in Eq.(4.8).

Due to Eq.(4.13), the inequality

FQ

h
�̂ in ; Ĵn

i
> N (4.16)

is a necessary and su�cient condition for sub-shot noise sensitivity (� ' )best < (� ' )SN .
In what follows, the input states satisfying this inequality are called useful states for
interferometry (or, more briey, \useful states").

4.1.3.a Interpretation of the quantum Fisher information

The quantum Fisher information is related to the Bures distance [142]

d2
Bures(�̂ 1; �̂ 2) = 2(1 �

p
F (�̂ 1; �̂ 2)) ; (4.17)

where

F (�̂ 1; �̂ 2) = (tr[
q p

�̂ 1�̂ 2

p
�̂ 1])2 (4.18)

is the �delity, via the relation

d2
Bures(�̂ in ; �̂ d' ) = FQ [�̂ in ; Ĵn ](d' )2 (4.19)

when two neighboring states are considered, one displaced by d' from the other on the
curve (4.10) parameterized by' , i.e. �̂ d' = e� id'J n �̂ ineid'J n [140]. While Eq.(4.19) holds
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for a general density matrix, it is particularly simple to pr ove it for pure states. Consider
the displaced pure state

j d' i = e� id'J n ' j in i � (1 � id' Ĵn �
(d' )2

2
Ĵ 2

n )j in i : (4.20)

Then the �delity (4.18) reduces to the overlap of the two states (as we have already seen
in Eq.(2.31)), and is given by

F ( in ;  d' ) = jh in j d' ij 2 � 1 � (d' )2(� Jn )2 = 1 � (d' )2 FQ [j in i ; Ĵn ]
4

(4.21)

where in the last step we made use of Eq.(4.14). Substitutionof Eq.(4.21) in the de�nition
of the Bures metric (4.17) yields Eq.(4.19).

From Eq.(4.19) it can be seen that the quantum Fisher information has the meaning

of the square of a \speed"FQ [�̂ in ; Ĵn ] =
�

dBures ( �̂ in ;�̂ d' )
d'

� 2
, at which the state evolves along

the curve de�ned by Eq.(4.10) in the space of density matrices when the parameter '
is varied [16, 140]: if one increases' starting from ' = 0, the larger is quantum Fisher
information of the input state �̂ in , the faster the state (4.10) becomes distinguishable from
�̂ in , the smaller is the change in the parameter' which can be detected. This is further
seen from Eq.(4.18), in which we see that the statej d' i becomes orthogonal fromj in i
when (d' )2FQ � 1; for FQ � N , this happens for d' � 1=

p
N , while for FQ � N 2,

jh in j d' ij 2 � 0 already for d' � 1=N. Hence the bound (4.13) relates the problem of
estimating a phase shift in an interferometer to the problemof distinguishing neighboring
quantum states [140].

The link between the quantum Fisher information and the distinguishability of quan-
tum states has also been applied to study the Zeno e�ect in Ref.[143].

4.1.4 Interplay usefulness in phase estimation and entangl ement

It can be shown [15, 16] that for any separable input state ^� in , FQ [�̂ in ; Ĵ~n] � N , so that
(4.16) is a su�cient condition for �̂ in to be entangled according to the de�nition in Eq.(2.1).
In other words, FQ � N is an entanglement witness3.

It is worthwhile to stress that the inequality (4.16) is not a necessary condition for
entanglement: indeed, there exists entangled states whichare not useful for interferometry,
that is, with a Fisher information FQ � N [16, 76]. The criteria for entanglement and
sub-shot noise sensitivity are summarized in Table 4.1.4.

Because of the criterium (4.16) and the bound (4.13), the quantum Fisher information
can be seen as an entanglement parameter, quantifying the amount of quantum corre-
lations useful for interferometry. Note however that FQ is not a proper entanglement
measure, because it violates one of the postulates which aretypically required in the
de�nition of a measure [144] - namely, it can increase under local operations [76].

The quantum Fisher information is bounded byN 2. This is easy to show for pure states
by noticing that the largest square uctuation of Ĵ~n in Eq.(4.14) is smaller or equal to
N 2=4 (see [15]); for mixed states this follows from the convexity of FQ (see [16]). According

3Strictly speaking, the term \witness" only applies for pure states, where FQ is an observable, being
given by the uctuations of the angular momentum operator. F or mixed states, the entanglement criterium
(4.16) still holds, but FQ is given by the more complicated expression (4.12).
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Phase estimation Entanglement
FQ [�̂ in ] > N , (� ' )best < (� ' )SN FQ [�̂ in ] > N ) �̂ in 6= �̂ sep

� 2 [�̂ in ] < 1 ) (� ' )best < (� ' )SN � 2 [�̂ in ] < 1 ) �̂ in 6= �̂ sep

Table 4.1: Necessary and/or su�cient conditions for sub-shot noise phase sensitivity in
an atom interferometer and multiparticle entanglement in terms of the quantum Fisher
information and spin-squeezing parameter.

to Eq.(4.13), the best sensitivity that can be achieved in linear interferometers [145] is
then

(� ' )best = (� ' )HL �
1
N

: (4.22)

This corresponds to the so-calledHeisenberg limit. As it will become clear in the next
paragraph, this limit can be reached using highly entangledatoms as input state.

4.1.4.a Macroscopic superpositions

Macroscopic superpositions such as the NOON state de�ned inEq.(2.13) provide an ex-
ample of states which are useful for interferometry according to the criterium (4.16), but
which are not recognized as useful by the squeezing criterium (2.9). Indeed, with the use
of Eq.(4.14) it is easy to derive

FQ

h
j NOON i ; Ĵz

i
= N 2; (4.23)

which substituted in the quantum Cram�er-Rao lower bound (4.13) yields the highest
possible phase resolution, expressed by the Heisenberg limit (4.22).

It is instructive to compare this result with the value of the quantum Fisher information
for a statistical mixture of the same states, ^� NONO = ( jN; 0ihN; 0j + j0; N ih0; N j)=2. The
latter is found with the help of Eq.(4.12) to be equal to N in all directions n̂ in the (xOy)
plane and to vanish in the direction ẑ. Therefore, the scaling ofFQ like N 2 for �̂ NOON =
j NOON ih NOON j is due to the presence of the o�-diagonal terms ^� NOON � �̂ NONO =
(jN; 0ih0; N j + j0; N ihN; 0j)=2. In Chap. 5 we will make use of this di�erent scaling of
the quantum Fisher information with N , depending on the presence or absence of the
o�-diagonal terms, to quantify the e�ect of decoherence on macroscopic superpositions.

The two-component phase cat state shares the same value of the quantum Fisher
information as for the NOON state, since it is simply a rotation of the NOON state on
the Bloch sphere, and entanglement is conserved bycollective local operations [76] (see
also section 4.2). The quantum Fisher information for macroscopic superpositions with a
larger number of components will be explicitly calculated in Sec.4.4.

The fact that macroscopic superpositions are useful for interferometry can be ascribed
to the fact that their likelihood probabilities de�ned in Eq .(4.5) display substructures
of order 1=N, which translates into a small angle of rotation needed to make the state
orthogonal to the initial one [16]. For instance, for a NOON state, the state shifted in the
Ĵz direction by an angle ' reads

j out i = e� i' Ĵz j in i =
1

p
2

�
e� i' N

2 j
N
2

i + ei' N
2 j �

N
2

i
�

; (4.24)
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which apart from a global phase factor is the same state as theone in Eq.(3.20), with
� = N' . Its likelihood probabilities according to any direction in the (xOy) plane are
hence given by Eq.(3.22) with� = N' , which as a function of ' displays fast oscillations.
As a consequence, the overlapjh in j out ij 2 = cos2(N '= 2) vanishes at ' � 1=N.

Finally, we note that the fact that the NOON state is recognized as entangled by
the Fisher information criterium, which for pure states reads 4(� Jn )2 > N according to
Eqs.(4.14) and (4.16), may seem in contradiction with the statement that the inequalities
(2.3) are complete in the sense de�ned in Sec.2.2: i.e., thatthere is no other inequality
based on �rst and second moments only capable of detecting entangled states which are
not already detected by Eq.(2.3). It is indeed readily veri� ed that the NOON state does
not violate such inequalities. The solution of this apparent \paradox" relies on the fact
that Eq.(4.14) only holds for pure states; however, in order to establish that the state
under consideration is pure, and hence that Eq.(4.14) can beapplied, one should dispose
of higher moments, e.g. performing a quantum tomography, sothat the contradiction is
removed [146].

4.1.4.b Fock states

The quantum Fisher information of a Fock state can also be calculated with the use of
Eq.(4.14), and yields

FQ

h
jni ; Ĵr

i
= N

�
N
2

+ 1
�

� 2n2 (4.25)

in any direction r of the (xOy) plane de�ned by Eq.(1.33) 4. In particular, the twin-Fock
state jn = 0 i is highly entangled as

FQ [jn = 0 i ; Ĵr ] = N
�

N
2

+ 1
�

(4.26)

is of orderN 2, and leads thus to the Heisenberg limit. The extremal Fock statesn = � N=2,
instead, become separable as they coindice with the coherent states at the poles, so that
FQ [jn = � N

2 i ; Ĵr ] = N .
In connection with the discussion presented in Sec.2.3.3, we remark that in Ref. [85] the

dependence is studied of the quantum Fisher information of aFock state on the spatial
separation of the wells of a BJJ, when the degrees of freedom to be exploited for sub
shot-noise interferometry are additional (internal) degrees of freedom.

4.1.4.c Squeezed states

The property that squeezed states are useful for interferometry beyond the shot noise
limit, discussed in Sec.4.1.2, is readily demonstrated using the concept of quantum Fisher
information. Indeed, as we shall see in Secs.4.4 and 4.3.1, the quantum Fisher information
of a squeezed state is approximatively given byFQ ' F� [16, 25], where the parameterF�

is de�ned as

F� =
N
� 2 : (4.27)

This indicates that for squeezed states the parametersFQ and � provide essentially the
same information (see also Fig.4.4). Furthermore, for these states the Fisher information

4For what concerns the z-direction, since Fock states are eigenstates of theĴz operator, we obtain
instead FQ [jni ; Ĵz ] = 0 for each n.
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is maximum in a direction perpendicular to the one of minimum squeezing. This has a
clear physical interpretation: when the state is squeezed,the quantum Fisher information
is maximum in the direction of highest angular momentum uct uations, which is perpen-
dicular to the direction of lowest uctuations yielding the best squeezing (see Fig.4.2 for
a sketch).

Use of Eq.(4.13) yields Eq.(4.9) for the phase uncertainty,demonstrating the usefulness
of squeezed states for atom interferometry.

4.2 Optimum coherent spin squeezing and quantum Fisher
information

As it is clear from the previous discussion, both the quantumFisher information FQ

and the coherent spin squeezing parameter� depend on the direction of the genera-
tor which de�nes the interferometric sequence (4.10). For instance, for a NOON state
FQ [j NOON i ; Ĵx ] = FQ [j NOON i ; Ĵy ] = N , while Eq.(4.23) shows that the NOON state is
maximally entangled. Hence, in order to quantify the useful correlations of a quantum
state, one needs to optimizeFQ and � over all the possible directions by de�ning [76]

� 2 [�̂ in ] � min
n̂

� 2
n̂ [�̂ in ] ; FQ [�̂ in ] � max

n̂
FQ

h
�̂ in ; Ĵn

i
: (4.28)

Let us consider the 3� 3 real symmetric covariance matrix  [�̂ in ] with matrix elements

 ij [�̂ in ] =
1
2

X

l;m;p l + pm > 0

(pl � pm )2

pl + pm
< e

h
hl jĴ i jmihmjĴ j jl i

i
(4.29)

where fj l ig is the orthonormal eigenbasis of ^� in as in Eq.(4.12). According to standard
linear algebra, the maximum ofFQ [�̂ in ; Ĵn ] = 4( n̂;  [�̂ in ] n̂) over all unit vectors n̂ is equal
to

FQ [�̂ in ] = 4  max ; (4.30)

 max being the largest eigenvalue of the matrix [�̂ in ]. In the following it will be useful to
de�ne also the matrix

Gij [�̂ ] �
1
2

hĴ i Ĵ j + Ĵ j Ĵ i i � h Ĵ i ihĴ j i ; (4.31)

where h: : :i = tr( : : : �̂ ), with �̂ being the system density matrix. Note that for pure input
states j in i the matrix  ij [j in i ] reduces to the matrix Gij [j in ih in j], which is easier to
compute than the more general expression (4.29). The optimum quantum Fisher informa-
tion is then given (up to a factor four) by the largest uncertainty of the angular momentum
operators Ĵn (see Eq.(4.14)).

For the sake of brevity, in the following we will omit both the adjective "optimum"
and the explicit dependence on the input state, designatingthe optimum coherent spin
squeezing and the optimum quantum Fisher information respectively by � 2 and FQ , unless
where source of confusion.

4.3 Quantum Fisher information and spin squeezing in the
ground state

In this section, we calculate the squeezing parameter and the quantum Fisher information
in the ground state of the BJJ, modeled by the two-mode Hamiltonian (1.24). This pro-
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vides an indication of the usefulness of the ground state of the BJJ for sub-shot noise phase
estimation in atom interferometry. The extension of the previous scenario to include the
e�ect of temperature within the same simple two-mode model isdiscussed in Appendix C.

Let us focus on the case of symmetric modes� = 0, corresponding to the vertical
section of the number uctuation phase diagram presented inFig.1.6. We start with the
analysis of the limiting cases, namely the limit of non-interacting atoms and the limit of
non-coupled modes, for which an analytical solution can be provided; we will then turn
to the general case, to be addressed numerically.

4.3.1 Non-coupled modes

In the limit K = 0 (left bottom point in the diagram of Fig.1.6), the ground s tate is
the twin Fock state jn = 0 i , as explained in Sec.1.5.1. Hence, the optimum quantum
Fisher information is given by Eq.(4.26), displaying a N 2 scaling, and it is optimum in
any direction contained in the (xOy) plane. The ground state in this regime is thus highly
\usefully" entangled.

The coherent spin squeezing along thez axes in the same regime is an indeterminate
expression, since the coherence factor in the denominator of Eq.(2.6) vanishes, as well as
the number uctuations in the numerator. The limiting value for K ! 0 can be calculated
with second order perturbation theory. The calculation, detailed in Appendix C.1, yields
as a result that the ground state displays the largest squeezing degree of the phase diagram
in this limit, as anticipated in Sec.(2.4.1), namely

� 2 =
1

� N
2 + 1

� (4.32)

(see also Ref. [96]). Evaluating the Fisher-like parameter(4.27) yields F� = FQ , given by
Eq.(4.26), showing that in this regime the two parameters provide the same information,
according to the discussion presented in Sec.4.1.4.c.

4.3.2 Non-interacting atoms

The ground state of the system in the limit of non-interacting atoms is, as already ex-
pressed by Eq.(1.37), the maximum eigenstate of̂Jx , i.e. the coherent statej� = 1 i . Then
the ground state in this regime is separable, and the Fisher information is FQ = N , opti-
mum in the plane (yOz). Correspondingly, the squeezing is isotropic in the plane(xOy)
and its value is � 2 = 1.

4.3.3 Intermediate regime

In the general case in which the parametersK and � of the Hamiltonian (1.24) are
competing, the values of the optimum quantum Fisher information and of the optimum
coherent spin squeezing have to be determined numerically.The result is shown in Fig.4.3.
As already mentioned in Sec. 2.4.1, the ground state of the BJJ is always a squeezed state
at any point of the phase diagram with � 6= 0. Hence, for the discussion in Sec. 4.3.1,
FQ and � provide the same information, which translates into the fact that no substantial
di�erence can be seen between the two numerical curves.
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Figure 4.3: N = 10. Optimum quantum Fisher information (blue) and optimum Fisher-
like measureN=� 2 (purple) as a function of r = K=� (� = 1) at T = 0. Top panels: zoom
at shorter r = K=� scales. Blue gridline:K = 0 ; � = 0 limit given by Eq.(4.26). Orange
gridline: shot noise limit FQ = N (� = 0).
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To summarize, the analysis based on the quantum Fisher information allows us to
conclude that, increasing the ratio between the tunneling and the interactions, the ground
state undergoes a cross-over from a highly entangled state at strong interactions (with
FQ ' N 2=2) to a separable state (with FQ = N ) when the coupling is dominating. This
analysis reminds of the studies of Refs. [147, 148], where anentanglement measure is
used to analyze phase transitions in spin systems: by changing the external �elds and the
coupling, the ground state crosses over from an entangled state to a fully factorizable one.

A di�erent use of the quantum Fisher information in the contex t of phase transitions
has been made in Ref. [149]. There, a metric based on the Fisher information is used to
detect the line of phase transition, using the fact that perpendicularly to such a line the
state is changing with a maximal \speed".

The Fisher information in the ground state of the BJJ has also been studied in
Refs.[150{152], to explore the cross-over of the model whenthe sign of the interatomic
interactions is changed from positive to negative.

4.4 Quantum Fisher information and coherent spin squeez-
ing during the quenched dynamics

We now address the question how much the quantum states produced during the quenched
dynamics of the BJJ presented in Sec.2.5.1 are useful for interferometry. For this purpose,
based on the discussion of the previous sections, we evaluate the quantum Fisher informa-
tion and the coherent spin squeezing parameter. The resultspresented in this section are
reported in Ref. [25]. In this section we are going to use the su�x \(0)" for the dynamical
quantities calculated in the absence of noise, in order to distinguish them from the same
quantities calculated in the presence of noise, which will be presented in the next chapter.

Since the atoms are in a pure statej (0) (t)i during all the dynamical evolution, the
covariance matrix  (0) (t) associated with this state is thus given by Eq.(4.31), and ana-
lytical expressions can be obtained for the quantum Fisher information and the coherent
spin squeezing as a function of time.

We consider in particular the case of an initial coherent state with � = 1, i.e. the
phase statej� = �= 2; � = 0 i . Thus, the quenched dynamics takes place along the equator
of the Bloch sphere only, and the average value of the number operator is zero at all times,
as we have seen in Sec.2.5.1. Furthermore, the state is also always symmetric with respect
to the y direction. Hence, use of Eqs. (2.19) leads to

hĴy(t)i (0) = hĴz(t)i (0) = 0 ; (4.33)

whereh::i (0)
t = tr( :::�̂ (0) (t)). Using also Eq.(2.20), the angular-momenta covariance matrix

(4.31) reads

 (0) (� ) =

0

B
B
B
B
B
B
B
@

 (0)
x (� ) 0 0

0 � N
8

�
(N � 1) cosN � 2 (2� ) � (N + 1)

� N (N � 1)
4 cosN � 2 (� ) sin (� )

0 N (N � 1)
4 cosN � 2 (� ) sin (� ) N

4

1

C
C
C
C
C
C
C
A

(4.34)
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where we have introduced the rescaled time� = 2 �t=T = �t and

 (0)
x (� ) � h (� Ĵx )2i (0)

� =
N
8

h
(N � 1) cosN � 2 (2� ) + ( N + 1) � 2N cos2(N � 1) (� )

i
: (4.35)

The two other eigenvalues of the matrix (4.34) are given in terms of its elements (0)
ij by

 (0)
� =

�
 (0)

yy +  (0)
zz

�
�

r �
 (0)

yy �  (0)
zz

� 2
+ 4  (0)2

yz

2
; (4.36)

or, more explicitly,

 (0)
� (� ) =

N
16

�
� (N � 1) cosN � 2 (2� ) + ( N + 3)

� (N � 1)
q

(cosN � 2 (2� ) � 1)2 + 16 cos2(N � 2) (� ) sin2 (� )
�

: (4.37)

We remark that the matrix (4.34) has the property that its eig envalues at times� and
� � � (and, similarly, at 2 � � � ) coincide, hence it su�ces to discuss its behavior at times
t belonging to the interval [0; T=4] (i.e., � 2 [0; �= 2]).

According to Eq.(4.30), the quantum Fisher information is given by the largest eigen-
value,

FQ(� ) = 4 max
�

 (0)
x (� ) ;  (0)

+ (� )
	

: (4.38)

We demonstrate in Appendix B.1 that the coherent spin squeezing (2.6) is always optimum
along a direction contained in the (yOz) plane. The optimal spin squeezing parameter
(4.28) is thus related to the lowest eigenvalue (0)

� (� ) of the submatrix  (0) 0
(� ) obtained

by removing the �rst line and column in the matrix (4.34). Usi ng Eqs.(4.33) and (2.20),
we obtain

� (0) 2
(� ) =

4 (0)
� (� )

N� (0) 2(� )
: (4.39)

The direction of optimum squeezing is given by the eigenvector associated with the eigen-
value  (0)

� ,

n̂(0)
� (� ) = n̂(0)

� (� ) = � sin � (0)
� (� ) ŷ + cos � (0)

� (� ) ẑ: (4.40)

From the diagonalization of the matrix  (0) we �nd

n̂(0)
� =

0

@0;
�  (0)

yzq
 (0)2

yz + (  (0)
yy �  (0)

� )2
;

( (0)
yy �  (0)

� )
q

 (0)2
yz + (  (0)

yy �  (0)
� )2

1

A ; (4.41)

which, via comparison with Eq.(4.40), leads to tan� (0)
� =

�
� n (0)

y

n (0)
z

�
and then to the angle

of optimization of the squeezing parameter

� (0)
� (� ) = arctan

 
 (0)

yz (� )

 (0)
yy (� ) �  (0)

� (� )

!

=
1
2

arctan

 

f Ĵy ; Ĵzgi (0)

�

hĴ 2
y i (0)

� � h Ĵ 2
z i (0)

�

!

(4.42)
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where f� ; �g denotes the anticommutator, and where in the second step we have used the
trigonometric identity tan2 x = 2tan x=(1 � tan2x).

The direction of optimization n̂(0)
F of the quantum Fisher information is either given

by x̂ (if  (0)
x >  (0)

+ ) or by the eigenvector n̂(0)
+ associated with the eigenvalue (0)

+ (if

 (0)
x <  (0)

+ ). The latter condition is satis�ed at times shorter than t � , see Appendix B.2.

As both these eigenvectors are orthogonal to ^n(0)
� (since the matrix  (0) is symmetric),

it follows that coherent spin squeezing and quantum Fisher information are optimized in
perpendicular directions.

Figure 4.4: a) Coherent spin squeezing and b) quantum Fisherinformation during the
quenched dynamics of a BJJ withN = 100 atoms as a function of time (in units of the
revival time T) in the absence of noise. The dashed line in the second panel represents
the parameter F� = N=� 2. Horizontal and vertical gridlines in panel a): minimum of
the coherent spin squeezing and corresponding timetmin (see text). c) Non-optimized
quantum Fisher information along the x-axes (dashed line) and they-axes (dotted line).
For comparison, the optimum quantum Fisher information of panel b) is also shown (gray
solid line). The vertical gridlines correspond from right to left to the time t = t fs of
formation of the �rst macroscopic superposition, see Eq.(2.28); to t = t � , see Appendix B.2;
and to t = T=4� t fs . The horizontal gridline shows the shot-noise levelFQ = N . d) Angles

� (0)
� in Eq.(4.42) (dashed line) and� (0)

F (solid line) giving the optimizing direction for the
spin squeezing and the quantum Fisher information as a function of time.

At short times, when the state of the system is a squeezed state (see panels (a) and (b)
in Fig. 4.4), this can be understood again with the argument discussed in Sec.4.1.4.c; i.e.
that for a squeezed state the quantum Fisher information is maximum in the direction
of maximal angular momentum uctuations, perpendicularly to the direction of lowest
uctuations yielding the best squeezing. In this short-time regime, the two parameters
provide essentially the same information. This fact can be visualized in panel (b) of
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Fig. 4.4, in which at short times the Fisher information (4.38) and squeezing parameter
F� = N=� 2, calculated with the help of Eqs.(4.39), (4.35), (2.20) and(4.37) are shown to
coincide. A rigorous demonstration of this fact can be foundin Ref.[25].

At time � (0)
min = 3 1=6N � 2=3 the squeezing parameter reaches its minimum value, (� (0)

min )2 '
(3=N)2=3=2, as was calculated in Ref.[11].

At larger times, the squeezing parameter grows to values larger than one (that is,
F� decreases and becomes smaller thanN ). This does not imply that the atomic state
is not useful for interferometry since, as described in Sec.4.1.2, the squeezing criterion
is only a su�cient condition for useful entanglement [16]. Indeed, the quantum Fisher
information increases above the shot noise levelFQ = N until it reaches a plateau, at
a time of order of t fs given in Eq. (2.28), corresponding to the appearance of the �rst
macroscopic superposition. The value of the Fisher information on the plateau can be
easily calculated since in the time regime�t � t � T=4 � �t with �t � t fs , the covariance
matrix (4.34) takes the simple following form in the limit N � 1

 (0) (� ) '

0

@
1
8N (N + 1) 0 0

0 1
8N (N + 1) 0

0 1
4N

1

A : (4.43)

Hence the Fisher information has a plateau at the value

F (0)
Q (� ) =

N (N + 1)
2

: (4.44)

We have shown in Appendix B.1 that if N is even, the optimizing direction n̂(0)
F (� ) of the

Fisher information changes as� increases from the (yOz)-plane to the x-axes at the time
� � ' arccos(1=

p
3) de�ned by  (0)

x (� � ) =  (0)
+ (� � ). Note, however, that any direction in the

(xOy)-plane gives a Fisher information almost equal to the optimized valueN (N +1) =2, as
it is clear from the structure of the matrix (4.43), leading t o almost degenerate eigenvalues
 (0)

x and  (0)
+ . This reects the structure of multicomponent superpositions, symmetric in

the (yOx) plane. This result is visualized in panel c) of Fig.4.4, displaying the Fisher
information in the directions x̂ and ŷ.

It is seen in Fig.4.4 that FQ displays a sharp maximum at t = t2 = T=4, in corre-
spondence to the two-component macroscopic superposition(2.26), which has the highest
possible Fisher informationFQ = N 2, as expected in view of the discussion in Sec.4.1.4.a.
As one approaches the two-component superposition, the optimizing direction changes to
the x-axes, which is the direction of maximal angular momentum uctuations for the state
(2.26).

In panel d) of Fig.4.4, the angle� (0)
� giving the direction of highest spin squeezing in the

(yOz) plane is represented as a function of time together with thecorresponding angle
� (0)

F for the Fisher information, which gives the optimizing direction n̂(0)
F of the Fisher

information according to Eq.(2.8). Table 4.4 summarizes the aforementioned results.
To recapitulate, during the quenched dynamics of the BJJ, starting from a (separable)

phase state, due to non-linear interactions entangled states are formed. The characteristic
time for squeezing scales ast / N � 2=3, which leads to typical values of the quantum
Fisher information of FQ � F� / N 5=3, while the �rst macroscopic superpositions appear
at t / N � 1=2, leading to a scalingFQ / N 2. The quantum Fisher information reaches its
maximum value FQ = N 2 at t = t2 = �= 2 (independent onN ), in correspondence of the
formation of the two-component superposition. Hence, in the perspective of exploiting
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Time Optimum quantum Fisher information FQ Optimizing direction
t = 0 N degenerate in (yOz) plane

0 � t . T
N 4 (0)

+ (� ) ' N
�
1 +

�
N 2 � 2

2 + N�
q

1 + N 2 � 2

4

��
� cos� (0)

� (t) ŷ � sin � (0)
� (t) ẑ

T
N � t � tmin 4 (0)

+ (� ) (see above) ' ŷ
tmin < t . t fs 31=3N 5=3 < F Q . 0:4323N 2 ' ŷ
t fs � t � t � FQ ' N (N + 1) =2 ' ŷ
t � < t � T

4 N (N + 1) =2 . FQ � FQ(T=4) = N 2 x̂

Time Optimum coherent spin squeezingF� � N=� 2 Optimizing direction
t = 0 N degenerate in (yOz) plane

0 � t . T
N F� ' FQ � sin � (0)

� (t) ŷ + cos � (0)
� (t) ẑ

T
N � t � tmin N < F � � F� (tmin ) = 2 N 5=33� 2=3 ' ẑ
tmin < t . t fs Ne� 1=2 . F� < 2N 5=33� 2=3 ' ẑ
t fs � t � t � N=3N=2� 1 � F� � N ' ẑ
t � < t � T

4 0 < F � < N= 3N=2� 1 ' ẑ

Table 4.2: Optimum coherent spin squeezing parameter, optimum quantum Fisher infor-
mation and corresponding optimizing directions during the quenched dynamics of a Bose
Josephson junction in the absence of noise forN � 1. The arrows indicate whether the
function is increasing or decreasing with time in a given time interval. In this Table, N
is taken to be even. The calculation of the numerical prefactors and the short-time, large
N expansion ofFQ in the second and third line can be found in Ref.[25].

the quantum state created during the quenched dynamics using it as an input state of
an atomic interferometer, in the absence of any noise sources the highest phase resolution
is reached using the state formed att = t2 = �= 2 - the two-component phase state. In
Chap. 5 we will address the question how this situation is modi�ed by the presence of
noise.
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Chapter 5
Decoherence of useful entangled states

Cold atoms experiments are a�ected by various noise sources,which limit the lifetime of
the condensate and induce spurious e�ects, eventually menacing the feasibility of quantum
information protocols. The main sources of noise in cold atoms experiments are particle
losses [22, 23], phase noise [24, 25], collisions with thermal atoms [26, 27], interaction with
the electromagnetic �eld [28, 29], and random uctuations of the trapping potentials [30].

In this work we will focus on two sources of noise: phase noiseand particle losses, which
seem to be the major noise sources in the experiments of Refs.[8, 9, 13]. We will focus in
particular on their e�ect on the creation of useful states (squeezed states and macroscopic
superpositions) based on the quenched dynamics of the BJJ introduced in Chap.2. We will
address how much the useful quantum correlations of such states, which allow in principle
to outperform the classical limit of precision in the interferometric applications presented
in Chap.4, are degraded by the presence of noise. We will address the e�ect of phase
noise in Sec. 5.1, while particle losses are discussed in Sec. 5.2. The concluding section 5.3
presents an analytical method to treat both noise sources onthe same footing.

Before starting with this program we remark that in this chap ter we will focus on the
e�ect of phase noise and particle losses on thepreparation of the useful input state only.
For studies of the e�ect of noise during the rotations of the interferometric procedure
presented in Chap. 4, or during the measurements, see references [153] and [145].

Les exp�eriences d'atomes froids sont a�ect�ees par plusieurs sources de bruit, qui
limitent le temps de vie du condensat et qui induisent des e�ets non d�esir�es, en
mena�cant la faisabilit�e des protocoles d'information quantique. Les principales sources
de bruit sont la perte de particules [22, 23], le bruit de phase [24, 25], les collisions avec
les atomes thermiques [26, 27], l'interaction avec les champs �electromagn�etiques [28,
29], et les uctuations al�eatoires des potentiels de pi�egage [30].

Dans cette th�ese nous nous focaliserons sur deux sources debruit: le bruit de phase
et la perte de particules, qui semblent être les sources de bruit dominantes dans les
exp�eriences des Refs. [8, 9, 13].

Nous focaliserons en particulier sur leur e�et sur la cr�eat ion d'�etats quantiques
utiles (�etats comprim�es et superpositions macroscopiques) bas�ee sur la dynamique

79
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tremp�ee de la jonction introduite dans le chapitre 2. Nous aborderons comment les
corr�elations utiles de ces �etats, qui permettent de surmonter la limite de pr�ecision
standard dans les applications �a l'interf�erom�etrie pr� esent�ees dans le chapitre 4, sont
d�egrad�ees par la pr�esence de bruit. Nous aborderons l'e�et du bruit de phase dans la
Sec. 5.1, tandis que les pertes de particules seront examin�ees en Sec. 5.2. La section
conclusive pr�esente une m�ethode analytique qui permet detraiter ces deux sources de
bruit en même temps.

Avant de commencer avec ce programme, nous faisons remarquer que dans ce
chapitre nous nous interessons �a l'e�et du bruit de phase etde la perte de particules
sur la pr�eparation de l'�etat quantique utile seulement. Pour des �etudes de l'e�et du
bruit pendant les rotations qui composent la s�equence interf�erom�etrique pr�esent�ee dans
le chapitre 4, ou pendant les mesures, nous renvoyons aux r�ef�erences [153] et [145].

5.1 Phase noise

In this section we consider the e�ects of phase noise on the states formed during the
quenched dynamics of the BJJ. The original work associated with this subject is presented
in our Refs.[24, 25]. First, we model phase noise, and we analyze its e�ect on the visibility.
Then, we show that macroscopic superpositions of phase states in BJJs are relatively
robust with respect to phase noise, their decoherence rate being independent on the total
number of atoms in the condensate. Then, we show that these long-lived states can
be useful in interferometry to improve phase sensitivity even in the presence of phase
noise, by calculating the quantum Fisher information and the coherent spin squeezing as
introduced in the previous chapter. In particular, we compare the best possible phase
sensitivity obtained with the state of the BJJ at the times of formation of macroscopic
superpositions to the one obtained at earlier times when squeezed states are produced.
This allows us to determine which are the most useful quantumstates for interferometric
applications in the presence of phase noise. Throughout this chapter, in the same notation
as in the previous one, we will denote by a su�x \ (0) " the quantities calculated in the
absence of noise.

5.1.1 Model

Phase noise is caused by a randomly uctuating energy di�erence � E(t) between the two
modes, which is modeled by taking the parameter� in the Hamiltonian (1.24) as stochas-
tically time-dependent. In the single-well experiment [8] (internal BJJ), such a noise is
induced by uctuations of the magnetic �eld, which by quadra tic Zeeman e�ect cause a
shift in the hyper�ne energies (see Eq.(1.3)), whereas in the double-well experiment [13]
(external BJJ) it is induced by uctuations of the orientati on of the laser beam producing
the double-well potential with respect to the trapping potential (see �rst line in Eq.(1.17)).
We will be especially interested in the e�ect of phase noise onthe production of useful en-
tangled states (squeezed states and macroscopic superpositions of phase states) during the
quenched dynamics of the BJJ, according to the protocol reported in Sec.(2.5.1). Hence,
we focus on the time-dependent Hamiltonian

Ĥ (t) = � Ĵz
2

� � (t)Ĵz: (5.1)
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Note that by the de�nition (1.25) also a uctuation of the int eraction di�erence U1 � U2

would provide a stochastically varying term � (t) in the Hamiltonian (5.1). We will however
neglect such uctuations, as this seems justi�ed in the experiments [8, 9, 13].

5.1.1.a Derivation of the density matrix in the presence of phase noise

Even in presence of phase noise, the time evolution following the quench can be exactly
integrated, since the noise term� (t)Ĵz commutes with the noiseless Hamiltonian� Ĵz

2
[24].

For a given realization of the stochastic process� (t), the state of the atoms at time t is
given by Eq.(2.29); i.e, the e�ect of a uctuating energy imbalance in a single realization
is a rotation of the state j (0) (t)i formed in the absence of noise, given in Eq.(2.19), by a
phase� (t) = �

Rt
0 d� � (� ) around the z axes.

The system density matrix is then obtained by ^� (t) = j (t)ih (t)j =
R

dP [� ] j (t)ih (t)j,
where the overline denotes the average over the noise realizations. The introduction of
the distribution probability for the random angle � (t),

f (�; t ) =
Z

dP [� (t)] � (� � � (t)) (5.2)

allows to write it as

�̂ (t) =
Z 1

�1
d� f (�; t ) e� i� Ĵz �̂ (0) (t)ei� Ĵz ; (5.3)

where ^� (0) (t) = j (0) (t)ih (0) (t)j is the density matrix in the absence of noise. Let us
compute explicitly the probability distribution f (�; t ) of the angle � (t), de�ned in Eq.(5.2)
as an average over the noise realizations induced by the functional P[� (t)]. By Fourier
expansion we have

f (�; t ) =
Z

dP [� (t)] �
�

�
Z t

0
� (� )d� � �

�
=

1
2�

Z
dP [� (t)]

Z 1

�1
du e� iu� (t )ei�u : (5.4)

We are left with the evaluation of the Fourier transform of th e averagee� iu� (t ) =
R

dP[� (t)] e� iu� (t ) .
This is readily done under the hypothesis of a gaussian noise; since for gaussian variables

with � = 0 one haseiu� = e� u 2

2 � 2
, the average in Eq.(5.4) can be worked out as

e� iu� (t ) = e� iu (� (t )� � (t )) e� iu � (t )

= e� u 2

2 (� (t )� � (t ))2 e� iu � (t ) : (5.5)

Let us introduce the noise correlation function

h(�; � 0) = � (� )� (� 0) � �
2

= � E(� )� E (� 0) � � E
2
; (5.6)

where� = � E +( N � 1)(U2 � U1)=2. Note that h(�; � 0) depends only on the time di�erence
� � � 0by the stationarity of the stochastic process� (t), which also implies� (t) = � (0) � � ;
moreover, h(�; � 0) decreases to zero at su�ciently long times. De�ning also the variance

a2(t) =
Z t

0
d�

Z t

0
d� 0h(� � � 0) (5.7)

allows to rewrite Eq.(5.5) as e� iu� (t ) = e� u 2

2

Rt
0 d�

Rt
0 d� 0h(� � � 0)eiu �t = e� u 2

2 a2 (t )eiu �t . Substi-
tution of this expression in (5.4) leads to

f (�; t ) =
1

2�

Z 1

�1
du ei (� + �t )ue� u 2

2 a2 (t ) ; (5.8)
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which, after performing the gaussian integral, gives �nally

f (�; t ) =
1

p
2�a (t)

e
� ( � + �t ) 2

2a2 ( t ) : (5.9)

Equation (5.9) is a gaussian distribution, in which the noise parametera(t) plays the role
of the variance. From Eqs.(5.3) and (5.9) we can see that the e�ect of phase noise after
averaging over many realizations of the stochastic process� (t) is a spread of the state
with respect to the noisless case, combined with a possible rigid rotation around the ẑ
axes if �� 6= 0. A visualization of such an e�ect is represented in Fig.5.3(where �� = 0) for
a two-component and a four-component phase cat states.

By projecting Eq.(5.3) on the Fock basisfj nig we obtain

hnj�̂ (t)jn0i = e� a2( t )( n � n 0) 2

2 ei �t (n� n0)hnj�̂ (0) (t)jn0i : (5.10)

Equation (5.10) contains all the information about the state formed in the presence of
phase noise. Several peculiar properties of phase noise will be deduced by the structure
of Eq.(5.10) in Secs.5.1.2-5.1.4. Notice that under our hypothesis, a(t) and thus the
decoherence factor (given by the �rst exponential in the right-hand side of Eq.(5.10)) is
independent on the number of atomsN in the BJJ. This is in contrast with the usual
scenario for decoherence which predicts stronger decoherence as the number of particles
in the system is increased. As a consequence of this fact, macroscopic superpositions of
phase states, of the form (2.25),(2.27), are robust againstphase noise, as will be detailed
in Sec.5.1.3 below. A generalization of this model to treat non gaussian noise is discussed
in Ref.[24].

5.1.1.b Variance in di�erent noise regimes

Before analyzing the e�ect of phase noise on the state of the atoms we briey discuss the
properties of the noise variancea(t). First, let us note that Eq.(5.7) can be rewritten as

a2(t) = 2
Z t

0
d�

Z �

0
d� 0h(� � � 0): (5.11)

Let us denote by tc the largest time such that h(� ) ' h(0) = �� (0)2 � �� 2 and by Tc the
characteristic time at which h(� ) vanishes. If the time evolution occurs on a short scale
such that t < t c then the colored nature of the noise plays an important role (non-markov
regime) and from Eq.(5.11) we obtain

a2(t) ' 2
Z t

0
d�

Z �

0
d� 0h(0) = h(0)t2 = �� 2t2: (5.12)

If instead the time evolution occurs on a time scale much larger than the noise correlation
time Tc we obtain the same result as for white noise,

a2(t) ' 2t
Z 1

0
h(y)dy; (5.13)

which corresponds to the Markov approximation.
The e�ect of phase noise can be partially suppressed by using aso-called spin-echo

protocol [154]. This strategy was followed in a recent experiment [8]. The analysis dis-
cussed in Sec. 5.1.1.a can be adapted to take into account theresidual e�ect of phase noise
when spin echo pulses are applied, see Appendix D.1.
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5.1.2 E�ect of phase noise on the visibility

Under the e�ect of the noise, the visibility (1.45) acquires an additional decaying factor
due to the above-mentioned phase spreading. Indeed, one easily obtains from (5.10)

� (t) =
2
N

tr[ �̂ (t)Ĵx ] = e� a2 ( t )
2 cos

�
�t

�
� (0) (t): (5.14)

The dephasing factor e� a2 (t )=2 displays a Gaussian decay at short timest � tc, corre-
sponding to the universal regime of Ref. [93], and an exponential decay at long times
t � Tc (Markov regime). A Gaussian decay of the visibility (5.14) has been observed
experimentally in the internal BJJ even at small values of the interactions � [62]. This
indicates that in the time regime 0 � t . t fs in which the experiment was performed the
phase noise has strong time correlations (colored noise), corresponding to a non-markovian
regime. An estimate of the noise is extracted from the �t of the visibility decay data in
Fig.4.15 of Ref. [62] to our prediction given by Eq.(5.14). The resulting value for the
noise correlations ish(0)1=2 ' 8Hz, obtained for a small value of the interactions� , thus
in a regime in which the decay is mainly due to the phase noise.The e�ect of phase
noise on the visibility decay in this regime is shown in Fig.5.1, for experimentally relevant
parameters [62].
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Figure 5.1: Visibility � (t) as a function of time (in units of seconds) for� = � � 0:05Hz,
� �0:13Hz, � �0:25Hz (from top to bottom), N = 400. Solid lines: decay of� (t) in Eq.(5.14)
in the limit �t � 1 and �t � 1 with a2(t) = h(0)t2 and h(0)1=2 = 8Hz. Dashed lines:
decay of � (0) (t) under the unitary evolution only. For small values of the interactions the
decay is mainly due to the phase noise.

5.1.3 E�ect of phase noise on multicomponent macroscopic su perposi-
tions of phase states

We proceed now to study the nature of the state of the atoms under phase noise at the
speci�c times tq which in the noiseless BJJ correspond to the formation of multicomponent
superpositions of phase states. We �rst illustrate the e�ect of the noise on the structure of
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the density matrix, then we visualize our results by means ofthe probability distributions
of the eigenvalues of the angular momentum operators presented in Sec.3.2.1.

5.1.3.a Structure of the density matrix in the Fock basis

In the absence of noise the quenched dynamics of the Bose Josephson junction leads to
the formation of coherent superpositions withq components as given by Eqs.(2.25),(2.27).
The corresponding density matrix �̂ (0) (tq) = j (0) (tq)ih (0) (tq)j has the form ^� (0) (tq) =
P

k;k 0 �̂ (0)
kk 0(tq), where the indicesk and k0 label the various components of the superposition

and �̂ (0)
kk 0(tq) = q� 1ck;qc�

k0;qj�= 2; � k;q ih�= 2; � k0;qj. For general decoherence processes one

expects that, by increasing the intensity of the noise, ^� (0) (tq) will evolve into the statistical

mixture of phase states
P

k �̂ (0)
kk (tq); moreover, the larger the atom numberN the weaker

should be the noise strength at which this occurs [155]. It was found in [24] that for
the phase noise considered in Sec.5.1.1.a the actual scenario for decoherence is di�erent
from the usual one. Indeed, the typical noise intensity at which the coherences between
distinct phase statesj�= 2; � k;q i are lost turns out to be independent on the atom number.
This is a consequence of the fact that the decoherence factora(t) is independent onN , as
shown in Sec.5.1.1.a. Furthermore, for superpositions with a large number of components
q, this intensity is larger than the noise intensity at which phase relaxation occurs. In
what follows we discuss the origin of this fact.

Since the noise is expected to destroy correlations betweendi�erent components of
the macroscopic superposition, we decompose the density matrix in its diagonal (intra-
component) and o�-diagonal (intercomponent) parts, focussing on the latter one to quan-
tify the decoherence. We have then ^� (0) = �̂ (0)

d + �̂ (0)
od where

�̂ (0)
d (tq) =

q� 1X

k=0

�̂ (0)
kk (tq) (5.15)

and

�̂ (0)
od (tq) =

q� 1X

k;k 0=0; k6= k0

�̂ (0)
kk 0(tq): (5.16)

Let us consider for simplicity the caseq,N even; the general case can be found in Ref.[25].
Using Eqs.(2.25) and (1.28) and the identity

P q� 1
k=0 e2ik (n0� n)�=q = q if n = n0 modulo q

and 0 otherwise, the matrix elements of ^� (0)
d (tq) in the Fock basis are

hnj�̂ (0)
d (tq)jn0i =

8
><

>:

1
2N

�
N

N
2 + n

� 1
2
�

N
N
2 + n0

� 1
2

if n0 = n + pq

0 if n0 6= n mod q

(5.17)

wherep is an integer. By using ^� (0)
od (tq) = e� i� Ĵ 2

z =qj� = �= 2; � = 0 ih� = �= 2; � = 0 jei� Ĵ 2
z =q�

�̂ (0)
d (tq), we also get

hnj�̂ (0)
od (tq)jn0i =

8
><

>:

0 if n0 = n + pq

ei �
q (n02 � n2)

2N

�
N

N
2 + n

� 1
2
�

N
N
2 + n0

� 1
2

if n0 6= n mod q
(5.18)
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The use of Eq.(5.10) allows to obtain the corresponding expressions in the presence of
noise,

hnj�̂ d,od(tq)jn0i = e�
a2

q( n � n 0) 2

2 hnj�̂ (0)
d,od(tq)jn0i (5.19)

up to a phase factor irrelevant for decoherence, withaq � a(tq). In the strong noise limit
aq � 1, the o�-diagonal part �̂ od of the atom density matrix vanishes whereas the diagonal
part �̂ d tends to a matrix which is diagonal in the Fock basis,

�̂ d(tq) ! �̂ 1 =
N=2X

n= � N=2

1
2N

�
N

N
2 + n

�
jnihnj (5.20)

=
Z 2�

0

d�
2�

j� = �= 2; � ih� = �= 2; � j :

This means that for large noise intensity (or for long times) the phase � is uniformly
spread on [0; 2� ], as is the case for Fock states (Fig.5.3, right panels).

From Eqs.(5.17) and (5.18) we obtain a peculiar result, i.e. that the diagonal part
of the atom density matrix decays faster than the o�-diagonal part for increasing noise
strengths [24]. This is readily explained by examining the structure of the noiseless density
matrices in Eqs.(5.17) and (5.18). The �rst o�-diagonal elements of ^� d(tq) in the Fock
basis are those for whichn0 = n � q while the �rst o�-diagonal elements of �̂ od(tq) satisfy
n0 = n � 1. Hence, it results from Eq.(5.19) that the o�-diagonal elements of ^� d vanish
at the noise scalea ' 1=q while the o�-diagonal elements of ^� od vanish at the larger
noise scalea ' 1. In other words, the noise is more e�ective in letting �̂ d converge to
�̂ 1 than in suppressing ^� od, and this e�ect is more pronounced the higher is the number
of components in the superposition. An illustration of such anomalous decoherence is
given in Fig.5.2. The middle panels show that for intermediate noise strengths, ^� d has
already acquired its asymptotic diagonal form (5.20), while �̂ od has not yet vanished. As
we will see in Sec.5.1.4 below, these results imply that, formoderate strengths of phase
noise, macroscopic superpositions are formed and provide quantum correlations useful for
interferometry.

5.1.3.b Husimi distribution

The phase relaxation of macroscopic superpositions of phase states can be visualized by
means of the projected Husimi distribution Q(� = �= 2; � ) introduced in Sec.3.1.1.c. For
a two-component phase cat state it is particularly simple to calculate this function, as it
is exactly given by the diagonal part of the density matrix �̂ d(t2) only. The calculation is
reported in Appendix D.2, and gives as a result for�� = 0, N � 1, and N � 1=4 � a2 �
N � 1=2

Q(
�
2

; � ) =

p
2�

2a2
Qcost� 3

�
� �; e � 2a2

2

�
; (5.21)

with � 3 the Theta function [156] and Qcost = 1p
�

� ( 1
2 + N )

�(1+ N ) the distribution of the state
(5.20) (see Appendix D.2). Q(�= 2; � ) is plotted for various values of a2 in Fig.5.3. In the
absence of noise it shows peaks at� = 0 and � , which correspond to the two coherent
states of the superposition. The peaks are smeared at increasing a2, and �nally at a2 � 1
the Husimi distribution reaches the at pro�le Q(�= 2; � ) = Qcost.
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Figure 5.2: Matrix elements of the diagonal (intracomponent) part �̂ d(t3) (panels a),c),e))
and the o�-diagonal (inter-component) part �̂ od(t3) (panels b),d),f)) of the density matrix
in the Fock basis at time t = t3 as the noise is increased froma3 = 0 (a),b)) to a3 = 0 :9
(c),d)) and a3 = 2 :9 (e),f)).
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Figure 5.3: Phase relaxation of theq = 4 and q = 2 macroscopic superpositions in the
presence of noise sketched along the equator� = �= 2 of the Bloch sphere. Top panels:
q = 4 ( t4 = T=8) and a4 = 0, 0:64, 2:05 (from left to right). Middle panels: q = 2
(t2 = T=4) for the same noise intensities

R1
0 d�h (� ) in the Markov regime (a2 = 0,

0:9, 2:9). The circle sizes illustrate qualitatively the phase distribution f (�; t 2;4). For
intermediate noise (middle column), the superposition is closer to the steady state (last
column) for q = 4 than for q = 2. Bottom panels: Husimi distribution Q(� = �= 2; � ) for
q = 2 for the same values ofa2. Here � = 0 and N = 10.
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5.1.3.c Angular momentum distributions

The anomalous decoherence of the atomic state can be visualized by plotting the prob-
ability distribution P� (r ) of the eigenvalues of the angular momentum operatorsĴr =
Ĵx sin � � Ĵy cos� in an arbitrary direction of the equatorial plane of the Bloch sphere. In-
deed, as presented in Sec.3.2.1, the presence of correlations among the components of the
superposition formed at time tq is revealed by interference fringes in these distributions,
which would be absent if the atoms would be in a statistical mixture of phase states.

The probability distribution of Ĵr in the state �̂ can be calculated by a straightforward
generalization of the calculation in Sec. 3.2.1 as the Fourier coe�cient of the characteristic
function h� (�; t ) = tr[ e� i� Ĵ r �̂ (t)], namely,

P� (r ; t) =
1

2�

Z �

� �
d� h � (� ; t)ei�r : (5.22)

For the quenched dynamics of the Bose Josephson junction in the presence of noise, the
characteristic function reads

h� (� ; t) =
N=2X

n;n 0= � N=2

gnn 0(t)hnj�̂ (0) (t)jn0i � Dn0n (� �; �; � ) (5.23)

where gnn 0(t) = e� a2 (t )( n� n0)2=2ei �t (n� n0) and Dn0n (� �; �; � ) is the matrix element of the
rotation operator e� i�J � in the Fock basis, which is given by (see e.g. [71], Eq. (D6))

Dn0n (� �; �; � ) = hn0je� i�J � jni =
min f N=2� n0;N=2+ ngX

k=max f 0;n � n0g

(� 1)k
�

N
N
2 + n

� � 1
2
�

N
N
2 + n0

� � 1
2

�
N !

( N
2 � n0� k)!( N

2 + n � k)!k!(k + n0� n)!
�

�
sin

�
2

� 2k+ n0� n �
cos

�
2

� N + n� n0� 2k
e� i� (n0� n) :

The probability distribution in the absence of noise derived in Sec. 3.2.1 is recovered by

setting gnn 0(t) = 1 in Eq.(5.23).
As an example, the distribution P�= 2(r; t 3) = jhnx = r j (0) (t3)ij 2 of the eigenvalues

of Ĵx (satisfying Ĵx jnx = r i = r jnx = r i ) is shown in Fig.5.4 for the three-component
superposition of phase states, for�� = 0. As we have presented in Sec.3.2.1, in the absence
of noise (panel a)) its pro�le displays two peaks corresponding to the projections on the
x-axes of the phase statesj� = �= 2; � = � k;3i , � k;3 = � , � �= 3 (the \phase content" of
the state, accounted for by ^� d(t3)) and interference fringes, due to the coherences between
these phase states (contained in ^� od(t3)). In the presence of noise (b)-c)), the phase
pro�le of each component of the superposition spreads and the characteristic peaks of
the distribution are smeared out (phase relaxation). At strong noise intensities, ^� d(tq)
approaches the steady-state given by the density matrix (5.20), which is symmetric in the
(xOy)-plane. As a consequence, the corresponding probability distribution P� (r; 1 ) �
P(r; 1 ) = tr[ �̂ 1 jnx = r ihnx = r j] is independent on� . In the semi-classical limit N �
1, this distribution can be easily calculated sinceĴx takes the valuesN cos�= 2 in the
phase statesj�= 2; � i apart from small relative uctuations of the order of 1 =

p
N (see

Eq.(1.30)). Hence, recalling that ^� 1 is a statistical mixture of the states j�= 2; � i with
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Figure 5.4: Probability distribution P�= 2(r; t 3) of the eigenvalues ofĴx for the three-
component coherent superposition (solid lines) at increasing noise strength from a3 = 0
(a), to a3 = 0 :9 (b) and a3 = 2 :9 (c) with N = 20 atoms. The blue dashed curves indicate
the large-noise intensity and largeN limit given by Eq.(5.24).
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equal probabilities (see Eq.(5.20)),

P(r; 1 ) = c
Z 2�

0
d� �

�
N
2

cos� � r
�

=
1
�

1
q � N

2

� 2
� r 2

(5.24)

where c is a normalization factor. The semi-circle law (5.24) is indicated by the blue
dashed curve in panel c) of Fig.5.4. For �nite N , one �nds

P(r; 1 ) =
�

N
N
2 + r

�
1
�

�
� N

2 + 1
2 � r

�
�

� N
2 + 1

2 + r
�

� [ N + 1]
:

On the other hand, the vanishing of ^� od(tq) tends to diminish the contrast of the
fringes in the distribution P� (r; t q), until they are completely washed out in the asymptotic
distribution (panel c) of Fig.5.4). The fact that phase relaxation occurs at a lower noise
strength than decoherence is evident in the panel b), where the pro�le of P� (r; t q) is close
to the asymptotic distribution P(r; 1 ) corresponding to ^� 1 , while interference fringes due
to �̂ od(tq) are still visible.

The surprising fact that decoherence is not enhanced by increasing the atom number
N is speci�c to the noise considered. Indeed, such a noise is applied perpendicularly to
the equator of the Bloch sphere where the phase states of the superpositions lay. As a
result, the noise is insensitive to the separation between these states, which scales with
N . However, such superpositions are very fragile under a noise applied parallel to the
equatorial plane, which resolves the separation between the components. This yields an
indication as to which classical noise to reduce to preservethe coherence in superpositions
of the phase states: this is the noise in directions parallelto this plane. For example,
stochastic uctuations on the tunnel amplitude K give rise to rapid decoherence of the
macroscopic superposition (j� = 1 i + ei j� = � 1i )=

p
2 at a rate increasing with the atom

number, without inducing relaxation. By rotation of the sam e argument, the same fate is
followed by a NOON state under the action of phase noise, as wewill show in Appendix
D.4.

5.1.4 Quantum Fisher information and coherent spin squeezi ng during
the quenched dynamics of the BJJ

We present in this section the calculation of the useful quantum correlations which are
formed during the quenched dynamics of the Bose Josephson junction, when phase noise
is a�ecting the system. Hence, in analogy with what the calculation presented in Sec.4.4
for the noiseless case, we evaluate the quantum Fisher information and the coherent spin
squeezing parameter as a function of time. We take for simplicity �� = 0.

5.1.4.a Coherent spin squeezing in the presence of phase noise

For coherent spin squeezing the calculation can be carried out analytically. We start with
the observation that even in the presence of noisehĴy i t = hĴz i t = 0 and more generally
the angular-momentum covariance matrix G de�ned in Eq.(4.31) has the same structure
as the matrix (4.34) in the noiseless case. Therefore, the arguments used in Appendix B.1
can be taken over to the noisy case. We thus conclude that the squeezing parameter� 2 is
minimum in the ( yOz)-plane, and is given by Eq.(4.39), evaluated for the corresponding
quantities in the presence of noise. In particular, the barevisibility � (0) , Eq.(2.20), should
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be replaced by the visibility � in the presence of noise which is given in Eq.(5.14) with
�� = 0, and  (0)

� by the lowest eigenvalueG� of the restriction of the covariance matrix G
to the (yOz)-plane.

We are now going to computeG� and the spin squeezing parameter explicitly. In
order to do so, we need to perform the averages in the presenceof noise using the full
density matrix �̂ (t): h: : :i t = tr( : : : �̂ (t)). These are related to those in the absence of noise
according to

hĴ i i t =
Z 1

�1
d� f (�; t )hei� Ĵz Ĵ i e� i� Ĵz i (0)

t (5.25)

where the expectation value inside the integral is taken forthe pure state j (0) (t)i in the
absence of noise. The rotated angular momentum operators inthe above expectation value
are equal to cos� Ĵx � sin � Ĵy , sin � Ĵx + cos � Ĵy , and Ĵz for i = x; y, and z, respectively.
A similar derivation holds for hfĴ i ; Ĵ j gi t = tr[ �̂ (t)f Ĵ i ; Ĵ j g]. We are left with integrals of
trigonometric functions with the gaussian envelope given by Eq.(5.9), yielding the result

hĴ 2
z i t = hĴ 2

z i (0)
t =

N
4

hĴ 2
y i t =

1 � e� 2a2 (t )

2
hĴ 2

x i (0)
t +

1 + e� 2a2 (t )

2
hĴ 2

y i t

hfĴy ; Ĵzgi t = e� a2 (t )=2hfĴy ; Ĵzgi (0)
t

hfĴx ; Ĵygi t = hfĴx ; Ĵzgi t = 0 : (5.26)

Finally, the submatrix matrix G0(t) reads

G0(� ) =

0

@
N
8

�
� e� 2a2 (� ) (N � 1) cosN � 2 (2� ) + ( N + 1)

� 1
4e� a2( � )

2 N (N � 1) cosN � 2 (� ) sin (� )
1
4e� a2 ( � )

2 N (N � 1) cosN � 2 (� ) sin (� ) N
4

1

A :

(5.27)
Thus, by Eqs.(4.39), (5.14) and (5.27), one has

� 2(� ) =
1

4� (0) 2(� )

h
� e� a2 (� ) (N � 1) cosN � 2 (2� ) + ea2 (� ) (N + 3) (5.28)

� (N � 1)ea2 (� )
q

(1 � e� 2a2 (� ) cosN � 2 (2� ))2 + 16e� a2 (� ) cos2(N � 2) (� ) sin2 (� )
�

:

The angle which identi�es the optimal squeezing direction is given by Eq.(4.42), in which
the matrix  (0) 0

should be replaced byG0.
We proceed by illustrating our results for the squeezing parameter in the presence of

phase noise. For the calculations we have chosen a noise range of direct experimental
relevance, as extracted from the �t of the visibility decay data mentioned in Sec.5.1.2
(see also caption of Fig.5.1 and forthcoming Sec. 6.2.2). For the noise variancea2(� ) we
have taken the short-time behavior a2(� ) = ( ��=� )2� 2 expressed by Eq.(5.12) since the
experimental visibility exhibits a gaussian decay even forsmall interactions � [62] (see
Sec.5.1.2). The squeezing parameter as a function of time isshown in Fig.5.5-a). As
seen in the �gure, the presence of noise degrades the squeezing, as its minimum value
increases at increasing noise strength. We also notice thatthe time for optimal squeezing
tmin is slightly shorter than in the noiseless case. Analytical estimates of the minimum
value reached by the squeezing parameter and of the corresponding time can be found in
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Figure 5.5: Coherent spin squeezing and quantum Fisher information in the presence
of noise as a function of time in units of T during the quenched dynamics of a BJJ.
The parameters used areN = 100, � = � Hz. a) Spin squeezing� 2 for (from top to
bottom) �� = 15; 10; 5, and 0 Hz. Horizontal and vertical gridlines: minimum of � 2

and corresponding timetmin . b) Fisher information FQ for (from top to bottom) �� =
0; 0:4; 1; 2; 5; 10, and 15 Hz; the horizontal and vertical gridlines correspond to FQ = N (N +
1)=2 and t = t fs = T=

p
N . c) Zoom on the quantum Fisher information (solid lines) and

F� = N=� 2 (dashed lines) for �� = 0 ; 2; 5; 10, and 15 Hz (from top to bottom). d) Angles
� F and � � giving the optimizing direction of FQ (solid lines) and � 2 (dashed lines) as a
function t=T, for the same noise levels.
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Ref.[25]. The angle� � (t) which identi�es the optimizing squeezing direction is represented
in dashed lines for various noise levels in Fig.5.5-d).

In the experiments of Refs.[8, 9], a�ected by phase noise, thesqueezing degree has
been measured at a �xed time, as a function of the angle� . This motivates the theoretical
calculation of the curve � 2(� ), which is reported in appendix D.3.

5.1.4.b Quantum Fisher information in the presence of phase noise

The evaluation of the optimum quantum Fisher information (4 .29) requires a numerical
diagonalization of the density matrix �̂ (t) given by Eq.(5.10). For the time dependence of
a2(t) we take again the short-time approximation given in Eq.(5.12), even if there is no
experimental evidence that justi�es such a choice at timest � T . This choice corresponds
to the worst possible scenario for decoherence, as in the markovian regime the dependence
of a2(t) is weaker (see Eq.(5.13)) [24]. The behavior ofFQ as a function of time in the
presence of noise results from the competition of two phenomena: (i) in the absence of
noise, at short times the quantum Fisher information grows from its initial value FQ = N
to the plateau value FQ = N (N + 1) =2 in a time interval t fs � T=

p
N which shrinks as

N becomes larger, and (ii) the decoherence exponenta2(t) is independent onN and also
grows with time. As a result, FQ reaches a local maximum at a timetmax � tsf , with a
value which increases withN and decreases with the noise uctuation�� 2.

The quantum Fisher information as a function of time for various noise levels is shown
in Fig. 5.5. The short-time evolution is similar to the one found for the noiseless case, the
accumulation of noise correlations being not yet e�ective. In particular, one observes that
FQ coincides with the squeezing parameterF� = N=� 2 at su�ciently small times (panel
c). For not too large noise intensities,FQ displays a plateau at those times which in the
noiseless BJJ correspond to the formation of macroscopic superpositions. The value on
the plateau is smaller than in the absence of noise but it is still much above the shot noise
level FQ = N . This indicates the presence of useful correlations which remain in spite of
the decoherence e�ects induced by the noise. This e�ect is due to the robustness of the
multicomponent superpositions with respect to phase noisediscussed in Sec.5.1.3 above.
For higher noise levels, the width of the plateau is reduced and the peak at t2 � T=4
corresponding to the two-component superposition in the absence of noise disappears
completely, meaning that decoherence has washed out the useful quantum correlations at
t2 (three bottom curves in the Fig.5.5-b)). In the limit of very large noise intensities the
Fisher information at times tq of formation of q-component superpositions in the noiseless
BJJ is degenerate in the (xOy) plane and tends to the asymptotic value

FQ [�̂ 1 ] =
N (N � 1)

2N + 2
; (5.29)

which can be readily obtained from Eqs.(4.30) and (5.20). Asillustrated in Fig.5.6, apart
from short times and around the peak at t2, the optimization direction is in the ( xOy)-
plane and FQ is almost degenerate in all directions of this plane, as in the noiseless case.

As a partial summary, the analysis of the time evolution of the quantum Fisher infor-
mation indicates the build-up of useful quantum correlations at times beyond the spin-
squeezing regime. In the following we quantify this e�ect by studying the dependence of
FQ with the noise strength and the particle number.
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Figure 5.6: Direction-dependent quantum Fisher information in the presence of noise as
a function of time in units of T during the quenched dynamics of a BJJ with N = 100
atoms and � = � Hz for: a) �� = 2Hz, b) 5Hz, c) 10Hz and d) 15Hz, calculated along
the x̂ direction (dashed lines), theŷ direction (dotted lines) and the optimizing direction
(light-gray solid line). After a time t � T=

p
N (left vertical gridlines) the three values are

almost the same, showing that the Fisher information is almost degenerate in the (xOy)
plane, except aroundt = T=4 if FQ has a peak at this value (panel a)). The vertical and
horizontal gridlines represent the times t = t fs and t = T=4 � t fs and the value of the
Fisher information in the limit of large noise intensities given by Eq.(5.29).
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Figure 5.7: Values of the Fisher information at its local maximum at time tmax (solid line,
circle markers), at time t2 (dot-dashed line, star markers) and at the timetmin of maximal
squeezing (long-dashed line, blue cross markers) in a logarithmic scale, as a function of the
energy uctuation �� (in Hz). For comparison we also plot the squeezing parameterF� =
N=� 2 at the time tmin (dashed line, green cross markers) in a logarithmic scale. Gridlines,
from top to bottom: Heisenberg limit N 2 (solid), approximate value (2=32=3)N 5=3 of
F� (tmin ) in the absence of noise, see Sec.4.4 (dashed), shot noise limit (solid), and limit of
FQ for large noise intensities (solid) given by Eq.(5.29). Theparameters used areN = 400
and � = � Hz.

5.1.4.c Quantum correlations vs particle number and phase noise

Figure 5.7 showsFQ(t) on a logarithmic scale, evaluated at the time t = t2 � T=4 of
formation of the two-component superposition in the noiseless BJJ, as well as the max-
imum (FQ )max of FQ(t) in the time interval 0 < t < T= 8. This maximum corresponds
roughly to the value at the plateau in Fig.5.5, that is, to the value of FQ(t) at the times
of formation of the �rst multicomponent superpositions. It can be seen that in the range
of noise considered (FQ)max stays above the shot noise level, and is also larger than the
value FQ(tmin ) at the time tmin of highest squeezing. The two-component superposition,
formed much after the superpositions with a large number of components, appears to be
too much degraded by noise to lead to any advantage in interferometry with respect to sep-
arable states. Hence, in this regime multicomponent macroscopic superpositions provide
a convenient alternative to both the squeezed states and thetwo-component macroscopic
superposition.

We next study the scaling of the quantum Fisher information with the particle number,
taken at the time tmax as before. As it is illustrated in Fig.5.8, at this time FQ displays a
power-law behavior FQ � N � with an exponent � depending on the noise strength. This
exponent is extracted from a log-linear �t of the numerical data, varying N between 50
and 400 1, the latter value being realistic in the experiments [8]. Wenotice that in the
noise range considered� is larger or equal to 5=3, which is the exponent corresponding to
the squeezed state att = tmin in the absence of noise (see Sec.4.4). For the chosen interval
of noise strengths, the analysis of the scalingFQ = cN � is meaningful as the multiplying
constant c, which also depends on the noise, is large enough to ensure that FQ(tmax ) �

1We cannot exclude here that slightly di�erent values of � would appear for larger N 's.
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Figure 5.8: a) Quantum Fisher information evaluated at the time of its local maximum
tmax (blue solid line) and at the time t2 (blue dashed line) as a function of the number
of particles N for �� = 15 Hz, as compared to the shot noise limit (black solid line).
Panels b),c),d),e): same as in a) in a semi-logarithmic scale, for various noise strengths
�� = 2 ; 5; 10, and 15 Hz (from left to right and top to bottom). f) Exponen t � , extracted
by a log-linear �t of the data in a), as a function of the energy uctuations �� (in Hz) for
t = tmax (solid line, circle markers) and for t = t2 (dot-dashed line, star markers). We
used� = � Hz.



x5.2 Particle losses 97

N , as shown in the �rst panel in Fig.5.8. This con�rms the potential improvement in
interferometry given by the state at time tmax with respect to the use of squeezed states
in the presence of phase noise. For comparison, we also show the scaling ofFQ at the time
t2. At that time, � decays faster with the noise strength, reaching rapidly theshot noise
limit � = 1. This is due to the fact that the noise exponent a2(t) increases with time.

To recapitulate, multicomponent superpositions of phase states appear to be \twice"
robust against phase noise: 1) because of the independence of the decoherence rate on the
particle number, a feature shared with the two-component superposition; 2) because they
are formed at short times / 1=

p
N , when the noise correlations did not become e�ective

yet for decoherence (for experimentally relevant values ofnoise�� ); this is not the case for
the two-component superposition, formed att2 = �= (2� ). As a consequence, the analysis
based on the quantum Fisher information has indicated thesestates as the most suitable
for interferometric applications when phase noise is a�ecting the preparation of the input
state based on the quenched dynamics of the BJJ.

To conclude this section, we mention that a work similar in spirit has been presented in
Ref.[19], in which a new class of entangled states has been shown to be more robust than
the two-component macroscopic superposition against decoherence, induced by a single
particle (qubit) process. Analogously to our multicomponent superposition states, these
states are still highly entangled and lead to advantage overthe use of classical resources
for quantum technology applications.

5.2 Particle losses

Several loss processes can induce the simultaneous expulsion of one, two or even three
particles out of the condensate. One-body loss processes are generally due to scattering
with impurities; spin-relaxation is instead a two-body process, in which two atoms collide
and can change their spin state, with a high kinetic energy gain which ejects them out of
the trap [157]; �nally, when three atoms collide two of them form a molecule, and again
the third acquires a large kinetic energy which overcomes the trap height [158, 159].

Generally, atom losses in optical lattices are theoretically treated by means of the
master equation in the Lindblad form [160]

@t �̂ = �
i
~

h
H (0) ; �̂

i
+  (m)

X

k

�h
(âk )m ; �̂ (ây

k )m
i

+
h
(âk )m �̂; (ây

k )m
i�

; (5.30)

where m = 1 ; 2; 3 is the order of the loss process, (^ak )m is the annihilation operator
destroying m atoms at site k and  (m) is the loss rate. This loss rate has been measured
in 87Rb for m = 1 and m = 3 [161], while two-body collisions have been studied in
Ref. [157]. Equation (5.30) generally implies the rotating-wave approximation and it only
describes the dynamics in the Markov regime. A microscopic derivation of the master
equation (5.30) can be found form = 3 in Ref. [159] and for m = 1 in Ref. [162].

We will focus here on the e�ect of one-body atom losses, and we will particularly
study their e�ect on the quenched dynamics of the bosonic Josephson junction and on the
formation of Schroedinger cat states. In this particular example of quantum dynamics it
is possible to solve the master equation exactly with analytical techniques. This analytical
solution has been provided for one-body losses in Ref.[162]in the case of symmetric wells
and interaction energies (� = 0). In what follows we generalize this treatment to the
asymmetric case� 6= 0, where � can be a time-varying parameter, which will allow us in
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Sec.5.3 to treat particle losses and phase noise at the same time. An analytical solution
of the master equation for the quenched dynamics in the presence of two-body and three-
body losses is also available [163]. Further results on two-body losses will be given in
appendix E.4.

5.2.1 Master equation for one-body particle losses

For the case of one-body losses (m = 1), we present here and in the following section the
analytical solution for the density matrix. We rename  (1) �  ; the density matrix in the
presence of one-body losses is referred to as ^� . The master equation of the BJJ is given
by the two-site case of Eq.(5.30),

@t �̂ = �
i
~

h
H (0) ; �̂

i
+ 

2X

k=1

�h
âk ; �̂ ây

k

i
+

h
âk �̂; ây

k

i�
: (5.31)

For the external BJJ, the unitary Hamiltonian H (0) appearing in Eq.(5.31) is given by
Eq.(1.16), with K = 0

H (0) =
2X

k=1

Ek ây
k âk +

2X

k=1

Uk

2
ây

k ây
k âk âk ; (5.32)

where (E1 � E2)( t) can be time dependent. As initial state of the dynamics we take as

usual the phase statej� = �= 2; � = 0 i = 1
2N= 2

P N
k=0

� N
k

� 1=2
jk; N � ki , belonging to the

(N + 1)-dimensional Hilbert space of N bosons, as explained in Sec.1.4.2, whereN is the
initial total number of particles (not necessarily even).

During the dynamics of the BJJ, as soon as particle losses become e�ective, other
sub-spaces of the total Fock spaceH =

Q N

 m=0 H (m) become populated (wherem labels

the (m + 1)-dimensional Hilbert space associated withm particles), possibly involving
also the vacuum statej0i in which no atoms are left. The dimension of the total Hilbert
space to which the BJJ has access in the presence of one-body losses is hence dim(H) =P N

m=0 (m + 1) = 1
2(N + 1)( N + 2). For this larger space we can still use the Fock basis

jn1; n2i , but here n1 + n2 does not necessarily sum toN , rather it can take any integer
value between 0 andN . In what follows we will denote the general density matrix element
in this basis as� k+ r;l

k;l + p � h n1 = k; n2 = l + pj�̂ (t)jn1 = k + r; n 2 = l i .
Projection of the master equation (5.31) on the Fock basis yields

@t �
k+ r;l
k;l + p =

�
� i

�
(E2p � E1r ) +
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2
p(p � 1) �

U1

2
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�
�  (r + p)

�
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k;l + p

+
n

(� iU2lp � 2l )� k+ r;l
k;l + p + 2 

p
(l + 1)( l + p + 1) � k+ r;l +1

k;l + p+1

o

+
n

(+ iU1kr � 2k )� k+ r;l
k;l + p + 2 

p
(k + r + 1)( k + 1) � k+ r +1 ;l

k+1 ;l+ p

o
; (5.33)

while the expansion of the initial state on the Fock basis leads to the initial condition

� k+ r;l
k;l + p(0) =

1
2N

�
N
k

� 1
2
�

N
k + r

� 1
2

� r;p � k+ r;N � l : (5.34)

The e�ect of the cross-interaction term U12ây
1â1ây

2â2 appearing in the Hamiltonian of the
internal BJJ Eq.(1.19) adds to the master equation (5.33) the term � iU12(kr � lr )� k+ r;l

k;l + p.
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Hence, we see in Eq.(5.33) that this term can be treated by a renormalization of the
interaction constants Ui ! Ui � U12=2 with i = 1 ; 2.

Note that the presence of the term� r;p in Eq.(5.34) expresses the absence of correla-
tions between sub-spaces at di�erent particle numbers in theinitial state. Since no such
correlation will be built during the dynamics described by Eq.(5.31), the state will never
be a coherent superposition of states at di�erent particle number. This implies that the
only non-zero elements of the density matrix satisfyn1 + n2 = n0

1 + n0
2 � m, which la-

bels them-particles sub-space. This allows for the decomposition inblocks of the density
matrix, as

�̂ =
NX

m=0

�̂ m =
NX

m=0

wm �� m ; (5.35)

where we de�ned the normalized density matrix in the m-supspace �� m = �̂ m =tr[ �̂ m ]. The
resulting block structure of the density matrix is represented in the �rst panel of Fig.5.9
(see also Sec.5.2.2).

5.2.2 Exact solution of the one body-losses master equation by the char-
acteristic method

In this paragraph we generalize the solution of the master equation (5.34), presented in
Ref.[162], to the caseE1 6= E2, U1 6= U2. Let us introduce the generating function

hr
p(x; y; t ) =

1X

k;l

xkyl

r
(k + r )!( l + p)!

k!l !
� k+ r;l

k;l + p(t); (5.36)

from which the elements of the density matrix can be retrieved by derivation as

�̂ k+ r;l
k;l + p(t) =

1

(k!l !(k + r )!( l + r )!)
1
2

@k
x @l

yhr
p(0; 0; t): (5.37)

By multiplying Eq.(5.34) by xkyl and summing over k; l , the master equation can be
expressed in terms of the generating functionhr

p as

@t hr
p =

�
� i

�
(E1(t)p � E2(t)r ) +

U2

2
p(p � 1) �

U1

2
r (r � 1)

�
�  (r + p)

�
hr

p

+ [( iU1r � 2 ) x + 2  ] @xhr
p + [( � iU2r � 2 ) y + 2  ] @yhr

p: (5.38)

Let us de�ne the shifted generating function hr
p = e�

Rt
0 c(r;p;� )d� ~hr

p, where the parameter
c(r; p; t ) is given by

c(r; p; t ) = i
�
(E1(t)p � E2(t)r ) +

U2

2
p(p � 1) �

U1

2
r (r � 1)

�
+  (r + p): (5.39)

The further de�nitions

� 1;r = 2  � iU1r

� 2;p = 2  + iU2p (5.40)

allow us to rewrite the master equation (5.38) as a linear partial di�erential equation of
the �rst order

@t ~hr
p = ( � � 1;r x + 2  ) @x ~hr

p + ( � � 2;py + 2  ) @y ~hr
p: (5.41)
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The solution for ~hr
p, obtained with the methods of the characteristics as in Ref.[162], is

reported in appendix E.1, and reads

~hr
p(x; y; t ) =

1
2N

N !
(N � r )!

�
2 � (2 � � 1;r )e� � 1;r t

� 1;r
+

2 � (2 � � 2;p)e� � 2;p t

� 2;p

� (N � r )

� r;p :

(5.42)
Then, by use of Eq.(5.37), we obtain the solution for the density matrix

�̂ k+ r;l
k;l + p =
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2
� 2;r

(1 � e� � 2;r t )
� (N � r � k� l )

� r;p ; (5.43)

where we have also used that the combination of parametersU2 � U1
2 r (r � 1) appearing in the

de�nition (5.39) when p = r can be rewritten as
� U2 � U1

2 r (r � 1)
�

=
�

� 2;r + � 1;r
2

�
(r � 1)+2  .

We can rewrite the solution (5.43) in a simpli�ed form by using that, accordingly to
the discussion in Sec.5.2.1, due to the term� r;p we havek + r + l = k + l + p = m, which
leads to

�̂ k+ r;m � (k+ r )
k;m � k (t) = e�

Rt
0 (E1 � E2)( � )d� r N !e� 2mt

2(N � m) (N � m)!
(5.44)

�
1 � e� 2t eiU 1 rt

1 � iU1r=(2 )
+

1 � e� 2t e� iU 2 rt

1 + iU2r=(2 )

� (N � m)

�̂ (0) k+ r;m � (k+ r )
k;m � k (t):

Here ^� (0) (t) = j (0) (t)ih (0) (t)j is the density matrix corresponding to the unitary evolu-
tion under the Hamiltonian (5.32) with m particles and E1 = E2, i.e.

^� (0)
k+ r;m � (k+ r )

k;m � k (t) =
1
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�
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�
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e� i (U2 (m� k� r )� U1k)rt : (5.45)

The reason to separate the contribution due to an energy imbalance E1 � E2 from the
unitary part will become clear in Sec.5.3.

Note that for m = N the factor
h

2
� 1;r

(1 � e� � 2;r t ) + 2
� 2;r

(1 � e� � 2;r t )
i (N � r � k� l )

in Eq.(5.44)
is equal to 1, and the e�ect of particle losses on the corresponding block is only to \dump"
it (i.e., to reduce its weight), without a�ecting its inner dy namics, which then corresponds
to the unitary dynamics.

From Eq.(5.44) we can calculate the weights of each block of the density matrix,
appearing in Eq.(5.35). The diagonal elements are identi�ed by r = 0, which leads to

�̂ k;m � k
k;m � k(t) =

N !e� 2mt

2m (N � m)!k!(m � k)!
(1 � e� 2t )(N � m) ; (5.46)

from which the weights wm can be immediately obtained as

wm = tr[ �̂ m ] =
X

k

�̂ (t)k;m � k
k;m � k =

N !e� 2mt

m!(N � m)!
(1 � e� 2t )(N � m) : (5.47)
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Figure 5.9: Density matrix in the Fock basis of the total Hilb ert space (left panel), and
weights of the density matrix as a function of the label of thesubspace, i.e. the number of
particles m (right panel). Values of the parameters: N = 10, T = 0 :25, U1 = U2 = 4 � Hz,
t = t2.

From Eq.(5.47) we can calculate the decay of the average atomnumber with time,
which is given by

hm̂i =
NX

m=0

wm m =
NX

m=0

�
N
m

�
e� 2mt (1 � e� 2t )(N � m)m = Ne� 2t : (5.48)

Equation (5.48) shows that, as expected for one-body losses, the atom number decays
exponentially with time, with a decay rate given by  .

5.2.3 E�ect of particle losses on the visibility

The visibility in the presence of one-body atom losses can becalculated by generalizing
Eq.(2.20) to � (t) = tr[ �̂ (t)Ĵx ]=

p
tr[ �̂ (t)n̂1]tr[ �̂ (t)n̂2], where in the denominator we have

replacedN by the averages of the atom number ^n i in each modei = 1 ; 2. This calculation
has been performed in Ref. [162] for optical lattices. The two-site case yields

� 1body (t) =

(
 2 +

�
 �

2 sin(�t ) + ( �
2 )2 cos(�t )

�
e� 2t

 2 + ( �
2 )2

) N � 1

: (5.49)

A short-time expansion of Eq.(5.49) to the third order for �t � � � 1 leads to

� 1body (t) ' (1 �
1
2

� 2 +
2
3


�

� 3)(N � 1) ' e(N � 1)[1� 1
2 � 2+ 2

3

� � 3 ]: (5.50)

In Eq.(5.50) we recognize the gaussian decay of the visibility due to the atomic interactions
(the unitary part), which also appears in the short-time expansion of Eq.(2.20), while we
see that atom losses provide a positive (cubic) correctionsto the visibilty. This counterin-
tuitive e�ect is due in our model to the fact that the sites occupations in the denominator
decrease under the e�ect of particle losses. However, we expect this e�ect to disappear in
a more rigorous derivation in which the dependence of the microscopic parameters of the
BJJ from the particle number would be taken into account (seediscussions in Secs.1.3.1.a
and 6.2.2).
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5.2.4 E�ect of particle losses on squeezed states

The e�ect of particle losses on squeezed states in the bosonicJosephson junction has
already been addressed in Refs.[23, 164] for one, two and three-body losses. In Ref.[164]
the optimum particle number and the optimum trap frequency allowing to reach the
highest possible squeezing in the presence of atom losses have been determined, while in
Ref.[23] the best squeezing degree has been calculated whenthe spatial dynamics of the
bimodal condensate cannot be neglected.

5.2.5 E�ect of one-body losses on macroscopic superpositio ns of phase
states

We now focus on the formation of macroscopic superpositionsof phase states when one-
body losses are a�ecting the BJJ. We want to perform some kind of \spectroscopy" of
the density matrix at the speci�c times of formation of macroscopic superpositions, in the
spirit of Ref.[28], with the use of Eq.(5.35) and of the solution Eq.(5.44). For instance, let
us �x t = tq � T=(2q), where T = Teven = 2 �=� is the period of the quantum state when
the initial particle number N is even. For q = 2, in the absence of noise the state att2

is a two-component cat state. We want to see whether the stateat this time is the sum
of terms in which each represents a two-component cat state in the space ofm particles.
In order to do so, we analyze di�erent quantities: the �delity , the Husimi function and
the quantum Fisher information. From the discussion at the end of Sec.5.2.2 we already
partially know the answer: the block with m = N will be a perfect cat state. We study
in this section the character of the other blocks of the density matrix.

5.2.5.a Fidelity

Let us consider the state of the system at the timet2, corresponding to the two-component
macroscopic superposition. First, we plot the �delity of density matrix �̂ m of each subspace
at m particles, with a perfect m-particle cat state. We de�ne thus Fm � F [� m ; �̂ (0)

m ] =

Tr[

r q
�̂ (0)

m � m

q
�̂ (0)

m )]2, where ^� (0)
m = j (0)

m ih (0)
m j is perfect the two-component cat state in

the space ofm particles, and we recall that �� m = �̂ m =tr[ �̂ m ]. Then using �̂ (0)2
m = �̂ (0)

m and
tr[ �̂ (0)

m ] = 1 we obtain

Fm = h (0)
m j� m j (0)

m i =
m+1X

n;n 0=1

�̂ (0)
m (n0; n)� m (n; n0): (5.51)

The �delities Fm are plotted for m = 0 ; 1; ::::N = 10 in Fig.5.10. As we expected,
since we have de�nedFm referring to the density matrices in each block renormalized by
the respective weight, we haveFN = 1 (trivially, also F0 = 1 for the vacuum state), as
the block at m = N is only dumped by particle losses.

Quite remarkably, we �nd that the lower blocks with m < N , which are populated only
by the loss mechanism, have a non-zero �delity with the corresponding two-component
m-particle cat state. Hence, we �nd that the loss process transfers some quantum corre-
lations 2.

2Using Eq.(5.44) we have demonstrated that the �delity of eac h block of the density matrix renormalized
by its weight � m for m 6= N with the density matrix of a perfect cat state increases in the limit of in�nite
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Figure 5.10: Fidelity of each block of the density matrix with an m-particle two-component
cat state. The red line corresponds to the total �delity de�n ed in Eq.(5.52). Values of the
parameters: N = 10, T = 0 :25, U1 = U2 = 4 � Hz, t = t2.

Note that the �delity of the total density matrix with the two -component cat state
formed in the absence of losses withN particles �̂ (0)

N (t2) is trivially given by the weight
wN expressed by Eq.(5.47), due to the orthonormality of Fock states at di�erent m.
Mathematically, expliciting the time-dependence of the density matrix, we have at all
times

F [� (t); �̂ (0) (t)] =
N +1X

n;n 0=1

�̂ (0) (n0; n; t )� N (n; n0; t) = FN wN (t) = wN (t) = e� 2Nt ; (5.52)

to be evaluated at t = t2 = T=4 for the �delity with the two-component cat state. The
total �delity corresponds to the red horizontal line in Fig. 5.10, coinciding with the last
weight in the second panel of Fig. 5.9 by Eq.(5.52).

Note that, since no inner dynamics a�ects the block at m = N (a part from a global
dumping), as already said at t2 � N corresponds to a perfect two-component phase cat
state, displaying in particular non-diagonal terms at r 6= 0. Hence, no other way to
eliminate these o�-diagonal elements exists apart from lowering the weight of the block at
m = N , which means that the decoherence rate coincides with the dumping of this block
- i.e., 2N , at it results from the last equality in Eq.(5.52).

We may ask whether the e�ect of a purely lossy dynamics would equally a�ect the
BJJ if initially prepared either in a NOON state, or in a two-c omponent phase cat state.
This question is a�rmatively answered in appendix E.3, in contrast with what we have
found for the case of phase noise (see appendix D.4).

5.2.5.b Projected Husimi distribution

We now visualize the results presented in the previous section by plotting the Husimi
function in each subspace. In order to compare the Husimi functions corresponding to
subspaces at di�erent particle number m, we de�ne

Qm (� ) � Qm (� =
�
2

; � ) =
1

Normm
m h� j �� m j� i m (5.53)

loss rate  . However, in that limit the weights of each block except m = 0 go to zero, and this happens
faster than the speed at which a � m tends to a cat state, so that we recover a physically meaningful result.
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Figure 5.11: First three panels: Husimi distribution Qm (� = �= 2; � ) (see Eq.(5.53)) at
t = t2 for m = 10; 9; 8 respectively. Last panel: All previous curves now at the same scale,
plus (gray dashed line) total Husimi distribution Q(� = �= 2; � ) (see Eq.(3.1)) at t = t2.
Values of the parameters:N = 10, T = 0 :25, U1 = U2 = 4 � Hz, t = t2.

where

Normm =
2
p

� �[ m + 1
2 ]

�[ m + 1]
= 2 �Q cost (5.54)

is a normalizing factor obtained with the requirement that t he Husimi function Qm (� )
associated with ^� 1 (m) � 1

2�

R
d� j� i mm h� j is equal to 1, and j� i m is the phase state

parameterized by the angle� in the space ofm particles (the constant Qcost has already
been introduced in Sec.5.1.3.b).

We plot the Husimi functions Qm for m = N; N � 1; N � 2 in Fig. 5.11. For m =
10 we recover the Husimi function of a perfect cat state with 10 particles, due to the
aforementioned e�ect of simple \dumping" of the N -th block of the density matrix. For
m = 9 ; 8 we see that the structure of these curves still displays twopeaks, corresponding
to the components of the cat state. These peaks are placed at�= 2 and 3�= 2 for m = 9,
corresponding to the rotated components of a cat state with an odd number of particles
[101]. Note however the di�erent scale on they-axes in the �rst, second and third panel
in Fig. 5.11; we also �nd that Q9(� ) and Q8(� ) are quite di�erent from the corresponding
Husimi functions of perfect two-component cat states (the latter are not shown here). As a
result, the pro�le of the total Husimi function Q(� ) =

P N
m=0 wmQm (� ) (gray curve in the

last panel in Fig. 5.11) is smeared out, already for intermediate values of the decoherence
rate T = 0 :25.

Since the dynamics in the presence of particle losses is not conserving the number
imbalance operator, there is a \leaking" of the state along the � direction also. Hence, it
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can be instructive to consider also the full Husimi distribution Q(�; � ). This is addressed
in appendix E.2.

5.2.5.c Quantum Fisher information

We want now to quantify the e�ect of particle losses on the useful quantum correlations of
the state of the system as a function of time. To do this, we calculate the quantum Fisher
information as a function of time, after optimizing it over a ll of the possible directions.
Since the number of particles is uctuating, we follow Ref.[165], and calculate the Fisher
information as

FQ [�̂; Ĵn ] =
NX

m=0

wmFQ [�̂ m ; Ĵn ]; (5.55)

in analogy with the other quantities calculated in the previous sections. In Ref. [165] it
has been shown that in the presence of a super selection rule which forbids coherences
between subspaces at di�erent numbers of particles the previous expression is bounded by
hm̂2i and the following implication holds:

FQ [�̂; Ĵn ] > hm̂i ) �̂ entangled: (5.56)

The Fisher information in each subspace at �xed m is then calculated with the use of
Eq.(4.12), which in terms of the sub-space density matrix ^� m reads

FQ [�̂ m ; Ĵn ] =
mX

k;l =0

(pl � pk )2

pl + pk
jhl jĴn jkij 2; (5.57)

where jki are the orthonormalized eigenstates which diagonalize thedensity matrix, satis-
fying �̂ m jki = pk jki . Then, we optimize Eq.(5.55) over all the possible directions Ĵn . We
choose to perform the optimization after the summation speci�ed in Eq.(5.55) because
this choice seems to us physically more relevant: summing instead Fisher informations op-
timized at each m in Eq.(5.55) would give an indication of the usefulness of the state ^� in
interferometric experiments in which the densities matrices ^� m associated with subspaces
at di�erent m would be transformed with respect to di�erent directions, which seems hard
to be realized in experiments.

In Fig. 5.12 we show the quantum Fisher information for various loss rate , for N = 10.
The black dashed line is the shot noise limitFQ for the initial number of particles N ; the
regions in which FQ is larger than this reference line are such that sub-shot noise phase
estimation could be in principle performed even in the presence of particles losses. The
gray dotted line is F� = N=� 2, where � 2 is the coherent spin squeezing, showing when the
quantum state is in principle more useful than a squeezed state even in the presence of
losses (note that here the squeezing is plotted in the ideal lossless case).

The presence of relatively high correlations at long times which can be seen in Fig. 5.12
is associated with our choice of a small initial number of particles. The plot of FQ for
the same parameters, repeated in the case ofN = 100, displays a more dramatic e�ect of
losses for the same noise parameter, as can be seen in Fig. 5.13. This can be related to
the fact that the decay rate of the �delity with the state form ed in the absence of losses
scales likeN (see Eq.(5.52)).

Finally, in connection with the results of Sec.5.1.4.c, we would like to perform a scaling
analysis of the quantum Fisher information as a function of the average number of particles
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Figure 5.12: Quantum Fisher information given in Eq.(5.55) optimized over Ĵn as a func-
tion of t=T, for T = 0 ; 0:05; 0:15; 0:25 from top to bottom. The dashed lines represent
the corresponding average number of atoms as a function of time. Black dashed line: shot
noise limit N . Gray dotted line: coherent spin squeezing parameter� 2=N in the absence
of losses. Value of the parameters:N = 10, U1 = U2 = 4 � Hz.
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Figure 5.13: Quantum Fisher information given in Eq.(5.55) optimized over Ĵn as a func-
tion of t=T, for T = 0 ; 0:05; 0:25 from top to bottom. Gray dotted line: coherent spin
squeezing parameter� 2=N in the absence of losses. Values of the parameters:N = 100,
U1 = U2 = 4 � Hz.
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hm̂i in the present case of a uctuating total number of particles. This could still be done,
but it would provide less clear indications with respect to the case of phase noise, as in
this caseFQ is bounded byFQ [�̂; Ĵn ] � h m̂2i , involving the expectation value of a di�erent
operator (m2) [165]. Note also that in this case the bound on the highest possible phase

estimation has to be modi�ed as � ' � max
�

1p
phm̂2 i

; 1
phm̂ i

�
(p being here the number of

measurements) [165].

5.3 Treating phase noise and particle losses at the same
time

Since in real experiments both particle losses and phase noise are acting simultaneously, it
is important to develop a treatment allowing to calculate the density matrix of the system
including both sources of noise. We proceed in this direction.

As we deduced in Sec.5.1.2, and as we have already done in Sec.5.1.4, we are going
here to assume that phase noise is strongly correlated in thetime-regime of interest,
leading e.g. to the production of squeezed states and macroscopic superpositions. During
this time regime, losses are a�ecting the system. We assume hence that the phase noise
process� (t) = ( E2 � E1)( t) in one realization is constant during the characteristic time for
losses 1= , i.e. that tc � 1 (where tc is the correlation time for phase noise introduced
in Sec.5.1.1.b). Hence, we can consider the solution of the master equation (5.44) as
\quenched" with respect to phase noise, i.e. as the solutionof the lossy dynamics in one
realization of the phase noise process. We can indicate it with a \Q" su�x, i.e. we rename
�̂ k+ r;m � (k+ r )

k;m � k (t) ! �̂ k+ r;m � (k+ r )
Q k;m � k (t) in Eq.(5.44), which gives

^� Q
k+ r;l
k;l + p =

N !e� i� (t )r e
�

� � 2;r + � 1;r
2

�
(r � 1)t

e� � 1;r kt e� � 2;r lt e� 2t

2N (N � r � k � l )!(k!l !(k + r )!( l + r )!)
1
2

�
�

2
� 1;r

(1 � e� � 1;r t ) +
2
� 2;r

(1 � e� � 2;r t )
� (N � r � k� l )

� r;p (5.58)

where we have also de�ned �(t) = ( E2 � E1) and
Rt

0 (E1 � E2)( � )d� = �
Rt

0 �( � )d� � � (t).
The sign di�erence with respect to the analogous de�nition in Sec. 5.1.1.a is due to the
fact that in this basis (we recall that �̂ Q

k+ r;l
k;l + p � h n1 = k; n2 = l + pj�̂ Q jn1 = k + r; n 2 = l i )

in terms of the number imbalancen = ( n1 � n2)=2, we have (n � n0) = (( k � l � r ) � (k +
r � l ))=2 = � r , to be compared to Eq.(5.10).

Then, (E1 � E2)( t) appearing in Eq.(5.58) is considered to be randomly uctuating,
and we have to average with respect to phase noise. The averages are performed as in
Sec. 5.1.1.a, and the averaged density matrix is given by

�̂ (t)k+ r;l
k;l + p =

Z
dP [�( t)] ^� Q

k+ r;l
k;l + p =

Z
d�f (�; t ) ^� Q

k+ r;l
k;l + p (5.59)

where f (�; t ) is de�ned as in Eq.(5.4) with the replacement � ! �, and reads f (�; t ) =

1p
2�a (t)

e
� ( � + � t ) 2

2a2 ( t ) , with a2(t) given by Eq.(5.7) and h(� � � 0) = �( � )�( � 0)� �
2

= � E(� )� E (� 0)�

� E
2

is identical to the correlation function de�ned in Sec. 5.1.1.a, while � = � � E +( N �
1)(U2 � U1)=2.
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Substituting the expression off (�; t ) in Eq.(5.59) and performing the gaussian integral
yields as �nal result the density matrix of the system in the presence of both phase noise
(red contribution) and particle losses (blue contribution)

�̂ k+ r;m � (k+ r )
k;m � k (t) = ei � rt e� a( t ) 2 r 2

2
N !e� 2mt

2(N � m) (N � m)!

�
1 � e� 2t eiU 1 rt

1 � iU1r=(2 )
+

1 � e� 2t e� iU 2 rt

1 + iU2r=(2 )

� (N � m)

� �̂ (0) k+ r;m � (k+ r )
k;m � k (t);

from which we see that in the density matrix in the presence ofboth one-atom losses and
phase noise these two respective contributions appear factorized.

This allows to write the visibility in the presence of both noise sources as

� (t) = e� a( t ) 2 r 2

2 � 1body (t); (5.60)

where� 1body is given in Eq.(5.49) and we have taken � = 0. A discussion of the possibility
to compare this expression to the measured decay of the visibility is presented in Sec. 6.2.2.



Chapter 6
Conclusions and perspectives

6.1 Conclusions

In this thesis we have considered the bosonic Josephson junction in the quantum regime
in the framework of the two-mode approximation, studying in particular some aspects
connected to quantum information.

Starting with the characterization of the system, in Chap.1 [31] we have studied its
\phase diagram", by calculating the uctuations of number i mbalance operator as a func-
tion of the ratio between the coupling and inter-atomic interactions, and the asymmetry
of the two modes. We have shown that such a phase diagram displays a lobe structure,
due to the degeneracy of neighboring Fock states in the strongly interacting regime. The
size of the lobes increases at increasing asymmetry, as a consequence of a reduction of the
e�ective coupling; this non-linear e�ect is absent in superconducting Josephson junctions.

In Chap.2 [31, 33] we have shown that the dynamics driven by the interatomic inter-
actions only (\quenched dynamics"), starting from a single coherent state, leads to the
creation of macroscopic superposition of coherent states.These superpositions are placed
in planes parallel to the equator of the Bloch sphere - the equator of the Bloch sphere
itself if the initial coherent state is number balanced (\phase state") - and they appear at
fractions tq = T=(2q) of the period T = 2 �=� , with a number of componentsq which varies
in time (this result has been also reported in Ref.[101]). Wehave later shown that the
creation of macroscopic superpositions can be optimized bymeans of an optimal control
protocol: a two-component phase cat state (as well as a NOON state) can be created with
a very high �delity ( � 99%) in a time T0 = cTc, whereTc / 1=N depends inversely on the
atom number, and c is a constant (depending in principle on the particle number). For
instance, c = 10 for N = 300, leading to an advantage over the quenched dynamics-based
protocol in terms of the time of formation of the superposition. A proper scaling analysis
of the constant c as a function of the number of particles is still to be carriedout.

In Chap.3 [32] we have addressed the detection of macroscopic superpositions of phase
states. We have shown that the probability distributions of the eigenvalues of the collec-
tive angular momentum operator in various directions are suitable to detect qualitatively
these states. Indeed these probability distributions allow to access the phase content of
the state, and to distinguish macroscopic superpositions of phase states from incoherent
mixtures, as for the latter the probability distributions d o not display fringes. Based on
the Radon transform, we have shown that the knowledge of these probability distribu-

109



110 Conclusions and perspectives x6.1

tions in each direction of the equatorial plane of the Bloch sphere allows to reconstruct a
two-dimensional distribution, analogous to phase-space distributions, yielding the major
information about macroscopic superposition states.

In Chap.4 [25] we have addressed the applications to quantuminterferometry. We
have computed the quantum Fisher information and the squeezing parameter as a func-
tion of time during the quenched dynamics of the BJJ, optimizing them with respect to
all the possible unitary transformations describing a linear interferometer. This analysis
yields qualitatively the same result as reported in Ref.[16], indicating the two component
macroscopic superposition as the most useful state in idealconditions. However, note
that in Ref.[16] the quantum Fisher information and the coherent spin squeezing were not
optimized. The optimization was for us important in view of t he analysis of the decoher-
ence process presented in Chap.5, in order to assign via the quantum Fisher information
a value to the correlations of the superpositions - an intrinsec property of the state.

In Chap.5 [25] we have studied how the useful quantum correlations created during the
quenched dynamics of the BJJ are a�ected by the presence of noise, such as phase noise
and particle losses. First, we have derived an exact solution for the quantum state of the
system at any time during the quenched dynamics in the presence of phase noise. The for-
mation of macroscopic superpositions of phase states has been shown to be robust against
phase noise, since decoherence occurs at a rate of the same order as phase relaxation,
independently of the total number of particles. As a consequence of this anomalously slow
decoherence, a scaling analysis of the optimum quantum Fisher information with the num-
ber of particles has allowed us to conclude that, for a realistic choice of noise strengths,
multicomponent superpositions are more useful for interferometry than either the two-
component superposition or squeezed states. These superpositions are built during the
dynamical evolution of a noiseless junction at times longerthan for squeezed states, but
still depending inversely on the total number of particles, the �rst macroscopic superpo-
sition being formed at a time / 1=

p
N . This is not the case for the two-component cat

state, which is formed at T=4 independent onN , and is thus more a�ected by the presence
of noise. Hence, in experiments aimed at preparing a useful state for interferometric appli-
cations based on the quenched dynamics of the BJJ, despite the presence of a decoherence
source such as phase noise it would be convenient to wait until times / 1=

p
N , beyond the

regime of spin squeezing, and reach the regime of formation of the �rst multicomponent
macroscopic superpositions.

We have then considered the e�ect of one-body particle losseson the production of
cat states. We have generalized the exact solution of the density matrix presented in
Ref.[162] to the case in which an asymmetry in the parametersof the BJJ is taken into
account. Then, we have carried out a \spectroscopy" of the density matrix, revealing
that the states with lost particles, which are mixed in the total density matrix to the
state in the absence of losses, still display some \cat-like" features. For instance, their
Husimi distribution displays peaks, even if smoothened, corresponding to the components
of the superposition. The analysis of how much the useful quantum correlation built up
during the dynamics are a�ected by particle losses has been possible only in a qualitative
fashion, as no easy scaling relation of the Fisher information with the particle number
can be de�ned in this case. Finally, we have shown that it is possible to treat one-body
particle losses and phase noise analytically at the same time. This result can be extended
in principle to the case of two- and three-body losses, and isimportant in view of an
accurate comparison with the experiments.

Our study con�rms the BJJ as a versatile and promising systemin quantum metrology
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and for other applications in quantum information.

Dans cette th�ese nous avons consid�er�e la jonction Josephson bosonique dans le
r�egime quantique dans le cadre de l'approximation �a deux modes, en �etudiant en par-
ticulier certains aspects en relation avec l'information quantique.

En commen�cant par la caract�erisation du syst�eme, dans le premier chapitre nous
avons �etudi�e son \diagramme de phase", en calculant les uctuations de l'op�erateur
de nombre relatif en fonction du rapport entre le couplage etles interactions inter-
atomiques, et de l'asym�etrie des deux modes. Nous avons montr�e que ce diagramme
de phase pr�esente une structure �a lobes, caus�ee par la d�eg�en�erescence d'�etats de Fock
adjacents dans la limite de hautes interactions. La dimension des lobes augmente
avec l'asym�etrie, comme cons�equence de la r�eduction du couplage e�ectif; cet e�et
non-lin�eaire ne se trouve pas dans les jonctions Josephsonsupraconductrices.

Dans le chapitre 2 [31, 33] nous avons montr�e que la dynamique r�egie par les inter-
actions interatomiques seulement (dynamique \tremp�ee"), en d�emarrant avec un seul
�etat coh�erent, porte �a la cr�eation de superpositions ma croscopiques d'�etats coh�erents.
Ces superpositions sont plac�ees sur des plans parall�eles �a l'�equateur de la sph�ere de
Bloch, notamment le plan �equatorial même si l'�etat coh�e rent initial est sym�etrique
quant'�a occupation atomique moyenne (\�etat de phase"). Ces �etats apparaissent �a des
tempstq = T=(2q) fractions de la p�eriode T = 2 �=� , et ont un nombre de composantes
q qui varient dans le temps (ce r�esultat a �et�e d�emontr�e �e galement dans la Ref.[101]).
Nous avons ensuite montr�e que la cr�eation des superpositions macroscopiques peut
être optimis�e �a l'aide d'un protocole de contrôle optim al: une superposition de deux
�etats de phase (tout comme un �etat NOON) peut être cr�e�ee avec une tr�es grande
�d�elit�e ( � 99%) dans un tempsT0 = cTc, o�u Tc / 1=N d�epend inversement du nom-
bre d'atomes, etc est une constante (qui d�epends en principe du nombre d'atomes).
Par exemple, c = 10 pour N = 300, ce qui conduit �a un avantage par rapport �a la
dynamique tremp�ee en terme du temps de formation de la superposition. Une analyse
d�etaill�ee de la loi d'�echelle suivie par la constante c avec le nombre d'atomes n'a pas
encore �et�e e�ectu�ee.

Dans le chapitre 3 [32] nous avons abord�e la d�etection des superpositions macro-
scopique d'�etats de phase. Nous avons montr�e que les distributions de probabilit�e des
valeurs propres de l'op�erateur de moment angulaire collectif dans di��erentes directions
sont convenables pour d�etecter qualitativement ces �etats. En e�et ces distributions de
probabilit�e permettent de caract�eriser la distribution de la phase de l'�etat, et de dis-
tinguer des superpositions macroscopiques des m�elanges incoh�erents, puisque pour ces
derni�eres les distributions de probabilit�e n'ont pas de franges. En s'appuyant sur la
transformation de Radon, nous avons montr�e que la connaissance de ces distributions
de probabilit�e dans toutes les directions du plan �equatorial permet de construire une
distribution bi-dimensionnelle, analogue aux distributions sur l'espace des phases, qui
porte les informations essentielles pour les �etats de superposition macroscopique.

Dans le chapitre 4 [25] nous avons abord�e les applications �a l'interf�erom�etrie. Nous
avons calcul�e l'information de Fisher et le param�etre de compression en fonction du
temps pendant la dynamique tremp�ee de la BJJ, en les optimisant par rapport aux
possibles transformations unitaires qui d�ecrivent un interf�erom�etre lin�eaire. Cette
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analyse apporte qualitativement les mêmes r�esultats communiqu�es en Ref.[16], indi-
quant que l'�etat le plus utile dans des conditions id�ealesest la superposition de deux
�etats coh�erents. C'est tout de même �a noter que en Ref.[16] l'information de Fisher et
le param�etre de compression n'�etaient pas optimis�es. L'optimisation �etait pour nous
importante en vue de l'analyse du processus de d�ecoh�erence pr�esent�e dans le chapitre
5, pour pouvoir assigner �a l'aide de l'information de Fisher une valeur aux corr�elations
de la superposition, qui sont une propri�et�e intrins�eque de l' �etat.

Dans le chapitre 5 [25] nous avons �etudi�e comment les corr�elations quantiques
cr�e�ees pendant la dynamique tremp�ee de la BJJ sont a�ect�ees par la pr�esence de
bruits ext�ernes, tels que le bruit de phase et la perte de particules. Dans un pre-
mier temps, nous avons d�eriv�e une solution exacte pour d�ecrire l'�etat quantique du
syst�eme �a tout temps pendant la dynamique tremp�ee en pr�esence de bruit de phase.
Nous avons montr�e que la formation des superpositions macroscopiques d'�etats de
phase est robuste vis-�a-vis du bruit de phase, �etant donn�e que la d�ecoh�erence survient
avec la même vitesse que la relaxation, et que cette vitessene d�epend pas du nombre
d'atomes. Comme cons�equence de cette d�ecoh�erence lente,une analyse d'�echelle de
l'information de Fisher optimale avec le nombre d'atomes nous a permis de conclure
que pour un choix r�ealiste de la force du bruit, les superpositions �a beaucoup de com-
posantes sont plus utiles pour l'interf�erom�etrie que la superposition �a deux composantes
d'une part, et les �etats comprim�es d'autre part. Ces superpositions apparaissent pen-
dant l'�evolution dynamique en l'absence de bruit �a des temps plus longs par rapports
�a ceux des �etats comprim�es, mais qui d�ependent encore inversement du nombre total
d'atomes, �etant donn�e que la premi�ere superposition se forme �a un temps / 1=

p
N .

Ceci n'est pas le cas pour la superposition macroscopique �a deux composantes, qui est
form�ee �a T=4 ind�ependamment de N , et qui donc est plus a�ect�ee par la pr�esence
de bruit. Donc, dans des exp�eriences qui auraient pour but de pr�eparer un �etat utile
pour l'interf�erom�etrie en reposant sur la dynamique trem p�ee de la jonction Josephson
bosonique, malgr�e la pr�esence de bruit de phase il serait convenable d'attendre jusqu'�a
un temps / 1=

p
N , au-del�a de le r�egime de spin squeezing, rejoignant la r�egime de

formation des superpositions macroscopiques.

Ensuite, nous avons consid�er�e l'e�et des pertes �a une particule sur la production
d'�etats de chat de Schroedinger. Nous avons g�en�eralis�e la solution pour la matrice
densit�e pr�esent�ee en Ref.[162] au cas o�u une asym�etrie dans les param�etres de la
BJJ est prise en compte. Nous avons fait ainsi une \spectroscopie" de la matrice
densit�e qui a r�ev�el�e que les �etats o�u des particules on t �et�e perdues, qui sont m�elang�es
dans la matrice densit�e avec l'�etat en l'absence de perte de particules, ont encore des
caract�eristiques en commun avec des �etats de chat. Par exemple, leur distribution de
Husimi poss�ede encore des pics, toutefois amortis, qui correspondent aux composantes
de la superposition. L'analyse de comment les corr�elationsutiles produites pendant
la dynamique sont a�ect�ees par la perte de particules a �et�e possible seulement de
mani�ere qualitative, puisqu'il n'est pas simple de d�e�ni r dans ce cas une loi d'�echelle
pour l'information de Fisher avec le nombre de particules. En�n, nous avons montr�e
qu'il est possible de traiter analytiquement les pertes �a une particule et le bruit de phase
en même temps. Ce r�esultat peut être en principe �etendu aucas de pertes �a deux et
trois corps, et il est important dans la perspective d'une comparaison quantitative avec
les exp�eriences.
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Nos �etudes con�rment que la jonction Josephson de Bose est un syst�eme promet-
teur pour la m�etrologie et pour d'autres applications en information quantique.

6.2 Prospective views

Several aspects in the �eld of bosonic Josephson junctions deserve to be further investi-
gated, especially regarding their application in quantum metrology, towards the imple-
mentation of a Heisenberg-limited interferometer, or the realization of Schroedinger's cat
states, among others. A few theoretical questions in particular appear as natural exten-
sions of the present thesis. We provide in the following the detailed list.

6.2.1 E�cient reconstruction of macroscopic superpositio ns via mea-
surement of the momentum distribution

By looking at expression (1.44) and at the expression of the angular momentum operator
Ĵr given in Eq.(1.33) one immediately notes their mutual similarity. A very natural
question which arises is therefore the following: is it possible to reconstruct the angular
momentum eigenvalues distributions in the x � y plane P� (r ) introduced in Chap.3 by
measuring the momentum distribution?

Let us consider the operator version of Eq.(1.44),

n̂(~p) = j� 0(~p)j2(N + Ĵx cos (pxd) � Ĵy sin (pxd)) ; (6.1)

where ĥn(~p)i = n(~p) gives Eq.(1.44). As seen in Eq.(6.1), each value of the momentum
px selects a direction in thex � y plane of the angular momentum space. For instance,
�xing pxd = � (we note by ~�p the three-dimensional vectors satisfying this condition)
leads to n̂(pxd = � ) = j� 0(~�p)j2(N + Ĵx ). Suppose that a one shot measurement of the
observablen̂(~p) is performed. Hence, under knowledge of the gaussian envelope j� 0(~�p)j2

and of the total number of particles N , from the eigenvalue ofn̂(pxd = � ) we can extract
an eigenvalue ofĴx . Analogously, the value at n̂(pxd = �= 2) yields an eigenvalue for
Ĵy , and so on, for each direction. In practice, for each shot thecurve n(~p) should be
devided in bins; the center of each bin identi�es a directionin angular momentum space,
while the count in each bin provides an outcome for an angularmomentum operator.
Repeating many times this procedure would allow to reconstruct the histograms for the
angular momentum operators eigenvalues distributions in various directions of the x � y
plane P� (r ) as explained in Chap.3 (see Fig.3.3), and if wished the two-dimensional quasi-
probability distribution f (x; y).

What is surprising with this procedure is that outcomes of observables which are not
mutually commuting could be apparently simultaneously obtained with a single shot of
the momentum distribution n̂(~p). We expect such a procedure to be realizable in the
regime in which the number of particles is large.

A possible recipe to demonstrate the feasability of this protocol is based on ref-
erences [166, 167]. By using theN -point probability distribution P(~r1; ~r2; :::; ~rN ) =
h ̂ y(~r1) ̂ y(~r2)::: ̂ y(~rN ) ̂ (~rN )::: ̂ (~r1)i corresponding to the state of interest, one could sim-
ulate various shots of the spatial disribution of N -particles after a time of ight, analo-
gously to Refs. [166, 167]. The momentum distribution wouldbe obtained from it via
the scaling law n(~pt=m) = n(~r) [35, 46]. Since this procedure attempts to map out the
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correlations in the equatorial plane of the Bloch sphere, itis more useful for states with
a structure in that plane, as indeed phase cat states (see Chap.3). A similar procedure
has been followed in Ref.[101] to map out the phase pro�le (i.e., the projected Husimi
distribution Q(�= 2; � )) of a phase cat state.

Once the simulation described above has shown the reliability of this method, one could
try an experimental veri�cation by using available data for the momentum distribution,
e.g. by reconstructing the distributions P� (r ) in various directions for a phase state. A
further questions which arises in this context is how the resolution in the directions which
can be reconstructed is related to the total number of particles and to the number of
measurements. A �nite resolution on the spatial measurement of the particles (size of the
detectors) should be also taken into account (see Ref.[166]).

6.2.2 Particle losses and comparison with the experiments

Although in Sec.5.3 we have developed a treatment to includethe e�ect of particle losses
and phase noise on the same footing, and we dispose of an analytical expression for the
visibility in the presence of both noise sources, a direct comparison with experimental
data seems to be di�cult. There are mainly two reasons for this: �rst of all, one would
need to dispose of su�ciently good data in order to decide which loss process is the most
important between one-, two- or three-body losses. This could be done e.g. by means
of a �t of the visibility expression in the presence of di�erent kind of losses separately,
and by looking at which one present the best agreement. To do this, an expression of
the visibility in the presence of two- and three-body lossesanalogous to Eq.(5.60) should
be derived, which seems to be feasable (one could also think of deriving an expression
including the e�ect of several sources of losses at the same time). Secondly, a precise
comparison with the experiments would also require to take into account the dependence
of the relevant parameters which enter the BJJ model on the particle number (and on the
site occupation in the case of the external BJJ), according to the discussion presented in
Sec.1.3.1.a. Despite the fact that we have neglected this dependence in our derivation, the
�t of the visibility decay for the internal set-up that we hav e mentioned in Sec.5.1.2, which
allowed us to extract an estimate for the noise correlation function in the non-markov
regime, is still qualitatively meaningful. An argument as to why this is the case relies on
the fact that at short times the contribution of the unitary d ynamics to the damping of the
visibility in Eq.(5.14) depends on the factor N� 2; in the set-up of Ref.[8], an experimental
estimation of the dependence of the interaction constant� from the particle number yields
� / 1=

p
N , so that that the product N� 2 is approximatively constant at varying N . As a

consequence, the visibility decay is not a�ected by particlelosses in a �rst approximation
[168]. A quantitative investigation of this point would be n evertheless interesting.

6.2.3 Controlled creation of cat states in the presence of at om losses
and phase noise

As we have mentioned in Ch.2, the present decoherence rate inthe experiments is too high
to permit the creation of cat states by means of the quenched dynamics of the BJJ, or even
by means of our optimal control protocol presented in Sec.2.5.3 (see also Ref.[33]). Once
the main sources of noise and their decoherence rates have been identi�ed (see comments
above), an ambitious project would be thus to provide a protocol for the controlled creation
of cat states, able to take into account the e�ect of phase noise and particle losses, with the
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objective of making the experimental realization of such states possible. One could think
to proceed in an analogous way as presented in Sec.2.5.3: �rst, by a pre-study based on a
geometrical approach. To do this, one could use a semi-classical model for the dynamics
of the BJJ in the presence of atom losses and phase noise, as developped in Ref.[169]. A
veri�cation of the validity of such a protocol by a full numer ical calculaton of the �delity
should clearly follow. Then, the geometrical solution for the control �eld K (t) could be
again used as a trial for a full numerical algorythm. Such a full numerical calculation
would be probably a challenging task, since as we have seen inSec.5.2 the dimension of
the total Hilbert space when losses are a�ecting the system scales asN 2.

6.2.4 Dynamics in optical lattices

A further extension of our work would be to study the quantum dynamics of a M -site
optical lattice, occupied by N bosons. For instance, one could generalize the calculationof
the quantum state produced after a quench which we have presented for the two-sites case
in Ch.2, in the case of aM -site lattice. An approximated version of such a calculation has
been carried out [101, 104, 170], in which the initial \superuid" state (the M -site version
of the strongly coupled state for the BJJ) is described by theproduct state j i =

Q M
i =1 j� i i ,

wherej� i i = e�j � j2=2 P
n

� n
p

n!
jni i is the Glauber coherent state in the sitei . This is a good

approximation in the case in which the total particle number and the number of sites are
large, which is not always the case in experiments [170]. We propose to use a formalism
based on generalized SU(M) coherent states [27, 162]. In such a framework, a generalized
coherent state is de�ned as the displacement of a reference state as

j~yi = R̂(~y)jN; 0; 0::::; 0i = e
P M

k =2 y1k Jk 1 � y �
1k J y

k 1 jN; 0; 0::::; 0i

=
1

p
N !

 
MX

k=1

xk ây
k

! N

; (6.2)

where the SU(M) generatorsJ jk = ây
j âk satisfy [Ĵ jk ; Ĵmn ] = Ĵ jn � km � Ĵmk � nj , x1 = cos jyj

and xk = sin jyj
jyj yk for k � 2 [27]. Note the analogy of Eq.(6.2) with Eqs.(1.32) and

(1.29), which are recovered whenM = 2 by setting y = �=2e� i� . The ground state of
the Hamiltonian (5.32) is given by Eq.(6.2) with xk = 1 for each k [162, 170]. The �rst
purpose would be to show that under a quench, after a fractionof the period the state is
found in a superposition of generalized coherent states of the form (6.2).

This formalism also allows to treat the 4-mode set-up advanced in Ref.[171], in which
two atomic species are trapped in a double-well external potential, so that four modes
are naturally involved. Such a system is a promising tool to demonstrate entanglement
between spatially separated parties, as in the Einstein-Podolski-Rosen paradox [171, 172].
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Appendix A
Detection of macroscopic superpositions

A.1 Generating function of the distributions of the angu-
lar momentum operators eigenvalues for macroscopic
superpositions and incoherent mixtures of phase states

Let us now evaluate explicitely the generating function (3.14) for the q-component cat
state and the corresponding statistical mixture of coherent states. In the following we will
assume thatN is even. With the de�nition � = �= 2e� i� [71] and by using Eqs.(2.25), the
generating function for cat states with an even number of components can be rewritten
as

hcats
� (� ) = h (tq)je� Ĵ+ � � � Ĵ � j (tq)i = ju0j2

q� 1X

k=0

q� 1X

k0=0

h�e � i 2�k 0

q je� Ĵ+ � � � Ĵ � j�e � i 2�k
q i (A.1)

From the disentangling theorem (Eq. (A5) in Ref.[71]) we have

e� Ĵ+ � � � Ĵ � = e� � � Ĵ � e� log(1+ j� j2) Ĵz e� Ĵ+ (A.2)

The operator e� Ĵ+ acts on the coherent state on the right sides of Eq.(A.2) as a changing
in the amplitude of the coherent states, due to

e� Ĵ+ j� i =

�
1 + j� + � j2

� N=2

(1 + j� j2)N=2
j� + � i

h� 0je� � � Ĵ � =

�
1 + j� 0 � � j2

� N=2

(1 + j� 0j2)N=2
h� � � j (A.3)

(similarly for the left hand side of Eq.(A.2)). Then, we need to calculate the action of the
operator e Ĵz over two general coherent states, which gives

h� 0je Ĵz j� i =

=
1

(1 + j� j2)N=2

1
(1 + j� j2)N=2

N=2X

n= � N=2

N=2X

m= � N=2

�
N

N
2 + n

� 1=2�
N

N
2 + m

� 1=2

� n+ N
2 � 0�(m+ N

2 )hmje Ĵz jni

=
e� N= 2

(1 + j� j2)N=2(1 + j� 0j2)N=2

�
1 + �� 0�e � N : (A.4)
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Using Eqs.(A.3) and (A.4), equation (A.2) becomes

h� 0je� Ĵ+ � � � Ĵ � j� i =
1

(1 + j� j2)N=2

1

(1 + j� 0j2)N=2
e� N

2
�
1 + ( � + � )

�
� 0 � �

� � e � N
(A.5)

with

� =
�
j� j

tan j� j

 = � log
�
1 + j� j2

�
(A.6)

Substituting equations (A.5) and (A.6) in Eq.(A.1) and usin g � = 1, we obtain �nally for
even q

hcats
� (� ) = ju0j2

e� N
2

2N

q� 1X

k=0

q� 1X

k0=0

ckc�
k0

�
1 +

�
e� i 2�k

q + �
� �

ei 2�k 0

q � � �
�

e
� N

(A.7)

while the mean over the corresponding mixture gives

hmixt
� (� ) =

1
q

e� N
2

2N

q� 1X

k=0

�
1 +

�
e� i 2�k

q + �
� �

ei 2�k
q � � �

�
e

� N
(A.8)

and, for odd q

hcats
� (� ) = j~u0j2

e� N
2

2N

q� 1X

k=0

q� 1X

k0=0

~ck ~c�
k0

�
1 +

�
e� i 2�k

q � i �
q + �

� �
ei 2�k 0

q + i �
q � � �

�
e

� N

hmixt
� (� ) =

1
q

e� N
2

2N

q� 1X

k=0

�
1 +

�
e� i 2�k

q � i �
q + �

� �
ei 2�k

q + i �
q � � �

�
e

� N
(A.9)

This can be further simpli�ed as

hmixt
� (� ) =

1
q

q� 1X

k=0

�
j cos

�
2

j + i sin
�
2

sign
h
cos

�
2

i
sin

�
2�k

q
� �

�� N

hcats
� (� ) = hmixt

� (� ) (A.10)

+ ju0j2
q� 1X

k6= k0=0

ckc�
k0

2N

�
j cos

�
2

j
�

1 + e� i 2� ( k � k 0)
q

�
+ sin

�
2

sign
h
cos

�
2

i �
ei ( 2�k 0

q � � ) � e� i ( 2�k
q � � )

�� N

for an even number of components, while for an oddq one obtains Eqs.(3.18) and (3.19)
of the main text.

A.2 E�ect of time noise in the reconstruction of the prob-
ability distribution P� (r )

In order to roughly estimate the e�ect on the reconstruction of the pro�le P� (r ) of an error
in the time at which the measurements of the angular momentumoperators are performed,
we extract Nmeas values oft distributed normally with a variance � 2 around the time tq at
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Figure A.1: Eigenvalue distribution P� (r ) corresponding to Ĵx (� = �= 2) for the three-
component coherent superposition withN = 20, in the case in which an error in the time
of the measurement is taken into account, at various values of the variance � of the time
distribution.

which the q-component cat state is formed, i.e. according top(t; t q) = e�
( t � t q ) 2

2� 2 =(
p

2�� ).
Then, we averageP� (r; t ) = jhr j (t)ij 2 where j (t)i is given by Eq.(2.19), obtaining thus

P� (r; t q) =
1

Nmeas

NmeasX

i =1

P� (r; t ): (A.11)

Such an estimate is correct only in the limit of an in�nite num ber of measurement, which
allows to sample many times each timet, and to perfectly reconstruct each probability dis-
tribution P� (r; t ). We illustrate the estimate (A.11) in Fig.(A.1). We see that a standard
deviation � = 1=N is somehow critical, in the sense that for lower standard deviations the
probability distribution still displais the peaks corresp onding to the cat state, while for
higher values the recognition of such state fails.

A.3 Rewriting the quasi-probability distribution f (x; y)

The probability distribution f (x; y) of Eq.(3.32) can be rewritten to change the interval
of integration. To do this, we �rst separate the contributio n for positive and negative �
in Eq.(3.32), obtaining

f (x; y) =
�

1
2�

� 2 � Z �

0
d��

Z �

0
d�h � (� )ei� (sin �x � cos�y ) + I

�
(A.12)
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with

I =
Z 0

� �
d� (� � )

Z �

0
d�h � (� )ei� (sin �x � cos�y ) =

Z �

0
d� 0� 0

Z �

0
d�h � (� � 0)e� i� 0(sin �x � cos�y ) ;

(A.13)
where we set� 0 = � � . Let us drop the prime. Due to the de�nition of the generating
function Eq.(3.14), the following property follows:

h� (� � )e� i� (sin �x � cos�y ) = hei� (Jx sin � � Jy cos� ) i e� i� (sin �x � cos�y )

= he� i� (Jx sin( � + � )� Jy cos(� + � )) i ei� (sin( � + � )x � cos(� + � )y)

= h� + � (� )ei� (sin( � + � )x � cos(� + � )y) : (A.14)

This allows to rewrite Eq.(A.13), de�ning also � 0 = � + � , as

I =
Z �

0
d��

Z �

0
d�h � (� � )e� i� (sin �x � cos�y )

=
Z �

0
d��

Z 2�

�
d� 0h� (� )ei� (sin � 0x� cos� 0y) : (A.15)

Substitution of Eq.(A.15) in Eq.(A.12) yields to equation ( 3.33) of the main text.

A.4 Connection with the Wigner function

Referring to the de�nition in Eq.(3.11) taken from Ref.[116], let us consider the projection
along the equator, i.e.

Ws(x1; x2) =
Z 1

�1
dx3Ws(~x) =

Z

SU(2)
d~ys(� )tr

h
ei~y ~J �̂

i
e� i (x1y1+ x2y2 )

Z 1

�1
dx3e� ix 3y3

= (2 � )
Z

SU(2)
d~ys(� )tr

h
ei (y1Jx + y2Jy ) �̂

i
e� i (x1y1+ x2y2 ) � (y3): (A.16)

Now, with the parametrization of Ref.[116] we have

y1 = � sin � sin �

y2 = � sin � cos�

y3 = � cos�: (A.17)

Since

� (y3) = � (� cos� ) =
�

�
� � �

2

�

�
; (A.18)

hence from Eq.(A.16) we obtain

Ws(x1; x2) =
Z

d��s (� )
Z

d� sin �
Z

d�
�

�
� � �

2

�

�

� tr
h
ei� (sin � sin �J x +sin � cos�J y ) �̂

i
e� i� (x1 sin � sin � + x2 sin � cos� )

=
Z

d�d�s (� )tr
h
ei� (sin �J x +cos �J y ) �̂

i
e� i� (x1 sin � + x2 cos� ) ; (A.19)

which clearly displais the same structure as Eq.(3.33).



Appendix B
Coherent spin squeezing and quantum
Fisher information

B.1 Demonstration of Eq.(4.39) for the spin squeezing pa-
rameter

In the following we show that the spin squeezing parameter� 2(t) in a Bose Josephson
junction is always optimized along a direction contained inthe (yOz)-plane.

Let us observe that the angular momentum covariance matrixG(t) de�ned by Eq.(4.31)
has vanishing matrix elementsGxy (t) = Gxz (t) = 0. In fact, in the absence of noise this
matrix G(t) =  (0) (t) is given by Eq.(4.34), and we have seen in Sec. 5.1.4 that it preserves
the same structure in the presence of phase noise. Due to thisspecial structure of G(t),
the uctuations of the angular momentum operator along an arbitrary direction n̂ given
by Eq.(2.8) is

(� Jn (t))2 =
X

i;j = x;y;z

n i Gij (t)n j (B.1)

= sin 2 � sin2 � G xx (t) +
X

i;j = y;z

n i Gij (t)n j :

The sum over i; j in the second line can be written as (sin2 � cos2 � + cos2 � )n̂0T G0(t)n̂0,
where we introduced the notationG0(t) for the two-by-two submatrix of G(t) in the plane
(yOz) and the normalized vector

n̂0 =
ny ŷ + nzẑ

p
sin2 � cos2 � + cos2 �

(B.2)

in this plane. Furthermore, we observe that during the dynamics of the noisy junction
one hashĴy i t = hĴz i t = 0 at all times. As a consequence, the expectation values of the
angular momentum operators along the directions de�ned by Eq.(2.7) are given by

hĴp1 i t = cos � hĴx i t

hĴp2 i t = � cos� sin � hĴx i t : (B.3)
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Combining these results and using the fact thatGxx (t) � 0, we obtain from Eq.(2.6)

N� (t)2

4
� 2

~n(t) =
sin2 � sin2 � G xx (t)

1 � sin2 � sin2 �
+ n̂0T G0(t)n̂0

� G� (t) = min
n̂0

�
n̂0T G0(t)n̂0	 (B.4)

= min
n̂2 (yOz)

�
n̂T G(t)n̂

	

where � (t) = 2 hĴx i t =N is the visibility and G� (t) the smallest eigenvalue ofG0(t). Since
it is clear that the inequality in Eq.(B.4) is an equality for n̂ equal to the corresponding
eigenvector n̂� (t) of G� (t), this demonstrates that the squeezing is minimized along a
direction n̂� (t) contained in the (yOz)-plane. Combining Eqs.(4.28) and (B.4), we obtain
that the optimum coherent spin squeezing is given by Eq.(4.39).

B.2 Determination of the time t � when the optimization di-
rection of the Fisher information changes in the absence
of noise

If the number N of atoms is even, the direction of optimizationn̂(0)
F of the Fisher informa-

tion in a noiseless Bose Josephson junction is alongx-axis at the time t2 = T=4 of formation
of the superposition of the two phase statesj� = �= 2; � = 0 i and j� = �= 2; � = � i . These
phase states are indeed diametrically opposite on the equator of Bloch sphere along this
axis. Sincen̂(0)

F (� ) = n̂(0)
+ (� ) is in the (yOz)-plane at times � = 2 �t=T � 1 (see Sec.4.4),

the optimizing direction thus changes abruptly from the (yOz)-plane to the x-axis at some
time � � 2]0; �= 2[ satisfying

 (0)
x (� � ) =  (0)

+ (� � ) : (B.5)

In this appendix we determine � � explicitely in the limit of large total atom number
N , supposed to be even. We may infer from the previous discussion that � � is neither
close to 0 nor close to�= 2. Consequently, we look for a solution of the implicit equation
(B.5) in the interval � 2 [N � � ; �= 2 � N � � ], � being a positive exponent strictly smaller
than 1=2. Introducing the variables u � cos(� ) 2 [0; cos(N � � )] and v � cos(2� ) 2
[� cos(2N � � ); cos(2N � � )], we obtain with the help of Eqs.(4.35) and (4.37)

4( (0)
+ (� ) �  (0)

x (� ))
N

= � (N � 1)vN � 2 + Nu2N � 2 (B.6)

+2( N � 1)u2N � 4(1 � u2) + O(Nu4N � 8) + O(Nv2N � 4) :

Setting  (0)
+ (� ) =  (0)

x (� ) gives the equation

�
2 �

1
u2

� N � 2

= 2 � u2 N � 2
N � 1

+ O(e� N 1� 2�
) : (B.7)

For large N , the right-hand side of Eq.(B.7) is strictly larger than one and is of the order
of unity. Hence the solution must satisfy j2� u� 2j > 1 and 2� u� 2 ' � 1. We may exclude
the positive sign as the valuesu = � 1 correspond to� ' 0 or � = � outside the studied
time interval. The relevant solution u of Eq.(B.7) is thus close to 1=

p
3 and smaller than

this number. Let us note that for odd N 's, such a solution does not exist; indeed, in this
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case Eq.(B.5) has no solution (see Sec.4.4). Let us setu = 1=(
p

3(1 + � )). Then from
Eq.(B.7) we obtain

e(N � 2) ln(1+6 � + O(� 2 )) =
5
3

+ O(� ) + O
�

1
N

�
(B.8)

from which we �nd

� =
1

6N
ln

�
5
3

� �
1 + O

�
1
N

��
(B.9)

In terms of the dimensionless time� � we get

� � = arccos
�

1
p

3

�
+

ln(5=3)

6
p

2N
+ O

�
1

N 2

�
: (B.10)
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Appendix C
Quantum Fisher information and coherent
spin squeezing at thermal equilibrium

C.1 Squeezing at T = 0, K = 0

The squeezing in the ground state of the BJJ atK = 0 is an indeterminate expression.
To evaluate its limiting value, we use the perturbation theory to the second order with
unperturbed Hamiltonian Ĥ0 = � Ĵ 2

z , and Ĥ I = � 2K Ĵx . The ground state is the only
non-degenerate state for the unperturbed Hamiltonian. Theexcited two-fold degenerate
levels are given by

j (1)
n i = jni � 2K

X

m6= n

hmjĴx jni

E (0)
n � E (0)

m

jmi

= jni +
K
�

2

4

q � N
2 + n + 1

� � N
2 � n

�

(2n + 1)
jn + 1 i +

q � N
2 � n + 1

� � N
2 + n

�

(� 2n + 1)
jn � 1i

3

5 ;

while the ground state expansion yields

j (1)
0 i = j0i � 2K

X

m6= n

hmjĴx jni

E (0)
n � E (0)

m

jmi = j0i + b(j � 1i + j1i ) ; (C.1)

where we de�nedb = K
�

q � N
2 + 1

� N
2 ; the normalization is �xed by h (1)

0 j (1)
0 i = (1+2 b2).

125



126Quantum Fisher information and coherent spin squeezing at thermal equilibriumxC.2

Indicating with h~Oi � h (1)
0 jÔj (1)

0 i

h (1)
0 j  (1)

0 i
, with the use of Eq.(C.1) we obtain

h~Jx i =
2b

(1 + 2b2)

s �
N
2

+ 1
�

N
2

h~Jy i = h~Jz i = 0

h~J 2
x i =

1
4(1 + 2b2)

�
N

�
N
2

+ 1
�

+ 2b2
�

N
�

N
2

+ 1
�

+
�

N
2

� 1
� �

N
2

+ 2
���

h~J 2
y i =

1
4(1 + 2b2)

�
N

�
N
2

+ 1
�

� 2b2
�

N
2

� 1
� �

N
2

+ 2
��

h~J 2
z i =

2b2

(1 + 2b2)

h ~Jx Jy i = h ~JxJz i = 0

h ~JyJz i =
� b

i (1 + 2b2)

s �
N
2

+ 1
�

N
2

:

(C.2)

Due to Eqs.(C.2), we �nd that the direction which optimizes t he squeezing isz. With the
de�nition (2.6) we then obtain

� 2 = � 2
z =

N � 2Ĵz

hĴx i 2 + hĴy i 2
=

N 2b2

4b2
� N

2 + 1
� N

2

; (C.3)

which renders Eq.(4.32) of the main text.

C.2 Quantum Fisher information and coherent spin squeez-
ing at thermal equilibrium

We want to calculate the Fisher information and the squeezing (optimized over all the
possible directions) at thermal equilibrium when T = 1

K B � is non zero, at � = 0, in the
framework of the two-mode Hamiltonan (1.24) modeling the bosonic Josephson junction.
As for Sec.4.3 of the main text, this provides an indication of the usefulness of the equi-
librium state of the BJJ for sub-shot noise phase estimationin atom interferometry, when
the temperature is �nite. We focus again on the case of symmetric modes� = 0.

The density matrix at temperature T is

�̂ =
X

k

pk jkihkj (C.4)

where jki are the N + 1 eigenstates which diagonalize the Hamiltonian Eq.(1.24) Ĥ jki =
Ek jki , and the pks are given by the Gibbs distribution

pk =
e� �E k

Z
(C.5)

with Z the partition function Z =
P

k e� �E k .
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Figure C.1: Energy spectrum from the Hamiltonian diagonalization as a function of r =
K=� , with N = 10, � = 0. For r � 0 the spectrum is quadratic (see Sec.C.2.1), while for
r � 1 the level spacing is linear (see Sec.C.2.2).

To compute the Fisher information, we use the covariance matrix (4.29) introduced in
Sec.4.2. In reference to Eq.(4.29), we introduce the notation

ei;j (l; k ) = hl jJ i jkihkjJ j jl i ; (C.6)

which allows to rewrite the covariance matrix as

[ C ]i;j =
1
2

X

l;k

(pl � pk)2

pl + pk
ei;j (l; k ): (C.7)

As we have done in Sec.4.3, we �rst tackle in the next following two subsections the
limiting cases of the problem, namely the limit K = 0 and � = 0. We will address
numerically the general case.

C.2.1 Limiting case I: K = 0, � = 0

In this limit the Hamiltonian is reduced to Ĥ = � Ĵ 2
z , with as eigenstates the Fock states

given by Eq.(1.26), with double degeneracy except the ground state n = 0. Therefore

Z = 1 + 2

N
2X

n=1

e� ��n 2
(C.8)

and �̂ =
P N

2
n=1 pn jnihnj with pn = e� ��n 2

=Z. From (C.6) it is easy to calculate
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1
4

�
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N
2

+ k + 1)(
N
2
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