Mélange et dynamique de la turbulence en écoulements libres à viscosité variable
Benoît Talbot

To cite this version:

HAL Id: tel-00557891
https://tel.archives-ouvertes.fr/tel-00557891
Submitted on 20 Jan 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Table des matières

1 **Introduction** 6

2 **Turbulence isotrope et diffusion turbulente** 16

 2.1 Le problème posé par la turbulence 16
 2.2 Morphologie des écoulements : observations et statistiques 20
 2.3 Dynamique de la turbulence dans l’espace physique 29
 2.4 La diffusion turbulente 34

 2.4.1 Les échelles du mélange turbulent 36
 2.4.2 Équations de base régissant le transport du scalaire au sein d’un écoulement 37
 2.4.3 Décroissance du scalaire dans un écoulement turbulent isotrope à grand nombre de Reynolds 40
 2.4.4 Décroissance du scalaire dans la région dissipative 41
 2.4.5 Les particularités du scalaire actif 44

3 **Technique couplée Fil Chaud et Diffusion Rayleigh** 45

 3.1 Préambule 45
 3.2 Les difficultés pour obtenir simultanément les propriétés du champ dynamique et scalaire dans un écoulement turbulent de fluides hétérogènes 47
 3.3 Développement analytique de l’Anémométrie à fil chaud couplée à la Diffusion Rayleigh monopoint dans un mélange *Propane-Air-Néon* 49

 3.3.1 La méthode du décalage temporel 49
 3.3.2 Anémométrie à fil chaud 50
 3.3.3 La Diffusion Rayleigh monopoint pour la mesure de concentration 60
 3.3.4 Signaux instantanés de viscosité dynamique et cinétique 64

 3.4 Vérification expérimentale des développements analytiques 65

 3.4.1 Erreurs maximales commises sur la mesure anémométrique à fil chaud 65
3.4.2 Erreurs maximales commises sur la détermination des fractions de propane par diffusion Rayleigh 69

3.5 Dispositifs expérimentaux et conditions opératoires ... 71
3.5.1 Le générateur d’écoulement turbulent ... 71
3.5.2 Les conditions d’écoulement testées ... 72
3.5.3 La chaîne de mesures expérimentales ... 73
3.5.4 Les incertitudes sur le signal de diffusion Rayleigh ... 75
3.5.5 Les résolutions spatiales et temporelle de la technique couplée HWA/RLS 77

3.6 Rappels sur les jets simples axisymétriques turbulents ... 78
3.6.1 Les jets d’un fluide homogène incompressible dans un fluide environnant identique 78
3.6.2 Les jets d’un fluide avec densité variable vis-à-vis du fluide environnant 83
3.6.3 Propriétés de quelques jets inhomogènes .. 87

3.7 Validation de la technique sur un jet axisymétrique turbulent 88
3.7.1 Synthèse des conditions d’écoulement testées et des résultats présentés 88
3.7.2 Evolution axiales des quantités moyennées ... 88
3.7.3 Profils radiaux des quantités moyennées et fluctuantes 92

4 Étude expérimentale - axe d’un jet axisymétrique ... 96
4.1 Champ proche d’un jet rond turbulent : le mécanisme d’entraînement 97
4.1.1 Mécanisme de base ... 97
4.1.2 Extension au champ lointain .. 103
4.2 Influence d’une densité variable et d’une viscosité variable sur le mélange turbulent ... 104
4.2.1 Effets d’une densité variable sur le macromélange (taux d’entraînement) 104
4.2.2 Origine du micro-mélange turbulent : instabilités secondaires à densité variable ? 106
4.2.3 Origine du micro-mélange turbulent : effets de viscosité stratifiée à bas Reynolds ? 108
4.2.4 Conclusion partielle sur ces rappels bibliographiques .. 113
4.3 Morphologie physique et statistique des champs scalaire et de vitesse 114
4.3.1 Signaux instantanés et première approche de la répartition de l’énergie cinétique 115
4.3.2 Statistiques globales ... 117
4.3.3 Statistiques à chaque échelle .. 128
4.4 Conclusion sur le chapitre ... 134

5 Le champ proche d’un jet axisymétrique ... 137
5.1 Dynamique des champs scalaire et de la vitesse dans l’espace physique 138
Lien avec la Combustion non-prémélangée

6.1 Intérêt des propriétés d’une turbulence en transition en écoulements de fluides hétérogènes pour la combustion

6.2 La combustion des régimes de flammes non-prémélangées

6.2.1 La flamme triple placée dans un écoulement laminaire

6.2.2 Base de la modélisation des flammes non-prémélangées turbulentes

6.3 L’écoulement en champ proche derrière la lèvre d’un brûleur

6.3.1 Régime laminaire et distance d’auto-inflammation

6.3.2 Régime turbulent

6.4 Dispositif expérimental pour l’étude du sillage proche d’une lèvre de brûleur plan 2D

6.4.1 Dispositif expérimental et conditions opératoires

6.4.2 Profils de vitesse en sortie - Conditions Air-Air

6.4.3 Profils de vitesse en sortie - Conditions Propane-(Air-Néon)

6.4.4 Auto-similitude d’une couche de mélange Air-Air - influence de la lèvre

6.4.5 Scénario pour la transition à la turbulence 3D derrière une lèvre

6.5 Conclusion partielle et perspectives

Conclusions et perspectives

7.1 Perspectives

Turbulence isotrope dans un fluide homogène

A
Résumé

Ces travaux concernent l’étude expérimentale et analytique de la turbulence en phase de développement dans les fluides hétérogènes à densité et à viscosité variable. Ils font appel à des outils de diagnostics expérimentaux (anémométrie à fil chaud, technique de diffusion Rayleigh, Vélocimétrie Doppler Laser), et au formalisme des équations de Navier-Stokes à viscosité variable.

L’adaptation d’une technique d’anémométrie à fil chaud, couplée avec une technique de diffusion Rayleigh, pour les mesures simultanées de vitesse et de concentration dans un mélange turbulent propane-air-néon, est d’abord réalisée. L’innovation porte sur l’indépendance de la mesure de la vitesse. Après sa validation, la plate-forme expérimentale est exploitée pour l’étude comparative d’un jet de propane émergeant dans un milieu air-néon, à viscosité et densité variable, avec un jet d’air classique, à même quantité de mouvement injectée initialement. Il est montré une précocité du régime auto-similaire pour le jet de propane, qui n’est pas dû aux effets de densité variable, mais plutôt à des effets de viscosité dans la région de transition à la turbulence du champ proche du jet qui intensifient l’entraînement du fluide extérieur. Les propriétés du champ dynamique et du mélange turbulent dans ce jet de propane montrent par ailleurs une réduction drastique de la gamme des échelles turbulentes, une plus forte dissipation d’énergie cinétique, une diminution du nombre de Reynolds local et l’apparition d’un régime de Batchelor pour le scalaire. Ce travail se poursuit ensuite par un approfondissement des propriétés dans le champ proche, complétés par une approche analytique à partir de la réécriture des équations de Navier-Stokes à viscosité variable. Une nouvelle formulation pour la dissipation faisant apparaître des termes supplémentaires positifs avec des corrélations ’gradients de viscosité-gradients de vitesse’ nous permet de comprendre l’ensemble de ces résultats. Il ressort que pour cette turbulence particulière, la dissipation et la pseudo-dissipation ne peuvent pas être confondues, comme pour une turbulence isotrope "classique" en fluide homogène. L’intérêt de ces travaux dépasse le cadre de la turbulence fondamentale et nous proposons à la fin de ce mémoire quelques retombées directes intéressantes pour le contexte de la combustion, et plus particulièrement la stabilisation des flammes partiellement prémélangees.

Mots clés : turbulence, mélange turbulent, viscosité variable, densité variable, anémométrie à fil chaud, diffusion Rayleigh, jet axisymétrique, champ proche, dissipation, combustion partiellement prémélangee.
Nomenclature

Alphabet latin

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADL</td>
<td>Anémométrie Doppler Laser</td>
</tr>
<tr>
<td>C_k</td>
<td>Constante de Kolmogorov</td>
</tr>
<tr>
<td>D</td>
<td>diamètre interne du jet</td>
</tr>
<tr>
<td>D_{ii}</td>
<td>coefficient de diffusion moléculaire</td>
</tr>
<tr>
<td>E</td>
<td>densité spectrale 3D d’énergie cinétique</td>
</tr>
<tr>
<td>F</td>
<td>coefficient d’aplatissement (flatness) des différentes grandeurs</td>
</tr>
<tr>
<td>G</td>
<td>densité spectrale 3D du scalaire</td>
</tr>
<tr>
<td>f</td>
<td>fréquence ou force de volume</td>
</tr>
<tr>
<td>f_c</td>
<td>fréquence de coupure</td>
</tr>
<tr>
<td>g</td>
<td>accélération de la gravité</td>
</tr>
<tr>
<td>h</td>
<td>constante de Planck ou hauteur du canal de la couche de mélange</td>
</tr>
<tr>
<td>k</td>
<td>nombre d’onde</td>
</tr>
<tr>
<td>k</td>
<td>vecteur d’onde</td>
</tr>
<tr>
<td>k_u</td>
<td>coefficient d’évolution de loi axiale pour la vitesse moyenne</td>
</tr>
<tr>
<td>K_u</td>
<td>coefficient d’évolution de loi radiale pour la vitesse moyenne</td>
</tr>
<tr>
<td>k_Y</td>
<td>coefficient d’évolution de loi axiale pour la fraction massique moyenne</td>
</tr>
<tr>
<td>K_Y</td>
<td>coefficient d’évolution de loi radiale pour la fraction massique moyenne</td>
</tr>
</tbody>
</table>
\(Fr \) Nombre de Froude
\(L_i \) longueur intérieure
\(L_\delta \) Echelle externe du scalaire
\(P \) pression moyenne
\(p \) pression fluctuante
\(PIV \) Vélocimétrie par Image de Particules
\(PLIF \) Fluorescence Induite par Plan Laser
\(Pr \) nombre de Prandtl
\(q^2 \) énergie cinétique
\(r \) direction radiale ou module du vecteur de séparation entre deux points de l’espace, ayant la signification d’une échelle
\(r \) vecteur direction
\(Re \) nombre de Reynolds
\(Re_\lambda \) nombre de Reynolds local basé sur l’échelle de Taylor \(\lambda_T \)
\(Ri \) nombre de Richardson
\(R_\nu \) ratio de viscosités cinématiques (oxydant / combustible)
\(R_\mu \) ratio de viscosités dynamiques (oxydant / combustible)
\(R_\rho \) ratio de densité (combustible / oxydant)
\(Sc \) nombre de Schmidt
\(S \) coefficient de dissymétrie (skewness) des différentes grandeurs
\(S_{ij} \) tenseur des taux de déformation du mouvement instantané
\(s \) ratio de densité d’une couche de mélange \((s=U_{lent}/U_{rapide})\)
\(s_{ij} \) tenseur des taux de déformation du mouvement d’agitation turbulente
\(t \) temps
\(\bar{U} \) vecteur vitesse moyenne, \((U, V, W)\)
\(\bar{u} \) vecteur vitesse fluctuante, \((u, v, w)\equiv(u_1, u_2, u_3)\)
\(\bar{x} \) vecteur position, \((x, y, z)\equiv(x_1, x_2, x_3)\)
\(x, X \) direction transversale 1 du jet ou direction transversale de la couche de mélange
\(y, Y \) direction transversale 2 du jet ou direction verticale de la couche de mélange
\(Y \) fraction de mélange massique instantanée
\(y \) fraction de mélange massique fluctuante
\(z, Z \) direction longitudinale du jet ou de la couche de mélange
\(Z \) fraction de mélange
\(\Re \) paramètre de ratios de vitesses pour les couches de mélange introduit par Ho et Huang (JFM 1990)
Alphabet grec

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>coefficient de surchauffe ou variable générale pour les fluctuations de vitesse dans les directions 1 et 2</td>
</tr>
<tr>
<td>β</td>
<td>coefficient de glissement thermique</td>
</tr>
<tr>
<td>χ</td>
<td>fraction molaire</td>
</tr>
<tr>
<td>δ</td>
<td>incréments spatiaux</td>
</tr>
<tr>
<td>ϵ</td>
<td>taux de dissipation de l’énergie cinétique</td>
</tr>
<tr>
<td>ε</td>
<td>taux de pseudo-dissipation de l’énergie cinétique</td>
</tr>
<tr>
<td>ϵ_q</td>
<td>rendement quantique</td>
</tr>
<tr>
<td>ϵ_s</td>
<td>taux de dissipation du scalaire</td>
</tr>
<tr>
<td>γ</td>
<td>taux de cisaillement</td>
</tr>
<tr>
<td>Γ</td>
<td>circulation</td>
</tr>
<tr>
<td>λ_K</td>
<td>micro-échelle de longueur de Kolmogorov</td>
</tr>
<tr>
<td>λ</td>
<td>conductivité thermique</td>
</tr>
<tr>
<td>λ_T</td>
<td>micro-échelle de longueur de Taylor</td>
</tr>
<tr>
<td>λ_i</td>
<td>valeur propre dans la $i^{ème}$ direction</td>
</tr>
<tr>
<td>λ_ω</td>
<td>longueur d’onde du laser</td>
</tr>
<tr>
<td>η</td>
<td>coordonnée radiale adimensionnée par la distance longitudinale</td>
</tr>
<tr>
<td>μ</td>
<td>viscosité dynamique du fluide</td>
</tr>
<tr>
<td>ν</td>
<td>viscosité cinématique du fluide</td>
</tr>
<tr>
<td>ϕ</td>
<td>densité spectrale 1D du scalaire</td>
</tr>
<tr>
<td>θ</td>
<td>direction azimuthale</td>
</tr>
<tr>
<td>ρ</td>
<td>masse volumique du fluide</td>
</tr>
<tr>
<td>σ</td>
<td>section efficace Rayleigh</td>
</tr>
<tr>
<td>$\tilde{\omega}$</td>
<td>terme source de l’équation de transport des espèces</td>
</tr>
<tr>
<td>ω</td>
<td>vorticité instantanée</td>
</tr>
<tr>
<td>Ω</td>
<td>vorticité moyenne</td>
</tr>
<tr>
<td>τ</td>
<td>temps de corrélation du champ de vitesse fluctuante</td>
</tr>
</tbody>
</table>

Indices

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\cdot)^+$</td>
<td>grandeur considérée en un point $\vec{x} + \vec{r}$ de l’espace</td>
</tr>
</tbody>
</table>

Symboles
<table>
<thead>
<tr>
<th>Symbole</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>⟨⟩</td>
<td>moyenne en temps et/ou en espace</td>
</tr>
<tr>
<td>Δ</td>
<td>incrément d’une certaine grandeur</td>
</tr>
<tr>
<td>∇</td>
<td>opérateur gradient</td>
</tr>
<tr>
<td>∇²</td>
<td>opérateur Laplacien</td>
</tr>
<tr>
<td>∂</td>
<td>opérateur dérivée partielle</td>
</tr>
</tbody>
</table>
Indices

<table>
<thead>
<tr>
<th>Index</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>relatif à l’échelle de Batchelor</td>
</tr>
<tr>
<td>c</td>
<td>relatif au centre, à l’axe du jet</td>
</tr>
<tr>
<td>D</td>
<td>relatif à l’échelle de diffusion</td>
</tr>
<tr>
<td>e</td>
<td>relatif à l’entraînement</td>
</tr>
<tr>
<td>equ</td>
<td>relatif à la notion de diamètre ou de rayon équivalent</td>
</tr>
<tr>
<td>hom</td>
<td>obtenu en supposant l’homogénéité</td>
</tr>
<tr>
<td>i</td>
<td>relatif à la $i^{ème}$ direction</td>
</tr>
<tr>
<td>inf</td>
<td>valeur à l’infini</td>
</tr>
<tr>
<td>inj</td>
<td>relatif aux conditions d’injection</td>
</tr>
<tr>
<td>iso</td>
<td>obtenu en supposant l’isotropie</td>
</tr>
<tr>
<td>j</td>
<td>relatif à la $j^{ème}$ direction</td>
</tr>
<tr>
<td>mix</td>
<td>relatif à la composition mélangée du fluide</td>
</tr>
<tr>
<td>max</td>
<td>valeur maximale de la grandeur</td>
</tr>
<tr>
<td>mes</td>
<td>grandeur mesurée</td>
</tr>
<tr>
<td>noise</td>
<td>grandeur relative au bruit</td>
</tr>
<tr>
<td>0</td>
<td>grandeur relative aux conditions initiales (de sortie)</td>
</tr>
<tr>
<td>oxy</td>
<td>grandeur relative à l’oxydant (mélange 30%Air-70%Néon)</td>
</tr>
<tr>
<td>q</td>
<td>relatif à une espèce chimique</td>
</tr>
<tr>
<td>w</td>
<td>relatif au laser (wavelength)</td>
</tr>
<tr>
<td>ν</td>
<td>relatif à une échelle visqueuse</td>
</tr>
<tr>
<td>θ</td>
<td>relatif à la direction azimutale</td>
</tr>
</tbody>
</table>
Chapitre 1

Introduction

Existe-t-il des phénomènes naturels ou artificiels nous entourant qui ne soient pas empreints, de manière plus ou moins explicite, par la physique de la turbulence ? Non, quasiment aucun...

Parmi les premiers, on peut citer l’apparition d’un cyclone, la circulation sanguine aortique, ou la distribution des phytoplanctons dans les océans ; parmi les seconds, les tribulations des marchés boursiers, les rejets de gaz polluants par les moteurs automobiles ou aéronautiques, ou la dispersion des fumées à la sortie des cheminées d’usines. La majorité des écoulements qui peuplent notre quotidien sont soumis, en apparence, à une certain degré de désorganisation.

La turbulence possède de surcroît une capacité intrinsèque extraordinaire : celle de pouvoir diluer rapidement un colorant dans un fluide par exemple, d’homogénéiser un bain à une température qui soit à peu près la même partout, ou encore de mêler intimement un oxydant et un combustible dans le court laps de temps précédant la phase d’allumage dans un moteur. Ce phénomène particulier et offrant des retombées industrielles intéressantes est appelé le transport et mélange du scalaire.

Qu’est-ce donc que la turbulence plus exactement ? Dans le domaine particulier de la mécanique des fluides, la turbulence traite la description et la compréhension des échanges d’énergie cinétique (champ de vitesse) au sein d’un fluide, dès lors que celui-ci devient soumis à diverses perturbations et quitte son régime de stabilité initial. Dans le cadre d’une démarche scientifique cohérente et complète, étudier la turbulence dans un écoulement, c’est d’abord "observer" l’écoulement (numériquement ou expérimentalement) puis chercher à comprendre "comment" i.e. de quelle manière le champ de vitesse s’organise à la suite des perturbations rencontrées, pour répondre in fine à la question "pourquoi" s’organise-t-il de telle sorte i.e. quels sont les mécanismes physiques sous-jacents qui expliquent ces phénomènes.
Depuis maintenant presque un siècle, de nombreux travaux ont été engagés sur ces trois aspects à la fois distincts, indissociables et concomitants, lorsque la turbulence atteint un stade pleinement développé, c’est-à-dire lorsque le degré de désorganisation des mouvements du fluide arrive à un stade "suffisamment avancé" (nombre de Reynolds $Re = LV/\nu \to \infty$, L et V étant une longueur et une vitesse typique de l’écoulement, et ν la viscosité cinématique du fluide). Les pionniers de cette turbulence [193][137][138][189][12] ont tout d’abord tenté de répondre à ces questions essentielles indépendemment des conditions initiales de l’écoulement, et pour des nombres de Reynolds très élevés. Ils ont cherché pour cela à décrire le champ de vitesse et à définir ses propriétés (sa morphologie physique et statistique), et à comprendre la phénoménologie de la physique qui régit le transfert d’énergie turbulente au sein d’un écoulement (sa dynamique). Ce pan entier de la turbulence qui n’a pas encore livré tous ses mystères à l’heure actuelle, a fait jaillir des concepts clés formant aujourd’hui une souche de connaissances unanimement partagées, dont font parties intégrantes, entre autres, la notion d’échelles et de structures turbulentes, de cascade d’énergie cinétique intuitée par Richardson en 1922 [221], puis formalisée mathématiquement ensuite par la théorie de Kolmogorov en 1941 [137], qui sera ensuite corrigée en 1962 [139][191] suite aux remarques émanant d’Obukhov et de Landau sur les "anomalies" statistiques constatées expérimentalement [14]. Ces "anomalies" statistiques traduisent une intermittence de la dissipation d’énergie qui résulte à la fois des effets de structures tourbillonnaires à petite échelle et de la complexité des interactions locales (comme le cisaillement entre les couches de fluides) et non-locales (comme les ondes de pression ou la viscosité qui agissent à distance au sein de l’écoulement) entre toutes ces structures [19][146].

Lorsqu’une substance (fluide chaud ou froid, colorant, ...) est présente dans un tel écoulement turbulent, le mélange de cette substance advectée arbore une structure complexe et chaotique, composée d’un ensemble de structures identifiables possédant chacunes leurs propres caractéristiques spatiale et temporelle [289]. La répartition spatio-temporelle non-uniforme d’un champ de vitesse turbulent va induire une répartition également non-uniforme de la substance, par suite des effets d’étirement et de compression au sein de l’écoulement, mais également des phénomènes de diffusion moléculaire. Les deux premiers effets vont provoquer, au fur et à mesure, le repliement et l’amincissement des structures scalaires, diminuant ainsi leur taille jusqu’à ce que les effets de diffusion prennent le relais ensuite pour irrémédiablement mettre un terme à ce processus via la dissipation du scalaire [252][258][260]. Plus le processus de mélange d’une substance est rapide, plus il apparaît de fréquentes occurrences de large fluctuations dans le champ scalaire, qui mettront un temps plus ou moins long avant d’être complètement dissipées. A l’inverse, une substance peut éventuellement modifier la structure du champ dynamique. On entrevoit l’interaction entre le scalaire et le champ dynamique. Aussi, un certain parallèle entre les statistiques des fluctuations du scalaire avec celles du champ de vitesse justifie l’appellation du comportement du scalaire au sein d’un écoulement turbulent comme turbulence du scalaire [252]. Les bases
de la compréhension du mélange turbulent ont émergé suite aux travaux des pionniers comme Batchelor [13], Obukhov [190] ou Corrsin [63], qui ont permis de donner le jour à des théories permettant de prévoir la décroissance de la variance du scalaire et qui portent leur noms (régimes de Batchelor et d’Obukhov-Corrsin).

Pour tenter de comprendre l’origine de cette turbulence développée du champ dynamique, des efforts ont été menés pour échaffauder une théorie sur les instabilités hydrodynamiques des écoulements parallèles cisaillés. Cette théorie a pour objectif de rendre compte de la transition d’un écoulement laminaire vers la turbulence, en formalisant le cadre mathématique général du devenir d’une perturbation infinitésimale dans le développement d’une instabilité convective ou absolue au sein d’un écoulement. Les deux principaux volets de cette théorie s’intéressent aux fluides visqueux (équation d’Orr-Sommerfeld obtenue indépendamment par chacun des auteurs), [194] [254], ou aux fluides parfaits (équation de Rayleigh, [218]). En énonçant le fameux critère du point d’inflexion, elles ont permis, entre autres, d’expliquer les instabilités les plus simples observées entre deux couches cisaillées de fluides parfaits à profils de vitesse constant (instabilité de Kelvin-Helmholtz, [112] [132]) et celles incluant des différences de densité entre les fluides (instabilité de Rayleigh-Taylor). Lorsque l’écoulement parallèle ne possède pas de point d’inflexion, les effets visqueux sont prépondérants, et l’équation d’Orr-Sommerfeld doit être considérée pour déterminer les conditions de stabilité de l’écoulement. Par conséquent, l’analyse de la stabilité de chaque typologie d’écoulement doit être envisagée (écoulement plan de Poiseuille, plan de Couette, couche limite, ...). Ce domaine d’étude a brassé un nombre important de travaux fondamentaux et a fait ressortir l’impact stabilisant et retardant des effets de la viscosité des fluides à viscosité homogène et constante sur la transition vers la turbulence pleinement développée. Son extension à des écoulements dont la viscosité est stratifiée est également un domaine d’étude investigué dont les princi-
CHAPITRE 1. INTRODUCTION

paux résultats montrent, quant à eux, une anticipation sur les processus de désstabilisation des interfaces des deux fluides en présence (voir par exemple les travaux de [122], associées aux bases théoriques des instabilités dans les écoulements à viscosité stratifiée [303][51]).

Il apparaît aujourd’hui un besoin grandissant d’acquérir une vision universelle de la turbulence pour comprendre dans sa globalité la turbulence développée en incluant ses origines, ce qui passe par la nécessité de progresser dans la compréhension du régime intermédiaire situé entre le déclenchement initial (instabilités hydrodynamiques) et le régime pleinement développée. Ce régime intermédiaire fait état de plusieurs caractéristiques bien particulières.

Le problème central posé par la turbulence est de comprendre comment est transportée l’énergie cinétique, depuis son injection aux grandes échelles (notée $I_0 = \lim_{T \to \infty} \frac{1}{T} \int_0^T I(t)dt$, avec $I(t) \equiv \int f_i(r, t)U_i(r, t)dr$, où f_i désigne le forçage, U_i le vecteur vitesse instantané et r le vecteur spatial) jusqu’à sa dissipation en chaleur aux plus petites échelles (noté $D_0 = \lim_{T \to \infty} \frac{1}{T} \int_0^T D(t)dt$, avec $D(t) \equiv \nu \int (\nabla U_i(r, t))^2 dr$ où ν est la viscosité cinématique du fluide). En d’autres termes, il s’agit d’étudier les mécanismes qui décrivent cette transition, ce qui sera appelé la cascade d’énergie. Lorsque la turbulence est pleinement développée (et en régime stationnaire), on peut écrire de manière simple l’équilibre entre l’énergie injectée et l’énergie dissipée, soit $I_0 = D_0$. Bien que cette condition d’équilibre soit relativement simple à formuler, la résolution du problème de la turbulence n’en demeure pas moins difficile.

En effet, cet équilibre postule uniquement un lien entre les conditions de départ et finales du processus de transferts d’énergie d’échelles en échelles. Il reste à découvrir le "chemin" que vont emprunter ces mécanismes de transferts. Hormis pour le cas où le nombre de Reynolds est très grand (conjecture de Taylor en 1938 [273]), le rôle de la viscosité du fluide va être essentiel dans le déroulement de ce processus de transferts d’énergie. La conservation d’énergie $I_0 = D_0$ l’atteste. En effet, cette égalité implique que pour une certaine quantité d’énergie initiale injectée I_0, les gradients de vitesse (au travers le Laplacien $\nabla^2 u$ dans le terme de dissipation $\nu \nabla^2 u$) qui vont se développer devront croître vers l’infini si la viscosité tend vers zéro ($\nu \rightarrow 0$) ou diminuer vers zéro lorsque la viscosité tendra vers l’infini ($\nu \rightarrow \infty$). Cette simple remarque illustre le "vase communicant" entre ces deux paramètres, et l’importance de la viscosité et de ses variations (ses gradients) sur la fabrication de la turbulence (des gradients de vitesse).

De surcroît, si la turbulence n’est pas pleinement développée (non-équilibre entre la Production et la Dissipation turbulente), l’importance des effets de viscosité va être renforcée à cause des effets de bas Reynolds. Ainsi, la question essentielle à la quelle nous tenterons de répondre au travers ce travail de doctorat est la suivante :

Quel est l’impact de gradients de viscosité cinématique sur la production des gradients de vitesse
dans l’écoulement turbulent en phase transitionnelle vers le régime pleinement développé ?

Une étude numérique très récente [149] a mis en évidence l’importance des propriétés thermophysiques dans la phase de transition à la turbulence, lorsque les processus de création d’énergie cinétique et de dissipation ne sont pas encore à l’équilibre, alors même que leur importance diminue au fur et à mesure que la turbulence s’établit et devient pleinement développée, corroborant ainsi l’hypothèse de Taylor formulée en 1938 sur les lois de la turbulence développée avec l’indépendance de la viscosité.

Plus précisément, voici quelques-unes des questions adressées dans ce mémoire :

– Quel est l’impact (sur les propriétés de la turbulence) d’une viscosité variable, et d’une densité variable au sein d’un écoulement en transition à la turbulence (jet simple) ?

– L’intermittence interne, observée en turbulence classique, apparaît-elle également avec autant d’intensité, et pour des échelles similaires à la turbulence dans des fluides homogènes ?

– Il est connu par la théorie des instabilités hydrodynamiques que des gradients de viscosité peuvent accélérer l’apparition d’une déstabilisation le long d’une interface de deux fluides très différents. Par conséquent, peut-on encore observer une cascade directe d’énergie (étirement de vortex) dans un tel écoulement ?

– Quelle est la gamme des échelles de cette turbulence ? Comment est-elle modifiée par rapport à celle d’un écoulement similaire à viscosité constante ?

– Est-ce que l’échelle des structures dissipatives peut toujours être évaluée par l’expression courante \(\lambda_K = (\nu^3/(\langle \epsilon \rangle))^{1/4} \), en remplaçant juste la viscosité par la viscosité moyenne du mélange, et le montant moyen du taux de dissipation par le montant moyen isotrope ?

– Est-ce que les équations pour l’estimation du bilan d’énergie cinétique sont modifiées ? Si oui, comment ?

Sur le plan des applications, les travaux dans lesquels nous nous sommes engagés peuvent avoir des retombées intéressantes. En effet, de nombreux procédés industriels (moteurs automobiles, foyers de combustion aéronautiques) fonctionnent pour des conditions d’écoulement qui n’est que rarement pleinement développé ou dont les défis de développements futurs et les verrous technologiques éventuels ne seront levés que grâce à une connaissance plus approfondie de la turbulence en cours de développe-
ment pour des fluides hétérogènes. Dans le domaine de la combustion par exemple (qui nous intéresse particulièrement dans ce travail), le mélange local du combustible et du comburant dans des brûleurs à combustion non-prémélangée est souvent réalisé entre des fluides qui présentent de telles variations de leurs propriétés thermophysiques, et pour des nombres de Reynolds locaux très bas. Citons le couple propane-air par exemple qui fera l’objet de notre étude, dont le ratio de viscosité cinématique, noté $R_\nu = \nu_{\text{air}}/\nu_{\text{C}_3\text{H}_8}$, atteint 3,5 à la température ambiante, et celui de la densité, noté $R_\rho = \rho_{\text{C}_3\text{H}_8}/\rho_{\text{air}}$ atteint 1,52. Pour le mélange butane/air, ces mêmes ratios atteignent respectivement 6,0 et 2,2. Ces inhomogénéités des propriétés thermophysiques ont une importance capitale sur le processus de stabilisation de l’extrémité de la flamme non-prémélangée derrière une lèvre. En effet, un tel régime de combustion se stabilise grâce à la présence d’une petite région de prémélange isotherme (sans réaction de combustion) en amont de l’extrémité de la flamme. Ainsi, connaître les propriétés de la turbulence à l’intérieur de cette région constitue un enjeu primordial au moins à deux points de vue :
– comme la "qualité" de la réaction de combustion est directement liée à la capacité qu’ont les réactants de bien se méler au niveau moléculaire, la distribution de l’énergie aux petites échelles constitue un paramètre essentiel,
– comme ce front d’extrémité de flamme est exposé aux structures turbulentes présentes en amont, celui-ci pourra subir des déformations (étirement, plissement) pouvant conduire à des extinctions, par les structures n’ayant pas été amorties par le saut de viscosité induit par la montée de température à la traversée du front. Ainsi, les échelles les plus grandes, ou plus généralement la gamme des échelles de la turbulence présente dans la région de prémélange isotherme, et leur intensité, est une information importante.

En considérant une taille typique de l’ordre du millimètre ($l \sim 1$ mm) pour cette région de prémélange isotherme, et une vitesse de propagation de flamme de l’ordre de $U = 0,4$ m/s, le nombre de Reynolds typique de cette région est de $Re_l \sim Ul/\nu \sim 20$ ($\nu \sim 18 \times 10^{-6}$ m2.s$^{-1}$).

Ce constat à portée industrielle établit un premier besoin, au niveau des applications, impliquant d’explorer plus en détail la turbulence non-pleinement développée pour des fluides dont les propriétés thermophysiques ne sont pas homogènes.

Pour conclure sur cette introduction, les raisons pour lesquelles nous nous sommes engagés dans ces travaux sont donc doubles :

– Apporter une contribution dans l’axe de recherche fondamentale de la turbulence non développée, pour des fluides à propriétés thermophysiques non homogènes,

– Faire un lien avec la combustion, en tentant de dégager de notre étude non-réactive les apports importants utiles permettant un meilleur éclairage sur la problématique de la stabilisation des
flammes non-prémélangées.

Ayant désormais fixé la portée générale des travaux présentés dans ce mémoire, brossé les tenants et aboutissants de ce travail de doctorat, et adressé les questions essentielles, nous allons terminer cette introduction par l’organisation de ce mémoire. Nous soulignons notre volonté au travers ce manuscrit de jongler de manière la plus systématique possible entre une approche "Fondamentale" et une approche "Appliquée".

Voici l’organisation que nous avons choisie pour présenter nos travaux dans ce mémoire :

– **Chapitre 2 : Les fondamentaux de la turbulence isotrope et des phénomènes de diffusion**

Ce chapitre regroupe l’essentiel des bases nécessaires pour la compréhension et la description à la fois du champ du scalaire et du champ dynamique. Il présente successivement les aspects morphologiques (physiques et statistiques) et dynamiques de la turbulence du scalaire et de la vitesse, pour une viscosité et une densité constantes. Ce chapitre est complété par des ajouts fournis très largement en annexe 1.

– **Chapitre 3 : Le développement d’une nouvelle technique couplée de mesure du champ de vitesse et du scalaire en écoulements à viscosité variable**

L’approche expérimentale de la turbulence pose de délicats problèmes à l’expérimentateur, et encore plus lorsque les propriétés des fluides ne sont pas homogènes. En particulier, les mesures temporelles en 1-point (par fil chaud) nécessitent la connaissance de la composition locale du fluide, donc des mesures de concentration simultanées et au même point. Dans ce travail, les mesures de concentration sont effectuées par diffusion Rayleigh. Les mesures simultanées et en même point, par fil chaud et diffusion Rayleigh, sont difficiles à réaliser (limitation des supports, système de déplacement, etc). Nous avons néanmoins réussi à adapter la technique de l’anémométrie à fil chaud afin de mesurer avec une bonne précision (moins de 5% d’erreur) les fluctuations de vitesse dans un écoulement turbulent à viscosité/densité variable (par exemple combustible/comburant). Cette technique a été couplée avec une deuxième technique (diffusion Rayleigh) pour la mesure simultanée des fluctuations de concentration. La principale avancée est que les mesures de vitesse sont indépendantes des mesures de concentration. Les résultats issus de cette méthode de mesure sont analysés et interprétés, après un bref rappel sur l’auto-similitude des jets homogènes et inhomogènes en densité. Nous démontrons l’intérêt d’un ajout de néon dans un mélange propane-air initial pour rendre les deux mesures de vitesse et de concentration indépendantes. La technique est utilisée sur un jet turbulent axisymétrique de propane débouchant dans un mélange "air-néon" présentant ainsi un ratio maximum de viscosité cinématique $R_\nu = \nu_{air} - N_e/\nu_{\text{C}_3\text{H}_8}$ de 5,5. Sa validation est effectuée via la comparaison avec un jet d’air classique débouchant dans l’air, et à même quantité de mouvement injectée. Ce travail a fait l’objet d’une publication en ’Experiments in
CHAPITRE 1. INTRODUCTION

Fluids.

– Chapitre 4 : L’étude du champ dynamique et du mélange le long de l’axe d’un jet rond à viscosité variable (jet de propane débouchant dans l’air mélange avec du néon, dont le ratio de viscosité $R_\nu = \nu_{\text{air}} - Ne/\nu_{C_3H_8}$ atteint 5,5).

Les résultats obtenus par la méthode de mesure développée dans le chapitre 3 sont intégrées et discutés dans ce chapitre. Le chapitre débute avec un rappel de la littérature sur :
– l’entraînement à grande échelle dans le champ proche des jets ; l’influence de la densité et de la stratification en densité est rappelée ;
– les effets de la viscosité variable sur le micro-mélange turbulent ; quelques données sur les instabilités interfaciales dans un milieu à viscosité variable, indispensables à l’interprétation de nos résultats sont rassemblées.
– les effets de la densité variable sur le micro-mélange, notamment sur l’impact de la taille des structures créées au sein de l’écoulement.

Nos résultats pour un jet hétérogène propane/(air-néon) à faible Reynolds local (pour lequel les effets de la viscosité sont importants) sont ensuite présentés le long de l’axe. La morphologie (physique et statistique) le long de l’axe est décrite en détail, pour le champ de vitesse et pour le champ de scalaire. Comme élément de comparaison, nous avons choisi un jet d’air, ayant le même jet momentum ($Mo=360$ kg.m$^{-1}$s$^{-2}$). En comparant ces deux écoulements ayant la même géométrie, il est montré que pour le jet de propane : le cône potentiel est beaucoup plus court, la turbulence naît plus vite, l’entraînement est plus important (auto-similitude précoce), les fluctuations turbulentes sont créées plus rapidement et ensuite détruites à un taux plus important, la décroissance des statistiques du jet de propane est beaucoup plus rapide, le nombre d’échelles engendrées dans l’écoulement réduit. En ce qui concerne le mélange, le nombre de Schmidt $Sc=\nu_j/D$ (ν_j désigne la viscosité cinématique locale) augmente avec la position aval et varie entre 1,36 et 7,5. Les spectres du scalaire présentent de belles régions de pente en k^{-1}. Notons ici que le scalaire (la composition du mélange) conduit directement à la détermination de la viscosité locale du fluide. Il s’agit d’un scalaire actif. Une compréhension, même qualitative, des propriétés de l’écoulement, fait appel à la connaissance dans le même point (et souvent simultanée) de la vitesse et du scalaire, donc de la vitesse et de la viscosité du fluide.

– Chapitre 5 : Gros plan sur le champ proche du jet axisymétrique.

Dans ce chapitre, nous nous intéressons au champ proche du jet, entre la sortie de la buse et 8 diamètres en aval. Nous menons une comparaison entre un jet de propane débouchant dans un mélange ‘air-néon’ et un jet d’air classique, ayant les mêmes quantités de mouvement initiales. Deux cas sont testés : $Mo=130$
et Mo=360 kg.m$^{-1}$.s$^{-2}$.

L’interprétation des résultats est finalement complétée par une étude analytique sur la dynamique des écoulements à viscosité et densité variable, où nous partons de la réécriture des équations de Navier-Stokes générales pour mettre en évidence des corrélations non-classiques ‘gradients de viscosité-gradients de vitesse’ dont l’importance est soulignée dans la transition à la turbulence le long de l’axe du jet. L’étude analytique du point de vue statistique passe par l’écriture des équations moyennes de quantité de mouvement, du jet momentum, de l’entraînement du jet, du bilan énergétique en 1 point, et aboutit aux équations des transferts d’énergie cinétique à chaque échelle.

– Chapitre 6 : Application à la stabilisation des flammes non-prémélangées derrière un obstacle mécanique.

Dans ce chapitre, nous replacions l’intérêt de nos travaux fondamentaux sur la transition à la turbulence dans un écoulement à viscosité variable pour le bénéfice de la communauté de la combustion. A partir d’un bref rappel sur le mécanisme de stabilisation de régime de combustion non-prémélangée, nous dégageons tout d’abord l’importance de la dynamique de l’écoulement dans le sillage proche d’une lèvre séparatrice, en amont du front de flamme, sur le processus de stabilisation globale du régime de combustion, par le biais d’une synthèse bibliographique. Nous faisons ressortir notamment comment les propriétés particulières de la turbulence transitionnelle dans cette région de l’écoulement contrôlent complètement le micro-mélange des réactants et la stabilisation globale du régime de combustion dans cette zone. Nous présentons ensuite quelques résultats obtenus (fluctuations de vitesse et de concentration, spectres d’énergie) dans le sillage proche d’une couche de mélange bidimensionnelle munie d’une lèvre séparatrice. Nous montrons finalement l’influence du profil de la lèvre et des conditions initiales sur les propriétés de l’écoulement turbulent en champ proche, en proposant un scénario de transition à la turbulence pleinement développée.
Les conclusions et les perspectives de ce travail seront discutées dans le Chapitre 7.
Chapitre 2

Turbulence et diffusion turbulente

Ce chapitre a pour objectif de présenter les concepts élémentaires de la théorie de la turbulence et de la diffusion turbulente, auxquels nous aurons recours dans la suite de ce mémoire. La présentation qui va suivre se veut être la plus proche possible de nos préoccupations, et rapporte l’essentiel des notions qui sont définies avec plus de détail en annexe 1.

Le chapitre balaye ainsi les notions essentielles et largement diffusées sur la turbulence pleinement développée pour les fluides homogènes, ainsi que sur la diffusion turbulente d’un scalaire passif et actif.

2.1 Le problème posé par la turbulence

La turbulence est un phénomène associé à une agitation, un mouvement désordonné, reflétant tantôt l’image d’une contrariété (les aléas des marchés financiers, les turbulences aériennes, les caprices de la météorologie), tantôt au contraire, une idée agréable (boire un café bien sucré, injecter le plus efficacement possible un médicament par intra-veineuse, conduire une voiture ”propre”). Incarnant ainsi à la fois les deux faces opposées d’une même médaille, le Yin et le Yang, la turbulence fascine et intrigue, et c’est la raison pour laquelle, probablement, elle suscite toujours autant d’intérêt et continue d’être sans conteste un des plus grands défis de mathématiques, de physique et d’ingénierie qui ait existé depuis plus de 100 ans. De plus, les retombées éventuelles à chaque pas en avant réalisé pour percer son mystère engendrent incontestablement des progrès technologiques et économiques indéniables.

Avant de décrire plus en détail la turbulence, ses structures et ses échelles, arrêtons-nous un instant sur le problème central de la turbulence. Le problème posé par la turbulence est de comprendre comment des quantités de grande taille ("grandes échelles") injectées dans un tel système, telles que l’énergie ou la vorticité, sont transportées à travers des échelles plus petites, pour y être dissipées entièrement en chaleur.
Ce processus peut se traduire mathématiquement en écrivant le bilan d’énergie cinétique suivant sur un volume V quelconque 3D :

$$\frac{\partial}{\partial t} \int_{V} \frac{1}{2} U_i^2 = \int_{V} f_i U_i + \int_{V} \nu \nabla^2 U_i = \int_{V} f_i U_i - \nu \int_{V} [\nabla U_i] \cdot [\nabla U_i]$$

(2.1)

Dans ce bilan, \(f_i \) représente le “forçage” dans l’écoulement, i.e. par exemple un dispositif mécanique d’entraînement ou un obstacle géométrique créant des structures possédant une taille caractéristique comparable à celle de l’objet. Cette échelle de forçage \(L_f \) est typiquement comparable à l’échelle intégrale \(L_i \) de l’écoulement.

Introduisant les notations \(E(t) \equiv \int \frac{1}{2} U_i(r,t)^2 dr \), \(I(t) \equiv \int f_i(r,t)U_i(r,t)dr \) et \(D(t) \equiv \nu \int \nabla U_i(r,t)^2 dr \), on peut écrire le bilan suivant :

$$\frac{\partial E(t)}{\partial t} = I(t) - D(t).$$

(2.2)

Si le système est en équilibre (ce qui est le cas dans une turbulence stationnaire), l’énergie injectée doit à chaque instant être entièrement dissipée à l’autre bout du processus. Le bilan (2.2) exprime par conséquent que l’énergie apportée par le terme d’injection \(f_i \) est entièrement dissipée par le terme de viscosité \(\nu \nabla^2 U_i \), aboutissant à l’écriture simple suivante :

$$I(t) = D(t).$$

(2.3)

On définit l’énergie totale de l’écoulement par :

$$\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} E(t) = E_0$$

(2.4)

et les taux moyens d’injection d’énergie \(\langle \epsilon_I \rangle \), et de dissipation d’énergie \(\langle \epsilon \rangle \), respectivement par les relations similaires suivantes :

$$\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} I(t)dt = I_0$$

(2.5)

$$\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} D(t)dt = D_0.$$

(2.6)

La conséquence directe du bilan (2.3) ci-dessus entraîne vers le plus important dilemme soulevé par la turbulence, et qui nous préoccupera tout au long de ce manuscript pour le cas des écoulements à viscosité non constante :

Comment l’énergie injectée dans le système se transfère-t-elle aux plus petites échelles et se dissipe-t-elle ?

En effet, l’observation faite expérimentalement démontre que l’énergie injectée et requise pour maintenir le système en équilibre devient indépendante de la viscosité si le nombre de Reynolds est infini (i.e. dans la limite \(\nu \to 0 \)). Le bilan (2.3) implique par conséquent que le champ de vitesse doit développer des gradients également infinis. Or, cela n’est pas observé expérimentalement ! Il doit donc y avoir une
déperdition d’énergie cinétique à des "étages" amont...

Nous nous proposons, pour achever ce préambule, d’approfondir cette remarque à l’aide d’une vision simpliste mais didactique de la turbulence, et de faire ressortir les deux paramètres essentiels sur lesquels repose toute la théorie de la turbulence, à savoir : la viscosité ν et le montant local du taux de dissipation ϵ.

Assimilons la turbulence à un ensemble de transmission constitué de plusieurs rangées de roues lisses (sans dent) de toutes tailles, en contact les unes aux autres, des plus grandes aux plus petites. Les roues les plus grosses sont situées en haut du système ; une d’entre elle est entraînée en rotation par une manivelle (le forçage). Les roues les plus petites sont situées en bas du système. Chaque roue est entraînée par sa voisine du dessus par friction. On considère que la friction est parfaite entre chaque roue, i.e. que l’entraînement se réalise sans glissement (sans perte d’énergie). Imaginons que ce dispositif puisse être plongé dans un carter d’huile, et par une première vue de l’esprit, que seules les roues les plus petites sont immergées sans affecter le niveau de liquide au cours de la rotation des roues. Au niveau des roues immergées (roues de Kolmogorov), un glissement va être possible en raison du film d’huile, et il se crée alors une dissipation d’énergie équivalant au montant local de dissipation volumique d’énergie par transformation en chaleur du cisaillement visqueux (premier principe de la thermodynamique).

C’est l’illustration de la théorie de Kolmogorov 1941, décrite plus en détail plus loin, et appliquée à notre système simple : l’énergie cinétique est transmise sans pertes de roue en roue (pas de frottement, pas de dissipation), et l’énergie acquise (augmentation de la vitesse linéaire sur les plus petites roues) est entièrement dissipée, de manière constante, au niveau des plus petites roues. Bien entendu, plus la viscosité de l’huile est élevée, plus la dissipation est grande, et inversement.

On conçoit aisément l’imperfection d’un tel modèle mécanique, qui ne prend pas en compte la perturbation de la ligne de niveau de l’huile dans le carter, due aux effets d’entraînement par barbotage. Dans ce modèle également, toutes les roues de la même taille ont la même vitesse, ce qui n’est pas le cas en réalité. Un modèle physique plus réaliste serait de prendre en compte ces deux possibilités, provoquant ainsi une variation aléatoire de la position de la ligne de niveau d’huile autour d’une position moyenne (on verra que cette agitation du niveau liquide entraîne une intermittence aux petites échelles de nature non-gaussienne), mais également une lubrification possible des roues situées en hauteur (échelles plus grandes) par projections plus rares qui engendrent ainsi l’apparition locale de quelques bouffées de dissipation aux échelles plus grandes que Kolmogorov (on verra que cela engendre cette fois une intermittence aux grandes échelles de nature gaussienne).

Avec ce modèle plus raffiné (qui sera celui de Kolmogorov en 1962), on conçoit "avec les mains" les notions fondamentales d’intermittence interne, et de transfert d’énergie cinétique non constant entre chaque échelle de la zone inertielle. De plus, à travers cette vision schématique de la turbulence, il est
aisé de comprendre que les deux paramètres pilotant le transfert d’énergie entre les roues sont uniquement : la viscosité (son intensité et la manière dont elle est distribuée spatialement et temporellement dans le système) et le montant de dissipation local d’énergie (le frottement local entre les roues qui sont atteintes par le liquide).

![Diagram](image)

Fig. 2.1 – Vision simpliste de la turbulence, vue comme un système mécanique ouvert. Dans ce système de transmission, l’énergie est transférée de roue en roue sans dissipation (pas de glissement) jusqu’aux petites roues (échelles de Kolmogorov) où toute l’énergie y est dissipée de manière constante (Kolmogorov 1941) en chaleur par le cisaillement du film d’huile présent entre les roues, ou bien de façon intermittente sur une gamme d’échelles plus larges par des phénomènes d’asperson et d’éclaboussure de liquide sur l’ensemble du système (Kolmogorov 1962). Dans le premier cas, le taux de transfert d’énergie cinétique entre les échelles est constant, et non constant dans le second (alternance de périodes dissipatives et non dissipatives sur les roues aspergées).

Avant de passer à la description physique et statistique, puis à la formalisation mathématique de la turbulence, notons encore comment ce modèle simpliste peut permettre aussi d’apprehender les propriétés curieuses de l’intermittence interne observées au fur et à mesure que le nombre de Reynolds croît. En effet, nous verrons plus loin qu’il a été observé de manière "surprenante" que plus le nombre de Reynolds grandit, plus l’intermittence interne est forte. Notre petit système de transmission permet de donner une image à ce phénomène "étrange". Augmenter le nombre de Reynolds revient dans notre système, soit à diminuer la viscosité du fluide dans le carter (passant de l’huile à l’eau par exemple), soit à augmenter la vitesse d’entraînement des roues à tous les étages. Dans le premier cas, cela va provoquer des "arrachages" plus aisés du fluide au niveau des roues par les forces d’inertie, l’eau étant moins "adhérente" aux parois. Dans le second cas, il y aura un barbotage plus intense car les roues de Kolmogorov tourneront plus vite. La conjugaison de ces effets va entraîner des fluctuations plus intenses du niveau de liquide (intermittence encore plus forte aux petites échelles), et des aspersions plus fréquentes sur une gamme de taille de roues voisines plus large (donc un taux de transfert d’énergie présentant encore plus de variabilité dans la région inertielle). La dissipation sera moins intense au
niveau des petites roues (aux petites échelles) à cause de la plus faible valeur de la viscosité, mais avec des variations plus violentes (à cause des variations de niveau de liquide plus rapides), et répartie sur une plus large gamme d’échelles en raison des éclaboussements plus nombreux et plus réguliers aux échelles plus grandes (l’intermittence devient donc encore plus gaussienne aux grandes échelles). Si au contraire on remplace l’huile par du miel (très visqueux), l’intermittence aux petites échelles sera plus faible (variations plus lentes du niveau de liquide) avec peu de phénomène d’aspersion aux plus grandes échelles (arrachage difficile du miel sur les roues par les forces d’inertie). Enfin, la dissipation sera d’intensité plus importante mais distribuée sur une gamme d’échelles plus étroite et décalée plus "à droite" vers l’échelle de Kolmogorov. Ainsi, à ce stade préliminaire, il paraît intuitif de penser que le phénomène d’intermittence est d’autant plus valide que la valeur absolue de la viscosité du fluide est élevée. Qu’en est-il lorsque la viscosité est variable au sein de l’écoulement ? C’est la question à laquelle nous tenterons de répondre à travers ce manuscrit.

2.2 Morphologie des écoulements : observations et statistiques

Afin de répondre à la question précédente posée page 15, nous avons besoin d’associer à la notion d’échelle (séparation entre deux points de l’espace) une entité physique, i.e. une région de l’espace caractérisée par son énergie, son enstrophie, etc... Deux points de vue s’offrent à nous :

a- une morphologie des champs instantanés,

b- une morphologie statistique.

a) Morphologie instantanée : les structures 3D

Tout écoulement turbulent pleinement développé est composé d’une multitude de "structures" observables et de toutes tailles. Parmi ces structures, on peut en identifier deux d’entre elles, très caractéristiques : les tourbillons et les nappes. Les premiers concentrent plutôt de la vorticité (régions elliptiques de l’écoulement, très peu dissipatives) alors que les deuxièmes sont plutôt le siège de cisaillements forts (régions hyperboliques de l’écoulement, très dissipatives). La génération d’un écoulement 3D pleinement turbulent provient du développement et de la propagation dans tout l’écoulement d’instabilités dites hyperboliques se formant dans les régions fortement cisaillées inter-tourbillons [48], et d’instabilités elliptiques des tourbillons provoquées par la déstabilisation des ondes de Kelvin dans le coeur de ces tourbillons [134].

La figure 2.2 montre un champ de vorticité dans un écoulement turbulent pleinement développé, obtenu par simulation numérique directe [127]. On peut ainsi y distinguer nettement des régions de l’écoulement où ces deux structures sont parfaitement identifiables. Toutefois, ce cliché numérique
montre également la complexité de l’organisation de ces structures et la difficulté à déceler et à qualifier distinctement ces structures dans certaines parties de l’écoulement.

Fig. 2.2 – Surfaces d’équivorticité issues d’une simulation directe d’un champ turbulent pleinement développé ($R_{\lambda} = 94$). Les lignes blanches montrent les longueurs des trois échelles typiques de l’écoulement : 100 fois Kolmogorov, Taylor et Intégrale. On peut apercevoir sur cette simulation des topologies de "structures" de vorticité en forme de tourbillon (vision de l’écoulement selon Tennekes) et en forme de nappes (vision de l’écoulement selon Corrsin). D’après Ishihara et al. (2007), [127].

Il apparaît que le tourbillon représente une structure persistante qui est souvent le résultat d’une instabilité primaire d’un écoulement initialement laminaire, et ce, que le fluide soit parfait ou visqueux. Il semble donc probable qu’il soit à la base de la transition vers la turbulence (Orszag et Patera [195]). Des études numériques (Vincent et Meneguzzi [287], Jimenez et al. [130]) et expérimentales (Cadot et al. [43], Villermaux et al. [286]) récentes confirment également que cette structure persiste aux plus petites échelles d’un écoulement turbulent. La figure (2.3) présente une visualisation d’un filament tourbillonnaire observé dans un écoulement turbulent. Ce cliché a été obtenu par une injection de bulles d’air à l’aide d’une sonde (visible sur la droite de l’image).

Fig. 2.3 – Visualisation expérimentale d’un tourbillon au sein d’un écoulement pleinement turbulent, d’après Cadot et al. (1995), [43].
b) Morphologie statistique : les échelles

Ces structures (tourbillons ou nappes) couvrent une gamme "d’échelles du mouvement" allant de l’échelle de forçage où le fluide est mis en mouvement, à l’échelle de dissipation où les mécanismes de dissipation moléculaires transforment l’énergie injectée en chaleur. Brasseur et al. [35] donnent comme définition d’une "échelle du mouvement", les échelles spatiales élémentaires associées au champ de vitesses dans différentes directions, soit $[u(x) - u(x + r)]$ pour la direction 1 par exemple. L’échelle étant ici représentée par la distance de séparation r, $[u(x) - u(x + r)]$ est appelé un incrément spatial longitudinal (direction principale de l’écoulement) de vitesse fluctuante. Les outils de base de l’analyse statistique des échelles dans l’espace physique sont les fonctions d’auto-corrélation, qui permettent de déterminer, entre autres, deux des échelles typiques d’un écoulement turbulent dont nous aurons besoin : l’échelle intégrale (la plus grande échelle), et la micro-échelle de Taylor. Pour la suite, nous adoptons la décomposition de Reynolds du mouvement turbulent, où la vitesse instantanée $U_i(t)$ s’écrit comme la somme de la vitesse moyenne $\langle U_i \rangle$ (le signe $\langle \rangle$ représente la moyenne obtenue sur l’ensemble statistique de toutes les particules considérées) et d’une fluctuation u_i (avec $i=1,2$ ou 3, les trois directions de l’écoulement).

La morphologie de base étant désormais établie, la deuxième étape pour répondre à la question de la page 15 implique directement de répondre avant cela aux autres questions essentielles suivantes :

Quelle est l’énergie de chacune de ces échelles ? Comment est-elle distribuée au sein de l’écoulement ? Quels sont les "outils" (formalismes mathématiques ou représentations statistiques usuelles) disponibles pour la caractériser et l’étudier échelle par échelle ?

Pour répondre, nous allons tout d’abord présenter très brièvement les deux représentations utilisées pour étudier la répartition de l’énergie aux différentes échelles : l’analyse de Fourier (les spectres) et les fonctions de structure d’ordre 2. Puis, les fondements de la théorie initialement proposée par Kolmogorov en 1941 pour donner un support formaliste à ces résultats vont être succinctement balayés. Enfin, sur la base de ces représentations statistiques, les limites de cette théorie seront pointées du doigt.

Quelle est l’énergie des échelles ? Comment est-elle distribuée au sein de l’écoulement ?

Bien que cela soit sujet à controverse [69], deux approches complémentaires sont traditionnellement utilisées pour analyser la distribution en moyenne de l’énergie cinétique au sein de toutes les "échelles du mouvement" dans une turbulence isotrope : les fonctions de structure (domaine physique) où les échelles du mouvement sont données à partir d’un vecteur position radial $r = re_r$ dans un ensemble moyenné de différences de vitesses, et l’analyse de Fourier (domaine spectral) où les échelles du mouvement sont données à partir d’un vecteur d’onde $k = ke_k$ (voir par exemple [189] pour plus de
détails). Elles sont considérées comme de bons indicateurs de la mesure de la densité d’énergie cinétique à travers la hiérarchie des échelles présentes dans un écoulement. Ces deux manières de “voir” la turbulence sont équivalentes dans le cas d’une turbulence homogène isotrope. En effet, mathématiquement, on a l’équivalence \(k \sim 1/r \) et \(e_r = e_k \) ; du point de vue physique également, car les fonctions de structure qui s’accommode d’un écoulement composé indifféremment de nappes ou de tourbillons, et l’analyse de Fourier qui le voit comme une somme de tourbillons uniquement, se rejoignent entièrement sous cette hypothèse de turbulence isotrope, puisque tout tourbillon peut toujours être assimilé à une nappe (enroulée sur elle-même), mais non l’inverse. Cette simple remarque fait sentir le besoin d’associer et de confronter en permanence les visions statistique et déterministe, et qu’un modèle statistique de la turbulence doit être conforté par un modèle déterministe.

Dans l’espace de Fourier, le forçage de l’écoulement se voit comme la concentration de \(\vec{f}(k) \) (voir Eq. (2.1)) autour des vecteurs d’onde \(k \) tels que \(|k| \approx k_f = 2\pi/L_f \). Si l’on suppose que la densité spectrale de l’énergie dans l’espace de Fourier \(E(k) = dE_<(k)/dk \) (où \(E_<(k) \) désigne l’énergie contenue dans les modes Fourier \(|k| < k \) ne dépend que de l’échelle de forçage \(L_f = L_i = 2\pi/k_f \) et du flux moyen d’énergie \(\langle \epsilon \rangle \), alors de simples considérations dimensionnelles imposent :

\[
E(k) = C\langle \epsilon \rangle^{2/3}k^{-5/3}
\]

qui est souvent dénommé spectre de Kolmogorov. Ce résultat traduit le fait qu’il existe une zone intermédiaire entre l’injection et la dissipation, où les tourbillons sont trop gros pour que les effets de la viscosité y soient importants, et trop petits pour retenir toute inhomogénéité à grande échelle. En raison de la présence de cette région inertielle caractérisée par une pente de spectre en \(k^{-5/3} \) et où la dissipation visqueuse est négligeable, Kolmogorov a émis, toujours pour des nombres de Reynolds élevés, une seconde hypothèse qui prolonge la première sur l’équilibre universel aux petites échelles. Il précise ainsi que dans la région inertielle, le spectre d’énergie ne dépend plus de la viscosité. Cette hypothèse amène directement le résultat important suivant : sur le domaine inertielle, le montant \(\epsilon \) du taux de dissipation, qui régit la décroissance énergétique, représente en réalité un flux conservatif d’énergie. En d’autres termes, le flux moyen d’énergie à travers les échelles est identique à toutes les échelles, c’est-à-dire qu’il équivaut au taux moyen d’injection et à celui de dissipation, i.e. \(\langle \epsilon_I \rangle = \langle \epsilon_D \rangle = \langle \epsilon \rangle \).

Lundgren [161] a montré qu’il était possible de retrouver un tel spectre d’énergie variant avec le nombre d’onde à la puissance \(-5/3 \) en superposant des tourbillons et des nappes de vorticité, ce qui avait été prédit analytiquement par Kolmogorov [137] puis validé expérimentalement par la suite (voir [98] pour une revue). La valeur de la constante \(C \), appelée constante de Kolmogorov pour le spectre tridimensionnel de la théorie K41, est \(C \sim 1.52 \). On définit de manière analogue (par exemple [259]), le spectre

\[^1\] Cette remarque fait allusion au modèle de Kolmogorov 1941 dont le principal “défaut” (l’intermittence non prise en compte) est qu’il n’est supporté par aucune spécificité géométrique particulière de l’écoulement.
unidimensionnel $E_{11}(k)$:

$$E_{11}(k) = C_k \langle \epsilon \rangle^{2/3} k^{-5/3} \quad (2.8)$$

qui est aussi relié aux intensités de turbulence longitudinale :

$$\langle u^2 \rangle = \int_{-\infty}^{\infty} E_{11}(k_1)dk_1 \quad (2.9)$$

Pour une turbulence isotrope, on peut également écrire les égalités suivantes :

$$E_{11}(k_1) = \frac{2}{\pi \langle u^2 \rangle} \int_0^{\infty} R_{11}^1(r_1) \cos(k_1 r_1)dr_1 = \int_{k_1}^{\infty} \frac{E(k)}{k} \left(1 - \frac{k_1^2}{k^2}\right)dk \quad (2.10)$$

En reprenant la définition d’une échelle du mouvement donnée précédemment, on peut définir une énergie cinétique pour chacune d’entre elles, proportionnelle au carré de l’écart de vitesse fluctuante entre deux points séparés de la distance r, soit $\langle (u(x) - u(x+r))^2 \rangle$. On le note généralement $\langle (\delta u(r))^2 \rangle$ et est appelé **fonction de structure d’ordre 2**. De manière générale, une fonction de structure d’ordre n est déterminée à partir de la fonction de densité de probabilité des incréments spatiaux de vitesse considérés, et exprimée par l’intégrale infinie suivante :

$$\langle (\delta u)^n \rangle = \int_{-\infty}^{\infty} (\delta u)^n PDF(\delta u) d(\delta u) \quad (2.11)$$

Sous l’hypothèse d’isotropie, les fonctions de structure à l’ordre 2 peuvent également être obtenues à partir des spectres d’énergie, via la relation suivante ([178][8] par exemple) :

$$\langle (\delta u)^2 \rangle = 2 \int_0^{\infty} E_{11}(k_1)[1 - \cos(k_1 r_1)]dk_1 \quad (2.12)$$

Comment se transmet l’énergie d’échelle en échelle ?

L’idée sous-jacente de la turbulence est la notion de cascade d’énergie (Fig. 2.4). Cette notion de cascade a été introduite la première fois par Richardson en 1922. Dans son livre [221], Richardson parle de tourbillons de toutes les échelles. Les tourbillons d’une certaine échelle sont transportés sans déformation par les tourbillons beaucoup plus grands qui transportent eux-même sans déformer les tourbillons beaucoup plus petits. Dans cette vision, seuls des tourbillons de tailles comparables peuvent interagir entre eux non-trivialement et transférer de l’énergie d’échelle en échelle (i.e. de proche en proche) comme si chaque tourbillon perdait la mémoire de son histoire à chaque transfert. Ces sont les termes d’interactions non-linéaires qui tendent à faire passer l’énergie des gros tourbillons aux plus petits par étirement, sans déformation donc sans dissipation (premier postulat), et ce processus n’est contrecarré que par la dissipation par la viscosité, le puits d’énergie étant déplacé en un bloc vers les plus petits
Fig. 2.4 – Cascade d’énergie vue par Lewis Fry Richardson en 1922 [221] et son célèbre Quatrain parodiant un poème de Swift : "Great whirls have little whirls that feed on their velocity and little whirls have lesser whirls and so on to viscosity (au sens moléculaire)". Dans cette vision du transfert d’énergie d’échelles en échelles, l’énergie est injectée aux plus grandes échelles (flèches rouges), et dissipée entièrement aux plus petites (flèches bleues).

La cascade d’énergie peut être analysée à travers les fonctions de structure d’ordre 3, notées $\langle (\delta u)^3 \rangle$ pour la direction 1 par exemple.

En effet, moyennant la précaution des trois hypothèses d’homogénéité, de stationnarité et d’isotropie locale pour une turbulence pleinement développée, Kolmogorov [138] a dérivé une équation permettant de relier les fonctions de structure d’ordre 3 longitudinales aux équations de Navier-Stokes. Cette équation, dénommée "l’équation de Kolmogorov" s’exprime ainsi :

$$\langle (\delta u)^3 \rangle = -\left(\frac{4}{5}\right)\langle \epsilon \rangle r + 6\nu \frac{d\langle (\delta u)^2 \rangle}{dr}$$ (2.13)

Si $\frac{d\langle (\delta u)^2 \rangle}{dr}$ tend vers zéro lorsque $r\to\infty$ (ce qui se voit nettement sur les figures A.5 A et B montrant le comportement des fonctions de structure d’ordre 2 pour les directions 1 et 2 d’un écoulement turbulent isotrope lorsque $r\to\infty$), l’équation (2.13) aboutit à une forme plus simple, appelée "loi des 4/5" [138] :

$$\langle (\delta u)^3 \rangle = -\left(\frac{4}{5}\right)\langle \epsilon \rangle r$$ (2.14)

ou bien écrite en la normalisant par l’échelle de Taylor,

$$\langle (\delta u)^3 \rangle = -\left(\frac{4}{5}\right)\langle r/\lambda_K \rangle$$ (2.15)

2. La phénoménologie sous-jacente à ce processus est la conservation de la circulation (théorème de Kelvin, $d\Gamma/dt = 0$) pour tous les tubes tourbillons tant que les échelles de Kolmogorov ne sont pas atteintes ; en effet, cette hypothèse qui signifie également que $\int_S \vec{w} \cdot \vec{n} ds = 0$, implique une augmentation de la vitesse radiale U_θ à la périphérie des tourbillons au fur et à mesure qu’ils décroissent en diamètre, ce qui induit l’augmentation progressive des termes de dissipation d’énergie par cisaillement $\propto (\nabla U_\theta)^2$ principalement dans les régions hyperboliques (entre les tourbillons).
Danaila et al. [68][9] ont proposé une autre expression pour les fonctions de structure, satisfaisant complètement l’équation reliant les fonctions de corrélations doubles \(B_{u,u} \equiv \langle u(x+r)u(x) \rangle \) et triples \(B_{uu,u} \equiv \langle u^2(x+r)u(x) \rangle \) des vitesses, directement dérivée de l’équation de Karman et Howarth en 1938 (voir par exemple [68] pour plus de détails):

\[
\frac{4}{5} \langle \varepsilon \rangle r = -\langle (\delta u)^3 \rangle + 6\nu \frac{d\langle (\delta u)^2 \rangle}{dr} - 3 \frac{\langle U \rangle}{r^4} \int_0^r s^4 \frac{\partial}{\partial x} \langle (\delta u)^2 \rangle ds
\]

(2.16)

La cascade d’énergie peut également être observée en utilisant une variante de la fonction de structure d’ordre 3, le coefficient d’asymétrie, noté \(S \) (skewness en anglais), qui est défini comme une fonction de structure normalisée :

\[
S = \frac{\langle (\delta u)^3 \rangle}{\langle (\delta u)^2 \rangle^{3/2}}
\]

(2.17)

Un exemple du coefficient de dissymétrie pour une turbulence isotrope est présenté sur la figure (2.5), en représentation logarithmique. On observe un plateau dans la variation de ce coefficient, pour la gamme d’échelles de la région inertielle, dont la valeur expérimentale est en parfait accord avec la prédiction théorique \(S \sim 0.25 \). Entre les échelles les plus grandes (à droite sur la figure) et la frontière de la région inertielle avec la région dissipative, la variation de S suit une loi de puissance. Aux grandes échelles, on trouve \(S=0 \), traduisant l’absence de transfert d’énergie cinétique.

Fig. 2.5 – Skewness \(S \) des incréments de vitesse longitudinaux, obtenu à partir de plusieurs écoulements pleinement turbulents isotropes, d’après [57]. (\(S \equiv S(l) \) sur la figure). En abscisse, est représenté \(\ln(r/L) / \ln(Re/Re^*) \), avec \(Re=\sqrt{(\delta u)^2 L/\nu} \), \(L=\)longueur de corrélation, \(Re^* \) est une constante universelle de la théorie K41 telle que \(c_K = (\langle \delta u^2 \rangle / (\varepsilon^{2/3}) r^{2/3}) = (Re^*/15)^{2/3} \).
La question qui se pose désormais est de savoir s’il existe des disparités dans la répartition de l’énergie entre échelles, dans un repère espace-temps ?

La théorie de Kolmogorov est censée s’affranchir du besoin d’une formalisation structurelle de la turbulence. Toutefois, nous allons voir que les notions de géométrie de la turbulence ressurgissent si l’on souhaite corriger ces modèles statistiques, ce qui constitue la grande difficulté et le dilemme majeur de la turbulence, entre l’adoption d’une vision purement déterministe ou d’une vision purement statistique.

Pour cela, considérons la différence de vitesse fluctuante longitudinale δu_1 entre deux points séparés d’une distance notée "r" (on considère uniquement la direction 1 de l’écoulement et on omet d’indice I par la suite). La formulation originale de Kolmogorov postule que la densité de probabilité des incréments de la vitesse $PDF(\delta u)$ est universelle dans la région inertielle, dont le seul paramètre est la vitesse dépendant de la distance r. Il s’ensuit, à partir d’arguments de conservation d’énergie, que :

$$PDF(\delta u) = F[\delta u/\langle \epsilon \rangle r^{1/3}]$$ \hspace{1cm} (2.18)

L’équation (2.18) est valide tant que la distance de séparation r est plus grande que l’échelle de dissipation λ_K, et plus petite que l’échelle intégrale des plus gros tourbillons, $L_1 = \langle u^2 \rangle^{3/2}/\langle \epsilon \rangle$. La conséquence directe de l’hypothèse de similitude stricte prise pour l’équation (2.18) est que les PDFs des gradients de vitesse doivent être universels (auto-similaires à toutes les échelles r considérées). La figure (2.6) montre que cela n’est pas du tout le cas et que la théorie de Kolmogorov K41 souffre d’un sérieux handicap.

En effet, Batchelor et Townsend [14] montrèrent à partir de leurs mesures expérimentales que l’équation (2.18) n’est pas valide par le fait que les gradients de vitesse deviennent considérablement intermittents dès lors que l’espacement spatial r considéré diminue (Fig. (2.6-A)), et Fig. (2.6-B)), extrait de [56]. En effet, en traçant les PDFs des incréments de vitesse longitudinaux, notées $PDF(\delta u)$, on remarque qu’aux grandes échelles, ces PDFs sont confondues avec la gaussienne de même écart-type.

Au fur et à mesure que les échelles diminuent vers la zone inertielle, on observe que les queues de ces PDFs deviennent asymétriques avec la queue du côté négatif plus élevée que la queue du côté positif. Aux plus petites échelles, ces queues prennent une forme "d’exponentielle étirée" c’est-à-dire l’exponentielle d’une puissance fractionnaire de la valeur absolue des incréments longitudinaux de vitesse [98].

Cette intermittence est bien entendu observée également sur les signaux temporels de dissipation d’énergie cinétique. Un exemple de signal de dissipation d’énergie cinétique instantané $\epsilon(t) \propto (\frac{\partial u}{\partial t})^2$, extrait de [268].

3. Pour des mesures expérimentales en un point, ces incréments spatiaux sont obtenus à partir des signaux temporels de la vitesse (comme ceux de notre fil chaud), grâce à l’hypothèse de Taylor locale, i.e. par la transformation "temps-espace" $x = x_0 - \int_{t_0}^{t} U(t) dt$, où $U(t)$ désigne le signal de vitesse mesuré. Cette technique nécessite néanmoins un rééchantillonnage à pas constant de la vitesse "spatiale" obtenue.

4. Ce résultat est la traduction directe de la loi des $4/5$ème de Kolmogorov (figure [2.13]) [98], et implique par conséquent un coefficient d’asymétrie négatif, et arborent une décroissance exponentielle. Du point de vue phénoménologique, il provient des processus d’étirement entre les tourbillons (cascade directe d’énergie).

5. Ce résultat, appelé intermittence, quant à lui, sera expliqué en détail dans le paragraphe suivant.
Fig. 2.6 – Tracé logarithmique des PDF des incréments longitudinaux de vitesse A) d’après des mesures dans l’hélium liquide à T ≈ 4.2K et Rλ ≈ 3000, [268] pour r/λK = 4 (a), 40 (b), 400 (c) et 4000 (d), B) d’après les mesures de Baudet et Naert dans un jet d’air à Rλ ≈ 380, tiré de [56] pour R/L1 = 0.00092, 0.0018, 0.0035, 0.0070, 0.014, 0.028, 0.056, 0.12, 0.22, 0.44, 0.8 et 1 de haut en bas (les courbes sont volontairement décalées vers le haut pour plus de clarté), la courbe en trait continu représente la densité gaussienne de variance unité pour l’échelle intégrale r = L1.

de nos mesures par fil chaud illustre parfaitement ce propos (Fig. 2.7). On y distingue nettement une alternance aléatoire de régions de forte activité et de faible activité de dissipation.

Cette observation démontre que le flux d’énergie entre les échelles n’est pas constant (ε ≠ ⟨ε⟩). Pour tenter d’expliquer ce phénomène, il a été remarqué qu’il était difficile de justifier la forme de l’équation (2.18), censée représenter une propriété des PDF(δu) localement, et ne faisant intervenir que des paramètres globaux. En un mot, aux plus petites échelles de séparation r ne peut correspondre un taux moyen de dissipation ⟨ε⟩ (une des remarques émises par Landau). Kolmogorov lui-même [139], suite à cette remarque, a pensé contourner cette difficulté en substituant l’équation (2.18) par une nouvelle équation (hypothèse de similitude raffinée):

\[
PDF(δu) = F[δu/(ε_r r)^{1/3}]
\]

(2.19)

où ε_r n’est plus un taux moyen de dissipation globalisé mais localisé sur une sphère de diamètre r, centrée sur un point situé à mi-chemin de l’intervalle de séparation r. Cette hypothèse de similitude raffinée est mieux confirmée par l’expérience (Fig. 2.8), bien que cette formulation ne fasse que déplacer le problème de la caractérisation des PDF(δu) par celle de ε_r !

L’intermittence peut également être observée grâce aux moments d’ordre pairs des incréments de vitesse, qui sont directement reliés aux équations du mouvement turbulent. Cette représentation consiste
à quantifier le comportement des PDF(δu) en terme de leurs fonctions de structure, normalisées et généralisées comme pour le moment d’ordre 3 lié à l’énergie présenté précédemment (skewness). On parle alors de coefficient d’aplatissement (flatness en anglais), qui est défini comme suit :

$$ F = \frac{\langle (\delta u)^4 \rangle}{\langle (\delta u)^2 \rangle^2} $$

D’après Eq. (2.18), il découle que :

$$ \langle (\delta u)^4 \rangle \sim r^{4/3} $$

et par conséquent que le facteur d’aplatissement F devrait être indépendant de la variable de séparation r. La figure (2.9) (courbe de flatness) montre que cela n’est pas le cas, ce qui illustre d’une autre manière l’intermittence. En effet, F augmente au fur et à mesure que la distance r diminue, et ne diminue que lorsque celle-ci atteint l’ordre de grandeur des échelles de Kolmogorov. De plus, le coefficient d’aplatissement augmente avec le nombre de Reynolds (figure 2.10). L’intermittence est caractérisée par un coefficient $F>3$ ($F=3$ dénotant une absence d’intermittence interne).

2.3 Dynamique de la turbulence dans l’espace physique

Dans cette section, nous allons tout d’abord redonner brièvement les équations du mouvement turbulent à viscosité constante (équations de Navier-Stokes "classiques"), qui nous serviront de base par la suite pour développer notre approche dans le cas d’une viscosité variable. Puis, très rapidement, les
CHAPITRE 2. TURBULENCE ISOTROPE ET DIFFUSION TURBULENTE

Fig. 2.8 – Tracé logarithmique des PDF des incréments longitudinaux de vitesse d’après des mesures dans l’air pour $0.02 < \frac{r}{L_1} < 0.36$ équivalant à $180 < \frac{r}{\lambda_K} < 3000$, augmentant par multiple de 2, d’après [16]. Le nombre de Reynolds basé sur l’échelle intégrale L_1 est 10^5. Sur la figure a) du haut, les incréments sont normalisés par $\langle \epsilon \rangle$ et par ϵ_r sur la figure b) du bas.

Fig. 2.9 – Skewness et Flatness dans un écoulement turbulent d’hélium liquide à $R_\lambda \sim 1500$, [263].
aspects énergétiques et plus particulièrement les bilans d’énergie cinétique pour le mouvement moyen et pour le mouvement fluctuant seront rappelés. Ces équations vont nous permettre de faire ressortir les termes importants (de dissipation et de pseudo-dissipation de l’énergie cinétique) où apparaît la viscosité moléculaire du fluide (μ). Dans le cas d’une turbulence isotrope et à grand nombre de Reynolds, il est connu qu’il y a équivalence entre la dissipation et la pseudo-dissipation. Cette égalité devient caduque dans le cas d’une turbulence à faible nombre de Reynolds ($R_{\lambda} \sim 20$), comme on le verra dans le Chapitre 5. Par conséquent, ces rappels théoriques sur la turbulence isotrope à Reynolds grand seront donnés avec un effort de concision maximum, n’ayant pour objectif que de bien fixer le cadre de notre futur travail dans le Chapitre 5. L’espace spectral est abordé dans l’annexe 1 uniquement. Nous renvoyons le lecteur aux ouvrages de référence (par exemple [275] ou [12]) pour de plus amples détails.

Les équations générales instantanées de la statistique en un point, décrivant le mouvement d’une particule de fluide en un point de l’écoulement, écrites moyennant les hypothèses suivantes :
– fluide incompressible et isovolume,
– propriétés des fluides (μ, ρ) constantes,
s’appellent les équations de Navier-Stokes :

\[
\frac{\partial U_i}{\partial x_i} = 0
\]

(2.22)

\[
\rho \left(\frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} \right) = \rho f_i - \frac{\partial P}{\partial x_i} + \mu \frac{\partial^2 U_i}{\partial x_i \partial x_j}
\]

(2.23)
CHAPITRE 2. TURBULENCE ISOTROPE ET DIFFUSION TURBULENTE

32

où f_i (i=1,2 et 3) désigne les forces extérieures de volume (gravité par exemple).

En appliquant la décomposition de Reynolds et l’opérateur moyenne d’ensemble, sur l’équation (2.22) et sur l’équation (2.23), on obtient respectivement l’équation de continuité du mouvement moyen et les équations de Reynolds du mouvement moyen (les forces f_i sont négligées), d’où on dérive directement l’équation de transport des tensions de Reynolds (par exemple [151] ou [53]) :

$$\frac{\partial (u_i u_j)}{\partial t} + \left(\frac{\partial (u_i u_k)}{\partial x_k} + \frac{\partial (U_i U_k)}{\partial x_k} \right) - \frac{\partial (u_i u_j u_k)}{\partial x_k} - \frac{1}{\rho} \left(\frac{\partial p}{\partial x_j} + \frac{\partial p}{\partial x_i} \right)$$

$$+ \nu \frac{\partial^2 (u_i u_j)}{\partial x_k \partial x_k}$$

$$- 2 \nu \left(\frac{\partial u_i}{\partial x_k} \left(\frac{\partial u_j}{\partial x_k} \right) \right)$$

(2.24)

Notons surtout que ce bilan fait ressortir deux termes importants où la viscosité moléculaire du fluide μ apparaît. Il s’agit des deux termes suivants :

- la diffusion moléculaire $\nu \frac{\partial^2 (u_i u_j)}{\partial x_k \partial x_k}$,

- la pseudo-dissipation $\langle \epsilon_{ij} \rangle = 2 \nu \left(\frac{\partial u_i}{\partial x_k} \left(\frac{\partial u_j}{\partial x_k} \right) \right)$.

Une écriture différente de la pseudo-dissipation est possible sous la forme [53] :

$$\langle \epsilon_{ij} \rangle = 2 \nu \frac{\partial}{\partial x_k} \left(\langle s_{jk} u_i \rangle + \langle s_{ik} u_j \rangle \right) - 2 \nu \left(\langle s_{jk} \frac{\partial u_i}{\partial x_k} \rangle + \langle s_{ik} \frac{\partial u_j}{\partial x_k} \rangle \right)$$

(2.25)

où on définit le tenseur de dissipation $\langle \epsilon_{ij} \rangle$, comme :

$$\langle \epsilon_{ij} \rangle = 2 \nu \left(\langle s_{jk} \frac{\partial u_i}{\partial x_k} \rangle + \langle s_{ik} \frac{\partial u_j}{\partial x_k} \rangle \right)$$

(2.26)

Avant de revenir sur ces deux termes très importants, et que nous serons amenés à réécrire lorsque nous
aborderons notre problématique pour les fluides hétérogènes, intéressons-nous aux deux équations régissant le bilan d’énergie cinétique, pour le mouvement moyen et pour le mouvement fluctuant.

L’équation d’énergie cinétique instantanée \(E \) se déduit de celle de la dynamique (Eq. 2.23) en multipliant scalairement par \(U_i \). Par suite, il est aisé de déduire le bilan d’énergie cinétique du mouvement moyen
\[
\frac{D\langle E \rangle}{Dt} = \rho \langle U_i \rangle f_i
- \frac{\partial}{\partial x_i} \langle P \rangle \langle U_i \rangle
+ \frac{\partial}{\partial x_j} (2\mu \langle S_{ij} \rangle \langle U_i \rangle)
- \frac{\partial}{\partial x_j} (\rho \langle u_i u_j \rangle \langle U_i \rangle)
- 2\mu \langle S_{ij} \rangle \langle S_{ij} \rangle
+ \rho \langle u_i u_j \rangle \frac{\partial}{\partial x_j} \langle U_i \rangle
\]

(2.27)

Concernant les termes faisant intervenir la viscosité moléculaire \(\mu \) :

– le troisième terme \(\frac{\partial}{\partial x_j} (2\mu \langle S_{ij} \rangle \langle U_i \rangle) \) représente la puissance dans le mouvement moyen des forces extérieures de viscosité moyenne.

– le cinquième terme \(2\mu \langle S_{ij} \rangle \langle S_{ij} \rangle \) n’est ni plus ni moins que le taux de dissipation du mouvement moyen.

L’équation de bilan moyen d’énergie cinétique du mouvement fluctuant \(1/2\rho \langle u_i u_i \rangle \) s’obtient à partir de l’équation de transport de Reynolds (Eq. [2.24]), par simple contraction d’indice \(i=j \):

\[
\frac{D\langle e \rangle}{Dt} = \frac{\partial}{\partial x_i} (\langle pu_i \rangle)
- \frac{\partial}{\partial x_i} (\langle eu_i \rangle)
+ \frac{\partial}{\partial x_j} (2\mu \langle s_{ij} s_{ij} \rangle)
- 2\mu \langle s_{ij} s_{ij} \rangle
- \rho \langle u_i u_j \rangle \frac{\partial}{\partial x_j} \langle U_i \rangle
\]

(2.28)

Les équations de bilan d’énergie cinétique étant rappelées, revenons sur les deux termes "puits" im-
CHAPITRE 2. TURBULENCE ISOTROPE ET DIFFUSION TURBULENTE

... importants que sont la dissipation et la pseudo-dissipation. En prenant la demi-trace de chacun de ces deux tenseurs de pseudo-dissipation (Eq. 2.25) et de dissipation (Eq. 2.26), soit respectivement \(\frac{1}{2} \langle \varepsilon_{ii} \rangle \) et \(\frac{1}{2} \langle \varepsilon_{ii} \rangle \), on obtient les taux de dissipation (par unité de temps et de volume) de pseudo-dissipation et de dissipation par le mouvement turbulent :

- **taux de pseudo-dissipation turbulente** \(\langle \varepsilon \rangle = \nu \left(\frac{\partial u_i}{\partial x_j} \right) \left(\frac{\partial u_i}{\partial x_j} \right) \), qui est toujours positif, et qui intervient en regroupement d’une contribution diffusive dans l’intégralité des termes de viscosité. Affecté du signe négatif dans l’équation de bilan de l’énergie cinétique du mouvement fluctuant (Eq. 2.28), il est qualifié de "pseudo-dissipation".

- **taux de dissipation turbulente** \(\langle \varepsilon \rangle = 2 \nu \langle s_{ij} s_{ij} \rangle \), qui représente bien la dissipation au sens thermodynamique usuel des irréversibilités intrinsèques au mouvement d’un fluide visqueux (quatrième terme à droite de l’équation 2.28). Il est associé au troisième terme de cette même équation (Eq. 2.28), terme qui exprime la puissance communiquée, en moyenne, par les fluctuations de forces extérieures de viscosité au cours du mouvement fluctuant.

On montre que l’on peut écrire la relation suivante entre le taux de dissipation et celui de pseudo-dissipation [53] :

\[
\nu \frac{\partial^2 \langle k \rangle}{\partial x_j \partial x_j} - \langle \varepsilon \rangle = 2 \nu \frac{\partial \langle s_{ij} u_i \rangle}{\partial x_j} - \langle \varepsilon \rangle \quad (2.29)
\]

où \(\langle k \rangle = \frac{1}{2} \langle u_i u_i \rangle = \int_0^\infty E(k) dk \) est l’énergie cinétique de la turbulence. Ainsi, pour une turbulence isotrope (écoulement homogène), la relation (2.29) se réduit à l’expression simple :

\[
\langle \varepsilon \rangle = \langle \varepsilon \rangle. \quad (2.30)
\]

Ce résultat est également valable à grand nombre de Reynolds, et plus généralement dès lors que la diffusion moléculaire est négligeable devant celle produite par le mouvement fluctuant.

2.4 La diffusion turbulente

Comment évolue une substance, appelée "scalaire" (colorant, tiers fluide), qui est déposée au sein d’un écoulement turbulent ?

Plus particulièrement, les questions concernant le scalaire sont les suivantes :
– Quelle est la morphologie (structures et statistique) du scalaire ? Est-elle strictement identique à celle du champ dynamique ?

– Le scalaire peut-il interagir avec le champ dynamique ? Si oui, de quelle manière ? Quels nouveaux mécanismes physiques cela implique-t-il ?

– Quelles sont les propriétés énergétiques particulières du scalaire dans les deux cas (cas du scalaire actif et passif) ?

Nous allons répondre à ces questions en réalisant un survol de toutes les notions introduites précédemment pour le champ dynamique, qui peuvent être transposées pour le champ d’un scalaire, et accentuer sur les spécificités liées au scalaire. Ce paragraphe est largement extrait de l’article de Revue de Dimotakis [73].

Le mélange d’une substance advectée par un écoulement turbulent arbore une structure complexe et chaotique, composée d’un ensemble de structures identifiables possédant chacunes leurs propres caractéristiques spatiale et temporelle (Fig. 2.11). La substance peut être soit un polluant dans le cas de l’étude d’un dispersant dans l’atmosphère par exemple, soit un colorant fluorescent déposé dans un écoulement dont on souhaite étudier les propriétés en laboratoire, ou encore un "objet" chaud ou froid tel que le mélange d’un fluide chaud dans un fluide froid (ou inversement). Dans le domaine de la combustion, il peut s’agir d’un gaz combustible se mélangant au sein de l’oxidant.

Plusieurs cas de figure se présentent :

– la substance advectée va rétro-agir fortement sur la dynamique de l’écoulement, par le biais de la création de nouvelles forces au sein de l’écoulement ou de la modification de forces existantes locales : par exemple via le changement de la densité des fluides, résultant soit d’un échauffement non-uniforme de la température au sein d’un écoulement pouvant induire l’apparition de forces gravitaires d’intensité non négligeable, soit par suite de l’introduction d’un fluide très dense au sein d’un fluide peu dense (mélange isotherme à densité variable). On parle alors de substance "active" ou de scalaire actif.

– à l’inverse, les effets de la substance sur l’écoulement initial sont tels qu’ils modifient très peu l’écoulement initial. Par exemple, si les forces de gravité sont faibles devant les forces d’inertie dans un écoulement où un fluide chaud a été introduit dans un fluide froid. On parle de scalaire passif. Que le scalaire soit actif ou passif, le mélange turbulent peut être décomposé selon trois phases distinctes, que sont : l’entraînement, la dispersion (ou brassage) et la diffusion. [86].
Fig. 2.11 – Exemple de mélange turbulent en fonction du temps depuis le dépôt d’une tache distincte (stade 1) jusqu’à son mélange intime au sein de l’écoulement turbulent (stade 4). On note la création d’une hiérarchie de structures de plus en plus large, notamment par un processus de filamentation (stade 2), incluant par la suite des structures de plus en plus fines entre chaque stade, par effet de diffusion du scalaire (stades 3 et 4 où on note une diminution accélérée du contraste noir-blanc à partir du stade 3). On observe aussi à l’œil nu la persistance du caractère inhomogène du mélange à toutes les échelles (séparation entre le blanc et le noir), même au stade final 4, comme si le scalaire restait piégé le long de certaines lignes de courant particulières. De plus, cette inhomogénéité spatiale n’est pas "autosimilaire" entre toutes les échelles présentes dans l’écoulement.

2.4.1 Les échelles du mélange turbulent

Contrairement au champ dynamique, le champ du scalaire contient a priori une plus large palette d’échelles caractéristiques. Ceci est probablement dû à son interaction complexe avec le champ de vitesse. Ainsi, Dimotakis [72] en dénombre cinq, dont voici leur définition :

– l’échelle "externe", notée \(L_\delta \), qui est donnée par le nombre de Reynolds global de l’écoulement \(Re = UL_\delta/\nu \). Elle correspond aux effets d’entraînement du scalaire par l’écoulement dynamique turbulent et est équivalente à l’échelle intégrale pour le champ dynamique ;

– l’échelle de Taylor-Liepmann, notée \(\lambda_T \), qui est reliée à la première par la relation \(\lambda_T \sim 5L_\delta Re^{1/2} \). Elle peut être vue comme la plus grande échelle physique pour laquelle l’énergie turbulente du scalaire peut être dissipée par la viscosité ; le coefficient 5 provient de la relation donnant l’épaisseur d’une couche limite laminaire (viscosité moléculaire pure), [72] ;

– l’échelle visqueuse, notée \(\lambda_\nu \) et valant \(\sim 50\lambda_K, \sim 50L_\delta Re^{-3/4} \) pour un jet turbulent [72]. Elle
définit la frontière interne des échelles visqueuses (les échelles pour lesquelles le spectre de la région inertielle commence à s’écarter de la puissance 5/3) ;

– l’échelle de diffusion du scalaire, notée λ_D et valant $\sim \lambda_\nu Sc^{-1/2}$. Elle est basée sur l’échelle visqueuse ;

– l’échelle de Batchelor, notée λ_B et valant $\sim L_\delta Re^{-3/4} Sc^{-1/2}$. Elle représente la plus petite échelle du scalaire et elle est de ce fait l’analogue de l’échelle de Kolmogorov.

Pour la plupart des gaz, le nombre de Schmidt vaut $Sc \sim 1$. Par conséquent, l’échelle visqueuse λ_ν et de diffusion λ_D sont sensiblement comparables. Pour des liquides ($Sc \approx 600 - 3000$) cependant, il se crée des échelles diffusives plus petites, procurant ainsi un rapport de ces échelles d’un ordre de grandeur typique $1/50 \geq \lambda_D/\lambda_\nu \geq 1/25$.

Ces remarques sur les ordres de grandeur des échelles illustrent la difficulté de résoudre numériquement ou de mesurer expérimentalement la diffusion d’un scalaire dans un écoulement turbulent. En effet, la résolution spatiale requise est comprise entre $2L_\delta/\lambda_D$ et $2\delta/\lambda_B$ [73]. Doubler le nombre de Reynolds implique de multiplier par 8 le nombre de points sur un maillage numérique par exemple. Les difficultés expérimentales sont similaires, avec toutefois un avantage indéniable. Alors que les simulations numériques se doivent de résoudre toutes les échelles (jusqu’aux plus petites), les mesures expérimentales peuvent se contenter de ne mesurer que jusqu’à une gamme donnée (par exemple jusqu’aux échelles visqueuses) des échelles dès lors que l’écoulement réel produit naturellement toute la gamme des échelles du scalaire.

Le processus de transition du mélange turbulent est décrit par Dimotakis [73]. Il définit ce processus de transition en discutant l’apparition de chacune des structures en fonction du nombre de Reynolds. Il aboutit à un tableau général, donné figures (2.12) et (2.13) [72] ou [80].

2.4.2 Équations de base régissant le transport du scalaire au sein d’un écoulement

Le transport d’espèces (scalaire) et les processus de diffusion sont décrits par un ensemble d’équations, ayant trait chacun à un scalaire en particulier. On peut généraliser ces phénomènes par l’équation générique suivante :

$$\frac{\partial}{\partial t}(\rho Y_q) + \frac{\partial}{\partial x_i}[\rho Y_q(u_i + v_{i,q})] = \bar{\omega}_{q}$$ \hspace{1cm} (2.31)

7. Le cas extrême est celui des très petites particules dans un écoulement, comme par exemple les fines gouttelettes d’eau dans l’atmosphère - formant ainsi les nuages-, pour lequel le nombre de Schmidt peut atteindre $10^5 - 10^6$, ce qui induit un rapport λ_D/λ_ν très petit dont la principale conséquence visible est l’apparition de fronts très marqués dans la distribution du scalaire (frontière du nuage très nette).
Fig. 2.12 – Comportement des régimes de fluctuations du champ dynamique et scalaire en fonction du nombre de Reynolds, d’après [80].

où u_i est la vitesse fluctuante locale de l’écoulement, $v_{i,q}$ la vitesse de diffusion de l’espèce q dans le repère de la vitesse u_i de l’écoulement, et $\bar{\omega}_q$ le taux de consommation-production de l’espèce.

En sommant sur toutes les espèces (i.e. $\sum_q Y_q = 1$ et $\sum_q \bar{\omega}_q = 0$), on retombe aisément sur les équations globales de conservation (respectivement des espèces et de la masse) :

$$\sum_q Y_q v_{i,q} = 0 \quad (2.32)$$

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i}(\rho u_i) = 0 \quad (2.33)$$

Si les gradients de concentration des espèces constituent une partie dominante du flux de diffusion, la vitesse de diffusion des espèces peut se réduire à l’écriture de la loi de Fick :

$$v_{i,q} = -D_q \frac{\partial}{\partial x_i} \ln(Y_q) \quad (2.34)$$

où D_q est le coefficient de diffusivité de l’espèce q dans le mélange de gaz. Si de plus, chaque espèce est conservée ($\bar{\omega}_q = 0$) et la densité du mélange est uniforme ($\rho = cte$), on peut écrire :

$$\frac{DY_q}{Dt} = \frac{\partial}{\partial x_i} (D_q \frac{\partial Y_q}{\partial x_i}) \quad (2.35)$$

8. Si l’espèce q considérée est en très faible concentration dans le mélange, le coefficient de diffusion qui lui est associé D_q peut être estimé par le coefficient binaire $D_{q,mix}$, où l’indice mix désigne le mélange de gaz entier comme un seul gaz.
CHAPITRE 2. TURBULENCE ISOTROPE ET DIFFUSION TURBULENTE

où $\frac{D}{Dt}$ est la dérivée particulaire lagrangienne dans le repère lié à la vitesse de l’écoulement u_i.

La loi de Fick (2.34) constitue une approximation permettant de fournir une relation minimale pour la vitesse de diffusion du scalaire ; elle ne prend pas en compte d’autres forces éventuellement présentes au sein d’un écoulement, et qui peuvent affecter le transport du scalaire. Parmi ces forces supplémentaires possibles qui induisent des termes non-Fickiens, citons les gradients de température et les gradients de pression, qui apparaissent respectivement dans les écoulements réactifs turbulents et le coeur des tourbillons (vortex). Les premiers peuvent atteindre des valeurs de l’ordre de $\frac{\partial T}{\partial x_i} \approx 10^6 \text{ K/m}$ au niveau du front de flamme ; les deuxièmes induisent des accélérations dans le coeur des tourbillons de la turbulence qui atteignent 10^5 fois l’accélération de la pesanteur. En effet, il a été démontré que les tourbillons sont capables de piéger et de confiner des particules sur des durées nettement plus longues que les régions hyperboliques (nappes), les préservant ainsi de la dispersion qui à lieu à l’extérieur des tourbillons [88]. Ces forces supplémentaires vont provoquer des phénomènes d’aggrégation ou de dispersion des espèces, à des échelles très petites (échelles de Batchelor λ_B). Les équations complètes qui tiennent compte de toutes ces forces et qui permettent de déterminer les vitesses de diffusion des espèces s’écrivent à partir des équations de Boltzmann (voir par exemple [118]).
CHAPITRE 2. TURBULENCE ISOTROPE ET DIFFUSION TURBULENTE

Un scalaire déposé au sein d’un écoulement turbulent va tendre à s’aligner rapidement dans la direction de l’étirement, formant ainsi des filaments d’épaisseur $l_f(t)$. Cette épaisseur de filament de scalaire $l_f(t)$ va ensuite diminuer de manière exponentielle avec l’étirement\(^9\) (diffusion). C’est grâce à ce mécanisme que la dispersion turbulente d’un scalaire est très efficace. Puis, le dernier stade sera celui de la dissipation (disparition complète de toute inhomogénéité) du scalaire, qui est un processus encore plus rapide (exponentielle d’exponentielle de l’étirement !).

2.4.3 Décroissance du scalaire dans un écoulement turbulent isotrope à grand nombre de Reynolds

Soit Y, le scalaire (une concentration dans notre cas de figure) et y sa fluctuation instantanée. La décroissance de la variance du scalaire, notée $\langle y^2 \rangle$, s’écrit:\(^6\)

$$\langle y^2 \rangle = \int_{0}^{\infty} G(k)dk \quad (2.36)$$

où k est le module du nombre d’onde k, et $G(k)$ est le spectre 3D du scalaire.

La densité spectrale 1D, notée $\phi_y(k_1)$ où k_1 est le nombre d’onde 1D, est définie telle que :

$$\langle y^2 \rangle = \int_{0}^{\infty} \phi_y(k_1)dk_1 \quad (2.37)$$

Le comportement de la densité spectrale 1D $\phi_y(k_1)$ a été prédit de manière indépendante et la première fois par Corrsin\(^{63}\) et par Obukhov\(^{190}\), à partir des fonctions de structure du scalaire, et en utilisant les mêmes hypothèses de similitude que Kolmogorov\(^{137}\).

Comme pour le champ dynamique, il existe une cascade du scalaire, i.e. une loi de variation particulière de la variance du scalaire. Mais à la différence du champ dynamique où la cascade énergétique

\(^9\) En effet, supposons une tache de scalaire déposée au sein d’un écoulement turbulent, que l’on peut très localement assimiler à un champ 2D d’étirement de vitesse $U_i = (\alpha x, \alpha y)$ (avec le coefficient $\alpha > 0$). Supposons qu’à $t=0$, la tache arbore une structure sinusoïdale le long d’un vecteur d’onde k_i, donnant ainsi une concentration initiale $C = A_0 \sin(k_i x_i)$. En résolvant l’équation de transport du scalaire (Eq. 2.31) à l’aide de la condition initiale précédente, on trouve la solution suivante pour la concentration : $C(x,t) = A(t) \sin k_i(t) x_i$, où $A(t) = A_0 \exp \left[\frac{\kappa^2}{2\alpha^2} \left(k^2 x - 2\alpha t - 1 \right) - k^2 y \left(2\alpha t - 1 \right) \right]$, et $m(t) = (k_x e^{-\alpha t}, k_y e^{\alpha t})$ (κ désigne une diffusivité). Cette solution montre que la tache va s’aligner selon la direction y (car la composante correspondante du vecteur $m(t)$ tend vers zéro) formant des filaments de plus en plus fins au cours du temps (car la composante suivante x du vecteur $m(t)$ augmente exponentiellement). L’épaisseur $l_f(t)$ de ces filaments vaut pour des temps longs devant le temps d’étirement : $l_f(t) \sim 1/m(t) = \frac{1}{\kappa \exp(-\alpha t)}$ (l’affinement de la tache est ainsi exponentiel). En examinant la solution, on s’aperçoit qu’il existe une deuxième échelle de temps au-delà de laquelle l’effet de la diffusivité moléculaire se fait sentir (que l’on appelle la dissipation du scalaire), d’ordre de grandeur $\kappa/2\alpha$; au-delà de ce temps, on observe un affaiblissement brutal de l’amplitude $A(t)$ du champ de concentration. Ce processus de décroissance de $A(t)$ est vigoureux puisque le calcul mène à une exponentielle d’exponentielle !
provoque la création de structures par fractionnement des structures à grande échelle, la cascade du scalaire correspond plutôt à la création de structures de plus en plus fines par étirements successifs de la tache initiale du scalaire. À chaque étape de la cascade, la quantité u^2/l est conservée (par analogie à la quantité u^3/l pour le champ dynamique). La cascade de la variance s’arrête lorsque les filaments du scalaire sont si petits qu’ils subissent l’action de la diffusivité moléculaire, à l’échelle de Batchelor λ_B. Cette échelle de dissipation est l’équivalente de l’échelle de Kolmogorov. Le taux moyen de la dissipation du scalaire $\langle \epsilon_s \rangle$ (le pendant de $\langle \epsilon \rangle$ pour le champ dynamique) en dimension 3 s’écrit :

$$\langle \epsilon_s \rangle = 2D \int_0^{\infty} k^2 G(k) dk$$

(2.38)

où D représente le coefficient de diffusivité.

Pour une turbulence isotrope, on définit de manière équivalente au champ de vitesse, une dissipation du scalaire (concentration) :

$$\langle \epsilon_{s,iso} \rangle = 6D \int_0^{\infty} k^2 \phi_y(k_1) dk_1$$

(2.39)

Dans le cas où le nombre de Reynolds R_λ est très grand ($R_\lambda \gg 1$), la forme du spectre 1D du scalaire dans la région convective inertielle a pu être obtenues à partir d’arguments phénoménologiques par Corrsin et Obukhov, comme suit :

$$\phi_y(k_1) = \beta_1 \langle \epsilon_s \rangle \langle \epsilon \rangle^{-1/3} k_1^{-5/3}$$

(2.40)

où $\beta_1 = \frac{3}{5} \beta \sim 0.4$ (β étant la constante d’obukhov-Corrsin, voir par exemple [260] pour une discussion sur l’universalité de cette constante).

Quelle que soit la valeur du nombre de Schmidt Sc (qui est égal au rapport entre la viscosité cinématique et la diffusivité ν/D), la décroissance du scalaire dans cette région inertielle se réalise conformément à la loi (2.40), c’est-à-dire avec un spectre variant comme $k_1^{-5/3}$ (comme la région inertielle du champ dynamique). Dit autrement, le scalaire décroît de la même manière que les fluctuations de vitesse, sans que les effets de différences de diffusivité entre le scalaire (donné par le coefficient de diffusivité D) et la vitesse (donné par le coefficient de viscosité ν) ne soient prépondérants.

2.4.4 Décroissance du scalaire dans la région dissipative

La décroissance du scalaire aux petites échelles est, quant à elle, très dépendante de la valeur du nombre de Schmidt, i.e. du rapport de diffusivité du scalaire par rapport à la diffusivité de la quantité de mouvement.

On recense typiquement deux régimes particuliers :

CHAPITRE 2. TURBULENCE ISOTROPE ET DIFFUSION TURBULENTE

41
--- le régime d’Obukhov-Corrsin, qui reflète la décroissance du scalaire lorsque la turbulence de l’écoulement est élevée, ou lorsque le nombre de Schmidt $Sc \sim 1$. La cascade porte ici le nom de cascade d’Obukhov-Corrsin. Ici, le niveau de concentration s’affaiblit principalement dans le régime inertiel (et non dans le régime dissipatif du régime de Batchelor), selon la forme de spectre 1D décrite précédemment (Eq. 2.40). L’échelle dissipative de cette cascade est donnée par $\lambda_D = \left(\frac{D^3}{\langle \epsilon \rangle} \right)^{1/4}$. Elle est plus grande que l’échelle de dissipation du régime de Batchelor.

--- le régime de Batchelor, qui reflète la décroissance du scalaire lorsque la turbulence de l’écoulement est faible, ou lorsque le nombre de Schmidt $Sc \gg 1$ ou $Sc \ll 1$. Pour ce régime, il existe un domaine à la fois convectif et diffusif. Pour $Sc \gg 1$, Batchelor [13] a postulé que le taux de déformation des fluctuations de vitesse $\gamma \propto \left(\frac{\langle \Omega \rangle}{\nu} \right)^{1/2}$ doit être approximativement uniforme pour toutes les régions de l’écoulement dont la taille est inférieure à λ_K, et doit donc constituer le paramètre important du mélange turbulent aux petites échelles. Il a notamment montré que les nombres d’onde du scalaire, supérieurs à ceux correspondant aux plus petites échelles du champ dynamique, $1/\lambda_K$, vont s’aligner rapidement le long de l’axe de compression du tenseur de taux de déformation γ pour y être comprimés jusqu’à une échelle proche de λ_B. Le processus de compression a lieu sur une échelle de temps caractéristique donnée par $\ln(D/\nu)^{1/2}/\gamma$. A partir de ces hypothèses, il a prédit que le spectre dans la région dissipative ne doit dépendre que des trois paramètres k, γ et $\langle \epsilon_s \rangle$. Ces arguments dimensionnels conduisent à une forme de spectre en k^{-1}, régime de Batchelor :

$$G(k) = q_\phi \langle \epsilon_s \rangle \gamma^{-1} k^{-1}$$ \hspace{1cm} (2.41)

avec q_ϕ une constante.

Ce résultat est caractérisé par le fait que l’essentiel de l’énergie est concentré dans les échelles plus petites que les échelles convectives. Ce régime a été observé numériquement par [214][27], et expérimentalement la première fois par [109] puis plus tard par [176].

Pour $Sc \ll 1$, Batchelor et al. [13] a montré que le mécanisme de compression va s’arrêter dès que la distance de séparation entre les plus petites échelles du champ scalaire va être plus grande que celle des régions de d’étirement ; par conséquent, le taux de déformation γ n’est plus le paramètre pertinent pour ces fluides très diffusifs. Ces auteurs prédissent alors une forme de spectre comme suit :

$$G(k) = \frac{\alpha}{3} \langle \epsilon_s \rangle D^{-3} \langle \epsilon \rangle^{2/3} k^{-17/3}$$ \hspace{1cm} (2.42)

L’ensemble de ces résultats est regroupé sur la figure (2.14) qui montre les spectres 3D pour les trois cas de figure ($Sc \simeq 1$, $Sc \gg 1$ et $Sc \ll 1$). Pour plus de détails, se référer à l’article de revue [6] ou [260].

Différents modèles de spectres pour le scalaire ont été proposés pour une turbulence isotrope [82], ou pour une configuration canonique d’un scalaire au sein d’un tourbillon [213]. Ces modèles ont été

10. Le spectre 1D a été obtenu la première fois par Gibson et Schwarz, sous l’hypothèse d’isotropie [103].
CHAPITRE 2. TURBULENCE ISOTROPE ET DIFFUSION TURBULENTE

Fig. 2.14 – Représentation schématique des spectres 3D du scalaire passif, pour $Sc \approx 1$, $Sc \gg 1$ et $Sc \ll 1$, d’après [275].

comparés à des mesures expérimentales dans un tunnel hydrodynamique derrière une grille turbulente pour $Sc=7$ et $Sc=700$ [104], et pour des écoulements chauffés (le scalaire étant alors la température) pour $Sc=0.7/R_\lambda = 3280$ [295] et $Sc=0.7/R_\lambda = 45$, [290].

A cause de son action aux plus petites échelles d’un écoulement, l’intermittence modifie profondément la distribution d’un scalaire aux échelles les plus fines, comme le fait remarquer [239] par exemple à partir de ses travaux océaniques "*instantaneous gradients of scalars such as temperature, salinity or nutrients, greatest at scales similar to the Kolmogorov microscale*". Nous verrons que cette remarque constitue un point important pour une application en combustion par exemple[11] Cette discussion sera reprise dans les chapitres 5 et 6.

11. Notamment pour la prédiction des polluants, qui passe irréémédiablement par l’étude des structures de l’écoulement les plus fines dans les moteurs automobiles ou aéronautiques.
2.4.5 Les particularités du scalaire actif

Un scalaire dit actif est un scalaire qui rétro-agit sur la dynamique de l’écoulement (champ de vitesse). Cette rétro-action est provoquée par un couplage entre les équations du mouvement et les équations de transport du scalaire. Ce couplage est occasionné par le biais d’une dépendance d’une ou plusieurs propriétés thermophysiques vis-à-vis du scalaire (fraction massique de propane dans notre cas, mais également la température dans d’autres cas). La ou les propriétés thermophysiques affectées sont généralement la masse volumique et/ou la viscosité dynamique. Dans le cas d’un mélange turbulent entre deux fluides hétérogènes (propane et air-néon dans notre cas), la fraction massique locale de propane modifie de manière sensible ces deux propriétés locales (masse volumique et viscosité dynamique). L’équation de transport du scalaire est alors couplée aux équations de quantité de mouvement (équations de Navier-Stokes). Les domaines d’intérêt des scalaires actifs touchent à la combustion (mélangeant des fluides très différents), mais également la MagnétoHydrodynamique (MHD) où apparaît une force (de Lorenz) dans les équations du mouvement, faisant intervenir un courant lui-même présent dans les équations le régissant (équations de Maxwell). Quelques articles sont consacrés au scalaire actif : [246] dans un contexte de combustion, [60] dans un contexte de MHD.
Chapitre 3

Développement d’une technique de mesure de vitesse et de concentration pour l’étude d’un mélange turbulent de fluides non homogènes

Dans ce chapitre, nous présentons le développement d’une technique d’Anémométrie à fil chaud à une composante couplée avec une technique de diffusion Rayleigh monopoint, pour la mesure des fluctuations de vitesse et de concentration dans un mélange turbulent propane-air-néon. Cette technique permet d’obtenir des résultats expérimentaux de turbulence (dynamique et scalaire) dans un écoulement non homogène à densité variable (rapport de densités $R_\rho \sim 1,7$), et à viscosité variable (rapport de viscosités cinématiques $R_\nu \sim 5,5$ et dynamiques $R_\mu \sim 3,5$). Le développement de cette technique, ainsi que sa validation, a fait l’objet d’une publication à *Experiments in Fluids* [270] : Talbot B., Mazellier N., Renou B., Danaila L. and Boukhalfa M.A., “Time-resolved velocity and concentration measurements in variable-viscosity turbulent jet flow”, vol. 47(4-5), pp. 769-787, 2009.

3.1 Préambule

Un grande variété d’applications industrielles requièrent de mélanger le mieux possible des fluides aux propriétés thermophysiques très différentes. En effet, dans le cas des écoulements réactifs par exemple, le mélange à l’échelle moléculaire entre un combustible et un comburant est une condition préalable indispensable au déclenchement du processus cinétique des réactions chimiques de combustion. Dans ce contexte, une compréhension profonde de l’interaction à petite échelle entre le scalaire et la vitesse
(champ dynamique) est cruciale, et plus particulièrement dans les écoulements complexes à fluides hétérogènes [186][252].

Dans le cas d'un régime non prémélangé, les deux réactants (combustible et comburant) sont généralement injectés à travers deux canaux séparés par une plaque mince, et se rejoignent pour se mélanger, derrière le bord de fuite de ceux-ci, dans le sillage créé par la plaque de séparation. Le mélange des deux fluides est tout d'abord isotherme (sans réaction) et partiel (turbulence non pleinement développée) [94]. Il est ensuite rapidement suivi par une zone de réaction exothermique (région d'auto-inflammation). La distance d'auto-inflammation dépend de plusieurs paramètres qui vont régir le type d'accrochage du régime de combustion [1]. Pour un régime "accroché", cette distance est très faible (quelques microns) ; pour une flamme "suspendue", elle peut atteindre plusieurs centimètres. Dans toutes les applications industrielles, on recherche un régime de flamme "suspendue", qui constitue le seul régime de combustion garantissant le non-endommagement thermo-mécanique du brûleur.

Par conséquent, sous le régime de flamme suspendue, la distance de mélange isotherme va laisser la possibilité à l'écoulement dans la région amont d'interagir avec le front de flamme situé en aval, et de le perturber. Si l'écoulement dans cette région est turbulent, les caractéristiques de cette turbulence vont être primordiales sur le comportement de l'interaction avec le front de flamme. En fonction des rapports des temps caractéristiques de ces interactions turbulence/flamme, le front de flamme va ainsi éventuellement être soufflé (convecté) en aval (menant à une extinction du régime de combustion), ou fortement déformé par pincement jusqu'à extinction (quenching en anglais) [13]. Nous reviendrons en détail dans le chapitre 6 sur le lien entre les caractéristiques de la turbulence dans la région de proche sillage et les conditions de stabilisation d'un régime non-prémélangé.

Ces propos sur la problématique de la combustion donne un exemple qui souligne le besoin d'étudier le développement d'un écoulement vers la turbulence, dans des fluides hétérogènes (i.e. à viscosité/densité non identiques).

Par conséquent, intéressons-nous dans un premier temps au développement d'une technique permettant de caractériser les propriétés fondamentales du mélange turbulent dans des fluides hétérogènes (ici, propane et air), à la fois pour le champ dynamique et pour le champ scalaire. Les résultats issus de cette technique seront par la suite analysés longuement et exploités comme support à nos développement analytiques dans les chapitres 4 et 5.

1. Le paramètre qui contrôle cette distance est le nombre de Karlovitz, faisant intervenir, entre autres, la nature des fluides et la vitesse locale au point de stabilisation). Selon la valeur de ce nombre de Karlovitz, le régime de combustion sera de type flamme accrochée ou suspendue. Voir le Chapitre 6 pour plus de précisions.
3.2 Les difficultés pour obtenir simultanément les propriétés du champ dynamique et scalaire dans un écoulement turbulent de fluides hétérogènes

De nombreuses questions relatives au mélange turbulent ont été adressées par simulation numérique, avec notamment des apports scientifiques conséquents sur les statistiques du champ scalaire aux petites échelles [6][26][36]. La plupart de ces travaux ont porté sur un mélange turbulent de fluides aux propriétés thermophysiques similaires, en s’intéressant soit uniquement à l’influence du nombre de Schmidt Sc (en étudiant des fluides différents - liquides ou gaz - mais avec des propriétés thermophysiques constantes), soit à Sc∼1, peu représentatives des conditions rencontrées industriellement. Or, parmi les mélanges "industriels", on trouve par exemple les couples combustibles/comburants suivants : propane/air, butane/air ou hydrogène/air, pour lesquels les rapports de viscosité cinématique \(\nu_s \) sont ∼3.4, ∼5.2 et ∼0.15 respectivement, et les rapports de densité \(\rho_s \) sont ∼1.52, ∼2.2 et ∼0.07. Et pour lesquels, le nombre de Schmidt Sc peut être différent de l’unité dans un mélange non parfait de ces couples de gaz.

Les techniques expérimentales constituent également une approche importante pour la compréhension des écoulements à viscosité/densité variable. Un large éventail de ces techniques expérimentales a été développé pour mesurer séparément le champ dynamique ou le champ scalaire (vitesse ou concentration seulement) dans un plan, et utilisant des lasers pulsés. Ces techniques ont été par la suite couplées pour mesurer simultanément ces deux grandeurs (vitesse et concentration) bien qu’elles nécessitent un appareillage sophistiqué et un réglage très précis des nappes laser. Parmi ces techniques couplées, la plus répandue est la Vélocimétrie par Image de Particules (PIV)/ Fluorescence Induite par Laser dans un Plan (PLIF), initialement non résolues en temps (265 pour le mélange non-réactif, 78 pour le mélange réactif), et depuis peu, résolue en temps grâce à l’emploi de laser cadencés "haute fréquence" jusqu’à 5 kHz (97,279 pour le mélange non-réactif, 29, 97 pour le mélange réactif). Cependant, cette dernière évolution est encore limitée par les fréquences de cadencement des laser pulsés relativement basses (∼5kHz), et par la faible résolution en temps/fréquence qui lui est associée. De surcroît, la qualité de l’ensemencement (homogénéité des particules en espace dans l’écoulement) en particules liquides ou solide de l’écoulement requis par ces techniques, limite leur emploi à des régions de l’écoulement très dégagées et situées loin de toute paroi solide. Par conséquent, ces techniques planaires sont peu adaptées à des régions de proche sillage ou de zones confinées près des surfaces matérielles.

Les techniques résolues en temps, en un point, semblent être préférables pour l’étude de ces régions particulières de champs proches d’écoulement en développement derrière un obstacle, notamment celle ne nécessitant pas d’ensemencement. Parmi ces techniques couplées en un point, certaines ont été déve-
l'opposé pour la mesure simultanée de la vitesse (2 composantes) et de la concentration dans des liquides par couplage d’Anémométrie Laser Doppler (ADL) et de Fluorescence Induite par Laser (LIF) (techniques avec ensemencement). Des techniques couplées sans ensemencement, utilisant l’anémométrie à fil chaud ont également été proposées [52][293], puis améliorées par la suite [234], mais ne restent applicables qu’à des mélanges de gaz inertes bien particuliers (CO₂/air ou hélicium/air).

Concernant la mesure simultanée résolue en temps de la vitesse et de la concentration en un point, sans ensemencement, dans un mélange inflammable (combustible/oxydant), une seule tentative a été proposée par Pitts et al. [207], à notre connaissance, par couplage de l’anémométrie à fil chaud (1 composante) et de la diffusion Rayleigh monopoint. Ces travaux ont porté sur des jets turbulents de méthane et de propane, débouchant dans l’air. En dépit du potentiel de cette technique, les auteurs se sont vite heurtés à une difficulté majeure pour mesurer avec suffisamment de précision la vitesse du fluide par anémométrie à fil chaud, en raison de la sensibilité de la sonde (fil chaud) à la fois à la vitesse et à la concentration.

Nous présentons le développement d’une nouvelle technique couplée, Anémométrie à fil chaud (HWA) et diffusion Rayleigh (RLS), inspirée des travaux de Pitts et al. permettant de mesurer indépendamment le scalaire (concentration) et la vitesse (1 composante) par ajout d’un gaz neutre dans le mélange. Le choix du gaz neutre s’est porté vers le néon parce que ses propriétés thermophysiques, vis-à-vis de celles du propane et de l’air, permettent de répondre favorablement aux trois points suivants :

– Pouvoir mesurer la vitesse instantanée par anémométrie à fil chaud avec suffisamment de précision, dans un mélange turbulent de fluides hétérogènes "propane-air-néon", comme nous allons le développer par la suite ;

– Offrir la possibilité supplémentaire de mesurer la fraction massique de propane par une technique de diffusion Rayleigh associée à celle de la vitesse, dans un tel mélange ;

– Etre compatible pour une mesure en conditions réactives du même mélange "propane-air-néon", grâce à ses qualités de gaz neutre au niveau réactionnel en combustion (le néon pouvant venir simplement en substitution de l’azote - gaz neutre également - contenu dans l’air).

Le chapitre est organisé comme suit :

– dans le paragraphe 3-3, nous rappelons tout d’abord brièvement les principes des techniques HWA et RLS et mettons en exergue les difficultés rencontrées lorsque l’on souhaite coupler ces deux techniques. Nous décrivons ensuite en détail les développements théoriques spécifiques à notre approche couplée par ajout de néon. La quantification des incertitudes relatives à notre technique est conduite avec soin et
discutée largement ;

– le paragraphe 3-4 décrit le montage expérimental et les conditions d’écoulement ;

– dans le paragraphe 3-5, des rappels succincts sur les jets simples turbulents axisymétriques sont donnés, pour une meilleure lecture de l’analyse des résultats validant notre technique ;

– le paragraphe 3-6 traite de la validation de notre technique, à partir de mesures sur un jet axisymétrique. Il contient la description, la discussion et la confrontation de nos résultats avec la littérature existante sur les jets turbulents à densité variable et viscosité variable.

3.3 Développement analytique de l’Anémométrie à fil chaud couplée à la Diffusion Rayleigh monopoint dans un mélange Propane-Air-Néon

3.3.1 La méthode du décalage temporel

L’arrangement spatial des sondes de mesure de vitesse (fil chaud) et de concentration (volume Rayleigh) est typiquement le même que celui proposé par [207]. L’anémométrie à fil (HWA) et la diffusion Rayleigh (RLS) sont rapprochées spatialement afin de mesurer simultanément en un point les fluctuations de vitesse et de concentration. La figure (3.1) montre un schéma de principe de la disposition des sondes. La sonde à fil chaud est positionnée à 800 µm en aval du volume Rayleigh. Cette distance, notée \(dx \), ne peut être réduite à une valeur inférieure à cause des problèmes d’interférences lumineuses parasites sur les broches de la sonde à fil chaud, venant s’ajouter au signal physique.

Fig. 3.1 – Schéma de principe de l’arrangement spatial entre les sondes de vitesse (fil chaud une composante) et de concentration (volume Rayleigh monopoint)

Les fluctuations de concentration sont directement reliées au signal de diffusion Rayleigh.

2. Ce terme local soulève la question de la résolution spatiale de la technique, que nous discutons dans le paragraphe 3.5.5.

3. Voir le paragraphe 3.3.3.
un milieu constitué d’un seul gaz, le signal enregistré par le fil chaud serait également directement relié aux fluctuations locales et instantanées de la vitesse, par la loi d’échange de chaleur sur le fil. Cependant, dans un mélange hétérogène constitué de plusieurs gaz différents, dont chacun de ces gaz, pris indépendamment, procure un échange de chaleur différent sur le fil chaud, le signal enregistré par la sonde anémométrique est sensible à la fois à la vitesse et à la concentration. Il est alors essentiel de connaître de manière exacte les propriétés thermophysiques du fluide à l’endroit de la sonde de mesure, afin de pouvoir déterminer l’information de vitesse à partir du signal enregistré.

Pour cela, Pitts et al. ont proposé d’appliquer un décalage temporel τ entre le signal Rayleigh et le signal du fil chaud afin de "translate" la valeur de la concentration à la position de la mesure de vitesse. L’idée de cette approche est de procéder a posteriori à une transformation revenant à prendre une hypothèse de Taylor globale, en considérant que la concentration locale mesurée en un point (x_1, t_1) va se retrouver à l’identique au point situé à $(x_1 + dx, t_1 + \tau)$, convectée par la vitesse moyenne de l’écoulement entre les points x_1 et $x_1 + dx$. Mais la principale difficulté de cette approche est que la vitesse de l’écoulement est précisément l’inconnue que l’on cherche à déterminer, si bien que le décalage τ n’est pas explicitement estimable et doit être choisi de manière arbitraire. Par conséquent, la vitesse ne peut être déterminée de manière non équivoque.

Au cours de leur démarche, les auteurs mentionnent toutefois la possiblité de converger vers une valeur correcte de la vitesse moyenne $\langle U \rangle$, mais de très grandes disparités apparaissent dans les estimations des moments d’ordre supérieurs (écart-type, et surtout corrélations croisées entre les signaux de vitesse et de concentration).

Nous allons montrer par la suite comment nous avons contourné ce problème en ajoutant une fraction d’un tiers gaz (ici du néon) dans un mélange initial composé de propane et d’air, afin que l’extraction de l’information de vitesse obtenue par le fil chaud puisse être réalisée de manière directe. Nous vérifions en retour que cet ajout de néon introduit une erreur raisonnable dans la mesure de la concentration par la technique de diffusion Rayleigh.

3.3.2 Anémométrie à fil chaud

La méthode que nous avons développée consiste à ajouter une fraction de néon dans le mélange propane-air telle que l’échange de chaleur demeure constant quel que soit la composition de la particule de gaz arrivant sur la sonde (fil chaud), éliminant ainsi la sensibilité à la concentration.
dans ce nouveau mélange propane-air-néon.\footnote{Un des avantages également de cet ajout de néon est qu’il s’agit d’un gaz neutre, et que cet artifice pourrait être utilisé par la suite pour une étude en conditions réactives de ce mélange propane-air néon. En effet, l’ajout de néon (gaz neutre) pourrait venir en substitution de l’azote (gaz neutre) dans l’air utilisé sans que cela ne modifie les caractéristiques de dégagement de chaleur.}

L’équilibre thermique sur le fil chaud cylindrique est donné par l’équation :

\[i^2 R_w = \pi l \lambda [T_w - T_o] Nu \]

(3.1)

où \(i \) désigne le courant électrique parcourant le fil, \(R_w \) est la résistance électrique du fil, \(l \) est la longueur sensible du fil, \(\lambda \) est la conductivité thermique du gaz, \(T_w \) et \(T_o \) sont respectivement la température du fil et de l’air environnant, et \(Nu \) est le nombre de Nusselt (défini comme \(Nu = h d / \lambda \), où \(d \) est le diamètre du fil et \(h \) est le coefficient de transfert convectif). La dépendance en température de la résistance électrique \(R_w \) peut être exprimée par la relation suivante :

\[R_w = R_o \left(1 + b [T_w - T_o] \right) = R_o \left(1 + b \alpha T_o \right) \]

(3.2)

où \(R_o \) est la résistance électrique du fil à la température ambiante \(T_o \sim 300 \, K \), et \(\alpha = [T_w - T_o] / T_o \) désigne le coefficient de surchauffe thermique du fil. Le coefficient \(b \) vaut 0.0019 \(K^{-1} \) pour le matériau Pt/Rh 90/10 utilisé pour nos mesures. De plus, on peut écrire l’équivalence suivante au niveau du pont électrique Wheatstone de l’anémomètre :

\[i^2 R_w = \frac{E_{out}^2 R_w}{[R_b + R_a]^2} \]

(3.3)

avec \(R_a \) la résistance électrique de la branche du pont où la sonde est montée (50 \(\Omega \)), et \(R_b \) la résistance électrique ajustable du pont de Wheatstone.

Plusieurs expressions ont été proposées pour le nombre de Nusselt, mais aucune n’est strictement valide pour un mélange particulier \cite{208}. En dépit de cette remarque, nous avons néanmoins utilisé une expression qui demeure la seule disponible et la plus employée pour les mélanges de deux gaz, valide pour la gamme de Reynolds \(0.02 < Re = Ud/\nu < 44 \) \cite{298} :

\[Nu_C = \left(\frac{T_m}{T_o} \right)^{0.17} \left[0.24 \left(\frac{Pr_1}{Pr_2} \right)^{0.20} + 0.56 \left(\frac{Pr_1}{Pr_2} \right)^{0.33} Re^{0.45} \right] \]

(3.4)

où \(\frac{Pr_1}{Pr_2} \) désigne le ratio des nombres de Prandtl des deux fluides \footnote{à noter que Wu Libby \cite{298} ont utilisé la corrélation (3.4) pour des gaz Hélium, air (et leur mélange) dans laquelle intervient le ratio \(\frac{Pr_x}{Pr_{air}} \) où \(x \) se réfère au gaz investigué (Air, Hélium ou un mélange des deux).} considérés à la température de film \(T_m \) :

\[T_m = \frac{T_w + T_o}{2} = \frac{T_o}{2} (\alpha + 2) \]

(3.5)

Elle peut être utilisée par extrapolation aux mélanges ternaires, en prenant soin de considérer \(Pr_1 \) ou \(Pr_2 \) comme le nombre Prandtl “moyen” de deux des trois gaz considérés, et en considérant les propriétés
CHAPITRE 3. TECHNIQUE COUPLÉE FIL CHAUD ET DIFFUSION RAYLEIGH

thermophysiques "moyennes" des fluides$^\text{9}$ (indicées$_{mix}$). En combinant les équations (3.1) à 3.5 le carré de la tension sur le fil E_{out}^2 peut ainsi être exprimé par :

$$E_{out}^2 = \pi l \lambda_{mix} \alpha T_0 \left(\frac{\alpha + 2}{2} \right)^{0.17} \left[0.24 \left(\frac{Pr_1}{Pr_2} \right)^{0.20} + 0.56 \left(\frac{Pr_1}{Pr_2} \right)^{0.33} \left(\frac{Ud}{\nu_{mix}} \right)^{0.455} \right] \frac{[R_b^2 + 2 R_b R_n + R_n^2]}{[Ro(1 + \alpha T_0)]}$$ (3.6)

Le domaine de validité de l’équation (3.6) est borné par les effets de gaz rares d’une part, et par les effets de Reynolds d’autre part (à cause de la convection naturelle aux très faibles nombres de Reynolds basé sur le diamètre du fil $d = 2.5 \mu m$, $Re = Ud/\nu < 0.02$, mais également à cause des lâchés de tourbillons pour $Re = Ud/\nu = 44$).

En choisissant notre gamme de vitesses mesurées par le fil chaud pour des valeurs comprises entre ~ 0.5 et 20 m/s, nous nous sommes affranchis des effets de Reynolds pré-cités ; en effet, les nombres de Reynolds correspondant$^\text{7}$ à ces valeurs de vitesse sont compris entre $\sim 0.032 < Re < 3.94$ pour l’air pur, et $\sim 0.10 < Re < 1.28$ pour le propane pur. De même, pour un mélange "moyen" (en fractions massiques) composé de 50%propane et de 50% d’oxydant (30%air+70%néon, en fractions volumiques ici), la gamme de Reynolds est comprise dans l’intervalle : $\sim 0.03 < Re < 1.18$. Nous vérifions ainsi que toutes les valeurs trouvées sont situées à l’intérieur de l’intervalle formé par les deux bornes 0.02 et 44, confirmant que la loi d’échange thermique par convection forcée utilisée pour notre fil chaud est applicable pour toutes les conditions d’écoulement que nous avons choisies.

Concernant les effets de gaz rares, nous avons réécrit l’équation (3.6) en prenant en compte ces effets (voir l’annexe 2 pour plus de détail sur les effets de gaz rares). Plusieurs études de référence ont été consacrées à leur prise en compte analytique, qui constitue une démarche difficile, hors de portée de notre besoin (ces travaux sont basés sur une thermodynamique hors équilibre local des électrons et des molécules au sein de ces gaz). Des études expérimentales d’accès un peu plus aisé ont été menées en parallèle sur les échanges thermiques d’un gaz rare avec un matériau solide (paroi, fil chaud),$^\text{11,298}$.

De manière très synthétique, ces études ont abouti à la possibilité de globaliser les effets de gaz rares en proposant une correction simple sur le coefficient d’échange convectif, par l’intermédiaire d’une loi modifiée pour le nombre de Nusselt modifiée faisant intervenir le paramètre de glissement thermique$^\text{10}$ du mélange de gaz β_{mix}, défini comme suit$^\text{11}$:

$$\frac{1}{Nu_\infty} - \frac{1}{Nu_c} = \frac{\beta_{mix}}{2}$$ (3.7)

8 c.f. annexe 2 pour le calcul des propriétés moyennes à partir de la théorie cinétique des gaz.

9 Ces nombres de Reynolds ont été calculés à l’aide des propriétés thermophysiques de l’air, du propane, du néon, et des mélanges des tableaux (3.1) et (3.2).

10 c.f. annexe 2 pour plus de détail sur ce paramètre et sur les effets de gaz rares.
où l’indice c dénote le milieu où les effets de gaz rares sont absents, et l’indice ∞ dénote le milieu où sont présentes des pertes supplémentaires de chaleur par les gaz rares. Une règle empirique simpliste a été donnée pour estimer directement le coefficient β_{mix} pour des mélanges. Cette simple règle s’explicite de la manière suivante [11] :

$$\beta_{\text{mix}} \approx \sum_i \chi_i \beta_i$$

(3.8)

avec χ_i et β_i qui désignent respectivement la concentration molaire et le paramètre de glissement thermique de chaque gaz présent dans le mélange. Introduisant les équations (3.7) and (3.8) dans l’équation (3.6), on trouve l’expression finale suivante pour le carré de la tension aux bornes du fil chaud :

$$E_{\text{out}}^2 = \pi l \lambda_{\text{mix}} \alpha T_o \left[\left(\frac{\alpha + 2}{2} \right)^{0.17} \times \right.\]

$$\left[\frac{1}{0.24 \left[\frac{Pr_1}{Pr_2} \right]^{0.20} + 0.56 \left[\frac{Pr_1}{Pr_2} \right]^{0.33} \left(\frac{U_d}{\nu_{\text{mix}}} \right)^{0.45} + \frac{\beta_{\text{mix}}}{2} \right]^{-1} \frac{R_b^2 + 2R_bR_a + R_a^2}{R_o \left(1 + bT_o \alpha \right)}$$

(3.9)

En négligeant la variation avec les nombres de Prandtl (car les nombres de Prandl de tous les gaz considérés sont très proches de la même valeur, ~ 0.7, Tableau (3.1)), il s’ensuit à partir de l’équation (3.9) que pour un système anémométrique donné (i.e. d, l, R_a, R_b, R_o, b fixés) et pour un environnement donné (i.e. T_o fixé), la tension aux bornes du fil chaud E_{out} ne dépend que des paramètres suivants : de la vitesse de l’écoulement U, des propriétés thermophysiques du fluide (sa conductivité "moyenne" notée λ_{mix}, sa viscosité cinématique "moyenne" notée ν_{mix}, son paramètre de glissement thermique noté β_{mix} et du coefficient de surchauffe appliqué sur la sonde, noté α. Si de surcroît, ce coefficient de surchauffe est maintenu constant, Eq. (3.9) peut être réécrite comme une fonction des seuls paramètres pré-cités grâce à l’expression réduite suivante :

$$E_{\text{out}}^2 = A_o \lambda \left[\frac{1}{B_o + B_1 \left(\frac{U}{\nu_{\text{mix}}} \right)^{0.45}} + \frac{\beta_{\text{mix}}}{2} \right]^{-1}$$

(3.10)

où A_o, B_0 et B_1 sont des constantes telles que $A_o = \pi l \alpha T_o \left[\left(\frac{\alpha + 2}{2} \right)^{0.17} \frac{R_b^2 + 2R_bR_a + R_a^2}{R_o \left(1 + bT_o \alpha \right)} \right]$, $B_0 = 0.24 \left[\frac{Pr_1}{Pr_2} \right]^{0.20}$ et $B_1 = 0.56 \left[\frac{Pr_1}{Pr_2} \right]^{0.33}$.

L’équation (3.10) montre clairement que le carré de la tension aux bornes du fil chaud dépend de manière non-linéaire avec la vitesse locale instantanée $U(t)$ de l’écoulement, et que les propriétés thermophysiques des fluides contrôlent entièrement cette dépendance.

Nous allons démontrer tout d’abord analytiquement en nous servant de l’équation (3.9) que, malgré ces remarques, il existe une configuration "fluides et conditions d’opérations" ad hoc qui permet d’obtenir une réponse du fil chaud quasiment indépendante de la composition locale instantanée vue par la sonde.
D’un point de vue purement mathématique, on recherche l’ensemble des paramètres de l’équation (3.9) \((A_0, B_0, B_1, \lambda_{mix}, \nu_{mix}, \beta_{mix}, \alpha, \text{etc...}) \) qui garantissent que la fonction \(E_{out}^2 = f(U) \) soit proche de celle du propane pur (au sens d’une régression linéaire aux moindres carrés par exemple).

Pour mener cette recherche des paramètres de manière la plus exhaustive possible, une étude de sensibilité complète de l’équation (3.9) sur les paramètres du système \((d, l, R_a, R_b, R_o, \alpha, b)\), de l’environnement \((T_o)\) et des propriétés thermophysiques du fluide (sa conductivité "moyenne", sa viscosité cinématique "moyenne" et son paramètre de glissement thermique) serait à réaliser. Outre le caractère ardu et fastidieux de cette étude, et attendu qu’elle puisse aboutir, son utilité au final n’est pas certaine, tant est qu’il n’est pas garanti qu’elle puisse aboutir à des paramètres optimum tout-à-fait plausibles et compatibles avec les impératifs expérimentaux d’une part, et d’autre part que l’optimum analytique correspond bien à l’optimum expérimental, au vu de l’incertitude sur la validité de l’équation (3.4).

Une étude de sensibilité restreinte, plus pragmatique, semble beaucoup plus pertinente et adaptée à une démarche expérimentale. C’est celle que nous avons suivie. Elle consiste à figer tous les paramètres liés à l’environnement (le type de gaz, la température \(T_o \), etc...) et du système (résistances du pont, longueur du fil chaud, diamètre du fil, ...), et à ne considérer que deux variables d’ajustement pour notre problème d’optimisation, à savoir : i) la fraction de néon à ajouter dans l’air, et ii) le coefficient de surchauffe \(\alpha \) à appliquer sur le pont. Cela revient à n’agir que sur les quatre paramètres suivants de l’équation (3.9) : \(\lambda_{mix}, \nu_{mix}, \beta_{mix} \) et \(\alpha \).

Deux questions méritent d’être soulevées :

- **Point A** : existe-t-il un optimum de concentration de néon à ajouter dans l’air (point A-1) et un coefficient de surchauffe particulier à appliquer (point A-2), pour que la courbe se rapproche le mieux possible de celle du propane ? En d’autres termes, quelle est l’influence de la fraction de néon ajouté dans l’air et du coefficient \(\alpha \) sur la différence entre les courbes de réponse du fil du propane pur et du mélange air-néon ? Si un optimum existe, pour quelle fraction de néon et pour quel coefficient de surchauffe cet optimum se situe-t-il ?

- **Point B** : une fois déterminé cet optimum, comment se comporte la réponse du fil entre les extrêmes propane pur et oxidant pur, en passant par toutes les variations de compositions intermédiaires possibles ?

Intéressons-nous en premier lieu au point A-1. Nous nous sommes d’abord attachés à trouver l’optimum de fraction molaire de néon \(\chi_{opt} \) à ajouter dans le mélange. Pour cette étude semi-
paramétrique, nous avons fixé les autres paramètres aux valeurs suivantes (considérés pour nos expériences) :

– une ambiance contrôlée en température à \(T_0 = 296 \text{ K} \) pour toutes les expérimentations,
– un coefficient de surchauffe du fil \(\alpha = 1.067 \) (ce qui correspond à une température moyenne du fil chaud de \(T_w \sim 612 \text{ K} \), un rapport de résistances \(R_w/R_o = 1.6 \) et à un fonctionnement optimal du fil \(11 \)),
– un diamètre et une longueur sensible du fil \(12 \) \(d = 2.5 \mu m \) et \(l = 400 \mu m \),
– une résistance à température ambiante du fil \(R_o = 4.14 \Omega \),
– des résistances du pont anémométrique valant \(R_a = 50 \Omega \) et \(R_b = 6.62 \Omega \),
– un coefficient pour le matériau du fil (Pt/Rh 90/10\%\) valant \(b = 0.0019 \text{ K}^{-1} \).

La figure (3.2) montre l’influence de la fraction de néon ajoutée dans l’air sur la courbe de réponse du fil, lorsque les paramètres environnement et système définis plus haut sont maintenus constants. Les courbes sont obtenues grâce à l’équation (3.9), pour des fractions d’ajout de néon dans l’oxidant de 10, 30, 50, 70 et 90 \% en volume. Les propriétés thermophysiques des gaz purs (air, propane, néon) ont été évaluées à la température du film (soit \(T_m \sim 500 \text{ K} \)), d’après les données disponibles dans [152]. Elles sont résumées dans le tableau (3.1). Les propriétés des mélanges ont été estimées en utilisant la théorie cinétique des gaz, et en considérant un potentiel d’attraction moléculaire de Lennard-Jones 6-12. Le détail des expressions utilisées et des estimations associées est fourni en annexe 2. Les valeurs finales obtenues par ces calculs pour le cas de fraction volumique 70 \% de néon dans l’air (mélange oxidant optimum) et également pour un prémélange à 50\% entre le propane et cet oxidant, sont rapportées dans le tableau (3.2).

<table>
<thead>
<tr>
<th></th>
<th>(\lambda) W.m(^{-1}).K(^{-1}) 300/500 K</th>
<th>(\nu) m(^2).s(^{-1}) 300/500 K</th>
<th>(\text{Pr}) 300/500 K</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>0,0258/0,0385</td>
<td>16,04×10(^{-6})/38,94×10(^{-6})</td>
<td>0,71/0,70</td>
<td>0,85</td>
</tr>
<tr>
<td>Propane</td>
<td>0,0180/0,0455</td>
<td>4,60×10(^{-6})/12,69×10(^{-6})</td>
<td>0,79/0,75</td>
<td>0,85</td>
</tr>
<tr>
<td>Néon</td>
<td>0,0498/0,0699</td>
<td>28,66×10(^{-6})/63,38×10(^{-6})</td>
<td>0,70/0,69</td>
<td>0,093</td>
</tr>
</tbody>
</table>

11. Si le coefficient de surchauffe est trop élevé, les risques de cassure sont élevées et on note que du bruit sur le signal apparaît ; s’il est trop faible, on diminue la réponse fréquentielle du fil et de surcroît, on note une fréquence de coupure maximale moindre.
12. Les fils chauds ont été confectionnés à la main au laboratoire. La longueur du fil a été contrôlée visuellement sous loupe binoculaire à l’aide d’un fil étalon de diamètre de 400 \(\mu m \) (contrôlé lui-même au pied à coulisse).
Fig. 3.2 – Courbes de réponse du fil chaud, obtenues analytiquement par l’Eq.(3.9), pour différentes fractions volumiques d’ajout de néon dans l’oxidant (entre 0% et 100%). Pour cette étude d’influence de la fraction de néon, le coefficient de surchauffe appliqué est maintenu à la valeur constante de $\alpha=1,067$.

Les courbes ont été approchées par une loi en puissance à l’aide d’un algorithme aux moindres carrés. Voici les meilleures approximations obtenues pour les courbes tracées sur la figure (3.2) (respectivement pour le propane, l’air, et les différentes fractions de néon présentées entre 10 et 90%):

\[
\begin{align*}
E_{\text{out}}^2 &= 5,23 + 4,805U^{0,375}; \\
E_{\text{out}}^2 &= 4,39 + 2,403U^{0,43}; \\
E_{\text{out}}^2 &= 5,52 + 2,611U^{0,42}; \\
E_{\text{out}}^2 &= 5,77 + 2,830U^{0,42}; \\
E_{\text{out}}^2 &= 6,22 + 3,113U^{0,42}; \\
E_{\text{out}}^2 &= 6,93 + 3,704U^{0,42}; \\
E_{\text{out}}^2 &= 7,85 + 4,203U^{0,42}.
\end{align*}
\]

Le bénéfice de l’ajout de néon est clairement visible sur la figure (3.2). En effet, si l’on effectuait une mesure "brutale" dans un mélange air-propane en calibrant le fil chaud sur l’une ou l’autre des courbes (soit celle de l’air, soit celle du propane), la figure (3.2) démontre aisément la grossière erreur qui se rait commise sur la vitesse (plus de 700% par exemple pour un enregistrement de E_{out}^2 valant 10V par

<table>
<thead>
<tr>
<th></th>
<th>λ_{mix} (W.m$^{-1}$.K$^{-1}$)</th>
<th>ν_{mix} (m2.s$^{-1}$)</th>
<th>β_{mix}</th>
</tr>
</thead>
<tbody>
<tr>
<td>70%Néon-30%Air</td>
<td>0,0570</td>
<td>60,75x10$^{-6}$</td>
<td>0,27</td>
</tr>
<tr>
<td>50%(70%Néon-30%Air)/50%propane</td>
<td>0,0504</td>
<td>42,32x10$^{-6}$</td>
<td>0,20</td>
</tr>
</tbody>
</table>

Tab. 3.2 – Propriétés thermophysiques des mélanges à la température du film (∼ 500 K), obtenu par les formules de la théorie cinétique des mélanges de gaz d’après [11] et [152] pour la conductivité thermique moyenne λ_{mix}, et la viscosité cinématique moyenne ν_{mix}, et d’après [11] pour le coefficient d’accommodation moyen β_{mix}.
exemple - flèches noires !). Cette remarque vient confirmer la difficulté inhérente à l’anémométrie à fil chaud dans des mélanges de gaz. Si maintenant on ajoute du néon en proportion de plus en plus importante dans l’air, on note qualitativement que la courbe de réponse du fil chaud remonte vers celle du propane. Pour 70% de néon en proportion dans l’air constituant l’oxydant, la courbe de calibration est très proche de celle du propane pur. Il est à noter que selon l’équation analytique (3.9), l’optimum se situe vers 65% de néon ajouté. L’optimum correspond au positionnement de la courbe de réponse procurant le minimum d’écarts par rapport à la réponse du propane, sur la gamme 0-15 m/s. Nous avons vérifié expérimentalement que l’optimum se situe plutôt pour la composition (30% d’air et de 70% de néon). Cette différence s’explique par l’incertitude sur l’expression analytique d’une part, et sur les approximations sur les débits de manière expérimentale. **Conclusion partielle sur le point A-1 : la fraction d’ajout de néon à hauteur de 70% dans l’air (formant ainsi un mélange oxydant à teneur 30/70) est optimum pour nos conditions opératoires.**

En second lieu, nous avons cherché à regarder l’influence du coefficient de surchauffe sur cet optimum trouvé à 70% de néon (point A-2). La question est de savoir quel est l’impact de ce paramètre sur le positionnement de la courbe de réponse du fil chaud. Pour cela, nous avons utilisé de nouveau l’équation (3.9) et fait varier cette fois-ci le paramètre α, tous les autres paramètres étant maintenus constants. Les résultats obtenus sont présentés sur la figure (3.3), où trois variations du coefficient de surchauffe ont été réalisées analytiquement, correspondant aux rapports de résistances R_w/R_o suivants : 1.9 ($\alpha=1.602$), 1.7 ($\alpha=1.246$) et 1.5 ($\alpha=0.890$). Ces valeurs sont typiques d’un fonctionnement correct de fil chaud. Pour comparaison, la courbe de réponse dans le propane pur avec un coefficient nominal de 1.6 ($\alpha=1.067$) est tracée sur cette figure. On note qualitativement que plus ce coefficient augmente, plus les courbes de réponse du fil tendent à s’éloigner de la courbe du propane pour les vitesses importantes, et à s’en rapprocher pour les valeurs basses. Alors que l’augmentation de la fraction de néon n’agissait que sur la "hauteur" des courbes, sans en changer l’inclinaison, le **coefficient de surchauffe est un paramètre supplémentaire qui peut permettre d’ajuster les courbes de l’oxydant plus près de celle du propane pour des vitesses faibles ou fortes.**

Conclusion partielle sur le point A-2 : la variation du coefficient de surchauffe change l’inclinaison de la courbe de l’oxydant, et peut ainsi permettre de réduire l’écart avec la courbe de propane, pour les vitesses faibles ou pour les vitesses élevées.

A ce stade, on peut uniquement affirmer que la sonde devient quasiment insensible à une différence de particule, entre du propane pur (C_3H_8) de l’oxydant (composé de 30% d’air et de 70% de néon en volume). Bien que ce résultat soit déjà un net progrès par rapport au cas sans ajout de néon, cela ne suffit pas à conclure que la réponse du fil est également insensible à toutes les autres compositions instantanées rencontrées au sein du mélange constitué d’air, de néon ajouté et de propane (point B).
Par conséquent, intéressons-nous au point B. Pour cela, nous avons analysé l’influence d’un prémélange partiel entre le propane pur et l’oxidant pur ; c’est-à-dire que nous avons calculé analytiquement les courbes de réponse du fil lorsque celui-ci rencontre des compositions intermédiaires entre ces deux composés. La figure 3.4 montre les courbes de calibration obtenues analytiquement pour un prémélange partiel massique à 25, 50 et 75% de propane vis-à-vis de l’oxidant (composé de 70%néon/30%air). On a également tracé sur cette figure les courbes de réponse dans le propane pur et dans l’oxidant pur. On observe que pour chaque composition intermédiaire (à 25, 50 et 75%), les courbes de calibration sont toutes positionnées très près de celle du propane pur et de celle de l’oxidant pur. Toutefois, en raison de la non-linéarité de l’équation (3.9) avec la vitesse $U(t)$, les courbes intermédiaires interceptent la courbe de propane pur pour une vitesse différente, notée U_{interc}. Ce point de croisement des courbes est le point où l’erreur commise par rapport à la réponse dans le propane est nulle. Ce point se situe à des vitesses différentes, selon le degré de prémélange (25, 50 et 75%) : respectivement pour $U\sim 9$, 12, et 1 m/s. On note également que la courbe correspondant à un prémélange à 50% de propane pur avec 50% d’oxidant pur (composé de 30%air/70%néon) est celle qui est “équidistante” des courbes de propane pur et d’oxidant pur, de part et d’autre du point de croisement ($U_{interc} \sim 12$ m/s). Cette courbe est par conséquent celle qui offrira la plus petite erreur relative entre les courbes de propane pur et d’oxidant pur, sur toute la gamme de vitesses considérées (0-15 m/s). On la choisit comme courbe de réponse utilisée pour le post-traitement des signaux enregistrés. On la note par la suite U_{cal}.

13. On peut noter que la courbe de prémélange à 75% est meilleure que celle à 50% pour la partie basse des vitesses mesurées (< 8 m/s). Cette remarque laisse entrevoir la possibilité de faire évoluer la technique en incluant une optimisation "en temps
Fig. 3.4 – Courbes de réponse du fil chaud, obtenues analytiquement par l’équation (3.9), pour différents prémélange partiels entre le propane pur et l’oxidant pur : 25, 50 et 75% (en masse).

La figure (3.5) présente l’erreur relative sur la vitesse \(\frac{U_{\text{réel}} - U_{\text{cal}}}{U_{\text{cal}}} \) commise sur la gamme de vitesse 0-15 m/s, en considérant cette courbe (dénommée 50%) comme courbe de calibration du fil pour l’extraction de l’information de vitesse. Autrement dit, on s’intéresse à estimer l’erreur commise sur la vitesse lorsque la fraction massique de prémélange entre le propane pur et l’oxidant pur s’écarte de la valeur médiane de 50% (soit vers la valeur 100% - propane pur- soit vers la valeur 0% - oxidant pur). Les courbes correspondent à l’erreur maximale pouvant être commise par la technique de mesure (d’un point de vue analytique) sur la vitesse moyenne ; tandis que l’écart vertical entre les courbes d’erreur correspondantes à 100% de propane ou 100% d’oxidant correspond aux erreurs sur les fluctuations de la vitesse lorsque la sonde verrait très rapidement une particule de propane pur, suivie d’une particule d’oxidant pur.

Si le fil ne rencontrait que du propane pur (alors que la courbe de calibration a été optimisée pour un prémélange propane-oxidant= 50%), on observe par conséquent que l’erreur relative commise sur la vitesse moyenne \(\frac{U_{100\%} - U_{\text{cal}}}{U_{\text{cal}}} \) est inférieure à 5% entre \(\sim 1,4 \) m/s et 15 m/s (3.5 carrés noirs). Si le fil ne rencontrait que de l’oxidant pur, on observe une erreur relative \(\frac{U_{0\%} - U_{\text{cal}}}{U_{\text{cal}}} \) atteignant 20% sur la même gamme de vitesse \(\sim 1,4 \) à 15 m/s (ronds blancs sur la Fig. (3.5)). Bien évidemment, la courbe d’erreur est nulle si le fil rencontre un prémélange à 50% de propane (courbe en pointillés rouge), puisqu’il s’agit précisément de la courbe de calibration choisie pour le fil chaud. On note que l’erreur commise sur les fluctuations de vitesse, à vitesse moyenne fixe, est maximale pour les faibles valeurs de la vitesse moyenne ; elle atteint 20%/+5%=25% pour la vitesse U=1,4 m/s. Dès que U>5 m/s, cette erreur sur les grandeurs fluctuantes ne dépasse pas 5%.
A ce stade, nous venons de démontrer analytiquement l’intérêt d’ajouter du néon dans l’air pour rendre indépendante de la concentration la mesure anémométrique à fil chaud, pour des conditions opératoires bien ciblées et pour une gamme de vitesse particulière (0-15 m/s). Par ailleurs, il a été démontré le choix de la courbe de réponse à considérer pour les mesures dans le mélange de propane avec de l’oxidant, afin de réduire les erreurs sur la vitesse instantanée (courbe à "50\% ").

Ayant formé un mélange oxydant composé de 70\% de néon et 30\% d’air, quel est l’impact sur la mesure couplée de la fraction molaire de propane, par la technique de diffusion Rayleigh ? Quelle est l’impact sur la précision de cette mesure dans ce cas ?

3.3.3 La Diffusion Rayleigh monopoint pour la mesure de concentration

La technique de diffusion Rayleigh exploite les propriétés de collisions élastiques entre les molécules (sans changement de longueur d’onde par rapport au faisceau de lumière incident). En effet, l’intensité totale diffusée par des molécules isotropes de manière élastique dans une direction à 90 degrés par rapport à la source, notée I(90), dépend de l’intensité lumineuse incidente par la relation simple suivante [308]:
CHAPITRE 3. TECHNIQUE COUPLÉE FIL CHAUD ET DIFFUSION RAYLEIGH

\[I(90) = C N I_o \sum_{i=1}^{n} [\chi_i \sigma_i(90)] \]

(3.11)

avec :

\[\sum_{i=1}^{n} \chi_i = 1 \]

(3.12)

Dans l’expression (3.11) :
- \(C \) est une constante regroupant tous les coefficients de transmission optique des systèmes placés sur le chemin lumineux (lentilles, filtres, ...) de l’optique de focalisation et de collection;
- \(N = P A_o / R T \), avec \(\sum_{i}^{n} N_i = N \) le nombre total de molécules contenues dans le volume de mesure Rayleigh, \(P \) et \(T \) étant respectivement la pression et la température statiques du milieu;
- \(A_o \) est le nombre d’Avogadro (6,22 \(10^{22} \));
- \(R \) est la constante des gaz universelle (R=8,3144).

On définit la section efficace de diffusion Rayleigh différentielle des gaz, notée \(\sigma_i \), sans effets d’anisotropie moléculaires, par :

\[\sigma_i = 4 \pi^2 \left(n_i - 1 \right)^2 / \lambda_w^4 N_o^2 \]

(3.13)

avec \(\lambda_w \) la longueur d’onde du laser incident (\(\lambda_w = 676 \) nm dans notre cas), \(n_i \) l’indice de réfraction du gaz aux température et pression standard (\(P=101235 \) Pa, \(T=288,15 \) K), et \(N_o \) le nombre de Loschmidt (2,687 \(10^{19} \) cm\(^{-3} \)). Lorsque les molécules sont anisotropes, elles dépolarisent la lumière incidente du laser, ce qui modifie l’intensité diffusée vers l’optique de collection. Une correction à la formule (3.13) est alors nécessaire [209]. Pour les molécules de propane, d’air et de néon, les coefficients d’anisotropie sont négligeables à la longueur d’onde du laser. L’équation (3.13) est par conséquent suffisante.

Pour un mélange binaire, isotherme et isobare, il a été montré que cette technique permet de déterminer aisément la fraction molaire d’un des deux fluides [308]. Dans ce cas, le système composé de l’équation (3.11) (pour \(n=2 \)) et de l’équation de conservation des espèces (\(\sum_{i}^{n} \chi_i = 1 \)) se résoud aisément et on aboutit à la relation simple suivante donnant la fraction molaire instantanée du gaz 2 (propane par exemple) [308] :

\[\chi_2(t) = \frac{I(t) - \bar{I}_{gaz1}}{I_{gaz2} - I_{gaz1}} \]

(3.14)

où \(\bar{I}_{gaz1} \) et \(\bar{I}_{gaz2} \) sont les niveaux d’intensité de lumière diffusée dans les gaz purs 1 et 2 (enregistrés sur des durées très longues). La fraction molaire du gaz 1 se déduit ensuite par la simple conservation des espèces (3.12) par la relation triviale \(\chi_1(t) = 1 - \chi_2(t) \). Un premier avantage important de la relation
(3.14) est que seuls les niveaux relatifs des intensités de lumière diffusée sont nécessaires pour déterminer la fraction molaire du gaz. Il n’est pas nécessaire de mesurer les niveaux absolus. L’autre avantage indéniable de la formulation (3.14) est qu’elle permet en outre de s’affranchir directement du bruit de fond présents sur chacun des signaux \(\bar{I}_{\text{gaz}1} \), \(\bar{I}_{\text{gaz}2} \) et \(I(t) \). En effet, leur contribution s’annule par la sous-traction des signaux deux à deux au numérateur et au dénominateur. La fraction massique du gaz 2 est ensuite directement déterminée par l’expression suivante, faisant intervenir les masse molaires des deux gaz présents, et moyennant la relation simple supplémentaire reliant le nombre de moles à la masse (\(n_i = m_i/M_i \), \(M_i \) étant la masse molaire du gaz i) :

\[
Y_2(t) = \chi_2(t)M_2\chi_1(t)M_1 + \chi_2(t)M_2
\]

(3.15)

où \(M_1 \) et \(M_2 \) sont les masses molaires des gaz 1 et 2. De la même manière que pour les fractions molaires, la fraction molaire du gaz 1 est directement extraite à partir de la conservation de la masse, soit \(Y_1(t) = 1 - Y_2(t) \).

Dans le mélange ternaire que nous avons dû former pour rendre notre technique anémométrique indépendante de la composition, un troisième gaz (néon) a été ajouté. Quel est l’impact de cet ajout sur la mesure par diffusion Rayleigh de la fraction molaire de propane ?

Reprenant l’équation (3.11), pour un tel mélange, on obtient :

\[
I(90) = CNI_o\left(\sigma_{\text{air}}\chi_{\text{air}} + \sigma_{\text{C}_3\text{H}_8}\chi_{\text{C}_3\text{H}_8} + \sigma_{\text{Ne}}\chi_{\text{Ne}}\right)
\]

(3.16)

où \(\sigma_{\text{air}} \), \(\sigma_{\text{C}_3\text{H}_8} \) et \(\sigma_{\text{Ne}} \) sont les sections efficaces de diffusion Rayleigh différentielles pour l’air, le propane et le néon à la longueur d’onde du laser. Pour \(\lambda_w = 676 \) nm, ces sections efficaces ont été estimées respectivement aux valeurs suivantes : \(5,3 \times 10^{-27} \) cm\(^{-2} \) [266], \(72 \times 10^{-27} \) cm\(^{-2} \) [266] et \(0,25 \times 10^{-27} \) cm\(^{-2} \) [248].

L’équation de conservation molaire s’écrit pour ce mélange ternaire :

\[
\chi_{\text{air}} + \chi_{\text{C}_3\text{H}_8} + \chi_{\text{Ne}} = 1
\]

(3.17)

Même en supposant que la pression, la température et l’intensité du laser incident sont constantes, sur un plan strictement mathématique, le système composé des deux équations (3.16) et (3.17) à trois inconnues (\(\chi_{\text{air}} \), \(\chi_{\text{C}_3\text{H}_8} \) et \(\chi_{\text{Ne}} \)) n’est pas solvable. Néanmoins, d’un point de vue physique et moyennant certaines hypothèses, il est intéressant de remarquer que ce système peut être résolu, et que les trois fractions molaires peuvent être obtenues avec une excellente précision.

Pour cela, mentionnons tout d’abord que le néon est d’abord prémélangé avec l’air pour former l’oxydant injecté dans le coflow, avant d’être mélangé par la suite avec le jet de propane. Ce point de
procédure expérimentale est essentiel pour justifier l’approximation que nous allons faire maintenant.

A partir de ce constat, deux constatations importantes sont à souligner :

1/ Les coefficients de diffusion moléculaire entre chaque paire de gaz contenu dans le mélange propane-air-néon, montrent que la diffusion moléculaire des gaz est préférentiellement renforcée entre l’air et le néon au détriment de ces deux gaz vers le propane. En effet, les coefficients estimés par la théorie cinétique des gaz a permis de calculer les trois coefficients suivants : \(D_{\text{air}-C_3H_8} = 3,0910^{-6} \text{ m}^2\text{.s}^{-1} \), \(D_{\text{Ne}-C_3H_8} = 3,2410^{-6} \text{ m}^2\text{.s}^{-1} \) et \(D_{\text{air}-\text{Ne}} = 3,4210^{-5} \text{ m}^2\text{.s}^{-1} \). Ainsi, les molécules d’air et de néon vont rester plus naturellement l’une avec l’autre grâce à l’action d’une diffusion moléculaire renforcée (10 fois plus forte que la diffusion vers le propane). Néanmoins, elles pourront éventuellement diffuser l’une vers l’autre et modifier la composition de l’oxydant (70/30) dans le cas où cet oxidant ne serait pas parfaitement homogène (nous aborderons le problème dans le paragraphe suivant traitant de l’estimation des erreurs introduites sur la mesure Rayleigh) ;

2/ Le temps de diffusion moléculaire dans le volume de mesure Rayleigh (cylindre de taille 80 \(\mu \text{m} \times 200 \mu \text{m} \)) de l’ordre de \(\tau_{diff} \propto \frac{d^2_{diff}}{\nu} \sim \frac{(20010^{-6})^2}{4,610^{-6}} \sim 0,01 \) est du même ordre de grandeur que le temps de convection des particules \(\tau_{conv} \), entre la sortie de la buse du jet (Z/D=0) et la position la plus aval de la mesure (Z/D=30), soit \(\tau_{conv} \sim \frac{30D}{U_o} \sim \frac{0,15m}{10m/s} \sim 0,015s \). Cette deuxième remarque complète la première en démontrant que les processus de diffusion moléculaires ne vont pas avoir le temps d’agir très efficacement entre le propane, l’air et le néon. Par conséquent, les processus de diffusion moléculaires, bien qu’ils demeurent toujours présents, vont être limités.

Ainsi, sur la base des deux remarques précédentes, nous avons considéré que l’oxydant, de composition moyenne 70\%néon/30\%air (en volume), se comportait comme un composé unique et indisociable dans le mélange global propane-air-néon, tel que l’on puisse écrire que l’intensité de diffusion Rayleigh émise par cet oxidant se met sous la forme :

\[
I_{\text{oxi}}(90) = CNI_o \left(\sigma_{\text{air}}\chi_{\text{air}} + \sigma_{\text{Ne}}\chi_{\text{Ne}} \right) \equiv CNI_o \sigma_{\text{oxi}} \quad (3.18)
\]

dès lors que \(\chi_{\text{oxi}} \equiv \chi_{\text{air}} + \chi_{\text{Ne}} = 1 \) par définition dans le mélange oxidant. On définit la section efficace équivalente de l’oxydant, notée \(\sigma_{\text{oxi}} \) par :

\[
\sigma_{\text{oxi}} = \sigma_{\text{air}}\chi_{\text{air}} + \sigma_{\text{Ne}}\chi_{\text{Ne}} \quad (3.19)
\]

Avec \(\chi_{\text{Ne}}=\chi_{opt} = 0.70 \), et avec \(\sigma_{\text{air}}^{676nm} = 5,3 \times 10^{-27} \text{ cm}^{-2} \) et \(\sigma_{\text{Ne}}^{676nm} = 0,25 \times 10^{-27} \text{ cm}^{-2} \), on trouve une valeur numérique pour la section efficace \(\sigma_{\text{oxi}} \) égale à 1,765 \(10^{-27} \text{ cm}^{-2} \). Notons que la forte proportion de néon introduit dans le mélange oxidant (à hauteur de 70\% en volume), associée à la très faible section
CHAPITRE 3. TECHNIQUE COUPLÉE FIL CHAUD ET DIFFUSION RAYLEIGH

La technique de diffusion Rayleigh fournit la fraction molaire de propane et d’oxydant (et par déduction triviale, les fractions massiques) présents dans le mélange, au cours de temps. A partir de ces grandeurs, il est possible de déduire la viscosité dynamique (directement à partir des fractions molaires), et dans un second temps, la viscosité cinématique (à partir des fractions molaires et massiques), grâce aux hypothèses de la théorie cinétique des gaz.

14. Ce dernier point a probablement contribué à rendre possible nos mesures de diffusion Rayleigh avec un rapport signal sur bruit très correct, malgré une source lumineuse incidente située défavorablement dans le rouge à \(\lambda_w = 676\text{nm} \). En effet, les ratios des sections efficaces de diffusion différentielle du néon avec l’air et avec propane valent respectivement \(\frac{\sigma_{\text{Ne}}}{\sigma_{\text{air}}} \sim 1/21 \) et \(\frac{\sigma_{\text{Ne}}}{\sigma_{\text{C}_3\text{H}_8}} \sim 1/288 \). Le néon étant ajouté à hauteur de 70\% dans l’air, cela traduit une augmentation appréciable du rapport signal/bruit entre les niveaux minimum (mélange 30\% air-70\% néon) et maximum (propane pur). Idéalement, les mesures de diffusion Rayleigh doivent être réalisées avec des longueurs d’onde les plus basses possibles, d’après Eq.(3.13).
Selon la théorie cinétique des gaz, la viscosité dynamique d’un gaz pur peut s’écrire de différentes manières selon le modèle de collision moléculaire considéré (sphère rigide, potentiel d’attraction de Coulomb, …). La voie communément admise est de considérer un potentiel de collision de Lennard-Jones 6-12 [118].

Nous donnons ici uniquement les relations finales utilisables pour les calculs. Nous renvoyons à l’annexe 2 pour le détail des hypothèses et des grandeurs apparaissant dans les relations ci-dessous.

Pour notre mélange ternaire propane-air-néon, la viscosité dynamique moyenne s’écrit (Eq. B.8 de l’annexe 2) :

\[
[\mu_{mix}]_1 = \nu \sum_{i=1}^{\nu} \chi_i^2 \chi_i \chi_i \frac{RT}{pM_i} \]

D’autre part, la viscosité cinématique va se déduire ainsi :

\[
\nu_{mix}(t) = \frac{\mu_{mix}(t)}{\rho_{mix}(t)}
\]

avec :

\[
\rho_{mix}(t) = Y(t)\rho_{C_3H_8}(t) + [1 - Y(t)]\rho_{oxi}(t)
\]

3.4 Vérification expérimentale des développements analytiques

3.4.1 Erreurs maximales commises sur la mesure anémométrique à fil chaud

Intéressons-nous en premier lieu à la validation expérimentale des résultats analytiques développés pour l’anémométrie à fil chaud dans le mélange propane-air-néon considéré dans ces travaux. Pour ce faire, les courbes de calibration du fil chaud pour deux gaz purs (propane et air) et deux mélanges (oxydant pur composé de 70% néon/30% air et prémélange partiel entre l’oxydant et le propane à 50% en masse) ont été déterminées. Une mini-soufflerie de calibration de fil chaud générant un écoulement "Top-Hat" en sortie très laminaire a été utilisée. Des cols soniques étalonnés ont servi de débitmètres à cette opération de calibration. Des petits cols soniques en verre ont été utilisés pour les très faibles débits de néon. Les quatre courbes obtenues par cette opération de calibration sont présentées sur la figure (3.6). Elles sont tracées pour la gamme de vitesse 0-9,7 m/s seulement (pour des raisons de limitation de débit au-delà de 10 m/s). L’allure générale de ces courbes et la différence de niveau entre celles-ci sont qualitativement similaires à celles des courbes analytiques Fig. (3.4). Néanmoins, on note une différence
notable du niveau absolu de ces courbes par rapport aux courbes analytiques. Par exemple pour le propane pur, la tension E^2_{out} obtenue à 8 m/s est d’environ 11 V, contre 16 V pour l’estimation analytique correspondante. Cette différence de niveau est attribuable à différentes sources d’incertitudes : sur les propriétés thermophysiques des fluides et sur leur estimation par la théorie cinétique des gaz (lois des mélanges très difficile à valider) d’une part, sur l’approximation de la loi de convection forcée Eq. (3.4) pour les mélange ternaires de gaz purs d’autre part, et sur la non prise en compte des flux de conduction au niveau des broches du fil (flux important à ce niveau de température, $T_w \sim 612K$).

Analysons d’abord les erreurs introduites sur la vitesse moyenne, lorsque la courbe de prémélange Fig. 3.6 – Tracé du carré de la tension sur le fil chaud E^2_{out} en fonction de la vitesse moyenne $\langle U \rangle$, pour du propane pur, de l’air pur, de l’oxidant pur (=30%air/70%néon) et un prémélange 50% propane/50% oxidant.

partiel à 50% est utilisée comme courbe de référence pour la mesure dans le mélange. Reprenons le même raisonnement que pour pour l’étude analytique. Si la sonde (le fil chaud) ne rencontrait que du propane pur, on observe que l’erreur relative $\frac{U_{true} - \langle U \rangle_{cal}}{\langle U \rangle_{cal}}$ varie entre +10% et -12,5% entre \sim 1,5 m/s et 9,7 m/s, Fig. (3.7 carrés blancs). Au-dessous de 1,5 m/s, l’erreur relative augmente considérablement. Si le fil ne rencontrait que de l’oxidant pur, on observe une erreur relative $\frac{U_{true} - \langle U \rangle_{cal}}{\langle U \rangle_{cal}}$ bien meilleure. Elle varie entre 0% et +2,5% seulement sur la même gamme de vitesse \sim 1,4 à 9,7 m/s (ronds blancs sur la Fig. (3.7)).

Nous voyons, toujours d’après la figure (3.7), que l’erreur relative sur la vitesse moyenne est fortement dépendante de la concentration et de la vitesse. Aux concentrations élevées en propane et aux

15. L’erreur relative est ici déterminée en notant dans l’expression la vitesse moyenne $\langle U \rangle_{cal}$ et non la vitesse instantanée comme pour les courbes analytiques. Ceci permet d’être cohérent avec les mesures de vitesses moyennes déterminées expérimentalement pour la construction des courbes de calibrations du fil chaud.
Fig. 3.7 – Courbe d’incertitude relative sur la vitesse $\frac{U-\langle U_{\text{cal}} \rangle}{\langle U_{\text{cal}} \rangle}$ en fonction de la vitesse (avec la courbe de calibration choisie pour un prémélange propane-oxidant=50%), lorsque le fil rencontre soit du propane pur (100%), soit de l’oxidant pur (0%).

faibles vitesses, l’erreur peut atteindre $+25\%$ et plus. Au contraire, aux faibles concentration en propane et aux vitesses élevées, l’erreur est réduite puisqu’elle plafonne vers $+2,5\%$ seulement. Sur la base de cette remarque, nous avons calculé l’erreur relative sur les vitesses moyennes de nos mesures le long de l’axe du jet de propane se déchargeant dans un mélange d’oxidant (30\%air/70\%néon)(d’après les conditions et résultats du tableau [3.19]). Les erreurs relatives calculées avec ces conditions particulières, sont représentées sur la Fig. (3.7) (carrés rouges) pour les sept points de mesures aux positions axiales $Z/D=4,6,10,15,20,25$ et 30 du tableau. Il apparaît que les erreurs relatives sur les vitesses moyennes pour les conditions de mesures réalisées sont faibles, et varient entre $-0,8$ et $-5,5\%$, entre $Z/D=4$ et $Z/D=30$.

Qu’en est-il des erreurs commises sur les fluctuations de la vitesse ?
Les erreurs introduites sur les fluctuations de vitesse extraites de la mesure par anémométrie dans un mélange hétérogène peuvent provenir :

– d’une variation de concentration locale uniquement, non associée à une variation de la vitesse ; par exemple, lorsqu’une particule de propane suivie brusquement d’une particule d’oxidant arrivent successivement sur la sonde à fil chaud à la même vitesse instantanée. Cette variation de concentration sur un
intervalle de temps très court va engendrer une variation de la vitesse "interprétée par la sonde", qui est non physique. Les variations de concentration s’étalent entre du propane pur et de l’oxidant pur. Ainsi, ce premier point se traduit sur la figure (3.7) par un déplacement vertical à iso-vitesse (traits interrompus en rouge). Calculé pour nos conditions de mesures, ce cas de figure engendre des erreurs maximales pour les positions les plus proches de la buse de sortie du jet (position Z/D=4), correspondant aux fortes vitesses moyennes. Pour cette position (Z/D=4), on lit sur la Fig. (3.7), une erreur relative maximale sur les fluctuations de vitesse, comprise entre -12,5% et +2,5% (soit une erreur globale de 15%). Précisons un peu. Pour cette mesure la plus défavorable (position Z/D=4), la fonction de densité de probabilité de la vitesse est quasi-gaussienne (non-représenté). Ainsi, les erreurs sur les fluctuations de la vitesse correspondant à 1 (68%), 2 (95%) et 3 (99%) écart-types σ donnent respectivement ~ 5% (à 1σ), ~ 8% (à 1σ), et ~ 15% (à 3σ). Bien que l’erreur commise à 3σ ne soit pas négligeable (15%), elle correspond à une mesure la plus défavorable (position Z/D=4) et traduit des événements probables très rares. Pour toutes les autres positions, les erreurs relatives sont inférieures à cet intervalle. L’erreur maximale comprise pour les basses vitesses (sur les fluctuations) sont comprises entre -1% et +10% (soit une erreur globale de 11%).

– d’une variation de concentration locale, associée à une variation de la vitesse locale ; c’est le cas par exemple lorsque la sonde initialement placée dans le jet de propane (U~10 m/s) va "interceptor" une particule d’oxidant à très faible vitesse (U~0 m/s) ; ou à l’inverse, lorsque la sonde, initialement placée sur les bords du jet du côté oxidant (U~0 m/s) va "interceptor" une particule de propane pur à très forte vitesse (U~10 m/s). Pour ce cas de figure, les erreurs relatives sur les fluctuations de vitesse sont bornées par les points extrênum des courbes correspondant à l’oxidant à U~0 m/s (point tout à gauche sur cette courbe, donnant une erreur de l’ordre de -10%), et par celle correspondant au propane pur à U~10 m/s (point tout à droite sur cette courbe, donnant une erreur de l’ordre de -12,5%).

Dans nos conditions de mesures, la technique d’anémométrie utilisant le dopage au néon permet la mesure avec un haut niveau de précision sur les valeurs moyennes de la vitesse (<5%), et sur les fluctuations de la vitesse (<5% à 1 écart-type). Nous avons également mentionné le potentiel de cette technique par le fait que ces erreurs peuvent encore être réduites par de nombreuses possibilités d’amélioration de la technique (optimisation des paramètres de contrôle, itération sur la courbe de calibration utilisée, etc...).

16. Ce résultat sous-tend malgré tout la difficulté de mesurer avec une précision suffisante des fluctuations de vitesse dans un champ très faiblement turbulent et rapide, qui présenterait des variations de signal télégraphiques de la concentration (entre 0 et 100% de fraction massique de propane). Notre technique, en l’état actuel des choses, est plutôt adaptée à des mesures dans un champ turbulent déjà partiellement prémélangé (pas de signal télégraphique de la concentration).
Voyons désormais les erreurs commises sur la technique de diffusion Rayleigh, lorsque le néon est ajouté dans l’oxydant.

3.4.2 Erreurs maximales commises sur la détermination des fractions de propane par diffusion Rayleigh

Pour calculer la fraction molaire de propane dans le mélange propane-air-néon, nous avons été amenés à considérer que l’oxydant se comportait comme un composé unique (30% d’air et de 70% de néon) dans le champ turbulent. Cette hypothèse est tout à fait réaliste si le prémélange "30%air-70%néon" est bien homogène. Dans ce cas, la formule (3.21) fournit l’estimation de la fraction molaire, sans incertitudes. Une hypothèse plus réaliste serait de considérer que des variations autour de cette composition moyenne de l’oxydant sont possibles, dues à des inhomogénéités éventuelles au moment de la formation du mélange oxydant. Il faut bien voir que cette hypothèse est très pessimiste puisque le prémélange oxydant est déjà formé bien en amont, et que de nombreux organes mécaniques assurent l’homogénéisation. Alors quelles variations considérer pour calculer l’erreur associée sur les fractions molaires et massiques ? Nous avons envisagé le cas de figure décrit ci-dessous :

Nous avons modélisé la distribution de la composition de l’oxydant dans le volume Rayleigh au cours des mesures réalisées, par une distribution gaussienne, centrée sur la composition moyenne de 30%air/70%néon, et avec des maximums à gauche et à droite (à 3 écart-type) respectifs de 60%air/40%néon et 100%néon/0%air. L’écart-type de cette distribution est donc de 10% de variations de néon. Cette modélisation signifie que l’on ne peut pas rencontrer des occurences instantanées ayant moins de 40% de néon (i.e. plus de 60% d’air) et bien entendu, des occurences ayant plus de 100% de néon. Une telle variation de 10% de la teneur en néon dans l’oxydant est très pessimiste pour l’estimation de l’erreur. Elle constitue une borne sur les incertitudes.

Ensuite, nous avons cherché à estimer l’erreur relative sur la fraction molaire de propane, notée

\[G = \frac{\left| x_{\text{post}}^{\text{trait}} - x_{\text{reel}}^{\text{C}_3\text{H}_8} \right|}{x_{\text{reel}}^{\text{C}_3\text{H}_8}} \]

à partir de la relation (3.21) en considérant une distribution gaussienne des compositions instantanées des fractions molaires de l’oxydant qui suit une densité de probabilité donnée par (incertitude G) :

\[f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(x - \mu_c)^2}{2\sigma^2}\right) \]

(3.26)

avec \(\sigma \) l’écart-type de la distribution (10% de néon), et \(\mu_c \) la valeur moyenne (composition moyenne de l’oxydant).

L’incertitude G est tracée sur la figure (3.8), en fonction de la fraction molaire de propane réelle \(x_{\text{reel}}^{\text{C}_3\text{H}_8} \).

Elle est calculée en prenant les valeurs typiques des intensités suivantes, mesurées lors de nos expériences : \(~I_{\text{C}_3\text{H}_8}=4,107\text{ V}, I_{\text{air}}=0,292\text{ V}, I_{30\%\text{air}-70\%\text{néon}}=0,161\text{ V et } I_{\text{néon}}=0,015\text{ V.}~\) De même, l’incertitude
Fig. 3.8 – Erreur relative \(G = \left| \frac{\chi_{C_3H_8}^{\text{post-trait}} - \chi_{C_3H_8}^{\text{réel}}}{\chi_{C_3H_8}^{\text{réel}}} \right| \) commise sur la fraction molaire moyenne de propane tracée en fonction de la fraction molaire réelle pour le cas où la composition de l’oxydant suit une distribution gaussienne centrée sur la composition moyenne de 30% air/70% néon, avec un écart-type (1σ) de 10% sur la proportion de néon.

sur la fraction massique, notées \(G' \) définies de façon générale par l’expression \(G' = \left| \frac{Y_{C_3H_8}^{\text{post-trait}} - Y_{C_3H_8}^{\text{réel}}}{Y_{C_3H_8}^{\text{réel}}} \right| \) est obtenue à partir de l’erreur \(G \) et de la relation de passage entre fraction molaire et fraction massique d’un gaz parfait.

Les figures (3.8) et (3.9) montrent que les erreurs \(G \) et \(G' \) sont plus élevées aux très faibles fractions de propane, et qu’elles décroissent très rapidement au fur et à mesure que la fraction de propane augmente. De manière générale, on peut dire qu’au-delà de 20 ~ 25% en propane (en masse ou en volume), l’erreur sur les fractions moyennes, calculée selon l’hypothèse d’une variation de la teneur en néon dans l’oxydant à hauteur de 10%, devient négligeable (de l’ordre de 1 à 3%, et du même ordre de grandeur que celle du bruit électronique). Les erreurs sur les fractions molaires moyennes s’étendent entre 5% aux valeurs basses de \(\langle X_{C_3H_8} \rangle = 0,20 \) et 0,3% pour \(\langle X_{C_3H_8} \rangle = 0,95 \). Les erreurs sur les fractions massiques varient entre 12% pour \(\langle Y_{C_3H_8} \rangle = 0,13 \) et 1% pour \(\langle Y_{C_3H_8} \rangle = 0,95 \). En-dessous de cette valeur limite de 20 ~ 25% en propane, les erreurs croissent et atteignent au maximum 10% d’erreur pour la fraction massique de propane minimum testée dans nos travaux (\(\langle Y_c \rangle = 0,13 \)). Au-dessous, les erreurs continuent d’augmenter, atteignant environ 20%. Ce résultat appelle le commentaire suivant : il montre les limites de mesure d’une fraction très basse par une technique de diffusion Rayleigh (quelle qu’elle soit), lorsque le niveau de lumière diffusé devient du même ordre de grandeur que celui du bruit électronique (shot-noise). A ce stade, il est à signaler la très bonne précision sur les fractions moyennes (moins de 10%).
CHAPITRE 3. TECHNIQUE COUPLÉE FIL CHAUD ET DIFFUSION RAYLEIGH

3.5 Dispositifs expérimentaux et conditions opératoires

3.5.1 Le générateur d’écoulement turbulent

La technique a été testée et validée sur un jet turbulent axisymétrique de diamètre interne $D=5$ mm, et entouré par un co-courant de diamètre $D_{coflow}=80$ mm. Les parois internes ont été usinées selon un profil particulier évitant les décollements (profil en loi de puissance). Des billes en plastique de petite
taille son disposées au fond du coflow afin d’assurer une laminarisation et une homogénéisation de cet écoulement périphérique. Comme la diffusion Rayleigh est très sensible aux particules de poussière présentes (diffusion de Mie), des filtres microniques et submicroniques ont été placés sur les lignes d’alimentation du circuit gaz. La vitesse du coflow est fixée à 0,1 m/s, ce qui est suffisant pour protéger le jet sans créer des perturbations aérodynamiques trop importantes. Le jet est monté sur un chariot de déplacement motorisé CharlyRobot ayant une précision de position de 10μm. Une grande attention a été portée sur la verticalité du système supportant le jet (contrôlée par un niveau électronique). Les débits de gaz (propane et air) sont maîtrisés par des débitmètres Bronkhorst digitaux. Leur incertitude sur le débit est inférieure à 0,3%.

Fig. 3.10 – Vue en coupe du jet axymétrique utilisé pour les mesures.

3.5.2 Les conditions d’écoulement testées

La validation de la technique couplée a été réalisée à partir de deux conditions d’écoulement, dénommées "1 - couplée" et "2 - couplée" du tableau (3.3) :

– un jet de propane se déchargeant dans un mélange oxydant composé de 30\% air/70\% néon, avec un nombre de Reynolds initial basé sur le diamètre du jet interne D de $Re_D = \frac{U_o D}{\nu_{propane}} = 15400$, où U_o est la vitesse de sortie du propane à la buse du jet. Le flux de quantité de mouvement initial par unité de surface est $M_o = \rho_o U_o^2 = 360 \text{ kg.m}^{-1}.\text{s}^{-2}$, avec $\rho_o = 1,807 \text{ kg.m}^{-3}$ la masse volumique du propane aux conditions d’injection.

– un jet d’air se déchargeant dans de l’air pur avec un même flux de quantité de mouvement initial par unité de surface est $M_o = 360$, et pour lequel le nombre de Reynolds basé sur le diamètre du jet interne D vaut $Re_D = 5400$.

Tab. 3.3 – Tableau synthétique des conditions expérimentales testées.

<table>
<thead>
<tr>
<th>Condition test</th>
<th>Fluide injecté</th>
<th>Fluide Environnant</th>
<th>U_o (m/s)</th>
<th>Re_D</th>
<th>M_o (kg.m$^{-1}$.s$^{-2}$)</th>
<th>ρ_{inj}/ρ_{∞}</th>
<th>Fr Ri</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Couplée</td>
<td>Air</td>
<td>Air</td>
<td>17,4</td>
<td>5400</td>
<td>360</td>
<td>1</td>
<td>infini</td>
</tr>
<tr>
<td>2-Couplée</td>
<td>Propane</td>
<td>70%Ne-30%Air (en volume)</td>
<td>14,2</td>
<td>15400</td>
<td>360</td>
<td>\sim1,7</td>
<td>\sim9800</td>
</tr>
</tbody>
</table>

3.5.3 La chaîne de mesures expérimentales

Un schéma de principe du dispositif de mesures est représenté en perspective sur la figure (3.11), et dans un plan horizontal sur la figure (3.12).

![Fig. 3.11 – Schéma de principe du montage développé (chaîne de mesure HWA/RLS couplée).](image)

Un laser à gaz (Krypton) Spectra-Physics modèle 171, produisant une puissance de sortie maximale de 6 Watts et émettant un faisceau quasi-gaussien (TEM_o) à la longueur d’onde λ_{∞}=676 nm est utilisé comme source de lumière incidente. Le diamètre moyen à $1/e^2$ ainsi que le profil d’intensité du faisceau ont été contrôlés à la sortie du laser, grâce à une caméra. Le diamètre moyen vaut 1,9 mm. Le
Fig. 3.12 – Schéma de principe de la chaîne de mesure HWA et RLS utilisée pour la technique de mesure couplée.

Le rapport d’ellipsité du faisceau est très faible (<2%) et la divergence du faisceau a été mesurée de l’ordre de \(\alpha_{\text{div}} \sim 10^{-3} \) à la puissance maximale du laser (P~6 W). Le faisceau a été focalisé grâce à une lentille sphérique positive Melles Griot de focale \(f=+500 \text{ mm} \), permettant d’obtenir un diamètre de focalisation de 80 \(\mu\text{m} \) (contrôlé par caméra). La distance de Rayleigh (zone de diamètre minimum autour du point de focalisation) a également été mesurée par caméra. Sa longueur est \(\sim 5.5 \text{ mm} \). Deux diaphragmes ont été placés le long du chemin optique de focalisation afin de limiter au maximum les problèmes de diffraction provenant des lentilles et du faisceau à la sortie du laser. Ce point a été le fruit d’une attention particulière du fait de la présence des broches de la sonde à fil chaud situées très près du volume Rayleigh.

Un piège à lumière a été placé pour arrêter le faisceau après le volume de mesure. De multiples caches noirs ont été disposés autour du faisceau afin de réduire au maximum les réflexions de lumière sur les parties métalliques environnantes. Toutes les pièces métalliques situées autour du volume de mesure ont été peintes en noir mat. Afin de limiter les sources lumineuses parasites dans la salle de mesure, toutes les expériences ont été réalisées dans le noir (salle sans fenêtre).

La lumière diffusée a été collectée via un système optique afocal constitué de deux lentilles positives Melles Griot accolées de focales identiques \(f_1=+200 \text{ mm} \), traitées anti-reflet pour la longueur d’onde spécifique du laser. La lumière ainsi refocalisée a été dirigée vers un module photomultiplicateur (PMT) de marque Hamamatsu modèle 6780-20, avec photocathode sélectionnée (dark current <0,15 nA). La largeur du volume de mesure Rayleigh a été limitée au niveau de plan image (PMT) par un pinhole de diamètre 200 \(\mu\text{m} \). Des essais avec un pinhole de diamètre inférieur (150 et 100 \(\mu\text{m} \)) n’ont pas permis d’obtenir un rapport signal/bruit satisfaisant. Un autre essai avec un pinhole de 400 \(\mu\text{m} \) a donné d’excellents résultats en terme de rapport signal/bruit. Nous avons finalement opté pour le pinhole de taille...
intermédiaire (200 μm) assurant un bon compromis entre rapport signal/bruit et résolution spatiale en longueur du volume Rayleigh. Le signal sortant du PMT est d’abord pré-amplifié par un pré-ampli Hamamatsu modèle C7319 avec un gain de 10^6, puis amplifié par un filtre-gain analogique PACIFIC 70-A.

Pour la mesure anémométrique par fil chaud, des fils spécifiques au Platine/Rhodium 90/10 % de diamètre d=2,5 μm et de longueur sensible l=400 μm ont été réalisés au laboratoire. Le rapport l/d=160 est très proche du rapport idéal (~ 200) permettant d’assurer l’axisymétrie parfaite du champ thermique dans le fil. La sonde anémométrique est disposée dans le pont de Wheatstone d’un anémomètre de marque DISA modèle 55M01. A la sortie de l’anémomètre, les fluctuations enregistrées sont ensuite amplifiées et la valeur moyenne de la tension est supprimée grâce à un module électronique de conditionnement réalisé au laboratoire. La fréquence de coupure du fil a été vérifiée en appliquant une tension carrée sur le fil, avec et sans écoulement. Dans les conditions les plus défavorables, et en présence d’un écoulement, la fréquence de coupure minimale a été mesurée au égale à \(f_c \sim 40 \text{ kHz} \).

Les signaux de diffusion Rayleigh et de vitesse en tous les deux envoyés vers une carte d’acquisition National Instrument 16 bits NI 9215 via le passage dans un filtre passe-bas (Stanford Research modèle 983), coupant respectivement le signal aux fréquences 35 et 50 kHz. Nous avons également vérifié que toutes les fréquences de coupure des systèmes de la chaîne d’acquisition se situent bien au-delà des fréquences de filtrage (35 et 50 kHz, respectivement pour le signal de diffusion Rayleigh et de vitesse). Les signaux sont gérés par le logiciel Labview puis post-traités sous le logiciel Matlab.

3.5.4 Les incertitudes sur le signal de diffusion Rayleigh

On a vérifié que la sonde fil chaud, positionnée à 800 μm en aval du volume Rayleigh ne perturbe pas le signal Rayleigh par des interférences lumineuses parasites. Pour s’en assurer, les ratios de sections efficace différentielles \(\sigma_{C_3H_8}/\sigma_{\text{air}} \) et \(\sigma_{C_3H_8}/\sigma_{70\%Ne/30\%air} \) ont été mesurés à des valeurs conformes aux valeurs théoriques : 13,6±0,1 et 50,8±0,3 respectivement. Ces valeurs ont été obtenues sur 20 tests différents réalisés le même jour. Un excellent accord avec les valeurs théoriques (moins de 0,7 % d’écart) confirment l’absence de phénomènes d’interférence parasite sur le signal Rayleigh.

Avant tout post-traitement, le signal de diffusion Rayleigh est nettoyé des éventuelles particules engendrant de la diffusion de Mie indésirable, grâce à un algorithme traitant le signal bandes par bandes. Ensuiite, les différents bruits (Bruit de Johnson, shot-noise, bruit de courant électronique) doivent être réduits au maximum. Le bruit de courant électronique est fortement réduit grâce à l’emploi d’une photocathode sélectionnée. Le bruit de Johnson est bien inférieur aux deux autres. Seul le bruit électronique (shot-noise) subsiste. Les incertitudes liées à ce phénomène évoluent selon le rapport inverse du cube de la longueur d’onde \(\sim 1/\lambda^3 \) alors que les sections efficaces évoluent selon la puissance quatrième
CHAPITRE 3. TECHNIQUE COUPLÉE FIL CHAUD ET DIFFUSION RAYLEIGH

\[\sim 1/\lambda_w^{4} \] Elles ont été estimées selon une démarche analytique similaire à celle de [208], en considérant le bruit comme un processus statistique de Poisson [210], puis par une vérification expérimentale.

Le taux d’arrivée de photons théorique dans le volume de mesure \(R_{p_{\text{theo}}} \) a été d’abord estimé selon la formule [208] :

\[R_{p_{\text{theo}}} = I_o \eta_{opt} L \Omega_s \epsilon_q N \sum_{j=1}^{n} \sigma_j \chi_j \quad (3.27) \]

avec \(\eta_{opt} = \eta_{collect} \eta_{focal} \) le rendement global du système optique de collection \(\eta_{collect} \) et de focalisation \(\eta_{focal} \) (soit 0,85×0,92=0,782), \(\Omega_s \) l’angle solide de collection de notre système (0,3318 str), \(L \) la longueur du volume de collection (200 \(\mu \)m), \(\epsilon_q \) le rendement quantique du PMT (\(\epsilon_q = 0,16 \)).

Le taux réel d’arrivée des photons (expérimental) dans le volume de mesure \(R_{p_{\text{expe}}} \) a ensuite été estimé par la relation donnée par [110] :

\[R_{p_{\text{expe}}} = C_{PMT} V_{PMT} \frac{\lambda_w}{hc} \quad (3.28) \]

avec \(C_{PMT} \) la constante de calibration du PMT (78 V/nW à 676 nm), \(V_{PMT} \) la tension de sortie du PMT, \(h \) la constante de Planck (\(\sim 1,054 \times 10^{-34} \) J.s) et \(c \) la célérité de la lumière (en m.s\(^{-1} \)).

L’incertitude sur la détection de ces taux d’arrivée de photons est ensuite fournie par la formule suivante (pour un processus de Poisson) [208] :

\[\Delta R_{p_{\Delta t}} = \left[\frac{R_{p_{\Delta t}}}{R_{p}} \right]^{1/2} = \left[\frac{R_{p_{\Delta t}}}{R_{p}} \right]^{-1/2} \quad (3.29) \]

L’équation (3.29) montre que :

– l’incertitude peut être réduite si la durée d’acquisition \(\Delta_t \) est longue ; par conséquent, l’incertitude augmente avec la fréquence d’acquisition du signal (\(F \sim 1/\Delta_t \)) ;
– l’incertitude augmente avec les gaz diffusant très peu le signal Rayleigh (\(R_p \) faible).

Nous avons estimé cette incertitude pour le propane pur et l’air pur, pour une fréquence d’acquisition \(F=100 \) kHz, et pour une puissance de sortie du laser de 5,7 W (soit 2,9×10\(^{19} \) photons/s). Les résultats obtenus sont regroupés dans le tableau (3.4). L’\textbf{incertitude due au bruit électronique (shot-noise) n’excède pas 3\% du signal}. Cette valeur pourrait encore être réduite par l’emploi d’un laser émettant à une longueur d’onde plus favorable pour la diffusion Rayleigh (488 nm par exemple) et ayant une puissance de sortie plus élevée (10 Watts au lieu de 6 Watts).
3.5.5 Les résolutions spatiales et temporelle de la technique couplée HWA/RLS

1) Résolutions temporelles de chacune des sondes, prises isolément, par rapport aux échelles typiques associées (échelles du champ dynamique pour le fil chaud, échelles du scalaire pour la diffusion Rayleigh).

2) Résolutions spatiales de chacune des sondes, prises isolément, par rapport aux échelles typiques associées (échelles du champ dynamique pour le fil chaud, échelles du scalaire pour la diffusion Rayleigh).

3) Résolution spatiale de la technique couplée (englobant les volumes de la sonde anémométrique et de Rayleigh) reposant sur la comparaison entre la distance de séparation spatiale entre les sondes HWA et RLS (soit 800 µm), et les échelles typiques de l’écoulement (intégrale, Taylor ou Kolmogorov) et du scalaire (échelle visqueuse, diffusive, Batchelor).

Pour la première notion (point 1), nous avons comparé les fréquences de Kolmogorov f_{λ_K} et de Batchelor f_{λ_B} à celles maximum atteignables par nos techniques. Les échelles de Kolmogorov, de l’ordre de 50 à 100 µm (selon la position dans le jet), associées à une vitesse moyenne typique de 5 m/s, donne $f_{\lambda_K} \sim 8$ à 15 kHz. Cette gamme de fréquences est bien inférieure à la fréquence maximum du fil (fréquence de coupure de 40 kHz du fil chaud), ce que nous avons également vérifier sur la fermeture correcte des spectres de vitesse.

La fréquence de Batchelor s’obtient de la même manière, en considérant cette fois-ci les échelles $\lambda_B \sim Sc^{-1/2} \lambda_K$ comprises entre 20 et 60 µm, et aboutissant à une gamme de fréquences f_{λ_B} comprises entre 13 à 40 kHz. Hormis pour les mesures très près de la buse (à $Z/D=4$ où $f_{\lambda_B}=40$ kHz), cet intervalle de fréquence est bien inférieur à 35 kHz (fréquence maximale mesurable sur la chaîne de diffusion Rayleigh).

Pour la seconde notion (point 2), l’emploi de fils chauds de taille réduite à 400 µm a permis de réduire les effets de filtrage spatial au maximum en respectant le ratio longueur/diamètre optimal de l’ordre de 150 à 200, et de permettre une interprétation des signaux entre 3 et 8 échelles de Kolmogorov dans le jet de propane, et entre 2,5 et 5 échelles de Kolmogorov dans le jet d’air. Une correction par un modèle de Pao [198] a ensuite permis d’amoidrir les derniers effets de ce filtrage. Ces corrections sont en parfait ac-
cord avec celles proposées par [148] pour les signaux 1D, bien que cette méthode développée dans [148] soit surtout adaptée pour les signaux PIV 2D. Concernant les mesures Rayleigh, la résolution spatiale est meilleure puisque la longueur de 200µm du cylindre Rayleigh correspond à la longueur de Batchelor pour les mesures les plus éloignées de la buse (Z/D=30), et à 4 fois celle longueur de Batchelor pour les mesures les plus proches (Z/D=4).

Pour la dernière notion (point 3), il s’agit de préciser la notion de mesure "en un point" dans l’écoulement, en quantifiant la taille de ce point par rapport aux échelles de l’écoulement. Dans notre cas, nous pouvons affirmer que notre technique fournit des résultats en intégrant sur un volume de l’écoulement de taille environ équivalente à l’échelle de Taylor λₜ (voir tableau 4.17 du chapitre 4). Cette notion permet également de fixer les limites d’interprétation vis-à-vis des corrélations qui pourraient être faites à partir de ces signaux. Comme nous n’avons réalisé aucune corrélation entre les signaux de vitesse et de scalaire, cette notion complémentaire nous importe peu.

3.6 Rappels sur les jets simples axisymétriques turbulents

Ces rappels succincts concernent les jets simples débouchant dans un milieu au repos, ayant une densité identique au fluide injecté (jets de fluides homogènes) ou non (jets avec gradients de densité). Nous nous limitons au cas présentant un fluide au repos car la vitesse de co-courant de notre jet (∼0,10 m/s) représente au plus 1% de la vitesse de sortie de la buse U₀. Par conséquent, le co-courant n’a pas d’influence notable sur la dynamique du jet central (jet simple sans co-courant).

3.6.1 Les jets d’un fluide homogène incompressible dans un fluide environnant identique

Les jets axisymétriques turbulents d’un fluide qui se développent dans le même fluide (dits "à densité constante", comme le jet d’air débouchant dans l’air par exemple), ont fait l’objet de nombreux travaux depuis 1940. Parmi ces travaux de référence citons [222] [5] et plus récemment [299] [126], dont la motivation a été plutôt orientée sur la compréhension des mécanismes physiques de la turbulence permettant d’atteindre le régime d’auto-similitude. Dans ce cas, la densité du milieu injecté (le fluide sortant du jet) et celle du milieu environnant (au repos) est identique. On note simplement la masse volumique ρ = ρ_inj = ρ_∞ (en kg.m⁻³). On définit également le diamètre interne D du jet (en m), la viscosité dynamique du fluide sortant (en Pa.s), notée μ_inj (pour les jets hétérogènes, elle serait différente de la viscosité du fluide environnant, notée μ_∞), g l’accélération de la gravité terrestre (en m.s⁻²).

Les jets représentent une configuration particulière d’écoulement permettant de mélanger de la quantité de mouvement, de la chaleur ou des espèces, en exploitant les conséquences de l’instabilité tangentielle de la surface de séparation du cône potentiel avec le fluide environnant extérieur. Pour des jets homogènes, on distingue trois régions particulières à l’aval du jet, caractérisant chacune une phase de cette
CHAPITRE 3. TECHNIQUE COUPLÉE FIL CHAUD ET DIFFUSION RAYLEIGH

déstabilisation d’interface [1][2] :

– la région initiale, qui inclut le cone potentiel et qui s’achève à la fin de celui-ci. Sa longueur peut varier entre 1 et 20 diamètres [1]. Dans cette région, les forces dominantes sont les forces d’inertie, et une couche de mélange turbulente (ou éventuellement laminaire pour les jets laminaires) se développe à la circonférence du cône potentiel avec le fluide environnant. Dans cette région, les conditions initiales ont une importance prépondérante sur le développement du jet (diamètre D du jet, vitesse de sortie U_o, ratio de viscosité/densité des fluides, épaisseur de la lèvre du jet...), et sur les instabilités interfaciales entre le fluide émergeant et le fluide au repos. Elles ont une importance capitale sur la variabilité de la taille de cette région (pouvant être comprise entre 1 et 20 diamètres !). On discutera plus en détail les phénomènes de cette région initiale dans le chapitre 5 ;

– la région de transition, située entre la fin du cone potentiel et le début de la région principale (typiquement comprise entre 1-20 diamètres et 30 diamètres). Dans cette région, les profils n’ont pas encore atteint une similitude complète. Sa taille (en distance axiale) est très courte et peut parfois ne pas exister réellement. Nous ne nous attarderons pas sur cette région ;

– la région principale, qui définit le début de l’apparition de l’auto-similitude des profils de vitesse moyenne (puis des grandeurs d’ordre deux et supérieurs). Elle concerne plus directement la zone des mesures que nous avons réalisées pour valider notre technique couplée. Aussi, détaillons un peu cette région du jet homogène dans un premier temps. L’auto-similitude est une notion très importante pour les écoulements libres. Cette notion est importante car elle permet de représenter la physique d’un écoulement selon des lois d’évolution des grandeurs qui le caractérisent dans des directions privilégiées de l’espace, permettant de comparer plus aisément les différents écoulements entre eux. Townsend [277] a été le premier à s’intéresser au problème de l’auto-similitude pour des écoulements cisaillés libres 2D. Pour des jets (ou des sillages), il a postulé les relations suivantes (entre autres) :

$$U = U_z + U_c(z) f \left(\frac{y}{l_o} \right)$$ (3.30)

où y est la coordonnée transverse.

$$\langle u_i u_j \rangle = q_o^2 g_{ij} \left(\frac{y}{l_o} \right)$$ (3.31)

$$\langle q^2 \rangle = q_o^2 g \left(\frac{y}{l_o} \right)$$ (3.32)

$$\langle u_i^2 \rangle = q_o^2 g_i \left(\frac{y}{l_o} \right)$$ (3.33)

où g_{ij}, g_i, f et g sont des fonctions décrivant la variation transversale de la grandeur de l’écoulement (carré de l’énergie cinétique (q_o^2) ou vitesse axiale U). Ces écritures démontrent que, si l’auto-similitude
Fig. 3.13 – Schéma de principe des différentes régions d’un jet axisymétrique turbulent, d’après [144].

existe, le nombre de mesures peut être très réduit pour caractériser un écoulement. Dans le cas contraire, on doit réaliser de nombreuses mesures sur des positions transversales et axiales. En outre, cette écriture auto-similaire suppose que les conditions aux frontières du jet et le gradient de pression axiale du jet sont maîtrisés et sans influence sur ces lois. En effet, la présence de recirculations (dans le champ proche par exemple) peut induire un comportement non auto-similaire des grandeurs [33]. Les conditions initiales (épaisseur de quantité de mouvement du jet amont, épaisseur de la lèvre métallique du jet, diamètre du jet, taux de turbulence, etc...) ne semblent pas modifier profondément les lois d’auto-similitude, mais contribuent surtout à modifier la distance d’écoulement nécessaire pour permettre leur validité [277]. Au contraire, d’autres affirment que les conditions initiales impriment leur empreinte dans le développement futur du jet en champ lointain [116]. Toutefois, vu les très grandes distances nécessaires pour atteindre ce régime d’auto-similitude (jusqu’à 60 diamètres pour un jet rond), la question de l’influence ou non des conditions initiales (et lesquelles ?) sur l’auto-similitude est toujours posée.

Analysons les lois d’auto-similitude pour les jets homogènes. On raisonne sur un système de coordon-
nées radiales \((r, \theta, z)\). Les lois d’auto-similitude sont déterminées en substituant les formes fonctionnelles présentées précédemment (Eq. (3.30) à (3.33)) dans les équations de conservation appropriées (masse, quantité de mouvement, énergie, etc...) et en les multipliant par les grandeurs (vitesse, concentration, etc...) afin de faire apparaître des groupes dimensionnels intéressants. Pour les jets par exemple, lorsque l’on trace les profils radiaux de la vitesse \(U(r)/U_o\) en fonction de \(r/D\) depuis le centre du jet (\(r\) étant le rayon du jet, \(U(r)\) étant la vitesse axiale sur les positions radiales, \(U_o\) étant la vitesse en sortie du jet), les profils obtenus ne se superposent pas mais leur forme générale est semblable. Si l’on définit la demi-largeur du jet, notée \(r_{1/2}(z)\), telle que la vitesse en cette position radiale soit égale à 1/2\(U_c(z)\) \((U_c(z)\) est la vitesse moyenne sur l’axe à l’abscisse \(z)\), et que l’on trace désormais les profils obtenus se superposent tous à partir d’une distance axiale \(z\) suffisante. Cette distance suffisante \(z\) varie en fonction des conditions initiales, mais une valeur d’environ 30 diamètres pour des jets homogènes est communément trouvée \([126]\) (une distance de 60 diamètres est nécessaire pour la convergence des moments des conditions initiales, mais une valeur d’environ 30 diamètres pour des jets homogènes est commutable). Parmi elles, nous avons préféré cette autre forme pour nos travaux, qui s’adapte aisément au concept d’ordre 2 et des corrélations, \([299]\). D’autres écritures existent pour faire transparaître l’auto-similitude, \([1]\). Parmi elles, nous avons préféré cette autre forme pour nos travaux, qui s’adapte aisément au concept de diamètre équivalent pour les jets à densité non-homogène \([100]\) : \(U(r)/U_c(z) = f\left(\frac{r}{r_{1/2}}\right)\), où \(z_o\) désigne l’abscisse virtuelle du jet. L’abscisse virtuelle \(z_o\) se lit au point d’intersection de la droite \(U_o/U_c(z)\) avec l’abscisse \(z/D\), lorsque l’on trace l’évolution de \(U_o/U_c(z)\) avec l’abscisse \(z/D\).

Pour la région principale du jet, on peut ainsi définir une loi d’évolution hyperbolique de la vitesse axiale \(U_c\) le long de l’axe par la relation suivante \([277]\) :

\[
\frac{U_c(z)}{U_o} = k_u \left[z - z_{o,1} \right]^{D}\]

(3.34)

avec \(k_u\) et \(z_{o,1}\) (on note \(z_o\) avec l’indice 1 pour référer à la vitesse), deux paramètres caractérisant la loi d’évolution : \(k_u\) traduit le taux de décroissance de la vitesse axiale le long du jet, tandis que \(z_{o,1}\) est le reflet à la fois de la longueur du cône potentiel et du taux de décroissance \(k_u\). Les valeurs trouvées pour ces coefficients, sont très proches les unes de autres, mais ne sont pas universelles (voir la discussion dans \([126]\)). Elles dépendent des conditions initiales du jet (c’est-à-dire qu’il est difficile de trouver des coefficients universels dans la région inférieure à \(z/D \sim 30\) \([79]\)\([102]\), mais ne semblent pas dépendre directement du nombre de Reynolds basé sur le diamètre \(D\) du jet, dès lors que celui-ci donne un écoulement turbulent \([79]\).

Par contre, une dépendance de \(k_u\) avec \(Re_D\) aux Reynolds faibles et modérés a été démontrée \([187]\). En effet, les valeurs trouvées sont similaires quel que soit \(Re_D\) : \(k_u \sim 5, 9, z_{o,1}/D \sim 2, 7\) pour un jet d’air à \(Re_D=95500\), \(D=25\) mm, \(U_o=56\) m/s \([126]\), \(k_u \sim 5, 7, z_{o,1}/D \sim 3\) pour un jet d’air à \(Re_D=100000\), \(D=25\) mm, \(U_o=51\) m/s \([299]\), \(k_u \sim 5, 9, z_{o,1}/D \sim 5\) pour un jet d’air à \(Re_D=2400\) \([26]\), \(k_u \sim 6, 06\) pour un jet d’air à \(Re_D=11000\), \(D=6,1\) mm, \(U_o=27\) m/s \([196]\), \(k_u \sim 5, 15\) pour un jet d’air à \(Re_D=54100\),
D=40 mm, $U_o=20,3$ m/s [54], par exemple. Typiquement, k_u est compris entre 5,7 et 6,1, quel que soit le nombre de Reynolds Re_D [126]. Si on se limite à la région initiale ou à la région intermédiaire du jet (pour $z/D<30$), il est difficile d’observer un comportement purement linéaire. La loi (3.34) n’est strictement vérifiée que par tronçons successifs. Par conséquent, il est impossible de définir une abscisse virtuelle $z_{o,1}$ et une constante k_u universelles dans cette région. Ceci explique en partie la disparité des valeurs trouvées pour ce coefficient dans ces régions.

Cette remarque rejoint celle formulée dans [126] sur l’influence des conditions initiales du jet. Une étude de l’influence de la forme du profil de vitesse en sortie du jet (variation de l’épaisseur de quantité de mouvement de la couche limite initiale) a été conduite par [300]. Ils ont réalisé des mesures par anémométrie à fil chaud sur un jet à $Re_D = 84000$ pour deux profils de vitesse différents : profil plat et parabolique, produisant le même flux de quantité de mouvement initial $Mo=\rho \pi D^2 / 4U_o^2$. Bien que la théorie classique des jets [277] affirme que l’état d’auto-similitude ne dépend que de la quantité de mouvement initiale (et non de la distribution spatiale de cette quantité de mouvement initiale), aucune modification sur les lois d’évolution de la vitesse ne devrait être observée. Or, ce n’est pas ce qui a été obtenu expérimentalement, puisque le coefficient k_u et l’abscisse virtuelle $z_{o,1}$ sont mesurés aux valeurs respectives de 5,6 et 3,7 (pour le profil top-hat), et 6,5 et 2,6 (pour le profil parabolique). Une explication possible serait de penser que la théorie classique ne prend pas du tout en compte les instabilités hydrodynamiques de l’interface "fluide rapide sortant du jet - fluide ambiant au repos", qui elles, sont très fortement dépendantes du profil de vitesse [81].

De la même manière que pour la vitesse moyenne, on peut définir pour les jets de densité homogène, une loi d’évolution hyperbolique de la fraction massique moyenne du fluide injecté dans le fluide au repos par [277] :

$$\frac{Y_c(z)}{Y_o} = k_Y \left[\frac{D}{z-z_{o,2}} \right]$$

(3.35)

avec k_Y et $z_{o,2}$ les nouveaux coefficients relatifs à la concentration.

Concernant les profils radiaux de la vitesse moyenne et de la concentration, ceux-ci ont également été approchés par une loi gaussienne du type [126][200] :

$$\frac{U(r)}{U_c(z)} = e^{x[p} \left[-K_u \left(\frac{r}{z-z_{o,1}} \right)^2 \right]$$

(3.36)

et

$$\frac{Y(r)}{Y_c(z)} = e^{x[p} \left[-K_Y \left(\frac{r}{z-z_{o,2}} \right)^2 \right]$$

(3.37)

avec K_u et K_Y les coefficients caractérisant l’expansion radiale du jet. On note également l’abscisse normalisée $\eta = \frac{r}{z-z_{o,i}}$. Une large bibliographie est rappelée sur les valeurs prises par ces coefficients.
(Tableaux 3.14) et (3.15). A noter que les valeurs du coefficient pour la vitesse (K_u) est toujours plus faible que celle pour le coefficient du scalaire (K_Y), traduisant que l’expansion du scalaire est plus rapide que celle de la vitesse. Ceci confirme que le transport du scalaire est prépondérant sur le transport de la quantité de mouvement dans un champ turbulent [160]. Comme pour les coefficients de l’évolution axiale (k_u et k_Y) discutés précédemment, les conditions initiales ont un impact sur la valeur de K_u et K_Y. Mais les paramètres exacts mis en jeu ne sont pas bien compris. Dans l’étude de [300] par exemple, l’influence du profil de vitesse amont sur le coefficient pour la vitesse (K_u) a été mise en évidence. Les auteurs trouvent ainsi $K_u=76,5$ ou $90,2$ selon que le profil amont est top-hat ou parabolique, pour la même quantité de mouvement initiale injectée. De manière générale, l’effet des conditions initiales sur le développement d’un jet axisymétrique a été investigué au travers des travaux suivants : [10][307][220][199][173][28]. Nous renvoyons le lecteur à ces articles, dont nous ferons parfois référence dans le chapitre consacré au champ proche du jet (chapitre 5). Voir aussi l’article de revue très complet sur le mélange turbulent [107].

3.6.2 Les jets d’un fluide avec densité variable vis-à-vis du fluide environnant

Nous allons présenter brièvement quelques résultats principaux et concepts essentiels des jets à densité variables. Le lecteur pourra se reporter aux articles suivants pour plus de détails sur les travaux pionniers [92][276], les aspects modélisation [283], ou plus récemment sur les résultats expérimentaux et numériques de référence [54][240][4][205] entre autres.

On distingue les jets à forts effets de densité ($R_p = \rho_o/\rho_\infty < 1/2$ ou > 2), des jets à faibles effets de densité ($1/2 < R_p < 2$) [74]. Parmi les premiers, citons [55][241][244], ou un peu plus récemment [240] (jets d’hydrogène et de dioxyde de carbone dans l’air) [220] (jets de propane, de méthane et d’hélium dans l’air), [197] (jets d’hélium dans l’air), [205][206] (jets de propane, de méthane, SF_6, de CF_4, d’hélium dans l’air, et de propane dans le CO_2), [4] (jets de CO_2, d’hélium et d’air dans l’air).

On définit le nombre de Richardson (Ri) par :

$$Ri = \frac{gD(\rho_\infty - \rho_o)}{\rho_oU_o^2}$$ (3.38)

et généralement le nombre de Froude (Fr) par :

$$Fr = \frac{\rho_oU_o^2}{gD(\rho_\infty - \rho_o)}$$ (3.39)

Les écoulements libres guidés uniquement par la quantité de mouvement (nombre de Richardson $Ri\to0$ ou $Fr\to\infty$) sont appelés "jets", tandis que ceux qui sont guidés par la flottabilité ($Ri>1$ ou $Fr\to0$) sont appelés "panaches" [17] D’après les valeurs du nombre de Froude du tableau (3.3), nous désignerons par

17. *plumes* en anglais.
CHAPITRE 3. TECHNIQUE COUPLÉE FIL CHAUD ET DIFFUSION RAYLEIGH

Fig. 3.14 – Tableau de synthèse des travaux expérimentaux portant sur les jets simples axisymétriques de fluides différents.

<table>
<thead>
<tr>
<th>Fluides</th>
<th>ρ_p/ρ_0</th>
<th>U_0/U_0</th>
<th>U_0 (m/s)</th>
<th>D (mm)</th>
<th>Sc</th>
<th>k_y</th>
<th>K_α</th>
<th>K_u</th>
<th>z_o/D</th>
<th>z_o/D</th>
<th>Re_0</th>
<th>x/D</th>
<th>référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>COIHe - 50%Air/50%Ne</td>
<td>1,70</td>
<td>0,011</td>
<td>142</td>
<td>5</td>
<td>1.44</td>
<td>5.3</td>
<td>6.2</td>
<td>77.4</td>
<td>58.1</td>
<td>-2.52</td>
<td>-0.85</td>
<td>15400</td>
<td>4 à 30</td>
</tr>
<tr>
<td>COIHe - Air</td>
<td>1,52</td>
<td>0,08</td>
<td>53</td>
<td>5,02</td>
<td>13.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-1</td>
<td>-</td>
<td>68000</td>
<td>0 à 60</td>
<td>Schefer & Dibble (1986)</td>
</tr>
<tr>
<td>COIHe - Air</td>
<td>1,52</td>
<td>0,08</td>
<td>53</td>
<td>5,26</td>
<td>13.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-1</td>
<td>-</td>
<td>68000</td>
<td>0 à 60</td>
<td>Schefer & Dibble (2001)</td>
</tr>
<tr>
<td>COIHe - Air</td>
<td>1,52</td>
<td>0,033</td>
<td>102</td>
<td>6,35</td>
<td>0,7</td>
<td>-</td>
<td>59.1</td>
<td>-</td>
<td>-1</td>
<td>9780</td>
<td></td>
<td>Dyer (1979)</td>
<td></td>
</tr>
<tr>
<td>CHI - Air</td>
<td>0,55</td>
<td>0,033</td>
<td>102</td>
<td>6,35</td>
<td>0,7</td>
<td>-</td>
<td>59.1</td>
<td>-</td>
<td>-1</td>
<td>4130</td>
<td>5 à 60</td>
<td>Pitts & Kashiyai (1984)</td>
<td></td>
</tr>
<tr>
<td>CHI - Air</td>
<td>0,55</td>
<td>0</td>
<td>204</td>
<td>12,66</td>
<td>0,7</td>
<td>-</td>
<td>59.1</td>
<td>-</td>
<td>-1</td>
<td>16000</td>
<td>>25</td>
<td>10 à 30</td>
<td>Eichet al. (1975)</td>
</tr>
<tr>
<td>COIHe - Ar</td>
<td>1,05</td>
<td>-</td>
<td>2,5</td>
<td>19</td>
<td>1</td>
<td>5,1</td>
<td>-</td>
<td>59.1</td>
<td>-</td>
<td>-3,7</td>
<td>5000</td>
<td>20 à 40</td>
<td>60 et 80</td>
</tr>
<tr>
<td>COIHe - Ar</td>
<td>1,05</td>
<td>-</td>
<td>4</td>
<td>19</td>
<td>1,2</td>
<td>1,7</td>
<td>-</td>
<td>59.1</td>
<td>-</td>
<td>-3,7</td>
<td>5000</td>
<td>20 à 40</td>
<td>60 et 80</td>
</tr>
<tr>
<td>COIHe - Ar</td>
<td>1,05</td>
<td>-</td>
<td>10</td>
<td>19</td>
<td>1,2</td>
<td>-</td>
<td>59.1</td>
<td>-</td>
<td>-3,7</td>
<td>4000</td>
<td>40 et 60</td>
<td>40 et 60</td>
<td>40 et 60</td>
</tr>
<tr>
<td>COIHe - Ar</td>
<td>1,55</td>
<td>0,055</td>
<td>2,6</td>
<td>6,35</td>
<td>1,36</td>
<td>7,7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-2,05</td>
<td>39600</td>
<td>10 à 40</td>
<td>60 et 80</td>
</tr>
<tr>
<td>COIHe - Ar</td>
<td>1,55</td>
<td>0,051</td>
<td>5,36</td>
<td>6,35</td>
<td>1,36</td>
<td>7,7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-2,05</td>
<td>79300</td>
<td>10 à 40</td>
<td>60 et 80</td>
</tr>
<tr>
<td>COIHe - Ar</td>
<td>1,55</td>
<td>0,071</td>
<td>8,06</td>
<td>6,35</td>
<td>1,36</td>
<td>7,76</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-3,65</td>
<td>116800</td>
<td>10 à 60</td>
<td>60 et 80</td>
</tr>
<tr>
<td>COIHe - Ar</td>
<td>1,55</td>
<td>0,089</td>
<td>4,54</td>
<td>6,35</td>
<td>1,36</td>
<td>7,7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-3,65</td>
<td>79200</td>
<td>10 à 60</td>
<td>60 et 80</td>
</tr>
<tr>
<td>COIHe - Ar</td>
<td>1,55</td>
<td>0,089</td>
<td>4,54</td>
<td>6,35</td>
<td>1,36</td>
<td>7,7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-3,65</td>
<td>40000</td>
<td>40 et 60</td>
<td>40 et 60</td>
</tr>
<tr>
<td>COIHe - Ar</td>
<td>1,55</td>
<td>0</td>
<td>63</td>
<td>6,35</td>
<td>0,7</td>
<td>-</td>
<td>59</td>
<td>-</td>
<td>-3,65</td>
<td>25000</td>
<td>80</td>
<td>Richards & Pitts (1993)</td>
<td></td>
</tr>
<tr>
<td>COIHe - Ar</td>
<td>1,55</td>
<td>0</td>
<td>18</td>
<td>6,35</td>
<td>1,36</td>
<td>6,8</td>
<td>-</td>
<td>59</td>
<td>-</td>
<td>-3,65</td>
<td>25000</td>
<td>80</td>
<td>Richards & Pitts (1993)</td>
</tr>
<tr>
<td>COIHe - Ar (nozzle)</td>
<td>1,55</td>
<td>0</td>
<td>18</td>
<td>6,35</td>
<td>1,36</td>
<td>6,76</td>
<td>-</td>
<td>59</td>
<td>-</td>
<td>-3,65</td>
<td>25000</td>
<td>80</td>
<td>Richards & Pitts (1993)</td>
</tr>
</tbody>
</table>

Fig. 3.15 – Tableau de synthèse des travaux numériques portant sur les jets simples axisymétriques de fluides différents.

<table>
<thead>
<tr>
<th>Fluides</th>
<th>ρ_p/ρ_0</th>
<th>U_0/U_0</th>
<th>U_0 (m/s)</th>
<th>D (mm)</th>
<th>Sc</th>
<th>k_y</th>
<th>K_α</th>
<th>K_u</th>
<th>z_o/D</th>
<th>z_o/D</th>
<th>Re_0</th>
<th>x/D</th>
<th>référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorant - Air (DNS)</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>5,5</td>
<td>6,1</td>
<td>76,2</td>
<td>59,1</td>
<td>5,5</td>
<td>2400</td>
<td>20 à 37</td>
<td>Lubbers et al. (2001)</td>
</tr>
<tr>
<td>Colorant - Air (DNS)</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>5,9</td>
<td>76,1</td>
<td>5,9</td>
<td>4,6</td>
<td>2400</td>
<td>20 à 37</td>
<td>Lubbers et al. (2001)</td>
<td></td>
</tr>
</tbody>
</table>

la suite notre jet de "jet lourd", (le terme "lourd" se référant dans notre manuscrit uniquement aux effets inertiels).
Les variations de densité présentes au sein des écoulements à densité variable génèrent des termes supplémentaires de corrélations entre les fluctuations de densité et les fluctuations de vitesse dans une seule direction, telles que $\langle \rho' u \rangle$, $\langle \rho' v \rangle$, etc... Les corrélations entre les fluctuations de densité et les fluctuations de fraction massique (notées y) ont surtout été étudiées par [240]. Il ressort de ces travaux que pour un mélange de gaz léger dans un gaz lourd, tel que $H_2 - air$, la corrélation $\langle \rho' y \rangle$ est négative, alors que pour un mélange de gaz lourd dans un gaz plus léger, tel que $CO_2 - air$, la même corrélation est positive. Ce résultat peut être expliqué à partir de l’étude des variations de la fonction Γ, définie comme [54] :

$$\Gamma^s(\langle Y \rangle) = \frac{\langle \rho y \rangle}{\langle \rho y^2 \rangle} = \frac{\langle \rho u_i \rangle}{\langle \rho y u_i \rangle} = \frac{R_\rho - 1}{R_\rho - (R_\rho - 1)\langle Y \rangle}$$

(3.40)

qui provient des relations suivantes entre les corrélations [53] :

$$\langle \rho u_i \rangle = \frac{a}{1 - a\langle Y \rangle} \langle \rho y u_i \rangle$$

(3.41)

$$\langle \rho y \rangle = \frac{a}{1 - a\langle Y \rangle} \langle \rho y^2 \rangle$$

(3.42)

avec $a = \frac{\rho_o - \rho_\infty}{\rho_o}$. On montre (voir Fig. 18, [54]) d’après les variations de Γ^s que $\langle \rho y \rangle$ sont toujours positives pour $R_\rho > 1$ et négative sinon, et que $\langle \rho y^2 \rangle$ est toujours positive. Puis, en utilisant l’approximation de Shih [251], il est démontré que les fluctuations de densité ρ' et de fraction massique y ont même signe lorsque $R_\rho > 1$ et des signes opposés dans les autres cas. Par ailleurs, il a été montré que les corrélations $\langle \rho' u \rangle$ et $\langle \rho' v \rangle$ sont négatives lorsque $0 < R_\rho < 1$, et positives pour $R_\rho > 1$ [83]. Le schéma phénoménologique (3.16), extrait de [54], et de l’équation (3.40) permettent de s’en convaincre. En effet, pour n’importe quelle position en aval dans le jet, le mélange apparaît lorsqu’une particule se dirige vers l’axe du jet (cas a), ou s’en éloigne (cas b). En moyenne, lorsque $R_\rho > 1$, le premier de figure (a) conduit à une fluctuation négative de densité, à une fluctuation négative de la vitesse axiale, et à une fluctuation négative de la vitesse radiale. Les quatre cas de figure fournis sur la figure (3.16) peuvent être analysés de manière identique et conduisent aux résultats synthétisés dans le tableau (3.17).

Les expériences ont montré que, pour les jets libres présentant des variations de densité entre le fluide injecté et le fluide environnant, les différences de densité sont très rapidement amoindries en intensité. Ainsi, malgré les corrélations supplémentaires discutées précédemment, les solutions pour l’auto-similitude des profils de vitesse et de scalaire (concentration) pour les jets axisymétriques turbulents de densité uniforme sont toujours valables, moyennant les hypothèses suivantes [18][220] :

- effets moléculaires négligés (i.e. nombres de Reynolds élevés),

- approximation de couches limites pour le développement de la couche de mélange du jet.

18. Ces trois hypothèses sont valides dans le champ lointain du jet, et pour des nombres de Reynolds locaux élevés.
Fig. 3.16 – Principe du mélange turbulent dans les fluides à densité variable (et Reynolds élevé), d’après [54]. Ici $S \equiv R_p$.

$S > 1$
- ρ' γ' u' v' $\rho'u'$ $\rho'v'$ $\rho''u'$ $\rho''v'$ $\rho''y'$ $\rho''y'$
- (a) + + + - - + + + + +
- (b) + - - - - - - + + +

$0 < S < 1$
- (a) + + + - - - - + + +
- (b) - + + + - - - + + +

Fig. 3.17 – Signes des corrélations des fluctuations de densité et moments de seconds ordres dans un jet libre inhomogène, d’après [54]. Les cas a) et b) correspondent à ceux de la Fig. (3.16). Ici $S \equiv R_p$.

– termes faisant intervenir les fluctuations de densité ($\langle \rho' uv \rangle$, $\langle \rho' u \rangle$, $\langle \rho' v \rangle$, $\langle \rho' y \rangle$, etc...) négligés ;

et moyennant la prise en compte de la modification de la quantité de mouvement initiale (hypothèse de départ pour l’auto-similitude) en remplaçant, dans toutes les équations vues précédemment, le diamètre réel D (ou le rayon réel r) par la notion de diamètre D_{equ} ou rayon r_{equ} équivalent, [276] :

$$D_{equ} = DR_p^{1/2}$$

(3.43)

Cet artifice permet de conserver des valeurs universelles pour les coefficients des lois d’évolution axiale (k_u et k_Y) et radiales (K_u et K_Y) des grandeurs (vitesse et fraction massique). Le tableau (3.18) recense une large bibliographie sur les coefficients d’évolution axiale ($k_u = A$ et $k_Y = B$) pour les jets non homogènes, extraite de (53). Nous voyons que malgré ce changement pour mieux prendre en compte la quantité de mouvement, une disparité dans les résultats est toujours observée, comme le note d’ailleurs [276] eux-mêmes. Une amélioration du concept de diamètre équivalent a été proposée par [240] [263] [205] [220], en prenant plutôt :

$$D_{equ} = D \left(R_p \frac{\rho_{\infty}}{\rho_e} \right)^{1/2}$$

(3.44)
où ρ_e est la masse volumique effective locale dans l’écoulement. Un meilleur accord est obtenu en général, mais il a été montré par ailleurs que l’influence de la masse volumique ne peut se suffir à l’introduction d’un paramètre global (R_p) dans cette formulation [54].

![Graph](image)

Fig. 3.18 – Double du taux de décroissance de la vitesse moyenne ($2k_u$) sur l’axe (A) et de la concentration massique moyenne ($2k_Y$) sur l’axe (B) d’un jet turbulent axisymétrique, en fonction du ratio de densités (ici $S = R_p$). Synthèse proposée d’après [54].

3.6.3 Propriétés de quelques jets inhomogènes

Le tableau (3.5) indique que l’hélium, le CO$_2$ et l’air ont des viscosités dynamiques très proches, alors qu’ils présentent des densités très différentes. Ces qualités expliquent pourquoi ils sont
3.7 Validation de la technique sur un jet axisymétrique turbulent

Dans cette section, nous allons présenter quelques statistiques globales obtenues à partir de la technique couplée HW A/RLS développée, telles que : l’évolution de la vitesse moyenne $\langle U \rangle$ et de la concentration $\langle Y \rangle$ de propane le long de l’axe du jet, puis les profils radiaux des quantités moyennes ($\langle U \rangle$ et $\langle Y \rangle$) et des quantités fluctuantes (écart-types des fluctuations de vitesse axiale $\langle u^2 \rangle^{1/2}$, et des fluctuations de concentration $\langle y^2 \rangle^{1/2}$). Un excellent accord est obtenu vis-à-vis des travaux de référence sur les jets turbulents. Toutefois, à la fin de cette section, une discussion est amorcée pour tenter d’analyser les raisons pouvant expliquer pourquoi le régime auto-similaire est observé très tôt avec le jet de propane, à même quantité de mouvement initialement injectée. Ce début d’analyse sera poursuivi dans le chapitre 5, détaillant les mécanismes physiques dans le champ proche du jet expliquant ces différences par rapport à un jet à viscosité constante.

3.7.1 Synthèse des conditions d’écoulement testées et des résultats présentés

Le tableau (3.19) regroupe les conditions d’écoulement testées, et les principaux résultats exploités dans les paragraphes suivants.

3.7.2 Évolution axiales des quantités moyennées

L’évolution axiale (le long de l’axe du jet) de l’inverse de la vitesse moyenne axiale $U_o/ < U_c >$ (U_c étant la vitesse sur l’axe) est présentée sur la Fig. (3.20), pour le jet de propane ($Mo=360 \text{ kg.m}^{-1}.\text{s}^{-2}$, $\rho=1.803 \text{ kg/m}^3$, $\mu \times 10^6 = 8.3 \text{ Pa.s}$, $\nu \times 10^6 = 4.6 \text{ (m}^2\text{.s}^{-1})$).

<table>
<thead>
<tr>
<th>Gaz</th>
<th>ρ (kg/m3)</th>
<th>$\mu \times 10^6$ (Pa.s)</th>
<th>$\nu \times 10^6$ (m2.s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propane</td>
<td>1,803</td>
<td>8,3</td>
<td>4,6</td>
</tr>
<tr>
<td>Méthane</td>
<td>0,64</td>
<td>11,2</td>
<td>18,6</td>
</tr>
<tr>
<td>Air</td>
<td>1,16</td>
<td>18,6</td>
<td>16,0</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>1,87</td>
<td>15,1</td>
<td>8,1</td>
</tr>
<tr>
<td>He</td>
<td>0,169</td>
<td>19,5</td>
<td>115,7</td>
</tr>
<tr>
<td>Ne</td>
<td>0,85</td>
<td>24,3</td>
<td>28,6</td>
</tr>
</tbody>
</table>

Tab. 3.5 – Propriétés thermophysiques de quelques gaz (à $P=1 \text{ bar}$, $T=300 \text{K}$), d’après [152].

largement considérés dans les travaux sur les effets de densité purs (et bien qu’ils aient une viscosité cinématique très contrastée).

A l’inverse, le propane, que nous avons considéré dans ces travaux, présente à la fois une viscosité dynamique très différente vis-à-vis de l’air (ratio de l’ordre de 3,5), avec un ratio de densité identique au couple CO$_2$/air ($R_\rho=1,52$).
CHAPITRE 3. TECHNIQUE COUPLÉE FIL CHAUD ET DIFFUSION RAYLEIGH

Fig. 3.19 – Tableau synthétique des conditions expérimentales testées par la technique HWA/RLS, et des principaux résultats numériques obtenus.

$Re_D \sim 15400$ se déchargeant dans l’oxydant (30%air/70%néon).

Les représentations classique et avec le diamètre équivalent ont été adoptées :

1) la première, consiste à tracer l’évolution de $U_c / \langle U_c \rangle$ en fonction de la distance aval Z/D. L’indice c se réfère aux conditions sur l’axe, tandis que l’indice o se réfère aux conditions de sortie du jet. Cette représentation ne prend pas en compte les variations de densité des fluides. L’évolution obtenue est hyperbolique (une droite dans cette représentation), mais n’est pas universelle.
2) La seconde représentation consiste à tenir compte des variations de densité entre le gaz sortant de la buse et le fluide ambiant. Dans notre cas de figure, le ratio de densité entre le propane et le mélange oxydant équivaut à 1,7. Dans la région de "pur jet" (après le cône potentiel) ou les forces d’inertie prédominent, des auteurs ont suggéré un test de pseudo-similitude longitudinale, basée sur les effets de masse volumique. La région de "pure jet" s’étend tant que l’abscisse adimensionnée
Z_b = Fr^{-1/2}(\rho_{C_3H_8}/\rho_{air-Ne})^{-1/4}(Z/D) soit inférieure à 0,53. Le nombre de Froude Fr est défini tel que
Fr = \frac{\rho_{C_3H_8}U_o^2}{g(\rho_{air-Ne}-\rho_{C_3H_8})} (g est l’accélération de la gravité terrestre locale, supposée égale à 9,81 m².s⁻¹). Pour nos conditions initiales, le nombre de Froude vaut 9800. L’abscisse Z_b varie donc de 0,04 à 0,31 entre les distances axiales Z/D=4 à 30. Ces données valident l’hypothèse de région de "pur jet" (Z_b<0,53) pour l’ensemble des résultats qui sont présentés dans cette section. La notion de diamètre équivalent D_{equ} est également utilisée pour rendre universelle la présentation des résultats. Pour notre jet :
D_{equ} = D(\rho_c/(\rho_{air-Ne}))^{1/2} (\rho_c désigne la masse volumique du fluide le long de l’axe). Lorsque cette représentation est adoptée, la courbe obtenue se superpose à la courbe universelle trouvée pour les jets turbulents à masse volumique variable présentant des rapports de densité équivalent à propane-air et à Reynolds élevés (jet CO₂ dans de l’air, \frac{\rho_{CO_2}}{\rho_{air}} \sim 1,5 [55]). Ces résultats sont aussi conformes à ceux obtenus pour les jets d’air [4] [196] et pour les jets d’hélium [4] [197]. Ces résultats confirment que la loi de décroissance hyperbolique de la vitesse moyenne est indépendante de la nature des gaz (rapport de densité entre le gaz sortant du jet et le gaz environnant) si le nombre de Reynolds est suffisamment élevé (i.e. indépendamment de leur viscosité) [276]. Toutefois, la difficulté à trouver une loi linéaire concordante (universelle) dans le champ très proche subsiste.

L’évolution axiale de la concentration moyenne en propane, notée <Y_c>, est présentée sur la Fig.(3.21). Comme pour la vitesse, la concentration moyenne le long de l’axe du jet suit une loi de décroissance hyperbolique, de pente différente de la vitesse, et dont la pente devient universelle lorsque la décroissance de Y_o/ < Y_c > est tracée en fonction de Z/D_{equ}. De plus, on remarque que la décroissance de la concentration moyenne est plus rapide que la décroissance de la vitesse moyenne (pente légèrement plus marquée). Cette observation est consistente avec la formule communément admise pour les jets [160] : "le scalaire se mélange plus rapidement que la quantité de mouvement". Une extrapolation de la courbe jusqu’à Y_o/ < Y_c >= 1 donne <Y_c>=1 pour Z/D=2.

Dans le but de déterminer les pentes des courbes des figures (3.20) et (3.21), les données ont été approchées par une régression linéaires aux moindres carrés, selon les équations types suivantes :

\frac{\langle U_c \rangle}{U_o} = k_u \frac{D_{equ}}{Z - Z_{o,1}} \quad (3.45)

\frac{\langle Y_c \rangle}{Y_o} = k_Y \frac{D_{equ}}{Z - Z_{o,2}} \quad (3.46)
Fig. 3.20 – Évolutions axiales de la vitesse moyenne $\langle U_c \rangle$ le long de l’axe du jet, avec et sans test de pseudo-similarité suggéré par [55], la vitesse U_0 étant celle en sortie de buse.

Les distances à l’origine virtuelles pour notre jet, sont pour la vitesse $Z_{o,1}/D=-2,52$ et pour le scalaire $Z_{o,1}/D=-0,85$. Ces données sont tout-à-fait en accord avec des résultats reportés sur des jets de propane [70][79], et en excellent accord également avec la valeur $Z_{o,1}/D=-2,90$ reportée pour un jet de CO$_2$ dans l’air, pour des conditions d’écoulement similaires [4]. Les valeurs trouvées pour les coefficient de proportionnalité sont : $k_u=6,2$ et $k_Y=5,3$. Ces valeurs sont proches de celles obtenues par [160] (valant respectivement 6,1 et 5,5). L’évolution de la concentration que nous mesurons est similaire à celle obtenue pour le jet de CO$_2$ se déchargeant dans l’air [4] ou le jet d’air dans de l’air avec un colorant [74], et en excellent accord également avec des mesures réalisées dans un jet axisymétrique turbulent de méthane se déchargeant dans l’air environnant [209].

Sur la figure (3.22), on a aussi tracé l’évolution du coefficient de proportionnalité du scalaire $k_Y = (Z - Z_{o,2} < Y_c > / [Y_o D] de l’équation (3.46) en fonction de l’abscisse axiale Z/D. Le coefficient de proportionnalité k_Y est compris entre les valeurs 4 et 6 pour les différentes positions Z/D. Ces résultats issus de nos mesures (cercles noirs) sont tout-à-fait conformes aux résultats expérimentaux obtenus sur des jets de densité variables [15][23][79][159], ou à partir de simulations numériques directes (DNS) [160], également présentés sur cette même figure (3.22).

D’après ces premiers résultats, les variations longitudinales des quantités moyennes (vitesse et concentration) suivent chacune une loi de décroissance hyperbolique, en excellent accord avec la loi de dé-
chapitre 3. technique couplée fil chaud et diffusion rayleigh

92

Fig. 3.21 – Evolutions axiales de la concentration moyenne de propane \(\langle Y_c \rangle \) le long de l’axe du jet, avec et sans test de pseudo-similarité suggéré par [55], la concentration \(Y_0 \) étant la concentration de propane en sortie de buse (\(Y_0 = 1 \)).

croissance universelle de la littérature sur les jets turbulent simples à densité variable et à Reynolds élevés, lorsque celle-ci est représentée en abscisse en utilisant la notion de diamètre équivalent, \(Z/D_{eq} \). Notre technique est validée sur ce point, dans le sens où les résultats obtenus corroborent ceux de la littérature sur les jets simples auto-similaires à Reynolds élevés.

Intéressons-nous à présent aux profils radiaux des quantités moyennées et fluctuantes (vitesse et concentration), obtenus à partir de notre technique couplée.

3.7.3 Profils radiaux des quantités moyennées et fluctuantes

En suivant [4][230], on peut prédire que les effets de densité affectent beaucoup moins sérieusement l’expansion radiale du jet que son expansion axiale. Ceci provient probablement du fait que les variations de densité radiales suivent les variations radiales de la vitesse, selon une loi de variation proche, masquant ainsi ces effets de densité. Par conséquent, une représentation faisant intervenir le diamètre réel est la plus appropriée, comme suggéré par [4]. La figure (3.23) présente les profils radiaux de la vitesse axiale moyenne \(\langle U \rangle/\langle U_c \rangle \) et de la fraction massique de propane moyenne \(\langle Y \rangle/\langle Y_c \rangle \), en fonction de l’abscisse radiale normalisée \(\eta = \frac{r}{(z-z_0,1)} \), pour trois distances axiales \(Z/D=4, 6 \) et 15. Toutes les courbes
CHAPITRE 3. TECHNIQUE COUPLÉE FIL CHAUD ET DIFFUSION RAYLEIGH

Fig. 3.22 – Tracé de la constante $k_Y = (Z - Z_{0.2})/(Y_c)/(Y_0D)$ en fonction de la distance à l’origine virtuelle $(Z - Z_{0.2})/D$. Nos valeurs (cercles noirs) sont superposées à celles d’une large littérature (figure originelle extraite de Lubbers et al. [160]) : Lubbers et al. [160], Lockwood and Moneib [159], Dahm and Dimotakis [66], Becker et al. [15], Dowling and Dimotakis [79] and Birch et al. [23]. Noter les équivalences $C_c = Y_c$ et $C_o = Y_o$.

Fig. 3.23 – Profils radiaux pour le jet de propane à $Re=15400$, $M_0=360$, tracés en fonction de l’abscisse normalisée : a) $\eta = r/(Z - Z_{0.1})$ pour la vitesse moyenne ; et b) $\eta = r/(Z - Z_{0.2})$ pour la fraction massique moyenne.

se superposent, et peuvent répondre à une approximation du type Eq.(3.36) pour la vitesse, et Eq.(3.37) pour la concentration. Les coefficients K_u et K_Y trouvés par la loi approchant aux moindres carrés ces données, sont reportés dans le tableau de synthèse (3.14). Ils sont conformes aux résultats d’auro-
similitude de la littérature, largement discutés et présentés précédemment. Nous notons néanmoins
que même dès Z/D=4, les courbes obtenues se superposent à celle du régime auto-similaire, bien
que la littérature reporte des distances nécessaires bien plus grandes (voir [299] par exemple qui
affirme que 30 diamètres sont nécessaires, mais seulement 1 ou 2 diamètres parfois [1]). En réalité, cette
remarque soulève deux points importants :

– la question du champ proche et des conditions initiales ; en effet, l’épaisseur de la lèvre de notre jet
représente environ 1/10 de son diamètre, ce qui va provoquer le développement d’une couche de mélange
très épaisse au démarrage, engendrant à son tour la création de structures tourbillonnaires très grosses,
accélérant le mélange et le développement du jet ;

– l’influence des gradients de viscosité présents dans cet écoulement, et qui sont prépondérants
dans le champ proche du jet, là où la production turbulente est forte ; en effet, la viscosité ciné-
matique du propane (dans nos conditions opératoires) est de \(\nu \sim 4,63 \times 10^{-6} \text{ m}^2\text{s}^{-1} \), alors que celle
du fluide environnant (oxydant 70\%néon-30\%air) est environ 5,5 fois\[9\] plus grande (\(\nu \sim 4,99 \times 10^{-6} \text{ m}^2\text{s}^{-1} \), et un \textit{ratio de viscosités dynamiques} \(R_{\mu} \) aux alentours\[20\] de 3.). Dans la région initiale du
jet, ce ratio de viscosité va accentuer fortement la diffusion de quantité de mouvement par rapport à
un écoulement à viscosité constante, accélérant ainsi l’atteinte du régime auto-similaire par la suite. Ce
point sera largement repris par la suite.

Les profils RMS de la vitesse et de la fraction massique de propane aux mêmes positions axiales sont
présentés sur la figure (3.24). Les pics normalisés de ces grandeurs fluctuantes (0,26 pour la vitesse et
0,25 pour la fraction massique, respectivement pour les positions radiales \(\eta=0,05 \) et \(\eta=0,11 \)) sont tout-à-
fait conformes aux résultats de référence pour un jet de propane [242][200], et pour les jets dits "lourds"
[54][221]. Les données ont été approchées par un polynôme par une régression linéaire aux moindres
carrés. Pour la concentration, on trouve un polynôme du quatrième degré, similaire à celui obtenu par
[220] :

\[
\frac{\langle y^2 \rangle_{c}}{\langle Y_c \rangle} = A\eta[a_1 + a_2\eta + a_3\eta^2 + a_4\eta^3 + a_5\eta^4]
\]

(3.47)

avec \(A=9,34 \), \(a_1=0,18 \); \(a_2=0,41 \); \(a_3=8,88 \); \(a_4=-117,6 \) et \(a_5=251,6 \).

Les profils radiaux de la vitesse moyenne et fluctuante, obtenus par la méthode "du décalage temporel"
initiallement proposé par [207] sont également tracées sur les figures (3.23-a) et (3.23-a). On observe
clairement que la loi d’auto-similitude n’est pas respectée et que les profils sont incohérents avec la
littérature.

19. à noter que dans le cas d’un jet de propane se déchargeant dans de l’air pur, le ratio de viscosité cinématique \(R_{\mu} \) est
moins élevé, proche de 3,4.

20. Comparativement à celui des couples Air/He ou Air/CO\(_2\) qui est proche de 1.
CHAPITRE 3. TECHNIQUE COUPLÉE FIL CHAUD ET DIFFUSION RAYLEIGH

Fig. 3.24 – Profils radiaux pour le jet de propane à $Re=15400$, $M_0=360$, tracés en fonction de l’abscisse normalisée $\eta = r/(Z - Z_{0,1})$ pour la vitesse et par $\eta = r/(Z - Z_{0,2})$ pour la fraction massique c) des intensités fluctuantes de vitesse ; d) des intensités fluctuantes de fraction massique.

Notre technique couplée est désormais validée sur un écoulement de référence. Nos résultats corroborent très bien ceux de la littérature sur les jets de densité variable. Les résultats obtenus appellent néanmoins à éclaircir certains aspects plus fondamentaux, notamment le problème du champ proche du jet avec la rapidité de l’auto-similitude dans notre cas de figure (le régime est atteint sur une distance très courte, probablement 1 ou 2 diamètres en aval de la sortie du jet).

En effet, comme nous l’avons signalé dans ce chapitre, une grande variabilité sur les distances nécessaires à l’auto-similitude sont observées pour les jets à densité variable. La plupart des études analytiques sur les jets turbulents considèrent que lorsque le nombre de Reynolds initial basé sur le diamètre de la buse est très grand, les termes visqueux peuvent être omis de ces approches. Nous allons voir que ceci n’est pas tout à fait vrai dans le champ proche, où l’équilibre entre la production et la dissipation de la turbulence n’est pas réalisé, et où les forts gradients de vitesse sont encore influencés par les gradients de viscosité éventuellement présents dans l’écoulement.

Ainsi, au cours des chapitres suivants, nous allons montrer que les effets de densité purs, ne peuvent expliquer l’apparition de ces phénomènes et le comportement de l’écoulement dans le champ très proche. Nous allons alors nous pencher sur l’importance des effets de viscosité purs lorsque l’écoulement est en cours de transition à la turbulence, et voir qu’ils interviennent de manière prépondérante par rapport aux effets de densité purs, pour notre configuration de jet de propane se déchargeant dans un milieu moins dense, mais beaucoup plus visqueux.
Chapitre 4

Etude du champ dynamique et du mélange turbulent le long de l’axe d’un jet axisymétrique à viscosité variable

Dans ce chapitre, nous nous attachons à décrire expérimentalement la physique du mélange turbulent (vitesse et scalaire) le long de l’axe du jet de propane débouchant dans le milieu oxydant "air-néon" présentant un ratio de densité R_{ρ} de l’ordre de 1,7 et un ratio de viscosité dynamique R_{μ} de l’ordre de 3,5 (ratio de viscosité cinématique R_{ν} de l’ordre de 5,5). Ce chapitre s’appuie sur les résultats expérimentaux issus de notre technique couplée HWA et RLS présentée dans le chapitre 3. Le champ dynamique le long de l’axe entre 4 et 30 diamètres est analysé et comparé à celui d’un jet d’air à même quantité de mouvement injectée (Mo=360 kg.m$^{-1}$.s$^{-2}$). Le champ du scalaire est également étudié.

Ce chapitre débute par un rappel succinct sur les mécanismes d’entraînement dans les jets non homogènes en densité, en dissociant les effets dus à la densité purs de ceux dus aux effets de la viscosité purs lorsque le nombre de Reynolds local devient faible. Quelques compléments sur les instabilités interfaciales dans un milieu à viscosité variable, et sur les instabilités secondaires de Kelvin-Helmholtz, indispensables à l’interprétation de nos résultats, complètent ces rappels bibliographiques.

La morphologie statistique (globale et échelle par échelle) du jet de propane est ensuite présentée et comparée à celle du jet d’air homogène, à même quantité de mouvement initiale. Cette analyse des résultats expérimentaux aboutit à la conclusion que les effets de densité purs ne peuvent expliquer à eux seuls les phénomènes (auto-similarité très rapide) observés dans le champ proche du jet de propane par rapport à un jet homogène de densité et de viscosité identique.

Un modèle simple d’évolution de l’écoulement entre la buse d’injection et quelques diamètres en aval (où le jet devient auto-similaire) est proposé pour expliquer nos résultats. Ce modèle prend en compte les...
facteurs prépondérants qui pilotent la dynamique de cet écoulement : nos conditions initiales (géométrie de la buse et dynamique), rapport de viscosité des fluides.

4.1 Champ proche d’un jet rond turbulent : le mécanisme d’entraînement

4.1.1 Mécanisme de base

Le jet axisymétrique représente une configuration d’écoulement intéressante pour l’étude fondamentale de la physique de la turbulence. Il a été ainsi consacré un nombre important de travaux à ce type d’écoulement sur l’aspect fondamental de la turbulence ([178] [117] [227] par exemple). Bien que les mesures expérimentales soient rendues plus compliquées à mettre en œuvre du fait des niveaux importants d’intensités de turbulence présentes dans ce type d’écoulement (~25% comparé à celui d’un écoulement de grille par exemple de l’ordre de 3%), l’étude théorique, au contraire, peut être menée en tenant compte de l’axisymétrie d’une part, et des équations de la couche limite constituant une bonne approximation de l’écoulement sur les frontières libres du jet avec le fluide environnant [126].

Comment est réalisé le mélange turbulent dans le champ proche (macro et micro-mélange dynamique et du scalaire), qui constitue le cœur de nos préoccupations ? Nous tentons de dégager indépendamment les effets d’une densité variable supposée rester le seul effet à grand nombre de Reynolds, vis-à-vis des effets d’une viscosité variable s’intensifiant au fur et à mesure que le nombre de Reynolds décroît.

L’écoulement dans le champ proche d’un jet circulaire est dominé par la dynamique des grosses structures tourbillonnaires se formant à la rencontre du jet avec le fluide environnant. Le champ proche d’un jet peut ainsi être assimilé à une couche de mélange axisymétrique naissante (en développement). Après leur formation dans le champ proche, ces structures tourbillonnaires créées par instabilités de Kelvin Helmholtz vont, selon les cas de figure, s’apparier entre elles puis se briser sous le joug de divers instabilités (elliptiques ou de Kelvin par exemple) plus loin en aval. La présence de ces structures dans le champ lointain n’est pas aussi unanimement partagée que leur présence dans le champ proche où elle se forment. Dahm et Dimotakis [66] suggèrent que ces structures continuent de dominer la dynamique du jet, même dans le champ lointain, contrairement à ce qui est suggéré par Tso et Hussain [278].

Un jet se déchargeant dans un milieu libre au repos est contrôlé par sa quantité de mouvement initiale [261], notée \(J = \rho_o U_o^2 \pi D^2 / 4 \). Nous adopterons également par la suite la grandeur supplémentaire suivante : \(Mo = \rho_o U_o^2 \), comme étant la densité surfacique de quantité de mouvement. Les jets s’élargissent dans la direction normale à l’écoulement principal par un processus d’entraînement
dans lequel le fluide environnant irrotationnel est incorporé vers la région centrale du jet (Fig. 4.1), par un processus d’enroulement tourbillonnaire à grande échelle des tourbillons créés à l’interface entre le jet central et le milieu ambiant. Ce processus d’enroulement tourbillonnaire est le résultat d’une dégénérescence de l’instabilité de Kelvin-Helmholtz de ces tourbillons primaires. L’espacement entre les tourbillons qui vont s’enrouler dépend fortement du profil de vitesse à travers la couche de mélange, et donc de l’épaisseur de cette couche [261]. Par interaction mutuelle entre eux[1] ces tourbillons vont s’enrouler sur eux-mêmes pour ne plus former qu’un seul tourbillon de taille supérieure et hâper au passage du fluide irrotationnel, le transportant ainsi vers l’intérieur du jet.

Fig. 4.1 – Champ proche d’un jet axisymétrique, schéma de principe d’après [261]. La région ombrée indique le fluide environnant, hâpé par les structures tourbillonnaires se développant au début de la couche de mélange durant le processus d’instabilités primaires de Kelvin-Helmholtz, et acheminé vers la région centrale du jet.

Lorsque les différences de densité sont très importantes (comme dans le cas des flammes où le dégagement de chaleur induit des variations de densité d’un facteur 10 voire plus), la dynamique du jet va s’organiser selon un mode hélicoïdal antisymétrique (Fig. 4.2 à droite). Lorsque le ratio de densité est

1. par le biais de la loi de Biot et Savart, qui formalise mathématiquement la création de vitesses induites, dues à cette interaction de tourbillons. Voir [53] par exemple pour plus de détails sur ce point classique de la mécanique des fluides.
le jet va s’organiser selon une structure dynamique "dans l’axe du jet", dit mode axisymétrique (Fig. 4.2 à gauche).

Fig. 4.2 – Vue schématique du champ instantané de concentration dans un jet turbulent axisymétrique, proposée par Dahm et Dimotakis (mode axisymétrique) [66] (à gauche), et selon Mungal et O’Neil [183] (mode hélicoïdal ou antisymétrique). Figures reproduites de l’article de Mungal et Hollingsworth [183].

Dimotakis [71] décompose le processus d’entraînement en trois phases élémentaires :
– une première phase d’induction, où l’entraînement est d’abord purement cinématique, et contrôlé principalement par les propriétés des structures aux grandes échelles [3]
– une seconde phase, dite diastrophie, qui suit la première dès que débutent les effets d’étirement turbulents des couches de fluides, et par voie de conséquence, d’amincissement de ces couches (voir chapitre 2) jusqu’à une épaisseur suffisamment faible pour que les effets de diffusion visqueuse dominent,
– une dernière phase, dite d’infusion, où le fluide est mélange à l’échelle moléculaire grâce à l’action préalable de la diffusion visqueuse (diastrophie).

Détailons la phase initiale d’entraînement purement cinématique, qui contrôle la quantité de fluide extérieur mélangé à grande échelle avec le fluide intérieur du jet. Nous allons rappeler brièvement le pro-

2. Comme nous l’avons déjà signalé dans le chapitre 3, on considère que le ratio de densité est faible pour $1/2 < R(p_0/p_\infty) < 2$. [74]

3. Un tel processus d’entraînement cinématique, tel qu’il vient d’être présenté précédemment, est présent à la fois dans le champ proche et dans le champ lointain d’une couche de mélange [39] [297]. Pour les jets axisymétriques, l’enroulement initial des tourbillons juste après la dégénérescence de l’instabilité de Kelvin Helmholtz n’est observé que dans le champ proche [305] [158]. Ceci constituerait la principale différence notable sur le processus d’entraînement entre les deux types d’écoulements (jets et couches de mélange).
cessus par lequel le signe de la stratification verticale du jet en densité joue un rôle essentiel dans ce processus d’entraînement, [261].

Pour cela, isolons par la pensée un tourbillon formé dans le champ proche à la frontière entre le jet et le milieu ambiant. Considérons deux points A et B situés à une altitude différente dans le jet, sur ce tourbillon de taille λ_{turb}, tels que présenté sur la figure (4.3). Sur la figure de gauche (a), il s’agit d’un jet sans stratification en densité (homogène). Dans le cas de droite (figure c), il s’agit d’un jet présentant une stratification verticale en densité positive (la densité augmente le long de l’axe du jet lorsqu’on s’éloigne de la buse). Considérons le premier cas (jet à densité homogène). Le tourbillon tourne avec une vitesse angulaire ω_{AB}. On estime ω_{AB} en supposant que i) la vorticité est uniformément répartie dans le tourbillon, ii) que la circulation totale, notée Γ contenue dans le tourbillon est proportionnelle à la vitesse sur l’axe U_c et à la taille du tourbillon λ_{turb} :

$$\Gamma = C_1 U_c \lambda_{turb}$$ (4.1)

où C_1 est une constante. Par ailleurs, la vitesse angulaire du tourbillon ω_{AB} est reliée à la circulation par la relation simple :

$$\omega_{AB} = \frac{2\Gamma}{\pi \lambda_{turb}^2} = \frac{2C_1 U_c}{\pi \lambda_{turb}}$$ (4.2)

d’où finalement :

$$V_A = V_B = \frac{\omega_{AB} \lambda_{turb}}{2} \equiv U_c$$ (4.3)
où V_A et V_B sont les vitesses induites par la vorticité, respectivement aux points A et B.

Considérons maintenant le cas de droite ("plume"), où la parcelle de fluide en B est plus dense (plus haute) que celle du fluide en A (plus basse). La parcelle en B étant plus dense, elle aura plus de facilités à "descendre". Inversement, la parcelle en A va "monter" plus facilement. Une vitesse angulaire (couple) ω_T va ainsi se superposer à la vitesse angulaire ω_{AB} déjà existante (régie par la loi de Biot-Savart), telle que $\omega_R = \omega_T + \omega_{AB}$, avec ω_R la vitesse angulaire résultante. On peut définir un temps de retournement, t_e à l’aide de cette vitesse résultante : $t_e = \frac{1}{\omega_R}$.

Dans un tel cas de figure, le processus d’entraînement à grande échelle (phase d’induction) va être renforcé par rapport au mécanisme de Biot-Savart classique, et ce, quelle que soit la taille des tourbillons dans l’interface du jet avec le milieu ambiant. Le temps de retournement des tourbillons est diminué par rapport au cas à densité homogène. Bien entendu, ce raisonnement est inversé pour les jets lourds injecté dans un milieu plus léger. Dans ce cas, le couple barocline, de sens inversé, tend à s’opposer au tourbillon, et diminue l’entraînement.

Ces travaux complètent les travaux initiaux proposés un peu plus tôt [62][222]. Ils proposent un modèle simple pour expliquer les résultats expérimentaux sur les jets présentant des différence de densité entre le fluide rapide (jet central) et le fluide environnant [21][182].

Pour résumer :

– un jet vertical dont la densité le long de l’axe diminue, va induire un entraînement aux grandes échelles dans son champ proche plus faible, par rapport à un jet à densité homogène (et à même quantité de mouvement initialement injectée). Il faut bien voir que ces effets sont démontrés pour des nombres de Reynolds élevés (i.e. pour un fluide parfait, dont la circulation Γ n’est pas affectée par la diffusion visqueuse au sein du tourbillon) ;

– il a été montré qu’une forte décélération de l’écoulement sur l’axe (gradient de pression positif) ou un chauffage à cœur dans le jet (réaction exothermique, type combustion) produisent également une diminution de l’entraînement, [261].

Certains auteurs se sont attachés à fournir une description macroscopique de ce processus d’entraînement cinématique en faisant intervenir une vitesse moyenne de rentrée du fluide extérieur (irrotationnel) vers l’intérieur du jet, appelée vitesse radiale d’entraînement V_e. En supposant l’auto-similitude du jet (loin de la distance de la buse du jet), Morton, Taylor et Turner [179] ont défini très simplement cette vitesse radiale d’entraînement par la relation suivante :

$$V_e = \alpha_e U_e \quad (4.4)$$

avec α_e (noté simplement α dans la littérature, mais indiqué e ici pour ne pas confondre avec le coefficient
de surchauffe du chapitre 3). Les valeurs typiques du coefficient α_e pour un jet inertiel et gravitaire sont respectivement 0,05 et 0,08 [280] [126]. Le taux de dilution (taux d’incorporation de fluide irrotationnel dans le fluide turbulent central) est meilleur lorsque des effets de densité sont présents (jets gravitaires), à même quantité de mouvement injectée initialement.

Le modèle de Morton et al. (Eq.4.4) basé sur une hypothèse de Taylor avec la vitesse locale moyenne sur l’axe du jet U_c a été validé sur de nombreux écoulements de jet inertiels et de jets gravitaires. Ce modèle a ainsi permis de prédire la dispersion de polluants déchargés dans l’atmosphère par les industries, ou le déversement d’eaux usées dans les océans et les rivières [261].

Il peut être intéressant de déterminer la quantité de masse par unité de longueur entraînée par l’écoulement. On définit ainsi le taux d’entraînement ρE. Pour un jet auto-similaire de densité homogène, on démontre que E peut s’obtenir par intégration de l’équation de continuité [126] :

$$E = \lim_{r \to \infty} (-2\pi r V) = \frac{d}{dz} \left[2\pi \int_0^\infty U(r) r dr \right] = 2\pi k_u M_1^{1/2} \int_0^\infty \left[\frac{U(r)}{U_c(z)} \right] r z d\left(\frac{r}{z} \right)$$

(4.5)

avec k_u le coefficient de proportionnalité de la loi d’évolution de la vitesse axiale (voir chapitre 3).

Pour un jet homogène auto-similaire, on démontre par ailleurs que le coefficient α_e est défini comme :

$$\alpha_e = \frac{I_1}{(2I_2)^{1/2}}$$

(4.6)

avec :

$$I_1 = 2 \int_0^\infty \frac{U(r)}{U_c(z)} r z d\left(\frac{r}{z} \right)$$

(4.7)

et

$$I_2 = 2 \int_0^\infty \left(\frac{U(r)}{U_c(z)} \right)^2 r z d\left(\frac{r}{z} \right)$$

(4.8)

Pour un jet auto-similaire de densité variable et où la masse volumique est une fonction du rayon r, la relation est légèrement modifiée, et s’écrit :

$$E_{\rho(r)} \lim_{r \to \infty} (-2\pi \rho(r) r V) = \frac{d}{dz} \left[2\pi \int_0^\infty \rho(r) U(r) r dr \right]$$

(4.9)

Nous nous servirons de ces relations plus tard dans le chapitre 5.

Ce processus d’entraînement dans le champ proche continue d’exister dans le champ lointain. Voyons quels sont les "acteurs" de ce phénomènes, au point de vue morphologie.

4. dénommés *plumes* en anglais.
4.1.2 Extension au champ lointain

Dans le champ lointain (région auto-similaire) d’un jet homogène en densité, la nature profonde du processus d’entraînement, au niveau local de l’interface à la frontière du jet et du milieu extérieur irrotationnel (Fig. 4.4-a) a fait l’objet d’attentions particulières. La question était d’élucider par quel mécanisme exact du fluide irrotationnel extérieur pouvait-il devenir turbulent. Il était nécessaire de trancher pour savoir si ce processus d’entraînement était plutôt la conséquence d’une expansion de tourbillons à petite échelle vers le fluide irrotationnel (grignotage ou "nibbling"), comme le pensait [167] ou bien plutôt une rentrée de tourbillons à grande échelle à l’intérieur de la région turbulente (enfournement par grandes brassées ou "engulfment") [39][277]. Une étude très récente a permis de trancher sur ce problème [294], au moins pour la région auto-similaire du jet (l’étude a été réalisée sur une interface de jet entre 60 et 100 diamètres de la buse). Il a été montré que l’entraînement est principalement dominé par des échelles de l’ordre de l’échelle de Taylor, et non principalement par les grandes échelles. Il est en effet vérifié expérimentalement que le flux net d’enstrophie à travers l’interface (Fig. 4.5), qui est égal à la somme des contributions des flux d’enstrophie sortant et rentrant, est nul, alors qu’il devrait être positif dans le cas d’un processus dominé par une rentrée de fluide à grande échelle ("engulfment"). Ceci est visible sur la PDF approximativement gaussienne (Fig. 4.4-b). Mais cette étude ne dit rien sur la région initiale du jet, avant la zone auto-similaire. De plus, aucune étude fondamentale n’a été prolongée, à notre connaissance, au cas s’intéressant à une interface à densité variable, bien que les problèmes de stabilité et de structure des tourbillons stratifiés en densité aient été étudiés dans le contexte des fluides géophysiques [95].

Après la présentation de ces quelques notions connues sur les jets (champ proche et champ lointain), nous dissocions à présent les effets déjà connus dans la littérature sur la densité variable et sur la viscosité variable.
4.2 Influence d’une densité variable et d’une viscosité variable sur le mélange turbulent

4.2.1 Effets d’une densité variable sur le macromélange (taux d’entraînement)

Nous commençons par des rappels sur la couche de mélange plane. Bien que quelques différences existent avec son homologue axisymétrique comme nous l’avons signalé précédemment[5] la phénoménologie de base est similaire et elle permet ainsi de présenter les effets d’une densité variable sur le développement du mélange turbulent en champ proche. Ramenés à notre cas de figure axisymétrique de jet de propane débouchant dans le mélange oxydant, ces rappels permettront d’illustrer la physique de l’entraînement à la position dans la couche de mélange de notre jet où le ratio de vitesse vaut $U_{\text{CH}_4}/U_{\text{oxydant}}=0,5$ (position intermédiaire dans la couche de mélange du jet) et avec $1/R_\phi=1/1,7 \sim 0,6$.

Les structures tourbillonnaires primaires d’une couche de mélange 2D plane sont créées lors de la phase non-linéaire de l’instabilité de Kelvin-Helmholtz. Elle s’apparait ensuite entre elles par le biais d’une interaction mutuelle (selon la loi de Biot-Savart) pour former des structures de taille supérieure, venant ainsi contribuer à épaissir la couche de mélange. Il a été montré expérimentalement qu’une différence de densité entre les deux écoulements initiaux formant la couche de mélange modifient significativement la dynamique de ces structures avant et après leur appariement [39]. Le taux d’épaississement de la couche, la vitesse et la forme des tourbillons et le processus d’entraînement sont profondément altérés [255].

Les figures (4.6) montrent les principaux résultats (taux de croissance spatial de l’instabilité, taux d'entraînement) de...
traînement volumique et vitesse de convection des tourbillons dans la couche) obtenus par une analyse de stabilité linéaire conduite sur une couche de mélange spatiale présentant un ratio de vitesse \(\frac{U_{lent}}{U_{rapide}} \) de 0.5 (\(U_{lent} \) désignant la vitesse lente, i.e. notre oxydant pour nous) et un ratio de densité variable \(s=\frac{\rho_{lent}}{\rho_{rapide}} \) (à rapprocher de \(\frac{1}{R_{\rho}} \) pour notre jet).

Les figures (Fig. 4.6-a) montrent clairement que lorsque le ratio \(s \) diminue, passant de 1 (couche de mélange air-air par exemple) à 0.6 (couche de mélange propane-(air-néon) par exemple), le taux de croissance de la couche de mélange et l’entraînement volumique diminuent. La vitesse convection augmente. Ceci traduit que la couche de mélange propane-(air-propane) entraîne et s’épaissit moins bien qu’une couche de mélange air-air classique, et qu’elle subit une accélération axiale moins forte (vitesse de convection plus élevée). Pour un jet de propane débouchant dans l’air (\(\frac{1}{R_{\rho}}=1/1,52 \sim 0,65 \)) ou dans notre oxydant (\(\frac{1}{R_{\rho}}=1/1,7 \sim 0,59 \)), le résultat est donc un entraînement qui tend à diminuer d’environ 20% (passant de 1,2 à 1 environ) par rapport à une couche de mélange à densité homogène. Nous nous attendrions donc dans notre cas de figure (jet de propane débouchant dans un milieu moins dense), à trouver un entraînement moins efficace qu’un jet d’air débouchant dans l’air, à même quantité de mouvement injectée.

Ce résultat attendu analytiquement est largement démontré expérimentalement sur les jets d’hélium débouchant dans l’air par exemple qui présentent, à l’inverse, un ratio de densité supérieur à 1, de l’ordre de 7, [197][74]. Nous retrouvons aussi les résultats similaires annoncés pour les jets chauffés : un jet de fluide moins dense (plus chaud) mélange mieux qu’un jet à densité homogène. Pour un jet "lourd" débouchant dans un milieu plus "léger", ce résultat est inversé ; c’est le cas par exemple d’un jet de \(CO_2 \) débouchant dans l’air (\(\frac{1}{R_{\rho}}=1/1,52 \sim 0,65 \)), qui présente un taux d’entraînement plus faible qu’un jet d’air classique, [74].

Dimotakis [71] fournit la relation pour estimer le taux d’entraînement volumique d’une couche de mé-
lange 2D plane à densité variable, en fonction du ratio de vitesse r_c et de densité s :

$$E_v = s^{1/2} \left[1 + 0.68 \left(\frac{1 - r_c}{1 + r_c} \right) \right]$$ \hspace{1cm} (4.10)

Noter la variation linéaire du taux d’ entraînement avec le ratio de vitesse, alors qu’ il est en racine carrée du ratio de densité. Les formules pour la vitesse de convection et le taux d’épaississement de la couche sont également mentionnées dans cette même référence (non rapportées ici).

4.2.2 Origine du micro-mélange turbulent : instabilités secondaires à densité variable ?

Un pas de plus dans la compréhension de la transition vers la turbulence à haut Reynolds a été fait grâce à l’ étude des écoulements à densité variable, prenant en compte la stratification spatiale de cette densité. Pour cela, des travaux analytiques ont été conduits sur des couches de mélange temporelles ou spatiales ayant une stratification en densité [262] [219].

Des instabilités secondaires des tourbillons primaires de Kelvin-Helmholtz ont été observées[6]. Ce phénomène a également été prédit dans le cadre d’une analyse de stabilité linéaire opérée sous l’hypothèse d’un nombre de Reynolds (fluide parfait) et de Froude très élevés [219]. Les figures [4.7], extraites des travaux de [219] [262] illustrent qualitativement ce phénomène, qui apparaît dans les écoulements cisaillés à densité hétérogène à partir du second appariement des tourbillons primaires (de Kelvin-Helmholtz).

![Image instantanée issue d’une simulation numérique directe (DNS) d’une couche de mélange : a) temporelle présentant un ratio de densité de 3 d’après [219]. La région grise correspond à la zone de gradient de densité (avant la formation du tourbillon, le fluide lourd est situé en haut, le fluide léger en bas) ; b) spatiale pour le même ratio de densité, d’après [262].](image)

6. Les structures secondaires de Kelvin-Helmholtz peuvent être considérées comme une conséquence particulière de l’ instabilité de Rayleigh, en présence d’un écoulement cisaillé possédant une vitesse de convection, alors que ces dernières existent même sans écoulement moyen.
Le mécanisme proposé pour expliquer ce phénomène est détaillé dans [219]. Pour faire très simple, il consiste à reproduire ad libitum un schéma de production de vorticité entre deux tourbillons créés. Ce mécanisme est proposé comme un scénario possible pour l’explication de la transition à la turbulence, à haut Reynolds, pour les couches de mélange à densité variable.

Cette conjecture est supportée par des mesures expérimentales du micro-mélange réalisées dans le champ lointain d’une couche de mélange 2D plane [172]. Les images instantanées de très grande résolution spatiale obtenues montrent que les couches de diffusion interfaciales (entre le fluide "rouge" et le fluide "bleu") sont dominées par des instabilités secondaires de taille intermédiaire. L’existence de tourbillons de taille intermédiaire mène à l’apparition de régions de mélange inhomogènes présentant une grande disparité de concentration à travers la couche (la fraction de mélange à travers la couche passe ainsi de 0 à 1 avec de brusques variations spatiales aléatoires). Ces observations confirment l’affirmation formulée en premier par Konrad en 1976 [140] sur l’existence de très petites échelles à l’intérieur des structures cohérentes des couches de mélange, permettant le mélange intense jusqu’aux petites échelles. Ces inhomogénéités ont également été observées dans le champ lointain des couches de mélange axisymétriques [171].

Des instabilités secondaires au coeur des tourbillons de Kelvin-Helmholtz ont également été reportées dans des écoulements homogènes (densité constante) à partir d’une simulation numérique directe DNS [180], sous l’influence de différentes conditions initiales. Il a été montré dans ces travaux qu’une vorticité longitudinale (tourbillons longitudinaux) est un facteur précurseur à l’apparition des structures secondaires de Kelvin-Helmholtz. Expérimentalement, des structures secondaires similaires ont été mesurées dans une couche de mélange plane 2D homogène en densité, en scalaire passif [204], et également sous l’influence de conditions initiales différentes (laminaire ou turbulent avec des épaisseurs de quan-
tité de mouvement différents). Ces observations (numérique et expérimentale) remettent en question l’origine exacte de ces instabilités secondaires.

D’après cette première partie bibliographique, nous pouvons affirmer qu’un jet de propane débouchant dans un milieu moins dense (air ou notre mélange oxydant "air-néon") va :

– Engendrer un macro-mélange (taux d’entraînement) moins efficace, du point de vue des effets de densité purs. Le taux de croissance de la couche de mélange du jet va ainsi être détérioré par un couple barocline défavorable. Ces effets sont observés pour des nombres de Reynolds élevés (sans effets de viscosité) ;
– Des instabilités secondaires au coeur des tourbillons de Kelvin-Helmholtz sont également observés et vont favoriser le micro-mélange turbulent. Ces structures ne sont observées qu’à partir d’une certaine distance en aval (dans la région auto-similaire du jet), puisqu’il faut attendre plusieurs appariements successifs de tourbillons primaires pour qu’il naissent au sein de ces structures plus grandes. Ces effets ont été reportés dans des études réalisées pour des grands nombres de Reynolds (sans effets de viscosité).

Analysons maintenant les effets d’une variation de viscosité uniquement, sur la dynamique d’un écoulement cisailé de fluide homogène en densité.

4.2.3 Origine du micro-mélange turbulent : effets de viscosité stratifiée à bas Reynolds ?

Pour une viscosité dynamique constante, les effets de la viscosité n’influencent que les échelles les plus fines d’un écoulement (là où ces effets agissent). Lorsque la viscosité au sein du fluide n’est pas constante mais stratifiée (i.e. différente d’un filet fluide à un autre, de telle sorte qu’on peut définir un gradient spatial de la viscosité), il en est autrement. Cette viscosité stratifiée va engendrer des conséquences sur la dynamique globale d’un écoulement (petites et grandes échelles), quelle que soit la nature des mécanismes physiques réellement pris en compte dans l’approche formulée (newtonienne ou en s’intéressant aux instabilités hydrodynamiques).

– 1) si l’on s’en tient à une vision newtonienne de la dynamique de l’écoulement (en occultant la prise en compte des instabilités hydrodynamiques), les effets de viscosité variable peuvent modifier les caractéristiques globales du mélange turbulent entre deux fluides à viscosités différentes ;

7. Il semble que ce phénomène ne puisse pas être imputé uniquement aux gradients de densité présents dans l’écoulement. Ce constat rejoint la remarque générale affirmant que le profil de vitesse injecté a une importance aussi capitale que les gradients de densité sur la naissance des instabilités hydrodynamiques dans un écoulement de faible Reynolds.

8. Ce chiffre peut être considéré comme une valeur seuil d'un certain nombre de facteurs qui influencent le développement des instabilités hydrodynamiques.
2) si l’on analyse les effets par le biais d’une étude de stabilité linéaire, on va s’apercevoir que ces effets de viscosité variable vont donner naissance à de nouvelles instabilités hydrodynamiques pouvant prendre une part très importante sur la dynamique globale de l’écoulement (grandes et petites échelles). Les effets de viscosité dans ce cas, induisent également des modifications profondes de la dynamique de l’écoulement d’abord à petite échelle, puis indirectement à toutes les échelles.

Analysons le premier cas 1. Le problème de mélange turbulent entre deux fluides à densité identique mais à viscosité variable a été étudié par les géophysiciens. Ils se sont intéressés au problème du mélange de différents magmas se rencontrant violemment dans les chambres magmatiques (sous-sol terrestre). L’objectif pour les géochimistes est de connaître au mieux la composition des nouveaux magmas formés. Pour cela, des études expérimentales en laboratoire ont été menées à l’aide de fluides de substitution, simulant les éruptions magmatiques dans le sous-sol terrestre (dénommées "fontaines") [280]. Ces expériences consistent à simuler la rencontre d’un fluide peu visqueux de viscosité \(\nu_1 \) dans un fluide très visqueux de viscosité \(\nu_2 \).

Plusieurs cas de figure ont été reproduits, pour différents ratio de viscosité \(1/R_\nu = \nu_1/\nu_2 \) compris entre 1 et 400. Pour un ratio de viscosité 1, les expériences de Campbell et Turner confirment qu’un mélange turbulent efficace apparaît, avec un entraînement rapide et une diffusion "normale" du fluide 1 dans le fluide 2 (Fig. 4.9-a).

Pour des ratio de viscosité supérieurs à 1, les expériences ont révélé que, à nombre de Reynolds d’injection similaire et au fur et à mesure que ce ratio de viscosité du fluide accueillant vis-à-vis du fluide injecté dépassait un certain seuil, le mélange turbulent entre les deux fluides cessait. Ceci est visible sur la figure 4.9-b) pour un ratio de viscosité cinématique de l’ordre de \(1/R_\nu=400 \), où l’on distingue une structure d’interface très nette. La création d’une telle interface est probablement attribuée au cisaillement visqueux très élevé entre la glycérine et la solution de \(K_2CO_3 \), qui favorisent l’amincissement de l’interface entre les deux fluides, et qui augmentent le taux de transport de chacun des composés entre eux. On voit également que le jet qui pénètre dans la chambre est en forme de "V" (forme inversée par rapport à un jet "classique" à viscosité 1, Fig. 4.9-a), la partie centrale de celui-ci (coeur potentiel) étant très freinée par rapport aux bords, comme si le jet était littéralement stoppé lors de sa pénétration dans la chambre par le fluide 2 qui ne se laisse que très difficilement déformer par les forces d’inertie.

L’interprétation théorique qui est donnée par [46] pour expliquer la différence entre ces deux est la suivante : pour deux fluides à densité et à viscosité identiques, le mélange créé à l’interface entre les deux fluides est directement lié à l’énergie turbulente des tourbillons de taille \(l \) du fluide 1 (bord du jet), emprisonnant du fluide 2 dans des grandes structures de vitesse typique \(u \) comparable à la vitesse moyenne en

8. Les moyens de mesure dans ces travaux sont limités à des observations occulaires par photographies très rapides, ce qui ne permet que des analyses qualitatives.
sortie du jet U_o. Le mélange du fluide 2 dans le fluide 1 est ensuite accéléré par la création de structures turbulentes de taille de plus en plus petite, par un mécanisme classique de cascade turbulente, brisant les grosses structures en plus fines structures. Les effets de la viscosité ne se font sentir que lorsque le nombre de Reynolds basé sur la viscosité du fluide 1, $Re^* = u^* l^* / \nu_1$, est de l’ordre de l’unité (u^* et l^* sont les grandeurs typiques des structures dissipatives de Kolmogorov). Le taux d’entraînement (et l’élargissement radial du jet) ne sont pas directement affectés par les grandeurs à petite échelle u^* et l^*, mais dépendent plutôt des grandeurs d’injection à grande échelle, $u \sim U_o$ et l. Si le nombre de Reynolds Re_1 est suffisamment grand (turbulent), le taux d’entraînement ne dépend plus de Re_1. Par contre, si Re_1 est trop faible, le taux d’entraînement devient une fonction directe de Re_1 (écoulement laminaire).

Si maintenant le fluide 2 possède une viscosité très supérieure au fluide 1 ($\nu_2 >> \nu_1$), ce fluide 2 ne peut être entraîné par le fluide 1 que si les forces d’inertie du jet sont suffisantes pour vaincre les forces de viscosité à l’interface, et déformer celle-ci pour venir pénétrer le fluide 2. La condition limite exprimant cette distorsion d’interface, est obtenue lorsque les échelles des structures turbulentes du fluide 1 sont comparables aux échelles dissipatives (de Kolmogorov) du fluide 2, soit :

$$\frac{ul}{\nu_2} \sim 1$$

(4.11)

c’est à dire lorsque le nombre de Reynolds basé sur la viscosité du fluide 2, Re_2, est de l’ordre de l’unité.

Campbell et Turner [47] ont ensuite cherché un critère permettant de définir le seuil délimitant l’apparition d’un mélange turbulent efficace et d’un mélange non efficace. Ils ont pour cela, supposé l’égalité
CHAPITRE 4. ETUDE EXPÉRIMENTALE - AXE D’UN JET AXISYMÉTRIQUE

\[U_o D \sim ul, \text{ et écrit le nombre de Reynolds } Re_2 \text{ comme :} \]

\[Re_2 = \frac{U_o D}{\nu_2} = k_t \quad (4.12) \]

\(k_t \) étant un coefficient ne dépendant que de la viscosité \(\nu_2 \).

Ils aboutissent au critère suivant sur \(k_t \) : ils montrent en effet que pour \(U_o D/\nu_2 > 70 \), le fluide 1 va se mélanger aussi bien que sans différence de viscosités, et que si \(U_o D/\nu_2 < 7 \), très peu de mélange va apparaître quel que soit le nombre de Reynolds turbulent initial. Entre les deux, une zone incertaine subsiste. Ainsi, passé un certain ratio de viscosité, le mélange semble laminarisé. En-dessous d’un autre ratio de viscosité (situé plus bas), le mélange est pleinement turbulent. Entre les deux, une large région intermédiaire de transition.

Comment expliquer ce phénomène très particulier, observé de manière très qualitative mais très pragmatique ? Nous allons voir que ce résultat s’interprète dans le cadre des mécanismes d’instabilités hydrodynamiques liées à une viscosité variable (cas 2).

Analysons le cas 2. L’étude des instabilités dues à la stratification en viscosité dans un écoulement remonte aux travaux de Yih [302] dans un canal plan, suivants ceux de Squire [256] en 1933 pour un fluide homogène. L’étude de ces instabilités est reprise de manière très détaillée dans l’article plus récent [303], à partir d’une analyse basée sur les équations de Navier-Stokes à densité homogène dans un canal (Fig. 4.10-a)). La conclusion de ces travaux est qu’un écoulement de Couette-Poiseuille plan peut devenir instable à des très faibles nombres de Reynolds, lorsqu’il est soumis à une stratification en viscosité. Les conditions d’instabilité sont paramétrisées en fonction du ratio de hauteur entre le niveau de fluide 1 et 2, noté \(n = d_2/d_1 \). Le ratio de viscosité dynamique entre les deux fluides est noté \(m = \mu_2/\mu_1 \) (\(m \) peut être assimilé à \(R_\mu \)). Les équations aboutissent à une formulation d’Orr-Sommerfeld classique pour laquelle, il s’agit de chercher le signe du coefficient de croissance temporel complexe des perturbations \(c_i \). Le signe de ce coefficient est complètement déterminé par le signe d’un autre coefficient, noté \(J \) dans l’article de Yih. Lorsque \(J \) est positif, nul ou négatif, l’écoulement est respectivement instable, neutre ou stable. Les variations de ce coefficient \(J \) pour des ratios \(n < 1 \) sont fournies sur la figure (4.10-b)).

On note que le pic d’instabilité (valeur absolue positive la plus élevée du coefficient \(J \)) se situe entre \(m = R_\mu = 3 \) (pour \(n = 0.1 \)) et 35 (pour \(n = 1 \)). Mais, on note surtout également que la valeur du coefficient \(J \) chute brutalement après ce pic, et qu’elle peut même passer à des valeurs négatives (écoulement stable). Ce résultat suit exactement la tendance des résultats de Campbell et Turner : à partir d’un ratio de viscosité très élevé, les instabilités liées à la stratification de la viscosité cessent (à rapprocher du seuil \(U_o D/\nu_2 > 70 \) trouvé par Campbell et Turner).

Des études numériques beaucoup plus récentes [45] montrent par DNS que le taux de croissance des
Fig. 4.10 – a) : Définition de l’écoulement de Couette-Poiseuille plan considéré pour l’analyse de stabilité de Yih [303] ; b) Variation du coefficient J d’amplification de l’instabilité, en fonction du ratio de viscosité dynamique $m = \mu_2/\mu_1$ ($m = R_\mu$), et pour différents ratio $n = d_2/d_1 < 1$. L’écoulement est stable, neutralement stable, ou instable lorsque J est respectivement positif, nul ou négatif.

instabilités K d’une interface présentant un ratio de viscosité R_μ, pour un nombre de Reynolds faible et modéré\footnote{9} augmenté fortement avec ce ratio R_μ jusqu’à $R_\mu = 5$ (Fig. 4.11). La configuration de l’écoulement reprend celle de Yih présentée précédemment (Fig. 4.10). Le coefficient de croissance de l’amplitude de l’instabilité K est défini tel que $a^* = a_0^* \exp (Kt^*)$, avec a^* l’amplitude initiale adimensionnée de la perturbation, et t^* le temps adimensionné par une grandeur caractéristique. La figure (4.11) montre les cas instables.

Ces travaux montrent également que le coefficient K peut diminuer au fur et à mesure que le nombre de Reynolds augmente, pour certaines conditions très précises entre le ratio de viscosité R_μ et le ratio de hauteur de fluide dans le canal n (i.e. pour $n > \sqrt{R_\mu}$). Sorti du contexte particulier des canaux plans, ce résultat démontre que le coefficient d’amplification des instabilités peut réduire fortement, même avec un ratio de viscosité continuant d’augmenter.

L’explication permettant de comprendre le comportement des instabilités d’interfaces pour les très grands ratio de viscosité, et que nous venons de décrire (annulation des instabilités pour les grands ratios, observé par Campbell et Turner de manière globale, par Yih, ...) trouve son origine dans la stabilisation du mode d’excitation d’instabilité interfaciale (au profit du mode de cisaillement visqueux éventuellement) par la diffusion visqueuse de quantité de mouvement [164]. Plus précisément, si l’épaisseur de diffusion, proportionnelle à $\sqrt{\nu t}$ est petite par rapport à un seuil critique donné par $(\alpha Re)^{-1/3}$ (\alpha est le coefficient apparaissant dans l’équation d’Orr-Sommerfeld), l’interface va être considérée comme

\footnote{9. Des travaux expérimentaux très récents sur les instabilités dues à la viscosité dans des fluides sans écoulement (i.e. pour la limite Re $\to 0$) ont été menées par [271]. Ces travaux démontrent le caractère désestabilisant de la stratification en viscosité.}
celle de deux fluides non-miscibles, et le mode interfacial inconditionnellement instable dans ce cas quel que soit le nombre de Reynolds, va être déclenché. Si au contraire, l’épaisseur de diffusion est plus grande que $(\alpha Re)^{-1/3}$, l’interface s’apparente à deux fluides miscibles, et le mode interfacial est effacé au profit d’un mode de cisaillement, pouvant être stable sur une bonne gamme de Reynolds.

Par ailleurs, Hickox [114], a appliqué la méthode de Yih [303] pour un tube “fluide” axisymétrique constitué de deux fluides de densités différentes et dont la viscosité du fluide interne (coeur) est plus faible que celle du fluide externe (anneau). Il a montré que l’écoulement est toujours instable aux perturbations axisymétriques ou antisymmmétriques, et que cette instabilité est due en premier chef à la stratification en viscosité.

4.2.4 Conclusion partielle sur ces rappels bibliographiques

Concernant les effets de densité variable : Nous avons vu que des jets lourds débouchant dans un milieu moins dense présentent un entraînement moins efficace, un taux de croissance de leur couche de mélange plus lent, qu’un jet de fluide homogène, ou a fortiori d’un jet léger dans un fluide lourd. Par ailleurs, une décélération axiale le long de l’axe du jet est un facteur améliorant l’entraînement.

Concernant les effets de viscosité variable :

L’ensemble de ces résultats démontrent qu’une interface fluide soumise à une stratification de la viscosité dynamique est conditionnellement instable, et engendre de manière très violente, des modes d’instabili-
tés de courtes longueurs d’onde lorsque :
– le ratio de viscosité se situe entre $m \equiv R_\mu 1$ et 30 (quel que soit le nombre de Reynolds),
– l’épaisseur de diffusion entre les fluides 1 et 2 à l’interface est inférieure à une épaisseur critique, proportionnelle à $\alpha Re^{-1/3}$ (si l’épaisseur est plus importante que ce seuil critique, le mode de cisaillement est préférentiellement excité au détriment du mode interfacial. Ce mode de cisaillement est beaucoup plus stable sur une gamme de Reynolds élargie).

Ramenés à notre étude, ces résultats nous indiquent qu’en mélangant du propane avec notre oxydant (néon et air), nous sommes dans le cas d’apparition possible de ces instabilités interfaciales. En effet, le ratio de viscosité dynamique vaut $m \equiv R_\mu \sim 3$, proche du pic d’instabilité des études de Yih (la première condition est respectée). D’autre part, dans le champ très proche, la frontière libre entre le jet de propane et l’oxydant est naissante, si bien que l’épaisseur visqueuse locale de la couche de mélange entre ces deux fluides est encore petite (la deuxième condition est fortement probable).

Bilan sur le champ proche de notre jet : L’écoulement derrière la lèvre de notre jet (ratio de densité $R_\rho=1,7$, ratio de viscosité dynamique $R_\mu \sim 3$) est soumis à différents types d’instabilités :

– **instabilités de jet classiques**, type Kelvin-Helmholtz (ces instabilités apparaissent même en fluide parfait, pour une épaisseur de lèvre infiniment mince),
– **instabilités de sillage** : selon l’épaisseur de la lèvre, des tourbillons de type Von Karman peuvent être induits derrière la lèvre, et conduire à l’apparition de régimes particuliers de sillage ;
– **instabilités interfaciales** dues à la différence de viscosité entre le propane et l’oxydant.

Les instabilités secondaires dues à la densité variable sont difficilement appréciables, et n’apparaissent que plus tardivement (loin en aval) dans l’écoulement.

Il est difficile à ce stade d’apprécier le niveau exact de chacun de ces 3 effets. **Ce problème sera abordé dans le chapitre 6, qui traite plus en détail la région initiale derrière une lèvre.**

Nous proposons dans l’immédiat pour la suite de ce chapitre de s’intéresser à l’observation physique de l’écoulement et du mélange de notre jet.

4.3 Morphologie physique et statistique des champs scalaire et de vitesse

La morphologie statistique des signaux temporels de vitesse et de scalaire dans un jet de propane débouchant dans l’oxydant 70% néon-30% air est présentée dans cette section. Deux quantités de mouvement initiales injectées sont considérées : $Mo=130$ et $Mo=360 \ kg.m^{-1}.s^{-2}$. Une comparaison de ces statistiques par rapport à celles obtenues sur un jet d’air aux mêmes quantités de mouvement est menée.
4.3.1 Signaux instantanés et première approche de la répartition de l’énergie cinétique

La figure 4.12 montre deux extraits de signal de vitesse longitudinale fluctuante spatial $u(x)$, obtenus par anémométrie à fil chaud et transformés par une hypothèse de Taylor locale, respectivement sur l’axe du jet d’air ($Ma=360, Re_D \sim 5400$) et de propane ($Ma=360, Re_D \sim 15400$). Malgré un nombre de Reynolds local identique ($R_\lambda \sim 60$), on constate que ces signaux sont fondamentalement différents. Le signal "air" arbore la signature typique d’un signal turbulent "classique", présentant des périodes calmes et des périodes de bouffées très fluctuantes, l’alternance entre ces périodes étant aléatoire et assez espacée. On note également la présence de rapides variations positives suivies de rapides descentes négatives des fluctuations, caractéristiques de la présence de structures cohérentes de grande échelle au sein de l’écoulement. Le signal "propane", au contraire, est beaucoup plus régulier, et présente des fluctuations plus régulières en amplitude mais très rapides en temps. Le signal dans ce cas semble être haché très violamment. On note néanmoins quelques variations brutales de fluctuations positives suivies de fluctuations négatives, signes de la présence de structures cohérentes mais de plus petite taille. On peut d’ores et déjà avancer que les fluctuations très rapides observées sous-tendent la présence de structures turbulentes beaucoup plus fines que pour le jet d’air, et présentant une gamme d’êchelles plus serrée.

![Fig. 4.12 – Extraits de signaux temporels de vitesse spatiale fluctuante $u(x)$ (obtenu à partir d’une transformée de Taylor locale) de longueur identique (0.48 m), issus d’une mesure par anémométrie à fil chaud : a) dans le jet d’air se déchargeant dans l’air pur ($Ma=360, Re_D \sim 5400$), le long de l’axe à $Z/D=15$. Le nombre de Reynolds local vaut $R_\lambda=60$; b) dans le jet de propane se déchargeant dans un mélange oxydant 30%air-70%néon ($Ma=360, Re_D \sim 15400$), le long de l’axe à $Z/D=6$. Le nombre de Reynolds local vaut $R_\lambda=60$.](image_url)

Regardons maintenant des extraits de signaux de concentration temporels le long de l’axe du jet de propane. Ces extraits de signaux temporels de fraction massique de propane $Y(t)$, issus de la mesure par
diffusion Rayleigh monopoint dans le jet de propane de déchargeant dans le mélange oxydant (Mo=360, \(Re_D \sim 15400\)), sont présentés pour \(Z/D=6\), \(Z/D=15\) et \(Z/D=30\) (Fig. 4.13).

\[\text{Fig. 4.13} – \text{Extraits de signaux temporels de fraction massique de propane instantanée } \gamma(t), \text{ issus d’une mesure par diffusion Rayleigh monopoint dans le jet de propane se déchargeant dans un mélange 30\%air-70\%néon, le long de l’axe : a) à la distance axiale } Z/D=6 \ (<\gamma_c>=0.63), \ R_\lambda=60 \ ; \ b) à la distance axiale } Z/D=15 \ (<\gamma_c>=0.26), \ R_\lambda=14 \ ; \ c) à la distance axiale } Z/D=30 \ (<\gamma_c>=0.13), \ R_\lambda=15.\]

Comme pour les signaux de vitesse, les signaux de viscosité présentent des fluctuations très sévères, présentant des bouffées à relativement grande période de temps où se superposent des fluctuations beaucoup plus rapides. Au fur et à mesure que la fraction massique moyenne diminue (éloignement de la buse du jet), les signaux deviennent de moins en moins soumis à de brusques variations à "grande échelle" mais l’écart-type des fluctuations reste quasiment constant dès \(Z/D=15\) comme on le verra plus tard.

Des extraits de signaux temporels de viscosité dynamique \(\mu_c(t)\), obtenus à partir des signaux de fractions molaire de propane issus d’une mesure par diffusion Rayleigh monopoint, par l’équation (3.23). Il sont présentés pour \(Z/D=6\) et pour \(Z/D=15\) (Fig. 4.14). Comme pour la vitesse ou la concentration, on note aisément que la viscosité locale le long de l’axe est fluctuante, avec des alternances très rapides par rapport à la viscosité moyenne sur l’axe \(\langle \mu_c \rangle\). L’écart-type sur la valeur moyenne des signaux \(\langle (\mu_c(t) – \langle \mu_c \rangle)^2 \rangle^{1/2}/\langle \mu_c \rangle\) est de l’ordre de 18\% pour les positions comprises entre 20 et 30 diamètres de la buse. Assez proche de la buse de sortie \((Z/D=6)\), on note la présence de quelques rares fluctuations négatives de viscosité, traduisant la présence résiduelle de quelques bouffées de propane pur sur l’axe du jet. A cette distance \((Z/D=6)\), le mélange turbulent entre le propane et l’oxydant y est encore imparfaitement réalisé. Plus loin en aval \((Z/D=15)\), nous n’observons plus ces fluctuations rares, le signal étant plus régulier. Le mélange turbulent semble alors être parvenu à un état de prémélange moyen.

Ces résultats qualitatifs sur l’observation directe des signaux temporels appellent la première conclusion suivante :

– les échelles turbulentes de l’écoulement dans le jet de propane semblent être réduites par rapport
CHAPITRE 4. ETUDE EXPÉRIMENTALE - AXE D’UN JET AXISYMÉTRIQUE

117

Fig. 4.14 – Extraits de signaux temporels de viscosité dynamique $\mu(t)$, issus d’une mesure par diffusion Rayleigh monopoint dans le jet de propane se déchargeant dans un mélange 30%air-70%néon, le long de l’axe : a) à la distance axiale de 6 diamètres ($Z/D=6$), $R_\lambda=60$; b) à la distance axiale de 15 diamètres ($Z/D=15$), $R_\lambda=14$.

à celles présentes dans le jet d’air, malgré un nombre de Reynolds local similaire ;

4.3.2 Statistiques globales

Nous allons aborder maintenant l’analyse des statistiques globales de l’écoulement dynamique (et du scalaire) le long de l’axe dans les champs proche et lointain ($Z/D=2$ à 30 pour le jet d’air, et de $Z/D=4$ à 30 pour le jet de propane).

Les PDFs des signaux temporels de vitesse dans le jet d’air pour $Z/D=6$, 15 et 30 (Fig. (4.15-a)), et dans le jet de propane aux mêmes positions (Fig. (4.15-b)), normalisées par leur écart-type respectif σ, sont présentées avec un décalage en ordonnée pour plus de lisibilité. Pour le jet d’air, les allures des PDFs sont légèrement dissymétriques jusqu’à 30 diamètres de la buse, puis deviennent parfaitement gaussiennes au-delà. Cette observation traduit la distinction entre le champ proche (région non parvenue encore à l’auto-similitude parfaite des moments d’ordre 1 - vitesse moyenne) et le champ lointain, qui, comme on le verra par la suite apparaît au-delà de $Z/D=30$. Pour le jet de propane au contraire, on note une forte dissymétrie négative à $Z/D=6$, traduisant de fortes fluctuations de vitesse vers des valeurs plus faible que la moyenne. Ce résultat illustre la pénétration de fluide extérieur (oxydant à basse vitesse) vers l’intérieur du jet. Au-delà de 6 diamètres, les PDF deviennent presque gaussiennes (l’effet du cœur potentiel devient négligeable), mais présentent néanmoins des branches positives plus marquées. Ceci est la signature de fluctuations positives apparaissant encore dans un écoulement globalement "homogé-
Les PDFs des signaux temporels des fluctuations de la fraction massique de propane $y(t)$ dans le jet de propane à $Mo=360$ (Eq. (4.16)) pour les mêmes positions (pour $Z/D=6,15$ et 30), permettent de mieux mettre en évidence la description qualitative du jet de propane. On y distingue nettement que les PDFs sont d’abord de skewness négative près de la buse de sortie (la branche de gauche de la PDF à $Z/D=6$ est située vers des valeurs absolues plus grandes que la branche de droite), puis deviennent simétriques (skewness nulle à $Z/D=15$), pour devenir ensuite de skewness positive (à $Z/D=30$). **Ceci traduit le phénomène physique suivant le long de l’axe du jet : près de la buse du jet, le cœur potentiel est globalement homogène (principalement composé de propane) mais subit quelques incursions de fluides extérieur (oxydant à vitesse très faible, et à fraction massique de propane nulle), qui expliquent la branche négative plus prononcée de la PDF. Au contraire, très loin en aval ($Z/D=30$), l’écoulement est également homogène mais cette fois-ci principalement composé d’oxydant ; quelques incursions de propane continuent d’arriver et expliquent la branche positive plus prononcée de la PDF. Au milieu ($Z/D=15$), l’écoulement est homogène en concentration de propane, avec des occurrences de fluide extérieur aussi nombreuses que les occurrences de fluide provenant de l’axe du jet (PDF symétrique).**

Fig. 4.15 – Fonction de Densité de Probabilité des signaux temporels de vitesse fluctuante $u(t)=U(t)-<U_c>$: a) pour le jet d’air ($Mo=360$) sur l’axe à $Z/D=6,15$ et 30 ; b) pour le jet de propane ($Mo=360$) sur l’axe à $Z/D=6,15$ et 30. Les PDFs sont décalées en ordonnée pour plus de lisibilité.

Le tableau (4.17) regroupe les caractéristiques du jet de propane ($Mo=360$, $Re_D=15400$) et du jet d’air ($Mo=360$, $Re_D=5400$), obtenues à partir de la technique couplée HWA/RLS entre $Z/D=4$ et 30.

Les figures (4.18) présentent l’évolution des intensités de turbulence axiale $<u^2>^{1/2}$ / $<U_c>$ et
Fig. 4.16 – Fonction de Densité de Probabilité des signaux temporels de fluctuations de fraction massique $y(t) = Y(t) - \langle Y \rangle$ pour le jet de propane sur l’axe à $Z/D = 6,15$ et 30. Les PDFs sont décalées en ordonnée pour plus de lisibilité.

$< y^2 >^{1/2} / < Y_c >$, le long de l’axe, pour les jets d’air et de propane (Mo=360) entre $Z/D = 4$ et 30. Pour le jet de propane se déchargeant dans l’oxidant, l’auto-similitude de la turbulence axiale (pour laquelle les intensités deviennent sensiblement constantes) est atteinte dès $Z/D \sim 8$; dès cette position, la valeur de 0,23 est stabilisée (valeur conforme à la littérature [196][200]). Pour le jet d’air, il nous semble au contraire que celle-ci n’est pas encore atteinte à la position $Z/D \sim 30$, bien que dès $Z/D \sim 12$ on observe une diminution de la pente de croissance. Le maximum des intensités turbulentes axiales ($\sim 0,15$) est encore en évolution positive. Ces résultats illustrent la rapidité d’atteinte du régime auto-similaire pour la turbulence axiale dans le cas du jet de propane, par rapport au jet d’air.

Les profils axiaux d’intensité de fraction massique de propane (Fig. 4.18-b) suivent sensiblement la même évolution que ceux de la vitesse ; ils croissent très rapidement jusqu’à $Z/D \sim 15$, puis se stabilisent ensuite vers la valeur 0,37 (région de "Far-Field"). Cette valeur est supérieure à celle trouvée classiquement pour un jet de propane débouchant dans l’air (pour lequel la valeur de 0,25 est plus commune, [205][206]). En revanche, nous trouvons une valeur identique à celles mesurées pour des jets d’Argon [163] et d’Hélium [292] débouchant dans de l’air (respectivement 0,36 et 0,37 pour $Re_D = 10000$ et 3300).

Il est intéressant aussi de noter que le maximum des intensités pour le scalaire arrive plus tard ($Z/D \sim 15$) que pour la vitesse ($Z/D \sim 8$). Cette différence est attribuée à un régime de Batchelor qui apparaît pour le scalaire (fraction massique), de manière de plus en plus marquée au fur et à mesure que l’on s’éloigne de la buse du jet. Ce régime particulier est nettement visible sur les spectres du scalaire.
CHAPITRE 4. ÉTUDE EXPÉRIMENTALE - AXE D’UN JET AXISYMÉTRIQUE

Fig. 4.17 – Tableau de synthèse des principaux résultats obtenus par la technique couplée HWA/RLS (jets de propane et d’air à Mo=360, le long de l’axe aux positions Z/D=4,6,10,15,20,25 et 30).

(Fig. 4.24) que nous présentons plus loin. Ce régime de Batchelor entretient le processus de création d’échelles de plus en plus fines pour le scalaire au-delà du processus de création des échelles de Kolmogorov pour la vitesse, ce qui cesse plus tôt, dès Z/D ∼ 8.

La figure (4.19) présente l’évolution du nombre de Reynolds local R_λ en fonction de la distance aval Z/D, le long de l’axe des jets d’air et de propane (Mo=360) entre Z/D=4 et 30. Le nombre de Reynolds est calculé selon la relation donnée dans le chapitre 2, et à l’aide des valeurs du tableau (4.17). Il apparaît alors très clairement deux phénomènes méritant d’être soulignés :

- à même quantité de mouvement injectée (Mo=360), le nombre de Reynolds obtenu dans la région "Far-Field" est 4 fois plus faible pour le jet de propane que pour le jet d’air (respectivement $R_\lambda=15$ et 60) ; cet effet ne peut provenir que des gradients forts de viscosité au sein de l’écoulement. En effet, si la relation $R_\lambda \sim \sqrt{\text{Re}_D}$ valable pour un écoulement à viscosité constante était vérifiée, on devrait s’attendre plutôt à un nombre de Reynolds local de l’ordre de 120, alors qu’il n’est que de 15 (pour le jet...
CHAPITRE 4. ETUDE EXPÉRIMENTALE - AXE D’UN JET AXISYMÉTRIQUE

Fig. 4.18 – Variations des intensités turbulentes : a) de la vitesse longitudinale \(\left\langle u^2 \right\rangle^{1/2} / \langle U_c \rangle \) le long de l’axe des jets de propane et d’air (Mo=360) ; b) de la concentration de propane \(\left\langle y_1^2 \right\rangle^{1/2} / \langle U_c \rangle \) le long de l’axe des jets de propane (Mo=360). Les lignes verticales en traits pointillés délimitent le champ proche et le champ lointain du jet.

d’air, cette relation est assez bien vérifiée puisque \(R_A=60 \sim \sqrt{Re_D} \sim \sqrt{5400} = 73 \).

– le nombre de Reynolds local croît beaucoup plus rapidement (sur une distance axiale très courte) pour le jet de propane, pour chuter rapidement ensuite et se stabiliser à une valeur 4 fois plus faible, dès \(Z/D=10 \). A contrario, le nombre de Reynolds se stabilise à la dernière valeur de croissance de la région Near-Field. Cette décroissance forte derrière le pic situé vers \(Z/D \sim 6 \) n’est pas observé pour un écoulement à viscosité constante (que la densité soit constante ou non).

Les figures (4.20) présentent les rapports entre les échelles intégrales et de Kolmogorov (à gauche), et entre les échelles intégrales et de Taylor (à droite), le long de l’axe des jets d’air et de propane (Mo=360) entre \(Z/D=4 \) (dès \(Z/D=2 \) pour le jet d’air seulement) et 30. Les échelles absolues sont déterminées à partir des relations données dans le chapitre 2, et les valeurs obtenues sont regroupées dans le tableau (4.17). Avant de discuter les rapports, on note déjà que les échelles intégrales et les échelles de Kolmogorov sont significativement plus petites dans le jet de propane que dans le jet d’air. Ce résultat n’est pas imputable à un effet de Reynolds classique d’un écoulement à viscosité et densité constantes. En effet dans ce cas précis, les échelles de Kolmogorov (et les échelles intégrales) devraient à l’inverse être plus grandes pour ce plus bas Reynolds (qui vaut \(\sim 15 \) contre \(\sim 60 \)). Par contre, il est difficile d’élucider l’origine exacte de ce résultat, sans morphologie 2D de l’écoulement ; est-ce une marque attribuable aux
CHAPITRE 4. ETUDE EXPÉRIMENTALE - AXE D’UN JET AXISYMÉTRIQUE

Fig. 4.19 – Evolution du nombre de Reynolds local R_{λ} en fonction de la distance axiale Z/D, le long de l’axe des jets de propane et d’air, à la même impulsion initiale $M_0=360$.

Fig. 4.20 – Evolutions des rapports d’échelles de la turbulence le long de l’axe du jet, pour différentes distances axiales entre $Z/D=2$ ou 4 (pour le jet d’air ou de propane) et $Z/D=30$: a) échelles intégrales sur échelles de Kolmogorov L_1/λ_K ; b) échelles intégrales sur les échelles de Taylor L_1/λ_T. Les lignes verticales en traits pointillés délimitent le champ proche et le champ lointain du jet.
Il nous semble que la piste de la prépondérance des effets de viscosité soit la plus probable à ces bas R_λ. En effet, en revenant à l’allure des signaux physiques de la vitesse (Fig. 4.12a et b), on note qu’à même nombre de Reynolds local, les fluctuations de vitesses axiales sont beaucoup plus marquées dans le jet de propane, traduisant que cette turbulence est fondamentalement différente de celle que l’on observerait dans un écoulement à viscosité constante pour ce R_λ.

Pour compléter ce point sur les échelles turbulentes, nous pouvons comparer les auto-corrélations des signaux physiques de la vitesse pour le jet d’air de propane, aux positions $Z/D=6$, 15 et 30 (Fig. (4.21)). Nous nous apercevons que les signaux dans le propane décorrèlent plus vite. Ainsi, le ratio des temps de corrélation $R_{propane}(\tau)/R_{air}(\tau)$ entre ces deux jets est bien inférieur à 1 pour toutes les positions dans le jet. De plus, ce ratio diminue avec la distance axiale Z/D. Pour $Z/D=6$, ce ratio est d’environ 0,8 ; à $Z/D=15$, il est de 0,62 et à $Z/D=30$, il n’est plus que de 0,58. Ceci est la signature de structures turbulentes plus petites au sein de l’écoulement.

![Fig. 4.21 – Autocorrélations des signaux issus des mesures par anémométrie à fil chaud aux positions axiales $Z/D=6,15$ et 30 : a) sur l’axe du jet d’air ($Ma=360,Re_D \sim 5400$) ; b) sur l’axe du jet de propane ($Ma=360,Re_D \sim 15400$).](image)

Par ailleurs, on note que les rapports L_I/λ_K et L_I/λ_T varient fortement dans la région où R_λ n’est pas constant, aussi bien pour le jet d’air que pour le jet de propane. Dans la région où R_λ est constant (champ lointain), ces ratios atteignent respectivement 80 et 10 pour le jet d’air, et respectivement 18 et 2 pour le jet de propane. Ce résultat montre la réduction drastique de la gamme des échelles turbulentes au sein de l’écoulement. Ce résultat corrobore celui d’une étude numérique DNS très récente sur l’effet de la viscosité variable au sein d’un écoulement isovolume dans le développement d’une turbulence isotope [149]. Bien que cette étude ait occulté les effets de densité (présents pour nous), il mettent en avant...
de manière claire les effets d’une viscosité variable sur la dynamique des échelles turbulentes.

La présence de structures turbulentes plus fines dans le jet de propane est encore mieux mise en évidence sur les spectres d’énergie cinétique 1D, présentés sur les figures (4.22). Ces spectres sont adimensionnés à l’aide de la vitesse $U_K = \left[\langle \epsilon_{iso} \rangle \langle \nu_c \rangle \right]^{1/4}$ et de l’échelle de Kolmogorov λ_K, et tracés en fonction du nombre d’onde longitudinal $k_1 = 2\pi F/\langle U_c \rangle$ (F est la fréquence). Dans l’expression de U_K, la dissipation est estimée par la relation isotrope et à l’aide de la viscosité moyenne sur l’axe $\langle \nu_c \rangle$ qui est fournie pour chaque position dans le tableau (4.17).

La relation isotrope (A.18) est très approchée (mais c’est la seule dont on dispose) puisque la viscosité n’est pas du tout constante (forts gradients), ce qui rend cette expression très approximative dans cette région de l’écoulement.

On note très clairement que l’étendue des nombres d’onde est nettement décalée à droite pour le jet de propane ; les échelles dissipatives sont situées à des nombres d’onde bien plus élevés pour le propane. De plus, il apparaît également que la largeur de la ‘Restricted Scaling Range’ (RSR) en -5/3 diminue avec la distance axiale Z/D. En effet, entre $Z/D=15$ et 30, l’étendue de la région inertielle augmente de $\sim 0,3$ à $\sim 0,6$ décade pour le jet d’air (observation en accord avec les résultats classiques des jets ronds turbulents axisymétriques), contrairement à celle du propane qui diminue de $\sim 0,4$ à $\sim 0,2$ pour les mêmes distances. Ceci illustre que la turbulence dans le jet de propane est en train de mourir (en décroissance) alors que celle dans le jet d’air n’a pas encore fini de se développer.

La figure (4.23) montre la constante de Kolmogorov C_k (C_k ici est la constante valant $\frac{18}{55} \sim 0,5$ dans la région inertielle), obtenue pour quelques distances en aval, le long de l’axe du jet de propane. La valeur

![Fig. 4.22 – Spectres unidimensionnels normalisés $E_{11}(k_1)/\lambda_K U_K^2$ pour les abscisses axiales $Z/D=15$ et 30 le long de l’axe : a) du jet d’air ($Mo=360, Re_D \sim 5400, R_\lambda \sim 60$) ; b) du jet de propane ($Mo=360, Re_D \sim 15400, R_\lambda \sim 15$).]
de cette constante ($\sim 0,35$) est inférieure à la valeur $\sim 0,5$ d’une turbulence à nombre de Reynolds infini ; de même que la largeur de la région où l’on mesure cette valeur est plus réduite. Il s’agit par contre ici, d’un effet de Reynolds uniquement. En effet, cette valeur de 0,35 (et la petitesse de la zone inertielle) est tout-à-fait en accord avec celles recensées dans l’article de Sreenivasan, pour des nombres de Reynolds R_λ bas et modérés, du même ordre de grandeur que le nôtre ($R_\lambda \sim 15$). [259]. On confirme que la ‘Restricted Scaling Range’ (RSR) en $k^{-5/3}$ se situe aux alentours de 50 fois l’échelle de Kolmogorov, très proche de la région dissipative dû au Reynolds R_λ bas.

Les spectres du scalaire, normalisés à l’aide des échelles de Kolmogorov λ_K et du taux de dissipation de la variance du scalaire $\langle \epsilon_{s,iso} \rangle = d(y^2)/dt = 6Dc_3H_8-oxydant\int_0^{\infty}[k_1^2\phi(k_1)]dk_1$, sont tracés en fonction du nombre d’onde adimensionné $k_1\lambda_K$ sur la figure (4.24), pour des positions sur l’axe du jet comprises entre $Z/D=4$ à 25. Comme pour l’énergie cinétique, l’expression donnant $\langle \epsilon_{s,iso} \rangle$ est très approximative, du fait de la non-constance de la viscosité. Nous l’avons considérée, faute d’une relation plus proche de la réalité. Le coefficient de diffusion moléculaire du propane dans l’oxydant, noté $Dc_3H_8-oxydant$ est sensiblement constant quelle que soit la fraction massique de propane dans l’oxydant [118], et sa valeur vaut $\sim 3,5321 \times 10^{-6}$ m2.s$^{-1}$. Suite à cette remarque, nous pouvons signaler que la variation de la viscosité le long de l’axe (voir les valeurs dans le tableau 4.17), associée à la constance du coefficient de diffusion, entraîne une variation du nombre de Schmidt $Sc=\nu_j/D$ (ν_j désignant la viscosité locale dans l’écoulement. Ainsi, le nombre de Schmidt Sc passe ainsi de $\sim 1,4$ à $\sim 7,5$ entre $Z/D=0$ et $Z/D=30$. Batchelor [13] a indiqué que le mélange d’un scalaire passif pour $Sc > 1$ est caractérisé par une ré-

![Fig. 4.23 – Constantes de Kolmogorov pour le jet de propane (Mo=360), pour plusieurs distances axiales le long de l’axe du jet.](image)
Fig. 4.24 – Spectres du scalaire (fraction de mélange) le long de l’axe du jet de propane se déchargeant dans un mélange 30% air-70% néon pour les positions \(Z/D = 4, 6, 10, 15, 20, \) et \(25 \). En plus de la décroissance en \(-5/3\) des spectres (régime d’Obukhov-Corrsin), on note le développement d’un régime de Batchelor en pente \(-1\) vers les grands nombres d’onde au fur et à mesure que la distance axiale augmente (nombre de Schmidt passant de \(Sc \sim 1.4 \) pour \(Z/D = 0 \) à \(Sc \sim 7.5 \) pour \(Z/D = 30 \)).

Une région visco-convective où la densité d’énergie suit une loi en \(k^{-1} \) pour des nombres d’onde situés entre ceux relatifs aux échelles de Kolmogorov et ceux relatifs aux échelles de Batchelor \(\lambda_\beta \), avec \(\lambda_\beta = \left[(\epsilon)/(\nu_c D_{ch_{H_8-oxydant}}) \right]^{-1/4} = Sc^{-1/2} \lambda_K \).

Comme conséquence, nous observons effectivement une région visco-convective de pente \(-1\), qui apparaît de plus en plus marquée au fur et à mesure que le nombre de Sc augmente [13] [36] [49]. Nous n’observons pas ce régime de Batchelor pour les positions très proches de la buse \(Z/D = 4 \) et 6). Débutant aux alentours de \(Z/D = 10 \), ce régime de Batchelor se développe et atteint presque une décennie à la position \(Z/D = 25 \). Une belle région de pente \(-5/3\) se distingue dans la région inertielle des spectres, qui ne dépend pas du nombre de Schmidt. Cette observation est en parfait accord avec la théorie de Kolmogorov-Obukhov-Corrsin. Notons enfin que la largeur de cette région en \(k^{-5/3} \) est plus importante que celle observée pour les spectres de vitesse. Ce résultat est également en accord avec les nombreuses discussions menées dans la littérature (252 par exemple).
Avant de passer à une analyse *échelles par échelles*, intéressons-nous pour terminer ce paragraphe, à une *première estimation de la dissipation de l’énergie cinétique le long de l’axe des jets*.

La dissipation d’énergie cinétique isotrope $\langle \epsilon_{iso} \rangle$ a été estimée en supposant l’isotropie (locale ou globale), de trois manières différentes à partir des relations pour une viscosité constante, Eq.(A.18), Eq.(A.19) et Eq. (A.20) pour les jets d’air et de propane, à $Mo=360$. Les deux premières relations (méthode 1 et 2) sont strictement équivalentes, et permettent de valider nos mesures. La dernière relation (méthode 3) est celle utilisée en turbulence de grille, et est obtenue à partir d’un bilan d’énergie cinétique global en 1 point. Les méthodes 1 et 2 se réfèrent à une hypothèse d’isotropie *locale*, alors que la relation 3 est basée sur une hypothèse d’isotropie *globale*. Dans ces relations, nous avons utilisé une viscosité moyenne sur l’axe $\langle \nu_c \rangle$, dont les valeurs sont reportées dans le tableau (4.17). Les figures (4.25) présentent l’ensemble des trois résultats, entre $Z/D=4$ et 30. Notons également que pour le jet d’air, les trois méthodes donnent des résultats assez proches. En revanche, pour le jet de propane, la méthode 3 donne une estimation largement minorante de la dissipation dans le champ proche du jet, par rapport aux deux autres méthodes 1 et 2. La méthode 3 étant basée sur un bilan global ’énergie injectée = énergie dissipée’, nous croyons assez en sa prédicibilité, même dans l’écoulement à propriétés thermophysiques variables. Par contre, les méthodes 1 et 2 utilisent des relations pour la viscosité constante (ν est devant le laplacien des vitesses), ce qui n’est plus vrai pour cet écoulement. Nous pensons que ces relations tendraient ainsi à surrestimer la dissipation. Nous reviendrons sur ce point important lorsque nous aborderons la partie analytique sur les équations de bilan d’énergie cinétique.

![Fig. 4.25 – Dissipation moyenne d’énergie cinétique $\langle \epsilon_{iso} \rangle (m^2.s^{-3})$, obtenues à partir des équations (A.18), (A.19) et (A.20), le long de l’axe : a) du jet d’air ($Mo=360$) dès $Z/D=2$; b) du jet de propane ($Mo=360$) dès $Z/D=4$.](image)
Les deux premières méthodes (équivalentes) fournissent des courbes très proches, aussi bien pour le jet d’air que pour le jet de propane, signifiant que nos spectres sont bien fermés dans les deux cas. Concernant le jet d’air, on note que la méthode de la grille (método 3) converge mieux vers les deux autres dès la position $Z/D=10$, située encore dans la région non auto-similaire pour les intensités turbulentes axiales (Fig. (4.18 de gauche). Ceci traduit que l’hypothèse d’isotropie locale et globale sont assez équivalentes pour le jet d’air. Pour le jet de propane, on note une différence plus élevée entre la méthode 1 et la méthode 3. Cette observation est attribuée au fait que dans les premiers instants du mélange turbulent (champ très proche du jet), la dissipation n’est pas encore indépendante de la valeur de la viscosité, car les gradients de vitesse sont encore fortement dépendants des gradients de viscosité ([149]). De fortes interactions "viscosité-vitesse" (et éventuellement viscosité-pression) sont encore présentes dans l’écoulement, rendant inadéquate la relation de la méthode 1 ou 2. Dès que l’isotropie locale est validée (conjecture de Taylor [273]), on note que les trois méthodes convergent toutes vers des valeurs similaires au-delà de $Z/D\sim 20$, à la fois dans le jet d’air et dans le jet de propane, démontrant que les fluctuations de la viscosité ne joue plus de rôle dans l’estimation de la dissipation d’énergie cinétique, qui n’est déterminée que par les gradients de vitesse seulement et du niveau moyen de la viscosité.

La figure (4.25) revèle également que :

i- la dissipation d’énergie dans le jet de propane atteint un maximum beaucoup plus élevé (environ 12 fois plus) que dans le jet d’air;

ii- la décroissance longitudinale de l’énergie est plus rapide après ce pic, dans le jet de propane.

Les deux points i- et ii- sont attribués aux gradients de viscosité présents dans l’écoulement (l’ écart-type du signal temporel de la viscosité dynamique atteint 18% du signal de la viscosité, alors que les écart-types de la masse volumique correspondants ne dépassent pas 5%).

4.3.3 Statistiques à chaque échelle

Deux des questions posées au tout début de ce mémoire étaient : Y-a-t-il pour un écoulement turbulent à viscosité fortement variable, une modification de l’intermittence interne et du transfert d’énergie cinétique (sens et intensité de la cascade), par rapport à un écoulement à viscosité constante ?

Nous allons tenter de répondre, dans cet ordre, à ces deux questions, par le biais de notre approche expérimentale.

L’intermittence interne peut être analysée par le biais des PDFs des incréments de la vitesse, comme
nous l’avons souligné dans le chapitre 2. Nous allons mener une comparaison de ces PDFs pour le jet d’air et le jet de propane, à même quantité de mouvement injectée (Mo=360). Les figures (4.26) à (4.28), et (4.29) à (4.31) montrent ainsi les PDFs correspondantes aux jets de propane et d’air, aux positions 6, 15 et 30 diamètres le long de l’axe, d’après les mesures de fil chaud. Dans les légendes, les incréments spatiaux δr sont rapportés à l’échelle de Kolmogorov correspondante locale pour chacun des écoulements considérés. Pour chacun des deux jets, à chaque position longitudinale, les PDFs débutent à l’incrément minimal exploitable par les mesures et sont présentées jusqu’à 1000 fois cette échelle minimale. On note que cet incrément minimum exploitable est supérieur dans le jet de propane.

![Diagramme des PDFs](image.png)

Fig. 4.26 – Fonctions de Densité de Probabilité (PDFs) des incréments spatiaux de vitesse longitudinale fluctuante le long de l’axe du jet de propane (Mo=360, Re_D ∼ 15400) à la distance axiale Z/D=6.

L’observation attentive des PDFs appelle les remarques suivantes :

– les PDFs sont toutes gaussiennes dans le cœur potentiel du jet d’air (Z/D=6), contrairement au jet de propane, pour lequel les PDFs sont fortement non-gaussiennes avec des ailes étirées (flatness important), mêmes aux grandes échelles, Fig. 4.32 b).

Ce résultat est la signature de violentes fluctuations de la vitesse, mêmes aux plus grandes échelles et pourrait indiquer (ce que nous mentionnions précédemment) la présence de structures turbulentes très irrégulières. Il est aussi la confirmation que l’activité de la turbulence est nettement plus précoce et intense dans le jet de propane.

– en-dessous de ∼10 fois l’échelle de Kolmogorov, les PDFs deviennent “classiquement” fortement non-
Fig. 4.27 – Fonctions de Densité de Probabilité (PDFs) des incréments spatiaux de vitesse longitudinale fluctuante le long de l’axe du jet de propane \((Mo=360, \text{Re}_D \sim 15400) \) à la distance axiale \(Z/D=15 \).

Fig. 4.28 – Fonctions de Densité de Probabilité (PDFs) des incréments spatiaux de vitesse longitudinale fluctuante le long de l’axe du jet de propane \((Mo=360, \text{Re}_D \sim 15400) \) à la distance axiale \(Z/D=30 \).

gaussiennes pour les deux jets, confirmant une intermittence forte aux petites échelles, et les branches sont plus fortement marquées vers les valeurs négatives. En revanche, les branches négatives à ces faibles incréments semblent plus étendues pour le jet d’air.

Ce résultat est-il l’effet d’un nombre de Reynolds plus élevé \((R_{\lambda} \sim 60 \text{ pour l’air contre } 15 \text{ pour le propane}) \), ou de la présence de gradients de vitesse plus forts dans la région proche-dissipative, comme l’a montré [56], ou encore de la marque d’un processus d’étirement de tourbillon moins intense dans le cas
CHAPITRE 4. ÉTUDE EXPÉRIMENTALE - AXE D’UN JET AXISYMÉTRIQUE

Fig. 4.29 – Fonctions de Densité de Probabilité (PDFs) des incréments spatiaux de vitesse longitudinale fluctuante le long de l’axe du jet d’air (Mo=360, \(Re_D \sim 5400\)) à la distance axiale \(Z/D=6\).

du propane ? Nous pensons que ce peut être la conjugaison de tous ces deux effets, qui vont dans le même sens. En effet, il semble également intuitif de penser que les gradients de vitesse aux très fines échelles sont plus lissés dans l’écoulement du jet de propane, à cause du niveau moyen de viscosité plus élevé. Par conséquent, les vermissiaux tourbillonnaires de taille quasi-dissipative pourraient être moins cisaillés dans l’écoulement du jet de propane, et donc s’étirer moins fort.

Fig. 4.30 – Fonctions de Densité de Probabilité (PDFs) des incréments spatiaux de vitesse longitudinale fluctuante le long de l’axe du jet d’air (Mo=360, \(Re_D \sim 5400\)) à la distance axiale \(Z/D=15\).
CHAPITRE 4. ETUDE EXPÉRIMENTALE - AXE D’UN JET AXISYMÉTRIQUE

Fig. 4.31 – Fonctions de Densité de Probabilité (PDFs) des incrémentds spatiaux de vitesse longitudinale fluctuante le long de l’axe du jet d’air (Mo=360, Re₃ₓD ∼ 5400) à la distance axiale Z/D=30.

Les PDFs ne sont pas suffisantes pour bien regarder l’intermittence. Les figures (4.32) montre le coefficient de flatness pour les deux jets. Bien que les valeurs de ces coefficients soient à considérer prudemment aux très petites échelles, on voit néanmoins très nettement que dans le cas du propane, l’intermittence à petite échelle (interne) est très élevée, et ce, dès la sortie de la buse.

Fig. 4.32 – Flatness des incrémentds spatiaux de vitesse longitudinale le long de l’axe : a) du jet d’air (Mo=360, Re₃ₓD ∼ 5500), b) du jet de propane (Mo=360, Re₃ₓD ∼ 15400), même légende que pour l’air.

Le sens de la cascade d’énergie cinétique peut être trouvé dans un écoulement isotrope, à partir du tracé du Skewness des incrémentsd spatiaux de la vitesse (Chap. 2). Si ce skewness est négatif, la cascade
est directe. De plus, la présence d’une région inertielle est marquée par l’existence d’une pente constante dans la gamme des nombres d’onde intermédiaires. Ceci est observé pour le jet d’air sur la figure 4.33 a). De surcroît, on observe un plateau aux petites échelles aux alentours de la valeur \(\sim 0,30 \), assez proche de la valeur théorique \(\sim 0,25 \). La différence est due aux effets de bas Reynolds (ici, \(R_\lambda \sim 60 \)). La première courbe à \(Z/D=6 \) est très éloignée des autres ; elle correspond à une position encore située dans le cœur potentiels du jet d’air.

Fig. 4.33 – Skewness des incréments spatiaux de vitesse longitudinale le long de l’axe : a) du jet d’air (\(M_0=360, \ Re_D \sim 5400 \)), b) du jet de propane (\(M_0=360, \ Re_D \sim 15400 \)). Les barres en traits pointillés indiquent les échelles limites de résolution de la technique de mesure.

Pour le jet de propane, les skewness des incréments sont fondamentalement différents (Fig. 4.33 b). On note un skewness nul jusqu’à des incréments relativement plus petits \(t/\lambda_K \sim 100 \), alors que pour le jet d’air le skewness augmentait plus tôt (dès \(t/\lambda_K \sim 500 \)). On observe ensuite une montée linéaire du skewness vers des valeurs négatives (présence d’une cascade d’énergie directe), mais aucun plateau aux très petites échelles n’est observé. Cette observation peut être un effet de bas Reynolds pour le jet de propane (\(R_\lambda=15 \)). Nous attirons l’attention sur les limites de lecture fiable de ces courbes aux très petits incréments (résolution spatiale du fil chaud). En-dessous de 5 fois l’échelle de Kolmogorov, ces courbes ne peuvent pas être interprétées. Ainsi, nous ne sommes pas en mesure de savoir comment évolue le skewness vers la limite des échelles dissipatives \(\lambda_K \to 0 \). Avec cette restriction expérimentale, il apparait néanmoins que :

– il existe bien une cascade d’énergie directe dans cet écoulement à viscosité variable et à densité variable ;

– Cette cascade débute beaucoup "plus tard" au sens des échelles, \(i.e. \) à partir d’échelles plus
petites. Il apparaît par conséquent que la ’Restricted Scaling Range’ est décalée vers des nombres d’onde plus élevés (ce qui est également visible sur les spectres d’énergie cinétique).

– L’intensité de la cascade est plus faible qu’un écoulement turbulent dans un fluide homogène à même impulsion de départ (car R_λ est faible et divisé par 4).

4.4 Conclusion sur le chapitre

L’ensemble des résultats obtenus et présentés apportent les éclairages suivants concernant le jet de propane, comparé au jet d’air à même quantité de mouvement injectée (Mo=360) :

– L’auto-similitude est atteinte nettement plus tôt, confirmée par la rapidité des profils des intensités de turbulence axiale de u et de y ;

– On observe une très forte intermittence interne à petite échelle, et ce, dès la sortie de la buse ;

– Les PDFs des signaux de la vitesse et de la fraction massique de propane traduisent de violentes rentrées de fluide extérieur vers la région centrale du jet ;

– La gamme des échelles de la turbulence (Kolmogorov, Taylor, Intégrale) est nettement décalée à droite (vers les plus faibles valeurs), et plus serrée (palette des échelles moins large) ;

– On observe une cascade d’énergie directe "classique", mais d’intensité moins élevée (à cause du bas Reynolds R_λ engendré par la dissipation d’énergie), et qui débute à des échelles nettement plus petites (cascade décalée à "droite" du spectre).

Dans notre jet de propane se déchargeant dans l’oxydant air-néon (ratio de densité $R_\rho \sim 1,7$, et ratio de viscosité dynamique $R_\mu \sim 3$), les effets de variabilité de la densité et de la viscosité agissent de manière conjuguée sur la dynamique de l’écoulement. L’équilibre entre les effets de viscosité purs et de densité purs peuvent être analysés au travers l’écriture de l’équation de transport de la vorticité pour un écoulement à propriétés variables (ρ et μ) [162] :

$$\frac{D\omega}{Dt} = (\omega.\nabla)V - \omega(\nabla.V) + \frac{1}{\rho_2} (\nabla \rho \times \nabla p) + \frac{1}{\rho_2 Fr} (\nabla \rho \times g) + \nabla \times \left(\frac{1}{\rho} \nabla . \tau \right)$$

(4.13)

Dans notre cas de figure, le nombre de Froude étant très élevé et l’écoulement étant supposé incompressible, les termes de dilatation et de gravité sont négligeables. L’équation (4.13) montre que la vorticité qui est créée est principalement équilibrée par la compétition entre les forces de viscosité, de couple
barocline et d’étirement de tourbillons. D’après nos résultats, l’étirement de tourbillons semble mineur vis-à-vis des deux autres (cascade d’énergie directe très faible, et concentrée sur une très petite région proche de la région dissipative, par effet de bas Reynolds), si bien que l’équilibre dynamique au sein de l’écoulement se réalise principalement par une compétition entre les gradients de viscosité (terme visqueux) et les couples baroclines locaux (effet de densité variable).

A ce stade, nous pensons que la précocité du régime auto-similaire dans le jet de propane par rapport au jet d’air, ne peut pas être attribuée aux effets de densité. En effet, au vu de notre configuration (fluide émergeant plus dense que le fluide environnant), ces effets devraient au contraire tendre à faire augmenter la distance d’auto-similitude, puisque l’entraînement est moins important, comme on l’a souligné dans la partie bibliographique.

L’augmentation de l’entraînement global qui est observé serait donc plutôt dû aux effets de la viscosité variable, associée aux bas Reynolds locaux dans le champ très proche et au niveau de la frontière du jet avec le milieu environnant (couche de mélange naissante). En effet, cette hypothèse est confortée par le résultat essentiel suivant :

– la dissipation d’énergie cinétique le long de l’axe présente un pic 12 fois plus élevé que le jet d’air (à même quantité de mouvement injectée) et sa décroissance longitudinale est bien plus rapide. On note aussi une diminution par 4 du nombre de Reynolds local, à même quantité de mouvement injectée. Ces résultats ne peuvent être attribués qu’aux gradients de viscosité plus importants au sein de l’écoulement.

Cette augmentation forte de la dissipation de l’énergie cinétique induit, en retour, une forte décélération longitudinale de l’écoulement (gradient de pression moyenne nettement positif le long de l’axe du jet), et cette forte décélération est justement un facteur favorable à un meilleur taux d’entraînement.

Ces effets de la viscosité variable dans le champ proche induisent la création de structures turbulentes de tailles inférieures aux prédictions de la théorie classique de la turbulence à fluide homogène, et avec une gamme d’échelle plus réduite entre les plus grandes (échelles intégrales) et les plus fines (échelles de Kolmogorov). En effet :

– les signaux physiques de vitesse et de scalaire sont fondamentalement différents de ceux d’une turbulence à fluide homogène au même reynolds local. Ils présentent de fortes fluctuations positives/négatives à très courte durée (les auto-correlations des signaux sont nettement plus faibles) ;

– les rapports d’échelles turbulentes entre les échelles intégrale et dissipatives d’une part, et entre les échelles intégrale et de Taylor d’autre part, sont drastiquement réduits par rapport à une turbulence "clas-
sique" ; De plus, les échelles dissipatives sont de plus petite taille, bien que le nombre de Reynolds local soit divisé par 4, ceci étant nettement visible sur les spectres d’énergie cinétique.

– L’intermittence interne à petite échelle est très élevée (flatness de l’ordre de 6) et affecte l’écoulement depuis les positions proches de la buse de sortie pour cet écoulement à viscosité variable.

– une cascade d’énergie directe est toujours présente au sein de cet écoulement, bien qu’elle débute à des échelles beaucoup plus petites, juste avant la région dissipative, traduisant un effet de bas Reynolds. Ceci traduit aussi très certainement la présence de gradients de viscosité très forts détruisant le processus d’étirement de tourbillon capable de créer de grande structures tourbillonnaires dans l’écoulement, soit par un processus de dissipation intensifié des tourbillons formés (les empêchant alors de s’étirer), soit par la création d’instabilités anticipées dans le champ de vorticité (empêchant la fabrication de structures tourbillonnaires à durée de vie longue).

Concernant le scalaire en particulier (fraction massique de propane), on observe l’apparition d’un régime de Batchelor le long de l’axe du jet, qui est provoqué par la variation de la viscosité cinématique locale dans le fluide. Ce résultat est bien mis en évidence sur les spectres du scalaire présentant un début de région visco-convective de pente -1 aux grands nombres d’onde.

Nous nous proposons d’éclaircir le point sur la précocité d’atteinte du régime auto-similaire pour le jet de propane, en regardant de plus près le champ proche en sortie de buse (entre Z/D=1 et 8).
Chapitre 5

Le champ proche d’un jet rond turbulent

L’éclaircissement des facteurs et des mécanismes physiques pouvant expliquer l’accélération de l’auto-similitude pour le jet de propane, nous conduit à nous intéresser plus en détail sur le champ proche (entre Z/D=1 et 8).

D’après les résultats du Chapitre 4, nous savons qu’il faut chercher les raisons du côté des effets de la viscosité (le rapport maximum de $\mu'/\langle\mu\rangle$ le long de l’axe du jet atteint 18%, contre seulement 5% pour $\rho'/\langle\rho\rangle$).

Ainsi, nous avons exploré le champ dynamique d’un jet d’air débouchant dans l’air (viscosité constante), et d’un jet de propane débouchant dans le mélange oxydant "air-néon" (ratio de viscosité dynamique 3,5). Deux quantités de mouvement initiales ont été étudiées : Mo=130 et Mo=360. Nous avons utilisé une technique d’Anémométrie Laser Doppler à 2 composantes pour la détermination des composantes axiale et radiale du champ de vitesse, en supposant l’axisymétrie de l’écoulement.

La question du bilan de quantité de mouvement est d’abord regardée. L’interprétation des résultats s’achève par une étude analytique sur la dynamique des écoulements à viscosité variable. Nous partons d’une réécriture complète des équations de Navier-Stokes pour mettre en évidence des corrélations non-classiques 'gradients de viscosité - gradients de vitesse' dont l’importance est soulignée dans la transition à la turbulence le long de l’axe du jet. Les nouvelles équations moyennées de quantité de mouvement, du bilan de quantité de mouvement du jet, de l’entraînement du jet, du bilan énergétique en 1 point et des transferts d’énergie cinétique à chaque échelle sont proposées.

1. Les effets de variations de densité sont volontairement occultés dans notre approche, afin de clairement mettre en évidence les effets de bas Reynolds et de viscosité dans la transition à la turbulence développée (pas de moyennes de Favre). Cette étude pourrait être poursuivie par une étude plus complète prenant en compte également la densité variable.
5.1 Dynamique des champs scalaire et de la vitesse dans l’espace physique

Comme nous le mentionnions auparavant, nous souhaitons comprendre l’effet d’entraînement dans le champ proche du jet de propane, et le comparer à celui du jet d’air (à même quantité de mouvement injectée). Pour cela, nous devons écrire l’équation du bilan du flux de quantité de mouvement moyen dans le jet de propane. Ayant mentionné dans le chapitre 4 que l’accélération de l’entraînement ne peut être due principalement qu’à des effets visqueux (en témoignent les niveaux d’intensités de la viscosité dynamique vis-à-vis de ceux de la densité), nous proposons une approche analytique basée sur une variabilité de la viscosité uniquement (densité constante). Nous sommes conscients qu’une étude complète à densité et à viscosité variable serait à mener (avec des moyennes de Favre). Toutefois, l’augmentation très forte de la dissipation que l’on a mesurée dans le jet de propane associée aux fluctuations de viscosité dynamique prépondérantes vis-à-vis de celles de la densité, nous laisse à penser que l’écriture d’une formulation à viscosité variable permet de s’approcher de la physique de l’écoulement réel de manière assez réaliste.

Nous revenons donc tout d’abord aux équations fondamentales de Navier-Stokes à viscosité variable (et densité constante) pour aboutir à la formulation que l’on cherche (équation de bilan du flux de quantité de mouvement moyen).

5.1.1 Équations instantanées pour la vitesse et pour la fraction de mélange

Les équations de Navier-Stokes instantanées pour un fluide incompressible (ρ constant) et isovolume, mais avec une viscosité variable s’écrivent comme suit :

\[
\rho \left[\frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} \right] = \rho f_i - \frac{\partial P}{\partial x_i} + 2 \frac{\partial}{\partial x_j} (\mu S_{ij}) \tag{5.1}
\]

avec

\[
S_{ij} = \frac{1}{2} \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) \tag{5.2}
\]

le tenseur des déformations visqueuses pour un fluide newtonien.

En développant le terme du membre de droite de l’Eq. (5.1), on trouve :

\[
2 \frac{\partial}{\partial x_j} (\mu S_{ij}) = 2 \frac{\partial}{\partial x_j} \left[\mu \frac{1}{2} \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) \right]
\]

\[
= \frac{\partial}{\partial x_j} \left[\mu \frac{\partial U_i}{\partial x_j} \right] + \frac{\partial}{\partial x_j} \left[\mu \frac{\partial U_j}{\partial x_i} \right] \tag{5.3}
\]
Comme la viscosité dynamique \(\mu \) est une fonction de l’espace, i.e. \(\mu = f(x_i) \), on peut écrire encore :

Premier terme du membre de droite de l’Éq.(5.3) :

\[
\frac{\partial}{\partial x_j} \left(\mu \frac{\partial U_i}{\partial x_j} \right) = \\
\frac{\partial}{\partial x_1} \left(\mu \frac{\partial U_1}{\partial x_1} \right) + \frac{\partial}{\partial x_2} \left(\mu \frac{\partial U_1}{\partial x_2} \right) + \frac{\partial}{\partial x_3} \left(\mu \frac{\partial U_1}{\partial x_3} \right) \\
\frac{\partial}{\partial x_1} \left(\mu \frac{\partial U_2}{\partial x_1} \right) + \frac{\partial}{\partial x_2} \left(\mu \frac{\partial U_2}{\partial x_2} \right) + \frac{\partial}{\partial x_3} \left(\mu \frac{\partial U_2}{\partial x_3} \right) \\
\frac{\partial}{\partial x_1} \left(\mu \frac{\partial U_3}{\partial x_1} \right) + \frac{\partial}{\partial x_2} \left(\mu \frac{\partial U_3}{\partial x_2} \right) + \frac{\partial}{\partial x_3} \left(\mu \frac{\partial U_3}{\partial x_3} \right) \\
= \mu \frac{\partial^2 U_i}{\partial x_j \partial x_j} + \frac{\partial \mu}{\partial x_j} \frac{\partial U_i}{\partial x_j} \tag{5.4}
\]

Second terme du membre de droite de l’Éq.(5.3) :

\[
\frac{\partial}{\partial x_j} \left(\mu \frac{\partial U_j}{\partial x_i} \right) = \\
\frac{\partial}{\partial x_1} \left(\mu \frac{\partial U_1}{\partial x_1} \right) + \frac{\partial}{\partial x_2} \left(\mu \frac{\partial U_2}{\partial x_1} \right) + \frac{\partial}{\partial x_3} \left(\mu \frac{\partial U_3}{\partial x_1} \right) \\
\frac{\partial}{\partial x_1} \left(\mu \frac{\partial U_1}{\partial x_2} \right) + \frac{\partial}{\partial x_2} \left(\mu \frac{\partial U_2}{\partial x_2} \right) + \frac{\partial}{\partial x_3} \left(\mu \frac{\partial U_3}{\partial x_2} \right) \\
\frac{\partial}{\partial x_1} \left(\mu \frac{\partial U_1}{\partial x_3} \right) + \frac{\partial}{\partial x_2} \left(\mu \frac{\partial U_2}{\partial x_3} \right) + \frac{\partial}{\partial x_3} \left(\mu \frac{\partial U_3}{\partial x_3} \right) \\
= \frac{\partial \mu}{\partial x_j} \frac{\partial U_j}{\partial x_i} + \mu \frac{\partial U_j}{\partial x_j} \frac{\partial U_i}{\partial x_i} \tag{5.5}
\]

En considérant les Éq.(5.5) et Éq.(5.1), et en supposant toujours l’incompressibilité \(\frac{\partial U_i}{\partial x_j} = 0 \), les équations de Navier-Stokes instantanées complètes s’écrivent comme suit :

\[
\rho \left[\frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} \right] = \rho f_i - \frac{\partial P}{\partial x_i} + \mu \frac{\partial^2 U_i}{\partial x_j \partial x_j} + \frac{\partial \mu}{\partial x_j} \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) \tag{5.6}
\]

ou encore écrit autrement, à la forme générale finale suivante des équations de Navier-Stokes à densité constante, et à viscosité variable :

\[
\rho \left[\frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} \right] = \rho f_i - \frac{\partial P}{\partial x_i} + \mu \frac{\partial^2 U_i}{\partial x_j \partial x_j} + 2 \frac{\partial \mu}{\partial x_j} S_{ij} \tag{5.7}
\]

Ces nouvelles équations de Navier-Stokes Éq.(5.7), plus générales, contiennent un terme supplémentaire, spécifique à la viscosité variable, noté \(\Delta = 2 \frac{\partial \mu}{\partial x_j} S_{ij} \) par rapport aux équations "classiques" à densité et à viscosité constantes (Éq.(5.7) sans le quatrième terme du membre de droite).

Développons \(\Delta \) pour \(i=1 \) seulement, et faisons apparaître de nouveaux termes pour la diffusion de la
quantité de mouvement, consistant en des termes de corrélations entre les gradients de viscosité et les
gradients de vitesse :
\[2 \left(\frac{\partial \mu}{\partial x_1} \frac{\partial U_1}{\partial x_1} + \frac{\partial \mu}{\partial x_2} \frac{\partial U_1}{\partial x_2} + \frac{\partial \mu}{\partial x_3} \frac{\partial U_1}{\partial x_3} + \frac{\partial \mu}{\partial x_2} \frac{\partial U_2}{\partial x_1} + \frac{\partial \mu}{\partial x_3} \frac{\partial U_3}{\partial x_1} \right) \] (5.8)
Bien entendu, deux expressions similaires peuvent être écrites pour i=2 et i=3.

La viscosité dynamique moyenne du mélange \(\mu_{\text{mix}} \) est reliée de façon bijective à la fraction molaire de propane (Eq.3.23), et a fortiori à la fraction massique \(Y \), pour laquelle l’équation d’advection-diffusion (équation de transport) s’écrit :
\[\frac{\partial Y}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} = D \Delta Y \] (5.9)
Dans cette équation d’advection-diffusion, le coefficient de diffusion moléculaire \(D \) est sensiblement constant, quelle que soit la valeur de la fraction de propane contenue dans le mélange, ce qui simplifie grandement sa résolution. Ceci provient des résultats de la théorie cinétique des gaz [50][118] qui annonce des variations vérifiées expérimentalement de 8% au maximum sur ce coefficient pour des variations de fractions extrêmes comprises entre 0 et 100%.

Il est à noter également que l’équation de transport pour \(Y \) (Eq. 5.9) et celle de la quantité de mouvement (équation de Navier-Stokes 5.7) sont doublement couplées :

- par le biais de la viscosité dynamique (présente explicitement dans l’équation de quantité de mouvement, et dépendant implicitement de \(Y \) dans l’équation de transport de \(Y \));

- par le biais de la masse volumique locale \(\rho \), dont dépend directement la valeur de \(Y \) dans l’équation de transport.

Le mélange propane turbulent du propane dans l’oxydant (air-néon) suit donc les lois d’un scalaire actif.

5.1.2 Equations de transport pour les quantités moyennes

Avec l’aide de l’équation de continuité, Eq. (2.22), complétée par l’hypothèse de stationnarité, les équations moyennées de quantité de mouvement pour la vitesse le long de l’axe \(z \) pour le jet axymétrique à viscosité variable (et densité constante) peuvent s’écrire en coordonnées cylindriques \((r,\theta,z)\) à partir de l’équation instantanée Eq (5.1), comme :
CHAPITRE 5. LE CHAMP PROCHE D’UN JET AXISYMÉTRIQUE

– Equation de quantité de mouvement moyenne pour la composante U (i=1) :

\[
\frac{\partial}{\partial z} \left[U^2 + u^2 \right] + \frac{1}{r} \frac{\partial}{\partial r} r \left(U \dot{U} + \dot{u} \dot{v} \right) = \\
- \frac{1}{\rho} \frac{\partial \bar{p}}{\partial z} + \nu \frac{\partial^2 \dot{U}}{\partial x_j \partial x_j} + \frac{1}{\rho} \frac{\partial \mu'}{\partial x_j} \frac{\partial U}{\partial x_j} \\
+ \frac{1}{\rho} \frac{\partial \mu'}{\partial x_j} \frac{\partial u}{\partial x_j} + \frac{1}{\rho} \frac{\partial \mu'}{\partial x_j} \frac{\partial U}{\partial x_j} \frac{\partial U}{\partial z} + \frac{1}{\rho} \frac{\partial \mu'}{\partial x_j} \frac{\partial u_j}{\partial z}
\]

(5.10)

Dans le membre de droite :

– les 3ème, 5ème et 7ème termes, faisant intervenir les corrélations des fluctuations entre la vitesse et le scalaire (viscosité) sont négligés. En effet, bien qu’ils ne soient pas nuls, les corrélations peuvent être négligées si l’on tient compte du fait que dans notre écoulement \(\frac{\mu'}{\mu} < 50\% \), et \(\frac{\dot{u}}{u} ; \frac{\dot{v}}{v} < 100\% \).

Avec ces hypothèses, l’équation (5.10) s’écrit finalement :

\[
\frac{\partial}{\partial z} \left[U^2 + u^2 \right] + \frac{1}{r} \frac{\partial}{\partial r} r \left(U \dot{U} + \dot{u} \dot{v} \right) = \\
- \frac{1}{\rho} \frac{\partial \bar{p}}{\partial z} + \frac{\partial \bar{\nu}}{\partial x_j} \frac{\partial \dot{U}}{\partial x_j} + \frac{\partial \bar{\nu}}{\partial x_j} \frac{\partial \dot{U}}{\partial \dot{U}_j}
\]

(5.11)

– Equation de quantité de mouvement moyenne pour la composante V (i=2) :

\[
\frac{\partial}{\partial z} \left[U \dot{V} + \dot{u} \dot{v} \right] + \frac{1}{r} \frac{\partial}{\partial r} r \left(\dot{V}^2 + \dot{u}^2 \right) = \\
- \frac{1}{\rho} \frac{\partial \bar{p}}{\partial r} + \frac{\bar{u}^2}{r} + \bar{\nu} \nabla^2 \dot{V} + \frac{1}{\rho} \frac{\partial \mu'}{\partial x_j} \frac{\partial \dot{V}}{\partial x_j} + \frac{\partial \bar{\nu}}{\partial x_j} \frac{\partial \dot{V}}{\partial x_j} + \frac{\partial \bar{\nu}}{\partial x_j} \frac{\partial \dot{U}_j}{\partial r} + \frac{1}{\rho} \frac{\partial \mu'}{\partial x_j} \frac{\partial u_j}{\partial \dot{r}}
\]

(5.12)

Moyennant les mêmes hypothèses que pour la composante i=1, on aboutit à l’expression simplifiée suivante pour la composante V :

\[
\frac{\partial}{\partial z} \left[U \dot{V} + \dot{u} \dot{v} \right] + \frac{1}{r} \frac{\partial}{\partial r} r \left(\dot{V}^2 + \dot{u}^2 \right) = \\
- \frac{1}{\rho} \frac{\partial \bar{p}}{\partial r} + \frac{\bar{u}^2}{r} + \bar{\nu} \nabla^2 \dot{V} + \frac{\partial \bar{\nu}}{\partial x_j} \frac{\partial \dot{V}}{\partial x_j} + \frac{\partial \bar{\nu}}{\partial x_j} \frac{\partial \dot{U}_j}{\partial r}
\]

(5.13)

– Equation de bilan du flux de quantité de mouvement moyen dans le jet :

En intégrant d’abord l’équation (5.13) de \(r = 0 \) à \(r = \infty \), puis en prenant sa dérivée par rapport à \(x \),
l’équation (5.13) devient :
\[
\int_{r=0}^{\infty} \frac{\partial^2 [U\bar{V} + \bar{w}^2]}{\partial z^2} dr' + \frac{1}{r} \frac{\partial}{\partial r} (\bar{U}^2 + \bar{w}^2) - \int_{r=0}^{\infty} \frac{(\bar{V}^2 + \bar{w}^2)}{r^2} dr' = 1 \frac{\partial \bar{p}(r)}{\partial z} + \int_{r=0}^{\infty} \frac{w^2}{r^2} dr' + \int_{r=0}^{\infty} \frac{\partial}{\partial z} (\nu \nabla^2 \bar{V}) dr' + \int_{r=0}^{\infty} \frac{\partial}{\partial z} \left(\frac{\partial \bar{V}}{\partial x_j} \frac{\partial \bar{U}_j}{\partial r} \right) dr' + \int_{r=0}^{\infty} \frac{\partial}{\partial z} \left(\frac{\partial \bar{U}_j}{\partial x_j} \frac{\partial \bar{U}_j}{\partial r} \right) dr' \tag{5.14}
\]
Noter que durant cette transformation de l’équation (5.13) vers Eq.(5.14), \(\int_{r=0}^{\infty} \frac{1}{\rho} \frac{\partial \bar{p}(r)}{\partial z} dr = \frac{1}{\rho} [\bar{p}(\infty) - \bar{p}(r)] \) conduit à \(-\frac{1}{\rho} \frac{\partial \bar{p}(\infty)}{\partial z} \) après la dérivation selon \(z \), dès lors que \(p(\infty) = \text{cte.} \)

Substituant Eq.(5.14) dans Eq.(5.11) dans le but d’éliminer le terme de pression \(-\frac{1}{\rho} \frac{\partial \bar{p}(r)}{\partial z} \), on obtient :
\[
\frac{\partial}{\partial z} [\bar{U}^2 + \bar{w}^2] + \frac{1}{r} \frac{\partial}{\partial r} (\bar{U} V + \bar{w} w) = - \int_{r=0}^{\infty} \frac{\partial^2 [U\bar{V} + \bar{w}^2]}{\partial z^2} dr' + \frac{\partial}{\partial z} (\bar{V}^2 + \bar{w}^2) - \int_{r=0}^{\infty} \frac{(\bar{V}^2 + \bar{w}^2)}{r^2} dr' + \int_{r=0}^{\infty} \frac{\partial}{\partial z} (\nu \nabla^2 \bar{V}) dr' + \nu \nabla^2 \bar{U} + \frac{\partial \bar{U}}{\partial x_j} \frac{\partial \bar{U}_j}{\partial x_j} + \frac{\partial \bar{U}}{\partial x_j} \frac{\partial \bar{U}_j}{\partial x_j} - \int_{r=0}^{\infty} \frac{\partial}{\partial z} \left(\frac{\partial \bar{V}}{\partial x_j} \frac{\partial \bar{U}_j}{\partial r} \right) dr' - \int_{r=0}^{\infty} \frac{\partial}{\partial x_j} \left(\frac{\partial \bar{U}_j}{\partial x_j} \frac{\partial \bar{U}_j}{\partial r} \right) dr' \tag{5.15}
\]

Après intégration de Eq.(5.15) à travers le jet dans sa direction radiale entre \(r=0 \) et \(r = \infty \), c’est-à-dire en prenant \(\int_{r=0}^{\infty} [\text{Eq.(5.15)}] dr \), et après réarrangements des termes, l’équation (5.15) conduit à l’expression finale suivante (notons que le deuxième terme du membre de gauche de Eq.(5.15) disparaît en intégrant entre \(r=0 \) et \(r = \infty \) :)
\[
\frac{d}{dz} \int_{0}^{\infty} \left[\bar{U}^2 + \bar{w}^2 - \frac{1}{2} (\bar{v}^2 + \bar{w}^2) \right] dr = -\frac{1}{2} \frac{d^2}{dz^2} \int_{0}^{\infty} (\bar{U} \bar{V} + \bar{w} w) r^2 dr + \frac{1}{2} \frac{d}{dz} \int_{0}^{\infty} \bar{V}^2 r dr + \frac{d}{dz} \left[\frac{1}{2} \int_{0}^{\infty} (\nu \nabla^2 \bar{V}) r^2 dr \right] + \int_{0}^{\infty} \left[\frac{\partial \bar{V}}{\partial x_j} \left(\frac{\partial \bar{U}_j}{\partial x_j} + \frac{\partial \bar{U}_j}{\partial z} \right) \right] r dr - \frac{1}{2} \frac{d}{dz} \int_{0}^{\infty} \left[\frac{\partial \bar{V}}{\partial x_j} \left(\frac{\partial \bar{V}}{\partial x_j} + \frac{\partial \bar{U}_j}{\partial r} \right) \right] r^2 dr \tag{5.16}
\]
L’équation (5.16) sans la dernière ligne correspond au bilan de quantité de mouvement "classique" pour un fluide à viscosité constante, tel que proposé par ailleurs dans [126] par exemple. Les deux termes constituent la dernière ligne sont des termes nouveaux, liés à la viscosité non constante dans l’écoulement. Ils sont tous mesurables dans le champ proche par la technique ADL à 2 composantes.
Achevons d’écrire complètement le bilan de quantité de mouvement en intégrant désormais Eq. (5.16) sur la direction axiale \(z \), depuis la source (à \(z=0 \)) jusqu’à une position arbitraire \(z \), ce qui conduit à l’expression finale :

\[
\int_0^\infty \left[\bar{U}^2 + \bar{u}^2 - \frac{1}{2} \left(\overline{\nabla^2} \bar{V} \right) \right] r dr - \frac{M_o}{2\pi} =
\]

\[
- \frac{1}{2} \frac{d}{dz} \int_0^\infty (\bar{U} \bar{V} + \overline{\nabla^2} \bar{V}) r^2 dr z + \frac{1}{2} \int_0^\infty \overline{\nabla^2} \bar{V} r^2 dr z + \]

\[
\frac{1}{2} \int_0^\infty (\overline{\nabla^2} \bar{V}) r^2 dr z + \int_0^{z=\infty} \int_0^\infty \left[\frac{\partial \bar{V}}{\partial x_j} \left(\frac{\partial \bar{U}}{\partial x_j} + \frac{\partial \bar{U}_j}{\partial z} \right) \right] r dr \ dz' - \frac{1}{2} \int_0^\infty \left[\frac{\partial \bar{V}}{\partial x_j} \left(\frac{\partial \bar{V}}{\partial x_j} + \frac{\partial \bar{U}_j}{\partial r} \right) \right] r^2 dr \bigg|_0^z \] (5.17)

avec \(\text{Mo}' = \frac{\pi D^2/4}{\rho^2} M_o \) (et \(M_o = \rho U_o^2 \)).

– Ordre de grandeur des termes du membre de droite de l’Equation de bilan du flux de quantité de mouvement moyen (5.17) :

On reprend la même appellation des différents termes que celle adoptée dans [126], soit a) à f) du premier vers le sixième. Nous ne rappelons ici que brièvement la justification des ordres de grandeurs de ces termes, celle-ci étant largement commentée dans [126]. Ainsi, nous renvoyons le lecteur à cette référence pour plus de compléments. Nous portons par contre l’accent sur l’application numérique de ces ordres de grandeurs, à l’aide des données de notre configuration expérimentale. La différence par rapport à [126] tient dans les termes e) et f) qui contiennent des sous-termes supplémentaires amenés par la viscosité variable. Nous verrons que ces modifications ne changent pas fondamentalement l’ordre de grandeur des termes e) et f), et que tous les termes a) à f) peuvent être négligés dans ce bilan de quantité de mouvement, même pour le jet de propane.

– Terme ‘a’ :

A une position \(z \) quelconque, on peut estimer que \(\bar{U} \bar{V} \) (à partir de l’équation de continuité) et \(\overline{\nabla^2} \bar{V} \) (à partir d’un bilan sur les contraintes de Reynolds) sont tous les deux de l’ordre de grandeur \(\sim U_s^2 \delta / L \). Il s’ensuit que :

\[
\frac{\text{terme}[a]}{M_o^2} \sim \frac{1}{M_o^2} \frac{1}{L} U_s^2 \delta \frac{\delta}{L} \sim \left(\frac{\delta}{L} \right) \] (5.18)

où \(L \) est une longueur caractéristique locale du développement axial de la couche de mélange du jet, \(\delta \) une longueur caractéristique de son épaisseur, et \(U_s \) est une valeur typique de la vitesse longitudinale dans la couche de mélange. En considérant les approximations de couches limites,
CHAPITRE 5. LE CHAMP PROCHE D’UN JET AXISYMÉTRIQUE

on a : \(\delta / L \sim V / U_s \). Pour le jet de propane, bien qu’on note un épaississement de la couche de mélange du jet beaucoup plus important, on mesure des valeurs de vitesse \(V \) bien plus faibles que les vitesses longitudinales \(U \), si bien que le terme a) est négligeable, en première approche, dans la couche très loin de la buse.

A une position \(x \) proche de la buse du jet, on a également \(V \sim U_o \delta_o / L_o \), et le terme de la vitesse moyenne associé peut s’estimer par :

\[
\frac{\text{terme}[a(0)]}{M'_o} \sim \frac{1}{M'_o L_o} U_o^2 \frac{\delta_o}{L_o} D^2 \delta_o \sim \left(\frac{\delta_o}{L_o} \right)^2
\]

(5.19)

Là encore, on trouve d’après nos mesures que \(V / U_o \sim 1/100 \), si bien que \((\delta_o / L_o)^2 \sim 10^{-4} \).

Le terme ‘a’ serait donc négligeable dans le bilan, si les approximations de couche limite étaient respectées proche de la buse. Nous pensons que cela n’est pas le cas pour notre jet, qui possède une lèvre d’épaisseur \(~0,5\) mm, et qui pourrait induire des phénomènes de sillage important.

Si on considère maintenant que les approximations de la couche limite tombent en défaut très près de la buse, on devrait plutôt considérer pour \(\delta_o \) et \(L_o \), respectivement l’épaisseur de la lèvre de notre jet (0,5 mm), et la longueur d’onde des instabilités de sillage derrière la lèvre (premières instabilités type Von Karman). Nous ne connaissons pas ces valeurs (il faudrait mesurer le nombre de Strouhal à la sortie), mais on peut s’attendre à un épaississement rapide de la couche à cet endroit (pour le jet d’air ou de propane), et s’attendre à ce que \(\delta_o \sim L_o \). Dans le cas du jet de propane, ces effets sont renforcés par les instabilités interfaciales (viscosité variable). Par conséquent, nous suspectons que dans ce cas de figure, le terme ‘a’ ne serait pas négligeable près de la buse de sortie.

Terme ‘b’ :

Comme \(V \sim U_o \delta / L \), il s’ensuit que :

\[
\frac{\text{terme}[b]}{M'_o} \sim \frac{1}{M'_o U_s} \left(\frac{\delta}{L} \right)^2 \delta^2 \sim \left(\frac{\delta}{L} \right)^2
\]

(5.20)

Le terme ‘b’ est négligeable car loin de la buse (là où les équations de couches limites deviennent pertinentes), on a \(\delta \ll L \).

Terme ‘c’ :

Il y a deux contributions pour ce terme, comme pour le terme ‘a’ : une première contribution à une distance \(z \) quelconque, et une deuxième à une distance très de la buse en \(z = 0 \).
Dans le premier cas de figure (région auto-similaire présupposée), les gradients radiaux de V sont de l’ordre de grandeur de δ ; on a donc :

$$\frac{\text{terme}[c]}{M_o'} \sim \left(\frac{1}{U_s^2 \delta^2} \right) \nu \frac{\delta}{U_s L} \frac{1}{\delta^2} \delta^3 \sim \nu \frac{1}{U_s L} \quad (5.21)$$

Même avec une viscosité 1,4 fois plus élevée pour l’oxidant que pour l’air, cette contribution du terme c) reste négligeable en première approche.

Au niveau du plan de sortie de la buse, et pour les mêmes raisons invoquées que pour le terme 'a', ce terme 'c' peut ou ne peut pas être négligé. supposant les hypothèses de couches limites valides, et estimant son épaisseur par l’épaisseur de la couche limite à la sortie du tube du jet, notée δ_o, cette contribution donne :

$$\frac{\text{terme}[c(0)]}{M_o'} \sim \frac{1}{U_o^2 D^2} \nu U_o \frac{\delta_o}{L_o} \frac{1}{\delta_o^2} D^2 \delta_o \sim \nu \frac{1}{U_o L} \left(\frac{\delta_o}{L_o} \right) \quad (5.22)$$

Avec $\delta_o \sim D/2 = 2,5 \text{ mm}$ (couche limite raccordée), $U_o = 10 \text{ m/s}$, et $\nu \sim 25 \times 10^{-6}$, on trouve une contribution de l’ordre de 10^{-3} (le terme serait négligeable). Bien entendu, si les instabilités de sillage sont prépondérantes, ce résultat ne tient plus.

Les termes suivants, sont tous négligeables, et nous avons suivi le même raisonnement que celui proposé dans [126].

- **Terme 'd'** :
 En utilisant les mêmes arguments que précédemment, [126] prédissent que :
 $$\frac{\text{terme}[d]}{M_o'} \sim \frac{1}{U_o^2 D^2} \nu U_o \frac{1}{\delta_o^2} D \delta_o L \sim \nu \frac{1}{U_o L} \left(\frac{D}{\delta_o} \right) \quad (5.23)$$
 En prenant $D=5 \text{ mm}$ et $L \sim 100D$, on trouve que ce terme est de l’ordre de 10^{-5}.

- **Terme 'e'** :
 On peut écrire :
 $$\frac{\text{terme}[e]}{M_o'} \sim \frac{1}{U_o^2 D^2} \nu \frac{U_o D \delta_o L}{L} \sim \nu \frac{\delta_o}{U_o D} \sim \nu \frac{1}{R_e D} \quad (5.24)$$
 Ce terme est de l’ordre de 5×10^{-3}, avec $\nu \sim 20 \times 10^{-6}$, $U_o = 10 \text{ m/s}$ et $D=5 \text{ mm}$.
Terme ‘f’ :
On peut écrire de la même manière que pour e) :
\[
\text{terme}\frac{[f]}{M_i'} \sim \frac{1}{U_o^2 D^2} \frac{\nu}{\delta_o} \frac{V}{\delta_o^2} \delta_o \sim \frac{1}{U_o D} \frac{\nu}{\delta_o} \left(\frac{U_o \delta_o}{D} \right) \sim \frac{\nu}{U_o D} \sim \frac{1}{Re_D}
\]
(5.25)

Ce terme est de l’ordre de \(5 \times 10^{-3}\), avec \(\nu \sim 20 \times 10^{-6}\), \(U_o=10\ m/s\) et \(D=5\ mm\).

Conclusion sur ces ordres de grandeur :

Le bilan de quantité de mouvement appliqué à nos conditions géométriques et d’écoulement (jet de propane ou jet d’air), fait apparaître des termes supplémentaires, provenant de la viscosité variable.

L’estimation des ordres de grandeur de tous les termes du bilan de quantité de mouvement moyen (y compris ceux qui sont amenés par la viscosité variable), nous conduit à être très prudents sur l’élimination de ces termes dans ce bilan.

En effet, la géométrie particulière de notre jet (forte épaisseur de la lèvre par rapport au diamètre) met en défaut les approximations de couche limite près de la sortie en \(z=0\); et la viscosité variable induit des termes supplémentaires dont il faut vérifier correctement leur importance.

Cette vérification de l’importance de tous ces termes passent par la détermination des corrélations \(<UV>\) et \(<uv>\). Par conséquent, nous avons eu recours à l’Anémométrie Doppler Laser. Nous proposons de vérifier certaines assertions et néanmoins d’aller plus loin en regardant les statistiques du champ proche obtenues à partir des mesures ADL. Après en avoir rappelé brièvement le principe et les précautions d’emploi dans notre cas expérimental, nous explorons le champ proche du jet d’air débouchant dans l’air, et du jet de propane débouchant dans l’oxydant "air-néon", pour deux quantités de mouvement injectées \(Mo=130\) et 360.

5.2 Rappels sur l’Anémométrie Doppler Laser à 2 composantes

Nous rappelons très brièvement le principe de la technique, ainsi que les précautions que nous avons prises pour nos mesures dans le jet de propane.

5.2.1 Principe

Pour l’étude du champ très proche (entre la sortie de la buse et 8 diamètres en aval), nous avons utilisé une technique d’Anémométrie Laser Doppler (A.D.L. ou L.D.V. pour Laser Doppler Velocimetry) à 2 composantes pour la mesure de la vitesse locale de l’écoulement.
La vélocimétrie Laser Doppler repose sur l’effet Doppler : un objet lumineux en mouvement diffuse un onde incidente de fréquence donnée (par un laser par exemple) à une autre fréquence décalée, et dont la valeur du décalage est liée à la vitesse de manière précise. De fines particules (solides ou liquides) sont utilisées comme diffuseur (traceur) dans l’écoulement. Lorsqu’une particule traverse un système de franges d’interférences lumineuses, le signal de diffusion, associé à la longueur d’onde \(\lambda_r \) du réseau de franges, possède une fréquence caractéristique \(f_d \) directement proportionnelle à la vitesse de la particule \(U \) et au demi-angle \(\theta_r \) entre les deux faisceaux lasers par la relation :

\[
f_d = \frac{2U \sin(\theta_r/2)}{\lambda_r} \tag{5.26}
\]

La connaissance de \(\lambda_r \), de \(\theta_r \) et la mesure de \(f_d \) donne accès à une composante du vecteur vitesse (vitesse axiale \(U \) par exemple). L’utilisation d’un laser à gaz Ion-Argon permet la mesure de vitesse selon deux directions (\(U \) et \(V \) par exemple dans notre cas), en utilisant deux systèmes de franges orthogonaux, créés par les faisceaux bleu (488 nm) et vert (514 nm).

Pour avoir accès au sens des vecteurs vitesse (\(U \) et \(V \)), on place une cellule de Bragg (cellule opto-acoustique générant une très haute fréquence à 40 MHz) pour faire défiler les franges à une certaine fréquence constante, dite fréquence de Bragg \(f_{bragg} \). En introduisant ce défilement, la fréquence Doppler \(f_d \) mesurée devient alors égale à :

\[
f_d = \frac{2U \sin(\theta_r/2)}{\lambda_r} - f_{bragg} \tag{5.27}
\]

De nombreuses précautions doivent être prises afin de réaliser une mesure ADL correcte :
- systèmes de franges très soignés (alignement très précis de la sonde ADL, et contrôle du volume ADL),
- intensités des signaux "braggés" et "non braggés" égales (recontrôlées à l’aide d’un mesureur de puissance optique avant chaque mesure),
- forme des faisceaux "gaussienne" et croisés en une parfaite ellipse,
- ensemencement en fines gouttelettes de taille la plus homogène possible, et très inférieure à l’interfrange du volume de mesure ADL, afin d’éviter d’avoir une "porteuse" sur le signal diffusé qui ait une amplitude trop importante,
- ensemencement le plus homogène possible, afin d’avoir une fréquence d’acquisition d’un échantillon de vitesse la plus homogène possible.

Tous ces points ont été minutieusement vérifiés avant chaque mesure.

5.2.2 Ensemencement

La technique ADL nécessite d’utiliser un ensemencement comme traceur des lignes de courant de l’écoulement. Afin d’être certain que ce traceur va suivre correctement la trajectoire fluide, il faut s’assurer que le temps d’accélération d’une particule d’ensemencement, notée \(\tau_p \), soit nettement inférieure au temps caractéristique d’accélération de l’écoulement (temps de Kolmogorov \(\tau_K \sim 1/f_K \)), avec \(f_K \) =
CHAPITRE 5. LE CHAMP PROCHE D’UN JET AXISYMÉTRIQUE

Fig. 5.1 – À gauche : volumes de mesure ADL (ellipsoïde) des faisceaux "bleus" (composante V) ; à droite : "burst" traité par le système IFA, observé sur un oscilloscope, d’après DANTEC.

Fig. 5.2 – Distribution d’intensité lumineuse diffusée par les franges, dans le volume de mesure Goldstein.

D’après les équations d’évolution d’une particule sphérique dans un écoulement visqueux, proposées par [3], le temps caractéristique de réponse \(\tau_p \) d’une particule à une brusque accélération du fluide s’exprime par :

\[
\tau_p = \frac{\rho_{\text{huile}} d_p^2}{18 \mu_{\text{fluide}}} \tag{5.28}
\]

Comme liquide d’ensemencement, nous avons utilisé le Di-Ethyl-Hexyl-Sébacate (D.E.H.S.). Il s’agit d’un liquide incolore, insoluble et présentant l’avantage d’obtenir une très forte pénétration granulométrique (production de gouttelettes de l’ordre de 0,3 \(\mu \text{m} \) à l’aide d’un générateur d’aérosol classique), et une durée de vie des gouttelettes exceptionnelle (la durée de vie d’une gouttelette de 0,3 \(\mu \text{m} \) par évaporation lente est de 4 heures). Utilisé avec notre système d’ensemenceur, nous avons été capable de produire des gouttelettes de l’ordre de moins d’un \(\mu \text{m} \) de diamètre en moyenne.

La masse volumique de ce liquide (à 20 degrés Celsius) vaut \(\rho_{\text{huile}} = 0,912 \text{ kg.m}^3 \). Sa viscosité dynamique (à 20 degrés Celsius) vaut \(0,23 \times 10^{-3} \text{ Pa.s} \). La viscosité dynamique (à 20 degrés Celsius) du propane pur, de l’air pur, du néon pur, et du mélange oxydant 30\%air-70\%néon valent respectivement : 8,3, 18,6,
32,1 et 24,99 10^{-6} Pa.s. Les temps d’accélération des particules de D.E.H.S., τ_p, estimés à partir de ces données sont de l’ordre de la microseconde ($\sim 10^{-6}$ s). Le temps de Kolmogorov est toujours supérieur à 25 μs (i.e. 40 kHz qui correspond à la coupure du signal physique.). Avec un rapport toujours inférieur à $\sim 1/25$ entre les temps caractéristiques τ_p et τ_K, nous sommes parfaitement assurés que les particules de D.E.H.S. suivent la trajectoire des filets fluide. Ce rapport de temps caractéristiques est similaire à celui des travaux de [74] pour les jets à densité variable (CO_2/air), ou pour l’étude d’un jet d’air confiné [223].

5.2.3 Chaîne d’acquisition

La chaîne d’acquisition est composée de :

- un laser Ion-Argon (COHERENT Innova 300) pouvant produire 5 Watts en sortie. Toutefois, l’emploi d’une fibre optique limite la puissance maximale à 1 Watts. Nous avons réalisé nos mesures entre 0,600 et 0,750 Watts (en fonction du gain affiché sur les photomultiplicateurs) ;
- un séparateur de couleur "Colorburst", qui convertit le faisceau laser issu gaz Argon en trois paires de faisceaux parallèles utilisés dans le système ADL (deux faisceaux "vert" de longueur d’onde 514 nm pour la mesure de la composante de la vitesse axiale U, et deux faisceaux "bleus" de longueur d’onde 488 nm pour la mesure de la composante de la vitesse radiale V) ;
- une sonde à fibre optique (avec focale de 310 mm), placée entre le séparateur de couleur et le "Colorlink" (cinquième fibre interne à la sonde utilisée pour la réception du signal Doppler). Elle a pour fonction la transmission des faisceaux laser et la réception du signal diffusé par les particules traversant le volume de mesure ;
- un processeur IFA 755 pour le traitement du signal.

Aucun obstacle (hublots par exemple) n’étant placé autour de notre jet, nous avons pu mettre en place une technique de collection par diffusion arrière, permettant un rapport "taille du volume de mesure" sur "rapport signal/bruit" beaucoup plus intéressant. Ainsi, le volume de mesure a pu être réduit avantageusement aux dimensions suivantes :

- Diamètres des volumes "bleu" et "vert", $d_m=87,5$ et 92,3 μm respectivement ;
- Longueur des volumes de mesure "bleu" et "vert" initialement de $l_m=1,36$ et 1,43 mm respectivement, réduits à 150μm chacun par la diffusion arrière.

Cet artifice nous a permis d’obtenir une résolution spatiale excellente au vu des dimensions de notre jet (D=5 mm).

Grâce à l’excellent taux d’ensemencement avec le Di-Ethyl-Hexyl-Sébacate (environ 19000 particules par secondes), le système d’acquisition de données (IFA) a pu être utilisé en mode "coincident" per-

2. Si le taux de particules passant dans le volume de mesure est trop faible, le taux de particules ayant la probabilité de passer au même instant dans ce volume de mesure (condition nécessaire pour avoir une corrélation temporelle) sera encore plus faible, et les erreurs statistiques seront trop importantes sur l’estimation des corrélations entre u et v.

5.3 Conditions d’écoulements testées

Les conditions d’écoulement testées sont celles du tableau [5.1].

5.4 Statistiques globales dans le champ très proche (0<Z/D<8)

Le champ très proche a été exploré par les mesures ADL pour Z/D=1,2,3,4,6 et 8 sur des profils radiaux complets. La technique HWA couplée RLS a également été exploitée pour les mesures le long de l’axe aux positions Z/D=4,6 et 10 du champ proche.

La figure [5.3] présente l’évolution axiale de la vitesse longitudinale \(U\), obtenue par mesures ADL pour quatre conditions d’écoulement du tableau [5.1]. On retrouve une allure similaire à celle obtenue par la technique couplée HWA/RLS. Les courbes correspondantes aux jets d’air et de propane à \(M_o=360\) se superposent parfaitement à celles obtenues par la technique couplée HWA/RLS. Nous notons néanmoins que l’ordre vertical des courbes tracées ne suit pas un nombre de Reynolds \(Re_D = U_o D / \nu_1\) croissant, avec \(\nu_1\) égal à \(\nu_{air}\) pour les jets d’air, et \(\nu_{propane}\) pour les jets de propane. Ce résultat peut s’expliquer par la remarque formulée dans la section précédente sur les travaux de Campbell et Turner [47].
Fig. 5.3 – Evolution de la vitesse moyenne \(<U_\text{c}>) le long de l’axe des jets d’air (Mo=130, Re_D ∼ 3300 et Mo=360, Re_D ∼ 5400) et de propane (Mo=130, Re_D ∼ 9200 et Mo=360, Re_D ∼ 15400), obtenue à partir des mesures LDV en champ très proche (1<Z/D<10).

qu’un fluide 1 de viscosité cinématique \(\nu_1\) se mêle avec un autre fluide 2 de viscosité cinématique \(\nu_2\) différente, il faut considérer le “vrai” nombre de Reynolds (celui représentatif d’un mélange turbulent similaire à un jet de fluides à viscosité constante), calculé en prenant la viscosité du deuxième fluide \(\nu_2\) :

\[Re'_D = \frac{U_\theta D}{\nu_2} \]

Si nous appliquons cette remarque, les nouveaux nombres de Reynolds à considérer pour les jets de propane à Mo=130 et Mo=360, valent désormais respectivement : ∼1700 et ∼2900. Ces valeurs sont trop basses, et ne permettent pas de reclasser les courbes selon un ordre croissant du \(Re_D\). La méthode de Campbell et Turner semble inadéquate ici (probablement car nous nous trouvons dans la gamme "floue" située entre les deux critères définis clairement par Campbell et Turner). Si nous envisageons par contre de prendre comme viscosité cinématique la valeur moyenne entre le propane et l’oxydant, soit \(\bar{\nu} = \frac{\nu_{\text{air}} + \nu_{\text{propane}}}{2} \sim 14,8 \times 10^{-6} \text{m}^2\text{s}^{-1}\), on trouve les Reynolds suivants : ∼5100 et ∼8780. Les nouvelles courbes obtenues sont cette fois-ci classées par ordre croissant des Reynolds. Toutefois, cet artifice ne nous offre guère d’explication sur le mécanisme physique sous-jacent.

Les figures 5.4 regroupent les profils radiaux de la vitesse moyenne longitudinale \(<U_\text{c}>\) pour les distances Z/D=1, 4 et 8, et pour les jets d’air et de propane à Mo=130 et Mo=360, et les figures 5.5, les profils radiaux de la vitesse moyenne radiale \(<V_\text{c}>\), pour les mêmes écoulements. Les profils dimension-
chaps de $<U>$ pour le propane sont nettement plus évasés que les profils du jet d’air, à même quantité de mouvement Mo. Ceci s’explique par la plus forte diffusion de quantité de mouvement dans le premier cas (par le biais du ratio de viscosité cinématique 5,5 fois plus élevé que dans le jet d’air, entre le fluide injecté et le fluide ambiant), et montre ainsi les premiers effets de la viscosité sur les grandeurs moyennes. En utilisant une représentation faisant intervenir la moitié-largeur du jet en abscisse, nous obtenons des profils auto-similaires, identiques à ceux de la figure [3.23] trouvés par la technique couplée HWA/RLS. Les profils dimensionnés de la vitesse moyenne $<V>$ sont très peu différents entre le jet d’air et le jet de propane. On mesure des vitesses similaires et relativement faibles (de l’ordre de 0,28 m/s maximum au centre du jet pour le propane, et 0,18 m/s pour le jet d’air).

![Graphique 5.4](image.png)

Fig. 5.4 – Profils radiaux de vitesse longitudinale moyenne $<U>$ pour le jet d’air et de propane à $Mo=130$, dans le champ très proche à $Z/D=1,4$ et 8. Mesures réalisées par ADL à 2 composantes.

Analysons maintenant plus en détail le cas des jets d’air et de propane à $Mo=130$, qui montrent le plus de différences dans le champ très proche ($<Z/D=10$). Les figures [5.6] et [5.7] présentent les profils radiaux des écart-types de la vitesse longitudinale fluctuante $<u^2>^{1/2}$ et de la vitesse radiale fluctuante $<v^2>^{1/2}$ pour les distances $Z/D=1$, 4 et 8, pour les jets d’air et de propane à $Mo=130$. On observe nettement la différence entre les deux jets, dès $Z/D=1$. En effet, à cette distance, le profil des intensités turbulentes axiales pour le jet de propane sont à un niveau nettement supérieur à celle du jet d’air ; elles présentent toutefois la même allure "à double" bosse, représentative d’une turbulence maximale dans
Fig. 5.5 – Profils radiaux de vitesse transversale moyenne $<V>$ pour le jet d’air et de propane à $Mo=130$, dans le champ très proche à $Z/D=1,4$ et 8. Mesures réalisées par ADL à 2 composantes.

l’anneau torique de l’écoulement le plus cisailé du jet. Pour $Z/D=4$, le creux d’intensité au centre du jet apparaît jusqu’à $Z/D=8$. Pour le jet de propane, ce creux a disparu dès $Z/D=4$, voire moins avant. Ceci dénote la rapidité du mélange dans le cas du jet de propane d’une part, et la disparition plus rapide du cœur potentiel de propane, par rapport à l’air, à même quantité de mouvement injectée. Les courbes pour les intensités turbulentes radiales suivent la même tendance que les intensités axiales, et nous pouvons formuler exactement les mêmes remarques. A ce niveau d’analyse des résultats, il ressort très clairement que le jet de propane présente un mélange turbulent de bien plus grande efficacité que le jet d’air, à même quantité de mouvement injectée ($Mo=130$). D’autre part, ce mélange turbulent se réalise de manière très prononcée dans les premières distances aval de la buse (entre $Z/D=0$ et $Z/D=4$).

Afin de valider ces remarques, nous avons tracé les rapports des intensités turbulentes $<u^2>^{1/2}/<v^2>^{1/2}$ dans le champ très proche pour $Z/D=1,2,3,4,6$ et 8, pour le jet d’air à $Mo=130$ (5.8-a), et pour le jet de propane à $Mo=130$ (5.8-b). Les mêmes ratios sont tracés pour le cas à $Mo=360$, sur les figures (5.9-a) et (5.9-b). Pour $Mo=130$, il apparaît très clairement que l’isotropie est atteinte beaucoup plus tôt pour le jet de propane que pour le jet d’air. Le rapport des intensités turbulentes est quasiment constant autour de la valeur $\sim 1,2$. Cette valeur est celle communément trouvée pour les champs lointains (auto-similaires) des jets axisymétriques turbulents [41]. Ce résultat confirme que le jet de propane atteint des conditions d’auto-similitude très tôt, quasiment dès la sortie de la buse, à $Z/D=1$ d’après les courbes de la figure (5.8-b). Le jet d’air, quant à lui, n’a pas encore atteint son régime d’auto-similitude à $Z/D=8$ puisque le rapport des intensités turbulentes est à une valeur supérieure à 2 près du
Fig. 5.6 – Profils radiaux des écart-types de la vitesse longitudinale fluctuante $<u^2>^{1/2}$ pour le jet d’air et de propane à $M_o=130$, dans le champ très proche à $Z/D=1.4$ et 8. Mesures réalisées par ADL à 2 composantes.

centre du jet.
Pour $M_o=360$, l’auto-similarité est atteinte aussi bien pour le jet d’air que pour le jet de propane (rapport des intensités autour de 1,2). Ceci illustre que pour une quantité de mouvement injectée très élevée, aucune différence n’est observée sur la distance d’isotropisation du jet. De plus, cette distance d’isotropisation pour notre jet est très courte (1 diamètre), compatible avec la remarque de [1] sur la longueur de la région initiale d’un jet.

Pour conclure sur ces mesures :

– L’étude du jet de propane à $M_o=130$, nous montre que le jet de propane isotropise très rapidement (dès $Z/D=1$ le rapport des intensités $<u^2>^{1/2} / <v^2>^{1/2}$ tend vers 1,2, contrairement au jet d’air qui demande d’attendre une distance de l’ordre de 10 diamètres ;
Fig. 5.7 – Profils radiaux des écart-types de la vitesse radiale fluctuante $< v^2 >^{1/2}$ pour le jet d’air et de propane à $M_o=130$, dans le champ très proche à $Z/D=1,4$ et 8. Mesures réalisées par ADL à 2 composantes.

Fig. 5.8 – Profils radiaux du rapport des écart-types des fluctuations de vitesses $< u^2 >^{1/2} / < v^2 >^{1/2}$ dans le champ très proche pour $Z/D=1,2,3,4,6$ et 8 : a) pour le jet d’air à $M_o=130$; b) pour le jet de propane à $M_o=130$. Mesures réalisées par ADL à 2 composantes.

– Les vitesses radiales moyennes $<V>$ et les intensités de turbulence radiale $< v^2 >^{1/2}$ pour le jet de propane sont bien plus marquées que celle du jet d’air, et ce, plus tôt.

– La vérification de la conservation de la quantité de mouvement par l’équation (5.17) en tenant compte de tous les termes supplémentaires apportés par la viscosité variable, va être achevée ultérieurement pour
CHAPITRE 5. LE CHAMP PROCHÉ D’UN JET AXISYMÉTRIQUE

156

Fig. 5.9 – Profils radiaux du rapport des écart-types des fluctuations de vitesses $<u^2>^{1/2}$ / $<v^2>^{1/2}$ dans le champ très proche pour $Z/D=1,2,3,4,6$ et 8 : a) pour le jet d’air à $Ma=360$; b) pour le jet de propane à $Ma=360$. Mesures réalisées par ADL à 2 composantes.

les deux conditions $Ma=130$ et $Ma=360$.

5.5 Bilans énergétiques de la turbulence à viscosité variable

Intéressons-nous désormais aux aspects énergétiques de cette turbulence à viscosité variable. Nous venons de montrer expérimentalement que l’isotropie est rapidement atteinte dans le jet de propane. En réécrivant les équations de bilan d’énergie cinétique à partir des équations de Navier-Stokes à viscosité variable, nous allons montrer que de nouveaux termes apparaissent pour la dissipation d’énergie, pouvant expliquer les courbes donnant une dissipation $\langle \epsilon_{iso} \rangle$ très élevée pour le jet de propane dans l’oxydant (Fig. 4.25).

Nous allons également montrer que la pseudo-dissipation et la dissipation ne peuvent plus être confondues pour cette turbulence dans des fluides hétérogènes.

5.5.1 Bilan moyen d’énergie cinétique du mouvement fluctuant (en 1 point)

Dans ce paragraphe, nous nous intéressons à réécrire les équations pour le bilan d’énergie cinétique en 1 point, pour une viscosité variable et une densité constante. Nous partons pour cela de l’équation de Navier-Stokes instantanée Eq. (5.6), en négligeant les forces de volume (ρf_i) :

$$
\rho \left[\frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} \right] = - \frac{\partial P}{\partial x_i} + \mu \frac{\partial^2 U_i}{\partial x_j \partial x_j} + \frac{\partial \mu}{\partial x_j} \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right)
$$

(5.29)

Puis, en décomposant dans cette équation Eq. (5.29) la vitesse et la viscosité dynamique comme la somme d’une contribution moyenne et d’une contribution fluctuante, telles que l’on puisse écrire $U_i = \bar{U}_i + u_i$
et $\mu = \bar{\mu} + \mu'$, en multipliant le tout par les fluctuations u_i, et en prenant les moyennes statistiques, on obtient la forme suivante de l’équation de bilan cinétique en 1 point :

$$
\rho \left[U_j \frac{\partial}{\partial x_j} \left(\frac{u_i^2}{2} \right) + u_j \frac{\partial}{\partial x_j} \left(\frac{u_i^2}{2} \right) + u_i u_j \frac{\partial U_i}{\partial x_j} \right] = - \frac{\partial}{\partial x_i} u_i p' \quad \text{(5.30a)}
$$

Dans la ligne (5.30a) on retrouve les principaux termes du bilan d’énergie cinétique "classique" d’une turbulence à propriétés thermophysiques constantes (densité et viscosité), [53] par exemple. Il manque néanmoins les deux termes de diffusion moléculaire et de pseudo-dissipation (voir le Chapitre 2). Ces deux termes de la turbulence "classique" à viscosité constante sont remplacés par les neuf termes regroupés sur les lignes (5.30b) à (5.30e), et spécifiques à la viscosité variable. Analysons chacun de ces termes et réécrivons-les éventuellement pour mieux faire apparaître des simplifications éventuelles, en adoptant la numérotation suivante : groupe A correspondent aux termes de la ligne (5.30b), groupe B correspondent aux termes de la ligne (5.30c), groupe C correspondent aux termes de la ligne (5.30d) et groupe D correspondent aux termes de la ligne (5.30e). Dans un premier temps, nous vérifions également l’accès de tous ces termes par des mesures expérimentales (celles que nous avons effectuées ou d’autres dans une perspective future).

- **Groupe A** :

 En négligeant le deuxième terme (faisant intervenir les dérivées spatiales secondes de la vitesse moyenne) du groupe A, on peut regrouper les deux termes restants faisant intervenir les fluctuations de la vitesse, et le groupe s’écrit finalement (en notant que $\mu = \bar{\mu} + \mu'$) :

$$
\mu u_i \frac{\partial^2 u_i}{\partial x_j^2} \quad \text{(5.31)}
$$

puis, en sortant la dérivée $\frac{\partial}{\partial x_j}$:

$$
\frac{\partial}{\partial x_j} \left[\mu u_i \frac{\partial u_i}{\partial x_j} \right] - \frac{\partial}{\partial x_j} (u_i \bar{\mu}) \frac{\partial u_i}{\partial x_j} \quad \text{(5.32)}
$$
et en développant chacun des sous-terms de l’équation précédente, on obtient encore que le groupe A peut prendre la forme suivante :

$$
\left[\bar{\mu} \frac{\partial^2}{\partial x_j^2} \left(\frac{u_i^2}{2} \right) + \frac{\partial \bar{\mu}}{\partial x_j} \frac{\partial}{\partial x_i} \left(\frac{u_i^2}{2} \right) \right] - \mu \left(\frac{\partial u_i}{\partial x_j} \right)^2 - \frac{\partial \mu}{\partial x_j} \frac{\partial}{\partial x_j} \left(\frac{u_i^2}{2} \right)
$$

(5.33)

Les termes 2 et 4 de cette dernière expression s’annulent deux à deux. Le terme 1 de cette dernière relation est proche de zéro, si bien que le groupe A se réduit à l’expression finale suivante (terme 3 de la dernière expression) :

$$
A \simeq -\mu \left(\frac{\partial u_i}{\partial x_j} \right)^2 = -\langle \varepsilon \rangle_{\text{classique}} = -\langle \epsilon \rangle_{\text{classique}}
$$

(5.34)

On retrouve la pseudo-dissipation "classique" à viscosité constante, qui, comme on l’a souligné dans le chapitre 2, est aussi égale à la dissipation turbulente $\langle \epsilon \rangle_{\text{classique}}$ sous les hypothèses d’une turbulence isotrope ou à grand nombre de Reynolds. Ce terme est mesurable par technique ADL par exemple.

– Groupe B :

Le groupe B peut s’écrire de manière plus condensée :

$$
B = \frac{\partial \bar{\mu}}{\partial x_j} u_i \left[\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right] = \frac{\partial \bar{\mu}}{\partial x_j} \left[\frac{\partial}{\partial x_j} \left(\frac{u_i^2}{2} \right) + \frac{\partial}{\partial x_i} u_i u_j \right]
$$

(5.35)

Toutes les dérivées faisant intervenir la vitesse sont accessibles par des mesures ADL à 2 composantes. Les dérivées de la viscosité moyenne peuvent être obtenus séparément par une technique spécifique pour le scalaire.

– Groupe C :

Le groupe peut s’écrire de manière plus condensée :

$$
C = \frac{\partial \mu'}{\partial x_j} u_i \left[\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right]
$$

(5.36)

Toutes les dérivées faisant intervenir la vitesse sont accessibles par des mesures ADL à 2 composantes. Par contre, la corrélation $\frac{\partial \mu'}{\partial x_j} u_i$ doit faire l’objet d’une technique couplée "vitesse et scalaire".
Groupe D :
Le groupe peut s’écrire de manière plus condensée :

\[
D = \frac{\partial \mu'}{\partial x_j} \left[\frac{\partial}{\partial x_j} \left(\frac{u_i^2}{2} \right) + \frac{\partial}{\partial x_i} \left(u_i u_j \right) \right]
\]

(5.37)

L’estimation de ce groupe D doit faire l’objet d’une technique couplée "vitesse et scalaire".

Pour conclure, le bilan final d’énergie cinétique en 1 point, pour un écoulement à viscosité variable (et à densité constante) peut s’écrire :

\[
\{ \text{Decroiss.} + \text{Diff.Turb.} + \text{Prod.} \} = -\frac{\partial}{\partial x_i} u_i p' + \langle \varepsilon \rangle \text{classique}
\]

(5.38a)

\[
+ \frac{\partial \bar{\mu}}{\partial x_j} \left[\frac{\partial}{\partial x_j} \left(\frac{u_i^2}{2} \right) + \frac{\partial}{\partial x_i} \left(u_i u_j \right) \right] + \frac{\partial \mu'}{\partial x_i} \left(u_i u_j \right)
\]

(5.38b)

\[
\frac{\partial \mu'}{\partial x_i} \left[\frac{\partial}{\partial x_i} \left(\frac{u_i^2}{2} \right) + \frac{\partial}{\partial x_i} \left(u_i u_j \right) \right]
\]

(5.38c)

Dans la région centrale d’un jet rond (ou dans son voisinage très proche), nous pouvons supposer que l’écoulement est isotrope, que \(U_y \sim U_x \sim 0 \), et que les dérivées selon les directions latérales x et y sont négligeables devant l’autre (z) [67]. Les termes supplémentaires du bilan d’énergie cinétique en 1 point général ci-dessus (lignes (5.38b) et (5.38c)) se simplifient et deviennent :

\[
\frac{\partial \bar{\mu}}{\partial z} \left[\frac{\partial}{\partial z} \left(\frac{u_i^2}{2} \right) + 2 \frac{\partial \bar{U}}{\partial z} \frac{\partial \mu'}{\partial y} \right]
\]

(5.39a)

\[
+ \left[\frac{\partial \bar{U}}{\partial z} \frac{\partial \mu'}{\partial z} + 4 \frac{\partial \bar{V}}{\partial y} \frac{\partial \mu'}{\partial y} \right]
\]

(5.39b)

\[
\frac{\partial \mu'}{\partial x_j} \left[\frac{\partial}{\partial x_j} \left(\frac{u_i^2}{2} \right) + \frac{\partial}{\partial x_i} \left(u_i u_j \right) \right]
\]

(5.39c)

Développons et retravaillons un peu ces termes moyennant quelques hypothèses que l’on peut faire dans la région central du jet.

- **Ligne (5.39a)** : Ce terme ne peut pas être simplifié davantage.

- **Ligne (5.39b)** : à l’aide de l’équation de continuité sur l’axe \(\frac{\partial \bar{U}}{\partial z} + 2 \frac{\partial \bar{V}}{\partial y} \), et en supposant l’isotropie, ce terme devient nul, car on peut alors écrire :

\[
2 \frac{\partial \bar{U}}{\partial z} \left[\frac{\partial \mu'}{\partial z} - \frac{\partial \mu'}{\partial y} \right] \approx 2 \frac{\partial \bar{U}}{\partial z} .0
\]

(5.40)
L’isotropie est atteinte très rapidement pour le jet de propane (nous avons vu que dès $Z/D=1$ le profil du rapport des écarts-type des fluctuations u et v est à la valeur communément reportée de 1,2 pour les régions auto-similaires isotropes).

- **Ligne (5.39c)** : on suppose que les corrélations uv sont négligeables devant le produit $\frac{\partial \mu'}{\partial x_j} \times \frac{\partial u'^2}{\partial x_j}$ (q^2 étant l’énergie cinétique de l’écoulement). Ainsi, seule la première contribution de ce terme (le produit) est conservée.

Ainsi, le bilan final d’énergie cinétique en 1 point, pour un écoulement à viscosité variable (et à densité constante) dans la région centrale du jet se résume à :

\[
\{ \text{Decroiss.} + \text{Diff.Turb.} + \text{Prod.} \} = (5.41a) \\
\begin{aligned}
- \frac{\partial}{\partial x_i} u_i' p' - \langle \varepsilon \rangle_{\text{classique}} &+ \frac{\partial \bar{\mu}}{\partial z} \left[\frac{\partial}{\partial z} \left(\frac{u_i'^2}{2} \right) + 2 \frac{\partial}{\partial y} \overline{uv} \right] + \frac{\partial \mu'}{\partial x_j} \frac{\partial}{\partial x_j} \left(\frac{u_i'^2}{2} \right) \\
\simeq - \frac{\partial}{\partial x_i} u_i' p' - \langle \varepsilon \rangle_{\text{classique}} &+ \frac{\partial \bar{\mu}}{\partial z} \left[\frac{\partial}{\partial z} \left(\frac{u_i'^2}{2} \right) + 2 \frac{\partial}{\partial y} \overline{uv} \right] + 3 \frac{\partial \mu'}{\partial z} \frac{\partial}{\partial z} \left(\frac{u_i'^2}{2} \right) \\
\simeq - \frac{\partial}{\partial x_i} u_i' p' - [\langle \varepsilon \rangle_{\text{classique}} + \langle \varepsilon \rangle_{v.v.}] \\
\end{aligned}
\]

où on globalise dans $\langle \varepsilon \rangle_{v.v.}$ les termes explicités dans (5.41b). Remarquons que dans Eq. (5.41c),

- $\frac{\partial \bar{\mu}}{\partial z}$ est positif pour un jet de propane se déchargeant dans l’air ou dans l’oxidant (70% néon-30% air).

- $\frac{\partial}{\partial z} \left(\frac{u_i'^2}{2} \right)$ est d’abord positif (croissance forte immédiate de l’énergie cinétique dans le champ très proche) puis rapidement négatif (décroissance de l’énergie), après le pic de production d’énergie cinétique marquant le début de la région auto-similaire.

- $2 \frac{\partial}{\partial y} \overline{uv}$ est sensiblement nul pour notre jet (l’intensité des corrélations est sensiblement nulle). Ceci provient très certainement d’une perte rapide de cohérence des fluctuations u et v dues aux instabilités de lèvre et de viscosité conjuguées.

- Le signe de $3 \frac{\partial \mu'}{\partial z} \frac{\partial}{\partial z} \left(\frac{u_i'^2}{2} \right)$ est plus délicat à estimer. En supposant que les gradients longitudinaux des fluctuations de la viscosité sont antisymétriques par rapport aux gradients d’énergie cinétique (une variation de viscosité positive est synonyme de décroissance de la vitesse, car

\[3. \text{ Ce terme sera négatif dans un jet d’air se déchargeant dans du propane ou dans du méthane par exemple (configuration inversée par rapport aux choix "classiquement" adoptés sur les dispositifs industriels).} \]
elle correspond à une particule lente d’oxydant), il s’ensuit que ce terme est toujours négatif. Par conséquent, la somme − ⟨⟨ε⟩⟩_classique + ⟨⟨ε⟩⟩_v.v. globalise l’ensemble de la dissipation dans cet écoulement à viscosité variable. Finalement, le taux de dissipation d’énergie cinétique dans un écoulement localement isotrope, à viscosité variable et à densité constante, est plus élevé que celui d’une turbulente à propriétés constantes. Ce nouveau taux est la somme du taux de dissipation "classique" à viscosité constante et de termes supplémentaires spécifiques à la viscosité variable.

Ce résultat nous éclaire ainsi (pour l’instant uniquement de manière théorique, sans preuve mesurée) sur la tendance d’une augmentation forte de la dissipation dans le cas du jet de propane (Fig. 4.25) ; mais nous conduit aussi à revenir sur la critique des courbes de l’estimation de la dissipation dans le jet de propane, Fig. (4.25). En effet, d’après notre nouvelle formulation de la dissipation (somme − ⟨⟨ε⟩⟩_classique + ⟨⟨ε⟩⟩_v.v.), nous nous attendrions plutôt à trouver la courbe issue de la méthode 3 (englobant indirectement cette somme des dissipations classique et à viscosité variable) située au-dessus de celle donnée par la relation d’isotropie à viscosité constante.

Terminons ce paragraphe en explicitant l’équation du budget d’énergie cinétique, sur l’axe du jet, après avoir négligé la diffusion par la pression :

\[
\bar{U} \frac{\partial}{\partial z} \left[\frac{u_i^2}{2} \right] + \frac{\partial U}{\partial z} \left[u_i^2 - v^2 \right] + 2v \frac{\partial}{\partial y} \left(\frac{u_i^2}{2} \right) = -\nu \frac{\partial u_i}{\partial x_j} \right]^2 + \frac{\partial \mu}{\partial z} \left[\frac{\partial}{\partial z} \left(\frac{u_i^2}{2} \right) + 2 \frac{\partial}{\partial y} \nu \right] + 3 \frac{\partial \mu'}{\partial z} \frac{\partial}{\partial z} \left(\frac{u_i^2}{2} \right) \quad (5.42)
\]

Dans cette équation (5.42), les deux derniers termes du membre de droite sont négatifs, d’après tout ce qui vient d’être dit. Ils correspondent à ⟨⟨ε⟩⟩_v.v. pour le jet axisymétrique.

5.5.2 Equation de bilan énergétique à une échelle

En suivant l’approche développée dans [67], nous allons fournir l’équation de bilan énergétique à une échelle, tout d’abord en rappelant celle pour les écoulements homogènes à propriétés constantes (densité et viscosité), puis en développant sa variante pour les écoulements à viscosité variable.

Rappel de l’équation à propriétés constantes

Nous nous contentons de rappeler l’équation générale finale, et la démarche adoptée. Le point de départ pour aboutir à cette équation est l’écriture de deux équations de Navier-Stokes incompressibles,
en deux points distincts\(^4\) de l’espace séparés par le vecteur \(r = x^+ - x\). Puis, ces deux équations sont sous-traitées pour conduire à une équation pour l’incrément de vitesse \(\Delta u_i = u_i^+ - u_i\). Après de nombreuses manipulations et hypothèses \([67]\), l’équation finale s’écrit :

\[
- \langle \Delta u_1 (\Delta q)^2 \rangle + 2\nu \frac{d}{dr} \langle (\Delta q)^2 \rangle - \frac{U_1}{r^2} \int_0^r s^2 \partial_1 \langle (\Delta q)^2 \rangle ds - 2\frac{\partial U_1}{\partial x_1} \frac{1}{r^2} \int_0^r s^2 \left[\langle (\Delta u_1)^2 \rangle - \langle (\Delta u_2)^2 \rangle \right] ds
\]

\[- \frac{1}{r^2} \int_0^r s^2 \left[2\frac{\partial U_1}{\partial x_3} \langle \Delta u_1 \Delta u_3 \rangle + \partial_3 ((u_3 + u_3^+) (\Delta u_1)(\Delta u_1)) \right] ds = \frac{4}{3} \langle \epsilon \rangle r \quad (5.43)\]

où \(s\) est une constante d’intégration. Cette équation peut être écrite formellement sous la forme suivante :

\[
A + B + D + P + S + \text{INH} = C \quad (5.44)
\]

où \(C = \frac{4}{3} \langle \epsilon \rangle r\) est le terme inhomogène de décroissance selon la direction de l’écoulement \(x_1\), \(P\) est le terme de production, \(S\) est le terme de cisaillement et \(\text{INH}\) est le terme inhomogène.

Pour la région centrale d’un jet rond, l’équation générique \((5.44)\) se simplifie et prend la forme suivante :

\[
A + B + D + P = C \quad (5.45)
\]

Equation générale à viscosité variable

L’équation à viscosité variable s’écrit de manière généralisée, en remplaçant le deuxième terme de

\[
2\nu \frac{d}{dr} \langle (\Delta q)^2 \rangle \text{ par } \frac{2}{\rho \frac{d}{dr} (\Delta \mu u_i)^2},
\]

\[
\text{et le dernier terme } \frac{4}{3} \langle \epsilon \rangle r \text{ par } \frac{4}{3} \langle [\epsilon + \varepsilon_{v,v}] \rangle r.
\]

Ce point est à développer ultérieurement, et constitue une perspective supplémentaire à ce travail théorique.

5.6 Conclusion partielle sur la partie analytique

La conclusion partielle des résultats de cette partie analytique sont les suivants :

\footnote{4. Chacun de ces deux points sont définis par leur vecteur \(x\) et \(x^+\). Nous avons omis les flèches pour éviter d’alourdir la notation.}
1. Nous avons récrit les équations de Navier-Stokes à viscosité variable (et densité constante), pour mettre en évidence 9 nouveaux termes faisant intervenir des corrélations entre la viscosité dynamique et la vitesse. Nous avons postulé certaines hypothèses le long de l’axe du jet afin de réécrire le bilan d’énergie cinétique à partir de ces équations de Navier-Stokes. Il est apparu les résultats suivants :

2. Nous avons montré que dans un écoulement à viscosité variable, la dissipation $\langle \epsilon \rangle$ et la pseudo-dissipation $\langle \varepsilon \rangle$ ne peuvent plus être confondues, comme pour une turbulence à viscosité constante.

3. A partir de l’écriture de la nouvelle équation de bilan énergétique en 1 point, nous avons montré que les termes supplémentaires issus de l’équation de Navier-Stokes induisaient une dissipation d’énergie totale plus élevée que dans celle d’une turbulence "classique" à viscosité constante.

4. Nous avons repris le bilan de quantité de mouvement moyen, et montré qu’il contient des termes supplémentaires, amenés par la viscosité variable. L’estimation des ordres de grandeurs de ces termes nous incite à être prudent sur leur omission dans ce bilan, d’autant plus que dans notre cas de figure, la géométrie particulière de notre jet induit probablement de forts effets de sillage derrière la lèvre du jet. Ces effets mettent en défaut les hypothèses de couche limites derrière la lèvre, et renforce l’impact des gradients de viscosité (dans les structures tourbillonnaires créées). Ce point sera éclairci prochainement par un calcul des ordres de grandeur complet.
Chapitre 6

Lien avec la stabilisation des flammes non-prémélangées derrière un obstacle mécanique

Ce chapitre est dédié à une ouverture des travaux précédents vers des problématiques de la combustion.

Nous souhaitons discuter de l’intérêt des résultats précédents dans le contexte de la stabilisation des flammes en régime non-prémélangé, sur des brûleurs plans ou axisymétriques. Il ne constitue qu’une brève introduction au lien étroit entre la turbulence en phase de développement dans un sillage proche et la stabilisation des flammes non-prémélangées. Nous nous contentons d’en donner au moins les prémisses et fixons le cadre pour une éventuelle reprise plus complète de ces travaux dans le futur.

Ce chapitre est articulé en deux temps :

Dans un premier temps, nous replacions les résultats essentiels que nous avons dégagés de cette étude de la turbulence en transition, pour le contexte général de la combustion des régimes non-prémélangés.

Dans un deuxième temps, nous poursuivons en rappelant très brièvement la problématique d’une stabilisation de flamme non-prémélangée, dans le cas général, puis dans le cas appliqué sur un brûleur plan. Cette première partie fait appel à quelques rappels succincts de la bibliographie sur les flammes triples, et sur les écoulements de sillage proche derrière une lèvre fine ou épaisse. Nous terminons ce premier point par la question essentielle posée du point de vue industriel : "Quelle épaisseur donner à une lèvre de brûleur afin de pouvoir stabiliser une flamme non-prémélangée, en fonction des conditions d’injection (fluides, couches limites, ...) ?". Est-il possible de trouver un critère sur cette épaisseur ?
Dans un troisième temps, nous présentons une étude sur un brûleur plan 2D, pour laquelle notre technique couplée HWA/RLS (Chapitre 3) a été employée. L’influence des conditions initiales est le coeur de cette partie expérimentale, et l’effet d’une épaisseur de lèvre variable sur le brûleur est longuement discutée, et étayée par quelques mesures dans le champ proche sur une couche de mélange Air-Air.

Ce chapitre s’achève par une large discussion sur l’influence d’une lèvre sur le devenir de l’écoulement (plan ou axisymétrique comme dans les chapitres précédents), et sur les perspectives offertes par ces travaux en cours de démarrage.

6.1 Intérêt des propriétés d’une turbulence en transition en écoulements de fluides hétérogènes pour la combustion

Les résultats de nos chapitres précédents sont recentrés dans le contexte général de la combustion.

– Résultat important 1 : La gamme des échelles de la turbulence à viscosité variable est plus étroite que celle à viscosité constante (à même quantité de mouvement entre le fluide injecté et le fluide environnant), et cette distribution des échelles est située vers les plus grands nombres d’onde.

Ce résultat offre quelques compléments essentiels sur les propriétés réelles d’un écoulement turbulent de fluides combustible/comburant en amont d’un front de flamme Non-Prémélangé (flamme triple). En effet, la structure (épaisseur, composition interne) et la dynamique (extinction, plissement, ...) d’un tel front de flamme sont très fortement sujettes aux propriétés de l’écoulement qui l’impacte [203].

– Résultat important 2 : La dissipation de l’énergie cinétique est bien plus élevée dans un écoulement à viscosité variable, notamment dans la phase de production de la turbulence, grâce à des corrélations gradients de viscosité-gradients de vitesse. En supposant que le rapport entre la dissipation de l’énergie cinétique et du scalaire $\overline{\epsilon}$ est constant [224], ce point suggère que la dissipation du scalaire va également être bien plus élevée, dans le mélange frais en amont d’un front de flamme (d’un régime prémélange ou non-prémélange). Avec une dissipation du scalaire plus forte, les propriétés de la flamme triple seront complètement modifiées, comme on le verra plus en détail dans le paragraphe suivant.

– Résultat important 3 : L’apparition d’un régime de Batchelor pour le scalaire. Ce résultat illustre la capacité d’un écoulement présentant des forts gradients de viscosité à pouvoir dissiper le scalaire (combustible ici, propane) à des échelles plus fines que celles du champ dynamique. Ce résultat ouvre la voie pour pouvoir éventuellement mieux brûler des mélanges combustibles/comburant réputés difficiles à brûler et/ou à stabiliser. Nous pensons aux nouveaux mélanges amenés à prendre une place de plus
6.2 La combustion des régimes de flammes non-prémélangees

6.2.1 La flamme triple placée dans un écoulement laminaire

Le mécanisme de base de toute stabilisation de flamme est d’assurer l’égalité entre la vitesse locale incidente de l’écoulement (convection du mélange frais à $U(x, t)$) et la vitesse de consommation des réactifs (déplacement du front de flamme dans les gaz frais à $S(x, t)$). En règle générale, il suffit que cette stabilisation soit efficace au voisinage du point de stoechiométrie pour que le régime soit stabilisé en entier. En ce point, la vitesse du front de flamme est nulle dans un repère fixe.

Pour une combustion prémélangeée, il peut exister une succession de tels "points" d’équilibre spatio-temporels $[x_0, t_0], [x_1, t_1], [x_2, t_2],...,[x_i, t_i],...,[x_n, t_n]$ assurant pour chacun d’entre eux l’égalité entre $U(x, t)$ et $S(x, t)$. En effet, la large étendue spatiale du prémélange frais en amont de la zone réactionnelle d’une part, et ses bonnes qualités d’homogénéité d’autre part, procurent des conditions propices au maintien de l’inflammabilité dans l’écoulement.

Dans le cas d’une flamme non-prémélangeée, le concept de stabilisation est plus délicat. En effet, pour ce type de flammes, le mélange moléculaire intime entre les réactants, indispensable à la création de la réaction chimique réactionnelle, ne se réalise qu’au dernier moment à l’endroit exact de la rencontre des réactifs. Il apparaît alors impossible à une telle flamme de posséder une vitesse "intrinsèque" de propagation, dès lors que le moindre déplacement du point de réaction faisant suite au dégagement de chaleur créé (on ne peut pas parler de front de flamme, puisque la zone de réaction est assimilée à un point ponctuel, lieu de l’association intime des réactifs), conduit irrémédiablement la zone réactive vers des conditions défavorables à son maintien dans l’écoulement. En effet, les conditions idéales d’inflammation n’étant assurées que lorsque l’un ou l’autre des réactifs sont situés au point de stoechiométrie (point unique), le déplacement forcé de ce point de réaction soit vers le combustible, soit vers l’oxidant conduit à une extinction.

Expérimentalement, un tel régime de combustion peut être stabilisé dans le champ proche d’une couche de mélange, comme cela est reproduit sur la figure (6.1). Il se forme alors une flamme, dite triple, possédant une branche riche et une branche pauvre, suivie d’un longue partie où continuent de brûler les
réactifs selon un mode de diffusion. **Le comportement dynamique du front de flamme (les deux branches prémélangées) sont très sensibles à l’écoulement amont.**

![Fig. 6.1 – Flamme triple Méthane-Air liftée, d’après les travaux de Kim et al. (2005). Sa structure arbre deux branches de prémélange (une branche riche et une branche pauvre) en amont de la flamme qui sont incurvées dans le sens de l’écoulement ; un long panache de diffusion, accroché à l’arrière des deux branches prémélangées est également visible.](image)

Les travaux de référence sur la dynamique d’un champ laminaire amont sur un front de flamme triple sont nombreux. Parmi ceux-ci, citons ceux de Ghosal et Vervisch [103]. Leurs travaux sur la dynamique des flammes triples, dans des prémélange partiels, ont permis d’aboutir au résultat important suivant : une flamme triple placée dans un écoulement de prémélange partiel va posséder une dynamique (vitesse de propagation dans l’écoulement) complètement différente de celle d’une flamme laminaire prémélangée.

Une nouvelle vitesse de propagation pour cette flamme triple a été établie[103] :

\[U_{TF} = S_f^0(1 + \alpha_f) - \frac{\beta}{\gamma_{st}(1 + \alpha_f)\sqrt{3\nu_F}} - 2\sqrt{\frac{\lambda}{\rho C_p \epsilon_s}} \] (6.1)

\(\alpha_f = (T_{burned} - T_{fresh})/T_{burned} \), \(\beta \) le nombre de Zeldovich, \(\gamma_{st} \) représente la fraction de mélange à la stoechiométrie, \(\nu_F \) le coefficient stoechiométrique du combustible, et \(\epsilon_s \) le **taux de dissipation de la fraction de mélange loin en amont du front de flamme (conditions froides)**. De la même manière, les propriétés thermophysiques apparaissant dans cette relation sont celles loin en amont du front de flamme.

1. Dans cette expression, plus \(\langle \epsilon_s \rangle \) augmente, plus \(U_{TF} \) diminue. On entrevoit facilement que pour une certaine valeur de la dissipation du scalaire, disons \(\langle \epsilon_s^* \rangle \), la valeur de \(U_{TF} \) va être trop basse pour que la flamme triple se maintienne dans l’écoulement. Il y a alors extinction locale possible de la triple flamme.
Cette relation (6.1) montre par quel biais les propriétés de l’écoulement loin en amont du front de flamme vont influencer la dynamique de la flamme tout entière. Cette affirmation est justifiée par la remarque de Linan et Crespo [155] sur le fait que le nombre de Péclet \(P_e^2 \) est très vite supérieur à 1 devant une flamme triple, avec les ordres de grandeurs typiques de vitesse de stabilisation de ces flammes. Ainsi, le flux de chaleur ne perturbe pas les propriétés thermophysiques du prémélange en amont. Des mesures expérimentales ont validé ce concept d’importance du mélange à froid amont du front de flamme [184].

Dans la relation (6.1) apparaît ainsi la dissipation du scalaire. Selon l’importance de cette grandeur dans le mélange situé en amont du front de flamme, le profil de celui-ci va être modifié, créant un effet direct sur la courbure de la flamme triple. Cet effet de courbure va à son tour modifier la déviation des lignes de courant, influençant indirectement le profil de vitesse amont, modifiant in fine le profil de la fraction de mélange... Nous nous apercevons rapidement de l’imbrication itérative des propriétés de l’écoulement en amont d’une flamme triple sur sa dynamique, et vice-versa.

6.2.2 Base de la modélisation des flammes non-prémélangeées turbulentes

Du point de vue de la modélisation d’une flamme non-prémélangeée turbulente, la dissipation du scalaire \(\epsilon_s \) dans le mélange isotherme amont est formulée à partir d’une hypothèse de viscosité constante dans l’équation de transport pour la fraction massique de mélange \(Y \), et provenant d’une équation de transport de la fraction de mélange qui s’écrit (hypothèse de chimie à une étape, nombre de Lewis unité) :

\[
\frac{\partial (\rho Y)}{\partial t} + \nabla \cdot (\rho u Y) = \nabla \cdot (\rho D_Y \nabla Y) + \omega_Y = \rho \omega_Y |\nabla Y| \tag{6.2}
\]

Cette équation sert ensuite pour écrire l’équation de la variance du scalaire, \(Y''^2 \) [285] :

\[
\frac{\partial (\rho \tilde{Y}'')}{\partial t} + \nabla \cdot (\rho \tilde{u}'\tilde{Y}'') = \nabla \cdot (\rho D_Y \nabla \tilde{Y}'') + 2 \tilde{Y}'' \nabla \cdot (\rho D_Y \nabla Y) - 2 \tilde{\rho} \tilde{u}'' \cdot \nabla \tilde{Y} - 2 \rho D_Y \nabla \tilde{Y} \cdot \nabla \tilde{Y} \tag{6.3}
\]

Dans cette équation, les termes visqueux sont omis (grand Reynolds). Les termes de la première ligne à droite du signe égal sont également négligeables dans le cas des grands Reynolds. En revanche, le terme de production montre une forte corrélation entre les fluctuations de la vitesse \((u'') \) et celles du scalaire \((Y'') \).

\(^2\) Ce nombre compare la convection thermique dans la direction de l’écoulement vis-à-vis de la diffusion thermique vers l’amont. Si ce nombre est élevé, le flux thermique dégagé par la zone réactive est convectée en aval, et ne remonte qu’à une distance amont de l’ordre de l’épaisseur de la couche de préchauffage du front de flamme.
La dissipation du scalaire ϵ, rentre dans tous les modèles prédictifs de taux de combustion (directement ou indirectement), voir l’article de revue [22]. La connaissance de sa valeur est primordiale [285]. L’équation (6.3) montre que le champ dynamique agit de manière importante sur le comportement de la dissipation du scalaire. Ceci aurait comme conséquence une portée très grande dans le cas d’un écoulement à viscosité variable (propane et air par exemple) comme nous l’avons étudié dans les chapitres précédents ; notamment lorsque les nombres de Reynolds sont bas, et que la production turbulente est élevée (forts gradients de vitesse).

Ces quelques rappels soulignent l’importance à accorder à la connaissance des propriétés de l’écoulement isotherme, formé en amont d’une flamme triple. Par ailleurs, de nombreuses problématiques industrielles sont concernées par la qualité du mélange non-réactif avant inflammation (problèmes d’allumage, de ré-allumages, ...).

6.3 L’écoulement en champ proche derrière la lèvre d’un brûleur

Pour stabiliser une flamme non-prémélangée, on a recours à différents procédés. Un premier procédé, d’origine mécanique, exploite l’avantage qu’ont les flammes prémélangées de posséder une vitesse de propagation propre. Elle consiste donc à créer artificiellement et très localement, un prémélange réactif en amont du point d’inflammation, afin que l’extrémité de la flamme de diffusion (appelée "edge-flame" en anglais) soit de type flamme de prémélange, a priori plus simple à stabiliser. Cette extrémité de flamme non-prémélangée peut prendre l’aspect d’une structure triple ou d’un point triple. Pour cela, on utilise habituellement une lèvre séparatrice, facile à mettre en œuvre sur un brûleur, et consistant en une plaque fine d’épaisseur et de forme finale particulières, isolant l’arrivée de chaque réactant dans le foyer de combustion. La stabilisation du régime non-prémélangé va se réaliser dans le sillage proche de cette lèvre séparatrice, à une distance dépendant de nombreux facteurs liés à l’écoulement d’une part, et aux propriétés de la flamme d’autre part.

L’importance de cette lèvre est cruciale car elle va jouer deux rôles essentiels :

– Elle va permettre la réalisation d’un prémélange entre le combustible et l’oxydant dans le sillage du bord de fuite et en amont du point d’inflammation, principalement par le renfort d’instabilités de sillage (de type Von Karman) accélérant la diffusion de quantité de mouvement et de masse transversalement à la direction principale des écoulements réactifs,

– Elle va permettre la diminution de la vitesse locale de l’écoulement dans le sillage vers une valeur compatible (i.e. de valeur égale et opposée) avec la vitesse de propagation de flamme du prémélange
réactif ainsi formé en amont du point d’inflammation, grâce au raccordement des couches limites issues des canaux d’alimentation (en amont du bord de fuite de la lèvre séparatrice), et par l’effet de culot derrière la lèvre,

Dans la pratique, ce problème est délicat et complexe à résoudre et à mettre au point, car de multiples facteurs rentrent en ligne de compte, dont on nous pouvons citer :

– **La géométrie de la lèvre à la sortie et son épaisseur**, qui modifient à la fois l’allure du profil de vitesse déficitaire, et celle du profil de concentration du prémélange amont dans le sillage, modifiant ainsi les temps caractéristiques de diffusion transverse de quantité de mouvement et de masse,

– **La nature des gaz réactifs**, qui influent directement sur les caractéristiques de ces profils mais également sur la vitesse de propagation du front de flamme S_f du prémélange ainsi formé dans cette région de stabilisation,

– **La nature du régime d’écoulement dans cette région de stabilisation** (laminaire ou turbulent), qui est piloté par la nature des couches limites amont se rejoignant au bord de fuite de la lèvre séparatrice. Des phénomènes d’interactions entre ces couches limites et l’écoulement dans le sillage peuvent même être provoqués, menant à des décollements de couche limite prématurés qui induisent en retour, une modification des profils de concentration dans le proche sillage. Il s’agit du vaste problème de la Triple Couche (*Triple deck*), initié par Goldstein en 1930 [106] et repris plus récemment par [237].

A cet ensemble de paramètres s’en ajoutent d’autres d’une complexité supplémentaire, à savoir le fait que la vitesse de propagation de flamme d’un prémélange réactif dépend également de plusieurs facteurs, dont :

– **La courbure locale du front de flamme au voisinage du point de stabilisation** [87] [165] ;

– **L’étirement local dans l’écoulement au voisinage du front de flamme** [59] [89].

Abordons maintenant brièvement le cas le plus simple décrivant le champ de la fraction de mélange dans le sillage laminaire d’une lèvre d’épaisseur très mince (sans effet de culot). Ce cadre d’étude fixe les bases permettant de faire ressortir la phénoménologie dans cette région particulière d’écoulement.
6.3.1 Régime laminaire et distance d’auto-inflammation

Les premiers auteurs à s’être intéressé à ce problème de sillage proche (pour une plaque plane d’épaisseur nulle) sont Goldstein [106], et Hakkinen et Rott [111]. Ces travaux de sillage laminaire derrière une plaque séparatrice ont été conduits pour une plaque infiniment mince dans le cadre d’un problème d’auto-inflammation [237][235][236], pour une plaque d’épaisseur finie taillée en pointe dans le cadre d’un problème d’aérodynamique inerte [101], et pour une lèvre à bord de fuite à angle droit [115]. La figure (6.2) illustre le premier cas de figure que nous allons détailler un peu.

Fig. 6.2 – Région de la triple couche et échelles caractéristiques au voisinage d’un bord de fuite d’une plaque infiniment mince, d’après [91].

Les auteurs se sont attachés à résoudre ce problème en subdivisant la région du sillage proche en plusieurs zones distinctes, et en décomposant l’écoulement autour du bord de fuite de la paroi en trois parties
-- la zone de Navier-Stokes, région située au voisinage très proche derrière la lèvre (typiquement quelques microns), dans laquelle les équations de couches limites tombent en défaut. Ainsi, dans cette région de l’écoulement, il faut considérer le flux de conduction vers l’amont, qui n’est pas nul (ainsi que le gradient de pression dans la direction longitudinale). D’un point de vue combustion, les flammes accrochées au brûleur (avec tous les aspects d’endommagement thermique) se situent dans cette région. Cette région doit être décrite mathématiquement par les équations de Navier-Stokes. La longueur de cette zone est définie telle que : $x \ll l_N$, avec :

$$l_N = l_B Re_b^{-1/2} \quad (6.4)$$

avec $Re_b = \frac{U_{rapide} l_B}{\nu}$ le nombre de Reynolds basé sur une longueur caractéristique l_B l’épaisseur de la couche limite amont à la lèvre de l’écoulement le plus rapide.

-- la zone de Rott-Hakkinen, qui suit la région de Navier-Stokes, présentant un gradient de pression qui continue d’évoluer avec la distance longitudinale selon la loi $dp/dx \sim x^{-1/3}$. Cette zone correspond à l’aérodynamique des flammes suspendues (liftées). Elle est typiquement comprise entre quelques centaines de microns et quelques millimètres derrière la lèvre. La longueur de cette zone est définie telle que : $l_N \ll x \ll l_T$, avec :

$$l_T = l_B Re_b^{1/4} \quad (6.5)$$

-- la zone de Goldstein, qui définit la fin du sillage proche, où le gradient de pression est nul ($dp/dx=0$). Les flammes suspendues sont encore concernées par cette région aérodynamique, de longueur comprise entre $l_T \ll x \ll l_w$, avec :

$$l_w = \frac{U_0 l_B^2}{\nu} = Re_B l_B \quad (6.6)$$

Pour chacune de ces zones correspond également un temps caractéristique de résidence du mélange :

-- Région de Rott-Hakkinen : $Re_b^{-1} \ll t/t_w \ll Re_b^{-1/2}$
-- Région de Goldstein : $Re_b^{-1/2} \ll t/t_w \ll 1$

Les écoulements débouchant dans le sillage sont supposés laminaires pour chacun des réactifs. Un profil de couche limite établi de type Blasius est considéré, caractérisé par un pente à la paroi (gradient de vitesse à la paroi), noté λ_O et λ_F (O et F pour l’oxydant et le combustible respectivement). La longueur
du sillage de Goldstein peut être estimée à partir de l’équilibre entre la convection longitudinale et les forces visqueuses dans l’équation de quantité de mouvement :

\[l_w = \frac{U_0 l_B^2}{\nu} = Re_B l_B \]

(6.7)

avec \(l_B \) l’épaisseur de la couche limite amont de l’écoulement le plus rapide, et \(Re_B = \frac{U_0 l_B}{\nu} \) (\(U_0 \) est la vitesse extérieure à la couche limite amont le plus rapide). De manière équivalente, le temps de résidence du fluide dans la région de sillage est donné par :

\[t_w = \frac{l_B^2}{\nu} \]

(6.8)

Pour les abscisses telles que \(x \ll l_w \), le profil de vitesses dans cette région très proche adopte une allure donnée uniquement par les pentes \(\lambda_O \) et \(\lambda_F \) des deux couches limites amont. Par conséquent, l’évolution de la composante axiale de la vitesse (\(u \)) selon la direction \(y \) est linéaire avec \(\lambda_O \) et avec \(\lambda_F \), telle que \(u \propto \lambda_O y \) et \(u \propto \lambda_F y \). L’absence de longueur caractéristique dans la direction longitudinale entraîne que les profils de vitesses sont autosimilaires, comme l’a suggéré le premier Goldstein [106].

Reprenant la décomposition de la région de sillage selon les trois zones distinctes précitées (Navier-Stokes, Rott-Hakkinen et Goldstein), Sanchez [235] s’est donc attaché à développer un modèle analytique basé sur les équations de la couche limite laminaire pour l’hydrodynamique dans le sillage, et sur une loi d’Arrhénius avec énergie d’activation \(\beta=E/(RT) \) infiniment grande pour le modèle de combustion. Ses hypothèses de travail sont :

- lèvre infiniment mince,
- nombre de Reynolds \(Re_B = \frac{U_{rapide} l_B}{\nu} \) suffisamment élevé pour que la conduction du front de flamme vers l’amont (lèvre) soit négligeable dans les régions de Goldstein et de Rott-Hakkinen ; il est néanmoins présent dans la région de Navier-Stokes \((l_N = l_B/Re_B^{1/2}) \) très proche de la paroi,
- réactifs dilués de façon à pouvoir considérer la masse volumique du mélange constante, et à assurer l’autoinflammation dans la région de Goldstein ou de Rott-Hakkinen,
- la loi de Fick est associée à un coefficient de diffusion binaire pour chacun des réactifs vis-à-vis du diluant,
- le modèle de combustion est à une étape irréversible, de type Arrhénius, avec une énergie d’activation très élevée \((\beta \rightarrow 0) \).

Sur la base de ces hypothèses, et moyennant la résolution des équations de couches limites dans le sillage proche laminaire, ces travaux conduisent aux relations autosimilaires suivantes pour les fractions de mélange :

\[Y = 1 - \frac{\int_{-\infty}^{\eta} exp \left(-\frac{2}{3} Sc_F \int_{0}^{\eta} F(\eta)d\eta \right) d\tilde{\eta}}{\int_{-\infty}^{\infty} exp \left(-\frac{2}{3} Sc_F \int_{0}^{\eta} F(\eta)d\eta \right) d\tilde{\eta}} \]

(6.9)
et

\[Y_O = 1 - Y = 1 - \int_{-\infty}^{\eta} \exp \left(-\frac{2}{3} \text{Sc}_O \int_{\eta}^{\infty} F(\eta) d\eta \right) d\eta \]

avec \(\text{Sc}_F = \nu/D_F \) et \(\text{Sc}_O = \nu/D_O \) les nombres de Schmidt du combustible et du comburant, et \(F \) la fonction de courant du champ de vitesse, choisie telle que :

\[u = (\nu \lambda_O^2)^{1/3} x^{1/3} F' \]

et

\[v = -\left(\nu^2 \lambda_O\right)^{-1/3} \left(\frac{2}{3} F - \frac{1}{3} \eta F' \right) \]

avec la variable adimensionnée \(\eta = (\nu/\lambda_O)^{-1/3}(y/x^{1/3}) \).

Bien que cette étude ait été réalisée à viscosité \(\nu \) constante, et de ce fait, ne rend pas complètement compte de la physique d’un couple combustible/comburant présentant des différences de viscosité (comme propane/air), ces résultats théoriques appellent la remarque importante suivante :

Le nombre de Schmidt intervient directement dans la relation de la distribution des profils laminaires de la fraction de mélange. Or, sachant d’après les résultats des chapitres précédents que le nombre de Schmidt est profondément modifié par la différence de viscosité entre deux gaz (régime de Batchelor), cette remarque confirme que ce paramètre (nombre de Schmidt) est un paramètre important sur l’allure des profils (laminaires ici) de la fraction de mélange \(Y \) de propane, donc à prendre en compte dans le processus de stabilisation de la flamme triple dans le sillage.

La prise en compte de l’effet de l’épaisseur de la lèvre de séparation a fait l’objet de peu de publications à ce jour. Les plus complètes sont celles de [115] et de [284] pour un sillage de plaque plane d’épaisseur non nulle. Bien que des auteurs [115] aient mentionné l’importance potentielle de ce paramètre et affirmé qu’il semble ” tomber sous le sens physique ” que la hauteur de la lèvre séparatrice entre les deux écoulements amont constitue une échelle de longueur caractéristique de l’écoulement et du mélange dans le sillage, peu d’études ont été engagées pour combler ce manque. Probablement pour deux raisons : numériquement, cela nécessite d’augmenter fortement le nombre de mailles dans la région de Navier-Stokes afin de pouvoir calculer correctement l’écoulement recirculant éventuel, ce qui entraîne un surcoût de calcul ; expérimentalement, il est très difficile en l’état actuel des techniques d’accéder à des mesures fiables dans une zone aussi proche d’une paroi.
6.3.2 Régime turbulent

En revanche, l’aérodynamique des sillages turbulents est plus rarement étudiée. Quelques études numériques existent néanmoins pour les jets coaxiaux [25]. En effet, devant la complexité de l’écoulement dans cette région (turbulence en phase de développement avec phénomènes de décollements pariétaux) associée aux difficultés de résolution numérique, les modèles de turbulence pleinement établie dans cette région, ne peuvent rendre compte de la physique de l’écoulement. Si l’épaisseur de la lèvre séparatrice n’est pas infiniment mince, ceci ajoute une difficulté supplémentaire au problème.

D’un point de vue combustion, il est intéressant de pouvoir mélanger efficacement et très rapidement un combustible avec un comburant dans cette région de très proche sillage, tout en stabilisant la flamme. Suite à cette remarque, nous posons la question suivante :

– Peut-on trouver un critère de choix pour l’épaisseur de la lèvre séparatrice satisfaisant à ces exigences, en tenant compte de l’influence des conditions limites amont, et surtout de l’effet des gradients de viscosité présents ? Par exemple dans le cas d’un mélange combustible/comburant Propane-Air, ou plus généralement pour un couple combustible/oxydant quelconque.

Nous ne prétendons pas répondre à cette question dans ce mémoire, mais jettons les premières bases qui demanderont à être poursuivies ultérieurement. Pour cela, nous allons présenter un dispositif expérimental permettant d’apporter un éclairage sur les propriétés de la turbulence dans la région initiale (proche sillage) d’une couche de mélange en fonction de l’épaisseur de la lèvre séparatrice, avec des conditions limites amont maîtrisées.

Le paragraphe s’achève par quelques résultats partiels sur la naissance de la turbulence tridimensionnelle derrière une lèvre, qui nous ont semblé intéressants de mettre en avant pour esquisser le rôle joué par une lèvre sur le devenir d’un écoulement pleinement turbulent.

6.4 Dispositif expérimental pour l’étude du sillage proche d’une lèvre de brûleur plan 2D

Pour clore ce manuscrit, nous présentons un dispositif expérimental pour l’exploration des propriétés turbulentes du champ dynamique et du scalaire d’un écoulement propane-(air-néon) dans le sillage proche derrière une lèvre épaisse, à l’aide de la technique couplée que nous avons développée dans le chapitre 3.

3. Nous rappelons que le néon peut venir en substitution de l’azote dans l’air pour une étude en milieu réactif par la suite.
6.4.1 Dispositif expérimental et conditions opératoires

Le dispositif expérimental est composé d’une soufflerie plane 2D verticale constituée de deux canaux rectangulaires symétriques. La hauteur et l’envergure de chacun des canaux sont respectivement de 2770 µm et de 40 mm, offrant un rapport de forme de l’ordre de 15. Les deux canaux sont séparés par une plaque. Celle-ci est facilement interchangeable afin de pouvoir modifier l’épaisseur de matière de l’entrefer. Deux plaques peuvent être utilisées pour les mesures : une première plaque d’épaisseur constante et égale à 770 µm (dénommée par la suite, plaque "A"), et une seconde plaque dont l’extrémité a été taillée en pointe sur une distance de 10 mm, avec une épaisseur maximum de 100 µm dans le plan de sortie (dénommée plaque "B"). Les deux plaques ont été polies au papier de verre de grains 200 à 6000, dans le sens de l’écoulement, afin d’obtenir une rugosité très faible (estimée à 6 µm environ).

![Fig. 6.3 – Schéma du brûleur plan 2D utilisé, avec description de ses principaux organes internes](image)

Les fluides entrent dans la partie basse de la soufflerie et circulent à travers différents organes favorisant la laminarisation de l’écoulement en sortie. Les organes suivants sont ainsi placés successivement dans chacun des canaux : un volume de tranquillisation muni de deux plaques trouées (une avec des trous larges et la deuxième avec des trous de faible diamètre), des billes plastiques, un nids d’abeille, puis un poreux. À l’aval et sur chacun des canaux, un convergent de rapport de contraction de 1/30 est placé pour réduire de manière importante les éventuelles fluctuations turbulentes encore présentes.

Afin d’obtenir des profils de vitesse raccordés à la sortie, une longueur droite de 300 mm a été pla-
cée entre le plan de sortie du convergent et l’embouchure des canaux de la soufflerie. Les couches limites peuvent être déclenchées en amont de ce tronçon droit, grâce à la possibilité de mettre en place un petit cylindre de diamètre 1 mm perpendiculairement à l’écoulement.

La soufflerie est montée verticalement (repère XYZ, Fig. (6.4)) sur un système de déplacement micrométrique NEWPORT MicroControle 3 axes XYZ (avec butées micrométriques de précision, sensibilité 1 μm). Des comparateurs digitaux précis (1 μm) permettent une lecture aisée et précise des déplacements de la soufflerie dans les trois axes. L’horizontalité du montage (soufflerie, socle et systèmes de déplacement) a été vérifiée grâce à un niveau à bulle de précision. L’angle maximum mesuré traduisant l’écart par rapport à l’horizontalité est de 0,3 degré, ce qui engendre une erreur d’horizontalité de 36 μm lorsque le système se déplace transversalement du canal droit au canal gauche.

Fig. 6.4 – Schéma de la géométrie des canaux de sortie du brûleur

La figure (6.5) montre la soufflerie montée verticalement en configuration de mesure dans la salle d’expérience.

6.4.2 Profils de vitesse en sortie - Conditions Air-Air

Une première série de mesures a été réalisée en injectant de l’air dans les deux canaux 1 et 2. Les conditions sont regroupées dans le tableau (6.1).

Les profils de vitesse longitudinale dans le plan de sortie des canaux d’injection (à une position légèrement rentrée de 100 μm dans les canaux) ont été mesurées par anémométrie à fil chaud.

A partir de ces profils de vitesse longitudinale dans le plan situé à Z=−100 μm, les autres grandeurs caractérisant les couches limites amont ont été calculées pour chacune des conditions d’écoulement (C1 à C3), en prenant l’épaisseur de la couche limite égale à h/2 = 1380 μm (h étant l’épaisseur d’un canal d’injection) :
Fig. 6.5 – Photographie du montage expérimental, avec le brûleur plan 2D

<table>
<thead>
<tr>
<th>Condition</th>
<th>Ecoulement</th>
<th>vitesse maxi air canal 1 (m/s)</th>
<th>vitesse maxi air canal 2 (m/s)</th>
<th>ratio vitesse maxes</th>
<th>facteur de forme canal 1</th>
<th>facteur de forme canal 2</th>
<th>Nombre de Reynolds Reₜ** canal 1</th>
<th>Nombre de Reynolds Reₜ** canal 2</th>
<th>Nombre de Reynolds Re₁₂</th>
<th>Nombres de Reynolds Re₁₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>[C1]</td>
<td></td>
<td>14,85</td>
<td>6,95</td>
<td>0,5</td>
<td>2,64</td>
<td>2</td>
<td>114</td>
<td>71</td>
<td>4820/2250</td>
<td>4820/2250</td>
</tr>
<tr>
<td>[C2]</td>
<td></td>
<td>14,85</td>
<td>4,25</td>
<td>0,30</td>
<td>2,62</td>
<td>2</td>
<td>114</td>
<td>44</td>
<td>4820/1380</td>
<td>4820/1380</td>
</tr>
<tr>
<td>[C3]</td>
<td></td>
<td>14,85</td>
<td>2,35</td>
<td>0,15</td>
<td>2,64</td>
<td>2</td>
<td>114</td>
<td>24</td>
<td>4820/760</td>
<td>4820/760</td>
</tr>
</tbody>
</table>

Tab. 6.1 – Conditions initiales pour la couche de mélange Air-Air

– épaisseur de quantité de mouvement δ^{**}

$$\delta^{**} = \int_0^h \frac{U}{U_{max}} \left[1 - \frac{U}{U_{max}} \right] dy$$ \hspace{1cm} (6.13)

avec U_{max} la vitesse maximale dans le canal d’injection (au centre), et U la vitesse dans le canal, à une hauteur quelconque, et h la hauteur du canal d’injection.

– épaisseur de déplacement δ^{*}

$$\delta^{*} = \int_0^h \left[1 - \frac{U}{U_{max}} \right] dy$$ \hspace{1cm} (6.14)
– Facteur de forme H

\[
H = \frac{\delta^*}{\delta^{**}} \tag{6.15}
\]

Les valeurs trouvées sont également recensées dans le tableau (6.1).

Pour le canal de fluide lent, la valeur du facteur de forme H trouvée (égale à 2,6) est proche de la valeur d’un profil de Blasius théorique, égale à $H=2,51$ ([245]). La différence provient de l’erreur introduite par la mesure des profils de vitesse dans un plan $Z=-100 \ \mu m$ au lieu d’un plan idéal situé à $Z=0$. En effet, les profils de vitesse mesurés ne fournissent pas une valeur nulle de la vitesse aux abscisses transversales correspondant aux parois des canaux.

Pour le canal de fluide rapide, le facteur de forme H obtenu vaut 2, qui est une valeur intermédiaire entre un profil laminaire et pleinement turbulent $H=1,4$ ([245]). Cela vient du fait que la turbulence naturelle dans les canaux n’est pas suffisamment développée pour obtenir des profils plats, caractéristiques d’une turbulence pleinement développée. Un déclenchement de la turbulence à l’entrée de la longueur droite serait nécessaire pour avoir une turbulence pleinement développée.

La bidimensionnalité de la soufflerie a également été vérifiée. Pour cela, la sonde à fil chaud a été positionnée à $Z=+100 \ \mu m$, $Y=1400 \ \mu m$ (endroit de la vitesse maximale), puis déplacée selon l’axe X, balayant ainsi toute l’envergure de la soufflerie. Il a été trouvé une variation de la vitesse longitudinale moyenne de moins de 2% sur une distance de 10 mm de part et d’autre du plan de mesure (situé à X=0).

La figure (6.6) montre les profils de vitesse longitudinale moyenne obtenus pour chacune des 3 conditions C1, C2 et C3, à $Z=+100 \ \mu m$. Ces profils ont été approchés par une loi parabolique pour les canaux à vitesse lente. Pour le canal rapide, le profil n’est plus tout à fait parabolique. Il n’est pas non plus très bien approché par un profil en puissance. Ceci confirme la valeur $H=2$ à mi-chemin entre un écoulement pleinement turbulent, et un écoulement pleinement laminaire.

Le taux de turbulence résiduel $u/<U>$ de l’écoulement dans le plan de sortie a été déterminé à partir des mesures de vitesses. Les valeurs trouvées pour chacune des 3 conditions C1, C2 et C3 sont respectivement :

- 4,2% (côté rapide) et 3,0% (côté lent),
- 4,2% (côté rapide) et 1,8% (côté lent),
- 4,3% (côté rapide) et 1,2% (côté lent).

Les taux de turbulence obtenus ne sont pas aussi faibles que pour une soufflerie à profils de vitesse plat ou "top-hat", où le taux de turbulence résiduelle peut descendre en-dessous de 0,5%. Cela provient
Les conditions d’injection Air-Air étant désormais contrôlées, intéressons-nous aux conditions initiales pour la couche de mélange Air-Propane.

6.4.3 Profils de vitesse en sortie - Conditions Propane-(Air-Néon)

Une deuxième série de mesures a été conduite en injectant de l’oxydant (Air-Néon) dans le canal 1 et du propane pur à 99,5% dans le canal 2. Les conditions d’écoulement sont récapitulées dans le tableau 6.2. Pour l’ensemble des conditions C1’ à C4’, les profils de vitesse pour le propane sont très bien approchés par une loi en puissance "un septième" (non représentés ici). Cette approximation par une méthode des moindres carrés confirment que l’écoulement en sortie de la soufflerie pour les conditions d’injection avec le propane, est pleinement turbulent (en ce qui concerne la vitesse moyenne). Pour tous ces profils de vitesse, le facteur de forme H calculé est effectivement très proche de 1,4. On remarque d’ailleurs que le nombre de Reynolds \(Re_{DB} \) est bien supérieur à 2500 (Tableau 6.2). Pour le canal d’air, tous les profils suivent une loi parfaitement parabolique.

Le taux de turbulence résiduel \(u/<U> \) de l’écoulement dans le plan de sortie a été déterminé à partir

Tab. 6.2 – Conditions initiales pour la couche de mélange Propane-(Air-Néon)

Des mesures de vitesses. Les valeurs trouvées pour chacune des 4 conditions C1’, C2’, C3’ et C4’ sont respectivement :
- 2,4% (côté air) et 3,2% (côté propane),
- 2,3% (côté air) et 3,2% (côté propane),
- 4,9% (côté air) et 3,1% (côté propane),
- 2,3% (côté air) et 2,9% (côté propane).

6.4.4 Auto-similitude d’une couche de mélange Air-Air - influence de la lèvre

Couche de mélange avec lèvre infiniment mince

Bien que nous ne présentions aucun résultat sur la lèvre fine (uniquement sur lèvre épaisse), nous rappelons pour mémoire le cadre de référence des couches de mélange à lèvre fine.

D’un point de vue théorique, la couche de mélange plane a reçu beaucoup d’attention, d’une part parce qu’elle offre des solutions analytiques asymptotiques, et d’autre part, grâce à l’intérêt de cette configuration d’écoulement d’offrir un modèle simpliste mais souvent suffisant pour la compréhension d’écoulements industriels plus complexes. Townsend [277] a été le premier à avoir posé les bases théoriques d’une telle configuration d’écoulement et à avoir montré que la couche de mélange turbulente pouvait atteindre un régime d’auto-similitude pour un nombre de Reynolds et une distance axiale suffisants. De nombreux travaux ont ainsi été consacrés à l’étude particulière de ce régime asymptotique et notamment aux propriétés de la turbulence de la couche de mélange auto-similaire ([170]). Les travaux de Rodi [226] et de Birch et Eggers [24] présentent une synthèse assez complète sur ce sujet.

Selon Townsend, le profil auto-similaire peut être approché par une équation du type :

\[
\frac{U - U_2}{U_1 - U_2} = \left[1 + erf \left(\frac{Y - Y_0}{\delta} \right) \right]
\]

(6.16)
avec \(\delta \) l’épaisseur de la couche de mélange, et \(Y \) la coordonnée transversale.

Les conditions nécessaires de l’auto-similitude sont que la couche de mélange grossisse de manière linéaire et que les profils de vitesse moyenne et de taux de turbulence axiale deviennent indépendants de l’abscisse longitudinale lorsque ceux-ci sont adimensionnés par rapport à la différence de vitesse entre les deux canaux et par l’épaisseur locale de la couche de mélange. Il est bien vérifié maintenant que ces conditions d’auto-similitude n’apparaissent qu’à des distances aval suffisantes.

Cependant, beaucoup de confusion et d’imprécision demeure encore concernant les propriétés auto-similaires des couches de mélange (\[225 \]). Les couches de mélange sont très sensibles à la moindre modification des conditions initiales (\[18 \] pour une "revue"). Parmi les grandeurs affectant de manière importante le développement de la couche de mélange, on trouve l’état et l’épaisseur de quantité de mouvement des couches limites initiales (\[37 \] par exemple), l’intensité de turbulence de l’écoulement amont (\[85 \] par exemple), ainsi que le ratio de vitesse entre les deux écoulements parallèles (\[232 \] par exemple).

Pour une couche de mélange "idéale" (sans entrefer), \[121 \] ont suggéré que la longueur d’onde d’instabilité initiale \(\lambda_0 \) est proportionnelle à l’épaisseur de quantité de mouvement initiale \(\delta^{**} \). Ho et Huang \[120 \], Browand et Trout \[38 \] précisent même que l’épaisseur du fluide rapide constitue l’échelle de longueur du problème, en contrôlant la fréquence la plus amplifiée dans la couche de mélange.

Ainsi, pour une couche de mélange simple et lorsque la couche limite amont est laminaire, de nombreux critères basés sur l’épaisseur de quantité de mouvement initiale \(\delta^{**} \) ont été proposés pour estimer la distance d’établissement de l’auto-similitude. Parmi les travaux initiaux, ceux de \[33 \] sur les couches de mélange simples montrèrent qu’une distance minimum de 1000 \(\delta^{**} \) est nécessaire pour atteindre un régime parfaitement auto-similaire. Hussain \emph{et al.} \[125 \] et \[17 \] en ont proposé d’autres. Pour Ho et Huang \[123 \], la distance minimum requise pour l’auto-similitude a aussi été exprimée comme étant celle où au moins deux appariements de structures tourbillonnaires primaires ont été réalisées dans la couche de mélange. Ce critère peut s’écrire formellement comme :

\[
\frac{\Re Z}{\lambda_0} \equiv 8 \tag{6.17}
\]

avec \(\Re = \frac{1-r}{1+r} \) où \(r = U_2/U_1 \) et \(\lambda_0 \) est la fréquence des instabilités initiales de Kelvin-Helmholtz.

Les travaux de Mehta \[170 \] montrent qu’avant de devenir auto-similaire, le profil de vitesse présente un déficit de vitesse situé du côté du fluide lent, et causé par la présence de l’entrefer (même infiniment mince) séparant les écoulements lent et rapide. Ce déficit de vitesse est plus fort lorsque le ratio de vitesse \(r \) augmente, ainsi que la distance aval sur laquelle il est discernable. Pour tous les ratios de vitesse, ce déficit de vitesse moyenne tend à s’effacer, laissant ainsi se confondre le profil de vitesse avec le profil
La décroissance d’intensité du profil déficitaire dans le sillage proche obéit à une corrélation du type \(1/(Z - Z_0)^{1/2} \) \((Z_0 \) est l’abscisse du plan de sortie), étant l’abscisse du plan de sortie de la couche de mélange. L’épaisseur de la couche de mélange \(\delta \) est une fonction linéaire de la distance axiale \(Z \).

Couche de mélange avec lèvre épaisse

A la différence d’une lèvre infiniment mince, des instabilités de sillage vont pouvoir naître derrière la lèvre séparatrice d’épaisseur finie. Tous les résultats présentés pour une lèvre infiniment mince sont profondément altérés.

Par rapport à un modèle théorique de couche de mélange, la couche de mélange réelle telle qu’elle peut être reproduite en laboratoire, nécessite une épaisseur de matière non nulle entre les deux écoulements parallèles. L’effet de l’épaisseur de matière de cette paroi de séparation entre les deux fluides (dénommée "lèvre" ou "entrefer" par la suite) a fait également l’objet de quelques études anciennes [85], mais également de plus en plus d’études récentes ([115]).

Les résultats montrent que l’entrefer joue un rôle très important sur les moments d’ordre 1 et 2, et notamment sur le développement de la couche de mélange. Pour des ratios de vitesse élevés, l’auto-similarité de la couche n’est pas atteinte, à cause de la présence de l’entrefer qui modifie complètement l’écoulement de sillage proche. Sur ce point, [85] avancent que l’influence de la lèvre est prépondérante dès que son épaisseur dépasse 50% de la somme des deux épaisseurs de quantité de mouvement des couches limites amont. Cette valeur vaut 650 \(\mu m \) environ pour nos conditions d’écoulement, et avec une épaisseur d’entrefer de 770 \(\mu m \), on peut conclure que l’influence de la lèvre n’est pas négligeable du tout. Dans leurs travaux, [18] ont trouvé qu’une lèvre épaisse provoquait une nette augmentation de la distance pour atteindre le régime auto-similaire.

Ceci est illustré sur les profils de vitesse moyenne \(<U> \) et d’intensité turbulente axiale \(<u^2>^{1/2}/<U> \)

4. Pour le jet utilisé dans les études précédentes, l’épaisseur de la lèvre de \(\sim 0.5 \) mm est à rapporter à l’épaisseur \(\delta^{**} \) de la couche limite dans le tube d’injection. Si nous supposons que \(\delta^{**} \) est du même ordre de grandeur que pour les conditions d’écoulement de la couche de mélange (Reynolds similaires), nous renforçons ce que nous avons dit dans les chapitres 4 et 5, à savoir que la lèvre va provoquer des instabilités de sillage non négligeables pour le calcul du bilan de quantité de mouvement moyen.
pour la condition C1, présentés (Fig. 6.7 et 6.8) pour la couche Air-Air (lèvre épaisse "A").

Fig. 6.7 – Profils transversaux de vitesse moyenne \(\langle U \rangle \) pour la condition d’écoulement C1, pour différentes distances en aval du brûleur (0.5, 1, 2, 4, 6, 8 et 10 mm respectivement pour Noir, Jaune, Bleu ciel, Mauve, Bleu, Vert, Rouge). En abscisse, la position transversale (en \(\mu m \)), le plan de symétrie du brûleur étant situé à 3200 \(\mu m \).

Fig. 6.8 – Profils transversaux d’intensité turbulente axiale \(< u^2 >^{1/2} / \langle U \rangle \) pour la condition d’écoulement C1, pour différentes distances en aval du brûleur. Mêmes symboles que la figure 6.7.

A partir de ces résultats, les valeurs calculées pour la distribution du déficit de vitesse axiale dans
CHAPITRE 6. LIEN AVEC LA COMBUSTION NON-PRÉMÉLANGÉE

La figure (6.10) illustre l’effet du nombre de Schmidt différent de l’unité, sur les profils transversaux de vitesse et de concentration moyenne, pour la condition d’écoulement C3’ à Z=3 mm en aval du plan de sortie du brûleur. On note en effet une diffusion plus rapide de la quantité de mouvement par rapport au scalaire, traduisant les propriétés du mélange Propane-(Air-néon) à $Sc=\nu/D\sim 1,4$ (légerement > 1).

Analysons pour terminer les spectres d’énergie cinétique et du scalaire mesurés derrière la lèvre.
CHAPITRE 6. LIEN AVEC LA COMBUSTION NON-PRÉMÉLANGÉE

Fig. 6.9 – Ensemble de profils de concentration moyenne de propane à travers la couche de mélange, pour les conditions d’écoulement C3’ et C4’.

Fig. 6.10 – Profils transversaux de vitesse (en rouge) et de concentration moyenne (en bleu) à Z=3 mm, pour la condition d’écoulement C3’. L’axe de symétrie du brûleur est situé à 2200 mm.

epaisse pour quelques conditions d’écoulement, nous ayant permis de proposer un scénario possible pour la transition à la turbulence pleinement développée derrière cet obstacle.
6.4.5 Scénario pour la transition à la turbulence 3D derrière une lèvre

La figure (6.11) montre l’évolution des spectres de la vitesse (adimensionnés par les échelles de Kolmogorov ici, et tracés en fonction du nombre d’onde adimensionné \(k_1 \lambda_K \)), derrière la lèvre pour différentes distances de celle-ci (Z=2, 4, 6 et 8 mm), et pour la condition d’écoulement C1. On observe nettement une brisure de pente correspondant au forçage de l’écoulement par la lèvre, à Z=2 mm, séparant une région amont du spectre où la décroissance de l’énergie y est faible, et une région aval où la décroissance de l’énergie y est plus rapide. Au fur et à mesure que l’on s’éloigne de la lèvre en aval dans l’écoulement, la marque de la lèvre (brisure) s’estompe et le spectre arbore un début d’allure classique avec une ‘Restricted Scaling Range’ (RSR) apparente (\(\sim k^{-5/3} \)).

Fig. 6.11 – Spectres de la vitesse 1D, normalisés par les échelles de Kolmogorov, et tracés en fonction du nombre d’onde adimensionné \(k_1 \lambda_K \). Condition d’écoulement C1 derrière la lèvre épaisse, à Z=2 mm (trait continu), Z=4 mm (- -), Z=6 mm (...) et Z=8 mm (-.-.).

Les spectres 1D d’énergie cinétique et de scalaire (concentration), à une distance de 3 mm en aval de la lèvre, et dans le plan de symétrie orthogonal, sont donnés sur la figure (6.12). La vitesse locale dans la direction longitudinale vaut \(<U>=4,9 \) m/s, et la fraction massique de propane est de \(<Y>=0,44 \). Ces spectres portent encore la marque de la présence de l’obstacle physique (la lèvre) de manière significative dans le développement de l’écoulement turbulent en aval. Sur le spectre de la vitesse, on note ainsi une brisure de la pente, passant de \(\sim k^{-1} \) avant la brisure (grandes échelles), vers \(\sim k^{-3} \) aux petites échelles. Le spectre du scalaire se comporte légèrement différemment, avec une région bossue (pic d’énergie) située à la même fréquence que celle de la vitesse, mais dont les pentes en amont et en aval ne sont pas altérées (\(\sim k^{-1} \)). Physiquement, ce résultat traduit la présence dans l’écoulement de grosses structures convectives (tourbillons appariés issus de l’instabilité de sillage par exemple) s’écoulant derrière la lèvre,
sensiblement à la vitesse de l’écoulement moyen (fréquence non reportée en vitesse ici). Ces structures emprisonnent du fluide de chaque côté (air-néon d’un côté et propane de l’autre), si bien qu’elles portent une double signature, à la fois sur le spectre de la vitesse et sur le spectre du scalaire. Le scalaire suit une décroissance de sa variance en k^{-1}, typique d’un écoulement peuplé de structures cohérentes (turbulence quasi-2D).

Fig. 6.12 – Spectres d’énergie cinétique 1D, et du scalaire (concentration) à $Z=3$ mm, pour la condition d’écoulement $C3’$. On note une brisure de pente nette sur le spectre d’énergie cinétique, générée par la lèvre, avec une variation rapide de la pente vers les plus grands nombres d’onde (passant de $\sim k^{-1}$ avant la brisure à $\sim k^{-3}$ après la brisure). Pour le spectre du scalaire au contraire, on note une région plus douce (bosse), sans changement de pente entre l’amont et l’aval ($\sim k^{-1}$).

Scénario possible pour expliquer la transition vers une turbulence 3D derrière une lèvre :

D’après les spectres obtenus, il semblerait que la lèvre pourrait jouer le rôle "d’injecteur de la turbulence" (forçage), en contrôlant la topologie de l’écoulement marquée par des régimes d’instabilités de sillage. Bien que n’ayant pas de visualisation de l’écoulement, cette suggestion est confortée par le spectre de la vitesse qui présente une brisure nette (correspondant probablement au nombre de Strouhal basé sur l’épaisseur de la lèvre plutôt que sur l’épaisseur des couches limites amont, si le seuil du critère d’épaisseur critique induisant le contrôle par la lèvre plutôt que par les couches limites est dépassé.). On a tout lieu de penser que nous sommes localement en présence d’un écoulement de turbulence quasi-2D immédiatement derrière la lèvre, les tourbillons issus des instabilités de sillage s’appariant les uns aux autres, et expliquant les pentes en ~ 3 et en ~ 1 (voir les travaux de Kraichnan sur la turbulence 2D).
Dans le régime de la lèvre épaisse (critère d’épaisseur à trouver pour le passage dans ce régime plutôt que dans le régime des instabilités de Kelvin-Helmholtz), l’épaisseur de la lèvre est la variable d’ajustement qui déplace le forçage sur le spectre : plus à droite avec une lèvre plus fine, plus à gauche avec une lèvre plus épaisse.

Au-delà de quelques distances de la lèvre (1 voire 2 appariements de tourbillons), les instabilités des tourbillons formés (elliptiques, Kelvin-Helmholtz, appariement 3D) conduiront rapidement à la tridimensionnalité de l’écoulement (turbulence de pente -5/3 pour la vitesse), Fig. 6.13.

Ce scénario corrobore bien les résultats proposés par [120] sur l’apparition d’un spectre d’énergie cinétique en -5/3 pour plusieurs écoulements (dont la couche de mélange et le sillage), lié au développement des tourbillons et à leur appariements successifs (Fig. 6.14). Il est montré que le régime classique en -5/3 apparaît dès le deuxième appariement de tourbillons. Avant cette position, la pente de décroissance du spectre d’énergie cinétique est plus élevée ; une tendance que nous observons également.

Concernant le scalaire, celui-ci est emprisonné dans ces structures tourbillonnaires formées sur la lèvre et convectées en aval, et contiendra la même information d’énergie (pic situé à la même fréquence). En revanche, sa décroissance n’est pas affectée tant qu’il reste emprisonné dans les grosses structures dynamiques qui ne sont pas encorebrisées (région 3D). Ainsi, le scalaire suit globalement une décroissance à la Batchelor, de pente ~ -1. Dès lors que les structures dynamiques se brisent, les effets d’étirement locaux et de diffusion visqueuse apparaissent menant le scalaire jusqu’aux échelles de la dissipation selon un régime d’Obukhov-Kolmogorov-Corrsin.

Au-delà d’une certaine distance derrière la lèvre, aussi bien le scalaire que la vitesse adoptent une décroissance de leur variance selon une pente en -5/3 (turbulence 3D isotrope).

Lien avec la lèvre de notre jet axisymétrique : Si nous pouvons supposer que la couche de mélange derrière la lèvre est un zoom de l’écoulement derrière une lèvre de jet axymmetricque, il apparaît alors maintenant plus clairement le rôle joué par celle-ci sur les propriétés de la turbulence globale de l’écoulement dans le jet. Nous avions déjà mentionné notre vigilance sur les effets de la lèvre, et sur leur impact sur les conditions d’atteinte du régime d’auto-similitude. A la lumière de ce qui vient d’être dit précédemment, nous pouvons désormais affirmer que la lèvre va être un acteur important dans le pilotage de la dynamique de l’écoulement dans le champ proche d’un jet. Son rôle va être encore plus important si cette lèvre est épaisse et/ou le diamètre du jet est faible. En effet, dans le cas de figure le plus défavorable (lèvre épaisse et diamètre du jet faible), son influence va pouvoir contaminer rapidement le coeur potentiel du jet, et par suite, modifier complètement les distances nécessaires à l’auto-similitude des différents moments. Ceci pourrait expliquer, en partie, la grande variabilité des résultats reportés sur
Fig. 6.13 – Scénario simpliste proposé pour la transition à la turbulence développée derrière une lèvre d’épaisseur finie, avec instabilités de sillage.

les distances nécessaires à l’auto-similarité des jets (entre 1 et 60 diamètres !). Les effets de gradients de viscosité constituent l’autre facteur important si de surcroît les fluides sont hétérogènes. Comme nous l’avons démontré tout au long de ce mémoire, il vont se combiner avec ceux de l’épaisseur de la lèvre dès la naissance de la couche de mélange du jet (instabilités interfaciales renforçant les instabilités de sillage visqueux derrière la lèvre). Ces deux effets agissent de concert et ne peuvent être négligés dans cette région de l’écoulement.

6.5 Conclusion partielle et perspectives

Ce chapitre a mis en avant nos résultats des chapitres précédents dans le contexte de la combustion des flammes non-prémélangées, et de leur stabilisation derrière une lèvre de brûleur.

Le rappel des équations de la vitesse de propagation d’une flamme triple, l’équation de la décroissance de la variance du scalaire, et les études du champ de fraction de mélange dans le sillage proche lamininaire derrière une lèvre, ont souligné l’importance de bien connaître l’écoulement isotherme, dans les gaz frais, en amont de la flamme. Ceci renforce l’intérêt de nos travaux pour une problématique liée à la combustion.

Une étude du développement de la turbulence dans le sillage proche formé par une lèvre plane, entre deux fluides à viscosité variable, a permis d’achever ce mémoire en proposant un scénario possible sur le rôle joué par la lèvre sur les conditions d’auto-similarité des jets, et plus généralement sur la transition vers la turbulence développée, lorsque des effets géométriques et de viscosité sont présents à la fois.
Fig. 6.14 – Évolution de l’exposant de la décroissance du spectre d’énergie cinétique longitudinale E_{11}, en fonction de la distance longitudinale R_x/λ_0 ($x \equiv Z$ ici), pour une couche de mélange présentant différents ratios de vitesse $R=U_1/U_2$ (R variant de 0.45 à 1). D’après Ho & Huang [120].

Une voie prometteuse serait de réaliser une extension et une confirmation de toutes les tendances annoncées, sur un écoulement réactif.

La photographie qui suit montre un essai de combustion non-prémélangée Propane-Air, réalisée sur le brûleur.
Fig. 6.15 – Photographie d’une flamme non-prémélangeée Propane-Air stabilisée sur notre brûleur plan 2D, avec la lèvre épaisse "A". On peut distinguer la région de proche sillage où le prémélange isotherme en amont du front de flamme se forme (à quelques millimètres, dans la zone de Rott-Hakkinen).
Chapitre 7

Conclusions et Perspectives

En 1938, Taylor \cite{273} émit le postulat selon lequel le taux de dissipation moyen normalisé dans un écoulement turbulent $C_\epsilon = \langle \epsilon \rangle / (u_0^3 / L_i)$ (où u_0 est l’écart-type typique dans l’écoulement et L_i la longueur intégrale) devient indépendant du nombre de Reynolds $Re=u_0L_i/\nu$ lorsque celui-ci est suffisamment grand :

$$C_\epsilon \to \text{cte}, \quad Re \to \infty$$

(7.1)

Ce postulat sous-tend la conservation de la circulation dans l’écoulement turbulent (théorème de Kelvin), dont Taylor s’est servi pour expliquer le mécanisme de la dissipation par un processus d’étirement continu des tourbillons au sein de l’écoulement. Mais cette conservation de la circulation ne serait valide que pour $\nu \to 0$ d’une part, et d’autre part Onsager \cite{193} a fait remarquer que même sous cette condition ($\nu \to 0$, i.e. $Re \to \infty$), les solutions des équations de Navier-Stokes n’aboutissent pas forcément à une absence de dissipation dans l’écoulement ! D’un point de vue physique, des anomalies à la dissipation d’énergie peuvent exister (même dans les fluides homogènes), et la conservation de la circulation est probablement mise en défaut, même aux grands nombres de Reynolds. De plus, la constante C_ϵ peut varier d’un type d’écoulement à l’autre \cite{7}.

Malgré ces remarques, ce postulat est généralement admis dans les modèles statistiques de la turbulence pleinement développée (faute de mieux). Dès que ce postulat peut être mis en défaut (région de transition à la turbulence développée pour des fluides homogènes ou hétérogènes), la question est de savoir quelle est la nouvelle relation asymptotique qui relie le taux de dissipation de l’énergie cinétique au nombre de Reynolds. Quelle est la nouvelle valeur absolue prise par C_ϵ, et donc par $\langle \epsilon \rangle$ dans ce cas ? Et est-ce que $\langle \epsilon \rangle$ a encore un sens ? Ne devrait-on pas considérer plutôt la valeur instantanée ϵ ?

Ces questions soulèvent un enjeu considérable du point de vue de la modélisation de la turbulence, par exemple pour l’amélioration des modèles $k-\epsilon$ utilisés dans les codes industriels sur des configurations d’écoulement très éloignées des hypothèses requises par la conjecture de Taylor (fluides hétérogènes,
régions fortement cisaillées où Production et Dissipation ne sont pas à l’équilibre).

Ce préambule donne le cadre initial que nous nous sommes fixé pour ces travaux de doctorat. Aussi, la question que nous avions posée au début de ce manuscrit était celle-ci :

Quel est l’impact d’une viscosité variable sur les propriétés d’une turbulence en transition vers le régime pleinement développé ? En particulier, quelle est la dépendance de $\langle \epsilon \rangle$ lorsque la viscosité varie ?

Tout au long de ce manuscrit, nous nous sommes efforcés d’apporter modestement, et avec les moyens dont nous disposions, quelques éléments de réponse à cette question essentielle, tant du point de vue fondamental puisqu’elle pointe un domaine encore assez peu abordé de la physique de la turbulence, que sur le plan des applications parce que la plupart des écoulements réels ne sont ni pleinement développés, ni composés de fluides à propriétés thermophysiques homogènes.

Pour cela, nous avons construit notre démarche scientifique autour de **cinq points majeurs**, correspondant pour chacun d’eux à un chapitre particulier :

Point 1 (chapitre 3) : tout d’abord, nous avons **développé un outil de mesures expérimentales pour mieux qualifier simultanément les fluctuations du champ dynamique et du mélange turbulent (concentration) pour un écoulement de fluides hétérogènes**. Le développement de cette technique nous a conduit, afin de rendre notre mesure de vitesse indépendante de la concentration, à étudier un mélange particulier de propane avec un milieu neutre composé de 30\% d’air et 70\% de néon, présentant un ratio de viscosité dynamique de $R_\mu = \mu_/\mu_/\sim 3,5$ et un ratio de densité de $R_\rho = \rho_/\rho_/\sim 1,7$. A l’issue de ce travail, nous disposons d’une plate-forme expérimentale pour l’étude d’un mélange turbulent de fluides hétérogènes à densité et viscosité variables.

Une fois cet outil mis en place, nous l’avons validé sur une configuration de jet axisymétrique de propane émergeant dans le milieu oxydant "air-néon". Une analyse approfondie des moments d’ordre 1 et 2 vis-à-vis de la vaste littérature existante sur les jets homogènes ou inhomogènes, nous a conduit à nous interroger sur l’observation suivante : "**pourquoi les profils radiaux des moments d’ordre 1 et 2 (et les autres statistiques) du jet de propane deviennent-ils très rapidement auto-similaires ?**”.

Point 2 (chapitre 4) : Pour répondre à cette interrogation, nous avons bâti une démarche expérimentale afin de comprendre quelles actions une viscosité/densité variables pouvaient bien engendrer au sein d’un écoulement en transition vers la turbulence. Pour cela, nous avons choisi de **comparer l’écoulement d’un jet d’air classique (débouchant dans l’air) avec celui d’un jet de propane débouchant...**
dans le milieu neutre composé de 30% d’air et 70% de néon, à même quantité de mouvement initialement injectée. La région axiale du jet depuis la buse de sortie jusqu’aux conditions d’auto-similitude a été analysée. Cette approche se justifie dans le sens où la conservation de la quantité de mouvement est le critère sur lequel repose toutes les hypothèses d’auto-similitude, d’une part ; et d’autre part, cette approche permet une cohérence parfaite avec le besoin de répondre au dilemme de la turbulence qui est de connaître comment évoluent deux “systèmes turbulents” différents pour lesquels la même quantité d’énergie (i.e. la même quantité de mouvement initiale) a été injectée au départ. Dans cette démarche, nous nous sommes efforcés de dégager indépendamment les effets de la densité variable et les effets de la viscosité variable.

En effet, la précocité du comportement auto-similaire du jet de propane (visible par exemple sur la rapidité d’atteinte d’un plateau pour les intensités turbulentes axiales de la vitesse) traduisant un entraînement de fluide extérieur plus élevé, nous avons cherché à vérifier en premier ce point. Etayés par le renfort d’une large bibliographie sur ces deux effets distincts, et confortés par nos résultats, il est apparu sans ambiguïté que les effets de viscosité variable sont clairement prépondérants dans la région initiale du jet de propane. La bibliographie montre en effet que l’injection d’un fluide plus lourd que le milieu dans lequel il émerge devrait au contraire diminuer cet effet d’entraînement, ce qui va à l’encontre de nos résultats. Nous avons donc écarté les effets de densité (les intensités turbulentes de densité s’élèvent au maximum à 5%, contre 18% pour celles de la viscosité dynamique), et jugé les effets de viscosité comme seuls responsables d’une accélération des conditions d’auto-similitude dans le champ proche du jet de propane.

Sans passer en revue la kyrielle des résultats présentés dans ce manuscrit, nous ne retiendrons dans cette conclusion que les plus significatifs, marquant la signature des effets d’une viscosité variable vis-à-vis d’un écoulement à viscosité constante (et à même quantité de mouvement injectée au départ) : une gamme d’échelles turbulentes plus réduite (rapport 20 au lieu de 80 entre l’échelle intégrale et l’échelle de Kolmogorov par exemple), une dissipation d’énergie plus élevée (environ 10 fois plus) conduisant à une réduction d’un facteur 4 du nombre de Reynolds R_λ. Corrélativement, une diminution de l’intensité de la cascade d’énergie (directe), et une intermittence forte aux petites échelles dissipatives. Suite à toute cette étude attentive de nos résultats issus de notre technique couplée, est apparu la nouvelle question naturelle suivante : “Les effets de la viscosité variable étant désormais pointés du doigt pour expliquer l’auto-similitude précoce, quels sont les mécanismes physiques exacts sous-jacents à ces effets, d’un point de vue analytique ?” Nous avons aussi voulu confirmer l’intensification de l’entraînement dans le jet de propane par rapport à celui du jet d’air, à même quantité de mouvement injectée.

Point 3 (chapitre 5) : l’étape suivante a donc consisté à rechercher des nouvelles formulations ana-
lytiques pour conforter ces résultats expérimentaux. Nous sommes ainsi partis de la réécriture des équations de Navier-Stokes à viscosité variable uniquement, les effets de densité ayant été écartés dans cette première approche, suite aux conclusions du chapitre précédent. Cette formulation a fait apparaître des termes de corrélations entre les fluctuations de la vitesse et celles de la viscosité (qui sont négligeables dans un écoulement ayant atteint un équilibre entre la Production et la Dissipation, mais pas dans une turbulence transitionnelle).

Afin de lever le doute sur l’importance de ces termes sur la conservation du bilan de flux de quantité de mouvement moyen dans le jet de propane, nous avons poursuivi en réécrivant cette équation de bilan à viscosité variable. Les nouveaux termes introduits font apparaître les corrélations \(<uv> \) et \(<UV> \). Une étude expérimentale dans le champ proche a donc été menée en utilisant une technique d’Anémométrie Doppler Laser capable de nous fournir aisément le montant de ces termes. À l’issue de cette campagne de mesures, le dépouillement est en cours afin de vérifier si les termes supplémentaires amenés par la viscosité variable sont négligeables dans ce bilan pour le jet de propane, à l’identique de celui d’un jet classique. Cependant, l’obtention des profils radiaux de vitesse moyenne a déjà permis de valider l’assertion pressentie sur l’intensification du taux d’entraînement dans le jet de propane.

Point 4 : À la fin de ce chapitre 5, nous avons focalisé notre travail sur l’obtention des nouvelles équations concernant les aspects énergétiques de la turbulence à viscosité variable (dissipation et transferts à chaque échelle), à partir de la réécriture des équations de Navier-Stokes à viscosité variable. Ce dernier volet a démontré que 9 nouveaux termes sont présents dans cet écoulement particulier, consistant en des corrélations entre les gradients de viscosité et les gradients de vitesse locaux. Une analyse le long de l’axe du jet a été proposée. Elle aboutit à l’écriture du nouveau taux de dissipation de l’énergie cinétique pour une viscosité variable. Ce nouveau taux est supérieur à celui d’une turbulence "classique" à viscosité constante. Il est égal à la somme du taux de dissipation classique (à viscosité constante), plus des termes positifs additionnels. La première conséquence de ce résultat explique l’augmentation d’un rapport 10 du taux de dissipation trouvé lors de nos expériences dans le jet de propane, et par suite son isotropisation rapide. La deuxième conséquence, qui était pressentie au départ, est que ce résultat met effectivement bien en défaut la conjecture de Taylor sur la dépendance du champ dynamique (dissipation de l’énergie cinétique) pour ces nombres de Reynolds bas et lorsque les propriétés thermophysiques des fluides sont variables dans l’écoulement. Il est également à souligner que la pseudo-dissipation et la dissipation ne peuvent plus être confondues dans un écoulement à viscosité variable présentant un nombre de Reynolds relativement bas \(\left(R_{\lambda} \sim 15 \right) \), où les effets moléculaires sont renforcés par rapport à une turbulence classique.

Avant d’anticiper sur l’extension et l’apport de ces travaux dans le contexte de la combustion, nous voudrions simplement formuler une synthèse appréhensible par le simple sens physique commun, à par-
tir de tous les phénomènes observés et tels que nous les avons interprétés dans les chapitres précédents : lorsque un jet de gaz rencontre brutalement un milieu environnant, ce jet va être à la merci de phénomènes particuliers liés aux propriétés thermophysiques différentielles entre ce couple antagoniste "gaz-milieu". Si le jet est plus dense que le milieu dans lequel il souhaite pénétrer (notre cas de figure), il pourra pénétrer plus facilement et plus loin grâce à ses forces d’inertie ρU^2 élevées. En retour, le cœur potentiel sera plus long, et l’entraînement moins efficace. Maintenant, si les forces d’inertie sont moindres, et surtout si le milieu extérieur est très visqueux, le jet va se heurter aux effets de la viscosité qui vont faire front au fluide émergeant par un freinage visqueux axial fort, engendré indirectement par un grignotage latéral du cœur potentiel - les instabilités interfaciales dues à la stratification en viscosité qui découpent le cœur potentiel en petites structures qui seront ensuite détruites par le cisaillement visqueux transversal intense. Cet effet destructeur va conduire rapidement à la destructuration du cœur potentiel du jet, puis à la mort de la turbulence par un niveau de dissipation d’énergie cinétique très élevé.

Cette petite histoire illustre de manière simpliste des phénomènes qui, somme toute sont très simples et à la portée de tous ... et il est alors beaucoup plus aisé d’appréhender pourquoi le jet de propane débouchant dans l’air (ou dans l’oxydant Air-Néon plus visqueux que nous avons utilisé) est plus efficace que s’il débouchait dans du propane pur : la densité plus faible du milieu extérieur étant compensée advantageusement par une différence de viscosité dynamique très élevée entre les deux milieux, pour le bénéfice de la qualité du mélange dès la région initiale du mélange des deux gaz.

Ce qu’il est bon aussi de retenir, c’est que lorsque l’on recherche un bon mélange turbulent entre deux fluides ayant des propriétés thermophysiques différentes, le sens du gradient de viscosité n’a pas d’importance (puisque les instabilités interfaciales sont toujours présentes quel que soit le sens de ce rapport), contrairement au sens du gradient de densité qui joue lui, sur la stratification favorable ou non en densité. Pour résumer, nous dirons que pour obtenir un mélange turbulent le plus efficace possible, il faut mêler deux fluides ayant une forte différence de viscosité dynamique, et injecter le gaz peu dense à forte vitesse dans le gaz très dense au repos[1].

Point 5 (chapitre 6) : la dernière étape a consisté à proposer une extension de ces travaux et un recentrage des principales conclusions et apports, dans le domaine de la combustion, et plus particulièrement de la stabilisation des flammes non-prémélangées ou partiellement prémélangées.

Le chapitre débute en montrant la portée des principaux résultats de nos travaux pour une meilleure compréhension du micro-mélange en amont d’un front de flamme de régime non-prémélangé. Les trois résultats essentiels obtenus "à froid", à savoir, une gamme d’échelles turbulentes très étroite, une dissi-

1. Les jets d’hélium débouchant dans l’air sont des jets à densité très variable, mais à viscosité dynamique sensiblement égale. Leur efficacité de mélange provient de la différence de densité seule. Une injection d’hélium dans du propane (ou mieux dans du butane) serait plus efficace grâce à l’action visqueuse conjuguée.
pation d’énergie cinétique augmentée et une forte intermittence à petite échelle, sont pour cela discutés dans le contexte des régimes de flammes non-prémélangées. Un gros plan est mené sur l’équation de la variance du scalaire, qui est rappelée afin de montrer l’importance du champ dynamique sur l’amélioration du terme de Production de la décroissance de la variance. Ces propos constituent des constats, et des pistes intéressantes à poursuivre pour des travaux ultérieurs.

Le chapitre s’achève par une discussion sur l’influence des conditions initiales pour l’écoulement dans le sillage proche d’une lèvre 2D. Cette configuration est typique d’un brûleur de flammes non-prémélangées. Après la présentation du dispositif expérimental, quelques résultats prometteurs issus de l’application directe de notre technique développée dans le chapitre 3 sont donnés. Une large discussion sur les critères d’auto-similitude des couches de mélange 2D est également fournie dans ce chapitre. Un petit scénario expliquant le rôle joué à la fois par l’épaisseur de la lèvre (instabilités de sillage) et par les gradients de viscosité (instabilités interfaciales) illustrent le rôle clé de ces deux facteurs dans les conditions d’atteinte du régime auto-similaire d’un écoulement (couche de mélange, mais également jet axisymétrique).

7.1 Perspectives

Les perspectives de ces travaux sont multiples :

- **Concernant la technique de mesures couplées (Chapitre 3),** nous avons déjà évoqué dans ce manuscrit les limites de cette technique dans les champs de scalaire peu prémélangés (signal télégraphique de la fraction de mélange). Nous avons également mentionné quelques pistes pour pouvoir faire évoluer la technique pour des mesures de ce type (adaptation en temps réel de la courbe de calibration retenue pour l’extraction de l’information de vitesse issue du fil chaud). L’utilisation d’un laser plus adapté à la mesure Rayleigh (longueur d’onde dans le bleu) offrirait une meilleure dynamique permettant de mieux mesurer le spectre du scalaire aux échelles dissipatives (et le régime de Batchelor). Par ailleurs, il serait tout-à-fait possible de développer une sonde anémométrique à 2 composantes (fils chaud en croix) pour faire évoluer la mesure à 2 composantes du vecteur vitesse, couplée avec la technique de diffusion Rayleigh. Utilisée dans un écoulement de taille plus large, et adaptée à la résolution spatiale liée au nouveau volume de mesure, cette évolution permettrait de mesurer simultanément les deux composantes du vecteur vitesse et la fraction de mélange instantanées.

- **Concernant nos travaux analytiques purs,** une extension pourrait être réalisée en réécrivant les nouvelles équations pour la dissipation et la pseudo-dissipation. Ce point est très important, car, comme nous l’avons souligné à maintes reprises, nous ne pouvons plus confondre ces deux notions dans une turbulence à viscosité variable. Le domaine spectral pourrait également être traité (que nous n’avons pas...
eu le temps d’aborder). Puis, une évolution à plus long terme serait de faire un pas supplémentaire en généralisant toute cette étude par une formulation complète intégrant la densité et la viscosité variable (moyennes de Favre). Et confortée par une Simulation Numérique Directe (DNS), qui seule, peut fournir toutes les composantes du vecteur vitesse et du scalaire, utiles à la validation des modèles analytiques de fermeture pour les termes supplémentaires amenés par la viscosité (et plus tard aussi par la densité) variable. Cette ouverture généralisée du problème de la turbulence en phase transitionnelle fournirait un éclairage plus complet indispensable à ce pan de la recherche sur la physique de la turbulence, déjà initié par les travaux de [149].

– Concernant l’extension vers la stabilisation des flammes non-prémélangées, l’étude sur le sillage proche derrière une lèvre permettrait de caractériser la turbulence particulière sur une configuration géométrique plane, typique d’un brûleur plan. Cette étude pourrait s’appuyer sur l’emploi de la technique développée dans le chapitre 3. Une comparaison des résultats avec une étude en conditions réactives pourrait également être menée, et dans des conditions d’écoulement exactement similaires. En effet, en substituant l’azote de l’air avec du néon, nous aurions la possibilité de comparer deux écoulements (réactifs et non réactifs) exactement similaires en composition.

– Enfin, citons un exemple de débouché de ces travaux directement applicable pour le bénéfice des industriels, et ayant un intérêt pour la combustion non-prémélangee du futur.

Les brûleurs industriels utilisent aussi bien des mélanges de gaz présentant des gradients de viscosité dynamiques importants (R$_{\mu}$=5.5 pour butane-air, R$_{\mu}$=3.5 pour propane-air), que des mélanges à ratio de viscosité sensiblement égal à 1 (R$_{\mu}$ ~1.5 pour air-gaz naturel). L’utilisation de mélanges à gradients de viscosité égal à un tend à devenir monnaie courante par l’enjeu actuel de faire fonctionner les brûleurs du futur avec des mélanges issus de bio-masse utilisant un mélange de gaz CH4-CO-CO2-H2.

Par ailleurs, l’avénement de normes de plus en plus strictes en termes de polluants rejetés dans l’atmosphère (CO, NOx, notamment) conduit, pour un régime de combustion prémélange, à un appauvrissement global des mélanges permettant de répondre favorablement (aussi bien en émission de CO qu’en production de NOx) à ces enjeux capitaux du futur. Toutefois, ce chemin d’apparence aisé se heurte rapidement au problème largement introduit et évoqué précédemment : la stabilisation des régimes de combustion. Ce problème est accentué avec les mélanges issus de la bio-masse qui possèdent de surcroît un faible pouvoir calorifique et une vitesse de propagation de flamme extrêmement plus basse que les gaz purs, rendant ces mélanges très sensibles au soufflage (extinction par convection trop forte).

Une des voies possibles pour améliorer la stabilisation de ces mélanges en régime non-prémélangeé pourrait être l’utilisation à bon escient des gradients de viscosité pour accélérer le processus de micro-mélange intime des réactants et augmenter ainsi la marge de stabilisation. Pour illustrer concrètement ce propos,
il serait par exemple possible d’adjoindre au mélange de gaz issus de la bio-masse une fraction de gaz pur dont la viscosité est très différente de celle de ce mélange (du butane ou du propane) afin de produire les forts niveaux de gradients de viscosité requis pour un micro-mélange efficace.
Bibliographie

216

BIBLIOGRAPHIE

Annexe A

Turbulence isotrope dans un fluide homogène

Cette annexe balaye les notions essentielles et largement diffusées sur la turbulence pleinement développée pour les fluides homogènes, ainsi que sur la diffusion turbulente d’un scalaire passif et actif. Sont inclues aussi bien les bases et définitions admises de la phénoménologie (i.e. de représentations approximatives ou d’images parlant bien à l’esprit), que les formulations mathématiques établies. Nous les présentons dans le cadre général d’un écoulement en 3 dimensions. Toutefois, les spécificités en 1D voire 2D, plus cohérentes avec nos mesures, sont mentionnées. Une présentation beaucoup plus extensive de la turbulence ou de la diffusion turbulente se trouve par exemple, respectivement dans [151][212] et dans [211][178].

A.1 Les échelles de la turbulence

A.1.1 L’échelle intégrale

Pour une turbulence homogène et isotrope, l’échelle de longueur intégrale longitudinale\(^1\) notée \(L_{11}^{(1)}\), permet l’estimation de la taille des tourbillons les plus énergétiques. Elle peut être déterminée à partir de l’intégrale du coefficient de corrélation spatiale \(R_{11}^{(1)}\) entre deux composantes fluctuantes de la direction 1 séparées d’une distance \(r_1\) dans la direction 1, \(u_1(x)\) et \(u_1(x + r_1)\) de la vitesse :

\(^1\) On peut aussi définir une échelle de longueur intégrale transversale, à partir du coefficient d’auto-corrélation \(R_{11}^{(2)}\) entre les deux composantes fluctuantes de la direction 1 de l’écoulement séparées d’une distance \(r_2\) dans la direction 2.
ANNEXE A. TURBULENCE ISOTROPE DANS UN FLUIDE HOMOGÈNE

\[L_{11}^{(1)} = L_1 = \int_0^\infty R_{11}^{(1)} \, dr \]
(A.1)

avec :

\[R_{11}^{(1)} = \frac{\langle u_1(x)u_1(x + r_1) \rangle}{\sqrt{\langle u_1^2(x) \rangle} \sqrt{\langle u_1^2(x + r_1) \rangle}}. \]
(A.2)

Pour l’analyse de nos signaux physiques temporels se réduisant à la mesure de la vitesse dans la direction 1 uniquement en un point, nous utiliserons une approche différente. En effet dans ce cas de figure, il est nécessaire d’estimer l’échelle intégrale longitudinale à partir du coefficient d’auto-corrélation temporelle \(R_{11}^{(1)}(\tau) \) qui permet de définir dans un premier temps un "temps intégral", noté \(T_{11} \):

\[T_{11} = \int_0^\infty R_{11}(\tau) \, d\tau \]
(A.3)

où \(R_{11}(\tau) \) désigne le coefficient d’auto-corrélation temporelle des fluctuations de vitesse dans la direction 1 de l’écoulement :

\[R_{11}(\tau) = \frac{\langle u_1(t)u_1(t + \tau) \rangle}{\sqrt{\langle u_1^2(t) \rangle} \sqrt{\langle u_1^2(t + \tau) \rangle}}. \]
(A.4)

Ensuite, moyennant l’adoption de l’hypothèse de Taylor globale\(^2\) qui permet la transformation "temps-espace en moyenne", on estime l’échelle de longueur intégrale \(L_{11}^{(1)} \) en utilisant la vitesse moyenne de l’écoulement \(\langle U_1 \rangle \):

\[L_{11}^{(1)} = \langle U_1 \rangle T_{11}. \]
(A.5)

L’hypothèse de Taylor consiste à considérer que les fluctuations de vitesse, écrites sous la forme \(u(x + \langle U \rangle \tau, t + \tau) \) sont indépendantes de la valeur de l’incrément temporel \(\tau \). Dans une turbulence homogène, cette condition n’est valable que lorsque la turbulence est "gelée" dans le temps, c’est-à-dire que les fluctuations de vitesse sont transportées (et non déformées) par la vitesse de convection moyenne de l’écoulement \(\langle U_1 \rangle \). Cette condition n’est valable que pour des écoulements dont l’intensité des fluctuations reste modérée, typiquement de l’ordre de 10% maximum. Les écoulements présentant des taux de turbulence supérieurs à cette valeur critique de 10% ou ceux dont les intensités de turbulence \(\langle u^2 \rangle \) décroissent avec l’abscisse \(x \) peuvent induire des erreurs théoriques non négligeables\(^2\). Bien que quasiment aucun écoulement réel ne réponde spécifiquement à ces critères draconiens, l’hypothèse de Taylor est néanmoins employée, faute de mieux, pour tous les écoulements quasi-unidirectionnels dont le taux de turbulence reste modéré (10 à 15% maximum). Les erreurs commises ont été démontrées comme

\(^2\) En 1938, Taylor émis l’hypothèse que l’histoire temporelle d’un écoulement obtenu à partir d’une sonde fixe pouvait être considérée comme la traduction des motifs spatiaux de la turbulence, convectés par la vitesse moyenne \(\langle U \rangle \), i.e. \(U(x,t)=U(x-Ut,0) \). Cette hypothèse a été confirmée expérimentalement en 1952 par des mesures en turbulence de grille\(^3\).
relativement faibles (quelques pourcents) pour ces écoulements [154][299][306]. Ainsi, nous avons utilisé cette méthode pour déterminer nos échelles (intégrale et de Taylor), celles-ci étant calculées le long de l’axe du jet où la composante axiale est prépondérante, et où l’hypothèse de Taylor est largement admise et utilisée.

A.1.2 La micro-échelle de Taylor

La deuxième échelle importante, qui peut être déterminée à partir de la fonction d’auto-corrélation spatiale, est la micro-échelle de Taylor, notée λ_T. Cette échelle ne correspond pas à une structure tourbillonnaire particulière dans l’écoulement, mais elle apparaît comme une quantité permettant de fournir une valeur du montant de la dissipation. Elle permet en outre de comparer deux écoulements turbulents grâce au nombre de Reynolds basé sur cette échelle, $R_\lambda = u\lambda_T/\nu$. Sa détermination peut se faire par deux voies possibles :

1- Détermination par les gradients spatiaux de vitesse

Le développement limité jusqu’au deuxième ordre des fluctuations de vitesse dans la direction 1, u_1, en un point origine $(0,0,0)$ permet d’écrire la relation suivante :

$$u_1(0,0,0) = u_1(0,0,0) + \left. r \frac{\partial u_1}{\partial x_1} \right|_0 + \frac{r^2}{2} \left. \frac{\partial^2 u_1}{\partial x_1^2} \right|_0 + O(\text{sup})$$ (A.6)

Par la suite en utilisant la définition de $R_{11}^{(1)}$ (Eq. A.2), il vient :

$$R_{11}^{(1)} = 1 - \frac{r^2}{2(u_1^2)} \left(\left(\frac{\partial u_1}{\partial x_1} \right)^2 \right)$$ (A.7)

Par définition, on pose (on omet le facteur 1/2) :

$$\lambda^2_T = -\frac{d^2 R_{11}^{(1)}}{dr_1^2} = \frac{1}{u_1^2} \left(\left(\frac{\partial u_1}{\partial x_1} \right)^2 \right)$$ (A.8)

Pour rendre cette méthode adaptable à des signaux temporels, nous devons estimer les gradients spatiaux de fluctuations de vitesse à partir des gradients temporels des fluctuations de vitesse, grâce à la relation de Taylor globale. La relation (A.8) devient donc :

$$\lambda^2_T = \frac{1}{\langle u_1(t)^2 \rangle \langle U_1(t)^2 \rangle} \left(\left(\frac{\partial u_1(t)}{\partial t} \right)^2 \right)$$ (A.9)
ANNEXE A. TURBULENCE ISOTROPE DANS UN FLUIDE HOMOGÈNE 223

2- Détermination par la recherche de la courbure à l’origine de la parabole osculatrice de $R_{11}^{(1)}$

D’un point de vue mathématique, l’échelle de Taylor est définie comme renseignant simplement sur la courbure à l’origine de la fonction d’auto-corrélation spatiale $R_{11}^{(1)}$. En effet, quand x tend vers zéro, la parabole osculatrice de $R_{11}^{(1)}$ admet une courbure qui coupe l’axe des abscisses x définissant ainsi la valeur de l’échelle de Taylor (figure (A.1)). Nous avons préféré la première méthode à cette deuxième, qui nécessite la prise en compte d’un seuil pour appliquer la décroissance parabolique de la courbe vers $x = 0$, et qui peut introduire de ce fait des variations sur l’estimation de λ_T de l’ordre de 10% voire plus.

Fig. A.1 – Fonction d’auto-corrélation spatiale dans la direction x_1. L’aire sous la courbe représente l’échelle intégrale L_1, et la parabole osculatrice à l’origine intercepte l’axe des abscisses, définissant ainsi l’échelle de Taylor λ_T.

A.1.3 La micro-échelle de Kolmogorov

La dernière échelle à déterminer, et non des moindres puisqu’elle représente la taille typique des structures dissipant l’énergie cinétique de la turbulence, est une longueur caractéristique appelée micro-échelle de Kolmogorov, et notée λ_K. La dissipation d’énergie résulte du terme de viscosité $\nu \nabla^2 U_i$ dans les équations de quantité de mouvement. Deux paramètres dimensionnels interviennent dans cette dissipation, à savoir le taux moyen de dissipation $\langle \epsilon \rangle$ et la viscosité ν. Le premier a une dimension de $L^2 T$ et le second de L^2. De simples arguments dimensionnels entre ces deux paramètres, en considérant que la limite d’existence des structures les plus fines est fixée par la condition $R_{\lambda_K} = u \lambda_K / \nu \simeq 1$, donnent la longueur de Kolmogorov $\lambda_K \equiv (\nu^3 / (\langle \epsilon \rangle))^{1/4}$. Elle constitue l’échelle de la dissipation dans la mesure où
l’on peut supposer que la contribution principale à $D(t)$ (équation 2.6) vient de cette échelle. On a :

$$\lambda_K = \left(\frac{\nu^3}{\langle \epsilon \rangle} \right)^{1/4} \quad (A.10)$$

Cette longueur ne s’exprime qu’à partir de paramètres "extérieurs" au mouvement de ces échelles fines que sont la viscosité cinématique du fluide ν et le taux de dissipation moyen de l’énergie cinétique $\langle \epsilon \rangle$. Ce résultat provient de la première hypothèse de Kolmogorov sur l’équilibre universel aux petites échelles, qui comporte deux propriétés fondamentales :

– une notion d’équilibre, en considérant que le temps caractéristique des structures dissipatives est très petit devant celui imposé par le processus de dégénérescence de l’énergie. Ainsi, ces structures fines atteignent un état quasi-stationnaire ;

– un caractère universel de cet équilibre, signifiant que les conditions particulière de l’écoulement importent peu (grille, couche limite, jet, ...), dès lors que le nombre de Reynolds est suffisant. Cette deuxième propriété apporte une justification au fait que le comportement des structures de Kolmogorov peut être déterminé uniquement à partir des quantités "extérieures" de l’écoulement, qui ne peuvent être que le montant de la dissipation et la viscosité du fluide.

Sur ce point d’universalité des structures dissipatives, Craya [65] ajoute : "Si néanmoins des tourbillons porteurs d’énergie cinétique ont des directions privilégiées, les fluctuations de pression auront après interaction de toute une gamme de tourbillons à échelle décroissante effacé l’anisotropie du début de la chaîne, égalisé les chances des diverses composantes de vitesse et par conséquent rendu isotrope la structure des petits tourbillons émergeant du processus ; à partir de là, l’hypothèse est que le mécanisme fondamental d’interaction des tourbillons transmettant constamment l’énergie aux petits tourbillons qui les dissipent a acquis une structure régulière et universelle".

A.1.4 Dépendance des échelles avec le nombre de Reynolds

Les travaux de Tennekes et Lumley [275], Monin et Yaglom [178] sur la turbulence développée donnent les relations suivantes entre les différentes échelles :

$$L_1/\lambda_T \sim R_\lambda \quad (A.11)$$

$$\lambda_T/\lambda_K \sim R_\lambda^{1/2} \quad (A.12)$$

D’après ces relations établies, il apparaît que les échelles sont d’autant plus séparées que le nombre de Reynolds de turbulence R_λ est élevé (dans le rapport $L_1/\lambda_K \sim R_\lambda^{3/2}$).
ANNEXE A. TURBULENCE ISOTROPE DANS UN FLUIDE HOMOGÈNE

A.2 L’énergie des échelles

A.2.1 Spectre de Kolmogorov

Dans l’espace de Fourier, le forçage de l’écoulement se voit comme la concentration de $\vec{f}(k)$ (voir Eq. (2.1)) autour des vecteurs d’onde k tels que $|k| \approx k_f = 2\pi/L_f$. Si l’on suppose que la densité spectrale de l’énergie dans l’espace de Fourier $E(k) = dE_<(k)/dk$ (où $E_<(k)$ désigne l’énergie contenue dans les modes Fourier $|k| < k$) ne dépend que de l’échelle de forçage $L_f = L_i = 2\pi/k$ et du flux moyen d’énergie $\langle \epsilon \rangle$, alors de simples considérations dimensionnelles imposent :

$$E(k) = C \langle \epsilon \rangle^{2/3} k^{-5/3}$$

(A.13)

qui est souvent dénommé spectre de Kolmogorov. Ce résultat traduit le fait qu’il existe une zone intermédiaire entre l’injection et la dissipation, où les tourbillons sont trop gros pour que les effets de la viscosité y soient importants, et trop petits pour retenir toute inhomogénéité à grande échelle. En raison de la présence de cette région inertielle caractérisée par une pente de spectre en $k^{-5/3}$ et où la dissipation visqueuse est négligeable, Kolmogorov a émis, toujours pour des nombres de Reynolds élevés, une seconde hypothèse qui prolonge la première sur l’équilibre universel aux petites échelles. Il précise ainsi que dans la région inertielle, le spectre d’énergie ne dépend plus de la viscosité. Cette hypothèse amène directement le résultat important suivant : sur le domaine inertielle, c’est-à-dire qu’il equivaut au taux moyen d’injection et à celui de dissipation, i.e. $\langle \epsilon_I \rangle = \langle \epsilon_D \rangle = \langle \epsilon \rangle$.

Lundgren [161] a montré qu’il était possible de retrouver un tel spectre d’énergie variant avec le nombre d’onde à la puissance -5/3 en superposant des tourbillons et des nappes de vorticité, ce qui avait été prédit analytiquement par Kolmogorov [137] puis validé expérimentalement par la suite (voir [98] pour une revue). La valeur de la constante C, appelée constante de Kolmogorov pour le spectre tridimensionnel de la théorie K41, est $C \sim 1.52$. On définit de manière analogue (par exemple [259]), le spectre unidimensionnel $E_{11}(k_1)$:

$$E_{11}(k_1) = C_k \langle \epsilon \rangle^{2/3} k^{-5/3}$$

(A.14)

qui est aussi relié aux intensités de turbulence longitudinale :

$$\langle u^2 \rangle = \int_{-\infty}^{\infty} E_{11}(k_1) dk_1$$

(A.15)

Pour une turbulence isotope, on peut également écrire les égalités suivantes :

$$E_{11}(k_1) = \frac{2}{\pi \langle u^2 \rangle} \int_0^{R_1} R_{11}(r_1) \cos(k_1 r_1) dr_1 = \int_{k_1}^{\infty} \frac{E(k)}{k} \left(1 - \frac{k_1^2}{k^2}\right) dk$$

(A.16)
ANNEXE A. TURBULENCE ISOTROPE DANS UN FLUIDE HOMOGÈNE

La figure (A.2) présente une collection de spectres unidimensionnels normalisés par les échelles de Kolmogorov, $E_{11}(k_1)/(\langle \epsilon \rangle ^{5/4})^{1/4}$ pour R_λ variant de 23 à 3180, d’après [233].

L’étendue de la zone inertielle est une fonction du nombre de Reynolds basé sur l’échelle intégrale $Re_{L_1} = uL_1/\nu$:

$$L_1/\lambda_K = Re_{L_1}^{3/4}$$

Moyennant l’hypothèse d’isotropie, la valeur théorique de la constante C_k est $C_k = \frac{18}{55} \sim 0.5$ dans la région inertielle, figure (A.3 a), [178]. Expérimentalement des écarts sont observés, imputés principalement aux effets de bas Reynolds (figure (A.3 b), [259]), et au type d’écoulement turbulent (grille turbulente, canal, couche limite, écoulement cisailé), figure A.4 [259].

Le taux moyen de dissipation de l’énergie cinétique $\langle \epsilon \rangle$, présent dans l’expression (A.14) peut directement s’exprimer à l’aide de la longueur de Taylor λ_T. Il est qualifié alors d’isotrope, et noté
ANNEXE A. TURBULENCE ISOTROPE DANS UN FLUIDE HOMOGÈNE

Fig. A.3 – Constante de Kolmogorov C_k pour les spectres unidimensionnels, tracée : A) en fonction des échelles adimensionnées ($k_1\lambda_K$ avec $k_1 = 2\pi F/(U_1)$), pour une variété d’écoulements isotropes et de conditions regroupées dans [259]. La valeur moyenne de toutes ces données est $C_k = 0.53$ avec un écart-type de 0.055 ; B) en fonction de R_λ, d’après [259].

![Diagram A](image1)

![Diagram B](image2)

ANNEXE A. TURBULENCE ISOTROPE DANS UN FLUIDE HOMOGÈNE

Fig. A.4 – Différentes valeurs de la constante de Kolmogorov C_k pour les spectres unidimensionnels, obtenues à partir d’écoulements turbulents variés et pour des nombres de Reynolds variés : A) pour des grilles turbulentes ; B) pour des écoulements de couches limites et de canal ; C) pour des écoulements cisaillés, d’après [259].

\[
\langle \epsilon_{iso} \rangle : \quad \langle \epsilon_{iso} \rangle = 2\nu \langle s_{ij} s_{ij} \rangle = 15\nu \left(\frac{dU}{dx} \right)^2 = 30\nu \left(\frac{U^2}{L^2} \right), \quad (A.18)
\]

où s_{ij} représente le tenseur des taux de déformation des vecteurs vitesse fluctuante, et ν est la viscosité
cinématique de l’écoulement. Cette relation permet donc de calculer $\langle \epsilon_{iso} \rangle$ à partir des dérivées instantanées des mesures de vitesse. De manière équivalente, on peut aussi retrouver ce taux moyen à partir de données de l’espace spectral (spectre), grâce à l’expression suivante :

$$\langle \epsilon_{iso} \rangle = 15 \nu \int_{0}^{\infty} k_{1}^{2} E_{11}(k_{1})dk_{1}. \quad (A.19)$$

Il y a également une possibilité de trouver une estimation de ce taux moyen de dissipation via un bilan global d’énergie cinétique $\langle q^{2} \rangle = \langle u^{2} \rangle + \langle v^{2} \rangle + \langle w^{2} \rangle$ en 1 point (intégrant les 3 directions de l’écoulement). Dans le cas d’une turbulence isotrope en décroissance d’un écoulement unidirectionnel dans la direction 1 par exemple (grille turbulente par exemple), ce bilan se réduit simplement à :

$$\langle \epsilon_{iso} \rangle = -\frac{\langle U \rangle}{2} d \langle u^{2} \rangle \quad (A.20)$$

A.2.2 Fonctions de structure d’ordre 2

En reprenant la définition d’une échelle du mouvement, on peut définir une énergie cinétique pour chacune d’entre elles, proportionnelle au carré de l’écart de vitesse fluctuante entre deux points séparés de la distance r, soit $[u(x) - u(x + r)]^{2}$. On la note généralement $\langle (\delta u)^{2} \rangle$ et est appelée fonction de structure d’ordre 2. De manière générale, une fonction de structure d’ordre n est déterminée à partir de la fonction de densité de probabilité des incréments spatiaux de vitesse considérés, et exprimée par l’intégrale infinie suivante :

$$\langle (\delta u)^{n} \rangle = \int_{-\infty}^{\infty} (\delta u)^{n} PDF(\delta u)d(\delta u) \quad (A.21)$$

Sous l’hypothèse d’isotropie locale, les fonctions de structure à l’ordre 2 peuvent également être obtenues à partir des spectres d’énergie, via la relation suivante ([178][8] par exemple) :

$$\langle (\delta u)^{2} \rangle = 2 \int_{0}^{\infty} E_{11}(k_{1})[1 - \cos(k_{1}r_{1})]dk_{1} \quad (A.22)$$

Les fonctions de structure d’ordre 2 ($n=2$) des incréments de vitesse longitudinaux $\langle (\delta u)^{2} \rangle$ et transversaux $\langle (\delta v)^{2} \rangle$ normalisées sont tracées sur la figure (A.5), pour un écoulement turbulent isotrope (turbulence de grille et axe d’un jet) et pour une gamme de nombres de Reynolds R_{λ} comprise entre 27 et 1110, d’après [8]. Pour toutes ces figures, l’échelle en abscisse r^{*} s’étend plus loin que l’échelle intégrale r^{*}_{int}. L’allure des courbes obtenues est similaire pour les deux directions 1 et 2. Le plateau atteint par les courbes (brisure de pente visible sur les figures) correspond à $2\langle u^{2} \rangle$ (pour la direction 1) ou à $2\langle v^{2} \rangle$ (pour la direction 2), et sa valeur absolue augmente linéairement avec R_{λ} pour les incréments

3. l’astérisque indique une normalisation par rapport à l’échelle de Kolmogorov, soit $r^{*} = r/\lambda_{K}$

4. l’astérisque indique une normalisation par rapport à la vitesse de Kolmogorov U_{K}, soit $u^{*}, v^{*} = u, v/U_{K}$, avec $U_{K} = \nu^{1/4}(\epsilon)^{1/4}$
de la direction 1 si $\langle \epsilon \rangle = \langle \epsilon_{\text{iso}} \rangle$ (Equ. A.18). Dans ce cas (pour la direction 1), on a $\langle u'^2 \rangle = R\lambda/15^{1/2}$ tandis que pour la direction 2, on trouve $\langle v'^2 \rangle = RR\lambda/15^{1/2}$ où $R = \langle u'^2 \rangle/\langle v'^2 \rangle$. Ce ratio, qui désigne le rapport des intensités de fluctuations de vitesse dans les directions 1 et 2, indique le montant d’anisotropie de l’énergie cinétique aux grandes échelles. Sa valeur est le plus souvent dépendante du type de l’écoulement (grille, jet, ...), mais dès lors que les conditions d’écoulement sont fixées, sa variation suit celle des intensités fluctuantes, et adopte par conséquent une variation lente et linéaire avec le nombre de Reynolds $R\lambda$ [8].

L’allure générale des fonctions de structure d’ordre 2 (pour u ou pour v) montre que le niveau d’énergie "en moyenne" selon la taille des échelles, n’est pas une fonction uniformément répartie sur toute l’étendue des échelles physiques. Pour des nombres de Reynolds faibles ou modérés, on observe tout d’abord une rapide augmentation du niveau d’énergie tant que les échelles sont suffisamment grandes, puis un plateau pour les plus petites échelles (grands r^*). Au fur et à mesure que le nombre de Reynolds croît, on observe l’apparition d’une région intermédiaire, de longueur d’autant plus grande que le nombre de Reynolds est élevé, et exhibant une pente constante dont la valeur est égale à $r^{2/3}$. Cette partie intermédiaire est la signature de la région inertielle dans la théorie de Kolmogorov. La constance de la pente en $r^{2/3}$ dans cette région inertielle est reliée de manière équivalente à celle de la pente du spectre de Kolmogorov en $k_1^{-5/3}$.

Fig. A.5 – Fonctions de structure d’ordre 2 normalisées, d’après [8] : A) des incrément longitudinaux δu, B) des incrément transversaux δv. Les symboles correspondent à la grille turbulente pour $27 < R\lambda < 1110$, les traits correspondent à l’axe du jet turbulent pour $493 < R\lambda < 1110$. On note l’apparition d’une région intermédiaire, dite inertielle, de pente constante 2/3, d’autant plus marquée que $R\lambda$ est élevé.
A.3 Transmission de l’énergie d’échelle en échelle

Elle est étudiée à l’aide des fonctions de structure d’ordre 3. Les fonctions de structure d’ordre 3 des incréments longitudinaux \(\langle (\delta u)^3 \rangle \) normalisées par les échelles de Kolmogorov (longueur \(\lambda_K \) et vitesse \(U_K \)) et multipliées par \(r^{*-1} \) sont tracées sur la figure (A.6). Le signe de la fonction \(r^{*-1} \langle (\delta u)^3 \rangle \) indique le sens de la cascade d’énergie (pour une cascade directe, le signe de la fonction de structure d’ordre 3 est négatif), tandis que le pic de sa valeur absolue \(|r^{*-1} \langle (\delta u)^3 \rangle| \) doit atteindre la valeur théorique 4/5 de la théorie de Kolmogorov K41, et pour des nombres de Reynolds suffisamment grands. La différence observable (pic à 0.7 seulement sur la figure (A.6) pour \(R_\lambda > 1000 \)) est due à un effet de Reynolds (voir par exemple [216]).

![Graph showing the distribution of r* = r/\lambda_K for the structure functions of order 3 of longitudinal increments \(\delta u \), multiplied by \(r^{*-1} \) and normalized by the Kolmogorov scales \(\lambda_K \) and speed \(U_K \), according to [8]. All symbols correspond to a turbulence of grid for \(27 < R_\lambda < 100 \), the traits corresponding to the axis of an axisymmetric jet for \(493 < R_\lambda < 1110 \).](image)

Fig. A.6 – Distribution en fonction de \(r^{*-1} = r/\lambda_K \) des fonctions de structure d’ordre 3 des incréments longitudinaux \(\delta u \) multipliées par \(r^{*-1} \), et normalisées par l’échelle \(\lambda_K \) et la vitesse \(U_K \) de Kolmogorov, d’après [8]. Tous les symboles correspondent à une turbulence de grille pour \(27 < R_\lambda < 100 \), les traits correspondant à l’axe d’un jet axisymétrique ou plan pour \(493 < R_\lambda < 1110 \).

A.3.1 Anomalie dans la répartition de l’énergie d’échelle en échelle

Batchelor et Townsend [14] montrèrent à partir d’une étude expérimentale, que les PDFs des incréments de la vitesse deviennent fortement non-gaussiennes aux petits incréments. Ils ont appelé le phénomène, intermittence interne (aux petites échelles).

Ces auteurs ont en effet noté que "the basic observation which requires explanation is that activation of large wavenumbers is very evenly distributed over space", et également que "as the wavenumber is increased the fluctuations seem to tend to an approximate on-off, or intermittent, variation". L’intermit-
La génération d’intense gradients a été également observée dans la région inertielle, et plus généralement la distribution de tels gradients est approximativement gaussienne pour des différences de vitesse séparées d’une distance de l’ordre de L_1. Pour reprendre notre ”vision de la turbulence” (Fig. 2.1), cela correspond aux aspersions aléatoires de liquide de carter sur des roues de plus grande taille que Kolmogorov. Pour des séparations r bien plus petites que L_1, la distribution des gradients devient de plus en plus non-gaussienne (Fig. 2.6); de plus, ces effets sont d’autant plus visibles que le nombre de Reynolds augmente.

Expérimentalement, on observe que la distribution de la dissipation à chaque échelle, notée ϵ_r, n’est pas universelle à toutes les échelles. La figure (A.7) illustre parfaitement ce comportement pour des mesures le long d’un axe de jet axymmétrique, pour $R_\lambda = 835$. On s’aperçoit que la distribution du taux local de la dissipation ϵ_r est gaussien aux grandes échelles, mais devient de moins en moins gaussien au fur et à mesure que l’échelle d’observation est plus faible. Ce résultat met en exergue la caractéristique singulière de l’intermittence d’affecter le mécanisme de la dissipation aux échelles dissipatives (de Kolmogorov), et que ce phénomène est d’autant plus marqué que l’échelle regardée est petite, comme le souligne clairement Jimenez [128], où il écrit que l’intermittence est “the phenomena connected with the local variability of the dissipation”. De surcroît, cet effet de non-gaussianité de la distribution aux plus petites échelles s’accentue avec le nombre de Reynolds local, comme le précise [264].
ANNEXE A. TURBULENCE ISOTROPE DANS UN FLUIDE HOMOGENE

Fig. A.7 – Distributions de probabilités normalisées de $\ln[\epsilon_l/\langle \epsilon \rangle]$ le long de l’axe d’un jet axymétrique d’air à $R_{\lambda} = 835$, d’après [105]. Les symboles correspondent respectivement à 278 (◌), 110 (+), 55 (○) et 28 (♦) fois l’échelle de Kolmogorov λ_K.

Des modèles analytiques ont ainsi été proposés afin de "fermer" ce problème de la dissipation, en tentant de modéliser le terme ϵ_r d’après les observations faites expérimentalement. Ce sont les modèles pour l’intermittence interne. Le premier modèle développé est le modèle Log-Normal [139][191] pour la dissipation d’énergie cinétique. Ce modèle peut être considéré comme une classe particulière des modèles multifractals en général [201]. Dans un autre esprit, des travaux ont été engagés pour rendre compte du phénomène d’intermittence en le considérant comme une anomalie du processus de cascade d’énergie. Cette approche a, quant à elle, donné naissance à d’autres modèles très connus, dont le premier historiquement est celui de Novikov-Stewart [188], puis le modèle β de Frisch et al. [99]. She et Lévêque [249], quant à eux, ont proposé un modèle de turbulence qui aboutit à un champ statistique de ϵ_r en loi Log-Poisson, comme suggéré par Dubrulle [84][250]. Leur modèle est basé sur les observations faites sur l’existence de régions localisées et rares non dissipatives dans l’écoulement. Il tient compte d’une phénoménologie des structures de la turbulence, organisées sous la forme de fils tournillonnaires, et de ce fait, constitue le modèle le plus utilisé à l’heure actuelle. Aujourd’hui, la tendance est de poursuivre les efforts de recherche pour une meilleure compréhension de l’intermittence, qui reste la clé du problème de la turbulence. Dans cette voie, une nouvelle approche offrant des perspectives intéressantes a récemment vu le jour, grâce aux travaux de Laval et al. notamment [145]. Elle permet de prendre en compte simultanément les interactions "locales" et "non-locales" au sein de l’écoulement. Elle a été baptisée du nom de turbulence Langevin. Cette méthode repose sur la séparation du champ de vitesse en une composante à grande vitesse U_i et une composante à petite vitesse u_i. Au lieu

5. La présentation exhaustive de tous ces modèles d’intermittence dépasse le cadre strict de ce travail de doctorat. Pour plus de détail, se référer aux deux articles de revue suivants : [169][50].
ANNEXE A. TURBULENCE ISOTROPE DANS UN FLUIDE HOMOGÈNE

de décomposer classiquement ce champ par la décomposition de Reynolds \(u_i = U_i - \langle U_i \rangle \), on décide de décomposer le champ à petite échelle en paquets d’ondes localisés, via une transformée de Fourier locale, selon:

\[
\hat{u}_i(x, k) = \int h(x - x') e^{i k(x-x')} u_i(x') \, dx'
\]

(A.23)

où \(h \) est un filtre centré en un point origine (0) et assurant une décroissance rapide à l’infini, tel que \(\hat{u}_i(x, k = 0) = \langle u_i \rangle \). Sans entrer dans les détails, ce modèle aboutit à l’équation de la dynamique d’un paquet d’ondes, advecté par l’écoulement à grande échelle, et dont le vecteur d’onde est étiré par le cisaillement à grande échelle. Ce formalisme mathématique permet de traduire l’influence du paquet d’ondes sous le joug des interactions provenant à la fois des grandes (oscillations du paquet d’onde, sans modification du nombre d’onde local, par les grosses structures avoisinantes) et des petites échelles (cisaillement visqueux, avec modification du nombre d’onde local, avec les autres paquets d’ondes avoisinants). Chilla et al. [58] ont montré par ailleurs que la profondeur de la cascade d’énergie pouvait être reliée à l’intermittence interne (valeur de la kurtosis).

L’anomalie due à l’intermittence peut être exprimée à partir d’une étude précise des variations des fonctions de structure. Kolmogorov [137] a ainsi prédit, en généralisant aux incréments dans la direction 1 ou 2, en notant \(\alpha = u_1 \) ou \(u_2 \), et sous l’hypothèse d’isotropie locale et d’intermittence nulle, une variation des fonctions de structures \(\langle (\delta \alpha)^n \rangle \) comme \(r^{\zeta_\alpha(n)} \), soit:

\[
\langle (\delta \alpha)^n \rangle = \langle (\delta \alpha) \rangle \sim r^{\zeta_\alpha(n)}
\]

(A.24)

ou en normalisant par les échelles de Kolmogorov:

\[
\langle (\delta \alpha^*)^n \rangle \sim r^*\zeta_\alpha(n)
\]

(A.25)

La figure (A.8) présente la variation des coefficients \(\zeta_u \) et \(\zeta_v \) en fonction du nombre de Reynolds, pour une turbulence isotrope de grille et de jet plan. Les deux coefficients \(\zeta_u \) et \(\zeta_v \) augmentent de manière exponentielle (entre \(0 \leq R_\lambda \leq 200 \)) et atteignent une valeur asymptotique aux grands nombres de Reynolds (la valeur théorique d’asymptote prévue par la théorie de Kolmogorov est \(\frac{2}{3} \)). La valeur d’asymptote semble atteinte plus tôt pour \(\zeta_u \) (direction 1). Notons par ailleurs que pour une turbulence faible (disons pour \(R_\lambda \leq 100 \), [185]), le coefficient \(\zeta_u \) est plus proche de sa valeur théorique \(\frac{2}{3} \) que le coefficient \(\zeta_v \), ce qui signifie que les incréments de vitesse longitudinaux sont moins "anormaux" que les incréments transversaux. Ce n’est pas le cas pour une turbulence forte (disons pour \(R_\lambda \geq 200 \), [185]), pour laquelle \(\zeta_v \) est plus proche de la valeur de K41 que celle de \(\zeta_u \).

6. L’astérisque dénote la normalisation par rapport à l’échelle \(\lambda_K = \nu^{1/4} \langle \epsilon \rangle^{3/4} \) de Kolmogorov pour une turbulence isotrope.
ANNEXE A. TURBULENCE ISOTROPE DANS UN FLUIDE HOMOGÈNE

234

Fig. A.8 – Dépendance des coefficients ζ_u (ronds) et ζ_v (carrés) avec le nombre de Reynolds R_λ en turbulence de grille (pour $27 < R_\lambda < 100$) et pour un jet plan (pour $493 < R_\lambda < 1330$), d’après [5].

A.3.2 L’intermittence statistique aux plus petites échelles : effet des structures

Pour des distances faibles de séparation (typiquement de l’ordre de l’échelle de Kolmogorov), un développement limité en série de Taylor est possible et on peut aisément confondre les incréments et les dérivées spatiales, et écrire $\delta u \approx \frac{\partial u}{\partial x} r$. Les coefficients $\sigma(n)$ deviennent :

$$\sigma_{vr}(n) = \frac{\langle (\frac{\partial u}{\partial x})^n \rangle}{\langle (\frac{\partial u}{\partial x})^2 \rangle^{n/2}}$$ \hspace{1cm} (A.26)

On les prénomme coefficients des dérivées des vitesses turbulentes. Ces coefficients $\sigma_{vr}(n)$ avec l’indice vr pour viscous-range, permettent d’étudier spécifiquement l’intermittence aux très fines échelles et notamment le taux local de dissipation d’énergie cinétique aux très faibles distances de séparation. Comme pour les incréments de vitesse (valables aux distances de séparation r plus grandes), les coefficients skewness et flatness sont les plus analysés. La théorie de Kolmogorov K62 [139] prédit une variation du coefficient de skewness $\sigma_{vr}(3) \propto R_\lambda^a$ (avec $a>0$). Les formules exactes donnant ce coefficient d’asymétrie $\sigma_{vr}(3)$ pour une turbulence isotrope sont [217] :

$$\sigma_{vr}(3) = 15^{3/2} \left(\frac{\nu^3}{\langle \epsilon \rangle}\right)^{1/2} \langle \delta u_r^2 \rangle$$ \hspace{1cm} (A.27)

ou encore, écrite sous sa forme spectrale :

$$\sigma_{vr}(3) = -\frac{12}{7} 15^{1/2} \int_0^{\infty} \frac{E(k)}{(\langle \epsilon \rangle)^{1/4}} \left(\frac{k}{k_d}\right)^4 \left(\frac{k}{k_d}\right) \frac{d(k)}{k_d}$$ \hspace{1cm} (A.28)

où $k_d \equiv (\langle \epsilon \rangle/\nu^3)^{1/4}$ est le nombre d’onde correspondant à l’échelle de Kolmogorov λ_K.

Les mesures réalisées par Kuo et Corrsin [143] ont indiqué que $\sigma_{vr}(4)$ augmentait comme $R_\lambda^{0.2}$ pour $R_\lambda < 200$, alors que $\sigma_{vr}(3)$ décroît pour les faibles valeurs de R_λ, typiquement $R_\lambda < 10$ [272][281].
Des formes de fonctions de structure pour les dérivées de la vitesse ont été proposées \[281\]. Les valeurs prises par ces coefficients dépendent de la phénoménologie adoptée pour les plus fines structures ; en supposant une structure fine sous la forme de tubes tourbillonnaires, Tennekes \[275\] a prédit une valeur finie du coefficient $\sigma(3)$ lorsque R_λ tend vers l’infini, résultat également prédit par la théorie fractale. Des études numériques \[287\] (et \[215\]) ont fourni une valeur précise de ce coefficient pour $R_\lambda \to \infty$, $\sigma(3) \sim -0.5$ (respectivement $\sigma(3) \sim -0.515$)\[7\].

Ces résultats ont été confrontés à des modèles phénoménologiques de la structure de la turbulence aux plus petites échelles. Ces travaux sont dus à Corrsin en 1962 \[64\] et à Tennekes en 1968 \[274\]. Ils ont permis, entre autre, de montrer l’imbrication des effets des structures de la turbulence sur les fluctuations de la dissipation. Comme les échelles dissipatives ne sont pas uniformément réparties dans l’espace, ce que nous avons souligné précédemment, ces deux auteurs ont imaginé des distributions spatiales particulières basées sur des structures géométriques précises. Corrsin a souhaité estimer le niveau de fluctuations du champ de dissipation, en partant d’une structure imaginée antérieurement par Batchelor et par Townsend \[14\] : à un nombre de Reynolds suffisant, la turbulence présente un caractère spatial binaire, avec de vastes régions d’écoulement à potentiel (fluide parfait) ne présentant pas de structures fines et des régions très fines d’écoulement où la dissipation visqueuse est intense. Corrsin suppose en outre pour son analyse les hypothèses suivantes :

- la taille et le volume typiques des grandes régions sont respectivement l’échelle intégrale L_1 et L_3^1,
- les structures dissipatives se concentrent sous la forme de nappes ou de surfaces, et leur épaisseur caractéristique est de l’ordre de la longueur de Kolmogorov λ_K.

L’écoulement ainsi défini, Corrsin distingue le montant local du taux de dissipation dans les zones assurant *physiquement* et *réellement* cette dissipation de l’énergie cinétique (c’est-à-dire les lieux des structures dissipatives de taille caractéristique η), noté $\tilde{\varepsilon}$, et le montant local du taux de dissipation, noté ε, englobant à la fois les régions de grande taille non dissipatives et les régions visqueuses. On peut alors estimer que $\tilde{\varepsilon}\lambda_K \sim \varepsilon(L_1 + \lambda_K)$ dans un volume élémentaire donné, soit $\tilde{\varepsilon} \sim \frac{\lambda_K}{L_1}$. Cette dernière relation permet ensuite d’estimer le montant local du taux de dissipation associé aux zones où celle-ci s’exerce réellement par :

$$\tilde{\varepsilon} \sim \frac{L_1}{\lambda_K} \varepsilon \sim \frac{L_1}{\lambda_K} \frac{u_1^3}{L_1} \sim \frac{u_1^3}{\lambda_K}$$ \hspace{1cm} (A.29)

7. La valeur différente de zéro de ce coefficient traduit le fait que les PDFs des dérivées des fluctuations de vitesse ne sont pas gaussiennes. La valeur négative signifie que la queue de la PDF est plus élargie du côté des dérivées négatives, traduisant que les variations spatiales du signal de vitesse (*i.e.* ses dérivées) sont plus violentes vers les diminutions de vitesse que vers les remontées de vitesse. Ce résultat est à rapprocher de manière directe au skewness du signal turbulent, qui lui, est positif (montrant de longues variations négatives puis de rares mais brusques remontées vers des valeurs positives de vitesse). Ceci est due principalement à des effets de structures aux petites échelles (voir par exemple \[28\] \[275\] pour une discussion complète sur ce point).
Selon Tennekes au contraire, la dissipation est réalisée au sein de structures tourbillonnaires dont le diamètre est de l’ordre de λ_K et la longueur de celle de la micro-échelle de Taylor λ. Dans ce cas précis, il vient directement $\tilde{\varepsilon} \lambda_K^2 \sim \epsilon \lambda^3$ dans un volume élémentaire donné, soit $\tilde{\varepsilon} \sim \frac{\lambda_K^2}{\lambda^3}$, et avec cette évaluation de $\tilde{\varepsilon}$ avec le modèle de Tennekes, il vient :

$$
\tilde{\varepsilon} \sim \frac{\lambda^2}{\lambda_K^2} \epsilon \sim \frac{\lambda^2}{\lambda_K^2} \frac{u_1^2}{L} \sim \frac{u_1^2 \lambda}{\nu} \frac{\lambda}{\lambda_K^2} \sim \nu \frac{u_1^2}{\lambda_K^2},
$$

(A.30)

la dernière simplification résultant de la relation [A.11].

La disparité entre ces deux résultats historiques met bien en évidence le rôle de la géométrie de la turbulence (aspect déterministe) sur les estimations du taux de dissipation et de l’intermittence qui s’en déduisent. L’observation expérimentale de la non-gaussianité des PDF (δu) traduit de forts sauts de vitesse, qui suggèrent la présence de petites structures tourbillonnaires intenses aux échelles les plus petites (Kolmogorov). De telles structures ont été observées [43][130]. Des travaux numériques récents [177] ont par ailleurs porté sur l’analyse quantitative de l’influence des structures géométriques élémentaires de la turbulence sur les propriétés d’intermittence interne, de type cisaillement intense ou de type vorticité intense (Fig. [A.9]) dans une turbulence isotrope de boîte à $R_\lambda = 168$. Le champ de vitesse est dominé par ces structures [8] et le flatness des incrément de vitesse peut ainsi atteindre des valeurs de l’ordre de $\sigma(4) \sim 50 - 100$, même à des nombres de Reynolds modérés.

Fig. A.9 – Exemples de structures d’intense vorticité (A), et d’intense cisaillement (B), obtenu par simulation numérique directe dans une boîte de turbulence isotrope à $R_\lambda \sim 168$, d’après [177].

8. Il a été démontré que lorsqu’il existe localement dans un écoulement turbulent deux directions de compression et une direction d’étirement, cela conduit à la formation de tourbillons (Fig. [A.9] A) ; lorsqu’il existe une direction de compression et deux directions d’étirement, cela conduit à la création de nappes (Fig. [A.9] B)
ANNEXE A. TURBULENCE ISOTROPE DANS UN FLUIDE HOMOGÈNE

A.4 La dynamique de la turbulence dans l’espace spectral

On définit le tenseur spectral ϕ_{ij} comme la transformée de Fourier du tenseur des corrélations spatiales des fluctuations de vitesse noté R_{ij}, soit :

$$\phi_{ij}(k) = \frac{1}{(2\pi)^3} \int_{-\infty}^{+\infty} e^{-ikr} R_{ij}(r) dr$$ \hfill (A.31)

ou par transformation inverse :

$$R_{ij}(r) = \int_{-\infty}^{+\infty} e^{ikr} \phi_{ij}(k) dk$$ \hfill (A.32)

La trace du tenseur spectral (i.e. la somme des termes diagonaux, $\phi_{ii} = \phi(11) + \phi(22) + \phi(33)$) représente l’énergie cinétique, à un nombre d’onde donné. En effet, pour $r=0$, on trouve :

$$R_{ii}(0) = \langle u_i u_i \rangle = 3u^2 = \frac{1}{2} \int_{-\infty}^{+\infty} \phi_{ii}(k) dk$$ \hfill (A.33)

Le spectre d’énergie 3D est alors défini à partir de ϕ_{ii} intégré sur une surface sphérique de rayon k (k est le module du vecteur d’onde k) :

$$E(k) = \frac{1}{2} \int_{\sigma} \phi_{ii}(k) d\sigma$$ \hfill (A.34)

L’intégrale de l’Eq.(A.34) représente l’énergie cinétique par unité de masse, soit :

$$\int_{0}^{\infty} E(k) dk = \frac{1}{2} \int_{0}^{\infty} \left[\int_{\sigma} \phi_{ii}(k) d\sigma \right] dk = \frac{1}{2} \langle u_i u_i \rangle = \frac{3}{2} \langle u^2 \rangle$$ \hfill (A.35)

On peut également définir un spectre d’énergie 1D. Pour une turbulence isotrope, on trouve aisément [12] :

$$E(k) = k^3 \frac{d}{dk} \left(\frac{1}{k} \frac{dE_{11}}{dk} \right),$$ \hfill (A.36)

d’où se déduit l’expression pour le spectre unidimensionnel $E_{11}(k_1)$ (Eq. A.16) :

$$E_{11}(k_1) = \int_{k_1}^{\infty} \frac{E(k)}{k} \left(1 - \frac{k_1^2}{k^2} \right) dk$$ \hfill (A.37)

A.4.1 Une première notion du transfert d’énergie dans l’espace spectral ?

Pour cela, revenons un instant dans l’espace physique, et mentionnons le mécanisme de base d’une cascade d’énergie. Cette cascade provient d’un échange d’énergie cinétique qui peut être vu comme résultant d’un processus d’étirement tourbillonnaire entre deux tourbillons adjacents et perpendiculaires (Fig. A.10). Ces tourbillons sont orientés selon les directions 1 et 2, et animés chacun d’une vorticité $\omega_1 = \frac{\partial u_3}{\partial x_2} - \frac{\partial u_2}{\partial x_3}$ et $\omega_2 = \frac{\partial u_1}{\partial x_3} - \frac{\partial u_3}{\partial x_1}$. Cela conduit à un taux d’échange d’énergie cinétique T, dans le plan formé par les directions 1 et 2, [275] :

$$T = \epsilon (u_2^2 - u_1^2)$$ \hfill (A.38)
ANNEXE A. TURBULENCE ISOTROPE DANS UN FLUIDE HOMOGÈNE

Fig. A.10 – Processus d’étirement tourbillonnaire dans un champ de déformation, avant le début du processus (en haut), après le processus (en bas), d’après [275]. Dans ce processus, le tourbillon 1 est étiré dans la direction 1, cédant ainsi cette élongation au tourbillon 2 qui lui est perpendiculaire, et qui sera ainsi comprimé dans la direction 2.

\[e = e_{11} = \frac{\partial u_1}{\partial x_1} \]

où \(e_{11} = \frac{\partial u_1}{\partial x_1} \) se réduit au taux d’élongation du tourbillon 1 dans la direction 1, et \(e_{12} \) est le tenseur des taux de déformation local dans le plan (1,2) des fluctuations de vitesse.

Dans ce processus, les tourbillons sont considérés au contact l’un de l’autre de telle sorte qu’une élongation axiale du premier tourbillon dans la direction 1 est directement transmise au deuxième tourbillon dans sa direction perpendiculaire (direction 1). Le tourbillon 1 étant étiré dans la direction 1 (\(\omega_1 \) augmente) ceci induit une augmentation des composantes \(u_2 \) et \(u_3 \) du vecteur vitesse, tandis que le tourbillon 2 est comprimé (\(\omega_2 \) diminue), ce qui induit une diminution des composantes \(u_1 \) et \(u_3 \). Dans ce petit modèle simple, il s’ensuit que la différence \(u_2^2 - u_1^2 \) devient positive, i.e. que le taux de transfert de l’énergie augmente vers les tourbillons étirés (de plus petite taille).

L’approche spectrale du transfert d’énergie, contrairement à l’approche physique qui est basée sur des mécanismes très simplificateurs d’interaction entre les tourbillons, est une approche parfaite dans le sens où toutes les directions dans l’espace de tous les tourbillons sont prises en compte, sans préjugé sur le modèle d’interaction mécanique local entre les tourbillons. Dans l’espace spectral, les tourbillons d’une certaine taille sont soumis aux étirements d’autres tourbillons, et on a alors un flux d’énergie entre les différents tourbillons. Si l’on contourne la difficulté de rendre compte de tous les mécanismes déterministes d’interactions entre les tourbillons, la situation n’est néanmoins pas plus claire qu’en espace

9. moyennant l’hypothèse que les tourbillons ne se déforment pas, et que l’entraînement par contact entre eux soit supposé sans frottement (conservation de la circulation). Il ne s’agit bien entendu que d’un modèle très basique du transfert d’énergie entre les tourbillons, qui ne prend nullement en compte les effets de la viscosité ni les instabilités des tubes tourbillons.
physique, puisque, par transformation de Fourier, on perd la notion de repérage spatial, qui ajoute une difficulté d’un autre ordre. Ainsi, pour un nombre d’onde donné, il est délicat de savoir exactement quels sont les modes (i.e. quels sont les autres nombres d’onde) qui agissent sur la vorticité de ce nombre d’onde particulier. Par exemple, est-ce que l’énergie provient des tourbillons de taille immédiatement supérieure, ou bien de l’ensemble des tourbillons ? On parle alors d’interactions locales (entre modes voisins) ou non-locales (entre modes éloignés). Ce problème épineux dépasse le cadre de ce doctorat. Des discussions approfondies sur ce point sont disponibles par exemple dans [301], [35], [76] ou plus récemment [175], [20].

Estimons, comme pour l’espace physique, un taux de déformation spectral, noté $e(k)$, avec :

– la taille d’un tourbillon qui est donnée par $2\pi/k$,
– sa vitesse caractéristique qui peut s’exprimer par $[kE(k)]^{1/2}$ puisque l’énergie de tous les tourbillons de cette taille $2\pi/k$ est proportionnelle à $E(k)$ fois le nombre d’onde k. Par conséquent, le taux de déformation $e(k)$ d’un tourbillon de nombre d’onde k dans l’espace spectral, est [275] :

$$e(k) = \frac{[kE(k)]^{1/2}}{2\pi/k} = \frac{[k^3E(k)]^{1/2}}{2\pi}$$ \hspace{1cm} (A.39)

Comme le spectre d’énergie $E(k)$ varie comme $\propto k^{-5/3}$ dans la région inertielle (région centrale du spectre), l’équation (A.39) implique trivialement que le taux de déformation $e(k)$ augmente avec les nombres d’onde croissants, en obéissant à $e(k) \propto k^{2/3}$.

La question maintenant est de savoir quels sont les tourbillons qui bénéficient le plus du transfert d’énergie à un nombre d’onde k fixé. Selon l’équation (A.38), le transfert d’énergie dépend entièrement de la capacité qu’a le taux de déformation d’aligner les tourbillons de telle manière que la différence $u_2^2 - u_1^2$ soit la plus grande possible. Le taux de déformation doit donc agir contre la tendance naturelle qu’auront les tourbillons (par actions de "lissage" par la viscosité ou par les forces de pression) d’égaliser les trois composantes u_1, u_2 ou u_3 (appelée retour à l’isotropie). Le temps de retour à l’isotropie est sensiblement égal à l’inverse du taux de déformation (appelé le temps caractéristique de la cascade, [151]), soit $\tau(k) \sim 1/e(k)$. Ainsi, plus les tourbillons sont petits (i.e. plus leur taux de déformation est grand), plus ils retourneront rapidement à l’isotropie.

Pour établir cette vision de cascade énergétique dans l’espace spectral, une hypothèse adoptée n’est pas strictement valide : celle qui concerne les plus petites échelles. Nous avons conclu que le temps caractéristique d’un tourbillon est donné par $1/e(k)$. Or, le temps caractéristique de diffusion d’un tourbillon est
ANNEXE A. TURBULENCE ISOTROPE DANS UN FLUIDE HOMOGÈNE

$$(\nu / \langle \epsilon \rangle)^{1/4}$$ et le taux de déformation de ces plus petits tourbillons vaut $$(\langle \epsilon \rangle / \nu)^{1/4}$$, si bien que le modèle développé ici n’est pas valide si $$\epsilon(k)$$ et $$(\langle \epsilon \rangle / \nu)^{1/4}$$ deviennent du même ordre de grandeur. Le modèle de cascade d’énergie est valide en fluide parfait (inviscid) seulement, et pour des tailles de tourbillons dont le nombre de Reynolds $$\epsilon(k)/k^2 \nu$$ est suffisamment grand.

A.4.2 Quelle est l’équation générale, dérivée des équations de Navier-Stokes, qui régit le transfert d’énergie dans le domaine spectral ?

Pour une turbulence isotrope, l’équation locale de transfert de l’énergie dans le domaine spectral s’écrit [178] :

$$\frac{\partial E(k, t)}{\partial t} = T(k, t) - 2\nu k^2 E(k, t);$$

$$T(k, t) = -8\pi k^3 F_3(k, t)$$ (A.40)

où $$F_3(k, t)$$ représente la transformée de Fourier du tenseur des corrélations triples des vitesses fluctuantes $$B_{ij,k}(r, t) = \langle u_i(x, t)u_j(x, t)u_k(x+r, t) \rangle$$.

L’équation (A.40) s’obtient (voir [153]) à partir de l’équation de Karman-Howarth écrite sous la forme suivante pour une turbulence isotrope [178] :

$$\frac{\partial B_{u,u}(r, t)}{\partial t} = \left(\frac{\partial}{\partial r} + \frac{4}{r} \right) \left[B_{uu,u}(r, t) + 2\nu \frac{\partial B_{u,u}(r, t)}{\partial r} \right]$$ (A.41)

qui remplit un rôle fondamental dans de nombreuses études de la turbulence isotrope. Cette équation (A.41) est la traduction, après quelques transformations et moyennant l’hypothèse d’isotropie, de l’équation de la dynamique écrite en faisant apparaître les corrélations doubles $$B_{u,u}(r, t) = \langle u(x+r, t)u(x, t) \rangle$$ et triples $$B_{uu,u}(r, t) = \langle u^2(x+r, t)u(x, t) \rangle$$ des vitesses. Voir [178] pp. 120 à 124 pour plus de détails sur cette transformation mathématique.

L’équation (A.40) est la forme spectrale de l’équation de Karman-Howarth, dérivée en 1938. Elle décrit la variation dans le temps de la distribution des nombres d’onde de l’énergie turbulente. Le dernier terme $$2\nu k^2 E(k, t)$$ désigne la dissipation par action visqueuse, notée $$D(k)$$. On peut voir aisément par cette relation, que la viscosité $$\nu$$ conduit à une décroissance de l’énergie cinétique des perturbations $$E(k, t)$$ à un nombre d’onde k, par un terme proportionnel à l’intensité de ces perturbations et multiplié par $$2\nu k^2$$. De plus, cette relation explicite que l’énergie des perturbations de grande échelle (petits nombres d’onde k) diminue ainsi plus lentement sous l’action de la viscosité, que les perturbations de petites échelles (grands nombres d’onde k). Ce résultat pouvait être présenti dans le sens où la déperdition d’énergie par action visqueuse est proportionnel au gradient de vitesse, et que ceux-ci sont d’autant plus intenses que le nombre d’onde augmente. Le premier terme $$T(k, t)$$ dans l’équation (A.40)
représente, quant à lui, la variation de l’énergie cinétique provenant des termes inertiels non-linéaires de l’équation fondamentale de la dynamique. Cette variation $T(k)$ est uniquement une redistribution de l’énergie au sein du spectre total des nombres d’onde, sans changement global du niveau d’énergie dans l’écoulement\(^{11}\). En effet, on démontre que pour une turbulence isotrope, le bilan de ces variations de $T(k)$ intégrées sur tout le spectre $0 \geq k \geq \infty$ est nul :

$$\int_{0}^{\infty} T(k, t) dk = 0$$

Il résulte également des équations (A.40) et (A.42) que le taux de variation de l’énergie cinétique total dans un écoulement turbulent isotrope est uniquement dû aux forces visqueuses, ce qui se traduit par la relation suivante :

$$\frac{\partial}{\partial t} \frac{\langle u_i u_i \rangle}{2} = \frac{\partial}{\partial t} \int_{0}^{\infty} E(k, t) dk = -2\nu \int_{0}^{\infty} k^2 E(k, t) dk$$

La figure (A.11) montre de manière schématique les spectres d’énergie $E(k)$, de dissipation $D(k)$ et la fonction $T(k)$ qui gouverne la distribution de l’énergie au sein du spectre entier. Le fait que l’on observe que $T(k)$ opère un changement de signe, en étant d’abord négative aux petits nombres d’onde, puis positive aux grands nombres d’onde, traduit la conservation globale de l’énergie sur tout le spectre, en respect avec l’équation (A.42). Notons également que le pic de la dissipation $D(k)$ se situe pour un nombre d’onde k_η supérieur à celui de l’énergie $E(k)$ (positionné quant à lui sur le nombre d’onde k_0), traduisant l’importance des forces visqueuses pour les plus petites échelles du mouvement turbulent. La figure (A.11-a) définit, au sein de la région d’équilibre universel $k_0 \geq k \geq k_\eta$, un sous-intervalle de nombres d’onde $k_0 \geq k \geq k_\eta$ (située entre les zones 1 et 2) appelée région inertielle, où les fluctuations sont indépendantes des forces de frottement visqueux (et uniquement dépendantes des forces d’inertie). Plus le nombre de Reynolds devient grand, plus les deux spectres $E(k)$ et $D(k)$ s’écartent l’un de l’autre (l’intervalle $k_0 \geq k \geq k_\eta$ s’élargit) ; et pour un nombre de Reynolds suffisamment grand, les deux spectres $E(k)$ et $D(k)$ deviennent complètement disjoints (ils peuvent éventuellement se recouvrir partiellement, sur une gamme de nombres d’onde intermédiaires entre la gamme d’énergie et la gamme de dissipation, comme c’est le cas sur la figure (A.11-a)). Pour de très faibles nombres de Reynolds, les deux spectres $E(k)$ et $D(k)$ sont quasiment confondus (i.e. $k_0 \sim k_\eta$).

Il n’est pas possible de mesurer directement les termes de l’équation (A.40). Toutefois, moyennant l’hypothèse d’isotropie (qui permet ainsi de n’avoir à considérer qu’une seule composante au lieu des trois), les spectres $E(k)$ et la fonction $T(k)$ ont pu être déterminés expérimentalement pour une turbulence de

\(^{11}\) Pour des nombres de Reynolds élevés, il a été montré par simulation numérique directe \[77\][192] que les variations qualitatives de la fonction $T(k|p, q)$ (avec $T(k) = \sum_p \sum_q T(k|p, q)$) sont dues à un transfert local d’énergie entre deux triades k et p extérieures à la gamme d’énergie locale considérée, avec la troisième triade q de la gamme d’énergie locale considérée.
ANNEXE A. TURBULENCE ISOTROPE DANS UN FLUIDE HOMOGÈNE

242

grille, la première fois par Van Atta et Chen [282]. La figure (A.11-b) montre un résultat typique obtenu pour T(k).

Fig. A.11 – a) : Illustration schématique du spectre d’énergie E(k), du spectre de la dissipation $2\nu k^2 E(k)$ et de la fonction de transfert T(k), dans les régions inertielle (1) et dissipative (2). Les pics de E(k) et de D(k) sont respectivement positionnés aux nombres d’onde k_0 et k_η. L’intervalle de nombres d’ondes $k_0 \geq k \geq k_\eta$ définit la région inertielle (inertial subrange en anglais) ; b) : Fonction de transfert T(k) calculée par l’équation (A.45) (trait pointillé), et par des mesures des corrélations des fluctuations de vitesse d’ordre 3 par Van Atta et Chen [282] (trait continu).

Intégrée entre les nombres d’onde 0 et k, l’équation de transfert (A.40) s’écrit (voir par exemple [178]) :

$$\frac{\partial}{\partial t} \int_0^k E(k', t) dk' = \int_0^k T(k', t) dk' - 2\nu \int_0^k k'^2 E(k') dk'$$

(A.44)

où $W(k) = - \int_0^k T(k', t) dk' = \int_k^\infty T(k', t) dk'$ est appelé fonction de transfert de l’énergie dans le domaine spectral[12] vers tous les nombres d’onde $k' \geq k$, provenant des nombres d’onde $k' \leq k$, et où $D(k) = 2\nu \int_0^k k'^2 E(k') dk'$ représente le spectre de la dissipation [12].

On démontre aisément grâce à l’équation (A.42) que W(k) est aussi équivalent à :

$$W(k, t) = \int_k^\infty T(k') dk' = - \int_0^k T(k') dk'$$

(A.45)

A partir de l’équation A.44, on démontre [178] que sur la gamme d’équilibre universel $k_0 \geq k \geq k_\infty$ (la dépendance temporelle des statistics cesse dans cette gamme de nombres d’ondes), l’équation spectrale

12. W(k) représente le montant d’énergie transféré par unité de temps (flux) par des perturbations de nombres d’onde inférieurs à k, vers toutes les autres perturbations de nombres d’onde supérieur (soit un flux de la gauche vers la droite dans le spectre). Dans l’espace physique, W(k) est assimilé au terme de production d’énergie turbulente, i.e. $W(k) \sim \langle u_i u_j \rangle \frac{\partial U_i}{\partial x_j}$, [76].
ANNEXE A. TURBULENCE ISOTROPE DANS UN FLUIDE HOMOGÈNE

(A.44) se réduit simplement à la forme suivante :

\[W(k) + 2\nu \int_0^k k'^2 E(k')dk' = \langle \epsilon \rangle \] \hspace{1cm} (A.46)

L’équation (A.46) n’est qu’une forme condensée, plus simple, de l’équation de Karman-Howarth dans le domaine spectral. Bien qu’ayant permis de réduire considérablement le nombre de degrés arbitraires dans le choix des solutions possibles pour la turbulence isotrope, il n’en demeure pas moins pour autant que cette équation reste non fermée, comme l’est d’ailleurs l’équation de Karman-Howarth (Eq. [A.41]). En effet, cette dernière relie deux paramètres inconnus (les corrélations doubles et triples de la vitesse), alors que l’équation équivalente dans le domain spectral fait également intervenir des paramètres a priori indépendants. Aussi, de nombreux travaux ont été réalisés pour tenter de fermer l’équation (A.46), en proposant des équations supplémentaires reliant W(k) et E(k). Ce point dépasse le cadre de ces rappels (voir par exemple [178] pp. 212 à 225 pour plus de détails).

A.4.3 Que se passe-t-il lorsque le nombre de Reynolds est modéré ou faible ?

Pour des nombres de Reynolds faibles, nous avons signalé précédemment que les spectres E(k) et D(k) ne sont plus disjoints, comme à haut Reynolds. Une large région de recouvrement entre les deux spectres est visible : la figure (A.12) montre un exemple de tels spectres E\(_{11}(k_1)\) et D\((k_1)\) qui se recouvrent sur une large gamme d’échelles, obtenus par nos mesures d’anémométrie à fil chaud à 6 diamètres le long de l’axe en aval de la buse de sortie du jet de propane se déchargeant dans un milieu au repos composé (en fraction molaire) de 70\% néon et de 30\% air, et pour un nombre de Reynolds \(R_\lambda \sim 15\).

Ce recouvrement des spectres signifie que le transfert énergétique aux grandes échelles ne peut plus être considéré comme indépendant des petites échelles dissipatives. **De fortes interactions non-locales sont alors présentes pour ces faibles nombres de Reynolds, entre les grands et les petits nombres d’onde.** Ainsi, le taux de transfert de l’énergie de la cascade \(\tau(k)\) que nous avons introduit précédemment n’est plus valide, car cette théorie (dite d’Obukhov) ne prend pas en compte les interactions non-locales, considérant uniquement que le transfert énergétique s’effectue de proche en proche nombres d’onde. En effet, la théorie classique (d’Obukhov) conduit à un spectre E(k) proportionnel à \(exp(-ak^2)\) dans la région dissipative (grands nombres d’onde), alors que les résultats expérimentaux ([157][61]), numériques ([133][135]) et analytiques ([141][96]) montrent au contraire qu’il est plutôt proportionnel à \(exp(-ak)\).

Pour ces nombres de Reynolds faibles (typiquement \(R_\lambda < 100\)), le spectre d’énergie décroît rapidement vers zéro vers les hauts nombres d’onde, et on peut écrire [76] :

\[\int_0^k E(k',t)dk' \approx \int_0^\infty E(k',t)dk' = \frac{3}{2} \langle u^2 \rangle^{1/2}(t) \] \hspace{1cm} (A.47)
ANNEXE A. TURBULENCE ISOTROPE DANS UN FLUIDE HOMOGÈNE

Fig. A.12 – Exemple de spectres d’énergie cinétique 1D $E_{11}(k_1)$ et de dissipation associé $D_{11}(k_1)$, obtenu lors de nos mesures par anémométrie à fil chaud, sur l’axe du jet de propane débouchant dans un mélange d’air et de néon, à 6 diamètres en aval de la buse de sortie. Les spectres $E_{11}(k_1)$ et $D_{11}(k_1)$ sont normalisés par leur maximum respectif.

En notant $U(k)=u$ (U est l’échelle de vitesse intégrale), on démontre à partir de l’équation de transfert d’énergie dans l’espace spectral (Eq. A.40), les deux relations suivantes pour $E(k)$ et $T(k)$:

$$T(k) = -\frac{\partial W}{\partial k} \sim e^{-ak} \quad (A.48)$$

et :

$$E(k) \sim \frac{1}{k^2} e^{-ak} \quad (A.49)$$

avec $a=(2\nu)/(\beta u)$, où β est une constante à déterminer.

Les formes générales des équations (A.48) et (A.49), constituent les deux formes importantes du spectre et du transfert énergétique pour les faibles nombres de Reynolds. Elles ont été confrontées à de nombreux résultats expérimentaux pour des nombres de Reynolds $R_\lambda \sim 60$ [61, 229], et numériques pour des nombres de Reynolds R_λ compris entre 25 et 70, [32], [76]. Un très bon accord entre les prédictions données par les équations et les résultats expérimentaux a été obtenu. Citons par exemple les travaux numériques de référence de Kerr [133] et de Kida et Murakami [135] qui ont trouvé une courbe de lissage du spectre $E(k)$ respectivement donnée par la formule $E(k) \sim k^{-5/3} exp(-ak)$ avec $a/\lambda_K \approx 5.1$, et par $E(k) \sim k^{-1.6} exp(-ak)$ avec $a/\lambda_K \approx 4.9$. Expérimentalement, Sreenivasan [257] a utilisé une équation de meilleur lissage pour son spectre unidimensionnel, proportionnelle à $exp(-ak)$ avec $a/\lambda_K = 12.7$ pour $0.1 \geq k\lambda_K \geq 0.5$ et avec $a/\lambda_K = 8.8$ pour $0.5 \geq k\lambda_K \geq 1.5$.

Annexe B

Rappels de théorie cinétique des gaz

B.1 Théorie "exacte" et Modèles moléculaires

La théorie cinétique des gaz s’attache à résoudre l’équation de Boltzmann dans le cas général, en se basant sur la méthode qu’employa Enskog pour les gaz simples, les mélanges binaire ou multiples de gaz. La solution générale d’Enskog au point x_0 et à l’instant t, ne dépend de pas plus de trois paramètres : la température T, la vitesse moyenne des molécules c_0 et la densité de nombres de molécules n, au point considéré à travers le gaz.
Bien que la solution générale puisse paraître aisée à obtenir au premier abord, la solution particulière est nettement plus complexe, puisqu’elle dépend grandement du modèle moléculaire adopté qui régit la loi d’interaction entre les molécules.

On définit généralement trois types de modèles moléculaires [50] :
1) le modèle de sphère rigide sans champ de force,
2) le modèle de molécules comme centres de force,
3) le modèle de molécules possédant des champs de force à la fois d’attraction et de répulsion ; parmi ceux-ci, le plus couramment vérifié expérimentalement est le modèle de Lennard-Jones 6-12. Pour ce modèle, l’énergie potentielle d’attraction entre deux molécules (dénommées 1 et 2) est donnée par $V(r)=4\epsilon_{12}[(\sigma_{12}/r)^{12} - (\sigma_{12}/6)^{6}]$, [119][136]. Les coefficients σ_{12} et ϵ_{12} représentent respectivement le "diamètre de faible vitesse" du potentiel tel que $V(\sigma_{12})=0$, et la profondeur du potentiel, tel que $-\epsilon_{12}$ est la plus grande valeur négative atteinte par le potentiel $V(r)$. On peut estimer ces deux paramètres du potentiel de Lennard-Jones $V(r)$ pour l’attraction mutuelle entre deux molécules, par les formules suivantes faisant intervenir les grandeurs liées à chacune des molécules 1 et 2 :

$$\sigma_{12} = \frac{1}{2}(\sigma_1 + \sigma_2) \quad (B.1)$$
et

\[\epsilon_{12} = \sqrt{\epsilon_1 \epsilon_2} \]

(B.2)

Le tableau (B.1) donne les valeurs typiques de ces grandeurs pour quelques molécules de gaz. On y trouve les valeurs pour l’air et le néon. Pour le propane (\(C_3H_8\)), \(\epsilon/k=254\) K, et \(\sigma=5,061\) Angströms, \[118\].

Fig. B.1 – Valeurs de \(\epsilon/k\) (\(k\) est la constante de Boltzmann, \(1,3806 \times 10^{-23} \text{ J.K}^{-1}\)) et de \(\sigma\) dans un gaz simple obtenues avec le modèle d’attraction de Lennard-Jones 6-12, extrait de \[50\]. Voir également \[118\] pour d’autres gaz.

Une fois le modèle moléculaire choisi, les expressions pour la viscosité dynamique \(\mu\), la conductivité thermique \(\lambda\) et le coefficient de diffusion des gaz \(D_{ij}\) peuvent être déterminées. Ces expressions se présentent sous la forme de séries infinies. On peut définir par conséquent autant d’expressions particulières de ces grandeurs que l’on souhaite, en fonction de la précision que l’on recherche. Nous nous limiterons ici aux approximations de premier ordre, notées de manière générique \([.]_1\) ; et par ailleurs, nous nous intéressons ici aux molécules sphériques ayant uniquement une énergie de translation. Les molécules possédant également une énergie interne ne nous préoccupent pas dans ces travaux.

B.2 Phénomènes de transport pour un modèle de Lennard-Jones 6-12

Nous avons extrait les formules présentées ci-dessous de \[50\] et \[118\].
ANNEXE B. RAPPELS DE THÉORIE CINÉTIQUE DES GAZ

B.2.1 Coefficient de diffusion moléculaire

Le coefficient de diffusion d’un mélange binaire peut être obtenu, en première approximation, par l’équation suivante [118] :

\[[D_{12}]_1 = 0,0026280 \frac{\sqrt{MT}(M_1 + M_2)}{2M_1M_2} \frac{\sigma_{12}^2}{p\Omega_{12}^{(1,1)*}(T_{12}^*)} \] (B.3)

avec p la pression en bar, T la température en K, \(T_{12}^* = \frac{kT}{\epsilon_{12}} \) la température réduite, \(M_1 \) et \(M_2 \) les masses molaires des deux gaz, \(\sigma_{12} \) la section efficace moyenne du potentiel de Lennard-Jones 6-12 en angström, \(\epsilon_{12}/k \) le deuxième paramètre du potentiel de Lennard-Jones 6-12 en K, \(\Omega_{12}^{(1,2)*} \) est l’intégrale utilisée dans la première approximation pour la détermination des coefficients de transport, \([D_{12}]_1\) est alors exprimé directement en cm²/s.

La théorie cinétique des gaz exacte prédit que ce coefficient est indépendant des proportions des gaz dans le mélange constitué. Par conséquent, le coefficient de diffusion dans un mélange binaire est sensiblement constant. Les variations en fonction de la concentration d’un gaz vis-à-vis du deuxième n’excèdent pas quelques pourcents [50], ce qui a été vérifié expérimentalement.

Les figures (B.2) et (B.3) donnent les valeurs des intégrales de collision \(\Omega^{(l,s)*} \), utilisée dans l’expression (B.3) et dans celles qui suivent.

Pour un mélange ternaire, il n’est pas possible d’utiliser la relation simple lorsqu’au moins un des gaz est à l’état de trace dans le mélange car ici, la proportion de l’air dans le mélange propane-(air-néon) reste élevée. Nous avons donc utilisé la relation complète suivante, faisant intervenir les fractions molaires des différents gaz contenus dans le mélange [118] :

\[D_{ij} = \frac{1}{M_j} \left(\sum_k \chi_k M_k \right) \frac{K_{ji} - K_{ii}}{|K|} \] (B.4)

avec \(K_{ii} = 0 \) (X désigne les fractions molaires) et :

\[K_{ij} = \frac{\chi_i}{[D_{ij}]_1} + \frac{M_j}{M_i} \sum_{k \neq i} \frac{\chi_k}{[D_{ik}]_1} \] (B.5)

avec \(K_{ji} \) les mineurs de \(K_{ij} \), et \(|K|\) le déterminant (qui ne sont pas rappelés ici, voir [118] p. 541).

B.2.2 Viscosité

Pour un gaz simple (un seul type de molécule présent dans le volume de gaz considéré), la première approximation du coefficient de viscosité dynamique s’obtient par l’expression suivante :

\[[\mu]_1 \times 10^7 = 266,93 \frac{\sqrt{MT}}{\sigma^2\Omega^{(2,2)*}(T^*)} \] (B.6)
ANNEXE B. RAPPELS DE THÉORIE CINÉTIQUE DES GAZ

Fig. B.2 – Valeurs des intégrales de collision $\Omega^{(1,8)}_s$ du potentiel de Lennard Jones, utilisée pour le calcul des coefficients de transport. D’après [118].

avec T la température en K, M la masse molaire des deux gaz, σ la section efficace moyenne du potentiel de Lennard-Jones 6-12 en angström, $\Omega^{(2,2)}_s$ est l’intégrale utilisée dans la première approximation pour la détermination des coefficients de transport pour une substance pure, $[\mu]$ est alors exprimé directement.
ANNEXE B. RAPPELS DE THÉORIE CINÉTIQUE DES GAZ

Fig. B.3 – Valeurs des intégrales de collision $\Omega^{(l,s)*}$ du potentiel de Lennard Jones, utilisée pour le calcul des coefficients de transport (fin). D’après [118].

Pour un mélange binaire, la première approximation du coefficient de viscosité dynamique s’obtient...
ANNEXE B. RAPPELS DE THÉORIE CINÉTIQUE DES GAZ

par l’expression suivante ; elle fait intervenir les masses molaires M_1 et M_2 des deux gaz :

$$[\mu_{12}]_1 \times 10^7 = 266,93 \frac{\sqrt{2M_1M_2T/(M_1 + M_2)}}{\sigma_{12}^2 G_{12}^{(2,2)\nu}(T_{12})}$$ (B.7)

avec T la température en K, $T_{12}^* = kT/\epsilon_{12}$ la température réduite, M_1 et M_2 les masses molaires des deux gaz, σ_{12} la section efficace moyenne du potentiel de Lennard-Jones 6-12 en angström, ϵ_{12}/k le deuxième paramètre du potentiel de Lennard-Jones 6-12 en K, $\Omega_{12}^{(2,2)\nu}$ est l’intégrale utilisée dans la première approximation pour la détermination des coefficients de transport, $[\mu_{12}]_1$ est alors exprimé directement en g.cm$^{-1}$.s$^{-1}$.

Pour un mélange ternaire, nous avons utilisé la formule simplifiée donnée suivante :

$$[\mu_{mix}]_1 = \sum_{i=1}^{n} \frac{\lambda_i^2}{[\mu_i]} + 1,385 \sum_{k=1,k\neq i}^{n} \chi_i \chi_k \frac{RT}{pM_i[D_{ik}]_1}$$ (B.8)

avec R=8,3144 la constante des gaz parfaits.

B.2.3 Conductivité thermique

Pour un mélange binaire, on a :

$$[\lambda_{12}]_1 \times 10^7 = 1989,1 \frac{\sqrt{T(M_1 + M_2)/(2M_1M_2)}}{\sigma_{12}^2 G_{12}^{(2,2)\nu}(T_{12})}$$ (B.9)

avec T la température en K, $T_{12}^* = kT/\epsilon_{12}$ la température réduite, M_1 et M_2 les masses molaires des deux gaz, σ_{12} la section efficace moyenne du potentiel de Lennard-Jones 6-12 en angström, ϵ_{12}/k le deuxième paramètre du potentiel de Lennard-Jones 6-12 en K, $[\lambda_{12}]_1$ est alors exprimé directement en cal.cm$^{-1}$.s$^{-1}$.K$^{-1}$.

Pour un mélange ternaire, nous avons utilisé la formule simplifiée de Mason-Saxena [166] :

$$[\lambda_{mix}]_1 = \sum_{q} \chi_q \lambda_q \left[\chi_q + \sum_{j \neq q} \chi_j G_{qj} \right]^{-1}$$ (B.10)

avec

$$G_{qq'} = 1,065 \frac{y_{qq'}}{\sqrt{8}} \left[1 + (y_{qq'} \lambda_q \lambda_{q'}/y_{qq'} \lambda_q \lambda_{q'})^{1/2} \right]^2$$ (B.11)

où $y_{qq'} = \frac{M_q}{M_q + M_q'}$, M_q et M_q' étant les masses molaires des espèces q et q'.