Une version effective du théorème de Hurewicz

Clemens Berger

To cite this version:

HAL Id: tel-00339314
https://tel.archives-ouvertes.fr/tel-00339314
Submitted on 17 Nov 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
UNE VERSION EFFECTIVE
DU
THÉORÈME DE HUREWICZ

Clemens BERGER

Soutenue à Grenoble le 25 octobre 1991 devant le jury

Président : Jean-Pierre DEMAILLY
Examinateurs : Jean DELLA-DORA (INPG - ENSIMAG)
 Jean-Louis LODAY (CNRS, Strasbourg)
 Alain PROUTÉ (Université de Paris VII)
 Francis SERGERAERT, Directeur de thèse
 Michel ZISMAN (Université de Paris VII)
Meinen Eltern
in Liebe und Dank
SOMMAIRE

INTRODUCTION .. 9

Chapitre I - RAPPELS SUR LES ENSEMBLES ET GROUPES SIMPLICIAUX . 13
 1. Ensemble simplicial et réalisation géométrique 15
 2. Fibrés principaux et fonctions tordantes 20
 3. Le complexe de Moore et la construction de Dold-Thom 23

Chapitre II - CONSTRUCTIONS UNIVERSELLES EFFECTIVES 27
 1. Contraction prismatique du fibré co-universel 30
 2. Contraction conique du fibré universel 47

Chapitre III - UNE VERSION EFFECTIVE DU THÉORÈME DE HUREWICZ . 55
 1. Le commutant du groupe coclassifiant 57
 2. Description d’un logiciel COMMON-LISP 63

APPENDICES .. 67
 A1. Le réalisé de l’ensemble simplicial des prismes 69
 A2. Un lemme de compressibilité en topologie linéaire par morceaux . 71
 A3. Le fibré universel comme produit mixte de deux monades 75

RÉFÉRENCES ... 81
C'est Francis Sergeraert qui a guidé mes premiers pas de chercheur. Sa droiture et son ouverture d'esprit ont laissé bien plus de traces que la rédaction de cette thèse ne fait entrevoir. Tous mes remerciements les plus vifs et les plus sincères.

Je voudrais exprimer ma gratitude aux membres du jury : à Jean-Pierre Demailly qui me fait l'honneur de présider le jury ainsi qu'à Jean Della-Dora, Jean-Louis Loday, Alain Prouté et Michel Zisman qui ont eu la gentillesse d'accepter d'y participer.

Je n'ai pas oublié l'engagement personnel de Domingo Luna lors de mon inscription en thèse. C'est avec plaisir que je l'en remercie ici.

Les nombreux collègues mathématiciens et informaticiens que j'ai trouvés à l'Institut Fourier et au Laboratoire de Modélisation et de Calcul ont su créer autour de moi une ambiance à la fois scientifique et familiale qui m'est vite devenue indispensable. Un grand merci à tous et à toutes.

Les maintes discussions avec Frédéric Mouton et Julio Rubio ont clarifié mes idées. Mes remerciements amicaux à eux.

Enfin, je ne peux que rester admiratif devant le don exceptionnel d'Arlette Guttin-Lombard quant à la saisie de ce texte. Je ne regrette nullement d'avoir été mal informatisé dans ce domaine...
Introduction
A tout ensemble simplicial réduit X est associé selon D. Kan un groupe simplicial libre GX du même type d'homotopie que l'espace des lacets du réalisé $|X|$ de X. Les applications originales de la construction G ont été [10] :

a) une définition "algébrique" des groupes d'homotopie de $|X|$ qui offre en particulier une forme de représentation générique des classes d'homotopie de $|X|$.

b) une version "algébrique" du théorème de Hurewicz basée sur les propriétés du commutant de GX.

L'attrait de la démonstration algébrique du théorème de Hurewicz réside dans la construction effective des représentants dont l'énoncé du théorème n'assure a priori que l'existence. Le gain en effectivité est malheureusement accompagné d'une perte en géométrie manque d'un lien explicite entre la représentation algébrique des classes d'homotopie selon Kan et leur représentation usuelle.

Le présent mémoire comble cette "lacune géométrique" à l'aide d'un plongement naturel du groupe simplicial GX dans le quotient canonique $\bar{\Omega}X$ d'un "vrai" modèle simplicial ΩX de l'espace des lacets de $|X|$. La définition de ce modèle et le passage du monoïde libre ΩX au groupe libre $\bar{\Omega}X$ sont la traduction simpliciale fidèle de la première des deux constructions universelles de J. Milnor [12].

Suite au plongement naturel $GX \hookrightarrow \bar{\Omega}X$, le fibré de Kan $GX \rightarrow EX \rightarrow X$ se trouve alors muni d'une contraction combinatoire (de type prismatique) de son espace total et l'isomorphisme de connexion $\pi_n(|X|) \cong \pi_{n-1}(GX)$ admet en conséquence un inverse effectif :

A tout représentant algébrique $g \in (GX)_{n-1}$ d'une classe d'homotopie selon Kan, élément de $\pi_{n-1}(GX)$, est associé un représentant géométrique canonique g_{sp} : $\Sigma^n(g) \rightarrow X$ de la classe correspondante, élément de $\pi_n(|X|)$. Le représentant géométrique g_{sp} sera donné sous forme d'un morphisme d'une n-sphère simpliciale de type prismatique $\Sigma^n(g)$ vers X.

La construction précédente permet enfin de convertir la version algébrique du théorème de Hurewicz en une version à la fois géométrique et effective, qui renforce même un tant soit peu l'énoncé original :

Nous obtenons entre autres que tout n-cycle z d'un ensemble simplicial effectivement $(n - 1)$-connexe X ($n \geq 2$) est explicitement représentable par un morphisme $z_{sp} : \Sigma^n(z) \rightarrow X$ tel que l'image par z_{sp} du cycle fondamental de la sphère soit égale au cycle donné z.

SSuit une brève description du plan de ce mémoire. Il est composé de trois
chapitres (I,II,III) et de trois appendices (A1, A2, A3) :

Le premier chapitre rappelle les propriétés élémentaires des ensembles et groupes simpliciaux. L'accent est mis sur le formalisme des fonctions tordantes, formalisme dû à J. Moore [1].

Le deuxième chapitre est consacré au passage "effectif" entre la catégorie des ensembles simpliciaux et celle des groupes simpliciaux : du côté de la construction G de Kan à l'aide d'un concept légèrement généralisé de prisme, du côté de la construction \tilde{W} d'Eilenberg-MacLane à l'aide du concept de cône.

L'appendice A1 traite les propriétés topologiques du réalisé de notre modèle de l'espace de lacets (qui provient en fait d'un modèle de l'espace de chemins).

L'appendice A2 traite quelques questions de topologie linéaire par morceaux survenues lors de la construction des sphères au chapitre II.

L'appendice A3 enfin est un complément au chapitre II. On y trouve une définition récursive de la construction \tilde{W} d'Eilenberg-MacLane qui est calquée sur un article de N. Steenrod [16], et qui éclaire la nature à la fois géométrique et catégorielle de cette construction.
Chapitre I

Rappels sur les ensembles et groupes simpliciaux
Ce chapitre sert avant tout à fixer terminologie et conventions utilisées ultérieurement dans le texte. Une partie de la théorie élémentaire y est pourtant développée, ne serait-ce que pour la commodité du lecteur. L'habitué du sujet saura se contenter des quatre indications suivantes :

\textit{a)} Dans les constructions importantes (pseudosection, fonction tordante, complexe de Moore, etc...) nous distinguons parmi les indices l’\textit{indice de dimension} et non pas l’indice zéro comme c’est devenu l’usage. Notre convention a l’avantage d’éviter d’inutiles décalages d’indices ce qui augmente la lisibilité des formules et facilite par ailleurs leur programmation.

\textit{b)} Nous entendons par G-fibré principal une G-fibration principale munie d’une pseudosection explicite.

\textit{c)} Le groupe du fibré principal opère toujours à droite sur l’espace total du fibré.

\textit{d)} Inspiré par l’article récent de Cegarra-Carrasco [2] nous introduisons la notion de filtration semi-scindée d’un groupe. Le groupe des n-simplexes de tout groupe simplicial possède en effet une filtration semi-scindée canonique qui figure implicitement déjà dans l’article [10] de D. Kan. La \textit{décomposition canonique} (3.6) d’un simplexe qui en découle se substitue avantageusement à l’utilisation de la condition de Kan qui ne fournit pas de solution canonique a priori (voir chapitre III).

\section{1. Ensemble simplicial et réalisation géométrique}

(1.1) Un objet simplicial X sur une catégorie C est une suite $(X_n)_{n \geq 0}$ d’objets de C munie pour tout $n > 0$ d’opérateurs de face $\partial_i : X_n \rightarrow X_{n-1}, 0 \leq i \leq n$, et pour tout $n \geq 0$ d’opérateurs de dégénérescence $s_i : X_n \rightarrow X_{n+1}, 0 \leq i \leq n$, morphismes de C qui satisfont les identités

\[
\partial_i \partial_j = \partial_{j-1} \partial_i, \quad i < j
\]

\[
s_i s_j = s_{j+1} s_i, \quad i \leq j
\]

\[
\partial_i s_j = \begin{cases}
\text{id}_{X_n} & i = j, j + 1 \\
\partial_{i-1} & i > j + 1.
\end{cases}
\]
Un morphisme \(f : X \rightarrow Y \) entre objets simpliciaux sur \(C \) est une suite \(f_n : X_n \rightarrow Y_n, n \geq 0 \), de morphismes de \(C \) compatibles avec les opérateurs simpliciaux \(\partial_i \) et \(s_i \).

(1.2) Nous serons principalement concernés par les trois catégories suivantes :
- la catégorie \(\text{Esimp} \) des \textit{ensembles simpliciaux},
- la catégorie \(\text{Esimp}_\ast \) des \textit{ensembles pointés simpliciaux} et
- la catégorie \(\text{Gsimp} \) des \textit{groupes simpliciaux}.
Les foncteurs d’oubli induisent les inclusions canoniques (non pleines)
\[
\text{Gsimp} \rightarrow \text{Esimp}_\ast \rightarrow \text{Esimp}.
\]

"Pointer" un ensemble simplicial revient à choisir un élément distingué \(*_0 \in X_0 \), appelé \textit{point base} de \(X \); le sous-ensemble simplicial \(\{ *_0 \} \) qu’il engendre possède un seul élément en toute dimension. Ces dégénérescences du point base seront par abus de langage aussi appelées point base et notées \(*_n \), \(n \) désignant la dimension.

Le point base d’un groupe simplicial est constitué par la suite \((e_n)_{n \geq 0}\) des éléments neutres des groupes \(G_n \).

(1.3) La catégorie des objets simpliciaux sur \(C \) peut être identifiée à la catégorie des foncteurs contravariants de \(\Delta \) vers \(C \), où \(\Delta \) désigne la catégorie des \textit{ensembles finis ordonnés} \([n] = \{0 < 1 < 2 \cdots < n\}\) et applications croissantes (au sens large). Il s’ensuit que toutes les constructions (co)universelles disponibles dans \(C \) le sont aussi dans la catégorie des objets simpliciaux sur \(C \). Essentielles pour tout ce qui suit sont les constructions \textit{produit cartésien} de deux ensembles simpliciaux et quotient d’un ensemble simplicial par une \textit{relation d’équivalence simpliciale} (i.e. stable par opérateurs simpliciaux). Une telle relation est en particulier donnée par les orbites d’une action d’un groupe simplicial \(G \) sur \(X \) (i.e. un morphisme \(\mu_G^X : X \times G \rightarrow X \) avec les propriétés habituelles ; les translatés \(\mu_G^X(x, g) \) seront désignés par \(x^g \)) auquel cas nous désignerons le quotient par \(X/G \). Le deuxième cas fréquent est celui d’un sous-ensemble simplicial \(Y \) de \(X \) constituant en toute dimension la classe des éléments du nouveau point base de \(X/Y \).

(1.4) Soit \(X \) un ensemble simplicial. La réunion disjointe des \(X_n \), également désignée par \(X \), constitue l’ensemble de ses \textit{simplexes}. Un élément de \(X_n \) s’appelle \textit{n-simplexe}, \(n \) étant la \textit{dimension}. Un \(n \)-simplexe est dégénéré dans la \textit{direction} \(i \) s’il est \(i \)-ème dégénérescence d’un \((n - 1) \)-simplexe.

Un ensemble simplicial \(X \) possède une \textit{réalisation géométrique} par un \textit{CW-complexe} \(|X| \), dont les \(n \)-cellules sont en bijection avec les \(n \)-simplexes non dégénérés de \(X \). Nous allons indiquer la définition de l’espace topologique sous-jacent à \(|X| \) et nous renvoyons à J. Milnor [13] pour la démonstration des principales propriétés.

Désignons par \(\Delta_n \) le \textit{n-simplexe euclidéen standard}, i.e. l’espace affine réel
\{ (t_0, t_1, \ldots, t_n) \in (\mathbb{R}_+)^{n+1} \mid \sum_{i=0}^n t_i = 1 \} \text{ et munissions les ensembles } X_n \text{ de la topologie discrète. Le } réalisée \ |X| \text{ de } X \text{ est alors défini comme quotient de la somme topologique }
\coprod_{n \geq 0} X_n \times \Delta_n \text{ par l'ensemble des relations}

\begin{align*}
(\partial_i x, (t_0, \ldots, t_{n-1})) & \sim (x, (t_0, \ldots, t_{i-1}, 0, t_i, \ldots, t_{n-1})) \\
(s_i x, (t_0, \ldots, t_{n+1})) & \sim (x, (t_0, \ldots, t_{i-1}, t_i + t_{i+1}, t_{i+2}, \ldots, t_{n+1}))
\end{align*}

telles que } x \in X_n, 0 \leq i \leq n.

Cette définition s'étend de manière naturelle aux morphismes en sorte que la réalisation géométrique est un foncteur de la catégorie des ensembles simpliciaux vers la catégorie des CW-complexes et applications cellulaires. La réalisation géométrique d'une inclusion d'ensembles simpliciaux est une cofibration fermée. On dispose enfin des homéomorphismes canoniques (voir Gabriel-Zisman [6])

\[|X|/|Y| \cong |X/Y| \]
\[|X \times Y| \cong |X| \times_k |Y| . \]

(1.5) Le complexe de chaînes attaché au réalisé \(|X|\) en tant que CW-complexe est canoniquement isomorphe au complexe des chaînes normalisées de \(X\). On le désignera par \(C_\ast(|X|)\) et son homologie par \(H_\ast(|X|)\). De même, si \(X\) est pointé, on désignera par \(\bar{C}_\ast(|X|)\) le complexe réduit des chaînes normalisées de \(X\) et par \(\bar{H}_\ast(|X|)\) son homologie. C'est l'homologie réduite de \(|X|\) en tant que CW-complexe pointé.

(1.6) Le modèle simplicial \(\Delta[n]\) du \(n\)-simplexe euclidéen standard \(\Delta_n\) est le plus simplement défini comme foncteur contravariant

\[\Delta[n] : \begin{array}{c} \Delta \\ [m] \\ \varnothing \end{array} \longrightarrow \begin{array}{c} \text{Ens} \\ \text{Mor}_\Delta([m],[n]) \\ \text{Mor}_\Delta(\varnothing,\varnothing) \end{array}. \]

Son réalisé s'identifie canoniquement à \(\Delta_n\). L'ensemble simplicial \(\Delta[n]\) est librement engendré par le \(n\)-simplexe fondamental \(i_n : [n] \rightarrow \Delta[n]\) dans le sens suivant : A tout \(n\)-simplexe \(x\) d'un ensemble simplicial \(X\) est attaché un unique morphisme \(\delta : \Delta[n] \rightarrow X\) tel que \(\delta(i_n) = x\). La réalisation géométrique de ce morphisme est en particulier un \(n\)-simplexe singulier \(|x| : \Delta_n \rightarrow |X|\) à valeurs dans le réalisé de \(X\). Tout point du réalisé \(|X|\) admet alors une représentation unique \(|x|(t_0, \ldots, t_{\dim x})\) telle que \(x\) soit un simplexe non dégénéré de \(X\) et \(t_i > 0, 0 \leq i \leq \dim x\).

Noter qu'une application continue du réalisé de \(X\) vers un espace topologique \(E\) est déterminée par la donnée d'une application de l'ensemble des simplexes de \(X\) vers l'ensemble des simplexes singuliers de \(E\) préservant la dimension et commutant aux opérateurs simpliciaux. L'application qui associe au \(n\)-simplexe abstrait \(x\) le \(n\)-simplexe singulier \(|x|\) définit de cette manière l'identité du réalisé de \(X\).
Le modèle simplicial S^n de la n-sphère est l’ensemble simplicial qui a seulement deux simplexes non dégénérées : le point base et le simplexe fondamental σ_n en dimension n. Son réalisation s'identifie canoniquement à la n-sphère euclidéenne. Toutes les faces du simplexe fondamental σ_n sont au point base et il y a une bijection canonique entre l’ensemble des morphismes pointés $S^n \rightarrow X$ et l’ensemble des n-simplexes de X ayant toutes leurs faces au point base.

Soit enfin $\Lambda^k[n], 0 \leq k \leq n$, le sous-ensemble simplicial de $\Delta[n]$ engendré par toutes les faces du simplexe fondamental qui contiennent le sommet k. Le réalisée de $\Lambda^k[n]$ est en particulier “coniquement” contractile sur le sommet k.

(1.7) Deux morphismes $f, g : X \rightarrow Y$ entre ensembles simpliciaux sont homotopés s’il existe un morphisme $h_t : X \times \Delta[1] \rightarrow Y$ tel que $h_t|_{X \times \{0\}} = f$ et $h_t|_{X \times \{1\}} = g$.

De cette notion générale d’homotopie dans la catégorie Esimp découle de manière naturelle la notion d’homotopie pointée entre deux morphismes de la catégorie Esimp_* et la notion d’homotopie multiplicative entre deux homomorphismes de la catégorie Gsimp. De manière précise : une homotopie pointée (resp. multiplicative) est la donnée d’une homotopie $h_t : X \times \Delta[1] \rightarrow Y$ telle que pour tout n-simplexe $z \in (\Delta[1])_n$, $n \geq 0$, l’application $h_t|_{X \times \{z\}} : X_n \rightarrow Y_n$ soit pointée (resp. un homomorphisme).

La catégorie des ensembles simpliciaux étant relativement pauvre en morphismes, cette relation d’homotopie est en général trop rigide pour refléter correctement les propriétés de la notion jumelle en topologie. Daniel Kan a su indiquer une condition de complétude qui assure – dans le cas où l’ensemble simplicial but deux morphismes satisfait la condition – que l’homotopie simpliciale et l’homotopie topologique partagent essentiellement les mêmes propriétés.

(1.8) Définition. — Un ensemble simplicial Y vérifie la condition de Kan si pour tout couple $(k, n), 0 \leq k \leq n$, tout morphisme $\Lambda^k[n] \rightarrow Y$ admet une extension à $\Delta[n]$.

Plus généralement : un morphisme surjectif $p : Y \rightarrow Z$ est une fibration si pour tout couple $(k, n), 0 \leq k \leq n$, tout diagramme commutatif :

$$
\begin{array}{ccc}
\Lambda^k[n] & \rightarrow & Y \\
\downarrow i & & \downarrow p \\
\Delta[n] & \rightarrow & Z
\end{array}
$$

admet un scindage $s : \Delta[n] \rightarrow Y$ (i.e. $s \circ i = \hat{f}$ et $ps = f$).

La condition de Kan exprime donc que le morphisme constant $Y \rightarrow \Delta[0]$ est une fibration. La première partie du théorème fondamental suivant utilise de façon essentielle le fait que les fibrations simpliciales vérifient dans le cadre simplicial la propriété caractéristique des fibrations topologiques (Homotopy Extension and Lifting Property).
(1.9) **Théorème** (Kan, Milnor). — *Soient* X, Y des ensembles simpliciaux (pointés) et supposons que Y vérifie la condition de Kan. *La relation d'homotopie (pointée) sur l'ensemble des morphismes (pointés) $X \rightarrow Y$ est alors une relation d'équivalence.*

Le foncteur de réalisation géométrique transforme morphismes homotopes en applications continues homotopes et induit une bijection canonique entre les ensembles des classes d'homotopie simpliciale et topologique.

Pour la démonstration voir Gabriel-Zisman [6].

Ce théorème permet en particulier de définir les *groupes d'homotopie* d'un ensemble simplicial pointé qui vérifie la condition de Kan sans faire appel à la catégorie topologique. Kan a montré en outre que leur structure multiplicative peut également s'exprimer en termes simpliciaux.

Nous nous limitons ici à montrer qu'une classe importante d'ensembles simpliciaux – les *groupes simpliciaux* – vérifient la condition de Kan et nous verrons plus loin que pour cette même classe la définition des groupes d'homotopie devient purement algébrique.

(1.10) **Théorème** (John Moore). — Un groupe simplicial vérifie la condition de Kan.

Démonstration. — Puisque $\Lambda^k[\mathbb{n}]$ est engendré par la réunion de toutes les faces du simplexe fondamental de $\Delta[\mathbb{n}]$ hormis la k-ème, un morphisme $f : \Lambda^k[\mathbb{n}] \rightarrow G$ (où G est un groupe simplicial) est équivalent à la donnée d'un système $(f_0, \ldots, f_{k-1}, f_k, \ldots, f_n)$ de $(n - 1)$-simplices de G vérifiant les relations d'incidence $\partial_i f_j = \partial_{j-1} f_i$, $i < j$ et $i, j \neq k$. On cherche un n-simplexe de G qui réalise ce système de faces. Or, le simplexe cherché est le simplexe final Φ_{j_n} d'une suite $(\Phi_{j_r})_{0 \leq r \leq n}$ de n-simplices de G définie par

$$
\Phi_{j_0} = e_n , \quad \Phi_{j_r} = s_{j_r} \Phi_{j_r-1}, \quad 0 < r \leq n ,
$$

où $|j_r| = \begin{cases} j_r - 1 & \text{si } j_r > k \\ j_r & \text{si } j_r < k \end{cases}$, et $(j_1, \ldots, j_n) = (n, n - 1, \ldots, k + 1, 0, 1, \ldots, k - 1)$. On montre en effet par récurrence sur r que $\partial_{j_s} \Phi_{j_r} = f_{j_s}$, $1 \leq s \leq r$.

(1.11) **Corollaire.** — Soit X un ensemble simplicial muni d'une action sans isotropie d'un groupe simplicial. La projection de X sur l'ensemble simplicial des orbites est alors une fibration.

Démonstration. — En gardant la terminologie de (1.10), il faut réaliser un système de faces $(f_0, \ldots, f_{k-1}, f_k, \ldots, f_n)$ de X dans l'orbite d'un n-simplexe x de X donné. Par hypothèse les deux $(n - 1)$-simplices $\partial_i x$ et f_i ($i \neq k$) sont contenus dans la même orbite. Il existe donc un $(n - 1)$-simplexe g_i de G tel que f_i est le translaté $(\partial_i x)^{g_i}$ de $\partial_i x$. Puisque l'action est sans isotropie, le système
(g₀, . . . , gₖ₋₁, ², gₖ₊₁, . . . , gₙ) vérifie les relations d'incidence d'un système de faces et il existe selon (1.10) un n-simplexe g de G qui le réalise. Le translaté `xg réalise alors le système de faces initial.

2. Fibrés principaux et fonctions tordantes

(2.1) Définition. — Une pseudosection j d'une fibration p : X → B est une suite d'applications jₙ : Bₙ → Xₙ, n ≥ 0, telle que pour tout n ≥ 0 sont vérifiées les identités :

a) pₙ ∘ jₙ = idₙ
b) ∂ᵢ ∘ jₙ = jₙ₋₁ ∘ ∂ᵢ, 0 ≤ i < n
c) sᵢ ∘ jₙ = jₙ₊₁ ∘ sᵢ, 0 ≤ i ≤ n.

Toute fibration admet une pseudosection constructible par récurrence sur la dimension.

Les ensembles simpliciaux G, E et B sont appelés groupe structural, espace total et base du fibré principal.

Un G-morphisme entre deux ensembles simpliciaux munis d'une action de G est un morphisme commutant à l'action de G.

Un G-morphisme au-dessus de B entre deux G-fibrés principaux de base B est un G-morphisme entre leurs espaces totaux induisant l'identité sur B.

(2.3) Définition (J. Moore [1]). — Une fonction tordante t : B ↷ G est une suite d'applications tₙ : Bₙ → Gₙ₋₁, n > 0, telle que pour tout n > 0 sont vérifiées les identités :

a) ∂ᵢ(tₙx) = tₙ₋₁(∂ᵢx), 0 ≤ i < n − 1
b) ∂ₙ₋₁(tₙx) = (tₙ₋₁(∂ₙ₋₁x))⁻¹ ∘ tₙ₋₁(∂ₙ₋₁x)
c) sᵢ(tₙx) = tₙ₊₁(sᵢx), 0 ≤ i ≤ n − 1
d) eₙ = tₙ₊₁(sₙx).

La fonction tordante t : B ↷ G permet de définir un produit cartésien tordu, noté B ×ᵗ G : on pose en effet

\[(B ×ₕ G)ₙ = (B × G)ₙ, \quad n ≥ 0,\]
\[\partialᵢ(B ×ₕ G) = \partialᵢ(B × G), \quad 0 ≤ i < n,\]
\[sᵢ(B ×ₕ G) = sᵢ(B × G), \quad 0 ≤ i ≤ n,\]

20
et pour tout \((b, g) \in (B \times_t G)_n, n > 0,\)

\[
\partial^{B \times_t G}_n(b, g) = (\partial_n b, t_n b \cdot \partial_n g).
\]

Le lecteur constatera que les identités simpliciales \((1.1)\) sont vérifiées.

Proposition (J. Moore).

a) L'espace total \(X\) d'un G-fibré principal \((\mu^G_X, X, p, B, j)\) est muni d'une structure canonique de produit cartésien tordu \(B \times_t G\), la fonction tordante étant déterminée par la condition

\[
(j \partial_n b)^{t_n b} = \partial_n j b, \quad b \in B_n, \quad n > 0.
\]

b) Un produit cartésien tordu \(B \times_t G\) est l'espace total du G-fibré principal \((\mu^G_X, B \times_t G, pr_1, B, j)\), où \(\mu^G_X\) et \(j\) sont définis par

\[
\mu^G_X : (B \times_t G) \times G \rightarrow B \times_t G
\]

\[
((b, g_1), g_2) \mapsto (b, g_1 g_2)
\]

et

\[
j : B \rightarrow B \times_t G
\]

\[
b \mapsto (b, 1).
\]

c) Les constructions a) et b) sont inverses l'une de l'autre. Tout G-morphisme au-dessus de \(B\) est en particulier un G-isomorphisme.

Démonstration. — Les vérifications contenues dans a), b) et première partie de c) sont laissées au lecteur.

Un G-morphisme au-dessus de \(B\) peut donc être considéré comme morphisme \(\varphi : B \times_t G \rightarrow B \times_t' G\) (entre produits cartésiens tordus) commutant à l'action de \(G\). Le morphisme \(\varphi\) applique le \(n\)-simplexe \((b, g)\) sur le \(n\)-simplexe \((b, \varphi_b \cdot g)\) de \(B \times_t' G\), où l'on a explicitement \(\varphi_b = pr'_1 \circ \varphi \circ j(b)\). On constate que la fonction \(\varphi : B \rightarrow G\) ainsi définie préserve la dimension, commute aux opérateurs simpliciaux exceptés \(\partial_n\) et vérifie \(\varphi_{\partial_n} \cdot t_n b = t'_n b \cdot \partial_n \varphi_b, \quad b \in B_n, \quad n > 0\). Ces propriétés garantissent inversement que par \(\varphi : B \times_t G \rightarrow B \times_t' G : (b, g) \mapsto (b, \varphi_b \cdot g)\) est défini un morphisme. Posons \(\psi_b = (\varphi_b)^{-1}\) pour \(b \in B\). Le morphisme \(\psi : B \times_t' G \rightarrow B \times_t G : (b, g) \mapsto (b, \psi_b \cdot g)\) est alors visiblement inverse à \(\varphi\).

Proposition.

a) Soient \(B \times_t G\) un produit cartésien tordu et \(\varphi : B' \rightarrow B\) (resp. \(\psi : G \rightarrow G'\)) un morphisme (resp. homomorphisme). Le produit cartésien tordu \(B' \times_{\varphi \circ \psi} G\) réalise alors le G-fibré principal induit du G-fibré \(B \times_t G\) par changement de base le long de \(\varphi\) ("pullback"). Le produit cartésien tordu \(B \times_{\psi \circ \varphi} G'\) réalise le G'-fibré principal coinduit du fibré \(B \times_t G\) par changement de groupe structural suivant \(\psi\) ("pushout").

b) Deux morphismes homotopy \(\varphi_1, \varphi_2 : B' \rightarrow B\) induisent des G-fibrés principaux G-isomorphes au-dessus de B'.
c) Un G-fibré principal de base $\Delta[n]$ est en particulier G-isomorphe au-dessus de $\Delta[n]$ au fibré trivial $\Delta[n] \times G$. Tout G-fibré principal est donc "localement" (sur un simplexe donné) trivial, ce qui justifie a posteriori la terminologie.

Démonstration.

a) C'est une vérification.

b) Compte tenu de (2.4c) on est ramené à construire un G-morphisme au-dessus de B' du fibré E_1 induit par φ_1 vers le fibré E_2 induit par φ_2. Considérons une homotopie $h_t : B' \times \Delta[1] \to B$ de φ_1 vers φ_2. Puisque $\Delta[1]$ contient les sous-ensembles simpliciaux (0) et (1) comme rétracts de déformation stricte (voir c)), le fibré E induit par h_t contient E_1 et E_2 non seulement comme sous-G-fibrés mais en fait comme G-rétracts de déformation stricte (ceci se voit en appliquant une version G-équivariante de la propriété HELP (1.8) à la fibration $E \to B' \times \Delta[1]$). Le G-morphisme cherché s'obtient en composant l'inclusion de E_0 dans E avec la rétraction de E sur E_1.

c) La décomposition prismatique du produit cartésien $\Delta[n] \times \Delta[1]$ suivant les plongements :

$$j_i : \Delta[n+1] \hookrightarrow \Delta[n] \times \Delta[1]$$

$$i_{n+1} \mapsto (s_i i_n, s_n \ldots s_{i+1} s_{i-1} \ldots s_0 i_1), \quad 0 \leq i \leq n,$$

implique qu'une homotopie $h_t : \Delta[n] \times \Delta[1] \to \Delta[n]$ est déterminée par ses restrictions $h_t \circ j_i, 0 \leq i \leq n$. Inversement, une suite $(h_i)_{0 \leq i \leq n}$ de $(n+1)$-simplexes de $\Delta[n]$ telle que $\partial_{i+1} h_i = \partial_i h_{i+1}, 0 \leq i < n$, définit une unique homotopie $h_t : \Delta[n] \times \Delta[1] \to \Delta[n]$ avec $h_t \circ j_i(i_{n+1}) = h_i, 0 \leq i \leq n$.

Or, l'homotopie définie par la suite

$$h_t = s_n \ldots s_{i+1} \partial_{i+1} \ldots \partial_{n-1} i_n, \quad 0 \leq i \leq n,$$

vérifie $h_t|\Delta[n] \times (0) = \mathrm{id}_{\Delta[n]}$ et $h_t|\Delta[n] \times (1) = s_n \ldots s_0 \partial_0 \ldots \partial_{n-1} i_n$. C'est une déformation simpliciale de l'identité de $\Delta[n]$ vers le morphisme constant égal au sommet (n). (La suite $h_i = s_{i-1} \ldots s_0 \partial_1 \ldots \partial_{i-1} i_n, 0 \leq i \leq n$, définit par ailleurs une déformation du morphisme constant égal au sommet (0) vers l'identité de $\Delta[n]$.) Il suit alors de b) et du fait que le fibré induit par un morphisme constant est trivial que tout fibré principal de base $\Delta[n]$ possède une trivialisation.

Remarque. — Il suit de (2.5c) et du théorème (III.4.2) de Gabriel-Zisman [6] que la réalisation géométrique d'un G-fibré principal est un fibré *localement trivial* au sens de la topologie de Kelley. Puisque la base de ce fibré est paracompacte, ceci entraîne que la projection est une fibration dans la catégorie des espaces de Kelley, c'est donc au moins une fibration de Serre. Pour un G-fibré principal (μ^G_X, X, p, B, j) avec une base pointée on obtient la *suite exacte longue de groupes d'homotopie* suivante :

$$\cdots \to \pi_{n+1}(|B|) \xrightarrow{\partial_{n+1}} \pi_n(|G|) \xrightarrow{\varphi_1(i)} \pi_n(|X|) \xrightarrow{\varphi_2(i)} \pi_n(|B|) \to \cdots$$

22
Seuls les groupes $\pi_n(|G|)$, $n \geq 0$, admettent en général une description simpliciale (1.9 et 1.10). Si en outre base et espace total du G-fibré vérifient la condition de Kan, alors la suite exacte longue ci-dessus peut être entièrement définie de façon simpliciale (voir Kan [10]).

3. Le complexe de Moore et la construction de Dold-Thom

(3.1) Définition. — Le complexe de Moore $\widetilde{G}_n, \widetilde{\partial}_n)_{n \geq 0}$ d'un groupe simplicial G est défini par

$$\widetilde{G}_n = G_n \cap \ker \partial_0 \cap \ker \partial_1 \cap \cdots \cap \ker \partial_{n-1}$$

$$\widetilde{\partial}_n = \partial_n |_{\widetilde{G}_n}.$$

On a :

a) $\widetilde{\partial}_n \circ \widetilde{\partial}_{n+1} = e_{n-1}$

b) $\text{im} \widetilde{\partial}_n$ et $\ker \widetilde{\partial}_n$ sont des sous-groupes distingués de G_n (en effet, pour $x \in \widetilde{G}_{n+1}$ et $g \in G_n$, on trouve $g \cdot \widetilde{\partial}_{n+1} x \cdot g^{-1} = \widetilde{\partial}_{n+1} y$, où $y = s_n g \cdot x \cdot (s_n g)^{-1}$).

(3.2) Théorème (J. Moore). — L'ensemble des classes d'homotopie pointée des morphismes pointés de la n-sphère S^n vers le groupe simplicial G s'identifie canoniquement au sous-quotient $\ker \widetilde{\partial}_n / \text{im} \widetilde{\partial}_{n+1}$ de G_n ($n \geq 0$).

Démonstration. — L'ensemble des représentants $\varphi : S^n \rightarrow G$ s'identifie canoniquement à $\ker \widetilde{\partial}_n$. Reste à montrer que deux représentants φ_1, φ_2 sont homotopes si et seulement si la différence des éléments $x_1 = \varphi_1(\sigma_n)$ et $x_2 = \varphi_2(\sigma_n)$ est contenue dans $\text{im} \widetilde{\partial}_{n+1}$. Une homotopie $h_t : S^n \times \Delta[1] \rightarrow G$ est définie (2.5c) par une suite $(h_i)_{0 \leq i \leq n}$ de $(n+1)$-simplexes de G telle que $\partial_0 h_0 = x_2$, $\partial_i h_i = \partial_{i+1} h_{i+1}$, $0 \leq i < n$, et $\partial_{n+1} h_n = x_1$. L'homotopie étant supposée pointée, on a en plus $\partial_k h_i = e_n$, $k \neq i$, $i + 1$. On vérifie alors que le $(n+1)$-simplexe

$$\xi = h_n h_{n-1}^{-1} h_{n-2} \cdots h_0^{-1} (s_0 x_2)^{-1}(s_1 x_2)^{-1} \cdots (s_n x_2)^{-1}$$

est un élément de \widetilde{G}_{n+1} tel que $\widetilde{\partial}_{n+1} \xi = x_1 x_2^{-1}$. Soit inversement $x_1 x_2^{-1}$ l'image par $\widetilde{\partial}_{n+1}$ d'un élément ξ de \widetilde{G}_{n+1}. La suite des $(n+1)$-simplexes $h_i = s_i x_2$, $0 \leq i < n$, et $h_n = \xi \cdot s_n x_2$ définissent alors une homotopie pointée de φ_1 vers φ_2.

(3.3) Remarque et Définition. — Les théorèmes (1.9) et (3.2) impliquent que le foncteur de réalisation géométrique induit une bijection canonique $\ker \widetilde{\partial}_n / \text{im} \widetilde{\partial}_{n+1} \leftarrow \pi_n(|G|)$, qui est en fait un isomorphisme de groupes (théorème de Hilton). Nous désignerons désormais par $\pi_n(G)$ le sous-quotient $\ker \widetilde{\partial}_n / \text{im} \widetilde{\partial}_{n+1}$ de G_n et nous substituerons ce groupe au groupe canoniquement isomorphe $\pi_n(|G|)$ même s'il fera ainsi partie d'une suite exacte longue qui n'est proprement définie qu'au niveau des réalisés (voir 2.6).
(3.4) Définition. — Un facteur semi-direct d'un groupe G est un sous-groupe distingué N de G qui possède un complémentaire R dans G (on entend par là un sous-groupe R de G tel que $G = NR = RN$ et $N \cap R = \{e\}$).

Une filtration semi-scindée de G est une filtration $G = N_0 \supset N_1 \supset N_2 \supset \cdots \supset N_n = N_{n+1} = \{e\}$ de G par des sous-groupes distingués N_i tels que N_{i+1} est facteur semi-direct de N_i, $0 \leq i \leq n$.

La filtration est de type (R_0, R_1, \ldots, R_n) si pour tout i R_i est sous-groupe de N_i complémentaire à N_{i+1}, en particulier $R_n = N_n$.

Noter que pour toute permutation $\pi \in \mathfrak{S}_{[n]}$ et tout $g \in G$ il existe une et une seule suite $(r_i)_{0 \leq i \leq n}$ d'éléments de G tels que $g = r_0 \cdots r_n$ et $r_i \in R_{\pi(i)}$, $0 \leq i \leq n$.

(3.5) Proposition. — Soit G un groupe simplicial et posons pour $0 \leq i \leq n$
\[
G_i = G_n \cap \ker \partial_0 \cap \ker \partial_1 \cap \cdots \cap \ker \partial_{i-1}. \text{Le groupe } G_n \text{ des } n\text{-simplices de } G \text{ possède alors la filtration semi-scindée}
\]
\[
G_n = G_0 \supset G_1 \supset G_2 \supset \cdots \supset G_n = \{e\}
\]

qui est de type $(s_0 G_{n-1}^0, s_1 G_{n-1}^1, \ldots, s_{n-1} G_{n-1}^{n-1}, \tilde{G}_n)$.

Démonstration. — G_i est distingué dans G_n et contient $s_i G_{n-1}^i$ comme sous-groupe. Soit alors g élément de $G_i^{i+1} \cap s_i G_{n-1}^i$ ($0 \leq i \leq n - 1$). On a d'une part $\partial_i g = e_{n-1}$, d'autre part $g = s_i \partial_i g$, donc $g = e_n$. Tout élément $g \in G_i^i$ s'écrit en plus comme produit $(g \cdot s_i \partial_i g^{-1}) s_i \partial_i g$ d'un élément de G_i^{i+1} et d'un élément de $s_i G_{n-1}^i$.

(3.6) Corollaire. — Tout n-simplexe g d'un groupe simplicial G possède une décomposition unique $g = \tilde{g} g_{n-1} \cdots g_0$ telle que $\tilde{g} \in \tilde{G}_n$ et $g_i \in G_i$, $0 \leq i \leq n - 1$. Le produit des dégénérescences $s_{n-1} g_{n-1} \cdots g_0$ réalise en particulier le système de faces $(\partial_0 g, \ldots, \partial_{n-1} g)$). Il s'identifie à la solution d'extension proposée dans la démonstration (1.10).

Démonstration. — La première partie suit directement de (3.5) en appliquant la dernière remarque de (3.4) avec la permutation $\pi = \begin{pmatrix} 0 & 1 & \cdots & n \\ n & n-1 & \cdots & 0 \end{pmatrix}$. La dernière assertion suit de la construction récursive des g_i par $g_0 = \partial_0 g$ et $g_i = \partial_i g \cdot \partial_i (s_i \cdot \cdots \cdot s_0 g_0)^{-1}$, $0 < i \leq n - 1$, en comparant avec (1.10) : $\Phi_{i-1} = s_{i-1} g_{i-1} \cdots g_0$.

(3.7) Définition. — Soit $(X, *)$ un ensemble simplicial pointé. Le groupe simplicial abélien $\text{Ab}(X)$ "librement engendré par $(X, *)"$ est défini comme composé du foncteur contravariant $X : \Delta \rightarrow \text{Ens}_*$ qui représente l'ensemble simplicial $(X, *)$
avec le foncteur covariant \(Ab : \text{Ens}_* \longrightarrow \tilde{Ab} \) qui associe à un ensemble pointé \((E, \ast)\) le quotient \((E)/\ast \sim 0\) du groupe abélien libre de base l'ensemble \(E\) par la seule relation \(\ast \sim 0\). L'application canonique \(E \longrightarrow (E)/\ast \sim 0 : x \mapsto \tilde{x}\) induit un morphisme injectif \(\alpha_X : X \longrightarrow \tilde{Ab}(X)\).

\[
\begin{array}{ccc}
\pi_n(|X|) & \xrightarrow{h_n} & \tilde{H}_n(|X|) \\
\pi_n(|\alpha_X|) & \downarrow \sim & \pi_n(|\tilde{Ab}(X)|) \\
\end{array}
\]

où \(h_n\) désigne l'homomorphisme de Hurewicz.

\textbf{Démonstration.} — Il suit de (3.6) que l'application qui associe au simplexe \(g\) d'un groupe simplicial la composante \(\tilde{g}\) du complexe de Moore est idempotente.

Dans le cas du groupe simplicial abélien \(\tilde{Ab}(X)\) la décomposition (3.6) est indépendante de l'ordre, ce qui implique que les noyaux des projecteurs \(m_n : \tilde{Ab}(X)_n \longrightarrow \tilde{Ab}(X)_n : g \mapsto \tilde{g}\) constituent précisément le sous-groupe simplicial de \(\tilde{Ab}(X)\) engendré par les simplexes dégénérés de \(X\).

Si l'on munit la suite des groupes abéliens \(\tilde{Ab}(X)_n\) des différentielles

\[
d_n = \sum_{i=0}^{n} (-1)^{n-i} \partial_i ,
\]

on constate que le complexe de chaînes \((\tilde{Ab}(X)_n, d_n)_{n \geq 0}\) est canoniquement isomorphe au complexe réduit des chaînes \textit{non} normalisées de \(X\). La suite des projecteurs \((m_n)_{n \geq 0}\) induit alors un isomorphisme de complexes de chaînes entre \(C_*(|X|)\) (1.5) et \((\tilde{Ab}(X)_n, \tilde{d}_n)_{n \geq 0}\). En passant à l'homologie on déduit l'isomorphisme \(\tilde{H}_n(|X|) \sim \pi_n(\tilde{Ab}(X))\), le dernier groupe étant canoniquement isomorphe à \(\pi_n(|\tilde{Ab}(X)|)\) (3.3).

De la fonctorialité en \(X\) du diagramme \((\ast)\) et de la définition de l'homomorphisme de Hurewicz découle qu'il suffit de montrer commutativité de \((\ast)\) pour le cas particulier \(X = S^n\). Or, les trois groupes \(\pi_n(|S^n|)\), \(\tilde{H}_n(|S^n|)\) et \(\pi_n(|\tilde{Ab}(S^n)|)\) sont tous isomorphes à \(\mathbb{Z}\), et \(\pi_n(|\alpha_X|)\) envoie générateur sur générateur comme c'est le cas pour l'homomorphisme de Hurewicz.

\[\blacksquare\]
Chapitre II

Constructions universelles
effectives
Le but final de ce chapitre est de ramener l'étude de l'homomorphisme de Hurewicz à l'étude d'une fibration entre groupes simpliciaux. L'idée de faire ainsi est entièrement due à D. Kan. Dans [10], il construit à partir d'un ensemble simplicial réduit X un groupe simplicial libre GX du même type d'homotopie que l'espace des lacets de $|X|$ et ayant la propriété remarquable que son abélianisé AX s'identifie à l'espace des lacets de la construction $Ab(X)$ de Dold-Thom. Autrement dit, on dispose de deux isomorphismes canoniques $\pi_n(|X|) \cong \pi_{n-1}(GX)$ et $\pi_n(|Ab(X)|) \cong \pi_{n-1}(AX)$ et Kan montre que le morphisme d'abélianisation $p : GX \to AX$ fait commuter le diagramme suivant :

$$
\begin{array}{ccc}
\pi_n(|X|) & \xrightarrow{\pi_n(\alpha_X)} & \pi_n(|Ab(X)|) \\
\downarrow{\sim} & & \downarrow{\sim} \\
\pi_{n-1}(GX) & \xrightarrow{\pi_{n-1}(p)} & \pi_{n-1}(AX)
\end{array}
$$

L'homomorphisme de Hurewicz (représenté par $\pi_n(\alpha_X)$, voir I.3.8) se transforme de cette manière en l'homomorphisme $\pi_{n-1}(p)$, qui, lui, fait partie de la suite exacte longue définie par la fibration p. Nous verrons au chapitre suivant que cette suite exacte longue permet une étude effective.

Le présent chapitre traite d'un point de vue effectif les deux isomorphismes verticaux du diagramme ci-dessus. Il s'avère que ce sont des morphismes de connexion de fibrés (co)universels; leur explicitation repose sur l'explicitation de la contraction de l'espace total de ces fibrés.

Le groupe simplicial libre GX est le groupe coclassifiant de X, ce qui veut dire qu'il est groupe structural d'un fibré principal EX de base X qui possède la propriété co-universelle que tout G-fibré principal de base X est coïnduit du fibré EX par un changement de groupe structural essentiellement unique.

J. Milnor a montré [12] que le groupe coclassifiant d'un complexe simplicial X se réalise comme quotient convenable de l'espace des lacets linéaires par morceaux de $|X|$. A l'aide d'un concept légèrement généralisé de prisme nous étendons la construction de Milnor aux ensembles simpliciaux : à tout ensemble simplicial X sera associé un fibré principal $\overline{\Omega}X \to \overline{PX} \to X$ qui d'une part admet une contraction combinatoire de son espace total provenant directement de l'idée topologique de contraction des chemins et qui d'autre part contient le dit fibré co-universel $GX \to EX \to X$ comme sous-fibré. Le plongement $EX \to \overline{PX}$ est en sorte que la contraction combinatoire admette une restriction à EX qui, elle, permet enfin d'expliciter de manière satisfaisante l'isomorphisme de connexion $\pi_n(|X|) \cong \pi_{n-1}(GX)$.

A chaque représentant (essentiellement algébrique) d'une classe de $\pi_{n-1}(GX)$ est associé un représentant canonique de la classe correspondante de $\pi_n(|X|)$ sous forme
d'un morphisme \(\varphi : \Sigma^n \rightarrow X \) dont le domaine est une \(n \)-sphère simpliciale de type "prismatique".

Le deuxième isomorphisme \(\pi_n([Ab(X)]) \cong \pi_{n-1}(AX) \) est un morphisme de connexion, si l'on identifie la construction \(Ab(X) \) de Dold-Thom à l'espace classifiant de l'abélianisé \(AX \) de \(GX \). L'espace classifiant \(\overline{WG} \) d'un groupe simplicial \(G \) est la base d'un \(G \)-fibré principal \(WG \) qui possède la propriété universelle que tout \(G \)-fibré principal est induit du fibré \(WG \) par un changement de base essentiellement unique. La contraction explicite de l'espace total \(WG \) découle cette fois-ci directement de sa construction définie pour la première fois par Eilenberg-MacLane. Dans notre cas particulier du groupe simplicial abélien \(AX \), les morphismes de connexion déduits de la contraction du fibré universel \(WAX \) auront une forme particulièrement simple.

La commutativité du diagramme-clé ci-dessus sera finalement déduite de l'adjonction entre les constructions classifiant \(\overline{W} \) et coclassifiant \(G \).

1. Contraction prismatique du fibré co-universel

(1.1) Définition. — Un graphe (préorienté) \(\Gamma \) est donné par un quadruplet \((S, A, \epsilon, s)\), \(S \) désignant l'ensemble des sommets, \(A \) l'ensemble des arêtes et \(\epsilon, s : A \rightarrow S \) les fonctions d'entrée et de sortie.

L'ensemble \(A^\text{or} \) des arêtes orientées de \(\Gamma \) est la réunion disjointe \(A^+ \cup A^- \) de deux copies de \(A \). Une arête orientée sera désignée par un couple \(a^\epsilon \) composé d'une arête \(a \in A \) et d'un exposant \(\epsilon \) égal à +1 ou −1 suivant l'appartenance à \(A^+ \) ou \(A^- \). Nous convenons d'identifier l'ensemble \(A \) des arêtes de \(\Gamma \) avec l'ensemble \(A^+ \) des arêtes orientées positivement et nous étendons les fonctions d'entrée et de sortie à l'ensemble \(A^\text{or} \) des arêtes orientées en posant

\[
e(a^{-1}) = s(a) \text{ et } s(a^{-1}) = e(a).
\]

Un chemin du graphe \(\Gamma = (S, A, \epsilon, s) \) est soit de longueur nulle auquel cas représenté par un symbole \(1_x \), \(x \in S \), soit de longueur strictement positive auquel cas représenté par un mot \(a_1^{\epsilon_1} \cdots a_\ell^{\epsilon_\ell} \) de l'alphabet \(A^\text{or} \) vérifiant les conditions d'adjacence

\[
s(a_k^{\epsilon_k}) = e(a_{k+1}^{\epsilon_{k+1}}), \ 1 \leq k < \ell.
\]

Les fonctions d'entrée et de sortie \(e, s : A^\text{or} \rightarrow S \) sont étendues à l'ensemble \(C(\Gamma) \) des chemins de \(\Gamma \) par

\[
e(\gamma) = \begin{cases} x & \text{si } \gamma = 1_x, \\ e(a_1^{\epsilon_1}) & \text{si } \gamma = a_1^{\epsilon_1} \cdots a_\ell^{\epsilon_\ell}, \end{cases}
\]

\[
s(\gamma) = \begin{cases} x & \text{si } \gamma = 1_x, \\ s(a_\ell^{\epsilon_\ell}) & \text{si } \gamma = a_1^{\epsilon_1} \cdots a_\ell^{\epsilon_\ell}. \end{cases}
\]
La concaténation des chemins définit une composition partielle $C(\Gamma) \times C(\Gamma) \rightarrow C(\Gamma)$: $(\gamma_1, \gamma_2) \mapsto \gamma_1 \gamma_2$, où $s(\gamma_1) = e(\gamma_2)$. L'inversion formelle définit une involution $C(\Gamma) \rightarrow C(\Gamma)$: $\gamma \mapsto \gamma^{-1}$. Les chemins de longueur nulle sont les unités pour la composition et les éléments fixes pour l'involution.

Un chemin $\gamma \in C(\Gamma)$ est réduit, s'il ne contient pas d'aller-retours, c'est-à-dire s'il est soit de longueur nulle soit de la forme $a_1^e \cdots a_\ell^e$ satisfaisant l'implication

$$a_k = a_{k+1} \implies \varepsilon_k = \varepsilon_{k+1}, \quad 1 \leq k < \ell.$$

Tout chemin $\gamma \in C(\Gamma)$ est réductible à un unique chemin réduit $\gamma_{\text{red}} \in C(\Gamma)$ obtenu par un procédé de simplification successive qui supprime à chaque fois un aller-retour aa^{-1} ou $a^{-1}a$ de l'expression de γ. Sur l'ensemble $C(\Gamma)$ des chemins de Γ est alors définie la relation d'équivalence

$$[\gamma \sim \gamma' \text{ si et seulement si } \gamma_{\text{red}} = \gamma'_{\text{red}}],$$

relation compatible avec les fonctions d'entrée et de sortie. L'ensemble quotient $C(\Gamma) / \sim$ est alors muni d'une composition partielle et d'une involution qui en font un groupe, le groupe libre engendré par le graphe Γ.

Pour un sommet distingué $* \in S$ le sous-quotient $C(\Gamma, *) = \{ \gamma \in C(\Gamma) | e(\gamma) = s(\gamma) = * \} / \sim$ est en particulier un groupe libre, dont on peut distinguer une base par le choix d'un arbre maximal de Γ enraciné en $* \in S$. Par un arbre maximal T du graphe $\Gamma = (S, A, e, s)$ enraciné en $* \in S$, nous entendons un sous-ensemble T de l'ensemble A des arêtes de Γ qui vérifie la propriété caractéristique que tout sommet $x \in \Gamma$ possède un et un seul chemin réduit γ_x composé d'arêtes de T et de T^{-1} tel que $e(\gamma_x) = x$ et $s(\gamma_x) = *$. Si l'on note $\langle A - T \rangle$ le groupe libre engendré par l'ensemble $A - T$, on a l'isomorphisme canonique

$$\begin{align*}
\langle A - T \rangle & \sim \quad C(\Gamma, *) \\
A & \mapsto \quad \gamma^{-1}_{e(a)} a \gamma_{s(a)}.
\end{align*}$$

(1.2) Définition. — Soit X un ensemble simplicial. Un n-prisme élémentaire de X est un couple $[\xi, i]$ composé d'un $(n+1)$-simplexe $\xi \in X_{n+1}$ et d'une direction prismatique $i \in [n]$.

L'ensemble des n-prismes élémentaires de X sera noté El_nX. Les fonctions d'entrée et de sortie

$$e : \quad El_nX \rightarrow X \quad \text{et} \quad s : \quad El_nX \rightarrow X$$

$$[\xi, i] \rightarrow \delta_{i+1}\xi \quad \text{et} \quad [\xi, i] \rightarrow \delta_i\xi$$
définissent le graphe $\Gamma_n(X) = (X_n, El_nX, e, s)$.

Un n-prisme de X est un chemin du graphe $\Gamma_n(X)$. L'ensemble $C(\Gamma_n(X))$ des n-prismes de X sera noté $(IX)_n$.

31
Nous allons munir la suite \((IX)_n\), \(n \geq 0\), des ensembles des \(n\)-prismes de
\(X\) d'une structure simpliciale en définissant pour tout \(n > 0\) des opérateurs de face
\(\partial_j : El_nX \longrightarrow (IX)_{n-1}, 0 \leq j \leq n\), et pour tout \(n \geq 0\) des opérateurs de
dégénérescence \(s_j : El_nX \longrightarrow (IX)_{n+1}, 0 \leq j \leq n\), commutant aux fonctions d'entrée
et de sortie. Ceci permettra de les étendre de manière canonique à \((IX)_n\).

Soit \([\xi, i] \in El_nX\). Posons
\[
\partial_j[\xi, i] = \begin{cases}
[\partial_j\xi, i - 1] & j < i \\
1_{i \rightarrow \partial_{i+1}\xi} & j = i \\
[\partial_{j+1}\xi, i] & j > i
\end{cases}
\]
\[
s_j[\xi, i] = \begin{cases}
[s_j\xi, i + 1] & j < i \\
[s_i\xi, i + 1][s_{i+1}\xi, i] & j = i \\
[s_{j+1}\xi, i] & j > i
\end{cases}
\]
et en conséquence pour \(p \in (IX)_n\),
\[
\partial_jp = \begin{cases}
1_{\partial_jx} & \text{si } p = 1_x \\
(\partial_j[\xi_1, i_1])^{\epsilon_1} \cdots (\partial_j[\xi_\ell, i_\ell])^{\epsilon_\ell} & \text{si } p = [\xi_1, i_1]^{\epsilon_1} \cdots [\xi_\ell, i_\ell]^{\epsilon_\ell}
\end{cases}
\]
\[
s_jp = \begin{cases}
1_{s_jx} & \text{si } p = 1_x \\
(s_j[\xi_1, i_1])^{\epsilon_1} \cdots (s_j[\xi_\ell, i_\ell])^{\epsilon_\ell} & \text{si } p = [\xi_1, i_1]^{\epsilon_1} \cdots [\xi_\ell, i_\ell]^{\epsilon_\ell}
\end{cases}
\]
Ces opérateurs vérifient les identités simpliciales (I.1.1) et nous désignerons l'ensemble
simplicial résultant par \(IX\).

Les fonctions d'entrée et de sortie étendues à \((IX)_n\) définissent des morphismes
surjectifs \(e_X, s_X : IX \longrightarrow X : p \longrightarrow e(p), s(p)\) ayant comme section commune le
morphisme \(i_X : X \longrightarrow IX : x \longrightarrow 1_x\).

Noter qu'un morphisme \(f : X \longrightarrow Y\) induit de manière naturelle le morphisme
\[If : IX \longrightarrow IY : [\xi_1, i_1]^{\epsilon_1} \cdots [\xi_\ell, i_\ell]^{\epsilon_\ell} \longrightarrow [f\xi_1, i_1]^{\epsilon_1} \cdots [f\xi_\ell, i_\ell]^{\epsilon_\ell}\]
en sorte que \(I\) est un endofoncteur de la catégorie des ensembles simpliciaux.

(1.3) Définition. — Soit \((X, \ast)\) un ensemble simplicial pointé. Nous désignerons par \(PX\) (resp. \(\Omega X\)) le sous-ensemble simplicial de \(IX\) formé par l'ensemble
des simplexes \(\{p \in IX|s(p) = \ast\}\) (resp. \(\{p \in IX|e(p) = s(p) = \ast\}\)). En restreignant
le morphisme \(e_X : IX \longrightarrow X\) on obtient la projection \(\eta_X : PX \longrightarrow X\) dont la fibre
\(\eta_X^{-1}(\ast)\) coïncide avec l'ensemble simplicial \(\Omega X\).

Les constructions \(P\) et \(\Omega\) peuvent être étendues en endofoncteurs de la catégorie
\(\text{Esimp}_e\), le point base de \(PX\) et \(\Omega X\) étant \(1_\ast\). La composition prismatique munit \(\Omega X\)
d'une structure de monoïde simplicial. En tant que tel, \(\Omega X\) agit sur \(PX\) par composition
prismatique à droite.

(1.4) Définition (comparer Milnor [12]). — Soit \(X\) un ensemble simplicial.
Un prisme élémentaire (orienté) \([\xi, i]^{\epsilon}\) de \(X\) est compressible, si le simplexe sous-jacent
\(\xi\) est dégénéré dans la direction prismatique \(i\). Un prisme de \(X\) est incompressible s'il
ne contient pas de prismes élémentaires compressibles. Un prisme de X est réduit, si le chemin qu'il représente est réduit (1.1).

Un prisme de X est propre s'il est à la fois incompressible et réduit.

A tout prisme p est associé un unique prisme propre, noté \tilde{p}, obtenu par les seules opérations compression (i.e. suppression d'un prisme élémentaire compressible) et réduction (i.e. suppression d'un aller-retour). Ces deux opérations étant compatibles avec les opérateurs simpliciaux, ceci définit sur l'ensemble IX des prismes de X la relation d'équivalence simpliciale suivante :

Deux prismes p, p' sont équivalents ($p \sim p'$) si et seulement si les prismes propres associés coïncident ($\tilde{p} = \tilde{p'}$).

Puisque cette relation d'équivalence respecte les fonctions d'entrée et de sortie, sont alors définis les ensembles simpliciaux quotients $IX/\sim, PX/\sim, \Omega X/\sim$ qu'on notera dans l'ordre $\tilde{I}X, \tilde{P}X, \tilde{\Omega}X$. En passant au quotient sont induits les morphismes canoniques $\tilde{e}_X, \tilde{s}_X : \tilde{I}X \rightarrow X, \tilde{\Omega}_X : X \rightarrow \tilde{\Omega}X, \tilde{\eta}_X : \tilde{P}X \rightarrow X$ ainsi que l'action sans isotropie $\mu_{\tilde{\Omega}} : \tilde{P}X \times \tilde{\Omega}X \rightarrow \tilde{P}X$ du groupe simplicial $\tilde{\Omega}X$ sur $\tilde{P}X$. Les orbites de $\tilde{P}X$ sous cette action coïncident avec les images réciproques de la projection $\tilde{\eta}_X : \tilde{P}X \rightarrow X$. En anticipant la pseudosection canonique $j : X \rightarrow \tilde{P}X$ explicitée au numéro (1.10) on obtient ainsi le $\tilde{\Omega}X$-fibré principal $(\mu_{\tilde{\Omega}}^{\tilde{P}X}, \tilde{P}X, \tilde{\eta}_X, X, j)$.

(1.5) **DÉFINITION.** — Un ensemble simplicial pointé $(X, *)$ est prismatiquement contractile s'il existe un morphisme $\gamma : X \rightarrow \tilde{P}X$ tel que l'identité $\tilde{\eta}_X \circ \gamma = \text{id}_X$ soit satisfaite.

(1.6) **Remarque.** — Nous montrerons dans l'appendice A1 que le réalisé $|IX|$ de l'ensemble simplicial des prismes de X est de manière naturelle un sous-espace topologique de l'espace des chemins de $|X|$. Les points du réalisé $|IX|$ y correspondent à certaines compositions bien pondérées de chemins élémentaires de la forme

$$\gamma^i_+(t) = [\xi](t_0, \ldots, (1-t)t_i, t_{i+1}, \ldots, t_n)$$

resp. $\gamma^i_-(t) = [\xi](t_0, \ldots, t_i, (1-t)t_i, \ldots, t_n)$,

où l'indice i reflète la direction prismatique et le signe +/- reflète l'orientation du prisme élémentaire $[\xi, i]^f$ qui "contient" $\gamma^i_\pm(t)$.

On peut davantage montrer que ce plongement de $|IX|$ dans l'espace des chemins de $|X|$ admet une déformation continue rel. $|i_X X|$ telle que l'application finale passe au réalisé du quotient $\tilde{I}X$.

Deux morphismes $f, g : Z \longrightarrow X$ tels qu'il existe un relèvement $H : Z \longrightarrow IX$ avec $e_X H = f$ et $s_X H = g$ ou plus généralement un relèvement $\tilde{H} : Z \longrightarrow \tilde{I}X$ avec $\tilde{e}_X \tilde{H} = f$ et $\tilde{s}_X \tilde{H} = g$ ont en particulier des réalisations géométriques $|f|$ et $|g|$ qui sont homotopes. Un ensemble simplicial qui est prismatiquement contractile possède en conséquence un réalisé topologiquement contractile. ■

33
(1.7) DÉFINITION. — Soit X un ensemble simplicial et définissons pour tout $n \geq 0$ un opérateur de déformation $D_n : (IX)_n \to (I(IX))_n$ par récurrence sur la longueur des n-prismes de X.

Pour les n-prismes $1_x, x \in X_n$, de longueur nulle on pose $D_n 1_x = 1_{1_x}$.

Soit alors D_n défini pour les n-prismes de longueur $\ell - 1$ et posons pour un n-prisme $[\xi, i]^\epsilon \cdot p$ de longueur totale ℓ

$$D_n([\xi, i]^\epsilon \cdot p) = \left[[s_{\epsilon(i)}\xi, \epsilon(i)]^\epsilon \cdot s_ip, i \right]^\epsilon \cdot D_np$$

où $\epsilon(i) = \begin{cases} i + 1 & \text{si } \epsilon = 1 \\ i & \text{si } \epsilon = -1 \end{cases}$.

Cette définition est consistante puisque d’une part $[s_{\epsilon(i)}\xi, \epsilon(i)]^\epsilon \cdot s_ip$ est un $(n+1)$-prisme de X (noter que $s_i[\xi, i]^\epsilon = \left[[s_{\epsilon(i)}\xi, \epsilon(i)]^\epsilon \cdot s_ip, i \right]^\epsilon$) et que d’autre part on a

$$s_{IX} \left[[s_{\epsilon(i)}\xi, \epsilon(i)]^\epsilon \cdot s_ip, i \right]^\epsilon = p = e_{IX}(D np) \text{ (voir 1.8a)}.$$

(1.8) PROPOSITION.

a) La suite des opérateurs de déformation $(D_n)_{n \geq 0}$ définit un morphisme $D : IX \to I(IX)$ qui satisfait les relations $e_{IX} \circ D = \text{id}_{IX} = Ie_X \circ D$ et $s_{IX} \circ D = i_X \circ s_X \simeq Is_X \circ D$.

(Deux morphismes φ, ψ à valeurs dans IX sont équivalents, noté $\varphi \sim \psi$, si leurs composés avec la projection $IX \to I\hat{X}$ sont égaux.)

b) Par passage au quotient et restriction on déduit de D un morphisme $\tilde{\nu}_X : \tilde{P}X \to \tilde{P}(\tilde{P}X)$ qui satisfait les identités $\tilde{\eta}_{\tilde{P}X} \circ \tilde{\nu}_X = \text{id}_{\tilde{P}X} = \tilde{P}\tilde{\eta}_X \circ \tilde{\nu}_X$. L’ensemble simplicial $\tilde{P}X$ est en particulier prismatiquement contractile.

Démonstration.

a) On notera μ (resp. $\bar{\mu}$) l’application $[\xi, k]^\epsilon \mapsto [s_{\epsilon(k)}\xi, \epsilon(k)]^\epsilon$ (resp. $[\xi, k]^\epsilon \mapsto [s_{\epsilon(k)}\xi, \epsilon(k)]^\epsilon$). On obtient en particulier : $s_i[\xi, i]^\epsilon = \mu[\xi, i]^\epsilon \cdot \bar{\mu}[\xi, i]^\epsilon$. Montrons alors par récurrence sur la longueur des n-prismes que D_n commute aux opérateurs simpliciaux. Pour les n-prismes de longueurs nulle ceci est évident. Soit alors $[\xi, i]^\epsilon \cdot p$ de longueur totale ℓ. On a

$$\partial_j D_n([\xi, i]^\epsilon \cdot p) = \partial_j [\bar{\mu}[\xi, i]^\epsilon \cdot s_ip, i]^\epsilon \cdot D_{n-1} \partial_j p$$

par hypothèse de récurrence et il suffit de vérifier que pour $j < i$

$$\partial_j [\bar{\mu}[\xi, i]^\epsilon \cdot s_ip, i]^\epsilon = [\partial_j \bar{\mu}[\xi, i]^\epsilon \cdot \partial_j s_ip, i - 1]^\epsilon = [\bar{\mu}[\partial_j \xi, \epsilon(i) - 1]^\epsilon \cdot s_i - 1 \partial_j p, i - 1]^\epsilon,$$

que pour $j = i$

$$\partial_i [\bar{\mu}[\xi, i]^\epsilon \cdot s_ip, i]^\epsilon = 1.$$
et que pour \(j > i \)
\[
\partial_j [\bar{\mu}[\xi, i]^\varepsilon \cdot s_i p, i]^\varepsilon = [\partial_{j+1} \bar{\mu}[\xi, i]^\varepsilon \cdot \partial_{j+1} s_i p, i]^\varepsilon = [\bar{\mu}[\partial_{j+1} \xi, i]^\varepsilon \cdot s_i \partial_{j+1} p, i]^\varepsilon .
\]
Ensuite, on a
\[
s_j D_n([\xi, i]^\varepsilon \cdot p) = s_j [\bar{\mu}[\xi, i]^\varepsilon \cdot s_i p, i]^\varepsilon \cdot D_{n+1} s_j p
\]
par hypothèse de récurrence et il suffit de vérifier
que pour \(j < i \)
\[
s_j [\bar{\mu}[\xi, i]^\varepsilon \cdot s_i p, i]^\varepsilon = [s_j \bar{\mu}[\xi, i]^\varepsilon \cdot s_j s_i p, i+1]^\varepsilon
\]
\[
= [\bar{\mu}[s_j \xi, i+1]^\varepsilon \cdot s_{i+1} s_j p, i+1]^\varepsilon,
\]
que pour \(j = i \)
\[
s_i [\bar{\mu}[\xi, i]^\varepsilon \cdot s_i p, i]^\varepsilon = [s_{\varepsilon(i)} \bar{\mu}[\xi, i]^\varepsilon \cdot s_{\varepsilon(i)} s_i p, \varepsilon(i)]^\varepsilon \cdot [s_{\varepsilon(i)} \bar{\mu}[\xi, i]^\varepsilon \cdot s_{\varepsilon(i)} s_i p, \varepsilon(i)]^\varepsilon
\]
\[
= [\mu \bar{\mu}[\xi, i]^\varepsilon \cdot s_{\varepsilon(i)} \bar{\mu}[\xi, i]^\varepsilon \cdot s_{\varepsilon(i)} s_i p, \varepsilon(i)]^\varepsilon \cdot [s_{\varepsilon(i)} \bar{\mu}[\xi, i]^\varepsilon \cdot s_{\varepsilon(i)} s_i p, \varepsilon(i)]^\varepsilon,
\]
donc
\[
s_i [\bar{\mu}[\xi, i]^\varepsilon \cdot s_i p, i]^\varepsilon \cdot D_{n+1} s_i p = D_{n+1} (\mu[\xi, i]^\varepsilon \cdot \bar{\mu}[\xi, i]^\varepsilon \cdot s_i p),
\]
et que pour \(j > i \)
\[
s_j [\bar{\mu}[\xi, i]^\varepsilon \cdot s_i p, i]^\varepsilon = [s_{j+1} \bar{\mu}[\xi, i]^\varepsilon \cdot s_{j+1} s_i p, i]^\varepsilon
\]
\[
= [\bar{\mu}[s_{j+1} \xi, i]^\varepsilon \cdot s_i s_j p, i]^\varepsilon.
\]
L'identité \(e_{IX} \circ D = \text{id}_X \) reflète le fait que
\[
e_{IX} [\bar{\mu}[\xi, i]^\varepsilon \cdot s_i p, i]^\varepsilon = \partial_{\varepsilon(i)} (\bar{\mu}[\xi, i]^\varepsilon \cdot s_i p) = [\xi, i]^\varepsilon \cdot p
\]
tandis que l'identité \(s_{IX} \circ D = i_X \circ s_X \) se démontre par une récurrence simple. Les deux autres relations \(\text{id}_{IX} = I_{e_X} \circ D \) resp. \(i_X \circ s_X \sim I_{s_X} \circ D \) se démontrent également par récurrence en utilisant les identités
\[
e_X (\bar{\mu}[\xi, i]^\varepsilon) = \xi
\]
resp. \(s_X (\bar{\mu}[\xi, i]^\varepsilon) = s_i (s_X[\xi, i]^\varepsilon) \) et \(s_X (\bar{\mu}[\xi, i]^\varepsilon \cdot s_i p) = s_i (s_X p) \).

b) En passant au quotient, on obtient de \(D : IX \longrightarrow I(IX) \) un morphisme \(\overline{D} : \overline{IX} \longrightarrow \overline{I(IX)} \). Il suffit en effet par un argument de récurrence similaire aux précédents de vérifier que
1) si \([\xi, i]^\varepsilon \) est compressible dans \(IX \), alors \([s_{\varepsilon(i)} \xi, \varepsilon(i)]^\varepsilon, i]^\varepsilon \) est compressible dans \(I(\overline{IX}) \) (montrer que \([s_{\varepsilon(i)} \xi, \varepsilon(i)]^\varepsilon \sim 1_\xi = s_i 1_X \) pour \(\xi = s_i x \)),

2) l'allier-retour \([\xi, i]^\varepsilon \cdot [\xi, i]^{-\varepsilon} \) dans \(IX \) donne lieu à l'allier-retour
\[
([s_{\varepsilon(i)} \xi, \varepsilon(i)]^\varepsilon \cdot s_i [\xi, i]^{-\varepsilon}, i) \cdot ([s_{\varepsilon(i)} \xi, \varepsilon(i)]^{-\varepsilon}, i)^{-\varepsilon}
\]
dans \(I(\overline{IX}) \) (car \(s_i [\xi, i]^{-\varepsilon} = [s_{\varepsilon(i)} \xi, \varepsilon(i)]^{-\varepsilon} \cdot [s_{\varepsilon(i)} \xi, \varepsilon(i)]^{-\varepsilon}) \).
Le morphisme \(\overline{D} \) satisfait les identités \(\overline{\varepsilon f_X \circ D} = \text{id}_{f_X} = \overline{I \varepsilon X \circ D} \) et \(\overline{s f_X \circ D} = \text{id}_X = \overline{I s_X \circ D} \) dont le dernier couple implique que \(\overline{D} \) envoie \(\overline{P X} \) dans \(\overline{P} \) et dont le premier couple établit les identités cherchées du morphisme \(\overline{v} = \overline{D} |_{P X} \). \(\blacksquare \)

(1.9) Définition. — Soit \((X, \ast)\) un ensemble simplicial réduit, c'est-à-dire dont l'ensemble \(X_0\) des 0-simplices de \(X\) est supposé réduit au point base \(\ast_0\). (Cette restriction est de nature technique; elle dispense du choix d'un arbre maximal \(T_0\) du graphe \(\Gamma_0(X) = (X_0, \text{El}_n X, e, s)\)).

Un \(n\)-simplexe \(x \in X_n\) est de classe \(j\) s'il est dégénéré dans les directions \(j, j + 1, \ldots, n - 1\), mais non dégénéré dans la direction \(j - 1\).

On pose alors pour \(n > 0\)

\[T_n = \{ ([\xi, i] \in \text{El}_n X | i \neq n \text{ et } \xi \text{ de classe } i + 1 \} \].

Noter que \(T_n\) ne contient pas de \(n\)-prismes élémentaires compressibles.

(1.10) Proposition.

\(a\) Pour tout \(n > 0\) \(T_n\) est un arbre maximal du graphe \(\Gamma_n(X) = (X_n, \text{El}_n X, e, s)\) enraciné en le point base \(\ast_n \in X_n\). L'unique prisme propre \(\overline{\gamma}_x\) composé d'éléments de \(T_n\) et \(T_n^{-1}\) qui soit d'entrée \(x \in X_n\) et de sortie \(\ast_n \in X_n\) s'obtient comme la partie incompressible du prisme suivant (comparer I.2.5c):

\[\gamma_x = [s_n x, n - 1][s_n s_{n-1} \partial_{n-1} x, n - 2] \cdots [s_n \cdots s_1 \partial_1 \cdots \partial_{n-1} x, 0]. \]

\(b\) Le groupe \((\overline{\Omega} X)_n\) est libre de base l'ensemble des éléments

\[[[\xi, i]] = \gamma_{\partial_{n+1} [[\xi, i]]} \gamma_{\partial_{n+1} } , \]

où \([\xi, i]\) parcourt les \(n\)-prismes élémentaires de \(X\) qui ne sont ni compressibles ni éléments de \(T_n\).

\(c\) Les applications \(j_n : X_n \rightarrow (\overline{P} X)_n : x \mapsto \overline{\gamma}_x\) définissent une pseudosection \(j : X \rightarrow \overline{P} X \) : \(\overline{P} X \rightarrow X\). La fonction tordante \(t : X \rightarrow \overline{\Omega} X\) déduite de \(j\) (1.2.4a) associe au \((n+1)\)-simplexe \(\xi \in X_{n+1}\) le \(n\)-simplexe \([[\xi, n]] \in (\overline{\Omega} X)_n\).

\(d\) La contraction prismaticque \(\overline{v}_X : \overline{P} X \rightarrow \overline{P}(\overline{P} X)\) s'exprime en termes de la structure de produit cartésien tordu \(X \times \overline{\Omega} X\) de \(PX\) par récurrence sur la "longueur de Cayley" de la composante fibre : en effet, soit \((x, g) \in (X \times \overline{\Omega} X)_n\) avec \(g = [[\xi, i]]^c \cdot g'\).

Le \(n\)-prisme \(\nu_X(x, g) \in (\overline{P}(X \times \overline{\Omega} X))_n\) représentant de l'élément \(\overline{v}_X(x, g) \in (\overline{P}(X \times \overline{\Omega} X))_n\) est alors récursivement défini par les formules

1) \(\nu_X(x, g) = \gamma_{(x, g)} \cdot \nu_X(*n, g),\)

2) \(\nu_X(*n, g) = \left\{ \gamma_{(\partial_{n+1} \xi, g)} [[\xi, [s_{\xi}(i), \xi, i]]^c \cdot s_i g'], i] \gamma_\xi (\partial_{n+1} g') \right\} \cdot \nu_X(*n, g'),\)

3) \(\nu_X(*n, e_n) = 1_{(e_{n}, e_{n})}, \) où

\[\gamma_{(x, g)} = [s_n x, s_{n-1} g], n - 1 \left[(s_n s_{n-1} \partial_{n-1} x, s_{n-2} g), n - 2 \right] \cdots \left[(s_n \cdots s_1 \partial_1 \cdots \partial_{n-1} x, s_0 g), 0 \right]. \]

36
Démonstration.

a) On constate qu’un n-simplexe \(x \in X_n \) de classe \(i \), \(0 < i \leqslant n \), est l’entrée d’un et d’un seul n-prisme de \(T_n \). En effet, on a \(x = s_{n-1} \cdots s_i y \) avec \(y \) non dégénéré dans la direction \(i-1 \) et le n-prisme \([s_i x, i-1]\) est à la fois élément de \(T_n \) et d’entrée \(x \). Inversement, si \([\xi, j-1] \in T_n \) et \(e_X [\xi, j-1] = x \), alors \(i = j \) et \(\xi = s_{n-1} \cdots s_i y = s_i x \). La sortie du n-prisme \([\xi, i-1]\) \(T_n \) d’entrée \(x \) est de classe strictement inférieure à \(i \), ce qui montre par récurrence que le n-simplexe \(x \in X_n \) est un n-simplexe de classe zéro. L’ensemble simplicial \(X \) étant réduit, il n’y a qu’un seul n-simplexe de classe zéro, le point base \(*_n \in X_n\), d’où l’énoncé.

b) Le groupe \((\Omega X)_n\) s’identifie au groupe \(\mathcal{C}(\Gamma_n(X), *_n) \) (voir fin 1.1), où \(\Gamma_n(X) \) désigne le sous-graphe de \(\Gamma_n(X) \) constitué par les prismes incompressibles. L’ensemble \(T_n \) étant également arbre maximal de \(\Gamma_n(X) \), l’énoncé suit directement de la dernière remarque de (1.1).

c) Il suffit de montrer que l’image de l’arbre maximal \(T_n \) par les opérateurs \(s_i \), \(0 \leqslant i \leqslant n \), (resp. \(\partial_i \), \(0 \leqslant i < n \)), se compose de prismes élémentaires soit contenus dans l’arbre maximal \(T_{n+1} \) (resp. \(T_{n-1} \)) soit compressibles. Il en résulte en effet que l’identité \(s_i \gamma_x = \gamma_{s_i x}, 0 \leqslant i \leqslant n \) (resp. \(\partial_i \gamma_x = \gamma_{\partial_i x}, 0 \leqslant i < n \)).

Soit \([\xi, i] \in T_n \), autrement dit \(\xi \) est un \((n+1)\)-simplexe de \(X \) de classe \(i+1 \). Ses dégénérancements \(s_j \xi \), \(j \leqslant i \), sont de classe \(i+2 \), et ses dégénérancements \(s_{i+1} \xi \), \(j \geqslant i \), de classe \(i+1 \). Cela implique que \(s_j [\xi, i] \) est élément de \(T_{n+1} \), \(0 \leqslant j \leqslant n \).

De même, les faces \(\partial_j \xi \), \(j < i \), sont de classe \(i \), et les faces \(\partial_{j+1} \xi \), \(j > i \), de classe \(i+1 \), ce qui implique que pour \(0 \leqslant j < n \), \(\partial_j \xi \) est soit compressible soit élément de \(T_{n-1} \).

Enfin, puisque la fonction tordante satisfait la condition \((j \partial_{n+1} \xi)^{t_{n+1} \xi} = \partial_{n+1} j \xi \) (1.2.4a), on a l’identité
\[
t_{n+1} \xi = (j \partial_{n+1} \xi)^{-1} \cdot (\partial_{n+1} j \xi)
= \gamma_{\partial_{n+1} \xi}^{-1} \cdot \partial_{n+1} \gamma_{\xi} = \gamma_{\partial_{n+1} \xi}^{-1} [\xi, n] \gamma_{\partial_{n+1} \xi} .
\]

d) Il s’agit de conjuguer la contraction prismatique \(\bar{\nu}_X \) (1.8b) par l’isomorphisme canonique
\[
\bar{\nu}_X \sim X \times_t \Omega X
\]
\[
\bar{\nu}_X \sim (e(p), \gamma_p^{-1} \cdot p)
\]
\[
\gamma_x \cdot \bar{\nu}_X \sim (x, g) .
\]
En tenant compte du représentant explicite en a) et du fait que \([\xi, i]\) est trivial si \([\xi, i] \in T_n \), on obtient la formule indiquée.

(1.11) Définition (Kan). — Soit \((X, *)\) un ensemble simplicial réduit (1.9). Désignons par \(\langle E \rangle \) le groupe librement engendré par l’ensemble \(E \) et posons pour \(n \geqslant 0 \)
\[
(GX)_n = (X_{n+1}) / (s_n x \sim e_n)_{x \in X_n} .
\]
37
$(GX)_n$ s'identifie donc au groupe libre de base $X_{n+1} - s_n X_n$. Pour $x \in X_{n+1}$ nous noterons \bar{x} le générateur correspondant de $(GX)_n$. Définissons alors des opérateurs de face $\partial_i : (GX)_n \to (GX)_{n-1}$ et des opérateurs de dégénérescence $s_i : (GX)_n \to (GX)_{n+1}$, $0 \leq i \leq n$, par extension homomorphe des formules suivantes :

$$
\begin{align*}
\partial_i \bar{x} &= \begin{cases}
\overline{\partial_i x} & i < n \\
\overline{\partial_{n+1} x} \cdot \partial_n x & i = n,
\end{cases} \\
s_i \bar{x} &= s_i \bar{x}.
\end{align*}
$$

On vérifie que ces formules sont consistentes et que les opérateurs étendus satisfont les identités simpliciales (I.1.1).

Le groupe simplicial résultant sera noté GX et appelé le groupe coclassifiant de X, puisqu'il vérifie la propriété duale de celle qui caractérise l'espace classifiant d'un groupe topologique.

Les applications $(t^G)_{n+1} : X_{n+1} \to (GX)_n : x \mapsto \bar{x}$ définissent en effet une fonction tordante $t^G : X \leadsto GX$ qui possède la propriété co-universelle que toute fonction tordante $t : X \leadsto G$ à valeurs dans un groupe simplicial G se factorise par t^G via un unique homomorphisme $\varphi : GX \to G$.

![Diagram](https://via.placeholder.com/150)

Autrement dit (I.2.5a) : tout G-fibré principal $X \times_t G$ est coïnduit du GX-fibré co-universelle $EX = X \times_{t^G} GX$ par changement de groupe structural suivant cet homomorphisme canonique $\varphi : GX \to G$.

(1.12) Théorème. — Soit $(X, *)$ un ensemble simplicial réduit.

a) L'homomorphisme canonique $\varphi : GX \to \bar{\Omega}X$ coïnduisant le $\bar{\Omega}X$-fibré principal $\bar{P}X = X \times_t \bar{\Omega}X$ est injectif et identifie le coclassifiant GX au sous-groupe simplicial de $\bar{\Omega}X$ engendré par les éléments $t\xi, \xi \in X$, et le fibré co-universel EX à un sous-GX-fibré de $\bar{P}X$.

b) La contraction prismeïque $\bar{v}_X : \bar{P}X \to \bar{P}(\bar{P}X) = \bar{P}(EX)$. Le réalisé du fibré co-universel est en particulier contractile et le coclassifiant GX de X a même type d'homotopie multiplicative que $\bar{\Omega}X$.

Démonstration.

a) L'homomorphisme $\varphi : GX \to \bar{\Omega}X$ associé selon (1.10c) au générateur non trivial $\bar{x} \in (GX)_n$, l'élément $tx = [x, n] \in (\bar{\Omega}X)_n$, qui selon (1.10b) fait partie de la base canonique. L'homomorphisme φ identifie donc pour tout $n \geq 0$ la base canonique de $(GX)_n$ à une partie de la base canonique de $(\bar{\Omega}X)_n$, ce qui prouve son injectivité.
b) Le \bar{OX}-fibré principal $(\mu_X^{\bar{O}}, \bar{P}X, \eta_X, X, j)$ admet une réduction de son
groupe structural à un sous-groupe G si et seulement si ce sous-groupe contient l'image
etière de la fonction tordante $t : X \rightsquigarrow \bar{OX}$. Pour qu'un tel sous-groupe satisfasse en
plus l'implication

$$[(x, g) \in (X \times t G)_n \implies \bar{v}_X(x, g) \in \bar{P}(X \times t G)_n]$$

il faut et il suffit (1.10d) que tout élément $g \in G_n$ décomposé en $g = [\xi, i] \cdots [\xi, \xi']$ suivant la base canonique (1.10b) de $(\bar{OX})_n$ vérifie les deux conditions

1) $[\xi_k, i_k] \in G_n, 1 \leq k \leq \ell,$

2) $[s_{\ell(i_k)}\xi_k, \xi(i_k)] \in G_{n+1}, 1 \leq k \leq \ell.$

Or, le sous-groupe GX de \bar{OX} vérifie ces deux conditions puisqu'il est engendré par
les éléments $t\xi = [\xi, n], \xi \in X_{n+1} - s_n X_n$, et qu'on a $[s_n \xi, n + 1] = t(s_n \xi)$ et
$[s_{n+1} \xi, n] = e_{n+1}, n \geq 0.$

Le morphisme $\bar{v}_X : X \times t \bar{OX} \longrightarrow \bar{P}(X \times t \bar{OX})$ peut donc être restreint à
$EX = X \times t GX$ et la remarque (1.6) implique que le réalisé $|EX|$ (tout comme
$|\bar{P}X|$) est contractile resp. (en vertu du lemme des cinq et de 1.2.6) que l'inclusion du
coclassifiant GX dans \bar{OX} induit une équivalence d'homotopie faible au niveau des
réalisés. Puisque les deux groupes simpliciaux GX et \bar{OX} sont libres dans un sens
naturel qui sera précisé ci-dessous, la proposition (6.5) de Kan [11] montre alors qu'ils ont même type d'homotopie
multiplicative.

(1.13) Définition (Kan). — Un groupe simplicial G est dit libre, si l'on peut
exhiber parmi les simplexes de G un ensemble B tel que

a) B est stable par opérateurs de dégénérescence,

b) $B \cap G_n$ est une base du groupe libre $G_n, n \geq 0.$

B sera appelé base du groupe simplicial G.

Le coclassifiant GX d'un ensemble simplicial réduit X est libre de base la
réunion des bases canoniques des groupes $(GX)_n$. Le groupe simplicial \bar{OX} n'est
libre au sens (1.13) qu'en modifiant les bases exhibées en (1.10b), leur réunion
n'étant pas stable par opérateurs de dégénérescence. Nous indiquons le changement de
base nécessaire, mais laissons au lecteur le soin de vérifier qu'en toute dimension le
changement de base peut être effectué par des $\textit{transformations de Tietze}$ itérées.

Un élément typique de l'ancienne base de $(\bar{OX})_n$ exhibée en (1.10b) s'écrit
$[\xi, i]$, où le $(n + 1)$-simplexe ξ est non dégénéré dans une au moins des directions
strictement supérieures à i (si $i \neq n$). Soit $j + 1$ la première de ces directions non
dégénérées de ξ, donc $\xi = s_j \cdots s_{i+1} \eta, \eta$ n'étant pas dégénéré dans la direction i. Cet
élément $[\xi, i]$ de l'ancienne base sera remplacé dans la nouvelle base par l'élément
$s_{j-1} \cdots s_i [\eta, i] \in (\bar{OX})_n$. Les seuls éléments non affectés par le changement de base
sont ceux du sous-groupe $(GX)_n$, i.e. les éléments de la forme $[\xi, n]$. La réunion
des derniers est stable par opérateurs de dégénérescence et il suit immédiatement
des identités simpliciales qu'une dégénérescence quelconque d'un élément du type $s_j \cdots s_1 \ell[r, i]$ donne un élément du même type, ce qui montre que la nouvelle base de $\overline{\Omega}X$ satisfait la condition a) de (1.13).

(1.14) Définition. — Soit X un ensemble simplicial. À tout n-prisme $p \in (IX)_n$ est attaché un morphisme "universel" $p_{\text{simp}} : \text{Dom}(p) \to X$ défini comme suit :

Si $p = 1_x$, $x \in X_n$, alors $\text{Dom}(p) = \Delta[n]$ et $p_{\text{simp}} = \Delta$ (I.1.6).

Si $p = [\xi_1, i_1]^s \cdots [\xi_\ell, i_\ell]^s$, $\ell > 0$, alors le domaine "universel" $\text{Dom}(p)$ est le quotient

$$\left(\coprod_{1 \leq k \leq \ell} \Delta[n + 1] \right) / \sim$$

de la somme disjointe de ℓ copies de $\Delta[n + 1]$ par les relations de recollement $\partial_s(k) \alpha_k \sim \partial_{c(k+1)} \alpha_{k+1}$, $1 \leq k < \ell$, où $c(k)$ (resp. $s(k)$) indique l'indice d'entrée (resp. de sortie) du prisme élémentaire orienté $[\xi_k, i_k]^s$, et où α_k désigne (exceptionnellement) le $(n + 1)$-simplexe fondamental de la k-ème copie $(k)\Delta[n + 1]$. On a les plongements canoniques $(k)\Delta[n + 1] \hookrightarrow \text{Dom}(p)$, $1 \leq k \leq \ell$, et il existe un unique morphisme $p_{\text{simp}} : \text{Dom}(p) \to X$ tel que $p_{\text{simp}}|_{\Delta[n + 1]} = \xi_k$ (I.1.6).

Nous aurons également besoin de factoriser le morphisme universel p_{simp} par une version "comprimée" $\overline{\text{Dom}}(p)$ du domaine universel qui tient compte des propriétés de compressibilité du n-prisme p (1.4). Noter d'abord que pour toute suite d'indices croissants $0 \leq j_1 < \cdots < j_r \leq n$, il existe un et un seul plongement "universel" $\overline{\text{Dom}}(\partial_{j_1} \cdots \partial_{j_r}, p) \hookrightarrow \text{Dom}(p)$ (valable pour tout q-prisme q de domaine $\text{Dom}(q) = \text{Dom}(p)$) qui fasse commuter le diagramme suivant :

$$\begin{array}{ccc}
\text{Dom}(\partial_{j_1} \cdots \partial_{j_r}, p) & \downarrow & (\partial_{j_1} \cdots \partial_{j_r}, p)_{\text{simp}} \\
\downarrow & & \downarrow \\
\text{Dom}(p) & \xrightarrow{p_{\text{simp}}} & X.
\end{array}$$

Un $(m + 1)$-simplexe $x \in (\text{Dom}(p))_{m+1}$ est dit principal s'il fait partie des simplexes fondamentaux d'un des ensembles simpliciaux plongés $\overline{\text{Dom}}(\partial_{j_1} \cdots \partial_{j_r}, p) \hookrightarrow \text{Dom}(p)$. On aura en particulier $r = n - m$, et tout simplexe principal x détermine une unique suite d'indices croissante

$$0 \leq j_1 < \cdots < j_s < i_k < j_{s+1} < \cdots < j_r \leq n$$
telle que $x \in (k)\Delta[n + 1] \cap \overline{\text{Dom}}(\partial_{j_1} \cdots \partial_{j_r}, p)$. Nous dirons alors que le simplexe principal x est compressible dans la direction i, si le prisme élémentaire associé $\partial_{j_1} \cdots \partial_{j_r}[\xi_k, i_k]^s$ est à la fois de direction prismatique i (i.e. $i = i_k - s$) et compressible (i.e. le simplexe sous-jacent $p_{\text{simp}}x$ est dégénéré dans la direction i).
Soit alors R l'ensemble des relations $x \sim s_i \partial_i x$ telles que x soit simplexe principal de $\text{Dom}(p)$ comprimé dans la direction i ($0 \leq i < \dim x$). Noter que cet ensemble de relations est clos par opérateurs de face. On pose $\overline{\text{Dom}(p)} = \text{Dom}(p)/(R)$ et on obtient la factorisation cherchée

$$
\begin{array}{c}
\text{Dom}(p) \\
\downarrow \\
\overline{\text{Dom}(p)} \\
\overline{\text{Psimp}} \\
\Rightarrow \\
\overline{\text{Psimp}} \\
\Rightarrow \\
X
\end{array}
$$

(1.15) **Définition.** — Un *n-élément géométrique* est un espace topologique muni d'une structure de complexe simplicial combinatoirement équivalent au n-simplexe standard Δ_n.

Un *n-élément simplicial* est un ensemble simplicial dont le réalisé admet une subdivision de sa structure cellulaire qui en fait un n-élément géométrique.

Tout n-élément simplicial X possède un bord simplicial bX dont le réalisé s'identifie au bord topologique du n-élément géométrique $|X|$.

(1.16) **Proposition.**

a) Soient E, E' deux $(n+1)$-éléments (géométriques) et F un n-élément plongé à la fois dans le bord de E et dans le bord de E'. L'espace de recollement $E \cup_F E'$ (défini par "pushout") est alors un $(n+1)$-élément.

b) Soient F_1, F_2 deux n-éléments plongés dans le bord d'un $(n+1)$-élément E et tels que leur intersection commune $F_1 \cap F_2$ soit un $(n-1)$-élément. Soit $i : F_1 \cong F_2$ une équivalence combinatoire rel. $F_1 \cap F_2$. L'espace d'identification $E/F_1 \tilde{\sim} F_2$ est alors un $(n+1)$-élément.

c) Soit E un $(n+1)$-élément simplicial et soit x un m-simplexe contenu dans le bord simplicial de E et tel que le sous-ensemble simplicial qu'il engendre soit isomorphe à $\Delta[m]$. Le quotient $E/(x \sim s_i \partial_i x)$ obtenu en "comprimant" x dans la direction i ($0 \leq i < m$) est alors un $(n+1)$-élément simplicial.

Pour la démonstration voir appendice A2.

(1.17) **Corollaire.**

a) Le domaine universel $\text{Dom}(p)$ (resp. sa version comprimée $\overline{\text{Dom}(p)}$) de tout n-prisme p de longueur strictement positive est un $(n+1)$-élément simplicial.

b) Soit $(X, *)$ un ensemble simplicial pointé. Le morphisme universel $\text{Psimp} : \text{Dom}(p) \to X$ attaché à un n-prisme $p \in (\Omega X)_n$ de longueur strictement positive et tel que $\partial_i \overline{p} = 1_{\ast n-1}$, $0 \leq i \leq n$, se factorise de manière canonique par une $(n+1)$- sphère.
simpliciale $\Sigma^{n+1}(p)$:

$$
\begin{array}{ccc}
\text{Dom}(p) & \xrightarrow{\ p_{\text{simp}} \ } & P_{\text{simp}} \\
\downarrow & & \downarrow \\
\Sigma^{n+1}(p) & \xrightarrow{\ p_{\text{sph}} \ } & X
\end{array}
$$

Si en outre p est propre et tel qu’il existe un $(n+1)$-prisme $q \in (\Omega X)_{n+1}$ avec $\delta_i q = 1$, $0 \leq i \leq n$, et $\delta_{n+1} q = \bar{p}$, alors le morphisme $p_{\text{sph}} : \Sigma^{n+1}(p) \to X$ admet une extension canonique à un $(n+2)$-élément simplicial $E^{n+2}(q)$:

$$
\begin{array}{ccc}
\Sigma^{n+1}(p) & \xrightarrow{\ p_{\text{sph}} \ } & X \\
\downarrow_{i} & & \downarrow \\
E^{n+2}(q) & \xrightarrow{\ i \ } &
\end{array}
$$

tel que $i \Sigma^{n+1}(p) = b E^{n+2}(q)$.

Démonstration.

a) Le domaine universel $\text{Dom}(p)$ du n-prisme p est constructible par application itérée de l’opération de recollement (1.16a). En effet, soient $p = [\xi_1, i_1]^{\ell_1} \cdots [\xi_\ell, i_\ell]^{\ell_\ell}$ et $E_k = \text{Dom} ([\xi_1, i_1]^{\ell_1} \cdots [\xi_k, i_k]^{\ell_k})$, $1 \leq k \leq \ell$. On constate que E_1 est isomorphe au $(n+1)$-élément simplicial $\Delta [n+1]$ et que pour $1 \leq k < \ell$, E_{k+1} s’obtient par recollement du type (1.16a) à partir de E_k et d’une copie de $\Delta [n+1]$, ce qui montre par récurrence que tous les E_k, en particulier $E_\ell = \text{Dom}(p)$, sont des $(n+1)$-éléments simpliciaux.

Pour montrer que le passage au quotient $\text{Dom}(p) \to \overline{\text{Dom}(p)}$ n’affecte pas le "type combinatorial" on l’effectue en deux étapes : dans un premier temps, on traite les *simplexes fondamentaux* de $\text{Dom}(p)$ qui sont compressibles au sens (1.15). Leur compression équivaut simplement à leur suppression, étant entendu que les parties incompressibles de $\text{Dom}(p)$ sont ensuite recollées convenablement. L’ensemble simplicial résultant, noté $\text{Dom}(p)_{\text{incomp}}$, est un $(n+1)$-élément par le même argument que ci-dessus. Dans un deuxième temps on comprime *un par un* (en évitant les répétitions) les *simplexes principaux* compressibles au sens (1.15) et de dimension strictement inférieure à $n+1$. Ils sont tous contenus dans le bord simplicial de $\text{Dom}(p)$ resp. de $\text{Dom}(p)_{\text{incomp}}$ et, si l’on procède en ordre de dimension décroissante, les hypothèses de (1.16c) sont à chaque fois satisfaites, d’où par récurrence l’assertion.

b) Le bord simplicial du domaine universel $\text{Dom}(p)$ est constitué d’une part par les faces "latérales", réunion des ensembles simpliciaux plongés $\text{Dom}(\delta_j p)$, $0 \leq j \leq n$, d’autre part par deux n-simplexes "extrêmes" qui correspondent via $p_{\text{simp}} : \text{Dom}(p) \to X$ à l’entrée et la sortie du n-prisme p. Dans la construction de la $(n+1)$-sphère $\Sigma^{n+1}(p)$ qui suit nous allons utiliser les conditions $\delta_j \bar{p} = 1$, $0 \leq j \leq n$, pour en déduire un "pliage complet" de chaque face latérale sur elle-même ("principe de l’accordéon"). L’ensemble simplicial résultant, noté $\overline{\text{Dom}(p)}$, sera en vertu de
(1.16b) un \((n + 1)\)-élément simplicial dont le bord ne contiendra plus que les images des deux \(n\)-simplexes extrêmaux. Puisque \(p \in (\Omega X)_n\), ce bord sera appliqué par
\[\bar{p}_\text{simp}: \overline{\text{Dom}(p)} \rightarrow X \]
sur le point base \(*_n \in X_n\), et on obtiendra la factorisation cherchée en contractant ce bord. Explicitons la construction :

Du fait que \(\partial_j \bar{p} = \overline{1}.*_{n-1}\), on peut comprimer et réduire (1.4) le \((n - 1)\)-prisme \(\partial_j p\) au prisme trivial \(1.*_{n-1}\). Le \((n - 1)\)-prisme incompressible \((\partial_j p)_{\text{incomp}}\) déduit de \(\partial_j p\) est constitué par un ensemble de prismes élémentaires qui est via \(\bar{p}_\text{simp}\) en bijection canonique avec l'ensemble des simplexes fondamentaux de la face comprimée \(\overline{\text{Dom}(\partial_j p)}\). La réduction complète du \((n - 1)\)-prisme \((\partial_j p)_{\text{incomp}}\) au prisme trivial \(1.*_{n-1}\) est ensuite codifiée par une \textit{partition en couples} \(P_j\) de l'ensemble des prismes élémentaires constituant \((\partial_j p)_{\text{incomp}}\). Les propriétés caractéristiques de cette partition en couples sont :

1) Deux prismes élémentaires couplés ont même simplexe sous-jacent, même direction prismatique, mais orientations inverses.

2) L'ensemble des couples admet un ordre total tel que deux prismes élémentaires couplés deviennent \textit{adjacents} après suppression des couples précédents.

Ceci dit, soit \(S\) l'ensemble des relations \(x \sim y\) telles que \(x\) et \(y\) désignent des simplexes principaux de dimension \(n\) du domaine universel comprimé \(\overline{\text{Dom}(p)}\) contenus dans une même face \(\overline{\text{Dom}(\partial_j p)}\) et correspondant via \(\bar{p}_\text{simp}\) à une paire de prismes élémentaires \textit{coulés} par \(P_j\). On pose alors \(\overline{\text{Dom}(p)} = \overline{\text{Dom}(p)}/(S)\) et la propriété 1) ci-dessus implique qu'on a un diagramme commutatif :

\[
\begin{array}{ccc}
\text{Dom}(p) & & \text{Dom}(p)
\\ & \downarrow \bar{p}_\text{simp} & \rightarrow
\\ \overline{\text{Dom}(p)} & \overline{\text{Dom}(p)} & X
\end{array}
\]

Il nous reste à montrer que \(\overline{\text{Dom}(p)}\) est un \((n + 1)\)-élément simplicial dont le bord est identifiable à la réunion des images des deux \(n\)-simplexes extrêmaux du domaine universel.

Pour ce faire effectuons le passage au quotient \(\overline{\text{Dom}(p)} \rightarrow \overline{\text{Dom}(p)}\) en introduisant les relations de l'ensemble \(S\) \textit{une par une} dans un ordre qui respecte les ordres internes (2) des partitions \(P_j\). Par un argument de récurrence on se trouve alors à chaque fois dans les hypothèses de (1.16b) : en effet, les deux \(n\)-simplexes \(x, y\) seront - au moment de l'identification \(x \sim y\) - adjacents, car soit ils le sont déjà dans \(\text{Dom}(p)\) soit les identifications précédentes (2) auront créé l'adjacence nécessaire. Les sous-ensembles simpliciaux \((x)\) et \((y)\) engendrés par \(x\) et \(y\) seront des \(n\)-éléments (1.16c) isomorphes (1). L'intersection \((x) \cap (y)\) enfin sera un \((n - 1)\)-élément par (1.16a) compte tenu de ce qu'elle ne contiendra sûrement pas le \((n - 1)\)-simplexe opposé au \((n - 1)\)-simplexe qui fait l'adjacence (opposé par rapport à la direction prismatique).
Le quotient $\overline{\text{Dom}}(p)$ est donc un $(n+1)$-élément simplicial et son bord ne contient plus que les deux n-simplexes extrémaux du domaine universel qui sont les seuls de l'ancien bord à ne pas avoir été affectés directement par l'ensemble de relations S. Il s'ensuit que pour $p \in (\Omega X)_n$ le morphisme induit $\overline{\text{p}}_{\text{simp}}: \overline{\text{Dom}}(p) \rightarrow X$ applique le bord $b\overline{\text{Dom}}(p)$ sur le point base $*_n \in X_n$ et qu'il induit à son tour la factorisation cherchée

$$p_{\text{ph}}: \Sigma^{n+1}(p) = \overline{\text{Dom}}(p)/b\overline{\text{Dom}}(p) \rightarrow X.$$

Quant à l'existence d'une extension de $p_{\text{ph}}: \Sigma^{n+1}(p) \rightarrow X$ à un $(n+2)$-élément simplicial $E^{n+2}(q)$ (déduit d'un $(n+1)$-prisme $q \in (\Omega X)_{n+1}$ tel que $\partial n+1 \tilde{q} = \tilde{p}$ et $\partial i \tilde{q} = \tilde{1}_n$, $0 \leq i \leq n$), il s'agit essentiellement de raffiner l'argumentation ci-dessus. Il suffit en effet d'exhiber un ensemble de relations T pour le domaine universel comprimé $\overline{\text{Dom}}(q)$ tel que le quotient $\overline{\text{Dom}}(q) = \overline{\text{Dom}}(q)/(T)$ soit un $(n+2)$-élément dont le bord est identifiable à $\overline{\text{Dom}}(p)$. $E^{n+2}(q)$ s'obtiendra alors de $\overline{\text{Dom}}(q)$ en contractant les deux $(n+1)$-simplexes extrémaux de $\overline{\text{Dom}}(q)$. Or, un choix convenable de l'ensemble de relations T est la réunion $T_1 \cup T_2$ d'un ensemble de relations T_1 défini comme ci-dessus à partir des conditions $\partial i \tilde{q} = \tilde{1}_n$, $0 \leq i \leq n$, et d'un ensemble de relations T_2 qui reflète la réduction (due à la condition $\partial n+1 \tilde{q} = \tilde{p}$) du n-prisme incompressible $(\partial n+1 q)_{\text{incomp}}$ au n-prisme propre p.

\text{(1.18) Théorème. — Soit $(X, *)$ un ensemble simplicial réduit. L'isomorphisme de connexion $\pi_{n+1}([X]) \rightarrow \pi_n(GX)$ (1.12b) admet un inverse effectif :}

\text{A tout représentant algébrique $g \in \ker \partial_n$ (1.3.3) d'une classe d'homotopie de $\pi_n(GX)$ est associé un morphisme pointé $g_{\text{ph}}: \Sigma^{n+1}(g) \rightarrow X$ d'une $(n+1)$-sphère simplicial vers X, représentant géométrique de la classe d'homotopie correspondante de $\pi_{n+1}([X])$.}

\text{Si en outre $g = \tilde{\partial} n+1 h$ pour $h \in (G\overline{X})_{n+1}$, alors g_{ph} admet une extension canonique :}

$$\begin{array}{ccc}
\Sigma^{n+1}(g) & \xrightarrow{g_{\text{ph}}} & X \\
\downarrow & & \\
E^{n+2}(h) & & \\
\end{array}$$

où $E^{n+2}(h)$ est un $(n+2)$-élément simplicial tel que $i\Sigma^{n+1}(g) = bE^{n+2}(h)$.

\text{Démonstration. — L'inclusion canonique $GX \hookrightarrow \overline{\Omega} X$ (1.12a) fournit à la fois le représentant géométrique cherché g_{ph} et l'extension dans le cas de contractibilité. Il reste à montrer que la classe d'homotopie $\{[g_{\text{ph}}] \} \in \pi_{n+1}([X])$ est effectivement un antécédent de la classe d'homotopie $[g] \in \pi_n(GX)$ pour le morphisme de connexion. Il suffira pour cela d'exhiber le diagramme commutatif suivant :}

44
où E^{n+1} est un $(n+1)$-élément simplicial tel que $iS^n = bE^{n+1}$ et $\Sigma^{n+1}(g) = E^{n+1}/iS^n$.

Appliquons la contraction prismatique $\tilde{\nu}_X^G : E_X \longrightarrow \tilde{P}(E_X)$ (1.12b) au simplexe $i_F(g) = (\star_n, g) \in EX = X \times_{i_\sigma} GX$. Puisque $\tilde{\nu}_X^G$ est un morphisme et que $\partial_i g = e_{n-1}$, on a $\partial_i \tilde{\nu}_X^G(*_n, g) = \bar{I}_{(*_{n-1}, e_{n-1})}$, $0 \leq i \leq n$. Soit alors $p \in (P(EX))^n$, le représentant propre de la classe $\tilde{\nu}_X^G(*_n, g) \in (\tilde{P}(E_X))^n$. Comme dans la démonstration de (1.17b) on peut construire un morphisme $\tilde{\varphi}_\text{simp} : \tilde{\text{Dom}} \longrightarrow EX$ tel que l’ensemble simplicial source $\tilde{\text{Dom}}(p)$ est un $(n+1)$-élément dont le bord ne contient plus que les deux n-simplexes “extrémaux” qui sont envoyés par $\tilde{\varphi}_\text{simp}$ sur l’entrée resp. la sortie du n-prisme p. Dans notre cas, on a $\epsilon_{EX} = \epsilon_{EX} \tilde{\nu}_X^G(*_n, g) = (\star_n, g)$, puisque $\tilde{\eta}_{\text{pr}X} \circ \tilde{\nu}_X^G = \text{id}_{P_X}$ (voir 1.8b), et $s_{EX} = s_{EX} \tilde{\nu}_X^G(*_n, g) = (\star_n, et_n)$. L’ensemble simplicial E^{n+1} est alors défini comme quotient $\tilde{\text{Dom}}(p)/H^*b\tilde{\text{Dom}}(p)$ de $\tilde{\text{Dom}}(p)$ par l’hémisphère-sortie du bord de $\tilde{\text{Dom}}(p)$. La contraction d’un simplexe étant décomposable en compressions du type (1.16c), E^{n+1} est un $(n+1)$-élément simplicial dont le bord est identifiable à S^n et l’existence du carré commutatif \otimes ci-dessus suit immédiatement des définitions.

La commutativité du carré \otimes suit de l’identité $\tilde{P}\tilde{\eta}_X \circ \tilde{\nu}_X^G = \text{id}_{P_X}$ (1.8b) qui se traduit par le fait que la projection sur la base du prisme propre p (représentant de $\tilde{\nu}_X^G(*_n, g)$) s’identifie au représentant propre $q \in (\Omega X)_n$ de la classe $g \in (GX)_n$ dans $(\Omega X)_n$. Une inspection des formules de $\tilde{\nu}_X$ (1.10d) révèle en effet que le domaine universel de p est canoniquement isomorphe au domaine universel de q, isomorphisme qui se transmet aux quotients successifs :

$$\tilde{\text{Dom}}(p) \cong \tilde{\text{Dom}}(q)$$

et

$$\tilde{\text{Dom}}(p) \cong \tilde{\text{Dom}}(q),$$

d’où l’assertion.

(1.19) Exemple : un représentant simplicial fini de la fibration de Hopf de la 3-sphère sur la 2-sphère.

La fibration de Hopf de la 3-sphère sur la 2-sphère peut être caractérisée à homotopie et orientation près par la propriété que sa classe d’homotopie est un générateur du groupe $\pi_3(|S^2|)$. D’après (1.12b) on a l’isomorphisme de connexion $\pi_3(|S^2|) \cong \pi_2(GS^2)$ et Kan [10] a su indiquer un générateur canonique du dernier groupe, à savoir le commutateur simple $s_0 \bar{\sigma}_2 \cdot s_1 \bar{\sigma}_2 \cdot s_0 \bar{\sigma}_2^{-1} \cdot s_1 \bar{\sigma}_2^{-1}$. Essayons donc
d’appliquer le théorème (1.18) pour en déduire un représentant simplicial fini de la classe correspondante de \(\pi_3(\mathbb{S}^2) \). (Un représentant infini est d’ailleurs fourni par le sous-fibré de degré filtrant 1 du fibré universel \(Z \longrightarrow E(Z, 1) \longrightarrow K(Z, 1) \) associé au groupe des entiers naturels \(Z \), voir l’appendice A3).

Nous suivons de près construction et terminologie explicite dans (1.17b); on désignera par \(\sigma = \sigma_2 \in (S^2)_2 \) le simplexe fondamental de la 2-sphère standard, par \(g \) le générateur canonique \(s_0 \bar{\sigma} \cdot s_1 \bar{\sigma} \cdot s_0 \bar{\sigma}^{-1} \cdot s_1 \bar{\sigma}^{-1} \) du groupe \(\pi_2(GS^2) \) et par \(p \in (\Omega S^2)_2 \) le 2-prisme propre qui représente la classe \(g \in (GS^2)_2 \) dans \((\Omega S^2)_2 \). Il s’agit d’expliciter dans l’ordre le prisme propre \(p \), son domaine universel \(\text{Dom}(p) \) ainsi que les quotients successifs \(\text{Dom}(p), \overline{\text{Dom}(p)}, \Sigma^3(p) = \Sigma^3(g) \) et enfin le morphisme cherché \(s_{\text{sp}} : \Sigma^3(g) \longrightarrow S^2 \).

En utilisant (1.12a), on déduit que le prisme propre \(p \) s’écrit

\[
p = p_1 p_2 p_3 p_4 p_5 p_6 := [s_0 \sigma, 2][s_1 \sigma, 2][s_2 \sigma, 1][s_0 \sigma, 2]^{-1}[s_2 \sigma, 1]^{-1}[s_1 \sigma, 2]^{-1}.
\]

Le domaine universel \(\text{Dom}(p) \) de \(p \) est donc constitué par une chaîne de six copies de \(\Delta[3] \), dont les simplexes fondamentaux seront notés dans l’ordre \(\alpha_1, \alpha_2, \ldots, \alpha_6 \). Notons \(\alpha_{12}, \alpha_{23}, \ldots, \alpha_{56} \) les 2-simplexes réalisant les adjacences, donc :

\[
\partial_2 \alpha_1 = \alpha_{12} = \partial_3 \alpha_2 , \quad \partial_2 \alpha_2 = \alpha_{23} = \partial_2 \alpha_3 , \quad \partial_1 \alpha_3 = \alpha_{34} = \partial_2 \alpha_4 , \quad \partial_1 \alpha_4 = \alpha_{45} = \partial_1 \alpha_5 , \quad \partial_2 \alpha_5 = \alpha_{56} = \partial_2 \alpha_6 .
\]

Des définitions des opérateurs de face prismatiques suit :

\[
\begin{align*}
\partial_0 p &= \partial_0 p_1 \cdot \partial_0 p_2 \cdot \partial_0 p_3 \cdot \partial_0 p_4 \cdot \partial_0 p_5 \cdot \partial_0 p_6 , \\
\partial_1 p &= \partial_1 p_1 \cdot \partial_1 p_2 \cdot \partial_1 p_3 \cdot \partial_1 p_4 \cdot \partial_1 p_6 , \\
\partial_2 p &= \partial_2 p_3 \cdot \partial_2 p_5 , \\
\partial_0 \partial_1 p &= \partial_0 \partial_1 p_1 \cdot \partial_0 \partial_1 p_2 \cdot \partial_0 \partial_1 p_4 \cdot \partial_0 \partial_1 p_6 , \\
\partial_0 \partial_2 p &= \partial_0 \partial_2 p_3 \cdot \partial_0 \partial_2 p_5 \\
\partial_1 \partial_2 p &= \partial_1 \partial_2 .
\end{align*}
\]

La compressibilité des prismes élémentaires \(\partial_0 p_2, \partial_0 p_6 \) (en direction 1), \(\partial_0 p_3, \partial_0 p_5 \) (en direction 0), \(\partial_0 \partial_1 p_1, \partial_0 \partial_1 p_2, \partial_0 \partial_1 p_3, \partial_0 \partial_1 p_4, \partial_0 \partial_1 p_6, \partial_0 \partial_2 p_3, \partial_0 \partial_2 p_5 \) entraîne la compression des simplexes \(\partial_0 \alpha_2, \partial_0 \alpha_6 \) (en direction 1), \(\partial_0 \alpha_3, \partial_0 \alpha_5 \) (en direction 0), \(\partial_0 \partial_1 \alpha_1, \partial_0 \partial_1 \alpha_2, \partial_0 \partial_1 \alpha_4, \partial_0 \partial_1 \alpha_6, \partial_0 \partial_2 \alpha_3, \partial_0 \partial_2 \alpha_5 \) dans le domaine universel comprimé \(\overline{\text{Dom}(p)} \). Ensuite, on établit les partitions en couples \(P_j \) des faces \(\partial_j p \) incomp :

\[
\begin{align*}
P_0 &= \{(\partial_0 p_1, \partial_0 p_4)\} , \\
P_1 &= \{(\partial_1 p_2, \partial_1 p_4) < (\partial_1 p_1, \partial_1 p_6)\} , \\
P_2 &= \{(\partial_2 p_3, \partial_2 p_5)\} .
\end{align*}
\]

Notons \(\beta_1, \beta_2, \beta_3, \beta_4 \) les 2-simplexes de \(\overline{\text{Dom}(p)} \) qui correspondent dans l’ordre aux couples \((\partial_0 p_1, \partial_0 p_4), (\partial_1 p_2, \partial_1 p_4), (\partial_1 p_1, \partial_1 p_6), (\partial_2 p_3, \partial_2 p_5) \) et notons enfin \(\beta_{23}, \beta_{11}, \beta_{22} \).
β_{44} les 1-simplexes de $\overline{\text{Dom}(p)}$ qui réalisent soit l’adjacence entre β_2 et β_3 soit le "pli" des "simplexes-couple" β_1, β_2, β_4.

La 3-sphère $\Sigma^3(g)$ s’obtient en contractant le bord du $(n + 1)$-élément $\overline{\text{Dom}(p)}$, à savoir les deux 2-simplexes extrêmaux $\partial_2\alpha_1$ et $\partial_3\alpha_6$. On obtient donc la description suivante des simplexes non dégénérés de $\Sigma^3(g)$ (le lecteur excusera l’abus de notation quant à l’utilisation du même symbole pour des simplexes simultanément présents dans plusieurs ensembles simpliciaux), les faces étant indiquées par ordre d’indice croissant:

\[
\begin{align*}
(\Sigma^3(g))_3^{nd} &= \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6\}, \\
(\Sigma^3(g))_2^{nd} &= \{\beta_1, \beta_2, \beta_3, \beta_4, \alpha_{12}, \alpha_{23}, \alpha_{34}, \alpha_{45}, \alpha_{56}\}, \\
(\Sigma^3(g))_1^{nd} &= \{\beta_{11}, \beta_{22}, \beta_{23}, \beta_{44}\}, \\
(\Sigma^3(g))_0^{nd} &= \{*_0\},
\end{align*}
\]

où

\[
\begin{align*}
\alpha_1 &= (\beta_1, \beta_3, \alpha_{12}, *_2), \\
\alpha_2 &= (s_1\beta_{11}, \beta_2, \alpha_{23}, \alpha_{12}), \\
\alpha_3 &= (s_0\beta_{11}, \alpha_{34}, \alpha_{23}, \beta_4), \\
\alpha_4 &= (\beta_1, \beta_2, \alpha_{34}, \alpha_{45}), \\
\alpha_5 &= (*_2, \alpha_{45}, \alpha_{56}, \beta_4), \\
\alpha_6 &= (*_2, \beta_3, \alpha_{56}, *_2).
\end{align*}
\]

Le représentant g_{spf} de la classe génératrice de $\pi_3([S^2])$ s’écrit enfin:

\[
g_{\text{spf}} : \Sigma^3(g) \longrightarrow S^2
\]

\[
\begin{align*}
\alpha_1, \alpha_4 &\longmapsto s_0\sigma \\
\alpha_2, \alpha_6 &\longmapsto s_1\sigma \\
\alpha_3, \alpha_5 &\longmapsto s_2\sigma.
\end{align*}
\]

On peut par ailleurs calculer l’invariant de Hopf du morphisme g_{spf} et ceci de façon purement simpliciale (en utilisant le rétromorphisme de Hopf, voir Whitehead [17], et le déplacement simplicial, voir Kan [9]). On obtient au signe près que l’invariant de Hopf de g_{spf} est égal à 1 comme il se doit.

2. Contraction conique du fibré universel

(2.1) Définition. — Soit $(X, *)$ un ensemble simplicial pointé. Son augmentation X^* est obtenue en ajoutant à l’ensemble des simplexes un simplexe $*_1$ de dimension -1 et à l’ensemble des opérateurs l’unique application $\partial_0 : X_0 \longrightarrow (X^*)_1 = \{*_1\}$.

Le cône CX de X est l’ensemble simplicial pointé défini comme suit:

\[(CX)_n = \{(x, i) | x \in (X^*)_j, \ i + j = n\}/(*_n, 0) \sim \cdots \sim (*_0, n) \sim (*_{-1}, n + 1)\]
\[\partial_j(x, i) = \begin{cases} \partial_j x, i & j \leq \dim x \\ (x, i - 1) & j > \dim x \end{cases}\]
\[s_j(x, i) = \begin{cases} s_j x, i & j \leq \dim x \\ (x, i + 1) & j > \dim x \end{cases}\]

Les simples les non dégénérés et différents du point base \((*, 0)\) de \(CX\) sont précisément ceux de la forme \((x, i)\) telle que \(x\) est un simplexe non dégénéré et différent du point base de \(X\) et \(i \in \{0, 1\}\).

La construction \(C\) peut être étendue aux morphismes. On obtient ce qu'on appelle en théorie des catégories une monade, c'est-à-dire un endofoncteur \(C: \text{Esimp}_\ast \rightarrow \text{Esimp}_\ast\) muni de deux transformations naturelles

\[\eta_X^C: X \rightarrow CX \quad \text{et} \quad \mu_X^C: CCX \rightarrow CX\]
\[\begin{array}{ccc}
x & \mapsto & (x, 0) \\
((x, i), j) & \mapsto & (x, i + j)
\end{array}\]

qui satisfont les identités \(\mu_X^C \circ \eta_{CX}^C = \text{id}_{CX} = \mu_X^C \circ C\eta_X^C\) et \(C\mu_X^C = \mu_X^C \circ \mu_X^C\).

Un morphisme \(\gamma: CX \rightarrow X\) tel que \(\gamma \circ \eta_X^C = \text{id}_X\) s'appelle contraction de \(X\). Une telle contraction est dite conique si en outre l'identité \(\gamma \circ C\gamma = \gamma \circ \mu_X^C\) est satisfaite; en termes catégoriels \(X\) est alors une \(C\)-algèbre. Noter que le cône \(CX\) de \(X\) possède la contraction conique \(\mu_X^C\).

Se donner une contraction \(\gamma: CX \rightarrow X\) équivaut à l'existence d'une suite d'opérateurs de contraction \(c_n: X_n \rightarrow X_{n+1}, n \geq 0\), vérifiant

\[\partial_0 c_0 = *_0\] et pour tout \(n \geq 0\)
\[c_{n-1}\partial_j = \partial_j c_n, \quad 0 \leq j \leq n,\]
\[c_{n+1}s_j = s_j c_n, \quad 0 \leq j \leq n,\]
\[\partial_{n+1} c_n = \text{id}_{X_n}.\]

La contraction \(\gamma: CX \rightarrow X\) et la suite \((c_n)_{n \geq 0}\) sont en effet reliées par l'identité \(c_n x = \gamma(x, 1), x \in X_n\). La contraction \(\gamma\) est conique si et seulement si les opérateurs \(c_n\) vérifient en outre les identités \(c_{n+1}c_n = s_{n+1}c_n, n \geq 0\).

(2.2) Remarques.

a) La construction topologique du cône réduit d'un espace pointé possède également la structure d'une monade, la "multiplication" \(\mu^C\) étant induite par la structure multiplicative de l'intervalle-unité \([0, 1]\). On pose pour un espace pointé \((E, \ast)\)

\[CE = E \times [0, 1]/_{E \times \{0\}, \quad \eta_E^C: E \rightarrow CE, \quad \mu_E^C: CCE \rightarrow CE\]
\[\{\ast\} \times [0, 1] \quad x \mapsto (x, 1) \quad ((x, s), t) \mapsto (x, st).\]

Le foncteur de réalisation géométrique relie ces deux monades via un homéomorphisme naturel \(C|X| \cong |CX|\) qui respecte \(\eta^C\) et \(\mu^C\). Pour un \(n\)-simplexe \(x \in X_n\) le point \((|x|((t_0, \ldots, t_n), t)\) de la construction cône topologique correspond au point \(|(x, 1)|(tt_0, \ldots, tt_n, 1 - t)\) du réalisé de la construction cône simplicial (voir I.1.6). Il
s'ensuit en particulier que la réalisation géométrique d'une contraction simpliciale est une contraction topologique. Si la contraction simpliciale est conique, alors la contraction topologique est une I-contraction dans la terminologie de Steenrod [16].

b) Le foncteur "complexe des chaînes normalisées" relie de manière similaire la construction cône simplicial à la construction cône d'un complexe de chaînes. On utilisera ceci dans l'appendice A3.

(2.3) Définition. — Soit G un groupe simplicial. L'espace classifiant \overline{WG} de G est la base d'un G-fibré principal dont l'espace total WG est le groupe simplicial défini comme suit :

$$(WG)_n = G_0 \ast G_1 \ast \cdots \ast G_n / N_n,$$

où N_n est le sous-groupe distingué du produit libre $G_0 \ast \cdots \ast G_n$, qui est engendré par les éléments $g_r \cdot g_r' \cdot g_s'^{-1} \cdot (\partial_{r+1} \cdot \cdots \cdot \partial_s g_s) \cdot g_r'^{-1} \cdot (\partial_{r+1} \cdot \cdots \cdot \partial_s g_s)^{-1}$ tels que $g_r \in G_r$, $g_s \in G_s$, $0 \leq r < s \leq n$.

En vertu des relations $g_s g_r g_s'^{-1} \sim (\partial_{r+1} \cdots \partial_s g_s) g_r (\partial_{r+1} \cdots \partial_s g_s)^{-1}$ introduites par N_n tout n-simplexe $g \in (WG)_n$ admet une forme normale $g = g_0 g_1 \cdots g_n$, telle que $g_i \in G_i$, $0 \leq i \leq n$. Cette forme normale est unique et le groupe $(WG)_n$ se trouve donc en bijection ensemble canonique avec le produit cartésien $G_0 \times G_1 \times \cdots \times G_n$.

Les opérateurs simpliciaux $\partial_i : (WG)_n \rightarrow (WG)_{n-1}$ et $s_i : (WG)_n \rightarrow (WG)_{n+1}$, $0 \leq i \leq n$, sont définis sur les représentants, éléments de $G_0 \ast \cdots \ast G_n$, par extension homomorphe des formules

$$\partial_i g_r = \begin{cases} \partial_i s_r & i \leq r \\ g_r & i > r \end{cases} \quad s_i g_r = \begin{cases} s_i g_r & i \leq r \\ g_r & i > r \end{cases}, \quad g_r \in G_r, \quad 0 \leq r \leq n.$$

(On suppose G augmenté, comparer (2.1)).

Du fait que la suite des sous-groupes N_n est stable par ces opérateurs, la définition est consistante. Les identités simpliciales (I.1.1) sont satisfaites.

Le groupe simplicial WG est coniquement contractile, la suite des opérateurs de contraction conique $c_n : (WG)_n \rightarrow (WG)_{n+1}$, $n \geq 0$, étant induite par les inclusions canoniques $G_0 \ast \cdots \ast G_n \hookrightarrow G_0 \ast \cdots \ast G_n \ast G_{n+1}$. G est de manière naturelle un sous-groupe simplicial de WG. L'inclusion $G \hookrightarrow WG$ définit une action (à droite) sans isotropie de G sur WG. L'espace classifiant \overline{WG} est par définition l'ensemble simplicial homogène WG/G.

La forme normale des éléments de $(WG)_n$ induit une bijection canonique entre $(\overline{WG})_n$ et le produit cartésien $G_0 \times \cdots \times G_{n-1}$, $(\overline{WG})_0 = \{e_0\}$. Nous désignerons en conséquence les n-simplexes de l'espace classifiant \overline{WG} comme c'est l'usage par $(g_0, g_1, \ldots, g_{n-1})$, $g_i \in G_i$, $0 \leq i \leq n - 1$. Les opérateurs simpliciaux de \overline{WG} se déduisent directement des formules ci-dessus. Noter seulement que l'opérateur de face $\partial_n : (\overline{WG})_n \rightarrow (\overline{WG})_{n-1}$ est donné par $\partial_n (g_0, \ldots, g_{n-2}, g_{n-1}) \mapsto (g_0, \ldots, g_{n-2})$.

Une pseudosection $j : W\overline{G} \rightarrow WG$ est définie par $j_n (g_0, \ldots, g_{n-1}) = g_0 \cdots g_{n-1}$. La fonction tordante (I.2.4a) qui en découle s'écrit $t_n (g_0, \ldots, g_{n-1}) = \ldots$
\(g_{n-1}, n > 0 \). En particulier est vérifiée l'identité \(g_i = \frac{\overline{W}}{t_{i+1}} \cdot \partial_i g_1 \cdots \partial_n (g_0, \ldots, g_{n-1}) \) pour tout \((g_0, \ldots, g_{n-1}) \in (\overline{W}G)_n\) et tout \(i, 0 \leq i \leq n - 1\).

La fonction torseur \(t^{\overline{W}} : \overline{W}G \rightarrow G \) possède la propriété universelle que toute fonction torseur \(t : X \rightarrow G \) \((X\) étant réduit) se factorise par \(t^{\overline{W}} \) via un unique morphisme pointé \(\varphi : X \rightarrow \overline{W}G : x \mapsto (t_1 \partial_2 \cdots \partial_n x, t_2 \partial_3 \cdots \partial_n x, \ldots, t_n x) \):

\[
\begin{array}{c}
X \\
\downarrow \varphi \\
\overline{W}G
\end{array}
\]

\(t^{\overline{W}} \)

Tout \(G \)-fibré principal \(X \times_t G \) est donc (1.2.5a) induit du \(G \)-fibré universel \(WG = \overline{W}G \times t^{\overline{W}} G \) par changement de base le long de ce morphisme canonique \(\varphi : X \rightarrow \overline{W}G \).

\textbf{(2.4) PROPOSITION.}

\(a) \) La construction \(\overline{W} \) étendue en un foncteur de la catégorie des groupes simpliciaux vers la catégorie des ensembles réduits transforme les épimorphismes de Gsimp en fibrations de Esimp. En particulier : le classifiant \(\overline{W}G \) d'un groupe simplicial \(G \) vérifie la condition de Kan.

\(b) \) Soit \(\varphi : S^n \rightarrow \overline{W}G \) un représentant simplicial de la classe \([[\varphi]] \in \pi_n([\overline{W}G]) \). L'image de \([[\varphi]] \) par le morphisme de connexion \(\delta_n : \pi_n([\overline{W}G]) \rightarrow \pi_{n-1}(\overline{G}) \) admet alors le représentant simplicial \(\psi : S^{n-1} \rightarrow G : \sigma_{n-1} \mapsto t_{\overline{W}} \circ \varphi_n(\sigma_n) \).

\(c) \) Soit \(A \) un groupe simplicial abélien. La structure de groupe de l'espace total du fibré universel est alors abélienne et compatible avec la forme normale de ses éléments, i.e. \((WA)_n \cong A_0 + A_1 + \cdots + A_n \). Le classifiant \(\overline{W}A \) porte en particulier une structure canonique de groupe simplicial abélien et le complexe de Moore de \(\overline{W}A \) s'identifie à la suspension homologique du complexe de Moore de \(A \). Les (iso)morphismes de connexion \(\delta_n : \pi_n(\overline{W}A) \rightarrow \pi_{n-1}(A) \) sont induits au niveau des complexes de Moore par la désuspension homologique.

\textbf{Démonstration.}

\(a) \) Nous esquissons la démonstration : un épimorphisme \(p : G \rightarrow H \) de la catégorie Gsimp est une fibration par (I.1.11). Un diagramme commutatif :

\[
\begin{array}{c}
\Lambda^k[n] \\
\downarrow \\
\Delta[n]
\end{array}
\]

\(\overline{W}G \)

\(\overline{W}H \)

induit (en composant la flèche horizontale inférieure avec la fonction torseur \(t^{\overline{W}} : \overline{W}H \rightarrow H \)) un diagramme commutatif

50
\[\Lambda^k[n-1] \rightarrow G \\
\downarrow \quad \downarrow \phi \\
\Delta[n-1] \rightarrow H. \]

Le scindage (I.1.8) du dernier définit alors un scindage canonique du premier. Du fait que \(\overline{W} \Delta[0] = \Delta[0] \), on déduit en particulier que le classifiant \(\overline{W}G \) vérifie la condition de Kan.

b) On a un diagramme commutatif :

\[
\begin{array}{ccc}
S^{n-1} & \xrightarrow{\psi} & G \\
\downarrow & & \downarrow \\
CS^{n-1} & \xrightarrow{\Phi} & \overline{WG} \\
\downarrow & & \downarrow \\
S^{n} & \xrightarrow{\varphi} & \overline{WG},
\end{array}
\]

où le morphisme pointé \(\Phi \) est défini par

\[
\Phi(\sigma_{n-1}, 1) = j_n \varphi_n(\sigma_n) \\
\Phi(\sigma_{n-1}, 0) = \partial_n j_n \varphi_n(\sigma_n) = \tau_n W_n \varphi_n(\sigma_n),
\]

d'où par réalisation géométrique l'énoncé.

c) Pour le groupe simplicial abélien \(A \) on a \((\overline{W}A)_n \cong A_0 + A_1 + \cdots + A_n \) puisque \(N_n \) contient tous les commutateurs \(g_s g_r g_s^{-1} g_r^{-1}, 0 \leq r < s \leq n \), donc \((\overline{W}A)_n \cong A_0 + A_1 + \cdots + A_{n-1} \). Le complexe de Moore du classifiant est explicitement donné (en dimension \(n \)) par

\[
(\overline{W}A)_n = \left\{ (e_0, \ldots, e_{n-3}, -\delta_{n-1} a_{n-1}, a_{n-1}) | a_{n-1} \in \overline{A}_{n-1} \right\},
\]

d'où l'isomorphisme \((\overline{W}A)_n \cong \overline{A}_{n-1} \) avec \(\delta_n \overline{W}G \cong -\delta_{n-1}^A \). Le complexe de chaînes \(((\overline{W}A)_n, \tilde{\delta}_n)_{n \geq 0} \) est donc au signe près la suspension du complexe de chaînes \((\overline{A}_n, \tilde{\delta}_n)_{n \geq 0} \). La désuspension \(((\overline{W}A)_n, \tilde{\delta}_n) \rightarrow (\overline{A}_{n-1}, \tilde{\delta}_{n-1}) \) induit en homologie les morphismes de connexion explicités en b).

(2.5) PROPOSITION (Kan).

a) Soient \(X \) un ensemble simplicial réduit et \(H \) un groupe simplicial. Il y a bijection naturelle en \(X \) et en \(H \) entre l'ensemble des morphismes pointés \(X \rightarrow \overline{W}H \) et l'ensemble des homomorphismes \(GX \rightarrow H \) (en termes catégoriels : les foncteurs \(\overline{W} \) et \(G \) sont adjoints). La bijection est compatible avec les notions respectives d'homotopie.

b) Soit \(\varphi : GX \rightarrow H \) un homomorphisme et \(\varphi : X \rightarrow \overline{W}H \) son adjoint. Pour tout \(n > 0 \) le diagramme suivant est alors commutatif:

51
La donnée d’un homomorphisme $\varphi : GX \rightarrow H$ équivaut à la donnée de la fonction tordante $t : X \sim H$ définie par $t = \varphi \circ t^G$ (1.11) qui à son tour équivaut à la donnée de l’unique morphisme pointé $\tilde{\varphi} : X \rightarrow \overline{WH}$ tel que $t = t^W \circ \tilde{\varphi}$ (2.3). Ceci montre qu’il y a correspondance biunivoque $\varphi \leftrightarrow \tilde{\varphi}$ naturelle en X et en H. Quant à la compatibilité avec les notions respectives d’homotopie nous renvoyons à Kan [11].

(2.6) PROPOSITION. — Soient X un ensemble simplicial réduit et AX l’abélianisé du coclassifier GX.

Il y a un isomorphisme naturel entre la construction de Dold-Thom $\text{Ab}(X)$ de X et le classifier \overline{WAX} de AX en sorte que l’inclusion $\alpha_X : X \hookrightarrow \text{Ab}(X) \cong \overline{WAX}$ et l’abélianisation $p : GX \rightarrow AX$ soient adjointes. On obtient en particulier pour tout $n > 0$ un diagramme commutatif :

\[
\begin{array}{ccc}
\pi_n(\{X\}) & \xrightarrow{\pi_n(\{\alpha_X\})} & \pi_n(\{\text{Ab}(X)\}) \\
\sim & \downarrow & \sim \\
\pi_{n-1}(GX) & \xrightarrow{\pi_{n-1}(p)} & \pi_{n-1}(AX).
\end{array}
\]

Démonstration. — Nous explicitons $\varphi : \text{Ab}(X) \rightarrow \overline{WAX}$ et $\psi : \overline{WAX} \rightarrow \text{Ab}(X)$ inverses l’un de l’autre. Pour ceci désignons par φ le générateur de $\text{Ab}(X)_n$.
correspondant à \(x \in X_n \) (trivial si \(x \) est égal au point base) et par \(\bar{x} \) le générateur de \((AX)_{n-1}\) correspondant à \(x \in X_n \) (trivial si \(x \) est dégénéré dans la direction \(n-1 \)).

L'homomorphisme \(\varphi_n : Ab(X)_n \rightarrow (\overline{WAX})_n \) est alors défini sur un générateur non trivial \(x \) de \(Ab(X)_n \) par

\[
\varphi_n(x) = \bar{\partial}_2 \cdots \bar{\partial}_n x + \bar{\partial}_3 \cdots \bar{\partial}_n x + \cdots + \bar{x}.
\]

L'homomorphisme \(\psi_n : (\overline{WAX})_n \rightarrow Ab(X)_n \) est défini sur un générateur non trivial \(\bar{y} \) de \((\overline{WAX})_n = (AX)_0 + (AX)_1 + \cdots + (AX)_{n-1} \), i.e. \(y \in X_{i+1} - s_i X_i \) (0 \(\leq i \leq n-1 \)), par

\[
\psi_n(\bar{y}) = s_{n-1} \cdots s_{i+1}(y - s_i \partial_{i+1} y).
\]

La suite \((\varphi_n)_{n \geq 0}\) définit un homomorphisme \(\varphi : Ab(X) \rightarrow \overline{WAX} \), puisqu'elle est obtenue par extension linéaire du morphisme pointé \(X \rightarrow \overline{WAX} \) associé à la fonction tordeante \(p \circ t^G : X \rightsquigarrow AX \) (1.11 et 2.13). Ceci montre en passant que le composé \(\varphi \circ \alpha_X \) et l'абélianisation \(p \) sont adjointes. Du fait que pour tout \(n \geq 0 \) \(\psi_n \) est inverse à \(\varphi_n \), la suite \((\psi_n)_{n \geq 0}\) définit bien l'homomorphisme inverse à \(\varphi \). La commutativité du diagramme suit enfin directement de (2.5b).

\((2.7) \) Remarque. — L'inverse effectif de l'isomorphisme de connexion \(\pi_n(|X|) \sim \pi_{n-1}(GX) \) explicite dans (1.18) fait commuter le diagramme-clé ci-dessus même à niveau des représentants. En effet, partons du représentant géométrique \(g_{sph} : \Sigma^n(g) \rightarrow X \) associé à un représentant algébrique \(g \in \ker \bar{\delta}^G_{n-1} \subset (GX)_{n-1} \) donné. L'image par \(\pi_n(|\alpha_X|) \) de la classe \([g_{sph}] \in \pi_n(|X|)\) admet comme représentant canonique l'image du cycle fondamental de la \(n \)-sphère \(\Sigma^n(g) \) par \(\tilde{C}_n([g_{sph}]) \), où l'on a identifié \(\pi_n(|Ab(X)|) \) à \(\tilde{H}_n(|X|) \) par l'isomorphisme canonique (I.3.8). Or, le cycle fondamental de \(\Sigma^n(g) \) est simplement la somme des simplexes fondamentaux de \(\Sigma^n(g) \) orientés selon l'orientation des prismes élémentaires associés. En appliquant \(\tilde{C}_n([g_{sph}]) \) on fait correspondre aux simplexes fondamentaux de \(\Sigma^n(g) \) les simplexes sous-jacents aux prismes élémentaires associés de \(X \), dont ne sont retenus que les simplexes non dégénérés (du fait qu'on travaille avec les chaînes normalisées). Les prismes élémentaires en question étant les composantes du prisme qui représente \(g \in (GX)_{n-1} \subset (\overline{WAX})_{n-1} \), la formule de l'inclusion \(GX \hookrightarrow \overline{WAX} \) montre (1.12a) que les simplexes sous-jacents non dégénérés sont parmi ceux qui sous-tendent un prisme élémentaire de la forme \([\xi_i, n-1]^r\), où \(g = \xi_1^i \cdots \xi_r^i, 0 \leq i \leq r \). Compte tenu de ce que l'isomorphisme de connexion \(\pi_n(|Ab(X)|) \sim \pi_{n-1}(AX) \) s'identifie à la désuspension (2.4c), il suffit alors de remarquer que l'абélianisation \(p : GX \rightarrow AX \) a également pour effet d'écarter les simplexes dégénérés de l'écriture de \(pg \in \ker \bar{\delta}^A_{n-1} \subset (AX)_{n-1} \), leur somme abélienne étant nulle en vertu de la décomposition (I.3.6).
Chapitre III

Une version effective
du théorème de Hurewicz
L’objectif de ce chapitre est triple :

b) Établir sur la base de la version algébrique a) et des outils préparés au chapitre II la version géométrique effective du théorème de Hurewicz.

c) Donner les grandes lignes d’un logiciel COMMON-LISP (actuellement implémenté sur une station de travail SUN au LMC de Grenoble) qui réalise la partie proprement algorithmique de notre version du théorème de Hurewicz. Grâce à la technique du codage fonctionnel des entrées, technique élaborée par F. Sergeraert [15], le champ d’application du logiciel s’étendra à tout ensemble simplicial localement effectif [15].

1. Le commutant du groupe coclassifiant

Pour faciliter le langage et pour éviter une confusion quelconque entre notions d’homotopie et notions d’homologie nous adopterons la terminologie suivante (on utilisera librement les notations introduites au chapitre I.3) :

(1.1) DÉFINITION. — Soit \(G \) un groupe simplicial. Un \(n \)-simplexe sphérique de \(G \) est un \(n \)-cycle du complexe de Moore \(\widetilde{G} \) de \(G \), i.e. un \(n \)-simplexe \(x \in G_n \) tel que \(\partial_i x = e_{n-1}, 0 \leq i \leq n \).

Un \(n \)-simplexe sphérique est contractile s’il est le bord d’un \((n+1) \)-simplexe du complexe de Moore, i.e. s’il existe un \((n+1) \)-simplexe \(y \in G_{n+1} \) tel que \(\partial_i y = e_n, 0 \leq i \leq n \), et \(\partial_{n+1} y = x \). Nous dirons dans ce cas que \(x \) se contracte en \(y \).

Deux \(n \)-simplexes sphériques de \(G \) sont en particulier homotopes et représentent la même classe d’homotopie, élément de \(\pi_n(G) \), si et seulement si leur différence est contractile (I.3.2).

Un groupe simplicial \(G \) est \(n \)-connexe si et seulement si tous ses \(i \)-simplexes sphériques, \(0 \leq i \leq n \), sont contractiles.

(1.2) DÉFINITION. — Un groupe simplicial \(G \) est effectivement \(n \)-connexe si
G est muni d'opérateurs homomorphismes de contraction \(c_i : G_i \rightarrow G_{i+1} \), 0 \(\leq i \leq n \), vérifiant \(\partial_0 c_0 = \varepsilon_0 \), \(\partial_j c_i = c_{i-1} \partial_j \) et \(s_j c_i = c_{i+1} s_j \), 0 \(\leq j \leq i \), \(\partial_{i+1} c_i = \text{id}_{G_i} \), 0 \(\leq i \leq n \), comparer (II.2.1).

Soit alors G un groupe simplicial effectivement \((n-1)\)-connexe : en étendant la définition (1.1) nous dirons qu'un \(n \)-simplexe \(x \in G_n \) est contractile, s'il existe un \((n+1)\)-simplexe \(y \in G_{n+1} \) tel que \(\partial_{n+1} y = x \) et \(\partial_i y = c_{n-1} \partial_i x \), 0 \(\leq i \leq n \). Nous dirons qu'un \(n \)-simplexe \(x \in G_n \) est conique, s'il appartient au sous-groupe de \(G_n \) engendré par la réunion des images des opérateurs \(s_i : G_{n-1} \rightarrow G_n \), 0 \(\leq i \leq n-1 \), et \(c_{n-1} : G_{n-1} \rightarrow G_n \).

Noter que tout \(n \)-simplexe conique est contractile, car le \(n \)-simplexe dégénéré \(s_i x \) se contracte en le \((n+1)\)-simplexe \(s_i c_{n-1} x \) et le \(n \)-simplexe \(c_{n-1} x \) se contracte en le \((n+1)\)-simplexe \(s_n c_{n-1} x \).

(1.3) LEMME.

a) Tout \(n \)-simplexe \(x \in G_n \) d'un groupe simplicial effectivement \((n-1)\)-connexe \(G \) admet une décomposition à homotopie près unique \(x = \sigma_x \cdot \hat{x} \) en produit d'un \(n \)-simplexe sphérique \(\sigma_x \) et d'un \(n \)-simplexe conique \(\hat{x} \).

b) Un groupe simplicial libre est effectivement \(n \)-connexe si et seulement si tout \(i \)-simplexe sphérique, 0 \(\leq i \leq n \), est explicitement contractile.

Démonstration.

a) Rappelons qu'un \(n \)-simplexe \(x \in G_n \) admet la décomposition unique (1.3.6) \(x = \hat{x} \cdot s_{n-1} x_{n-1} \cdots s_0 x_0 \) avec \(\hat{x} \in \widetilde{G}_n \) et \(x_i \in G_{n-1}^i \), 0 \(\leq i \leq n-1 \). On obtient la décomposition cherchée \(x = \sigma_x \cdot \hat{x} \) en posant \(\sigma_x = \hat{x} \cdot (c_{n-1} \partial_n \hat{x})^{-1} \) et \(\hat{x} = c_{n-1} \partial_n \hat{x} \cdot s_{n-1} x_{n-1} \cdots s_0 x_0 \).

Une égalité \(\sigma_x \hat{x} = \sigma'_x \hat{x}' \) avec \(\sigma_x, \sigma'_x \) sphériques et \(\hat{x}, \hat{x}' \) coniques implique que la différence \(\sigma'_x^{-1} \sigma_x \) est conique, donc contractile, autrement dit, les simplexes \(\sigma_x \) et \(\sigma'_x \) sont homotopes.

b) L'existence d'opérateurs de contraction \((c_i)_{0 \leq i \leq n}\) implique que tout \(i \)-simplexe sphérique, 0 \(\leq i \leq n \), est explicitement contractile. Si inversement tout \(i \)-simplexe sphérique, 0 \(\leq i \leq n \), est explicitement contractile, construisons des opérateurs de contraction homomorphes par récurrence sur la dimension en utilisant une base \(B \) du groupe simplicial \(G \) (II.1.13):

En dimension 0 tous les simplexes sont sphériques, l'opérateur \(c_0 \) est donc en particulier (par hypothèse) défini sur la base \(B \cap G_0 \) de \(G_0 \) et peut ensuite être étendu à \(G_0 \) tout entier par extension homomorphe. Soit alors \(x \in B \cap G_i \), \(i > 0 \), et les opérateurs \(c_j \) déjà définis pour \(j < i \). On déduit de a) la décomposition \(x = \sigma_x \cdot \hat{x} \); la contraction \(c_i \hat{x} \) de \(x \) s'obtient comme produit de la contraction du simplexe sphérique \(\sigma_x \) et de la contraction du simplexe conique \(\hat{x} \). On étend l'application \(c_i : B \cap G_i \rightarrow G_{i+1} \).
ainsi obtenue par extension homomorphe. Les relations $s_j c_{i-1} = c_i s_j$, $0 \leq j \leq i$, sont automatiquement satisfaites en utilisant la formule de décomposition indiquée en a). ■

(1.4) Théorème (Kan [8]).

a) Dans un groupe simplicial connexe G l’action de G_n sur $\pi_n(G)$ induite par conjugaison (1.3.1) est triviale, autrement dit : tout commutateur simple $[x, y] = x y^{-1} x^{-1}$ d’un n-simplexe x et d’un n-simplexe sphérique y est contractile, ce qui s’écrit formellement par l’inclusion

$$[G_n, \ker \tilde{\partial}_n] \subset \text{im} \tilde{\partial}_{n+1}.$$

b) Le commutant $[G, G]$ d’un groupe simplicial libre et effectivement $(n - 1)$-connexe G $(n \geq 1)$ est effectivement n-connexe.

Démonstration.

a) Soit $G_0 : G_0 \longrightarrow G_1$ l’opérateur de contraction exprimant la connexité de G. On définit alors la contraction z du commutateur simple $[x, y]$, $x \in G_n$, $y \in \ker \tilde{\partial}_n$, par la formule suivante :

$$z = \left[\gamma_s^{s_0} x, \eta^y \right] \left[\eta_r^{r_0} y_0 \cdots \delta_n \cdots \delta_{n-1} x, \eta^y \right]^{-1} \left[\gamma_r^{r_0} \cdots \delta_n \cdots \delta_{n-1} x, \eta^y \right],$$

où $\gamma_s, \delta \in G_{n+1}$, est la suite des $(n+1)$-simplices $x_i = s_n \cdots s_i \delta_{i+1} \cdots \delta_n$, $0 \leq i \leq n$, où η^y, $y \in G_n$, est la suite des dégénérescences $\eta_i = s_i y$, $0 \leq i \leq n$, et où $[(\xi_i)_{0 \leq i \leq n}, (\eta_i)_{0 \leq i \leq n}]$ désigne le commutateur

$$[\xi_n, \eta_n][\xi_{n-1}, \eta_{n-1}]^{-1} \cdots [\xi_0, \eta_0]^{-1} \in [G, G]_{n+1}.$$

Les identités requises $\partial_{n+1} z = [x, y]$ et $\partial_i z = e_n$, $0 \leq i \leq n$, sont conséquences d’une part des propriétés d’adjacence des éléments des suites γ et η, et d’autre part de la “normalité” du commutateur : $[e_n,] = [, e_n] = e_n$.

b) Un sous-groupe simplicial H d’un groupe simplicial libre G est libre. C’est une conséquence du théorème analogue pour les groupes discrets. (Nous signalons en passant que la condition a) d’un groupe simplicial libre (II.1.13) est automatiquement transmise de G à H à condition d’utiliser comme “transversales de Schreier” des groupes G_n les images d’une pseudosection de la fibration $G \longrightarrow G/H$. Le commutant $[G, G]$ étant donc libre il suffit en vertu de (1.3b) d’indiquer une contraction pour tout i-simplexe sphérique, $0 \leq i \leq n$.

Or, notre cas est doublement favorable : d’abord il est immédiat que les opérateurs homomorphes de contraction $c_i : G_i \longrightarrow G_{i+1}$, $0 \leq i < n$, laissent invariant le sous-groupe simplicial $[G, G]$ de G et induisent donc par restriction les opérateurs de contraction $c_i : [G, G]_{i+1} \longrightarrow [G, G]_{i+1}$ pour $0 \leq i < n$. Ensuite, nous explicitersons une contraction pour tout commutateur simple $[x, y] \in [G, G]_n$, d’où sont construites des éléments d’une base de $[G, G]_n$ soit une contraction des n-simplices sphériques de $[G, G]_n$, les deux étant suffisant pour définir l’opérateur cherché $c_n : [G, G]_n \longrightarrow [G, G]_{n+1}$.

59
Soient donc $x, y \in G_n$ et $[x, y] = xyx^{-1}y^{-1}$ un commutateur simple de G_n. Une contraction de $[x, y]$ s'obtient à partir de l'identité suivante, où nous désignerons par b^a le conjugué bab^{-1} :

$$[x, y] = (x, y)[\hat{y}, x] (\{x, \hat{y}\}[\hat{y}, \hat{x}])[\hat{x}, \hat{y}] = \tau^y [x^{-1}, y^{-1}\hat{y}] \cdot \tau^\hat{y} [\hat{y}, x^{-1}\hat{x}] \cdot [\hat{x}, \hat{y}] .$$

En effet, si $x = \sigma_x \hat{x}$ et $y = \sigma_y \hat{y}$ sont les décompositions canoniques (1.3a), alors d'une part le commutateur $[\hat{x}, \hat{y}]$ est conique, d'autre part les différences $y^{-1}\hat{y}$ et $x^{-1}\hat{x}$ sont sphériques, ce qui implique que les commutateurs $\tau^y [x^{-1}, y^{-1}\hat{y}]$ et $\tau^\hat{y} [\hat{y}, x^{-1}\hat{x}]$ sont des simplexes sphériques et contractiles par a) et (1.3.1). Le commutateur initial $[x, y]$ est ainsi le produit de trois simplexes contractiles, donc lui-même contractile.

(1.5) Remarque et définition. — Soit $G X$ le groupe coclassifiant d'un ensemble simplicial réduit X. Le morphisme d'abélianisation $p : G X \longrightarrow A X$ est une fibration principale de fibre le commutant $[G X, G X]$ de $G X$. Est donc induite (1.2.6) la suite exacte longue de groupes d'homotopie suivante :

$$\cdots \longrightarrow \pi_{n+1}(A X) \overset{\partial}{\longrightarrow} \pi_n([G X, G X]) \overset{\pi_n(G X)}{\longrightarrow} \pi_n(G X) \overset{\pi_n(p)}{\longrightarrow} \pi_n(A X) \longrightarrow \cdots .$$

La proposition (II.2.6) montre par ailleurs que les homomorphismes $\pi_n(p), n \geq 0$, sont naturellement équivalents aux homomorphismes de Hurewicz $h_{n+1} : \pi_{n+1}([X]) \longrightarrow \tilde{H}_{n+1}([X])$. Le théorème (1.4b) est en conséquence l'équivalent "algébrique" du théorème de Hurewicz topologique. En vue de la version géométrique effective que nous déduirons du théorème (1.4b) à l'aide du diagramme-clé (II.2.6) nous allons le formuler sous une forme mieux adaptée à nos besoins. Introduisons pour ce faire la terminologie suivante :

L'homomorphisme $\pi_n(\varphi) : \pi_n(G) \longrightarrow \pi_n(H)$ induit par un morphisme de groupes simpliciaux $\varphi : G \longrightarrow H$ sera dit effectivement surjectif si la restriction aux n-simplexes sphériques $\ker \varphi_n : \ker \delta_n^G \longrightarrow \ker \delta_n^H$ admet une section ensembliste explicite. Noter que cette condition est même au niveau théorique plus forte que la simple surjectivité de $\pi_n(\varphi)$.

L'homomorphisme induit $\pi_n(\varphi)$ sera dit effectivement injectif si tout n-simplexe sphérique de G_n dont l'image par φ_n se contracte est lui-même explicitement contractile.

(1.6) Proposition. — Soit G un groupe simplicial libre et soit $p : G \longrightarrow G/[G, G]$ le morphisme d'abélianisation. Si G est effectivement $(n-1)$-connexe $(n \geq 1)$, alors l'homomorphisme induit $\pi_n(p)$ est effectivement bijectif et l'homomorphisme induit $\pi_{n+1}(p)$ est effectivement surjectif.

Démonstration. — Nous désignerons par A le groupe simplicial abélien $G/[G, G]$. Remarquons d'abord que le morphisme $\tilde{p} : \tilde{G} \longrightarrow \tilde{A}$ induit au niveau des complexes de Moore est surjectif en tout degré $n \geq 0$. En effet, soit $y \in \tilde{A}_n$ un n-simplexe de A élément du complexe de Moore et $x \in G_n$ un n-simplexe arbitraire de G tel que $px = y$. La décomposition (1.3.6) $x = \hat{x} \cdot s_{n-1}x_{n-1} \cdots s_0x_0$ étant
préservée par les morphismes de groupes simpliciaux, on obtient à la fois $\bar{x} \in \tilde{G}_n$ et $p\bar{x} = \bar{p}x = \bar{y} = y$, d'où l'on déduit qu'une section ensembliste de $p_n : G_n \rightarrow A_n$ donne lieu à une section ensembliste de $\tilde{p}_n : \tilde{G}_n \rightarrow \tilde{A}_n$.

L'effective injectivité de $\pi_n(p)$ se montre alors comme suit : soit $x \in \tilde{G}_n$ un n-simplexe sphérique de G tel que $p\bar{x}$ se contracte en le $(n + 1)$-simplexe $\eta \in \tilde{A}_{n+1}$, donc $p\bar{x} = \partial_{n+1}\eta$. Il existe d'après ce qu'on vient de dire un $(n + 1)$-simplexe $\xi \in \tilde{G}_{n+1}$ tel que $p\bar{x} = \eta$. De $p\partial_{n+1}\xi = \partial_{n+1}p\xi = \partial_{n+1}\eta = p\bar{x}$ suit que la différence $\rho = (\partial_{n+1}\xi)^{-1} \cdot x$ est élément du sous-groupe des commutateurs $[G,G]_n$ de G_n. Selon le théorème (1.4b) le commutant $[G,G]$ est effectivement n-connexe et ρ se contracte en $c_n \rho \in \tilde{[G,G]}_{n+1}$. Le produit $\xi \cdot c_n \rho$ est alors la contraction cherchée du n-simplexe x.

L'effective surjectivité de $\pi_n(p)$ (resp. $\pi_{n+1}(p)$) se montre de façon similaire : soit $y \in \tilde{A}_n$ un n-simplexe sphérique de A et $x \in \tilde{G}_n$ un n-simplexe de G tel que $p\bar{x} = y$. Du fait que y est sphérique, le bord $\partial_{n}x$ de x est élément du sous-groupe des commutateurs $[G,G]_{n-1}$ de G_{n-1} et la différence $x \cdot (c_{n-1} \partial_{n}x)^{-1}$ est à la fois sphérique et au-dessus de y. (La même argumentation reste valable en dimension $n + 1$ puisque le commutant $[G,G]$ est n-connexe). ■

(1.7) DÉFINITION. — Un ensemble simplicial X est effectivement n-connexe si X est réduit, et si le groupe coclassifiant GX de X est effectivement $(n-1)$-connexe.

Nous signalons qu'il suit essentiellement du théorème (1.8) ci-dessous qu'un ensemble simplicial à homologie effective [15] est effectivement n-connexe si et seulement s'il est effectivement 1-connexe et n-acyclique (i.e. $\tilde{H}_i(|X|) = 0$, $0 \leq i \leq n$).

Pour énoncer la version effective du théorème de Hurewicz que nous proposons, il sera utile d'introduire au préalable la terminologie analogue de celle qu'on avait choisie pour énoncer la proposition (1.6).

Soit X un ensemble simplicial réduit. Nous distinguons parmi les représentants des classes d'homotopie, éléments de $\pi_{n+1}(|X|)$, les représentants prismatiques, c'est-à-dire ceux qui se construisent par la méthode explicitée au corollaire (II.1.17b) à partir d'un prisme propre $p \in (\Omega X)_n$, qu'on suppose tel que sa classe \bar{p} est un simplexe sphérique g du sous-groupe simplicial GX de ΩX. Le théorème (II.1.18) montre que pour toute classe d'homotopie, élément de $\pi_{n+1}(|X|)$, il existe au moins un représentant prismatique $g_{ph} : \Sigma^{n+1}(g) \rightarrow X$. Le domaine d'un tel représentant est une $(n + 1)$-sphère simpliciale dont le cycle fondamental est donné par la somme des simplexes fondamentaux de $\Sigma^{n+1}(g)$ orientés selon l'orientation des prismes élémentaires associés, voir (II.1.14) et (II.1.17b).

L'homomorphisme de Hurewicz $h_{n+1} : \pi_{n+1}(|X|) \rightarrow \tilde{H}_{n+1}(|X|)$ fait correspondre au représentant prismatique $g_{ph} : \Sigma^{n+1}(g) \rightarrow X$ l'image par $\tilde{C}_{n+1}([g_{ph}])$ du cycle fondamental $i_{\Sigma^{n+1}(g)} \in \tilde{C}_{n+1}([\Sigma^{n+1}(g)])$, i.e. la somme des simplexes orientés sous-jacents aux composantes élémentaires du prisme p. Nous dirons alors que l'homomorphisme de Hurewicz $h_{n+1} : \pi_{n+1}(|X|) \rightarrow \tilde{H}_{n+1}(|X|)$ est effectivement surjectif, si
l’application

\[\ker \tilde{\delta}_n^G \longrightarrow \ker d_{n+1}^C(|X|) \]

\[g \longmapsto \tilde{C}_{n+1}(|g_{sph}|)(i_{\Sigma^{n+1}(g)}) \]

admet une section ensembliste explicite. Noter que cette condition est même d’un point de vue théorique strictement plus forte que la simple surjectivité de \(h_{n+1} \).

Nous dirons de même que l’homomorphisme de Hurewicz \(h_{n+1} : \pi_{n+1}(|X|) \longrightarrow \tilde{H}_{n+1}(|X|) \) est effectivement injectif, si tout représentant prismaticque \(g_{sph} : \Sigma^{n+1}(g) \longrightarrow X \) tel que l’image par \(\tilde{C}_{n+1}(|g_{sph}|) \) du cycle fondamental soit 0-homologue, admet une extension explicite

\[\begin{array}{ccc}
\Sigma^{n+1}(g) & \xrightarrow{g_{sph}} & X \\
\downarrow{i_{n+2}} & & \\
E^{n+2} & & \\
\end{array} \]

tel que \(E^{n+2} \) soit un \((n+2)\)-élément simplicial avec \(i_{n+1}(g) = bE^{n+2} \).

(1.8) Théorème. — Soit \(X \) un ensemble simplicial effectivement \(n \)-connexe, \(n \) étant un entier supérieur ou égal à 1. L’homomorphisme de Hurewicz \(h_{n+1} : \pi_{n+1}(|X|) \longrightarrow \tilde{H}_{n+1}(|X|) \) est alors effectivement bijectif et l’homomorphisme de Hurewicz \(h_{n+2} : \pi_{n+2}(|X|) \longrightarrow \tilde{H}_{n+2}(|X|) \) est effectivement surjectif.

Démonstration. — Rappelons le diagramme-clé, (II.2.6) et (I.3.8) :

\[\begin{array}{ccc}
\pi_{n+1}(|X|) & \xrightarrow{h_{n+1}} & \tilde{H}_{n+1}(|X|) \\
\downarrow{\sim} & & \downarrow{\sim} \\
\pi_n(GX) & \xrightarrow{\pi_n(p)} & \pi_n(AX) \\
\end{array} \]

L’effectivité surjectivité de \(h_{n+1} \) (resp. \(h_{n+2} \)) suit alors du parcours du diagramme au niveau des représentants en utilisant dans l’ordre la désuspension \(\tilde{C}_{n+1}(|X|) \xrightarrow{\sim} AX \). (II.2.4c), l’effectivité surjectivité de \(\pi_n(p) \) (resp. \(\pi_{n+1}(p) \)) (1.6), l’inverse effectif de \(\pi_{n+1}(|X|) \xrightarrow{\sim} \pi_n(GX) \) (II.1.18) et enfin la remarque (II.2.7).

L’effectivité injectivité de \(h_{n+1} \) suit de façon similaire en utilisant dans l’ordre le mécanisme suspension-désuspension, l’effectivité injectivité de \(\pi_n(p) \) et l’extension canonique établie dans le théorème (II.1.18).
2. Description d'un logiciel COMMON-LISP

Il relève de l'expérience commune dans le monde de l'informaticien qu'il y a distinction nette entre la conception théorique d'un algorithme et son implémentation concrète sur machine quel que soit d'ailleurs le langage de programmation utilisé. Cette expérience est soulignée par l'expérience voisine que – une fois le cap franchi et le logiciel écrit – il est souvent difficile de décrire avec précision et concision les ingrédients essentiels du logiciel. Nous nous limitons dans la suite à donner quelques indications qui devraient permettre à quiconque le souhaite de faire le lien entre le théorème (1.8) et les 2500 lignes du LUCID-COMMON-LISP (version 2) qui ont été écrites avec l'aide généreuse de F. Sergeraert, d'une part pour tester réalisabilité (et véridicité) de notre algorithme, d'autre part comme exemple-type de la technique de programmation dite du codage fonctionnel [15].

A l'heure actuelle le logiciel est capable de construire à partir d'un ensemble simplicial X effectivement 1-connexe (1.2) et effectivement n-acyclique (i.e. le complexe des chaînes normalisées $C_n(|X|$) est muni d'une contraction partielle jusqu'en degré n)

a) une $(n - 1)$-contraction de GX (exprimant l'effective n-connexité de X),

b) pour tout $(n + 1)$-cycle homologique z (resp. $(n + 2)$-cycle homologique z') un représentant géométrique $z_{ph} : \Sigma^{n+1}(z) \rightarrow X$ (resp. $z'_{ph} : \Sigma^{n+2}(z') \rightarrow X$) (1.8).

L'ensemble simplicial de départ X peut être donné sous forme localement effectif [15], auquel cas on ne dispose pas sur machine de l'ensemble de ses simplexes, mais seulement

a) d'une fonction de comparaison de deux simplexes et

b) d'un ensemble générateur des opérateurs simpliciaux.

Cette représentation purement fonctionnelle d'un ensemble simplicial est particulièrement sensée dans des situations comme la nôtre où la vraie donnée (le cycle homologique) ainsi que le résultat (la représentation géométrique) sont bien que de nature finie souvent définis dans des ensembles simpliciaux infinis qui ne sont représentables sur machine (si jamais) que fonctionnellement.

Citons à titre d'exemple la tour de Cartan-Whitehead qui sert d'habitude à calculer les groupes d'homotopie d'un espace. L'homologie effective [15] des espaces d'Eilenberg-MacLane permet en effet de construire des représentants homologiques des classes d'homotopie de X définis aux étages supérieure de la tour de Cartan-Whitehead

63
de X donc dans des ensembles simpliciaux qui sont infinis même si l’ensemble simplicial de départ est fini. Notre logiciel saura déduire les représentants homotopiques correspondants dans ces cas.

Passons à la description du logiciel :

(2.1) Typage.

Les types couramment utilisés sont les suivants :

- **SS** (Simplicial Set, ensemble simplicial)
- **SMR** (Simplicial MoRphism, morphisme simplicial)
- **CC** (Chain-Complex, complexe de chaînes)
- **MRP** (chain-MoRPhism, morphisme de complexes de chaînes)
- **SG** (Simplicial Group, groupe simplicial)
- **SGMR** (Simplicial Group MoRphism, morphisme de groupes simpliciaux)
- **PRISM** (PRISM, prisme)
- **CMT** (CoMmuTator, commutateur simple)

Les simplesx d’un ensemble simplicial sont du type ASM (Abstract SiMplex, simplexe abstrait), lequel est défini comme type composé d’un DOP (Degeneration OPerator, opérateur de dégénérescence) et d’un GSM (Geometric SiMplex, simplexe géométrique = non dégénéré). Les chaînes d’un complexe de chaînes sont du type CMB (CoMBination, combinaison). Les simplesx non dégénérés d’un groupe simplicial libre (resp. abélien libre) sont du type LOOP (LOOP, lacet) (resp. CMB). Enfin les composantes d’un prisme sont du type EL-PRISM (Elementary PRISM, prisme élémentaire).

La définition des types et des fonctions de construction d’objets typés occupent de manière générale une place importante dans un logiciel. C’est un travail préliminaire indispensable et pour l’écriture (debugging) et pour la compilation (optimisation) et pour la lisibilité du logiciel.

(2.2) Réalisation du théorème de Dold-Thom (I.3.8) et du mécanisme suspension-désuspension (II.2.4c).

L’isomorphisme vertical droite du diagramme-clé (1.8) est réalisé par la fonction-LISP *hl-contraction-transfert* qui prend en entrée une contraction partielle de $\tilde{C}_*(|X|)$ (type MRP) et qui donne en sortie la contraction correspondante de $(\tilde{A}X)_*^{-1}$ (type MRP) ainsi que la désuspension canonique $\tilde{C}_*(|X|) \xrightarrow{\sim} (\tilde{A}X)_*^{-1}$ (type MRP). La difficulté principale à surmonter dans l’écriture de cette fonction-LISP est de bien gérer la différence de représentation sur machine entre les chaînes du complexe de chaînes $\tilde{C}_*(|X|)$ et les simplesx du groupe abélien simplicial $(\tilde{A}X)_*^{-1}$. (Le lecteur remarquera qu’on a essayé de contourner la difficulté en attribuant le même type aux éléments de $\tilde{C}_*(|X|)$ et $(\tilde{A}X)_*^{-1}$; la différence de représentation persiste cependant pour les
éléments neutres de ces groupes : une chaîne nulle est représentée par une combinaison vide tandis que les éléments neutres d’un groupe simplicial sont représentés comme dégénérérences de l’élément neutre de dimension zéro).

(2.3) Réalisation du théorème de Kan (1.4 et 1.6).

L’effective surjectivité de l’homomorphisme \(\pi_n \circ (p) : \pi_n (GX) \to \pi_n (AX) \) (sous les hypothèses de 1.6) est réalisée par les fonctions-LISP extend-ht-contraction et cycle-lifting.

La fonction-LISP extend-ht-contraction prend en entrée l’opérateur de contraction \(c_0 : (GX)_0 \to (GX)_1 \) (type SGMR) et la contraction partielle de \((AX)_* \) (type MRP). Elle donne en sortie la contraction correspondante de \(GX \) (type SGMR).

La fonction-LISP cycle-lifting prend en entrée un \(n \)-cycle de \(\tilde{AX} \) (type CMB) et la \((n-1) \)-contraction de \(GX \), et donne en sortie un \(n \)-simplexe sphérique de \(GX \) (type LOOP), antécédent pour le \(n \)-cycle d’entrée.

L’effective injectivité des homomorphismes \(\pi_i \circ (p) : (GX)_i \to (AX)_i \), \(0 \leq i \leq n-1 \), est utilisée de façon récursive par la fonction-LISP extend-ht-contraction par l’intermédiaire des fonctions-LISP hurewicz-cmt-prd-gsm, hurewicz-cmt-gsm et hurewicz-cmt-gsm- qui prennent toutes en entrée une \(k \)-contraction \(0 \leq k < n \) de \(GX \) (type SGMR) et un commutateur de \([GX, GX]_{k+1} \) pour donner en sortie une contraction de ce commutateur (1.4a et b). Le commutateur d’entrée est selon le cas soit un produit de commutateurs simples soit un commutateur simple quelconque soit un commutateur simple de la forme (1.4a).

Partie cruciale de la fonction-LISP extend-ht-contraction est l’appel de la fonction-LISP cmt-loop-asm-cmt-prd-asm qui prend en entrée un simplexe de \(GX \), supposé élément du sous-groupe des commutateurs \([GX, GX] \), et qui donne en sortie la représentation de ce simplexe en produit de commutateurs simples. Il y a multitude d’algorithmes possibles pour effectuer cela et le résultat final de la fonction-LISP extend-ht-contraction dépend fortement de l’algorithme choisi. Le choix optimal (dans un sens à définir) de cet algorithme pose un problème intéressant relevant de la théorie des groupes.

(2.4) Réalisation de la construction du représentant géométrique (II.1.18).

La fonction-LISP qui prend en entrée un simplexe sphérique \(g \) de \(GX \) (type LOOP) et qui donne en sortie le représentant géométrique \(g_{simp} : \Sigma^{n+1} (g) \to X \) (type SMR) se décompose de manière naturelle suivant les fonctions-LISP

loop-prism (voir II.1.12a)

entrée : \(n \)-simplexe sphérique \(g \) (type LOOP)

sortie : \(n \)-prisme propre \(p \) qui représente \(g \) dans \(\Omega X \) (type PRISM),

65
prism-cells (voir II.1.17)

entrée : n-prisme propre p (type PRISM)

sortie : liste des simplexes principaux (II.1.14) de \(\overline{\text{Dom}}(p) \) (type A-LIST) ,

cell-sphere (voir II.1.17)

entrée : liste des simplexes principaux de \(\overline{\text{Dom}}(p) \) (type A-LIST) ,

sortie : \(\Sigma^{n+1}(p) = \Sigma^{n+1}(g) \) (type SS) .

Nous ajoutons trois explications :

a) Un simplexe principal de \(\overline{\text{Dom}}(p) = \overline{\text{Dom}}(p)/ \sim \) est par définition une classe d’équivalence de simplexes principaux de \(\overline{\text{Dom}}(p) \). Pour établir la liste de tous les simplexes principaux de \(\overline{\text{Dom}}(p) \), il faut d’abord expliciter la relation d’équivalence \(\sim \) en toute dimension \(k, 0 \leq k \leq n + 1 \). En codimension un cela revient à déterminer les partitions en couples \(P_j, 0 \leq j \leq n \), des faces latérales de \(\overline{\text{Dom}}(p) \). Cette opération est effectuée par la fonction-LISP `prism-bdr-mtr` qui donne en sortie les partitions en couples \(P_j \) sous forme de matrices d’incidence (type BIT-ARRAY). En codimension strictement supérieure à un la relation d’équivalence \(\sim \) s’obtient par superposition des relations définies pour toutes les faces de codimension un qui contiennent la face considérée. La fonction-LISP `class-lsr` prend ensuite en entrée une telle matrice d’incidence et donne en sortie la liste des classes d’équivalence, voir l’ensemble des simplexes principaux de la face considérée de \(\overline{\text{Dom}}(p) \).

b) Pour munir la liste complète des simplexes non dégénérés de \(\overline{\text{Dom}}(p) \) (qui est facilement déduite de la seule liste des simplexes principaux) des opérateurs simpliciaux corrects il faut d’une part garder trace de la classe d’équivalence que représente chaque simplexe principal de \(\overline{\text{Dom}}(p) \) et d’autre part établir un *ordre arborescent* canonique sur chaque ensemble de simplexes principaux de \(\overline{\text{Dom}}(p) \) *contenus dans une même face*. Cet ordre arborescent reflète pour les faces de codimension un l’origine particulière des partitions en couples \(P_j \) (II.1.17b). Un couple précède l’autre si et seulement s’il l’*entoure* dans la face. On vérifie qu’une telle structure arborescente est préservée par superposition (a)). Les différentes structures arborescentes servent à enchaîner correctement les simplexes principaux de \(\overline{\text{Dom}}(p) \) contenus dans une même face.

c) La description complète (voir b)) d’un simplexe principal de \(\overline{\text{Dom}}(p) \) contient la référence nécessaire pour déduire son image par \(g_{\text{simpl}} : \Sigma^{n+1}(g) \to X \) dans \(X \).
Appendices
A1 – Le réalisé de l'ensemble simplicial des prismes

Soit X un ensemble simplicial fixé. Rappelons les notations suivantes : IX est l'ensemble simplicial des prismes de X (II.1.2). On dispose des trois morphismes

\[e_X, s_X : IX \longrightarrow X \quad \text{et} \quad i_X : X \longrightarrow IX. \]

\[p \longmapsto e(p), s(p) \quad x \longmapsto 1_x \]

A chaque n-prisme $p \in (IX)_n$ est attaché un morphisme universel (II.1.14)

\[p_{simp} : \text{Dom}(p) \longrightarrow X \]

dont le domaine est défini comme le quotient de la somme disjointe de ℓ copies de $\Delta[n + 1]$ (ℓ étant la longueur du prisme) par les relations de recollement $\partial_{e(k)} \alpha_k \sim \partial_{e(k+1)} \alpha_{k+1}$, $1 \leq k < \ell$, où α_k est le simplexe fondamental de la k-ème copie et où $e(k)$ (resp. $s(k)$) désigne l'indice d'entrée (resp. de sortie) du k-ème prisme élémentaire constituant p.

\[L'\text{espace des chemins } IE \text{ d'un espace topologique } E \text{ est l'ensemble } \{ \gamma : [0, 1] \longrightarrow E \} \text{ des chemins tracés sur } E \text{ muni de la topologie compacte-ouverte. On dispose des trois applications continues} \]

\[e_E, s_E : IE \longrightarrow E \quad \text{et} \quad i_E : E \longrightarrow IE \]

\[\gamma \longmapsto \gamma(0), \gamma(1) \quad x \longmapsto \gamma(t) \equiv x, \ t \in [0, 1] \]

(A1.1) Proposition. — Le réalisé $|IX|$ est de manière naturelle en X plongé dans l'espace $I|X|$ des chemins du réalisé $|X|$. Le plongement identifie les applications réalisées $|e_X|, |s_X|, |i_X|$ aux applications continues $e_X|, s_X|, i_X|.$

Démonstration. — Nous allons associer à tout n-prisme $p \in (IX)_n$, $n \geq 0$, une application continue surjective et ouverte $r_p : \Delta_n \times [0, 1] \longrightarrow |\text{Dom}(p)|$ du n-prisme topologique sur le réalisé du domaine universel de p. Les applications r_p, $p \in IX$, seront compatibles avec les opérateurs simpliciaux dans le sens suivant :

Pour tout $p \in (IX)_n$ et tout i, $0 \leq i \leq n$, le diagramme ci-dessous est commutatif :
où les applications $\Delta_{n-1} \xrightarrow{\varepsilon_i} \Delta_n$ et $\Delta_{n+1} \xrightarrow{\eta_i} \Delta_n$ (resp. les morphismes $\text{Dom}(\partial_i p) \xrightarrow{\varepsilon_i} \text{Dom}(p)$ et $\text{Dom}(s_i p) \xrightarrow{\eta_i} \text{Dom}(p)$) représentent universellement les opérateurs de face et de dégénérescence d'un n-simplexe singulier (resp. d'un n-prisme de domaine $\text{Dom}(p)$).

Le composé $|p| \circ r_p : \Delta_n \times [0, 1] \rightarrow |X|$ défini par adjonction un n-simplexe singulier de l'espace des chemins de $|X|$ qu'on notera $p_{\text{sing}} : \Delta_n \rightarrow |I|X|$. La commutativité du diagramme ci-dessus exprime précisément que l'application $p \rightarrow p_{\text{sing}}$ commute aux opérateurs simpliciaux, d'où (I.1.5) l'application cherchée

$$\varphi : |I|X| \rightarrow |I|X| .$$

Reste donc à définir convenablement $r_p : \Delta_n \times [0, 1] \rightarrow |\text{Dom}(p)|$. Soient $(t_0, \ldots, t_n) \in \Delta_n$ et $t \in [0, 1]$. Si le n-prisme p est de longueur nulle, donc $\text{Dom}(p) = \Delta[n]$, on pose

$$r_p((t_0, \ldots, t_n), t) = [z_n](t_0, \ldots, t_n) .$$

Si le n-prisme p est égal à $[\xi_1, i_1]^* \cdots [\xi_\ell, i_\ell]^*$, $\ell > 0$, on définit d'abord une subdivision en ℓ parties de tout intervalle plongé $\{(t_0, \ldots, t_n)\} \times [0, 1] \subset \Delta_n \times [0, 1]$. En effet, soit

$$u(t_0, \ldots, t_n) = \sum_{k=1}^{\ell} t_i$$

$u_0(t_0, \ldots, t_n) \equiv 0$ et pour $0 < j \leq \ell$

$$u_j(t_0, \ldots, t_n) = \begin{cases} \left(\sum_{k=1}^{j} t_i\right)/u(t_0, \ldots, t_n) & \text{si } u(t_0, \ldots, t_n) \neq 0 , \\ 1 & \text{sinon} \end{cases}$$

(en particulier : $0 \equiv u_0 \leq u_1 \leq \cdots \leq u_\ell \equiv 1$).

On pose alors

$$I^k_p(t_0, \ldots, t_n) = \{(t_0, \ldots, t_n) \times [u_{k-1}(t_0, \ldots, t_n), u_k(t_0, \ldots, t_n)] \subset \Delta_n \times [0, 1] ,$$

$$1 \leq k \leq \ell ,$$

70
et l'on définit r_p à partir des valeurs

$$r_p((t_0, \ldots, t_n), u_k(t_0, \ldots, t_n)) = \begin{cases} \alpha_k(t_0, \ldots, t_n) & 0 < k \leq \ell \\ \beta_{k+1}(t_0, \ldots, t_n) & 0 \leq k < \ell \end{cases}$$

par extension affine (à valeurs dans $|t|^\Delta[n+1]$, voir (II.1.14) pour la notation) le long des intervalles $I^k_p(t_0, \ldots, t_n)$.

La continuité de r_p suit de la continuité des fonctions $u_k(t_0, \ldots, t_n), 0 \leq k \leq \ell$. Quant à la commutativité du diagramme ci-dessus, noter d'abord que l'application $\varepsilon_i \times \text{id}_{[0,1]} : \Delta_{n+1} \times [0,1] \to \Delta_n \times [0,1]$ induit pour tout k tel que $i_k \neq i$ une isométrie $I^k_{\alpha_p}(t_0, \ldots, t_n) \sim I^k_p(t_0, \ldots, t_{i-1}, 0, t_i, \ldots, t_{n-1})$ où la différence $k - k'$ est égale au nombre d'occurrences de l'indice i dans la suite d'indices $i_0, i_1, \ldots, i_{k-1}$. La condition de commutation $r_p \circ (\varepsilon_i \times \text{id}_{[0,1]}) = |\varepsilon_i| \circ r_{\alpha_p}$ suit alors des définitions de r_p et de r_{α_p}.

L'application $\eta_i \times \text{id}_{[0,1]} : \Delta_{n+1} \times [0,1] \to \Delta_n \times [0,1]$ induit pour tout $k, 1 \leq k \leq \ell$, soit (si $i_k \neq i$) une isométrie

$$I^{k'}_{s,p}(t_0, \ldots, t_{n+1}) \sim I^k_p(t_0, \ldots, t_i + t_{i+1}, \ldots, t_{n+1}),$$

soit (si $i_k = i$) une isométrie

$$I^{k'}_{s,p}(t_0, \ldots, t_{n+1}) \cup J^{k'+1}_{s,p}(t_0, \ldots, t_{n+1}) \sim I^k_p(t_0, \ldots, t_i + t_{i+1}, \ldots, t_{n+1})$$

où la différence $k' - k$ est égale au nombre d'occurrences de l'indice i dans la suite d'indices i_0, \ldots, i_{k-1}. La deuxième condition de commutation $r_p \circ (\eta_i \times \text{id}_{[0,1]}) = |\eta_i| \circ r_{s,p}$ suit des définitions de r_p et de $r_{s,p}$ et du fait que dans le cas difficile $i_k = i$ la valeur intermédiaire

$$r_{s,p}((t_0, \ldots, t_{n+1}), u_{k'+1}(t_0, \ldots, t_{n+1}))$$

est appliquée par $|\eta_i| : |\text{Dom}(s_{i,p})| \to |\text{Dom}(p)|$ dans l'image par r_p de l'intervalle plongé $I^k_p(t_0, \ldots, t_i + t_{i+1}, \ldots, t_{n+1})$.

On laisse au lecteur le soin de vérifier que l'application continue r_p ainsi définie est surjective et ouverte. L'injectivité de l'application déduite $\phi : |\mathcal{I}X| \to |\mathcal{I}X|$ et les identifications $|e_X| = e_{|X|}, |s_X| = s_{|X|}$, $|i_X| = i_{|X|}$ suivent enfin immédiatement des définitions.

\begin{flushright}
\textit{\textparc}{A2 – Un lemme de compressibilité en topologie linéaire par morceaux}
\end{flushright}

On se propose dans cet appendice de démontrer la proposition (II.1.16). Les énoncés a) et b) sont bien connus. Nous en ajoutons les démonstrations par souci de complétude et pour préparer la démonstration de c). Cette dernière assertion est intimement liée au théorème de G.W. Barrat affirmant la \textit{triangulabilité} du réalisé d'un
ensemble simplicial (voir Fritsch-Piccinini [5], 4.6). Les démonstrations parues dans la littérature de ce théorème sont malheureusement incomplètes. En particulier nous semble incorrecte la démonstration dans [5] du lemme-clé (3.1.1), lemme qui correspond essentiellement à notre (II.1.16c).

En avant-propos nous rappelons deux principes de base de la topologie linéaire par morceaux.

1) Le principe d'extension conique des équivalences combinatoires,
2) Le principe de complémentarité.

Le premier principe exprime qu'on peut toujours étendre une équivalence combinatoire entre les bases de deux cônes (non réduits) à une équivalence combinatoire entre les cônes eux-mêmes. Ceci permet en particulier de définir de manière consistante une \(n-1 \)-sphère combinatoire comme espace triangulé dont le cône est un \(n \)-élément géométrique.

Le second principe dit que l'adhérence du complémentaire d'un \(n \)-élément plongé dans une \(n \)-sphère combinatoire est de nouveau un \(n \)-élément.

Tandis que l'existence d'une extension conique est facile à démontrer, le principe de complémentarité l'est beaucoup moins; voir Rourke-Sanderson [14] pour un traitement moderne.

(A2.1) Démonstration de la proposition (II.1.16).

a) Le \((n+1)\)-simplexe standard \(\Delta_{n+1} \) possède une bissectrice qui le décompose en deux \((n+1)\)-éléments. On envoie la bissectrice (qui est un \(n \)-élément) sur \(F \) et on étend cette équivalence combinatoire aux deux parties de \(\Delta_{n+1} \) découpées par la bissectrice en appliquant des deux côtés une double extension conique. L'équivalence souhaitée entre \(\Delta_{n+1} \) et \(E \cup F \) est obtenue en utilisant que \(\overline{bE - F} \) (resp. \(\overline{bE' - F} \)) s'identifie par complémentarité au cône sur \(bF \).

b) La réunion \(F_1 \cup F_2 \) est en vertu de a) un \(n \)-élément inclu dans \(bE \). L'adhérence du complémentaire \(\overline{E - (F_1 \cup F_2)} \) s'identifie donc au cône sur \(b(F_1 \cup F_2) \). Puisque l'intersection \(F_1 \cap F_2 \) est par hypothèse bissectrice de \(F_1 \cup F_2 \), le bord \(b(F_1 \cap F_2) \) est de même bissectrice du bord \(b(F_1 \cup F_2) \). L'adhérence du complémentaire \(\overline{E - (F_1 \cup F_2)} \) possède en somme une bissectrice \(G \), cône sur \(b(F_1 \cap F_2) \), qu'on peut étendre à une bissectrice \(G \cup (F_1 \cap F_2) \) de \(bE \). Le \((n+1)\)-élément \(E \), cône sur \(bE \), possède en conséquence une bissectrice \(F \), cône sur \(G \cup (F_1 \cap F_2) \).

Enfin, l'identification \(i : F_1 \sim F_2 \) s'étend à une identification \(j : F \cup F_1 \sim F \cup F_2 \) et, si l'on note \(E_1, E_2 \) les deux parties de \(E \) découpées par \(F \), on peut réaliser l'espace d'identification \(E/F_1 \sim F_2 \) par l'espace de recollement \(E_1 \cup_j E_2 \), ce qui nous ramène à la situation traitée en a).
c) A l'aide de $n + 1 - m$ extensions coniques on établit une équivalence combinatoire $(\Delta_{n+1}, \Delta_m) \cong ([E], [x]))$, où Δ_m réalise un m-simplexe du bord de Δ_{n+1}. Il suit du lemme (A2.2) ci-dessous que le voisinage simplicial de Δ_m dans la première subdivision barycentrique de Δ_{n+1} est canoniquement isomorphe au produit cartésien $\Delta_m \times \text{ cône}(\Delta_{n-m})$. Δ_m y est représentée par $\Delta_m \times \{p\}$, p désignant la pointe du cône de base Δ_{n-m}.

Nous allons exhiber pour tout i, $0 \leq i < m$, une application continue $\varphi_i : \Delta_m \times \text{ cône}(\Delta_{n-m}) \longrightarrow \Delta_m \times \text{ cône}(\Delta_{n-m})$ telle que

1) $\varphi_i \big|_{\Delta_m \times \{p\}} = \eta_i$ (compression dans la direction i, voir A1),

2) $\varphi_i \big|_{\Delta_m \times \Delta_{n-m}} = \text{id}_{\Delta_m \times \Delta_{n-m}}$,

3) $\varphi_i \big|_{\Delta_m \times \left(\text{ cône}(\Delta_{n-m}) - \{p\} \right)}$ est un homéomorphisme,

4) $\text{im}(\varphi_i)$ est un $(n+1)$-élément.

En vertu de 2) on pourra étendre φ_i par l'identité du voisinage simplicial de Δ_m à Δ_{n+1} tout entier. On obtiendra une application continue $\varphi'_i : \Delta_{n+1} \longrightarrow \Delta_{n+1}$ vérifiant

1') $\varphi'_i \big|_{\Delta_m} = \eta_i$,

3') $\varphi'_i \big|_{\Delta_{n+1} - \Delta_m}$ est un homéomorphisme,

4') $\text{im}(\varphi'_i)$ est un $(n+1)$-élément (utiliser 4) et a)).

De l'existence de φ'_i suit alors immédiatement que le réalisé du quotient $E / (x \sim s_i, \partial_i x)$ admet une structure canonique de $(n+1)$-élément géométrique. Reste donc à expliciter φ_i.

Pour ce faire rappelons que le produit cartésien $\Delta_p \times \Delta_q$ admet une décomposition canonique en $(p+q)$-simplexes standard, la décomposition étant indexée par l'ensemble des (p, q)-shuffles, i.e. l'ensemble des couples $(i_1 < \ldots < i_p, j_1 < \ldots < j_q)$ de suites d'entiers strictement croissantes telles que $\{1, 2, \ldots, p+q\} = \{i_1, \ldots, i_p\} \cup \{j_1, \ldots, j_q\}$. Combinatoirement cette décomposition admet la description suivante : le produit cartésien $\Delta_p \times \Delta_q$ s'identifie au réalisé du produit cartésien $\Delta[q] \times \Delta[q]$, lequel s'identifie à son tour au nerf du produit cartésien $[p] \times [q]$ des deux ensembles ordonnés finis $[p]$ et $[q]$ (I.1.3). Les simplexes non dégénérés maximaux de $\Delta[p] \times \Delta[q]$ (sous-tendant chacun une copie de $\Delta[p+q]$) sont alors en bijection canonique avec les "chemins" maximaux reliant $(0, 0)$ et (p, q) dans $[p] \times [q]$. Ces derniers sont en correspondance biunivoque évidente avec les (p, q)-shuffles.

La décomposition canonique de $\Delta_p \times \Delta_q$ admet également une description en termes des coordonnées barycentriques $((t_0, \ldots, t_p), (u_0, \ldots, u_q)) \in \Delta_p \times \Delta_q$. En effet, notons $0 \leq t'_1 \leq \ldots \leq t'_p \leq 1$, $0 \leq u'_1 \leq \ldots \leq u'_q \leq 1$ les coordonnées homogènes associées, i.e. $t'_k = \sum_{i=0}^{k-1} t_i$ et $u'_k = \sum_{i=0}^{k-1} u_i$. En les rangeant suivant l'ordre naturel on
obtient les coordonnées homogènes $0 \leq v_1 \leq \cdots \leq v_{p+q} \leq 1$ d'un point de Δ_{p+q}. Il existe alors un (p, q)-shuffle $(i_1 < \cdots < i_p, j_1 < \cdots < j_q)$ tel que $v_{i_k} = t'_k, 1 \leq k \leq p,$ et $v_{j_k} = u'_k, 1 \leq k \leq q$, qui est unique si et seulement si $0 \leq v'_1 \leq \cdots \leq v'_{p+q} \leq 1$ représente un point intérieur de Δ_{p+q} (i.e. toutes les inclusions sont strictes). On vérifie que la décomposition de $\Delta_p \times \Delta_q$ induite par les coordonnées homogènes correspond (via l'homéomorphisme canonique $|\Delta[p] \times \Delta[q]| \cong \Delta_p \times \Delta_q$) à la décomposition combinatoire de $\Delta[p] \times \Delta[q]$, les "indexes-shuffles" étant les mêmes.

Pour définir une application $\varphi : \Delta_m \times \text{cône}(\Delta_{n-m}) \rightarrow \Delta_m \times \text{cône}(\Delta_{n-m})$ avec les propriétés 1) - 4) ci-dessus, nous allons renommer les sommets de Δ_m de sorte que l'ancien sommet i soit le nouveau sommet m, et l'ancien sommet $i+1$ soit le nouveau sommet 0 (à l'aide d'une permutation circulaire par exemple). Désignons par $\tilde{\Delta}_m$ le m-simplexe standard à sommets ainsi renommés et posons

$$\tilde{\varphi} : \tilde{\Delta}_m \times \text{cône}(\Delta_{n-m}) \rightarrow \tilde{\Delta}_m \times \text{cône}(\Delta_{n-m})$$

$$(t_0, \ldots, t_m), (u_0, \ldots, u_{n-m}, u) \rightarrow (((1-u)t_0, t_1, \ldots, t_{m-1}, t_m + ut_0), (u_0, \ldots, u_{n-m}, u)),$$

où $(u_0, \ldots, u_{n-m}, u) \in \Delta_{n-m+1} \cong \text{cône}(\Delta_{n-m})$ sont les coordonnées barycentriques de $\text{cône}(\Delta_{n-m})$, la dernière étant le paramètre-cône.

Pour $u = 1$, on a

$$\tilde{\varphi}|_{\tilde{\Delta}_m} : (t_0, \ldots, t_m) \mapsto (0, t_1, \ldots, t_m + t_0),$$

ce qui compose $\tilde{\Delta}_m$ dans la direction $(m, 0)$, d'où la propriété 1). Pour $u = 0$, on a

$$\tilde{\varphi}|_{\tilde{\Delta}_m \times \Delta_{n-m}} = \text{id}_{\tilde{\Delta}_m \times \Delta_{n-m}},$$

d'où la propriété 2).

$\tilde{\varphi}$ est un homéomorphisme en dehors de $\tilde{\Delta}_m \times \{p\}$, d'où la propriété 3).

Enfin, $(((1-u)t_0, \ldots, t_m + ut_0), (u_0, \ldots, u_{n-m}, u)) \in \text{im} \tilde{\varphi}$ parcourt tous les points de $\tilde{\Delta}_m \times \text{cône}(\Delta_{n-m})$ qui soient tels que la première coordonnée homogène de Δ_m (en fait : $(1-u)t_0$) soit inférieure ou égale à la dernière coordonnée homogène de Δ_{n-m+1} (en fait : $u_0 + \cdots + u_{n-m} = 1-u$). $\tilde{\varphi}$ porte donc la structure combinatoire du nerf de l'ensemble ordonné $[m] \times [n-m+1] - \{(0, n-m+1)\}$ qu'on peut montrer être du même type combinatoire que Δ_{n+1} par application itérée de a), d'où la propriété 4).

(A2.2) LEMME (Existence de "slices" simpliciales). — Soit X un complexe simplicial qui vérifie la condition que le sup de deux simplexes incidents existe. Pour un simplexe x de X, notons V_x (resp. x^*) le voisinage simplicial (resp. la cellule duale) de x dans la première subdivision barycentrique de X et notons V_x (resp. x^*) les parties non incidentes avec $Sb(x)$ de V_x (resp. x^*).

On a alors un isomorphisme simplicial

$$(V_x, \hat{V}_x) \cong Sb(x) \times (x^*, \hat{x}^*).$$

74
Démonstration. — L'inf (resp. le sup) de deux simplexes incidents \(y, z \) de \(X \) sera noté \(y \cap z \) (resp. \(y \cup z \)). On a par définition :
\[
Sb(x) = \left\{ (x_0 \subseteq x_1 \subseteq \cdots \subseteq x_n) \mid x_m \subseteq x \right\},
\]
\[
V_x = \left\{ (x_0 \subseteq x_1 \subseteq \cdots \subseteq x_n) \mid x \text{ et } x_0 \text{ incidents} \right\},
\]
\[
\hat{V}_x = \left\{ (x_0 \subseteq x_1 \subseteq \cdots \subseteq x_n) \mid x \text{ et } x_0 \text{ incidents, } x_0 \not\subseteq x \right\},
\]
\[
x^* = \left\{ (x_0 \subseteq x_1 \subseteq \cdots \subseteq x_n) \mid x \subseteq x_0 \right\},
\]
\[
\hat{x}^* = \left\{ (x_0 \subseteq x_1 \subseteq \cdots \subseteq x_n) \mid x \not\subseteq x_0 \right\}.
\]
Posons
\[
\varphi : V_x \longrightarrow Sb(x) \times x^*
\]
\[
(x_0 \subseteq \cdots \subseteq x_n) \longmapsto ((x_0 \cap x) \subseteq \cdots \subseteq (x_n \cap x)), ((x_0 \cup x) \subseteq \cdots \subseteq (x_n \cup x))
\]
On vérifie que \(\varphi \) est compatible avec les opérateurs simpliciaux et injective d'image les simplexes non dégénérés de \(Sb(x) \times x^* \). Restreinte à \(\hat{V}_x \) l'image égale \(Sb(x) \times \hat{x}^* \).

(A2.3) Remarques.

a) L'existence du sup de deux simplexes incidents caractérise précisément les complexes simpliciaux qui sont des nerfs d'ensembles ordonnés.

b) La cellule duale \(x^* \) est un cône de base \(\hat{x}^* \) et de pointe le barycentre \(x \) de \(x \).

c) Dans un \((n+1)\)-simplexe standard \(\Delta_{n+1} \) la cellule duale \(x^* \) d'un \(m \)-simplexe \(x \) \((m \leq n)\) est isomorphe au cône sur un \((n-m)\)-simplexe standard \(\Delta_{n-m} \). C'est l'expression combinatoire du fait que \(\Delta_{n+1} \) n'a pas de "singularités". C'est également l'ingrédient-clé d'une démonstration combinatoire de la dualité de Poincaré.

A3 — Le fibré universel comme produit mixte de deux monades

Dans cet appendice nous donnerons une définition récursive du \(G \)-fibré universel \((\mu^G, WG, p, \overline{WG}, j)\) (II.2.3) qui est essentiellement due à N. Steenrod [16] bien que son article soit entièrement rédigé pour la catégorie des espaces de Kelley. La catégoricité de sa définition permet en particulier de s'en servir également dans la catégorie des complexes de chaînes, où l'on retrouve ainsi la fameuse construction \textit{Bar} d'Eilenberg-MacLane [4]. Le parallélisme "catégoriel" entre la construction \(W \) et la construction \(\text{Bar} \) (acyclique) se manifeste concrètement par l'existence d'une réduction [15] \(C_*([G]) \)-équivariante de \(C_*([WG]) \) vers la construction \(\text{Bar} \) acyclique de \(C_*([G]) \), \(G \) étant un
groupe simplicial quelconque. Est ainsi affirmativement répondu à une vieille conjecture d'Eilenberg-MacLane [4].

(A3.1) Définition. — Un endofoncteur $T : C \rightarrow C$ est une monade s'il est muni de deux transformations naturelles $\eta : \text{id}_C \rightarrow T$, $\mu : T^2 \rightarrow T$ satisfaisant les identités

$$\mu \circ \eta T = \text{id}_C = \mu \circ T \eta \quad \text{(unitarité)},$$

$$\mu \circ \mu T = \mu \circ T \mu \quad \text{(associativité)}.$$

Etant donné une monade T sur une catégorie C on appelle T-algèbre tout couple (X, ξ_X) composé d'un objet X de C et d'un morphisme $\xi_X : TX \rightarrow X$ de C satisfaisant les identités

$$\xi_X \circ \eta_X = \text{id}_X \quad \text{(unitarité)},$$

$$\xi_X \circ T \xi_X = \xi_X \circ \mu_X \quad \text{(associativité mixte)}.$$

Un morphisme de T-algèbres $f : (X, \xi_X) \rightarrow (Y, \xi_Y)$ est un morphisme $f : X \rightarrow Y$ de C tel que $f \circ \xi_X = \xi_Y \circ Tf$.

Soit alors T une monade qui préserve les carrés cocartésiens ("pushouts") et soit (X, ξ_X) une T-algèbre munie d'un morphisme (souvent une inclusion) $\alpha : X \rightarrow Y$. La T-algèbre $(T\alpha Y, \mu_\alpha)$ "librement engendrée par α" est alors définie (à un isomorphisme de T-algèbres unique près) par l'existence d'un diagramme cocartésien

$$
\begin{array}{ccc}
TX & \xrightarrow{T\alpha} & TY \\
\downarrow^{\xi_X} & & \downarrow^{\eta_Y} \\
X & \xrightarrow{\alpha} & T\alpha Y
\end{array}
$$

et la condition que $\mu_\alpha : TT\alpha Y \rightarrow T\alpha Y$ soit l'unique morphisme tel que le quadruple $(\mu_X, \mu_Y, \xi_X, \mu_\alpha)$ forme une transformation du carré cocartésien $T(*)$ vers le carré cocartésien $(*)$ (c'est une variation du lemme du cube). De manière équivalente on peut définir $q : TY \rightarrow T\alpha Y$ comme conoyau de différence des deux morphismes $T\alpha, \eta_Y \circ \alpha \circ \xi_X : TX \rightarrow TY$.

Tout morphisme $\varphi : Y \rightarrow Z$ à valeurs dans une T-algèbre (Z, ξ_Z) et telle que la restriction $\varphi \circ \alpha : (X, \xi_X) \rightarrow (Z, \xi_Z)$ soit un morphisme de T-algèbres admet une unique extension à un morphisme de T-algèbres $\Phi : (T\alpha Y, \mu_\alpha) \rightarrow (Z, \xi_Z)$ telle que $\Phi \circ q \circ \eta_Y = \varphi$.

Nous serons concernés dans la suite par les deux monades suivantes de la catégorie des ensembles simpliciaux pointés :

a) la monade "cône simplicial" : (C, η^C, μ^C), voir (II.2.1),

b) la monade "produit cartésien avec un groupe simplicial G" : $(- \times G, \eta^G, \mu^G)$.

76
explicitement
\[- \times G : \quad \text{Esimp}_* \quad \longrightarrow \quad \text{Esimp}_* \]
\[X \quad \longmapsto \quad X \times G , \]
\[\eta^G_X : \quad X \quad \longrightarrow \quad X \times G \]
\[x \quad \longmapsto \quad (x, e) , \]
\[\mu^G_X : \quad (X \times G) \times G \quad \longrightarrow \quad X \times G \]
\[((x, g_1), g_2) \quad \longmapsto \quad (x, g_1 g_2) . \]

Noter que les endofoncteurs \(C \) et \(\times G \) préservent les carrés cocartésiens et que si \(X \) est pointé alors \(X \times G \) est de même naturellement pointé.

Une \(C \)-algèbre \((X, \xi^C_X) \) n'est autre qu'un ensemble simplicial pointé \(X \) muni d'une contraction conique \(\xi^C_X : CX \rightarrow X \) (II.2.1).

Une \(\times G \)-algèbre \((X, \xi^G_X) \) n'est autre qu'un ensemble simplicial \(X \) muni d'une \(G \)-action \(\xi^G_X : X \times G \rightarrow X \).

(A3.2) Définition. — Si \(\alpha : X \hookrightarrow Y \) est une inclusion d'ensembles simpliciaux pointés alors \(C\alpha : CX \hookrightarrow CY \) et \(\alpha \times G : X \times G \hookrightarrow Y \times G \) sont également des inclusions et on aura pour une \(C \)-algèbre (resp. une \(\times G \)-algèbre) \(X \)
\[C\alpha Y = CY / \{ (x, i) \sim \xi^C_X(x, i) \}_{(x, i) \in CX} \]

(resp. \(Y \times \alpha G = Y \times G / \{ (x, g) \sim \xi^G_X(x, g) \}_{(x, g) \in X \times G} \)).

Le composé \(Y \xrightarrow{\eta^G_Y} CY \xrightarrow{g} C\alpha Y \) (resp. \(Y \xrightarrow{\eta^G_Y} Y \times G \xrightarrow{g} Y \times \alpha G \)) est en particulier injectif.

L'espace total \(WG \) du fibré universel \((\mu^G, WG, p, \overline{WG}, j) \) admet alors la définition récursive suivante (N. Steenrod [16]) :

\[WG \text{ est la limite inductive du diagramme } D_0 \xleftarrow{\alpha_0} E_0 \xrightarrow{\beta_0} D_1 \xleftarrow{\alpha_1} E_1 \xrightarrow{\beta_1} D_2 \xleftarrow{\alpha_2} E_2 \xleftarrow{\cdots} \text{ où } \alpha_0 : D_0 = (e) \hookrightarrow E_0 = G \text{ et pour } n \geq 0 \beta_n : E_n \hookrightarrow D_{n+1} = C\alpha_n E_n \text{ et } \alpha_{n+1} : D_{n+1} \hookrightarrow E_{n+1} = D_{n+1} \times \beta_n G . \]

Puisque les \(\alpha_i, \beta_i \) sont des inclusions la limite inductive ci-dessus peut également s'écrire
\[WG = \lim_{\longrightarrow} D_i = \lim_{\beta_i \circ \alpha_i} E_i \]

ce qui munit \(WG \) à la fois d'une contraction conique et d'une \(G \)-action sans isotropie.

On établit par récurrence les descriptions suivantes des ensembles simpliciaux \(D_k, E_k \) :
\[(D_k)_n = \left\{ (i_0, g_0, i_1, g_1, \ldots, i_{\ell-1}, g_{\ell-1}, i_{\ell}) \mid 0 \leq \ell \leq k, \ i_s \geq 0 , \ n = i_0 + \cdots + i_{\ell}, \ g_s \in G_{i_0+\cdots+i_s} , \ 0 \leq s \leq \ell \right\} / \sim , \]
\[(E_k)_n = \left\{ (i_0, g_0, i_1, g_1, \ldots, i_{\ell}, g_\ell) \mid 0 \leq \ell \leq k, \ i_s \geq 0 , \ n = i_0 + \cdots + i_{\ell}, \ g_s \in G_{i_0+\cdots+i_s} , \ 0 \leq s \leq \ell \right\} / \sim , \]
où les seules relations sont

soit du type \((\ldots, i_s, e, i_{s+1}, \ldots) \sim (\ldots, i_s + i_{s+1}, \ldots)\)

soit du type \((\ldots, g_s, 0, g_{s+1}, \ldots) \sim (\ldots, g_s g_{s+1}, \ldots)\).

En faisant abstraction des entiers \(i_s\), on obtient donc pour la limite inductive

\[
(WG)_n = \{ g_{j_0} g_{j_1} \cdots g_{j_k} \mid 0 \leq j_0 < \cdots < j_k = n \text{ et } g_{j_s} \in G_{j_s} - e_{j_s}, 0 \leq s < k, \ g_{j_k} \in G_{j_k} \}.
\]

Cette description coïncide avec la définition de \(WG\) donnée en (II.2.3), les simplexes étant mis sous forme normale (privée des éléments neutres). On peut vérifier que les opérateurs simpliciaux coïncident également avec ceux indiqués en (II.2.3). Une lecture approfondie de l'article de Steenrod permet même de trouver la structure de groupe de l'ensemble simplicial \(WG\).

(A3.3) Remarque.

Désignons par \(\overline{E_k}\) le quotient \(E_k/G\) et par \(p_k : E_k \rightarrow \overline{E_k}\) la projection canonique. La filtration de \(WG\) par les \(E_k\) induit une filtration de \(\overline{WG} = WG/G\) par les \(\overline{E_k}\). En restreignant la pseudosection \(j : \overline{WG} \rightarrow WG\) on obtient la famille des pseudosections \(j_k : \overline{E_k} \rightarrow E_k\) munissant ainsi chaque \(E_k\) d'une structure canonique de produit cartésien tordu \(\overline{E_k} \times_t G\), \(t_k : \overline{E_k} \hookrightarrow G\) désignant la fonction tordante déduite de \(j_k\) (I.2.4a).

L'image de la pseudosection \(j_k : \overline{E_k} \rightarrow E_k\) coïncide avec l'ensemble simplicial \(D_k = C_{\alpha_k} E_{k-1}\) et, comme il y a bijection canonique entre les ensembles \(\overline{E_k} - \overline{E_{k-1}}\) et \(C_{\alpha_k} E_{k-1} - E_{k-1}\), l'extension de \(j_{k-1} : \overline{E_{k-1}} \rightarrow E_{k-1}\) à \(j_k : \overline{E_k} \rightarrow C_{\alpha_k} E_{k-1}\) est entièrement déterminée par la construction. Le passage du \(G\)-fibré principal \((\mu^G, E_{k-1}, p_{k-1}, \overline{E_{k-1}}, j_{k-1})\) au \(G\)-fibré principal \((\mu^G, E_{k}, p_k, \overline{E_k}, j_k)\) est donc succinctement donné par la formule :

\[E_k = \text{cône}_{\alpha_k} (p_{k-1}) \times_t G,\]

où l'ensemble simplicial \(\text{cône}_{\alpha_k} (p_{k-1})\) est défini par le diagramme cocartésien

\[
\begin{array}{ccc}
E_{k-1} & \leftrightarrow & C_{\alpha_k} E_{k-1} \\
p_{k-1} \downarrow & & \downarrow \\
\overline{E_{k-1}} & \rightarrow & \text{cône}_{\alpha_k} (p_{k-1})
\end{array}
\]

et où \(t_k : \text{cône}_{\alpha_k} (p_{k-1}) \rightarrow G\) est la fonction tordante déduite de l'extension canonique \(j_k : \text{cône}_{\alpha_k} (p_{k-1}) \rightarrow C_{\alpha_k} E_{k-1}\) de la pseudosection \(j_{k-1} : \overline{E_{k-1}} \rightarrow E_{k-1}\).

Cette formule concise s'applique bien à être transférée dans la catégorie des complexes de chaînes. Sans vouloir rentrer dans les détails nous signalons simplement que la construction Bar acyclique \(B_* A\) d'une algèbre graduée différentielle \(A\) possède
une filtration naturelle par des A-modules gradués différentiels $B^{(k)}_* A$ qui sont liés entre eux par une formule analogue à celle ci-dessus.

En effet, si l'on note $\alpha_{k-1} : S^{(k-1)}_* \hookrightarrow B^{(k-1)}_* A$ l'inclusion du sous-complexe scindé cano"

cique et $\pi_{k-1} : B^{(k-1)}_* A \longrightarrow B^{(k-1)}_* \overline{A}$ le passage au quotient par l'action de A, alors

$$B^{(k)}_* A = \text{cône}_{\alpha_{k-1}}(\pi_{k-1}) \otimes_{\tau_k} A,$$

où le complexe de chaînes cône$_{\alpha_{k-1}}(\pi_{k-1})$ est défini par un diagramme cocartésien analogue à celui ci-dessus, et où $\tau_k : \text{cône}_{\alpha_{k-1}}(\pi_{k-1}) \longrightarrow A$ est une "cochaîne de torsion" uniquement déterminée par la construction (on utilise au lieu de (1.2.4a) la proposition (2.2-3) de Gugenheim [7]).

Cette définition récursive de la construction Bar acyclique permet une démonstration simple de la proposition suivante conjecturée par Eilenberg-MacLane [4]:

Proposition. — Soit G un groupe simplicial et désignons par $(E_k)_{k \geq 0}$ la filtration naturelle de WG (A3.2). Pour tout $k \geq 0$, il existe alors une réduction $[15]$ $C_*([G])$-équivariante de $C_*([E_k])$ vers $B^{(k)}_* C_*([G])$. Les réductions sont compatibles avec les inclusions respectives induisant ainsi une réduction $C_*([G])$-équivariante de $C_*([WG])$ vers $B_* C_*([G])$.

Démonstration. — On raisonne par récurrence sur le degré filtrant k. Pour $k = 0$, on a un isomorphisme $C_*([E_0]) \cong B^{(0)}_* C_*([G])$, donc trivialement une réduction $C_*([G])$-équivariante.

Supposons alors qu'on ait une réduction $C_*([G])$-équivariante de $C_*([E_{k-1}])$ vers $B^{(k-1)}_* C_*([G])$. En vertu de l'isomorphisme fonctoriel $C_* \text{cône}_{\alpha_{k-1}} \cong \text{cône}_{\alpha_{k-1}} C_*$ on en déduit une réduction de $C_*([\text{cône}_{\alpha_{k-1}}(p_{k-1})])$ vers $\text{cône}_{\alpha_{k-1}}(\pi_{k-1})$.

Le théorème de E.H. Brown ("Eilenberg-Zilber tordu") fournit par ailleurs une réduction $C_*([G])$-équivariante de

$$C_*([\text{cône}_{\alpha_{k-1}}(p_{k-1}) \times_{t_k} G]) \cong C_*([\text{cône}_{\alpha_{k-1}}(p_{k-1})]) \otimes_{\tau_k} C_*([G]).$$

Par composition de réductions on obtient une réduction $C_*([G])$-équivariante de

$$C_*([\text{cône}_{\alpha_{k-1}}(p_{k-1}) \times_{t_k} G]) \cong \text{cône}_{\alpha_{k-1}}(\pi_{k-1}) \otimes_{\tau_k} C_*([G]).$$

L'unicité de la cochaîne de torsion (propre à notre situation) montre enfin que $\tilde{\tau}_k = \tau_k$.

79
REFERENCES

RÉSUMÉ

Daniel Kan associe à tout ensemble simplicial réduit X un fibré principal contractile de base X et de fibre un groupe simplicial libre, noté GX. Un concept généralisé de prisme nous permet de considérer ce groupe comme sous-quotient canonique d'un modèle simplicial de l'espace de lacets de X, et de munir l'espace total du fibré d'une contraction combinatoire évoquant l'idée topologique de contraction des chemins.

Est ainsi établie une correspondance biunivoque explicite entre les représentants algébriques des classes d'homotopie de GX et certains représentants géométriques des classes d'homotopie de X.

En utilisant les propriétés homotopiques du commutant de GX nous obtenons enfin une version effective du théorème de Hurewicz comportant entre autres la construction algorithmique de sphères combinatoires à partir de certains cycles homologiques.

MOTS-CLÉS

Homomorphisme de Hurewicz, espaces de lacets, groupe coclassifiant, sphère combinatoire, prisme.

MATHEMATICAL SUBJECT CLASSIFICATION

55Q05 – 55P35 – 18G30.