Flou et quantification dans les images numériques
Saïd Ladjal

To cite this version:

HAL Id: tel-00133427
https://tel.archives-ouvertes.fr/tel-00133427
Submitted on 26 Feb 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Thèse

présentée pour obtenir le grade de docteur de l’École Normale Supérieure de Cachan

Spécialité: Signal et Images

Flou et quantification dans les images numériques

Saïd Ladjal

Composition du jury:

Jean-Michel Morel Directeur de thèse
Henri Maître Rapporteur
Bernard Rougé Rapporteur
Françoise Dibos Examinatrice
Patrick Louis Combettes Examinateur
Yann Gousseau Examinateur

Soutenue le 22 mars 2005.
Table des Matières

1 Introduction
 1.1 Formation de l'image 8
 1.2 Déquantification des directions du gradient 9
 1.2.1 Biais sur l'orientation du gradient dû à la quantification 9
 1.2.2 Méthode de déquantification 9
 1.3 Analyse du flou des images numériques 9
 1.3.1 Origine du flou .. 9
 1.3.2 Outils d'observation et d'évaluation du flou 10
 1.4 Cours sur la transformation de Fourier et la Théorie de Shannon 10

2 Rappels sur la théorie de Shannon 13
 2.1 Théorie de Shannon pour les images 13
 2.1.0.1 L'artifice de la périodisation. L'aliasage nécessaire ... 17
 2.2 Théorie de Shannon et déquantification des images 21
 2.3 Flou et échantillonnage 21

3 Déquantification de l'orientation des images 27
 3.1 Introduction .. 27
 3.2 Évaluation locale du gradient et de l'orientation 30
 3.2.1 Bruit gaussien 30
 3.2.2 Calcul de l'orientation dans une image non quantifiée 32
 3.2.3 Biais dû à la quantification 33
 3.3 Déquantification de l'orientation .. 34
 3.3.1 La solution proposée : une translation de Fourier 34
 3.3.2 Étude du bruit déquantifié 36
 3.3.3 Indépendance des résultats 40
 3.3.4 Le modèle de régions plates pour expliquer l'effet de la déquantification 42
 3.4 Expériences et application à la détection des alignements 44

4 Étude et estimation du flou dans les images numériques 49
 4.1 Formation d'une image et étude des transitions 50
 4.1.1 Modèle de formation des images 50
 4.1.2 Un modèle optique simple 52
 4.1.3 Illustrations .. 54
 4.1.3.1 Cas convolutif 54
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.3.2</td>
<td>Cas d’une occultation</td>
<td>55</td>
</tr>
<tr>
<td>4.1.3.3</td>
<td>Quelques profils constatés dans des images</td>
<td>56</td>
</tr>
<tr>
<td>4.2</td>
<td>Détection des bords</td>
<td>59</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Carte topographique de l’image</td>
<td>61</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Passage du discret au continu et choix de l’interpolation</td>
<td>61</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Filtrage de la carte topographique</td>
<td>62</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Détection des parties droites et paquets de parallélisme</td>
<td>66</td>
</tr>
<tr>
<td>4.3</td>
<td>Filtrage morphologique sans ajout de flou et extraction des transitions</td>
<td>69</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Comparaison du filtrage linéaire et morphologique pour l’estimation du flou</td>
<td>69</td>
</tr>
<tr>
<td>4.3.1.1</td>
<td>Scale space</td>
<td>69</td>
</tr>
<tr>
<td>4.3.1.2</td>
<td>Échelle de comparaison</td>
<td>72</td>
</tr>
<tr>
<td>4.3.1.3</td>
<td>Comparaison des scale spaces</td>
<td>74</td>
</tr>
<tr>
<td>4.3.1.4</td>
<td>Modification du flou dans le cas de la MCM</td>
<td>83</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Extraction des profils</td>
<td>84</td>
</tr>
<tr>
<td>4.4</td>
<td>Analyse des transitions</td>
<td>85</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Mesure du flou</td>
<td>85</td>
</tr>
<tr>
<td>4.4.1.1</td>
<td>Approche axiomatique</td>
<td>85</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Transformée de Radon et retour au noyau</td>
<td>90</td>
</tr>
<tr>
<td>4.5</td>
<td>Récapitulatifs de la méthode et résultats</td>
<td>92</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Lignes de niveau et segments</td>
<td>92</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Résultat de l’évaluation du flou</td>
<td>92</td>
</tr>
<tr>
<td>4.6</td>
<td>Expériences commentées</td>
<td>102</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Effet de l’échantillonnage sur la quantité de flou</td>
<td>110</td>
</tr>
</tbody>
</table>

A | **Cours sur la Transformation de Fourier et la Théorie de Shannon** | 113 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1</td>
<td>Séries de Fourier</td>
<td>114</td>
</tr>
<tr>
<td>A.1.1</td>
<td>Convolution des fonctions périodiques et séries de Fourier</td>
<td>117</td>
</tr>
<tr>
<td>A.1.2</td>
<td>Décroissance des coefficients de Fourier et problèmes de compression du signal</td>
<td>119</td>
</tr>
<tr>
<td>A.1.3</td>
<td>Phénomène de Gibbs</td>
<td>120</td>
</tr>
<tr>
<td>A.2</td>
<td>Transformées de Fourier bidimensionnelles</td>
<td>122</td>
</tr>
<tr>
<td>A.2.1</td>
<td>Base de Fourier sur un carré</td>
<td>122</td>
</tr>
<tr>
<td>A.2.2</td>
<td>Base de Fourier sur un réseau</td>
<td>124</td>
</tr>
<tr>
<td>A.3</td>
<td>Le cas discret</td>
<td>128</td>
</tr>
<tr>
<td>A.3.1</td>
<td>Transformée de Fourier Discrète, applications</td>
<td>128</td>
</tr>
<tr>
<td>A.3.1.1</td>
<td>La dimension 1</td>
<td>128</td>
</tr>
<tr>
<td>A.3.1.2</td>
<td>La dimension 2</td>
<td>130</td>
</tr>
<tr>
<td>A.3.1.3</td>
<td>Le phénomène du repliement de spectre ou aliasage</td>
<td>132</td>
</tr>
<tr>
<td>A.3.1.4</td>
<td>La transformée de Fourier rapide</td>
<td>135</td>
</tr>
<tr>
<td>A.3.1.5</td>
<td>L’utilisation de la transformée de Fourier discrète pour définir zoom, translations et rotations des images</td>
<td>138</td>
</tr>
<tr>
<td>A.3.1.6</td>
<td>Importances relatives de la phase et du module de la TFD pour une image</td>
<td>144</td>
</tr>
<tr>
<td>A.3.2</td>
<td>Lien avec la théorie de Shannon</td>
<td>144</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>A.4</td>
<td>Mémento de théorie des Distributions</td>
<td>146</td>
</tr>
<tr>
<td>A.4.1</td>
<td>Définition des distributions</td>
<td>146</td>
</tr>
<tr>
<td>A.4.1.1</td>
<td>Exemples de distributions</td>
<td>147</td>
</tr>
<tr>
<td>A.4.2</td>
<td>Opérations sur les distributions</td>
<td>147</td>
</tr>
<tr>
<td>A.4.3</td>
<td>Distributions à support compact</td>
<td>148</td>
</tr>
<tr>
<td>A.4.4</td>
<td>Distributions tempérées</td>
<td>149</td>
</tr>
<tr>
<td>A.4.4.1</td>
<td>Propriétés des distributions tempérées, exemples</td>
<td>149</td>
</tr>
<tr>
<td>A.4.5</td>
<td>Transformée de Fourier</td>
<td>150</td>
</tr>
<tr>
<td>A.4.5.1</td>
<td>Transformée de Fourier des fonctions de S</td>
<td>150</td>
</tr>
<tr>
<td>A.4.6</td>
<td>Transformée de Fourier des distributions tempérées</td>
<td>153</td>
</tr>
<tr>
<td>A.4.6.1</td>
<td>Formulaire sur la transformée de Fourier dans la classe de Schwartz</td>
<td>153</td>
</tr>
<tr>
<td>A.4.6.2</td>
<td>Formulaire sur la transformée de Fourier des distributions tempérées</td>
<td>155</td>
</tr>
<tr>
<td>A.4.6.3</td>
<td>Convolution des distributions</td>
<td>155</td>
</tr>
<tr>
<td>A.5</td>
<td>Distributions périodiques sur un réseau</td>
<td>157</td>
</tr>
<tr>
<td>A.5.0.4</td>
<td>Fonctions périodiques, périodisation.</td>
<td>157</td>
</tr>
<tr>
<td>A.5.0.5</td>
<td>Caractérisation des distributions périodiques par leur série de Fourier</td>
<td>159</td>
</tr>
<tr>
<td>A.5.0.6</td>
<td>Conclusion</td>
<td>161</td>
</tr>
<tr>
<td>A.5.0.7</td>
<td>La formule de Poisson</td>
<td>161</td>
</tr>
<tr>
<td>A.5.0.8</td>
<td>L’unification des formalismes de Fourier</td>
<td>163</td>
</tr>
<tr>
<td>A.6</td>
<td>Théorie de Shannon pour les images</td>
<td>164</td>
</tr>
<tr>
<td>A.6.0.9</td>
<td>L’artifice de la périodisation. L’aliasage nécessaire</td>
<td>167</td>
</tr>
<tr>
<td>B</td>
<td>Récapitulatif des principaux résultats sur la Transformée de Fourier</td>
<td>173</td>
</tr>
<tr>
<td>B.1</td>
<td>Transformée de Fourier discrète sur \mathbb{R}</td>
<td>173</td>
</tr>
<tr>
<td>B.2</td>
<td>Transformée de Fourier discrète sur \mathbb{R}^2</td>
<td>173</td>
</tr>
<tr>
<td>B.3</td>
<td>Réseau de \mathbb{R}, \mathbb{R}^2, ...</td>
<td>173</td>
</tr>
<tr>
<td>B.4</td>
<td>Transformée de Fourier discrète sur un réseau Γ</td>
<td>174</td>
</tr>
<tr>
<td>B.5</td>
<td>Convolution Γ-périodique</td>
<td>174</td>
</tr>
<tr>
<td>B.6</td>
<td>Peignes de Dirac</td>
<td>174</td>
</tr>
<tr>
<td>B.7</td>
<td>Transformée de Fourier discrète des distributions Γ-périodiques</td>
<td>175</td>
</tr>
<tr>
<td>B.8</td>
<td>Série de Fourier d’un peigne de Dirac</td>
<td>175</td>
</tr>
<tr>
<td>B.9</td>
<td>Convolution</td>
<td>175</td>
</tr>
<tr>
<td>B.10</td>
<td>Transformée de Fourier dans \mathcal{S}'</td>
<td>176</td>
</tr>
<tr>
<td>B.11</td>
<td>Convolution et Fourier</td>
<td>176</td>
</tr>
<tr>
<td>B.12</td>
<td>Unification du formalisme</td>
<td>176</td>
</tr>
<tr>
<td>B.13</td>
<td>Commodités du formalisme</td>
<td>176</td>
</tr>
<tr>
<td>B.14</td>
<td>Reconstruction de Shannon</td>
<td>177</td>
</tr>
<tr>
<td>B.15</td>
<td>La transformée de Fourier discrète</td>
<td>177</td>
</tr>
</tbody>
</table>
Dans cette thèse, nous nous sommes attachés à l'étude de certains défauts des images numériques dans le but de les évaluer et éventuellement de les corriger. Dans une première partie, nous analysons le processus de formation de l'image et notamment la manière dont l'image doit être échantillonnée suivant la théorie de Shannon. Nous montrons les implications de cette théorie sur les problèmes abordés dans cette thèse. Dans la seconde partie (chapitre 3), nous montrons comment la quantification des niveaux de gris, qui est une opération nécessaire pour stocker les images sur un support numérique, introduit un biais sur les directions du gradient d'une image. Cette problématique a émergé dans le cadre des travaux de thèse d'Agnès Desolneux, notamment ceux concernant la détection d'alignements significatifs (voir [Desolneux et al., 2000]). L'idée essentielle des détections d'événements significatifs est qu'un événement fait partie de l'information pertinente de l'image si son espérance mathématique est faible dans un contexte de bruit, bruit modélisé par ce qui est appelé un "modèle de fond". Dans le cas des alignements, la détection s'effectue sur les distributions des gradients de l'image, et le modèle de fond retenu est celui d'une distribution uniforme et indépendante (d'un pixel à l'autre). Il a été remarqué que, dans certaines conditions, des alignements parasites (qui ne font pas partie de l'information de l'image) sont détectés. Nous avons découvert que ces alignements sont en fait dus au processus de génération de l'image et plus particulièrement à l'étape de quantification. Nous avons proposé une méthode pour résoudre ce problème qui consiste en une translation de l'image en utilisant ses coefficients de Fourier pour permettre l'interpolation. Nous montrons que cette méthode annule le biais introduit par la quantification. Cette première partie constitue un travail collectif entre Agnès Desolneux, Lionel Moisan, Jean-Michel Morel et moi-même et a donné lieu à publication ([Desolneux et al., 2002]). Dans la troisième (chapitre 4) partie de cette thèse nous étudions le flou. Nous analysons succinctement les phénomènes physiques qui l’engendrent. À partir d’observations empiriques et théoriques nous déterminons les conditions dans lesquelles une évaluation précise du flou peut être faite. Nous utilisons ensuite différents outils de description des images (carte topographique) et de filtrage (mouvement par courbure moyenne) qui répondent à nos critères et permettent d’évaluer le flou dans les zones qui y sont propices.
1.1 Formation de l’image

Il est difficile de donner un modèle exploitable du processus de formation des images. Si nous voulons être complet, nous considérerions que pour former une image à partir d’une scène, nous devons considérer chaque point de celle-ci comme un point lumineux émettant des rayons de différentes longueurs d’onde et d’intensité variable suivant leur direction. L’appareil d’acquisition de l’image devie les rayons qui passent par son ouverture suivant les lois de l’optique géométrique (nous négligeons les effets de la diffraction) et les dirige vers les cellules d’acquisition. Ces dernières intègrent les puissances des rayons qu’elles reçoivent en les pondérant suivant la sensibilité qu’elles ont à la longueur d’onde de ces rayons. Chaque cellule représente un pixel de l’image numérique et la valeur qu’elle renvoie est obtenue comme résultat de l’application d’une fonction, généralement non linéaire, à la valeur de la puissance lumineuse que la cellule a reçue. Enfin, pour numériser l’image il faut aussi quantifier la valeur que chaque cellule renvoie.

Pour simplifier ce modèle, on peut considérer que la scène est une fonction de \mathbb{R}^2 dans \mathbb{R} (c’est-à-dire une image alors qu’en réalité la scène est une distribution de points lumineux dans \mathbb{R}^3). Comme image (ou scène) de départ on peut prendre l'image qui aurait été obtenue si l'appareil d'acquisition avait été une "chambre noire", c'est-à-dire une boîte dont l'une des parois serait percée d'un trou infiniment petit, et que l'image de la scène se projetait sur la paroi de la boîte qui fait face à la paroi percée. Évidemment, aucun appareil réel ne peut reproduire cette situation idéale, tout simplement parce que la puissance lumineuse qui passe par un trou infiniment petit est nulle. Un dispositif optique réaliste opère une convolution sur la scène, ce qui a pour conséquence qu'un point de la scène se transforme en une "tache" qui correspond au noyau de convolution. De plus, chaque cellule du capteur opère elle aussi une convolution (sommation des énergies lumineuses qui atteignent sa surface pendant le temps que dure la prise de vue). Le total de ces deux convolutions est une autre convolution dont nous notons g, le noyau. Enfin, la grille des capteurs effectue un échantillonnage de l’image et la valeur de chaque pixel est quantifiée pour obtenir une image numérique. Par ailleurs, tout au long de ce processus, du bruit s’ajoute à l’image. Que ce bruit soit dû à une imperfection de l’appareil (bruit électronique, imperfection de la lentille) ou à la quantification, on peut toujours le modéliser par un bruit additif b. Finalement nous obtenons l’équation suivante

$$I(n, m) = \Pi_{\Gamma} \cdot (g * O) + b,$$ \hspace{1cm} (1.1)

où O est l’image d’origine et Π_{Γ} représente un peigne de Dirac aux points de la grille d’acquisition. Les implications de cette équation sur le spectre de l’image sont rappelées au chapitre 2. Les chapitres 3 et 4 s’attachent à étudier le bruit en tant qu’élément perturbateur d’analyses statistiques des images et la convolution en tant que principale responsable du flou.
1.2 Déquantification des directions du gradient

1.2.1 Biais sur l’orientation du gradient dû à la quantification

Nous avons observé que la quantification des niveaux de gris de l’image mène à une distribution non-uniforme des directions du gradient. Plus précisément, l’histogramme des directions du gradient possède des pics aux multiples entiers de $\pi/4$. Dans un premier temps, on montre que si l’image est une réalisation d’un bruit blanc gaussien ou uniforme, et compte tenu de la méthode élémentaire de calcul du gradient, ce biais ne devrait pas exister (cas du bruit gaussien) ou alors dans des proportions très faibles (bruit uniforme). On en tire la conclusion que ce n’est pas la géométrie de la grille d’échantillonnage qui cause ce biais, ni le schéma numérique de calcul du gradient. C’est la corrélation entre le bruit de quantification et la valeur du niveau de gris qui est à l’origine du problème. On montre aussi que ce sont les régions ”plates”, où l’image varie peu, qui sont les plus touchées par ce phénomène.

1.2.2 Méthode de déquantification

La solution que nous proposons consiste simplement à remplacer l’image de départ par la translation de celle-ci d’un vecteur $(1/2, 1/2)$. Pour ce faire, on interpole l’image en utilisant sa décomposition dans la base de Fourier. Cette transformation est licite si l’image vérifie les hypothèses du théorème d’échantillonnage de Shannon. Par ailleurs, elle n’augmente pas la puissance du bruit car la translation décrite est une isométrie de L^2. Enfin, nous montrons que cette transformation remplace le bruit de quantification par un bruit quasi-blanc gaussien. On montre que l’on obtient bien par cette méthode un histogramme des directions du gradient qui est non-biaisé. Nous appliquons cette méthode pour améliorer le résultat de la détection d’alignements significatifs (telle que décrite dans [Desolneux et al., 2000]).

1.3 Analyse du flou des images numériques

1.3.1 Origine du flou

Le flou dans les images est un phénomène essentiellement convolutif. Il est dû au fait que la profondeur de champ d’un appareil photographique ne peut être infinie. Cependant, la présentation de l’équation (1.1) peut être trompeuse. D’une part, le flou qui affecte l’image n’est pas le même en tout point de celle-ci car la scène est tridimensionnelle alors que nous l’avons modélisée par une fonction de \mathbb{R}^2. Ainsi, chaque point de la scène se projette sur le plan image, après être passé par le dispositif optique de l’appareil, en une ”tache” correspondant au noyau de convolution qui lui est propre. D’autre part, les occultations entre objets de la scène mènent à des phénomènes qui ne peuvent être modélisés par une convolution. En effet, en présence d’un objet d’avant-plan qui occulte un autre objet en arrière plan on observe un mélange plus ou moins complexe des flous propres à chacun des deux plans. Nous étudions un dispositif optique simple qui nous permet de mettre en évidence ce problème dans la
première section du chapitre que nous consacrons à l’analyse du flou. Par ailleurs, des observations empiriques de phénomènes tels que la réflexion mutuelle nous montrent que le modèle convolutif doit être manié avec prudence si l’on veut obtenir une évaluation précise de la quantité de flou.

Nous montrons également qu’il est important d’évaluer le flou dans les zones de l’image qui contiennent un bord droit, sans quoi l’évaluation peut être faussée. Cette hypothèse de bord droit (ou step edge) est généralement faite en tout point de l’image sans être vérifiée localement. Enfin, la forme du noyau de flou n’étant généralement pas connue, nous essayons en conséquence de caractériser le flou par une grandeur que nous appelons ”largeur de flou”, qui est bien adaptée aux profils locaux.

1.3.2 Outils d’observation et d’évaluation du flou

Pour tenir compte des contraintes énoncées ci-dessus nous introduisons un certain nombre d’outils dont la combinaison nous permet d’évaluer le flou avec le maximum de précision. Tout d’abord, nous utilisons la carte topographique de l’image qui nous indique les zones de l’image où se trouve un bord droit. En effet, les bords droits de l’image se caractérisent pas une accumulation de lignes de niveau parallèles entre elles et droites. Ce sont ces accumulations que nous cherchons dans la carte topographique de l’image. Ensuite, nous effectuons un filtrage morphologique dont nous montrons qu’il change peu la quantité de flou de l’image (s’il est appliqué dans une zone de bord droit). Après ce filtrage nous extrayons un profil qui représente la variation locale de l’image et nous introduisons la ”largeur de flou” qui est la mesure que nous donnons du flou. Nous comparons le filtrage morphologique au filtrage linéaire pour montrer que ce dernier n’est applicable que dans l’hypothèse où l’on connaît la forme du noyau de convolution. Enfin, nous comparons notre mesure avec la variance du noyau de convolution (que Buzzi et Guichard ([Buzzi and Guichard, 2004]) montrent être une bonne candidate pour mesurer le flou) et montrons que cette dernière est difficilement calculable sur un profil extrait d’une image naturelle. Nous présentons aussi une méthode pour retrouver le noyau de convolution à partir des profils (dans certains cas favorables).

1.4 Cours sur la transformé de Fourier et la Théorie de Shannon

L’annexe à cette thèse présente des notes de cours traitant des théories de Fourier et de Shannon (concernant l’échantillonnage). Les théories de Fourier et de Shannon sont évidemment essentielles en traitement des images, et il ne s’agit pas ici d’apporter des résultats nouveaux, mais plutôt de présenter un résumé assez complet des principaux résultats et de leur démonstration, à des fins pédagogiques et d’illustration. L’approche par la théorie des distributions permet d’unifier les formalismes autour de la transformation de Fourier, qui bien souvent est présentée de manière parcellaire (transformation de Fourier des fonctions définies sur \(\mathbb{R} \), celle des fonctions échantillonnées sur \(\mathbb{Z} \),...
celle des fonctions périodiques et enfin celle des fonctions à la fois échantillonnées et périodiques, qui est la transformation utilisée dans le cadre du traitement des images numériques). La compréhension de cette unité de la transformation de Fourier est nécessaire pour la compréhension de ce qu’est le spectre d’une image. Par ailleurs, la théorie de Shannon de l’échantillonnage permet de définir les manipulations qu’il est licite de faire subir à l’image si l’on veut conserver son information. La partie théorique est enrichie d’expériences qui illustrent les résultats sur des images réalistes. Il nous est apparu que la littérature dans ce domaine n’allie que trop rarement la théorie et la pratique. Ainsi, des ouvrages tels que [Bony, 2001] bien que parfait sur le plan théorique ne s’intéresse pas aux expériences. D’un autre coté [Yaroslavsky and Eden, 1996] présente un grand nombre d’outils et d’expériences mais n’aborde pas la question des distributions qui permettrait d’unifier les formalismes de la transformation de Fourier. Nous pensons donc que ce cours peut avoir un intérêt en tant que support pédagogique à l’intention des élèves ingénieurs et des étudiants chercheurs.

Le chapitre 2 fait le lien entre la théorie de l’échantillonnage de Shannon et les deux problèmes que nous tentons de résoudre. D’une part la théorie de Shannon rend licite les manipulations que nous effectuons pour déquantifier une image et d’autre part nous verrons comment la théorie de l’échantillonnage permet de prédire un seuil en dessous duquel il est impossible de calculer un flou de manière précise.

1.4 Cours sur la transformation de Fourier et la Théorie de Shannon
Rappels sur la théorie de Shannon

Dans son ouvrage [Shannon and Weaver, 1949], Claude E. Shannon a instauré les bases mathématiques de la communication. Il définit précisément ce qu’est la quantité d’information d’une source discrète (texte, suite de symboles…), mais s’intéresse aussi au cas d’un signal continu (voix, image). Partant de la constatation que les signaux continus ont, par nature ou par destination, une bande passante limitée (l’oreille humaine ne peut entendre des fréquences supérieures à 20000Hz), il montre que de tels signaux peuvent être parfaitement reconstruits à partir d’un échantillonnage discret. Ce résultat théorique a permis de guider toutes les avancées technologiques que nous connaissons aujourd’hui en matière de numérisation des signaux. Dans le cadre du son, le théorème d’échantillonnage permet de spécifier les caractéristiques que doit respecter un appareillage dit de haute fidélité ainsi que les taux d’échantillonnage des CD musicaux. Dans le cas de l’image, les théories de Shannon et de Fourier permettent de comprendre les défauts que peuvent comporter des images numérisées dans le cas où le signal de départ n’a pas été assez filtré au regard de la densité d’échantillonnage. Ainsi, tous les appareils photographiques numérique couleur actuels sont-ils sujets à des problèmes de sous-échantillonnage en raison de la nécessité de combiner trois grilles de couleur (rouge vert et bleu) qui sont alors toutes trop peu denses pour se conformer aux conditions d’un bon échantillonnage.

2.1 Théorie de Shannon pour les images

On va d’abord se placer dans un cadre idéal, continu et infini. On choisit un point focal et un plan ne contenant pas ce point. Dans ce plan, on délimite une région qui est l’ouverture (en général un disque). En tout point de cette ouverture, on compte les photons passant par le plan et se dirigeant vers le centre optique. On peut imaginer l’image idéale résultante O, que l’on appellera “paysage” et il sera commode de s’y référer pour toutes les opérations effectuées par les appareils optiques artificiels ou
naturels. Les dispositifs physiques sont en effet un peu plus complexes. Le flux de photons passe d’abord par plusieurs ouvertures généralement circulaires. Ces ouvertures peuvent être le diaphragme d’un appareil photographique, l’orifice d’un télescope ou d’un zoom, la pupille de l’œil. Dans le dispositif le plus primitif, la “chambre noire” (camera oscura) connue dès l’antiquité, la lumière passe directement par un trou dans une paroi mince et se projette directement sur le mur en face, ce qui est le cas le plus simple : dans ce cas, centre optique (qui n’est pas un point) et ouverture sont simplement confondus. Pour réaliser une focalisation meilleure, une lentille permet de focaliser les photons et de les faire se projeter sur un plan image rapproché. Supposons, pour éviter les problèmes de profondeur de champ, que les trajectoires des photons soient parallèles (cas d’un télescope : point focal et ouverture sont éloignés). Alors les différents éléments du dispositif optique agissent sur le “paysage” comme des convolutions. Enfin, dernier point à ne pas négliger, les photons sont comptés au moment de l’impact par des capteurs tapissant la rétine ou le plan focal. Dans la rétine humaine, ces capteurs forment un réseau à peu près hexagonal en nid d’abeille. La plupart des capteurs CCD sont approximativement carrés et disposés en matrice. Dans tous les cas, on peut modéliser l’opération d’échantillonnage comme un décompte des photons effectué par chaque capteur dans un temps donné (le “temps d’obturation” pour un appareil photographique). Cette opération d’échantillonnage a deux temps du point de vue mathématique : la convolution du champ photonique par une fonction $g(x)$ représentant la fonction porte du capteur, puis l’attribution de cette valeur au centre du capteur. On supposera que ces centres forment un réseau de \mathbb{R}^2, ce qui est vrai si les capteurs forment un pavage régulier du plan.

On notera (toutes les fonctions et distributions considérées sont définies sur \mathbb{R}^2) :
- O, le paysage initial conçu comme un décompte d’énergie lumineuse au point x dans un plan perpendiculaire à l’axe de l’appareil optique. Comme l’ouverture de l’appareil optique a une surface finie, ce décompte s’effectue dans une région du plan compacte (un disque ou un rectangle en général). On note $x \in \mathbb{R}^2$ les points de ce plan. A priori, O est donc une fonction intégrable dans un modèle infinitésimal ou une mesure de Radon a support compact si on adopte un modèle de compte-photons, modèle justifié avec les capteurs biologiques ou digitaux.
- $h(x)$ le noyau de convolution obtenu en multipliant les différents noyaux (y compris celui du capteur). En fait, $h = h_{detect} \ast h_{opt} \ast h_{filé}$, où le premier noyau est la fonction caractéristique du détecteur, le second la convolution due à la lentille, et le troisième est le flou de mouvement ou de “filé” du capteur lui-même, dû au fait que capteur lui-même bouge dans l’interval de temps d’acquisition de l’image (le temps d’ouverture du diaphragme dans un appareil photographique classique). h s’appelle la “réponse impulsionnelle” de l’appareil et h sa “fonction de transfert de modulation” ou “FTM”.
- Il est à noter que h est à support compact, car $h_{opt} \ast h_{filé}$ l’est et que $h = h_{detect} \ast h_{opt} \ast h_{filé}$.
- (Remarquer que les trois fonctions considérées sont dans L^1. Leur convolée l’est donc aussi et la formule précédente est bien valide.)
- Γ, le réseau d’échantillonnage et son peigne de Dirac $\Pi_{\Gamma} = \sum_{\gamma \in \Gamma} \delta_{\gamma}$
- Le réseau effectif de capteurs se modélise comme $F_{n,m} \Pi_{\Gamma}$, où $F_{n,m}$ est la fonction caractéristique d’un parallélogramme adapté au réseau Γ : si e_1 et e_2 forment une
Rappels sur la théorie de Shannon

base du réseau, les capteurs effectifs ont leurs centres dans un parallélogramme discret \(P = \{ ke_1 + le_2, 1 \leq k \leq n, 1 \leq l \leq m \} \). On peut, et cela sera utile pour donner un sens aux expressions qui suivent, supposer que \(F_{n,m} \) est dans \(C_0^\infty \), car on peut trouver une telle fonction satisfaisant \(F_{n,m} = 1 \) dans \(P \) et \(F_{n,m}(k) = 0 \) aux autres points du réseau \(\Gamma \).

On peut donc modéliser l’image digitale résultante par

\[
 u = (h \ast O) \cdot \Pi_\Gamma \cdot F_{n,m}
\]

\(O \) est une mesure de Radon à support compact et on doit supposer une régularité suffisante pour \(h \) afin que le produit de convolution avec \(h \) soit défini et continu. En fait, \(\hat{h} \) est continue et à support compact, donc intégrable et de carré intégrable. On en déduit que \(h \) appartient à \(\mathcal{O}_M \), est donc \(C^\infty \), appartient aussi à \(L^2(\mathbb{R}^2) \) et tend vers 0 à l’infini. Donc \(h \ast O \) est une fonction \(C^\infty \) tendant vers zéro à l’infini ; elle est également dans \(L^2(\mathbb{R}^2) \). La théorie de Shannon-Whittaker va nous permettre d’étudier dans quelle mesure l’image convolée \(h \ast O \) peut être recouverte à partir de ses échantillons \((h \ast O) \cdot \Pi_\Gamma \cdot F_{n,m} \). On commence par appliquer la transformation de Fourier des distributions tempérées à la relation (2.1).

Lemme 2.1 On suppose que le paysage initial \(O \) est une mesure de Radon à support compact et que la FTM \(\hat{h} \) est continue à support compact. Alors

\[
 \hat{u} = S^*(\hat{h} \hat{O}) \ast (2\pi)^{-N} \Pi_\Gamma \ast (2\pi)^{-N} \hat{F}_{n,m} \quad \text{(2.2)}
\]

Démonstration Vérisions que le second membre de cette relation a un sens. \(O \) est une mesure de Radon à support compact. Donc \(\hat{O} \) est une fonction \(C^\infty \). Par ailleurs \(\hat{h} \) est par hypothèse une fonction continue à support compact. Le produit \(\hat{h} \hat{O} \) est donc une fonction continue à support compact. Sa convolée avec le peigne de Dirac \(\Pi_\Gamma \) est donc aussi une fonction continue et bornée qui est la \(\Gamma^* \)-périodisée de \(\hat{h} \hat{O} \). Enfin, cette fonction bornée est convolée avec \(\hat{F}_{n,m} \) qui est dans la classe de Schwartz. Le résultat final est donc une fonction \(C^\infty \), \(\Gamma^* \)-périodique et bornée. La relation (2.2) est vraie par une application répétée de la proposition A.21 et de la formule d’inversion de Fourier dans \(\mathcal{S}' \). La transformée de Fourier de \(\Pi_\Gamma \) est donnée par la formule (A.45)

Dans le théorème qui suit, on va négliger l’effet de fenêtrage \(F_{n,m} \) dans la digitalisation et supposer que l’image digitalisée est infinie.

Théorème 2.1 Shannon-Whittaker On suppose que le support de la FTM \(\hat{h} \), \(K = \text{Supp}(\hat{h}) \) est contenu dans une cellule \(R \) du réseau dual (appelé aussi réseau réciproque : c’est pourquoi on la note \(R \).) Alors le paysage convolé \(h \ast O \) peut être recouvré à partir de l’image “digitalisée” infinie \(u = (h \ast O) \cdot \Pi_\Gamma \) par la formule d’interpolation

\[
 h \ast O = u \ast \frac{1}{S^* \mathcal{F}(\mathbb{I}_R)},
\]

ou encore

\[
 (h \ast O)(x) = \sum_{\gamma \in \Gamma} (h \ast O)(\gamma) \frac{1}{S^* \mathcal{F}(\mathbb{I}_R)}(x - \gamma).
\]

15
Démonstration On considère la fonction caractéristique de R, $\mathbb{1}_R(\xi) = 1$ is $\xi \in R$ et 0 sinon. Par le lemme 2.1, on a
\[
\hat{u}(\xi) = (2\pi)^{-N}S^*(\hat{h}\hat{O}) \ast \mathbb{1}_R = \frac{1}{S} \sum_{k \in \Gamma^*} \hat{h}(\xi + k)\hat{O}(\xi + k)
\]
et en multipliant cette relation par $\mathbb{1}_R$ et en tenant compte du fait que les supports des différentes fonctions translatées $\hat{h}(\xi + k)O(\xi + k)$ sont disjoints, on a
\[
\mathbb{1}_R(\xi)\hat{u}(\xi) = \frac{1}{S} \hat{h}(\xi)\hat{O}(\xi) \mathbb{1}_R(\xi).
\]
Mais comme $\mathbb{1}_R$ est identiquement égale à 1 sur le support de \hat{h}, on a $\mathbb{1}_R(\xi)\hat{h}(\xi) = \hat{h}(\xi)$ et donc
\[
\hat{O}(\xi)\hat{h}(\xi) = S\mathbb{1}_R(\xi)\hat{u}(\xi).
\]
Appliquons la transformée de Fourier inverse (\mathcal{F}). Par la proposition A.21,
\[
h \ast O = \frac{S}{(2\pi)^N}u \ast \mathcal{F}(\mathbb{1}_R) = u \ast \frac{1}{S^*}\mathcal{F}(\mathbb{1}_R).
\]
Il est commode de récrire cette formule comme une formule d’interpolation. On a
\[
u = \sum_{\gamma \in \Gamma} (h \ast O)(\gamma)\delta_{\gamma}.
\]
Donc
\[
(h \ast O)(x) = \sum_{\gamma \in \Gamma} (h \ast O)(\gamma) \frac{1}{S^*}\mathcal{F}(\mathbb{1}_R)(x - \gamma).
\]
On a donc montré la convergence de cette série dans \mathcal{S}' (on verra qu’elle a lieu dans $L^2(\mathbb{R}^2)$).

Application : la Formule de Shannon pour l’échantillonnage de signaux.
Considérons le cas de la dimension $N = 1$ et d’un réseau d’échantillonnage $\Gamma = T\mathbb{Z}$. On a $e_1 = 1$, $e_1^* = 2\pi$, $S = T$, $\Gamma^* = \frac{2\pi}{T}\mathbb{Z}$. Prenons le cas le plus simple d’une cellule $R = [-\frac{\pi}{T}, \frac{\pi}{T}]$. Alors $\mathcal{F}(\mathbb{1}_R)(\xi) = 2\sin(\frac{\pi}{T})$ (formule (A.30)) et par la formule (2.3), le paysage convolé s’obtient par
\[
h \ast O = \frac{T}{2\pi}u \ast \mathcal{F}(\mathbb{1}_R).
\]
Or,
\[
u = \sum_{k \in \mathbb{Z}} (h \ast O)(kT)\delta_{kT}
\]
et donc
\[
h \ast 0 = \sum_{k \in \mathbb{Z}} (h \ast O)(kT)\frac{T}{2\pi}2\sin\left(\frac{\pi(x-kT)}{T}\right)
\]
soit
\[
h \ast 0 = \sum_{k \in \mathbb{Z}} (h \ast O)(kT)\frac{\sin\left(\frac{\pi}{T}(x-kT)\right)}{\xi_T(x-kT)}.
\]
(2.5)
Cette dernière formule est la formule de Shannon la plus classique.
2.1.0.1 L’artifice de la périodisation. L’aliasage nécessaire

La théorie de Shannon telle que nous venons de la décrire n’est pas une théorie numérique, puisque l’échantillonnage est supposé infini. Le peigne de Dirac u n’est donc pas numérisé à ce stade, si on entend par donnée numérique une donnée finie. De même, \hat{u} n’est pas numérisée, puisque c’est une fonction, certes à support compact. Or, pour en venir à la numérisation, il nous faudrait un spectre de Fourier à la fois discret et borné. Or, la donnée numérique discrète observée est, on l’a vu (relation (2.1), finie. A partir de cette donnée finie nous avons un moyen efficace de recréer un spectre discret : il suffit de prolonger u par périodicité en dehors de sa fenêtre de définition. On considère pour cela le réseau Γ_{nm} engendré par $n\epsilon_1$ et $m\epsilon_2$. La fenêtre $F_{n,m}$ correspond à une maille de ce réseau. On rappelle que l’image discrète est

$$u = (h \ast O).\Pi_{\Gamma}.F_{n,m} \quad (2.6)$$

Périodiser u revient à le convoler avec $\Pi_{\Gamma_{nm}}$ et on pose donc

$$\tilde{u} = \Pi_{\Gamma_{nm}} \ast ((h \ast O).\Pi_{\Gamma}.F_{n,m}). \quad (2.7)$$

On Fourierise et on obtient donc

$$\hat{\tilde{u}} = c\Pi_{\Gamma_{nm}}^{\ast\ast}.(\Pi_{\Gamma_{\ast}} \ast (\hat{h} \hat{O} \ast \hat{F}_{n,m}^{\ast})), \quad (2.8)$$

avec $c = \frac{1}{nm}(S_\ast)^2(2\pi)^{-2N}$. La surface de la maille de $\Pi_{\Gamma_{nm}}$ est en effet mnS et donc la maille duale est de surface $\frac{1}{nm}S_\ast$. Interprétons maintenant la formule (2.8), qui décrit de manière synthétique toutes les manipulations de spectre en jeu dans la digitalisation d’une image. La multiplication par le premier terme signifie que $\hat{\tilde{u}}$ est un peigne de Dirac sur le réseau fin $\Pi_{\Gamma_{nm}}$. Ce peigne est Γ_\ast-périodique à cause de la convolution par $\Pi_{\Gamma_{\ast}}$. On a donc bien une donnée numérique discrète, composée de nm coefficients. Nous avons néanmoins commis un abus, la périodisation d’une fonction qui n’a rien de périodique, et nous allons maintenant le payer. D’abord, remarquons que $\hat{F}_{n,m}$ n’est pas à support compact (principe d’incertitude : $\hat{F}_{n,m}$ est à support compact donc sa transformée de Fourier ne peut l’être également). Donc le terme $\ast \hat{F}_{n,m}$ dans le calcul de $\hat{\tilde{u}}$ implique que la fonction à $\psi = (\hat{h} \hat{O} \ast \hat{F}_{n,m}^{\ast})$ n’est plus à support compact. Donc la théorie de Shannon ne s’applique plus. Si on convole la fonction ψ avec $\Pi_{\Gamma_{\ast}}$, on fait la somme de ψ et de ses translatées par les vecteurs de Γ_{\ast}, que l’on appelle des “alias”. Ces alias n’ont pas des supports disjoints. On ne peut donc pas reconstituer $O \ast h$ à partir de u. Si on applique quand même, par une sorte de forçage, la formule de Shannon, on obtient une fonction qui coïncide avec $O \ast h$ sur le réseau Γ mais qui présente deux types d’artefacts :

- L’“aliasage” (*aliasing*), autrement dit “repliement de spectre” : la transformée de Fourier de la reconstituée comporte dans les basses et moyennes fréquences des ondes parasites provenant de fréquences hautes. (Voir figure dans le chapitre suivant).
- Le phénomène de Gibbs dû aux sauts induits au bord de l’image par la périodisation (les valeurs de bord à droite et à gauche, en haut et en bas, n’ont aucune raison d’être égales pour $O \ast h$!).
Dans le cas unidimensionnel, le principe de “l’aliasage”, dû à la périodisation de la transformée de Fourier du signal échantillonné est illustré figure 2.1. La fonction du haut est la transformée de Fourier \(\hat{f} \) de \(f \), le signal original. Au milieu, est tracée la périodisée \(\hat{f} \), dans le cas où la période \(T \) est suffisamment petite pour que l’on soit dans les conditions du théorème de Shannon. Il est possible de retrouver \(\hat{f} \) (et donc \(f \)), en isolant le lobe central de cette fonction périodisée (c’est à dire en multipliant par \(\mathbb{I}_R \), pour reprendre les notations de la démonstration du théorème de Shannon-Whittaker (2.1)). Dans le deuxième cas, en bas, cette période \(T \) est trop grande pour être dans les conditions du théorème de Shannon. La fonction que l’on peut récupérer à partir des échantillons a pour transformée de Fourier la fonction maximum des trois fonctions tracées en bas de la figure. Le signal reconstruit ne correspond pas au signal initial. Dans le cas des images numériques, ce phénomène d’aliasage fait souvent apparaître des structures très visibles, comme illustré sur la figure 2.2. L’image originale est en haut. En bas à gauche, on a placé l’image après sous-échantillonnage (on retient une ligne sur deux et une colonne sur deux). Le spectre de l’image originale n’étant pas nul à la nouvelle fréquence de coupure (deux fois plus petite que pour l’image initiale) on voit apparaître le phénomène d’aliasage. Sur l’image en bas à droite, la même expérience a été réalisée après avoir effectué la convolution de l’image de départ avec un filtre de support suffisamment petit pour que le spectre résultant nous place dans les conditions du théorème de Shannon. Après sous-échantillonnage, l’aliasage a disparu.
Figure 2.1: Aliasage et échantillonnage : en haut la TF du signal original. Au milieu, la TF du signal échantillonné dans le cas critique. On peut retrouver la TF du signal en tronquant à la fréquence de coupure. En bas : sous-échantillonnage. La TF du signal échantillonné est la courbe du supérieure ; l’information est définitivement perdue.
2.1 Théorie de Shannon pour les images

Figure 2.2: L'image de gauche a été sous-échantillonnée, puis ramenée à sa taille initiale. L'aliasage fait apparaître des structures organisées qui n'ont aucun rapport avec la scène observée. Pour éviter l'aliasage lorsqu'on réduit la taille de l'image, il faut appliquer un filtre passe-bas qui élimine les hautes fréquences et ramène l'image dans les conditions de Shannon. (expérience réalisée par Frédéric Guichard).
2.2 Théorie de Shannon et déquantification des images

Dans le chapitre 3 nous présentons une méthode de déquantification des images qui permet, à partir d’une image fortement quantifiée, d’obtenir une image qui possède le même aspect que l’original tout en ayant des propriétés statistiques plus intéressantes. Plus précisément, nous avons remarqué que la quantification d’une image conduisait à une distribution des directions du gradient tout à fait artificielle. En effet, les images naturelles comportent souvent de larges zones homogènes. Dans ces zones, le gradient est faible et ne devrait pas avoir de direction privilégiée. Or, après quantification, les zones homogènes se transforment en zones où prédomine un petit nombre de valeurs de gris entières. Nous montrons que de telles distributions discrètes des valeurs de niveau de gris engendrent des champs de gradient où les directions multiples de $\pi/4$ sont privilégiées.

La théorie de Shannon nous fournit les outils nécessaires pour reconstruire une image (c’est-à-dire, une fonction de \mathbb{R}^2 dans \mathbb{R}) à partir de ses échantillons, sous réserve que l’image ait été correctement échantillonnée. De plus, du point de vue de la communication, l’opération de quantification revient à ajouter un bruit à l’image. Ce bruit est fortement corrélaté à la valeur de l’échantillon auquel il s’ajoute. La question est alors de savoir comment diminuer l’effet qu’a ce bruit très particulier sur la distribution des directions du gradient. La réponse que nous proposons se base sur une réinterpolation de l’image.

Il est licite, d’après le théorème d’échantillonnage, de réinterpoler l’image sur une autre grille que la grille entière d’origine, car les échantillons portent assez d’information pour reconstruire l’image en tout point de \mathbb{R}^2 et en particulier aux points d’une autre grille. Cette réinterpolation induit un changement sur les caractéristiques du bruit. Et, parce que la réinterpolation est une isométrie de l’espace L^2, elle n’augmente pas la puissance de ce dernier. Par ailleurs, l’image obtenue après ce processus est équivalente du point de vue de la quantité d’information à l’image de départ. Nous montrons alors, qu’après rééchantillonnage sur une grille translatée d’un vecteur $(1/2, 1/2)$ par rapport à la grille d’origine, le bruit de quantification est transformé en un bruit proche d’un bruit additif gaussien et indépendant.

Nous avons donc décrit une méthode qui conserve toute l’information de l’image tout en annulant l’effet négatif qu’a la quantification sur les statistiques du champ de gradient. Et ce grâce à une réinterprétation de l’image dont la théorie de Shannon montre qu’elle est licite.

2.3 Flou et échantillonnage

Dans le chapitre 4 nous présentons une méthode d’évaluation du flou. Cette méthode qui s’applique aux images naturelles, donne une estimation locale du flou en tout point où ce calcul est possible avec une précision suffisante. Pour ce faire, nous extrayons de l’image les transitions de niveau de gris (fonctions monodimensionnelles) qui se produisent autour des bords droits de l’image. Le filtrage, nécessaire, de l’image avant
son échantillonnage peut-être considéré comme un ajout de flou. Ce flou est le flou minimal qui peut affecter une image bien échantillonnée. Dans la suite, nous essayons de déterminer la valeur de ce flou, dont intuitivement on peut penser qu’elle est de l’ordre de 1 pixel.

D’abord, il faut définir une mesure de flou que nous pouvons appliquer aux transitions de l’image. Nous avons choisi (voir la section 4.4.1 pour une discussion de ce choix) de mesurer le flou comme étant le rapport entre l’amplitude de la transition et le maximum de la dérivée du profil, soit

\[\tilde{f}(p) = \frac{\max_{x \in \mathbb{R}} p(x) - \min_{x \in \mathbb{R}} p(x)}{\max_{x \in \mathbb{R}} |p'(x)|}. \]

où \(p \) est une fonction de \(\mathbb{R} \) dans \(\mathbb{R} \) qui représente la transition de niveau de gris et \(\tilde{f}(p) \) est la mesure du flou que nous proposons. Cette définition est illustrée par la figure 2.3. Pour calculer le flou minimal d’une image bien échantillonnée, nous allons appliquer cette définition à un profil correspondant à la version filtrée d’une fonction de Heavyside. Soit donc une fonction \(f \) définie de \(\mathbb{R} \) dans \(\mathbb{R} \), valant 0 sur \(]-\infty, 0[\) et 1 ailleurs. Avant de pouvoir échantillonner cette fonction avec un pas de 1, il convient de la filtrer par un sinus cardinal

\[\text{sinc}(x) = \frac{\sin(\pi x)}{\pi x}. \]

Le résultat de ce filtrage est illustré à la figure 2.4. On y constate l’apparition du phénomène de Gibbs qui est étudié en détail à la section A.1.3. Si nous appliquons notre définition à cette fonction nous trouvons un flou de largeur à peu près égale...
à 1.18. En effet l’amplitude de cette fonction est de 1.18 alors que le maximum de sa dérivée est égal au maximum atteint par la fonction sinus cardinal et qui vaut 1. Cependant, une fois que l’image est échantillonnée nous ne disposons pas de la version continue de la transition mais d’un nombre fini de valeurs. De plus, suivant la position de la grille d’échantillonnage ces valeurs ne seront pas les mêmes d’un échantillonnage à l’autre. Dans le cas d’une fonction monodimensionnelle, la position de la grille d’échantillonnage est complètement définie par la donnée d’un réel dx compris entre 0 et 1. Les points de la grille sont alors donnés par $n + dx$ quand n parcourt \mathbb{Z}. Les figures 2.6 et 2.5 illustrent le résultat de l’échantillonnage pour différentes valeurs de ce paramètre (0.5 et 0).

Nous avons fait évoluer le paramètre dx entre 0 et 1 par pas de 0,01. Pour chacune de ces valeurs nous avons calculé le flou du profil obtenu après échantillonnage. La figure 2.7 montre les valeurs de flou que nous avons obtenues. On constate que, suivant la position de la grille, le flou calculé varie entre 1,17 et 2.

Nous avons appliqué le même procédé à des rampes (figure 2.8) qui représentent des transitions moins brutales que la fonction de Heavyside. On remarque (figure 2.9) que la mesure du flou devient plus conforme à ce qui est attendu, c’est-à-dire la largeur de la rampe, au fur et à mesure que la largeur de celle-ci augmente.

Ces expériences appellent quelques commentaires. D’abord, elles suggèrent qu’il est inutile de chercher à évaluer un flou plus fin que 1 pixel. Du moins si l’on se contente d’étudier les profils des transitions, car la simple opération d’échantillonnage rend impossible la distinction entre une fonction de Heavyside et une rampe de largeur 1. Par ailleurs, la mesure du flou que nous proposons semble être précise pour des flous supérieurs à 2 pixels. Enfin, il faut prendre garde à ne pas extraire de profils de transition sur une seule ligne, il faut plutôt agglomérer plusieurs profils pour obtenir une estimation plus fiable du flou. C’est ce que nous ferons au chapitre consacré au flou, d’une part en détectant les bords droits de l’image, ce qui nous garantira la présence de transitions parallèles les unes aux autres, proches et résultantes d’un même flou. Ces transitions peuvent alors être moyennées entre elles pour donner un profil unique qui sera plus fiable que chacune des transitions prises séparément. Ce moyennage sera réalisé par un filtrage anisotrope de l’image.

Enfin, différentes expériences de calcul du flou sur des images acquises par des appareils photographiques numériques nous ont montré que les canaux rouge et bleu sont généralement plus flous que le canal vert. Ceci peut s’expliquer par le fait que ces deux canaux sont moins bien échantillonnés que le canal vert. Ceci oblige à appliquer un filtrage plus fort à ces canaux pour essayer d’atténuer l’aliasage résultant du sous échantillonnage. Une telle expérience est illustrée aux figures 4.55, 4.57 et 4.56.
2.3 Flou et échantillonnage

Figure 2.4: Filtrage d’une fonction de Heavyside par un sinus cardinal.

Figure 2.5: Résultat de l’échantillonnage de la fonction de Heavyside filtrée sur une grille décalée de 0 par rapport au repère (valeurs sur \(\mathbb{Z} \)).
Figure 2.6: Résultat de l’échantillonnage de la fonction de Heavyside filtrée sur une grille décalée de 0.5 par rapport au repère (valeurs sur $\mathbb{Z} + 0.5$).

Figure 2.7: Différentes valeurs de flou obtenues en fonction du paramètre dx.
2.3 Flou et échantillonnage

Figure 2.8: Rampe dont on veut évaluer le flou après filtrage et échantillonnage.

Figure 2.9: Nous avons fait varier la largeur de la rampe (figure 2.8) de 1 à 6 (du bas vers le haut) et avons calculé son flou après filtrage et échantillonnage pour différentes valeurs de dx (en abscisse).
CHAPITRE 3

Déquantification de l’orientation des images

Résumé. Nous nous intéressons au calcul d’une carte des orientations locales d’une image numérique. Nous montrons que la quantification des images en niveaux de gris introduit un biais dans la répartition des orientations, rendant difficile toute analyse géométrique de l’image. Nous proposons ensuite un algorithme de déquantification qui conserve toute l’information de l’image et transforme le bruit de quantification en un bruit proche d’un bruit blanc gaussien (en fait, nous prouvons que seul un bruit gaussien permet d’obtenir une répartition isotrope des orientations). Nous utilisons des arguments mathématiques pour montrer que ceci a pour conséquence de restaurer l’isotropie de l’image. Contrairement à d’autres méthodes classiques nous montrons que cette propriété peut être obtenue sans lissage de l’image et sans changer le rapport signal à bruit. Comme application nous montrons comment la déquantification des directions améliore l’efficacité d’algorithmes géométriques tels que la détection d’alignements non locaux. Nous montrons aussi une amélioration de la qualité des orientations calculées après que notre méthode de déquantification a été appliquée à des images aliasées.

3.1 Introduction

Soit \(u(x) \) une image en niveaux de gris, \(x \) désigne la variable spatiale et \(u(x) \) le niveau de gris en \(x \). La plupart des images naturelles sont générées de la manière suivante : à partir d’une image source \(s \), supposée être de résolution infinie, un lissage optique à bande limitée est d’abord appliqué à \(s \), engendrant une version lissée de \(s, k \ast s \). D’après la théorie de Shannon-Whittaker une image à bande limitée peut être échantillonnée, sans perte d’information, suivant une grille dès que cette grille est assez fine. Soit \(\Pi \) le peigne de Dirac associé à une telle grille. Alors, \(u \) est obtenue par l’équation \(u = (s \ast k) \Pi \) qui donne une image numérique discrète. D’après le théorème de Shannon-Wittaker \((s \ast k) \) peut être retrouvé en appliquant une interpolation de Shannon à \(u \) (convolution avec un sinus cardinal). Ce modèle est quelque peu idéalisé car d’autres opérations s’appliquent à l’image et la dégradent. D’abord un bruit photonique ou électronique \(n \) s’ajoute. Ensuite il y a le phénomène de fenêtrage car \(\Pi \) n’est pas infini mais a comme support un rectangle. Et enfin, une quantification \(Q \). Ceci nous conduit à un modèle plus réaliste \(u = Q[(k \ast s) \Pi + n] \), dans lequel nous négligeons le fenêtrage car il affecte essentiellement la frontière de l’image. Dans ce travail nous nous
3.1 Introduction

interessons au calcul précis et non biaisé de l'orientation \(\theta \) du gradient de \(u \), avec \(\theta \in [0,2\pi] \) tel que \(\exp(i\theta) = Du/|Du| \), \(Du = (u_x, u_y) \) étant le gradient de \(u \). Quand nous parlons de gradient nous désignons le gradient de la version continue de \(u \), ce qui a un sens si l'on suppose que \(u \) est interpolable au sens de Shannon. Si on suppose, ce qui est réaliste, que \(k \) et \(n \) sont isotropes, nous devons déterminer l'effet de la quantification \(Q \) sur le champ des orientations du gradient. Nous avons découvert que cet effet est grand et entraîne un biais conséquent sur le champ des orientations. A moins d'appliquer une restauration préalable, cet effet empêche toute analyse géométrique fiable de l'image. Avant d'expliquer comment effectuer cette restauration, nous allons donner un exemple pour lequel elle est essentielle au bon déroulement d’une analyse géométrique de l’image. Bien qu’il s’agisse d’un exemple particulier, il faut noter que toute méthode probabiliste basée sur l’interaction entre pixels (telle que, par exemple, les champs de Markov) subit le même effet.

Desolneux et al. ont récemment proposé une méthode de groupement non locale pour la détection des alignements dans les images. Nous présentons brièvement le principe de la méthode développée dans [Desolneux et al., 2000]. On suppose que l’image a en chaque point une orientation \(\Theta(x) \) (définie comme étant la direction du gradient plus \(\pi/2 \)). On considère un segment \(S \) constitué de points alignés de l’image, dont la longueur est notée \(l \). Soit \(\theta_0 \), l’orientation de ce segment. Supposons que l’on trouve \(k \) points situés sur \(S \) (parmi les \(l \) points) et qui ont leur orientation égale à celle de \(S \) à une précision \(p \) donnée (i.e. \(|\theta(x) - \Theta_0| \leq \pi p \)). Si \(k \) est assez grand alors on dit que \(S \) est significatif (nous donnons plus de détails sur cette méthode au dernier paragraphe). La figure 3.6(b) montre tous les segments détectés dans une image naturelle à la précision \(p = 1/16 \). On constate qu’aucun segment détecté ne peut être imputé à la manière dont l’image se forme, ils correspondent tous à des alignements pertinents. Choisissons maintenant une précision \(p = 1/64 \). Cette précision peut paraître exagérée cependant elle donne de bons résultats sur une image à fort gradient. La figure 3.6(c) montre les segments détectés qui sont clairement non pertinents par rapport à la perception que l’on a de l’image. Nous avons découvert que c’est la quantification des niveaux de gris, qui est à l’origine de ces détections parasites. Cela ne signifie pas que notre détection d’alignements est erronée, mais plutôt que ces alignements sont le résultat du processus de formation de l’image. La figure 3.6(d) montre les segments détectés (toujours à la précision \(p = 1/64 \)) dans la même image après avoir appliqué la méthode de déquantification que nous proposons.

Revenons au problème du calcul d’un champ des orientations fiables. Une première bonne réponse possible à ce problème, et qui utilise le trameagle (ou dithering), a été proposée par Pirsch et Netravali dans [Pirsch et Netravali, 1983], elle consiste à ajouter du bruit à l’image avant l’étape de quantification puis de soustraire le même bruit à l’image quantifiée. Cela a pour conséquence la diminution du rapport signal à bruit (RSB) de l’image tout en conservant à celle-ci son aspect et son caractère isotrope, y compris dans le cas d’une forte quantification. Malheureusement, la méthode du dithering a été, d’après ce que nous savons, totalement abandonnée dans la conception d’appareils d’acquisition d’images. En résumé, le dithering peut restaurer l’isotropie de l’image au prix d’une baisse du RSB à condition d’être appliqué au moment de la génération de l’image, ce qui n’est généralement pas le cas.

Déquantification de l'orientation des images

objecter à ces méthodes étant donné qu’elles renvoient les positions précises des points de bord. Cependant, les points de bord (ou de transition) sont rares dans une image et bien que l'orientation du gradient y soit particulièrement fiable, se restreindre à ces seuls points nous prive de beaucoup d’autres informations sur l’orientation et rend difficile une approche statistique de la détection d’alignements.

Une autre possibilité consiste à définir un espace d’échelle (scale space) des orientations comme proposé par [Perona, 1998] et [Tang et al., 1999]. Par ailleurs l’espace d’échelle affine ([Alvarez et al., 1993], [Sapiro and Tannenbaum, 1993]) nous fournit une évaluation multiéchelles des orientations des lignes de niveau. Toutes ces méthodes ont un objectif plus large que le simple calcul d’une orientation locale, elles ont pour but le calcul d’une carte multiéchelle des orientations qui représente en elle-même une analyse non locale de l’image. Elles sont plus intéressantes que les méthodes qui renvoient une carte des contours car elle fournissent une orientation en chaque point de l’image. Cependant, elles ne sont pas adaptées pour des modèles d’analyse d’images basés sur des observations locales telles que la plupart des méthodes probabilistes, ni pour la méthode que nous avons brièvement présentée ci-dessus. En effet, ces méthodes ne préservent pas l’indépendance entre points séparés d’une distance de Nyquist (distance de l’échantillonnage adapté à l’image).

La solution que nous proposons doit donc, à la lumière de la discussion précédente, vérifier les critères suivants:

- Conserver l’indépendance des observations locales ce qui signifie qu’on ne doit pas appliquer de lissage
- Conserver toute l’information de l’image. La méthode doit donc être réversible.
- Donner une carte des orientations qui soit non biaisée ce qui implique de rendre le bruit de quantification isotrope.

Nous démontrons qu’une simple opération, consistant en une translation de vecteur (1/2, 1/2) de l’image interpolée à partir de ses coefficients de Fourier, est irreversible et permet de supprimer l’effet de la quantification sur la carte des orientations. Plus précisément, nous montrons expérimentalement et mathématiquement que cette translation transforme le bruit de quantification en un bruit qui se rapproche d’un bruit blanc gaussien. Nous montrons aussi qu’un calcul local du gradient appliqué à l’image résultante conduit à une carte des orientations qui est non-biaisée, même aux points de l’image où le gradient est de faible amplitude (et donc dominé par le bruit). Ce résultat reste valide même quand le pas de quantification est grand. Ceci permet d’effectuer une analyse géométrique de l’image à partir d’une estimation très locale du gradient et ainsi d’utiliser toute l’information contenue dans l’image contrairement à ce qui se passe quand l’image est lissée préalablement.

Dans le paragraphe 3.2 nous considérons une méthode générique pour l’évaluation locale du gradient et nous montrons qu’elle conduit à une carte des orientations isotrope, sous l’hypothèse que l’image est un bruit blanc gaussien ou uniforme. Nous montrons aussi une réciproque : le gradient est isotrope si et seulement si le bruit est gaussien. Nous analysons le biais introduit par la quantification et montrons que son effet peut être dramatique sur les orientations. Dans le paragraphe 3.3 nous détaillons la méthode proposée et nous analysons mathématiquement et expérimentalement le bruit de l’image déquantifiée. Nous montrons qu’il est proche d’un bruit blanc gaussien et qu’il permet donc une évaluation locale non biaisée de l’orientation. Enfin, nous présentons les résultats expérimentaux au paragraphe 3.4.
3.2 Évaluation locale du gradient et de l’orientation

Soit u une image discrète de taille $N \times M$. En chaque point on peut calculer le gradient sur un voisinage 2×2 (Nous choisissons le plus petit voisinage possible pour garantir la localité). Ce gradient est défini par

$$G(n,m) := \left(\begin{array}{c} u_x \\ u_y \end{array} \right) := \frac{1}{2} \left(\begin{array}{c} X_2 + X_4 - X_1 - X_3 \\ X_1 + X_2 - X_3 - X_4 \end{array} \right)$$ (3.1)

où $X_1 = u(n,m)$, $X_2 = u(n+1,m)$, $X_3 = u(n,m+1)$ et $X_4 = u(n+1,m+1)$ (voir la figure 3.1).

L’équation (3.1) représente l’estimation classique aux différences finies du gradient de u, mais elle peut aussi être interprétée comme le gradient exact $\nabla \tilde{u}(n+1/2, m+1/2)$, où \tilde{u} est l’interpolée bilinéaire de u définie sur $[n,n+1] \times [m,m+1]$ par

$$\tilde{u}(x,y) = (y-m) ((x-n)X_4 + (1-x+n)X_3) + (1-y+m) ((x-n)X_2 + (1-x+n)X_1).$$

En partant de (3.1), nous définissons l’orientation θ par la formule

$$u_x + iu_y = R \exp(i\theta),$$ (3.2)

où R est un réel positif. θ n’est évidemment pas défini pour $R = 0$. Nous voulons étudier le comportement de θ en tant que fonction de X_1, X_2, X_3 et X_4. Le problème est de savoir si une telle évaluation de l’orientation est valide ou non (i.e. privilégie-t-elle ou non certaines directions). Dans ce paragraphe nous démontrons que si u est un bruit blanc gaussien, alors il n’y a pas de biais sur les orientations (i.e. toutes les directions sont équiprobables), et si u est un bruit blanc uniforme, alors cette méthode d’évaluation du gradient introduit un léger biais (les directions multiples de $\pi/4$ sont favorisées).

3.2.1 Bruit gaussien

Montrons d’abord que si u est un bruit blanc gaussien alors il n’y pas de biais sur les orientations.

Proposition 3.1 Soit X_1, X_2, X_3 et X_4 des variables indépendantes, identiquement distribuées, centrées et gaussiennes de variance σ^2. Alors θ suit une loi uniforme sur $[0, 2\pi]$.

Démonstration Remarquons d’abord que si on note $A = X_2 - X_3$ et $B = X_1 - X_4$, alors A et B sont indépendantes et on a $u_x = (A - B)/2$ et $u_y = (A + B)/2$. Donc, d’après (3.2)

$$A + iB = R \sqrt{\frac{2}{\pi}} \exp \left(i \left(\theta - \frac{\pi}{4} \right) \right).$$

(3.3)

Comme somme de deux variables gaussiennes de moyenne nulle et de variance σ^2, A et B sont gaussiennes de moyenne nulle et de variance $2\sigma^2$. A et B étant indépendantes, la loi du couple (A, B) est donnée par la fonction de densité

$$f(a, b) = \frac{1}{4\pi\sigma^2} \exp \left(-\frac{a^2 + b^2}{4\sigma^2} \right),$$

qui montre que θ est presque sûrement définie. Enfin, puisque f est à symétrie de révolution (ne dépend que de $a^2 + b^2$) il vient que θ est équirépartie sur $[0, \pi]$. □

Proposition 3.2 (Réciproque) Soit X_1, X_2, X_3 et X_4 quatre variables aléatoires indépendantes et identiquement distribuées. Supposons que leur loi est donnée par une fonction de densité f, telle que f soit de carré sommable et paire. Si le gradient calculé à partir de X_1, X_2, X_3 et X_4 comme en (3.1) est iso trope (i.e. sa loi possède la symétrie de révolution), alors f est gaussienne.

Démonstration Comme dans la démonstration de la proposition 3.1, on note $A = X_2 - X_3$ et $B = X_1 - X_4$. A et B sont indépendantes et identiquement distribuées. Elles ont la même fonction de densité g qui est le résultat de la convolution de f par elle même (i.e. $g(x) = \int f(x-t)f(t)dt$). Comme f est de carré sommable, g est continue. De plus $g(0) = \int f(t)^2 \neq 0$ car f est une fonction d’intégrale non nulle, donc f n’est pas nulle presque partout. Comme (A, B) est supposé iso trope, sa loi $g(x)g(y)$ ne dépend que de $x^2 + y^2$. Ce qui nous permet d’écrire $g(x)g(y) = g(\sqrt{x^2 + y^2})g(0)$. De plus, g est paire et n’est jamais nulle car $g(0) \neq 0$ et que $g(x)^2 = g(x\sqrt{2})g(0)$. Donc, on peut considérer la fonction \tilde{g} définie pour $x \geq 0$ par $\tilde{g}(x) = \ln(g(\sqrt{x})/g(0))$. On a alors, pour tout $x, y \geq 0$, $\tilde{g}(x+y) = \tilde{g}(x) + \tilde{g}(y)$. Etant donné que \tilde{g} est continue, cette dernière équation montre que \tilde{g} est linéaire. Ce qui montre qu’il existe un $\sigma \in \mathbb{R}$ tel que pour tout $x \in \mathbb{R}$ on ait

$$g(x) = g(0) \exp \left(-\frac{x^2}{2\sigma^2} \right),$$

où $g(0)$ est fixé par le fait que $\int g = 1$. Donc la loi de A (et de B) est une loi gaussienne de moyenne nulle et de variance σ^2.

Montrons maintenant que la loi des X_i est aussi gaussienne. Comme $g = f * f$, la transformée de Fourier de g, notée \hat{g}, est donnée par

$$\hat{g}(t) = \hat{f}(t)^2 = C \exp \left(-\frac{t^2\sigma^2}{2} \right).$$

Donc \hat{f} est aussi une gaussienne. Enfin, f est aussi une gaussienne, comme transformée de Fourier inverse d’une gaussienne, et sa variance est la moitié de celle de g soit $\sigma^2/2$. □

Ce résultat a une conséquence très forte : si l’on souhaite obtenir une carte des orientations sans biais, il faut traiter l’image de manière à ce que le bruit qui l’affecte devienne un bruit gaussien. Nous montrons que ceci est réalisable en partant d’une image qui a subi une quantification.

La proposition suivante est une généralisation de la proposition 3.1, dans le cas où le gradient est calculé sur un voisinage plus grand que précédemment.
3.2 Évaluation locale du gradient et de l’orientation

![Figure 3.2: loi de \(\theta \) lorsque l’image est un bruit blanc uniforme et la comparaison avec une loi uniforme (graphe en pointillés).](image)

Proposition 3.3 Supposons que les composantes \((u_x,u_y)\) du gradient soient calculées sur un voisinage de \(n\) pixels \(X_1,X_2,\ldots,X_n\), et ce suivant un schéma linéaire tel que

\[
\begin{align*}
 u_x &= \sum_{i=1}^{n} \lambda_i X_i \\
 u_y &= \sum_{i=1}^{n} \mu_i X_i
\end{align*}
\]

où les \(\lambda_i\) et les \(\mu_i\) sont des réels tels que \(\sum \lambda_i \mu_i = 0\) et \(\sum \lambda_i^2 = \sum \mu_i^2\). Si les \(X_i\) sont i.i.d gaussiennes de variance \(\sigma^2\), alors l’angle \(\theta\) a pour loi la loi uniforme sur \([0,2\pi]\).

Démonstration Toute combinaison linéaire de \(u_x\) et de \(u_y\) est gaussienne car elle est aussi une combinaison linéaire des \(X_i\), qui sont des gaussiennes et indépendantes. Ainsi, \((u_x,u_y)\) est un vecteur gaussien. Le fait que \(\sum \lambda_i \mu_i = 0\), implique que la corrélation entre \(u_x\) et \(u_y\) est nulle. Comme le vecteur \((u_x,u_y)\) est gaussien on en déduit que \(u_x\) et \(u_y\) sont deux variables indépendantes (voir [Feller, 1971]). De plus, la propriété \(\sum \lambda_i^2 = \sum \mu_i^2\) implique que \(u_x\) et \(u_y\) ont la même variance (on sait déjà qu’elles sont toutes deux de moyenne nulle car \(\sum \lambda_i = \sum \mu_i = 0\)). Enfin, comme dans la preuve de la proposition 3.1, la loi du couple \((u_x,u_y)\) est donnée par une fonction de densité \(f(x,y)\) qui ne dépend que de \(x^2 + y^2\). Il en résulte que \(\theta\) est uniformément distribuée sur \([0,2\pi]\).

3.2.2 Calcul de l’orientation dans une image non quantifiée

Dans ce paragraphe nous nous intéressons à l’effet qu’a sur l’histogramme des orientations l’application de la méthode d’évaluation du gradient décrite ci-dessus. Nous allons voir que le biais induit par cette méthode est petit.

Il est rarement réaliste de supposer que la répartition locale des niveaux de gris d’une image est gaussienne. Il est plus réaliste de supposer que les niveaux de gris de points voisins diffèrent d’une variable aléatoire uniforme (ne serait-ce que parce qu’une image peut-être approximée localement par une fonction linéaire). Pour avoir une idée de la distorsion de
l'histogramme des orientations nous allons donc évaluer le biais induit par la méthode de calcul du gradient sur la carte des orientations d’une image qui serait un bruit blanc uniforme. Soit une image dont chaque pixel est modélisé par une variable aléatoire uniforme sur $[-1/2, 1/2]$ indépendante des autres pixels. On a alors un petit biais sur θ. Plus précisément nous avons la proposition suivante.

Proposition 3.4 Soient X_1, X_2, X_3 et X_4 quatre variables aléatoires indépendantes et uniformément distribuées sur $[-1/2, 1/2]$. Alors la loi de θ a pour fonction de densité la fonction g définie par

$$g(\theta) = \frac{1}{12} \left(1 + \tan^2 \left(\frac{\pi}{4} - |\theta|\right)\right) \left(2 - \tan \left(\frac{\pi}{4} - |\theta|\right)\right).$$

(voir la figure 3.2).

Démonstration On reprend les notations de la preuve de la proposition 3.1. Les variables aléatoires $A = X_2 - X_3$ et $B = X_1 - X_4$ sont indépendantes et ont la même densité de probabilité h, qui est le résultat de la convolution de la fonction indicatrice de l’intervalle $[-1/2, 1/2]$ avec elle-même. Soit $h(x) = 1 - |x|$ pour $|x| \leq 1$ et $h(x) = 0$ sinon. Calculons la loi de $\alpha = \theta - \pi/4$, sachant que d’après (3.3) $B = A \tan(\alpha)$. Par symétrie du problème nous pouvons nous contenter du cas $\alpha \in [0, \pi/4]$. La fonction de distribution de α est $F(\alpha) = P[0 \leq B \leq A \tan(\alpha)]$, soit

$$F(\alpha) = \int_{x=0}^{1} \left(\int_{y=0}^{x \tan \alpha} (1 - y)dy\right)(1 - x)dx.$$

Donc, la loi de $\alpha \in [0, \pi/4]$ est donnée par la fonction de densité

$$f(\alpha) = F'(\alpha) = \int_{0}^{1} x(1 + \tan^2 \alpha)(1 - x \tan \alpha)(1 - x)dx = \frac{1}{12} (1 + \tan^2 \alpha)(2 - \tan \alpha).$$

Enfin, par symétrie et en utilisant la relation $\theta = \alpha + \pi/4$ on obtient le résultat annoncé. □

La proposition 3.4 montre que si, les pixels d’une image ont des valeurs indépendantes et uniformément distribuées, alors les orientations ne sont pas uniformément distribuées. La figure 3.2 montre que les multiples de $\pi/4$ sont plus représentés que les autres angles. Cependant, la différence relative entre g et la fonction constante égale à $1/2\pi$ est égale à $2\pi \times \max_{\theta} |g(\theta) - 1/2\pi| \simeq 0.047$. Soit 4.7%, ce qui est relativement faible.

3.2.3 Biais dû à la quantification

Dans le paragraphe précédent nous avons vu que la méthode que nous utilisons pour calculer l’orientation en chaque point de l’image n’introduit pas de biais trop grand. Dans ce qui suit nous allons voir que l’histogramme des directions est très affecté par la quantification des niveaux de gris. Pour commencer, considérons un cas simple : une image binaire. On suppose qu’en chaque point le niveau de gris vaut soit 0 (noir) soit 1 (blanc). Alors la direction θ ne prend qu’un nombre fini de valeurs. Ces valeurs sont tous les multiples entiers de $\pi/4$. Plaçons-nous dans un cas moins extrême où chaque point de l’image prend une valeur parmi $\{0, 1, 2, \ldots, n-1\}$. On note comme précédemment $A = X_2 - X_3$ et $B = X_1 - X_4$. Alors A et B prennent leurs valeurs dans l’ensemble fini $\{-n+1, \ldots, -1, 0, 1, \ldots, n-1\}$. Si $A = B = 0$, θ n’est pas défini. Si $A = 0$ et $B \neq 0$, alors θ vaut $\pi/4$ ou $3\pi/4$. Dans les autres cas, on a $\tan(\theta - \pi/4) = B/A$ et donc θ ne prend qu’un nombre fini de valeurs.
Calculons la loi de probabilité de la variable discrète \(\theta \) quand l'image est un bruit blanc discret uniforme (chaque \(X_i \) prend une valeur dans \(\{0, \ldots, n-1\} \), avec \(P[X_i = k] = 1/n \)). Pour commencer on calcule la loi de \(A \) (qui est la même que celle de \(B \))

\[
\forall k \in \{0, \ldots, n-1\}, P[A = k] = \frac{n-1}{n} \sum_{j=0}^{n-1} P[X_3 = j].P[X_2 = k + j] = \frac{n-|k|}{n^2}
\]

Donc, \(P[A = b = 0] = 1/n^2 \) et dans ce cas \(\theta \) n’est pas définie. Calculons maintenant la loi de \(B/A \) quand \(A \neq 0 \). Pour chaque valeur \(b/a \in \mathbb{Q} \) (avec \(a \) et \(b \) premiers entre eux), on a

\[
P[B/A = b/a] = \sum_{\lambda \in \mathbb{Z}^*} P[B = \lambda b].P[A = \lambda a]. \tag{3.4}
\]

En particulier, on peut calculer la probabilité de l’événement \(\theta = \pi/4 \) (qui correspond au cas où \(B = 0 \) et \(A > 0 \)). Par symétrie, la probabilité de cet événement est la même que celle des événements \(\theta = -\pi/4 \), \(\theta = 3\pi/4 \) et \(\theta = -3\pi/4 \). On a

\[
P[\theta = \pi/4] = \sum_{a=1}^{n-1} P[A = a].P[B = 0] = \frac{n-1}{n^3} = \frac{n-1}{2n^2}
\]

De plus, on a

\[
\forall \alpha \in \mathbb{R}, \alpha \neq \frac{\pi}{4}, P[\theta = \alpha] < P[\theta = \pi/4].
\]

En effet, dans l’équation (3.4), si \(b \neq 0 \) le terme \(P[B = \lambda b] \) est strictement inférieur à \(1/n \) et l’ensemble des \(\lambda a \) tels que \(P[A = \lambda a] \) soit non nulle est inclus dans \(\{0, \ldots, n-1\} \) ou \(\{-n+1, \ldots, 0\} \) (on doit choisir un signe pour \(\lambda \) car la tangente ne détermine un angle qu’à \(\pi \) près) ce qui prouve le résultat.

Ceci montre que les orientations multiples de \(\pi/4 \) sont très favorisées comme le montre la figure 3.3, où nous avons illustré la distribution de probabilités de \(\theta \) pour \(n \) valant 6, 9, et 257. Ces trois cas correspondent à des \(n-1 \) qui sont soit premiers soit une puissance de deux. L’équation (3.4) montre que la loi de probabilité de \(B/A \) est reliée à un problème classique d’arithmétique : combien peut-on former de fractions irréductibles \(b/a \) sachant que \(0 \leq b \leq a \leq N \)? Ce problème a été étudié par Lopez-Krahe et al. (voir [Lopez-Krahe and Pousset, 1988] et [Lutton et al., 1994]) dans le but d’évaluer l’effet de la quantification des positions des points d’un réseau \(\mathbb{Z}^2 \) sur l’histogramme des pentes des droites joignant deux points du réseau. La principale différence avec le cas que nous traitons est que nous considérons une loi de probabilité pour \(a \) et \(b \).

La plupart des images ne sont pas des images binaires, pourtant l’effet de la quantification sur l’histogramme des directions du gradient et toujours très significatif. La raison de cet effet est que la plupart des images contiennent des zones "plates" où le niveau de gris varie peu. Dans ces régions les niveaux de gris appartiennent à un petit ensemble fini ce qui cause une quantification de l’histogramme des orientations conformément à l’étude que nous venons de mener.

3.3 Déquantification de l’orientation

3.3.1 La solution proposée : une translation de Fourier

Nous supposons que le signal échantillonné de départ (avant quantification) respecte les conditions de Shannon, c’est-à-dire que l’on peut reconstruire le signal continu à partir des
Figure 3.3 : Distribution de probabilité pour θ ∈ [−π/2, π/2], lorsque les valeurs prises par l’image sont uniformément distribuées dans {0, ..., 5} (en haut à gauche), {0, ..., 8} (en haut à droite) et {0, ..., 256} (en bas).

échantillons. On note s un tel signal s’il est unidimensionnel et u s’il est bidimensionnel (une image)

\[s(x) = \sum_{k \in \mathbb{Z}} s(k) \cdot \text{sinc}(\pi(x - k)), \]

et

\[u(x, y) = \sum_{k, l \in \mathbb{Z}} u(k, l) \cdot \text{sinc}(\pi(x - k)) \cdot \text{sinc}(\pi(y - l)). \]

La fonction sinc désigne le sinus cardinal sinc(x) = sin(x)/x, avec sinc(0) = 1. Evidemment, on ne connaît pas les vraies valeurs de s(k) (ou u(k, l)). Nous n’avons accès qu’aux valeurs quantifiées du signal que nous notons \(S \) (ou \(U \)). Ceci s’écrit,

\[s(k) = S(k) + X_k \]
\[u(k, l) = U(k) + X_{k,l} \]

où \(X_k \) (ou \(X_{k,l} \)) est le bruit de quantification. Dans la suite, on suppose que les variables \(X_k \) (ou \(X_{k,l} \)) sont indépendantes et identiquement distribuées suivant une loi uniforme sur \([-1/2, 1/2]\). Cette hypothèse d’indépendance est correcte au-delà de la distance de Nyquist.

La solution que nous proposons pour la déquantification est la suivante. Nous remplaçons les valeurs quantifiées du signal \(S(n) \) par les valeurs \(S(n + 1/2) \) obtenues en effectuant une
interpolation au sens de Shannon, autrement dit

\[S \left(n + \frac{1}{2}\right) = \sum_{k \in \mathbb{Z}} S(n + k) \frac{\sin(\pi(1/2 - k))}{\pi(1/2 - k)} = \sum_{k \in \mathbb{Z}} s(n + k) \frac{(-1)^k}{\pi(1/2 - k)} - \sum_{k \in \mathbb{Z}} X_{n+k} \frac{(-1)^k}{\pi(1/2 - k)} = s \left(n + \frac{1}{2}\right) - \sum_{k \in \mathbb{Z}} X_{n+k} \frac{(-1)^k}{\pi(1/2 - k)} \]

Pour les images quantifiées \(U(n,m)\) cette formule s’écrit

\[U \left(n + \frac{1}{2}, m + \frac{1}{2}\right) = u \left(n + \frac{1}{2}, m + \frac{1}{2}\right) - \sum_{k,l \in \mathbb{Z}} X_{n+k} X_{m+l} \frac{(-1)^k}{\pi(1/2 - k)} \frac{(-1)^l}{\pi(1/2 - l)} \]

Pour les images de taille finie \(N \times N\), on a

\[u(x,y) = \sum_{k,l=0}^{N-1} u(k,l) \cdot \text{sinc}_d(\pi(x - k)) \cdot \text{sinc}_d(\pi(y - l)) \]

où \(\text{sinc}_d\) est le sinus cardinal discret, défini par \(\text{sinc}_d(t) = \sin(t)/(N \tan(t/N))\) (avec la convention que \(\text{sinc}_d(\pi k N) = 0\) pour tout entier \(k\)).

3.3.2 Étude du bruit déquantifié

Par méthode de déquantification nous entendons : méthode qui permet de remplacer le bruit structuré de quantification par un bruit proche d’un bruit blanc gaussien. Nous allons voir que, compte tenu du fait que la translation de Shannon est une isométrie, le bruit conserve sa variance et que l’on ne change donc pas le rapport signal à bruit. Nous pouvons donc déjà affirmer que la méthode n’est pas destructive. En effet, on peut reconstruire l’image originale en appliquant une translation de vecteur \((-1/2, -1/2)\).

Dans ce paragraphe nous allons étudier les propriétés du bruit déquantifié \(Y_1\) (en 1-D) et \(Y_2\) en (2-D) définis par

\[Y_1 = \sum_{k \in \mathbb{Z}} \frac{(-1)^k}{\pi(1/2 - k)} X_k, \quad \text{et} \]
\[Y_2 = \sum_{k,l \in \mathbb{Z}} \frac{(-1)^k}{\pi(1/2 - k)} \frac{(-1)^l}{\pi(1/2 - l)} X_{k,l}, \quad (3.5) \]

où les \(X_k\) (et les \(X_{k,l}\)) sont supposées indépendantes et uniformément distribuées sur \([-1/2, 1/2]\). Introduisons quelques notations. Pour \(k \in \mathbb{Z}\), on pose

\[c_k = \frac{(-1)^k}{\pi(1/2 - k)}. \quad (3.6) \]

on a donc, \(Y_1 = \sum_{k \in \mathbb{Z}} c_k X_k\) et \(Y_2 = \sum_{k,l \in \mathbb{Z}} c_k c_l X_{k,l}\). Si \(X\) est une variable aléatoire uniformément distribuée sur \([-1/2, 1/2]\), alors \(X\) a pour moyenne \(E(X) = 0\) et pour variance \(\text{var}(X) = 1/12\). Comme la somme \(\sum c_k^2 = 1\) est convergente, les sommes de variables
aléatoires de (3.5) qui définissent Y_1 et Y_2 sont convergentes dans L^2. De plus $E(Y_1) = E(Y_2) = 0$ et $\text{var}(Y_1) = \text{var}(Y_2) = 1/12$. La variance de Y_1 (et de Y_2) est la même que celle de X_k, ce qui traduit le fait qu’une translation de Shannon est une isométrie dans L^2, nous n’ajoutons donc pas de bruit au signal (pas plus que nous n’en enlevons).

Dans la figure 3.4, nous illustrons les lois de Y_1 et de Y_2 que nous comparons à une gaussienne de moyenne nulle et de variance 1/12. Nous remarquons que ces lois sont très proches les unes des autres et on note que la loi de Y_2 est encore plus proche de la gaussienne que ne l’est Y_1. Ce phénomène peut être expliqué qualitativement par le théorème central limite et par le fait que Y_2 est la somme d’un nombre plus important de variables indépendantes.

1) *Comparaison des kurtosis* : Une manière de comparer les lois de Y_1 et Y_2 à la gaussienne est d’évaluer leur moment d’ordre 4 que l’on normalise en le divisant par le carré de la variance. Ce paramètre sans dimension s’appelle le kurtosis (voir [Mumford, 1998]).

Définition 3.1 Le kurtosis κ d’une variable aléatoire X qui possède un moment d’ordre 4 est défini par

$$\kappa = \frac{E[(X - E(X))^4]}{\text{var}(X)^2}.$$

Un résultat classique est que le kurtosis d’une gaussienne est égal à 3. Nous calculons maintenant les kurtosis des variables Y_1 et Y_2.

Proposition 3.5 Soit κ_1 le kurtosis de Y_1 et κ_2 celui de Y_2, on a

$$\kappa_1 = \frac{13}{5} = 2.6$$

et

$$\kappa_2 = \frac{43}{15} \simeq 2.87$$

Démonstration Pour calculer le moment d’ordre 4 de Y_1 nous allons commencer par évaluer la fonction caractéristique Φ_{Y_1} de Y_1 (Φ_{Y_1} est la transformée de Fourier de la loi de
3.3 Déquantification de l’orientation

\(Y_1 \), puis nous calculerons la dérivée quatrième de \(\Phi_{Y_1} \) en 0. On a
\[
\Phi_{Y_1}(t) = E[e^{itY_1}] = \prod_{k \in \mathbb{Z}} E[e^{itc_kX_k}] = \prod_{k \in \mathbb{Z}} \Phi(c_k t)
\]
où \(\Phi \) est la fonction caractéristique de la distribution uniforme sur \([-1/2, 1/2]\), qui est donnée par \(\Phi(t) = \text{sinc}(t/2) \). D’où il vient que
\[
\Phi_{Y_1} = \prod_{k \in \mathbb{Z}} \text{sinc}\left(\frac{c_k t}{2}\right). \quad (3.7)
\]

Pour \(x \) proche de 0, le développement de Taylor de \(\text{sinc}(x) \) est \(\text{sinc}(x) = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} + O(x^6) \). Donc, pour \(t \) proche de zéro on a (en composant avec le développement de Taylor de la fonction \(\log \))
\[
\log \Phi_{Y_1} = -\frac{t^2}{6} S_2 + \frac{t^4}{120} S_4 - \frac{t^4}{72} S_2^2 + \frac{t^6}{180} S_4 + O(t^6),
\]
où \(S_2 = \sum_{k \in \mathbb{Z}} (c_k/2)^2 \) et \(S_4 = \sum_{k \in \mathbb{Z}} (c_k/2)^4 \). Enfin, en composant l’équation précédente avec un développement de Taylor à l’ordre 2 de \(\exp \), on obtient
\[
\Phi_{Y_1}(t) = 1 - \frac{t^2}{6} S_2 + \frac{t^4}{72} S_2^2 - \frac{t^4}{180} S_4 + O(t^6),
\]
Le moment d’ordre 4 de \(Y_1 \) est donc,
\[
E(Y_1^4) = \Phi_{Y_1}^{(4)}(0) = 24 \left(\frac{1}{72} S_2^2 - \frac{1}{180} S_4 \right).
\]
D’un autre côté nous prouvons calculer \(S_2 \) et \(S_4 \) en utilisant les nombres de Bernoulli et la fonction zêta (voir [Dieudonné, 1980] par exemple), ce qui donne \(S_2 = 1/4 \) et \(S_4 = 1/48 \). Enfin, on obtient
\[
E(Y_1^4) = 13/720,
\]
et
\[
\kappa_1 = \frac{13}{120} \cdot 12^2 = \frac{13}{5}.
\]

De la même manière on calcule le moment d’ordre 4 de \(Y_2 = \sum_{k,l} c_k c_l X_{k,l} \)
\[
E(Y_2^4) = 4! \left(\frac{1}{72} \left(\sum_{k,l \in \mathbb{Z}} \left(\frac{c_k c_l}{2} \right)^2 \right)^2 - \frac{1}{180} \sum_{k,l \in \mathbb{Z}} \left(\frac{c_k c_l}{2} \right)^4 \right)
\]
\[
= 24 \left(\frac{16}{72} S_2^4 - \frac{16}{180} S_4^2 \right)
\]
\[
= \frac{43}{2160},
\]
et enfin
\[
\kappa_2 = \frac{43}{2160} \cdot 12^2 = \frac{43}{16} \approx 2.87.
\]
\[\square\]

2) Estimation de la distance \(L^1 \) entre les lois de \(Y_1 \) et \(Y_2 \) et la gaussienne : Soit \(f_1 \) (resp. \(f_2 \)) la densité de probabilité de \(Y_1 \) (resp. \(Y_2 \)), et soit \(g \) la gaussienne centrée et de variance 1/12. Dans la figure 3.4 nous remarquons que \(f_1 \) et \(f_2 \) semblent en moyenne très proches de \(g \). La proposition suivante permet de majorer les distances \(L^1 \) entre \(f_1, f_2 \) et \(g \).
Proposition 3.6 Nous avons les majorations suivantes

\[\|f_1 - g\|_1 \leq 0.07 \]
\[\|f_2 - g\|_1 \leq 0.02 \]

Démonstration Les \(c_k \) vérifient \(c_{1-k} = c_k \). Ainsi, on peut écrire \(Y = \sum_{k=1}^{n} c_k(X_k + X_{1-k}) \). Notons

\[Z_n = \sum_{k=1}^{n} c_k(X_k + X_{1-k}) \]

et soit \(f_n \) la densité de probabilité de \(Z_n \). On a que \(f_n = f_{n-1} * h_n \), où \(h_n \) est la densité de probabilité de \(c_n(X_n + X_{1-n}) \). Nous admettons le résultat intermédiaire suivant (que nous prouvons plus loin)

\[\forall n \geq 1, \|f - g\|_1 \leq \|f_n - g\|_1 + \frac{1}{12} \|g''\|_1 \sum_{k \geq n+1} c_k^2. \]

En utilisant ce résultat, on peut calculer sur ordinateur les premiers termes \(f_1, f_2, \ldots, f_{10}, \ldots \). Par ailleurs on trouve une majoration de la queue \(\|g''\|_1 \sum_{k \geq N+1} c_k^2 \). Evaluons d’abord \(\|g''\|_1 \).

Pour \(x \in \mathbb{R} \) on a \(g''(x) = (x^2/\sigma^4 - 1/\sigma^2)g(x) \), où \(\sigma^2 = 1/12 \) est la variance de \(g \). Ainsi, en intégrant par parties et en utilisant les propriétés \(\int g = 1 \) et \(\int x^2 g(x) = \sigma^2 \), on obtient \(\|g''\|_1 = 4g(\sigma)/\sigma \leq 12 \). Par ailleurs, en utilisant une comparaison avec une intégrale, on obtient \(\sum_{k \geq N+1} c_k^2 \leq 1/(\pi^2 N) \). Donc, on a

\[\frac{1}{12} \|g''\|_1 \sum_{k \geq N+1} c_k^2 \leq \frac{1}{\pi^2 N}. \]

On peut maintenant calculer une majoration de la distance \(L^1 \) entre la fonction de densité de \(Y_1 \) et la gaussienne. On peut aussi effectuer un calcul similaire pour \(Y_2 \). Les estimations numériques annoncées dans la proposition sont obtenues en utilisant le résultat intermédiaire admis ci-dessus pour \(n = 25 \), et en effectuant le calcul numérique de \(\|f_{25} - g\|_1 \).

Prouvons maintenant le résultat intermédiaire. Notons que \(h_n \) est positif, paire à support compact \([-|c_n|, |c_n|]\) et qu’elle vérifie \(\int h_n = 1 \). Donc

\[\|f_n - g\|_1 \leq \|f_{n-1} * h_n - g * h_n\|_1 + \|g * h_n - g\|_1 \]
\[\leq \|f_{n-1} - g\|_1 + \|g * h_n - g\|_1. \]

Calculons maintenant \(\|g * h_n - g\|_1 \). Pour \(x \in \mathbb{R} \), en utilisant la définition de \(g * h_n \) et la formule de Taylor intégrale, on a

\[g * h_n(x) - g(x) = \int_{-|c_n|}^{|c_n|} y^2 \left(\int_{0}^{1} (1-t)g''(x + ty)dt \right) h_n(y)dy. \]

D'où, en intégrant, on obtient

\[\|g * h_n - g\|_1 \leq \frac{1}{12} \|g''\|_1 c_n^2. \]

En ajoutant ces inégalités et en se souvenant que \(f_n \) tend vers \(f \) dans \(L^1 \), on obtient le résultat annoncé. □
3.3.3 Indépendance des résultats

Dans ce qui précède nous avons supposé que les X_k (resp. $X_{k,l}$) étaient indépendantes. Nous allons maintenant étudier l’indépendance des variables aléatoires obtenues après déquantification du bruit. Par exemple nous considérons deux valeurs de Y_1 obtenues en n et m

$$Y_1(n) = \sum_{k \in \mathbb{Z}} c_k X_{n+k}$$
$$Y_1(m) = \sum_{k \in \mathbb{Z}} c_k X_{m+k}$$

et nous nous intéressons à la corrélation entre $Y_1(n)$ et $Y_1(m)$. Par ailleurs, on rappelle que deux variables gaussiennes qui forment un vecteur gaussien sont indépendantes si et seulement si leur corrélation est nulle. Comme nous avons vu que les variables $Y_1(n)$ et $Y_1(m)$ sont presque gaussiennes nous utiliserons leur corrélation comme un bon indicateur de leur indépendance. Nous montrons dans la proposition 3.7 qu’il n’y a pas, sous hypothèse de stationarité de X, d‘augmentation de cette corrélation (par rapport à celle entre X_n et X_m). Rappelons la définition de la corrélation $\rho(X,Y)$ entre deux variables aléatoires X et Y

$$\rho(X,Y) := \frac{E(XY) - E(X)E(Y)}{\sqrt{\text{var}(X)\text{var}(Y)}}.$$

Pour simplifier les notations nous n’énonçons le résultat que pour Y_1, le cas de Y_2 étant similaire.

Proposition 3.7 Soient X_k, $(k \in \mathbb{Z})$ des variables aléatoires uniformément distribuées sur $[-1/2,1/2]$. Supposons que pour tout $\delta \in \mathbb{Z}$, la corrélation entre X_k et $X_{k+\delta}$ est la même pour tout $k \in \mathbb{Z}$ et nous la noterons C_δ. Alors la corrélation entre Y_n et Y_m, est donnée par

$$\rho(Y_1(n),Y_1(m)) = C_{m-n}$$

En particulier, si les X_k sont indépendants alors $Y_1(n)$ et $Y_1(m)$ sont décorrélées (pour $n \neq m$).

Démonstration Comme $E(X_k) = 0$ pour tout k, il résulte que $E(Y_1(n)) = E(Y_1(m)) = 0$. De plus $\text{var}(X_k) = 1/12 = \text{var}(Y_1(n)) = \text{var}(Y_1(m))$. Si on calcule la corrélation entre $Y_1(n)$ et $Y_1(m)$, on obtient

$$\rho(Y_1(n),Y_1(m)) = 12 \sum_{k \in \mathbb{Z}} \sum_{l \in \mathbb{Z}} c_k c_l E(X_{k+n}X_{l+m}) = \sum_{\delta \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} c_k c_{k+\delta} C_{\delta+m-n}$$

Pour $\delta \in \mathbb{Z}^*$, on a $\sum_{k \in \mathbb{Z}} c_k c_{k+\delta} = 0$. Pour $\delta = 0$, on a déjà vu que $\sum_{k \in \mathbb{Z}} c_k^2 = 1$. Notons que ces propriétés des c_k sont dues au fait que la translation d’$1/2$ par interpolation de Fourier est une isométrie de L^2. Enfin, nous obtenons le résultat annoncé

$$\rho(Y_1(n),Y_1(m)) = \sum_{k \in \mathbb{Z}} c_k^2 C_{m-n} = C_{m-n}.$$
Figure 3.5: Observations empiriques sur les histogrammes et les corrélations. Première ligne: image originale et histogramme de la norme du gradient. Deuxième ligne: à gauche l’histogramme de la direction des gradients en tous les points et à droite l’histogramme restreint aux points auxquels le gradient est de norme supérieure à 5. Troisième ligne: histogramme local (fenêtre 3×3) de $u(x) - u(x_0)$ aux points x_0 où le gradient est de norme inférieure à 3 et à droite corrélation de $u(x_0 + d) - u(x_0)$ et de $u(x_0 - d) - u(x_0)$ en tant que fonction de la distance d aux mêmes points que précédemment.
3.3.4 Le modèle de régions plates pour expliquer l’effet de la déquantification

Résumons les résultats obtenus jusqu’à présent. Nous avons défini le signal déquantifié par

\[S \left(n + \frac{1}{2} \right) = s \left(n + \frac{1}{2} \right) - \sum_{k \in \mathbb{Z}} X_{n+k} \frac{(-1)^k}{\pi(1/2 - k)} \]

où \(s(n + 1/2) \) est le signal originel calculé par interpolation de Fourier au point \(n + 1/2 \), \(S(n + 1/2) \) est le signal déquantifié en ce même point et \(Y(n) = \sum_{k \in \mathbb{Z}} c_k X_{n+k} \) est le bruit déquantifié. Nous avons prouvé que \(Y(n) \) est proche d’un bruit gaussien. Dans la proposition 3.1 nous avons aussi prouvé que l’ajout d’un bruit blanc gaussien n’introduisait pas de biais dans l’histogramme. En d’autres termes, en supposant, sans perte de généralité, que lorsque le gradient est faible (\(|\nabla u| \leq 4\)) on a que \(s(k) = s(k) - X_k \in \{0, 1, -1, 2, -2, \ldots\} \) avec une sur-représentation des petits entiers. Ceci signifie que \(s(k) \) et \(X_k \) sont extrêmement corrélés dans les régions où le gradient est petit. Donc, le modèle représenté par l’équation (3.8) qui explique le bon comportement de \(S(n+1/2) = s(n+1/2) + Y(n) \) sera valide si nous prouvons que le processus de déquantification rend \(Y(n) \) et \(s(n+1/2) \) complètement décorrélées. Or, en utilisant la même méthode que dans la preuve de la proposition 3.7, on montre que ce n’est pas le cas.

En fait, \(\rho(Y(n), s(n+1/2)) = \rho(X_n, s(n)) \) sous l’hypothèse raisonnable de la stationarité des \(X_k \). Donc, la corrélation entre le bruit et le signal n’est pas modifiée par notre méthode de déquantification.

L’explication finale de la déquantification des directions du gradient va provenir de l’étude des régions plates où l’image varie peu. Notons d’abord (voir les figures 3.5(c) et 3.5(d)) que le biais de l’histogramme des directions n’est entièrement dû aux points de l’image où le gradient est faible (\(|\nabla u| \leq 4\)). Ce fait s’explique comme suit : en un point \((x, y)\) de l’image où la norme du gradient est grande, la direction de celui-ci n’est que très peu affectée par la quantification. Plus précisément, la différence entre la "vraie" direction du gradient et celle obtenue après quantification est proportionnelle à \(1/|\nabla u|\). En effet, notons \(u \) l’image originale, on a \(\nabla u = u_x + iu_y = |\nabla u| \exp(i\theta), \) où \(\theta \) est la direction du gradient. Soit \(\tilde{u} \) l’image quantifiée, et \(\tilde{q} \) le pas de quantification. Si \(\theta \) est la direction du gradient de \(\tilde{u} \), on obtient \(\nabla \tilde{u} = |\nabla u| \exp(i\theta) = |\nabla u| \exp(-i\theta) + z, \) où \(z \) est un nombre complexe de module plus petit que \(q \) (c’est le gradient de la différence entre l’image \(u \) et sa version quantifiée \(\tilde{u} \)). Or, on obtient donc, \(|\sin(\theta - \tilde{\theta})| \leq q/|\nabla u|\). Ceci finit de montrer que les points où le gradient est grand ne sont pas très affectés par la quantification.

Les points à faible gradient représentent la majorité des points d’une image (à peu près 60%, voir la figure 3.5(b)). Etudions donc les points où \(1/2 \leq |\nabla u| \leq 4\). On remarque que dans le voisinage d’un tel point \(n \), l’histogramme des valeurs de \(S(k) \) représente la loi d’un processus discret uniforme centré en \(S(n) \). Sans perte de généralité nous supposons que \(S(n) = 0 \), on peut modéliser ces valeurs par des variables indépendantes et uniformes sur un ensemble discret (voir les figures 3.5(e) et 3.5(f) pour l’histogramme est la corrélation de
telles valeurs). Dans les régions plates les directions du gradient sont quantifiées sur un petit nombre de valeurs et nous allons voir que la translation de Fourier que nous proposons a un effet de déquantification très élevé.

Soit S le signal quantifié. En un point n, on remplace la valeur quantifiée $S(n)$, par l’interpolée de Shannon au point $S(n+1/2)$, puis on calcule le gradient par

$$S(n+1/2) - S(n-1/2) = \sum_{k \in \mathbb{Z}} [S(n+k) - S(n+k-1)]c_k.$$

Dans les régions plates, nous pouvons supposer que $S(n) - S(n-1)$ ne prend qu’un petit nombre de valeurs discrètes. Par exemple, si on suppose que $S(n) - S(n-1)$ ne prend comme valeurs que 0,1 ou -1, alors la proposition qui suit montre que $S(n+1/2) - S(n-1/2)$ n’est plus quantifié.

Proposition 3.8 Soit Z une variable aléatoire définie par

$$Z = \sum_{k \in \mathbb{Z}} c_k Q_k,$$

où les Q_k sont des variables discrètes indépendantes, à valeurs dans $\{0, 1, -1\}$ avec probabilité $1/3$ pour chacune de ces trois valeurs. Alors Z a la même distribution de probabilité que

$$T_3 = \sum_{k \neq 2[3]} 3c_k X_k$$

où les X_k sont indépendantes et uniformément distribuées sur $[-1/2, 1/2]$. Donc, pour tout $a < b$, $P[a \leq Z \leq b] = P[a \leq T_3 \leq b]$.

Démonstration Notons $\delta(x)$ la fonction de Dirac centrée en 0. La distribution de probabilités de Q_k est $d(x) = 1/3(\delta(x-1) + \delta(x) + \delta(x+1))$. L’argument principal que nous allons utiliser est que le résultat de la convolution de $d(x)$ avec la distribution uniforme sur $[-1/2, 1/2]$ est la distribution uniforme sur $[-3/2, 3/2]$. Ce qui signifie que $Q_k + X_k$ a la même loi que $3X_k$. Et donc, $\sum_k (Q_k + X_k)$ a la même distribution de probabilité que $\sum_k 3X_k$.

Considérons les transformées de Fourier de ces distributions. Soit $F_1(t)$ la transformée de Fourier de $\sum_k c_k X_k$. Par l’équation 3.7 il vient que

$$F_1(t) = \prod_{k \in \mathbb{Z}} \text{sinc} \left(\frac{c_k t}{2} \right) = \prod_{k \in \mathbb{Z}} \text{sinc} \left(\frac{t}{\pi(2k-1)} \right).$$

On note $F_3(t)$ la transformée de Fourier de $\sum_k 3c_k X_k$. On a alors $F_3(t) = F_1(3t)$. La transformée de Fourier de $d(x)$ étant égale à $(1 + 2\cos t)/3$. Ainsi, si on note $G(t)$ la transformée de Fourier de la loi de $\sum_k c_k Q_k$, on a

$$G(t) = \prod_{k \in \mathbb{Z}} \left(\frac{1 + 2\cos(c_k t)}{3} \right),$$

où la convergence du produit est uniforme sur tout compact de \mathbb{R}. Comme $\sum_k c_k(Q_k + X_k)$ a la même loi que $\sum_k 3X_k$ on en déduit que $G(t)F_1(t) = F_3(t)$ pour tout réel t. Nous allons montrer qu’il existe une fonction continue H_1 telle que $F_3(t) = F_1(t)H_1(t)$. En effet, on décompose le produit $F_3(t) = \prod_{k \in \mathbb{Z}} \text{sinc}(3t/\pi(2k-1))$ en deux parties. La première
3.4 Expériences et application à la détection des alignements

Dans cette partie nous présentons quelques applications de la méthode que nous proposons pour la déquantification. Dans [Desolneux et al., 2000], les auteurs ont proposé un critère...
pour la détection des alignements significatifs dans une image. En chaque point de l’image (de taille $N \times N$), on calcule l’orientation $\Theta(x)$ qui est la direction perpendiculaire au gradient au point considéré. Puis, on considère un segment S de l’image qui contient l points distants de deux pixels (ainsi, les gradients en ces points sont calculés sur des voisinages disjoints, et nous pouvons alors les supposer indépendants). Soit k le nombre de points du segment (parmi le total de l points) où l’orientation est la même que celle du segment, à une précision p donnée (i.e. tels que $|\theta(x) - \Theta_0| \leq p\pi$, où Θ_0 est la direction du segment). La probabilité de trouver k points alignés sur un segment de longueur l est

$$P(k, l) = \sum_{j=k}^{l} \binom{i}{j} p^j (1-p)^{i-j}.$$

Ceci est justifié par les hypothèses d’indépendance entre les différents gradients et de distribution uniforme des directions sur $[-\pi, \pi]$. Quand cette probabilité est très petite, l’événement est hautement non causal et donc significatif. En général, on calcule les alignements significatifs en fixant la précision à $p = 1/16$. Mais, parfois, nous nous intéressons aux alignements qui présentent une meilleure précision, par exemple $p = 1/64$. Dans la figure 3.6 nous présentons un tableau de Uccello ("Presentazione della Virgine al tempio". Numérisé à partir du livre L’opera completa di Paolo Uccello, Classici dell’arte, Rizzoli). Cette image a été quantifiée sur 32 niveaux de gris. D’abord nous calculons les alignements significatifs à la précision $p = 1/16$ (figure 3.6(b)). Puis, nous calculons les alignements significatifs à la précision $p = 1/64$ (figure 3.6(c)). On remarque que beaucoup d’alignements diagonaux sont détectés. Ces alignements parasites trouvent leur explication dans la quantification des directions du gradient due à la quantification de l’image. Comme vu plus haut, les directions multiples de $\pi/4$ sont très avantageées. Enfin, nous présentons le résultat de la détection des segments significatifs à la précision $p = 1/64$ (figure 3.6(d)) après avoir appliqué une translation de vecteur $(1/2, 1/2)$ par interpolation de Fourier. Les alignements parasites ont bien disparu.

Nous avons aussi remarqué (mais nous n’avons pas d’argument théorique pour le prouver) que la même méthode améliore significativement la carte des orientations des images aliasées (voir la figure 3.7). Cela est particulièrement vrai dans le cas des images sous-échantillonnées dans un rapport 2 (une méthode, malheureusement, souvent utilisée pour réduire la taille d’une image).
3.4 Expériences et application à la détection des alignements

Figure 3.6: Effet de la quantification sur la détection des alignements. Première ligne : image originale quantifiée sur 32 niveaux de gris, à droite, les segments détectés à la précision $p = 1/16$. Deuxième ligne : à gauche, les segments détectés à la précision $p = 1/64$, à droite, la même détection mais après avoir appliqué notre méthode de déquantification.
Figure 3.7: Effet de la translation par interpolation de Fourier sur les images aliasées. Première ligne : à gauche, une image aliasée, à droite, le résultat de translation $(1/2, 1/2)$. Deuxième ligne : à gauche, l’histogramme des directions du gradient de l’image originale et à droite, ce même histogramme pour l’image translée.
3.4 Expériences et application à la détection des alignements
CHAPITRE 4

Etude et estimation du flou dans les images numériques

Introduction

Dans ce chapitre nous présentons une nouvelle méthode d’évaluation du flou dans les images naturelles. Le but de cette étude est de quantifier le flou d’une image de manière locale.

Tout d’abord se pose le problème de la définition du flou. Le flou est le résultat d’un défaut de mise au point d’un appareil photographique, ou plus généralement d’un dispositif d’acquisition d’image. Ce défaut de mise au point se retrouve nécessairement dans tout dispositif optique. D’une part, la profondeur de champ ne peut être réellement infinie. En effet, pour obtenir une profondeur de champ infinie il faut que l’ouverture de l’appareil photographique tende vers zéro, et dans ce cas la quantité de lumière qui atteint le capteur photosensible devient nulle. D’autre part le théorème d’échantillonnage de Shannon montre qu’il est nécessaire de filtrer un signal avant de procéder à son échantillonnage. Ce qui introduit un flou nécessaire. Mathématiquement ces considérations nous conduisent à introduire un modèle de convolution. L’étude du flou serait alors équivalente à la recherche du noyau de convolution qui a été appliqué à l’image avant son échantillonnage. Cependant, les choses sont plus complexes en réalité. Le lecteur peut s’en convaincre en reproduisant l’expérience simple qui consiste, en ayant préalablement fermé un œil, à approcher une feuille de papier blanc de son œil ouvert tout en faisant le point sur un objet texturé en arrière plan (par exemple une feuille de papier sur laquelle se trouve imprimé du texte) qui se trouve loin de lui. À la transition entre la feuille de papier et l’objet d’arrière plan, on constate que la texture s’éteint progressivement tandis qu’elle est recouverte peu à peu par la couleur de la feuille en avant plan. Cette constatation est faite dans [Marshall et al., 1996] dont les auteurs étudient si un tel effet est utilisé par le système visuel humain pour reconnaître l’avant de l’arrière plan. D’un point de vue mathématique, l’image de la feuille de papier a bien subi une convolution par un noyau assez large qui résulte du défaut d’accommodation. Par contre la texture de l’objet éloigné n’a subi aucune convolution puisque la mise au point est faite sur lui. Elle n’est donc pas modifiée sauf au voisinage de la frontière entre la feuille et l’arrière plan. Elle subit plutôt une multiplication par une fonction qui varie doucement entre un (objet complètement visible) et zéro (objet entièrement occulté par la feuille de papier). Les deux phénomènes s’ajoutent l’un à l’autre ce qui fait que l’hypothèse d’une convolution est inexacte et rend difficile la recherche du noyau de convolution. Dans [Perona
4.1 Formation d’une image et étude des transitions

4.1.1 Modèle de formation des images

Modèle convolutif et approche fréquentielle Les méthodes d’évaluation du flou se divisent en deux catégories, les méthodes spatiales et les méthodes spectrales. Les méthodes fréquentielles consistent essentiellement à évaluer la taille du spectre d’une image. Plus le spectre est resserré autour de l’origine plus l’image est floue. Cette approche est fondée sur un modèle convolutif de formation des images numériques que nous détaillons maintenant.

Une image numérique I, fonction définie sur $G \subset \mathbb{Z}$ dans $[0, M]$ est obtenue à partir de la scène tridimensionnelle par convolution et échantillonnage d’un flux de photons. Un modèle simplifié de la formation de I s’ écrit

$$ I = \Psi_G (g \ast I_0) + b, $$

où I_0 représente le flux de photons qui atteint l’appareil (la scène), Ψ_G l’étape d’échantillonnage sur une grille G (le plus souvent carrée), g le noyau de convolution qu’applique l’optique.

and Malik, 1990], la diversité et la complexité des transitions dans les images sont mises en évidence. Nous étudions au paragraphe 4.1 différents modèles mathématiques de transitions ainsi que divers exemples qui motiveront le choix des outils mis en œuvre dans le cadre de cette méthode.

La méthode proposée donne une évaluation de la largeur de flou partout où un calcul précis est possible. Cette évaluation est locale et se fonde sur les propriétés géométriques de l’image. Elle est robuste vis-à-vis du bruit tout en étant sûre, en ce sens que le calcul ne s’effectue qu’aux endroits où il est possible avec le maximum de précision. Elle inclut une phase d’extraction des profils des transitions de l’image. Ces profils sont alors analysés pour calculer ce que nous appelons la ”largeur de flou”. Par ailleurs, dans certains cas favorables, et sous une hypothèse de symétrie radiale du noyau de convolution, nous décrivons un moyen de retrouver ce noyau à partir des profils des transitions.

Au paragraphe 4.1 nous examinons les conditions de formation d’une image dans un système optique simple. Nous y présentons tout d’abord les approches fréquentielles et expliquons pourquoi nous avons choisi une approche spatiale. Nous étudions aussi comment ce processus mène à des transitions (bords) mal expliquées par le modèle théorique généralement accepté. Des exemples issus de simulations et d’images réelles illustrent notre propos.

Au paragraphe 4.2 nous expliquons comment utiliser la géométrie de l’image pour détecter les bords droits, qui sont les endroits où nous cherchons à calculer le flou. À partir de la décomposition de l’image en lignes de niveau, ces lignes étant filtrées pour éliminer le bruit, nous utilisons un détecteur d’alignements locaux inspiré de [Desolneux et al., 2000] pour trouver les parties droites.

Au paragraphe 4.3 nous utilisons un filtrage morphologique qui permet d’élimer le bruit, sans changer le flou de l’image, et ce afin de calculer les profils des transitions le long des bords droits.

Le paragraphe 4.4 traite de l’analyse des transitions et du calcul de la largeur de flou proprement dite. Nous y montrons également comment il est possible, dans certaines conditions, de retrouver le noyau de flou.

Enfin, le paragraphe 4.5 comporte un récapitulatif complet de la méthode ainsi que les résultats expérimentaux obtenus.
de l’appareil et b le bruit (qui résulte des imperfections des appareils optiques, du bruit électronique des capteurs ainsi que de la quantification). Ce modèle ne peut pas rendre compte de tous les phénomènes qui participent à la formation d’une image, en particulier il ne reflète pas la variabilité du noyau de convolution suivant les zones de l’image.

Le spectre d’une image numérique est modélisé par le produit du spectre de la scène par le spectre du noyau de convolution optique, (on suppose que le spectre de g est assez fin pour respecter les conditions de bon échantillonnage du théorème de Shannon connaissant la grille d’échantillonnage G) auquel s’ajoute le spectre du bruit. Du point de vue de l’optique ce modèle suppose que la profondeur de champ est infinie ou bien que tous les objets de la scène sont sur le même plan, ce qui n’est pas réaliste. Une réponse à cette objection est que le modèle est valable localement, chaque objet se trouvant à une même distance de l’appareil subissant le même flou. Mais ceci est inexact dans le cas d’une occultation. En effet, comme le montre l’expérience décrite en introduction, si une texture porteuse de hautes fréquences est photographiée en étant dans le plan de mise au point et qu’un objet hors mise au point vient occulter partiellement cette texture, celle-ci ne sera pas convolue par un noyau. Elle sera simplement multipliée par une fonction qui tend vers zéro lorsque l’on se rapproche du bord de l’objet qui l’occulte. Ses hautes fréquences seront altérées mais pas annulées comme cela serait le cas avec une convolution par un noyau à support fréquentiel étroit.

D’une part, une approche fréquentielle, si elle est globale sur toute l’image, nécessite une connaissance a priori du type de bruit et de la forme du noyau de convolution pour l’évaluation de la taille du spectre de l’image numérique. D’autre part, ces méthodes ne donneront qu’une estimation du flou minimal qui affecte l’image. Il suffit, en effet, d’une transition brutale dans l’image pour que les hautes fréquences du spectre ne soient pas nulles. Les méthodes fréquentielles locales sont quant à elles très mal adaptées au calcul du flou sur les bords dus à une occultation. En ces bords-là, il y a addition de deux phénomènes comme nous l’avons montré dans l’expérience décrite en introduction (et que nous formalisons par la suite), l’un convolutif et l’autre multiplicatif. Si l’objet en arrière plan porte des hautes fréquences, celles-ci ne sont pas annulées par l’extinction qui affecte cet objet (avant occultation totale, voir la figure 4.9). Le calcul du noyau de flou est alors impossible par une analyse du spectre local.

Dans la suite nous allons détailler le processus de formation d’une image à travers un dispositif simple. Malgré sa simplicité ce dispositif permettra de comprendre certains des phénomènes constatés dans [Perona and Malik, 1990].

Modèle à noyau variable Dans l’article [Favaro et al., 1999] les auteurs ont proposé un modèle théorique complet de la formation des images. La scène est supposée être une surface S dotée d’une luminance l. L’image I se forme alors suivant la formule

\[I(x) = \int h_S(x, y)l(y)dy, \] (4.2)

où y est la position dans la scène S, x la position dans l’image résultante, l(y) la luminance de la scène au point y et \(h_S(x, y) \) la proportion de lumière qui part de y et arrive en x. Contrairement à l’équation (4.1), cette équation tient compte du fait que le noyau de convolution est variable. Par ailleurs on impose que pour tout x

\[\int h_S(x, y)dy = 1, \]
4.1 Formation d'une image et étude des transitions

qui traduit le fait que si la scène a une luminosité homogène alors l'image est homogène. Ou encore que tout rayon lumineux partant d'un point \(x \) de l'image résultante et allant vers la lentille finit par atteindre la scène. La dernière contrainte satisfaite par \(h_S \) est

\[
\int h_S(x, y) dx \leq 1.
\]

Ce qui signifie que toute la lumière issue d'un point \(y \) de la scène n'atteint pas forcément le plan de formation de l'image.

Pour la suite, nous conservons de ce modèle l'idée qu'un point de la scène envoie de la lumière dans toutes les directions et que seule une partie de cette lumière parvient au plan image. Pour chaque rayon partant d'un point \(x \), soit ce rayon atteint un point \(y \) du plan image soit il est perdu. Nous n'expliciterons pas les réels \(h_S(x, y) \).

4.1.2 Un modèle optique simple

Nous considérons le dispositif optique décrit par la figure 4.1. Il est constitué d'un objet d'arrière plan \(P_1 \), d'un demi-plan \(P_2 \) situé devant \(P_1 \) et qui l'occulte partiellement, d'une lentille et d'un plan de formation de l'image \(P_0 \). Nous supposons par la suite que les plans \(P_1 \) et \(P_2 \) sont illuminés de telle sorte que, s'ils étaient pris séparément et que la distance focale soit justée pour que leurs images se forment sur le plan \(P_0 \), alors ils produiraient les images, respectivement, \(I_1(x) \) et \(I_2(x) \). Par ailleurs nous nous restreignons à un plan de coupe (\(z=0 \)) pour simplifier les figures et démonstrations.

Proposition 4.1 Étudions les deux cas suivants :

(i) L'image de \(P_2 \) se forme sur \(P_0 \) et \(P_1 \) est flou avec comme noyau \(g(x) \).

(ii) L'image de \(P_1 \) se forme sur \(P_0 \) et \(P_2 \)\(^1\) est flou avec comme noyau \(g(x) \).

Dans le premier cas, l'image formée sur \(P_0 \) a pour équation :

\[
I(x) = (g * I_1)(x) \text{ pour } x < 0,\tag{4.3}
\]

\[
I(x) = I_2(x) \text{ pour } x > 0,\tag{4.4}
\]

\(^1\)On notera que l'image du plan \(P_2 \) est située du coté des \(x \) positifs avec un débordement léger sur les \(x \) négatifs.
et dans le second cas :

\[I(x) = (g * I_2)(x) + I_1(x) \times G(x), \quad (4.5) \]

où \(G(x) \) est donné par la formule

\[G(x) = \int_{-\infty}^{+\infty} g(t)dt. \]

Démonstration : Dans le cas (i) nous montrons que les seuls rayons lumineux qui atteignent les points où \(x \) est positif proviennent de \(P_2 \) et ceux qui atteignent les points où \(x \) est négatif proviennent de \(P_1 \). En effet, comme le montre la figure 4.2 les rayons qui arrivent au point \(M \) passent tous par le point \(M_2 \), est le point objet correspondant à \(M \). De même, la figure 4.3 montre que tout point arrivant en \(N \) passe par le point \(N_2 \). L’intensité de la lumière en \(N \) n’est donc pas modifiée par la présence du plan \(P_2 \) car tout rayon allant de \(P_1 \) et touchant le plan \(P_0 \) passe par un point qui se situe au dessus de \(P_2 \) (comme le point \(N_2 \)). On obtient donc les formules 4.3 et 4.4.

Dans le cas (ii) l’image de \(P_2 \) se forme sans aucun obstacle. Il en découle que l’on retrouve sur \(P_0 \) la même image que si \(P_2 \) avait été seul (soit \(I_2 \)), combinée avec \(g \) en raison du défaut de mise au point en \(P_2 \) d’où le premier terme de l’équation 4.5. Quant à l’image de \(P_1 \) elle se forme avec une occlusion.

Soit un point \(x \) de l’image (figure 4.4), la lumière qui provient de \(P_1 \) et arrivant en \(x \) est issue d’un seul point de \(P_1 \) noté \(y \) car ce plan est le plan objet. La quantité de lumière qui part de \(y \) et arrive en \(x \) est donc la même que celle qu’aurait le point \(x \) si on remplaçait le
4.1 Formation d’une image et étude des transitions

plan P_2 par un plan opaque pour $x < 0$ et de luminance égale à celle de P_1 en y sur toute la partie $x \geq 0$. Appelons $I'_2(x)$ la luminance au point x qui résulterait d’une telle situation. Alors

$$I'_2(x) = G(x) \times L_y,$$

où L_y est la luminance du point y, et $G(x)$ est le résultat de la convolution d’une fonction de Heavyside avec un le noyau g. C’est bien $G(x)$ que l’on aurait comme luminance sur le plan image P_0 si la situation décrite ci-dessus avait lieu (pour une luminance de 1). On doit multiplier $G(x)$ par L_y parce que nous avons supposé que la luminance de la partie haute est égale à L_y et non à 1. Mais L_y est égale à $I'_1(x)$ (toute la lumière du point y se retrouve au point x). D’où le second terme de l’équation 4.5.

On remarquera que ces deux démonstrations sont possibles grâce à l’hypothèse que l’un des deux plans est le plan de mise au point. Dans le cas où le plan objet ne correspond ni à P_1 ni à P_2, les formules sont bien plus complexes.

4.1.3 Illustrations

Nous illustrons ce qui précède par des simulations des formules théoriques et des expériences réelles. Nous illustrons d’abord le cas convolutif puis le cas à noyau variable avec occultation. Dans les deux cas des exemples sont pris dans des images naturelles et des figures illustrent les calculs théorique de la proposition 4.1. Et enfin nous présentons quelques autres profils tirés d’images naturelles qui illustrent d’autres phénomène que l’on n’a pas explicitement évoqués dans nos calculs.

4.1.3.1 Cas convolutif

Nous illustrons ici le cas où un objet de la scène présente une transition brutale et que celle-ci subit un flou conformément à l’équation (4.1). Dans ce cas la transition est simplement l’intégrale du noyau de convolution. Sur la figure 4.6 nous voyons un exemple d’une telle transition.

Un cas réel est présenté figure 4.5 (ce profil est extrait par la méthode que nous développons et qui est explicitée dans les paragraphes suivants). Il est extrait d’une photo de pelage de zèbre. La figure 4.5(b) appelle quelques commentaires. Tout d’abord le profil est très régulier, mais cet aspect est dû au filtrage que nous opérons sur l’image avant l’extraction des profils.
Ensuite le graphique n’est pas tout à fait symétrique: La transition entre le plateau et la partie décroissante linéaire (abscisses entre 200 et 250) est plus rapide que la transition entre le plateau haut et la partie linéaire (abscisses entre 0 et 100). Or nous avons de bonnes raisons de penser que le noyau de convolution est une fonction paire et donc que son intégrale (le profil dans le cas convolutif) est une fonction impaire.

Cette déformation peut provenir d’un effet non linéaire, dû, par exemple, à une correction gamma pour un gamma plus grand que 1. Cette effet est une première illustration des difficultés que l’on rencontre dans l’évaluation précise du flou. Les transformations subies par une image sont souvent non linéaires, ce qui complique les calculs. De plus elles sont rarement connues, ce qui rend un calcul très précis presque impossible. Nous voyons plus bas des illustrations de difficultés théoriques liées au mélange de flou et d’extinctions qui rendent les modèles convolutifs très peu opérants.

4.1.3.2 Cas d’une occultation

Dans le cas d’une occultation, nous avons vu au paragraphe 4.1.1 que les équations sont plus complexes que dans le cas convolutif. La figure 4.7 représente les profils calculés pour les cas (i) et (ii) envisagés au paragraphe 4.1.1, dans le cas où les luminances des deux plans sont homogènes. Dans ce cas, on vérifie facilement, que c’est le plan qui se trouve en avant de la scène qui détermine le type de profil observé. En effet, dans le cas homogène, et si un des deux plans est net, tout se passe comme si une convolution par un noyau était opérée sur une transition brutale (Heavyside). Ceci résulte simplement de la proposition 4.1. Le noyau qui est utilisé est celui qui s’applique à l’avant-plan. En effet, si on remplace I_1 par une fonction constante et I_2 par une fonction de Heveside :

- **cas (i)** : avant plan net et arrière plan flou. Les équations 4.3 et 4.4 deviennent

$$I(x) = \begin{cases} I_1(x) & \text{pour } x < 0 \\ I_2(x) & \text{pour } x > 0 \end{cases}$$
4.1 Formation d'une image et étude des transitions

Figure 4.6: Le graphe (a) représente le noyau g appliqué par l'optique à celui des deux plans qui n'est pas mis au point. Le graphe (b) représente l'intégrale G du noyau g, et donc l'extinction de l'arrière plan lorsque celui-ci est net alors que l'avant plan est flou.

- **cas (ii):** arrière plan net et avant plan flou. L'équation (4.5) devient

$$I(x) = (g * I_2)(x) + C_1 \times G(x) = (C_1 + C_2) \times G(x),$$

où C_1 est la constante prise par $I_1(x)$ et C_2 la valeur non-nulle prise par $I_2(x)$.

La figure 4.8 montre ce qui se passe quand l'un des plans présente une texture. Cette fois-ci le modèle convolutif ne s'applique plus du tout et on voit sur la figure 4.8(c) que la transition est interrompue par des sauts bruts dus à la texture de l'arrière plan. La figure 4.8(d) montre que si l'avant-plan est au point, on passe brutalement d'une zone nette à une zone floue.

Les figures 4.9 et 4.10 sont des photos prises dans les deux cas de la proposition précédente. La figure 4.11 montre le résultat d'une simulation où l'arrière plan et l'avant plan sont tous deux hors de la mise au point mais avec des noyaux de flou différents. On constate que la pente de la partie décroissante varie, ce qui montre que nous avons un mélange des quantités de flou des deux plans. Pour réaliser cette expérience nous avons repris notre dispositif optique de la figure 4.1 et nous avons finement échantillonné le plan P_0 ainsi que la lentille. Pour chaque point du plan image P_0 et chaque point de la lentille nous avons calculé le trajet de rayon lumineux qui les joint afin de déterminer depuis quel plan il provenait. Suivant le plan trouvé (P_0 ou P_1) on incrémenté la luminosité du point de l'image de la valeur de la luminosité en P_1 ou P_2.

Enfin, la figure 4.9(b) montre un profil extrait de l'image 4.9(a). La partie droite paraît extrêmement bruitée. Ce bruit provient du fait que le texte qui se trouve en haut de l'image est net. On voit bien comment l'amplitude de ce bruit décroît au fur et à mesure que l'on se rapproche de la partie sombre de l'image comme nous l'avions prévu dans notre modèle.

4.1.3.3 Quelques profils constatés dans des images

La figure 4.12 montre des profils extraits d'images naturelles. La figure 4.12(a) semble bien obéir au modèle convolutif mais il n'en va pas de même pour les autres. Par exemple la figure 4.12(c) présente un rebond dû à une réflexion, ce phénomène se produit lorsque un objet courbé occulte une zone sombre. La courbure de l'objet fait que la luminance de sa...
Figure 4.7: La première ligne représente les fonctions I_1 et I_2 lorsque l’éclairage des deux plans est homogène. La deuxième ligne montre ce qui se passe dans le cas (ii) de la proposition 4.1 (c) et le cas (i) de la même proposition (d). Dans ces conditions le modèle convolutif semble s’appliquer.

La surface varie très vite en raison de la réflexion d’une source lumineuse. La figure 4.12(d) montre le même phénomène mais bien plus prononcé. Ces réflexions entrent en interaction avec la convolution et nous éloignent du modèle convolutif. Par ailleurs des dégradations de l’images (comme une compression jpeg) peuvent introduire des artefacts tels qu’un effet de Gibbs. Artefacts qui sont très présents justement dans les zones de l’image qui contiennent une transition. Ces observations doivent nous guider vers une méthode qui respecte au mieux l’information de l’image et qui fasse le moins d’hypothèses possible sur la forme du flou. En effet, il est très rare de rencontrer un profil de transition obéissant rigoureusement au modèle convolutif. Des hypothèses qui pourraient paraître comme naturelles telles que la symétrie du profil par rapport à un point ou encore la monotonie du profil par rapport à un point ou encore la monotonie de celui-ci sont à proscrire. Au tout début de notre travail nous avions recherché des profils strictement monotones (après filtrage de l’image, donc sans bruit) et les zones d’une image naturelle qui satisfont cela étaient très rares.

Conclusion
Dans ce paragraphe nous avons vu comment des phénomènes explicables par l’optique géométrique (extinction progressive de l’arrière plan) ou encore dus aux traitements que subit l’image (transformations non linéaires appliquées à l’image) peuvent rendre le calcul précis du flou très délicat. Dans la suite nous développons une méthode de calcul de flou en tenant compte de ces constatations, de manière à donner une estimation aussi fidèle que
4.1 Formation d’une image et étude des transitions

Figure 4.8: Ici I_1 a été remplacé par une texture. On remarque que dans le cas (ii) de la proposition 4.1 (c), la texture est multipliée par la fonction G et non pas convolée avec le noyau g. Dans le cas (i) (d) la texture d’arrière plan est floue et la transition vers les valeurs d’avant-plan est brutale.

Figure 4.9: Photo prise avec un avant plan flou (cas (ii) de la proposition 4.1) qui occulte un arrière plan net. On remarque que l’arrière plan s’éteint progressivement mais reste net tout au long de la transition.
Figure 4.10: Photo prise avec un avant plan net (cas (i)) qui occulte un arrière plan très flou. On note que la transition est effectivement brutale entre la zone floue et la zone nette (un certain flou est visible à l’interface et est dû à la mise à l’échelle de l’image. Si on le compare au flou qui affecte l’arrière plan, il est négligeable).

Figure 4.11: Résultat d’une simulation du dispositif de la figure 4.1 où l’on suppose que les deux plans sont tous deux hors de la mise au point avec des noyaux de convolution différents. On constate un mélange des quantités de flou des deux plans.

possible de la quantité de flou en chaque point de l’image où un calcul est possible avec une précision acceptable.

4.2 Détection des bords

Au paragraphe précédent nous avons étudié un modèle simplifié pour la formation des images, et vu divers profils de flou dans les images. Ces profils justifient le choix que nous avons fait d’étudier le flou dans le domaine spatial.

Les transitions que nous avons vues au paragraphe précédent sont le résultat d’une discontinuité dans la scène (telle qu’une occultation entre deux objets) enregistrée par le système optique de l’appareil, et principalement affectée par une convolution avec un certain noyau de flou. Les profils que nous avons montrés sont des fonctions à une dimension alors que l’image est bidimensionnelle. Pour s’affranchir d’une des deux dimensions nous avons supposé que l’image était constante le long de l’autre dimension. Les graphes des figures 4.8 et 4.7 sont des coupes le long de l’axe x (voir la figure 4.1) dans le cas où les images I_1 et I_2 considérées au paragraphe précédent sont constantes le long d’un axe perpendiculaire.
4.2 Détection des bords

Figure 4.12: Différents profils extraits d’images réelles

au plan de la figure 4.1. Les travaux qui traitent de la détection de bords tels que [Canny, 1983], [Bergholm, 1987] ou [Canny, 1986] font souvent l’hypothèse que les transitions dans les images proviennent d’un *step edge* (4.1). Supposons que le noyau de convolution est gaussien de variance σ^2. En nous plaçant dans un cadre continu et en supposant que le point lumineux est modélisé par une masse de Dirac, l’image résultante est :

$$f(x,y) = e^{-\frac{x^2+y^2}{2\sigma^2}}.$$

Dans cette présentation l’image est connue avec une résolution infinie et n’a subi aucun bruit. De ce fait le filtrage est inutile et les critères de détection de bords mis en œuvre dans [Elder and Zucker, 1998] ou [Canny, 1986] vont mener à la détection des points où la dérivée seconde de la fonction dans la direction du gradient est nulle. Soit l’équation, en prenant $r = \sqrt{x^2 + y^2}$

$$f''(r) = \frac{1}{\sigma^2} \left(\frac{r^2}{\sigma^2} - 1 \right) e^{-\frac{r^2}{2\sigma^2}} = 0. \quad (4.6)$$
Les points qui satisfont l’équation (4.6) sont ceux situés sur le cercle de centre (0, 0) et de rayon σ.

Or, comme nous le verrons plus loin, la quantité de flou est inversement proportionnelle à la norme du gradient. En effet, pour une transition de même amplitude, plus le gradient est grand plus la transition est brutale. Ce qui implique que le noyau de convolution est peu étalé. Considérons donc la norme du gradient aux points que nous venons de détecter, elle est égale à

\[\frac{1}{\sigma e^{\frac{1}{2}}}. \]

Dans le paragraphe 4.4 on verra que dans le cas d’un step edge convolé avec une gaussienne de variance σ² la norme du gradient est égale à

\[\frac{1}{\sigma \sqrt{2 \pi}}. \]

La différence entre ces deux valeurs est d’environ 50%. Ceci est un exemple extrême de l’erreur que l’on commet sur l’estimation du flou si on ne prend pas garde à faire l’estimation dans les zones de l’image où la courbure est petite. Il faut donc se placer aux zones à bord droit pour pouvoir évaluer le flou avec une précision satisfaisante.

4.2.1 Carte topographique de l’image

Après avoir vu l’intérêt de vérifier la validité de l’hypothèse de step edge avant de procéder à un calcul de flou, il nous faut trouver un moyen sûr de faire cette vérification. Nous nous fondons sur la carte topographique d’une image, décrite en détail dans [Caselles et al., 1999] et [Caselles et al., 1997], dont nous donnons ici une définition succincte. Soit une image I définie de \(\mathbb{R}^2 \) dans \(\mathbb{R} \). On appelle ensemble de niveau supérieur de niveau λ l’ensemble \(\chi_\lambda \) défini par

\[\chi_\lambda = \{ x \in \mathbb{R}^2 ; I(x) \geq \lambda \}. \] (4.7)

On appelle carte topographique de l’image la collection des frontières de ces ensembles de niveau supérieurs, définis par

\[C_\lambda = \partial \chi_\lambda \] (4.8)

Si on suppose que l’on peut retrouver les ensembles de niveau de I à partir de leurs frontières alors la carte topographique contient toute l’information de l’image. Cette condition est réalisée, par exemple, dans le cas où chaque \(C_\lambda \) est une union finie de courbes de Jordan. En effet, dans de telles conditions, il est démontré au chapitre 6 de l’ouvrage [Morel and Solimini, 1995] que la donnée de la carte topographique suffit à retrouver l’image elle-même. Cette condition est bien remplie, par exemple, par les fonctions obtenues comme interpolation bilinéaire d’une image numérique.

4.2.2 Passage du discret au continu et choix de l’interpolation

La carte topographique est définie par 4.7 et 4.8 pour les fonctions de \(\mathbb{R}^2 \) dans \(\mathbb{R} \). Il nous faut donc choisir un moyen d’adapter cette définition aux images numériques, ce qui revient à choisir une interpolation pour passer d’une définition discrète (sur \(\mathbb{Z}^2 \)) de l’image à une définition continue (sur \(\mathbb{R}^2 \)). Notre choix s’est porté sur l’interpolation bilinéaire, dont nous
donnons une définition à l’équation (4.9), en raison de la simplicité de son calcul et du fait qu’elle assure un bon niveau de régularité aux lignes de niveau.

\[\theta_x = x - x_{\text{ent}}, \]
\[\theta_y = y - y_{\text{ent}}, \]
\[I(x, y) = a(1 - \theta_x)(1 - \theta_y) + b\theta_x(1 - \theta_y) + c(\theta_x)(\theta_y) + d(1 - \theta_x)\theta_y, \quad (4.9) \]

où \(a, b, c, d \) sont les valeurs de l’image numérique en \((x_{\text{ent}}, y_{\text{ent}}), (x_{\text{ent}}+1, y_{\text{ent}}), (x_{\text{ent}}+1, y_{\text{ent}}+1), (x_{\text{ent}}, y_{\text{ent}}+1)\).

En effet, si on la compare aux autres interpolations possibles telles que l’interpolation constante par morceaux ou une interpolation par splines d’ordre supérieur elle présente deux qualités qui la distinguent.

a) Régularité : Par rapport à l’interpolation constante par morceaux, l’interpolation bilinéaire fournit une fonction qui est \(C^\infty \) sur presque tout \(\mathbb{R}^2 \) et continue sur tout \(\mathbb{R}^2 \). En effet, la valeur de la fonction interpolée à l’intérieur d’un pixel est donnée par l’équation d’un parabolôde (équation (4.10)) qui est \(C^\infty \). Les seuls zones où une telle fonction n’est pas \(C^\infty \) sont les arêtes qui joignent les points de coordonnées entières. Ceci est illustré par les figures 4.13(b) et 4.13(c).

b) Localité : Par rapport à une interpolation spline d’ordre supérieur, le calcul d’un point de l’interpolée bilinéaire ne fait intervenir que les quatre points les plus proches, cela permet d’éviter de mélanger des valeurs provenant de pixels trop distants. Une conséquence de cette localité est la simplification de la recherche des niveaux possibles à l’intérieur d’un pixel. En effet, les valeurs possibles pour \(\lambda \) dans l’équation (4.10) sont les valeurs comprises entre le maximum et le minimum atteints aux coins du pixel. Par ailleurs, dans le domaine Fourier, la transformée de l’image est multipliée, dans le cas de l’interpolation bilinéaire, par un sinus cardinal élevé au carré. Si on utilisait une interpolation d’ordre plus grand, cela se traduirait par une multiplication de la transformée de Fourier par un sinus cardinal élevé à une plus grand puissance que 2 et, donc, à une atténuation plus grande des hautes fréquences. On ajouterait ainsi du flou à l’image.

4.2.3 Filtrage de la carte topographique

La figure 4.13(b) montre un détail d’une carte topographique d’une image (figure 4.14(a)). On remarque que les lignes de niveau, même si elles sont \(C^\infty \) presque partout, restent bruitées au sens où elles sont très oscillantes dans une zone de l’image où l’on s’attendrait à ce que les lignes de niveau soient droites.

Le bruit de ces lignes de niveau est dû tout d’abord à l’interpolation, comme le montre la figure 4.13(c) dans le cas de l’interpolation constante par morceaux, les lignes sont toujours parallèles à un des axes de coordonnées. Dans le cas de l’interpolation bilinéaire ce phénomène de pixelisation est moins flagrant, mais les lignes de niveau dans les domaines de la forme \([n, n + 1[\times]m, m + 1[\) sont nécessairement des hyperboles. En effet l’équation (4.9) devient

\[C_0.x.y + C_1.x + C_2.y + C_3 = \lambda, \quad (4.10) \]

où \(\lambda \) est le niveau de gris de la ligne que l’on cherche à connaître. Cette équation est celle d’une hyperbole dont les asymptotes sont les axes de coordonnées. Elles ne sont droites que
Figure 4.13: Cette planche montre les lignes de niveau après interpolation bilinéaire (b) ou constante par morceaux (c). Le simple choix de l’interpolation bilinéaire fait que les lignes sont plus régulières (b) alors qu’avec l’interpolation constante par morceaux les lignes consistent en des segments horizontaux ou verticaux dont l’orientation change très rapidement (c).

dans le cas dégénéré et peu probable où l’image prend aux quatre coins de ce domaine les mêmes valeurs qu’une fonction affine (Dans \mathbb{R}^3 quatre points ne sont généralement pas sur un même plan).

L’autre cause du bruit dans la carte topographique est le bruit de l’image elle même. Le bruit se traduit par des oscillations rapprochées des lignes de niveau comme le montre la figure 4.15. Ce bruit peut être un bruit d’acquisition ou une texture. Rappelons également que la présence de texture nette peut être observée dans une zone de flou, comme nous l’avons vu à la figure 4.9, ce qui signifie que ces oscillations peuvent interagir avec notre calcul de flou.

Si l’on veut détecter les bords droits de l’image par l’intermédiaire de la carte topographique, il nous faut donc la filtrer. Or, le bon cadre pour un tel filtrage est celui des transformations morphologiques. En effet, ces transformations ont la particularité de commuter avec les changements de contraste, ce qui a comme conséquence que leur action peut être définie sur les ensembles de niveau et donc sur les lignes de niveau. En choisissant une transformation morphologique nous garantissons la consistance, après filtrage, de la carte topographique. En effet, soit un opérateur morphologique T et un changement de
Figure 4.14: Cette planche montre une image accompagnée de sa carte topographique. la figure (b) présente les lignes de niveaux variant de 1 en 1, alors que la figure (c) présente seulement les lignes dont les niveaux sont multiples de 20. Nous observons que les léger dégradés correspondent à des lignes parallèles et distantes (épaule) alors que les transitions brutales correspondent à des paquets de lignes parallèles très rapprochées.

contraste \(g \) (fonction croissante de \(\mathbb{R} \) dans \(\mathbb{R} \)) alors \(T \) vérifie la propriété :

\[
T(g \circ u) = g \circ T(u).
\]

Ceci a pour conséquence l'existence d'un opérateur \(\tilde{T} \) agissant sur les lignes de niveau et tel que

\[
\chi_\lambda(T(u)) = \tilde{T}(\chi_\lambda(u)).
\]

Ainsi à chaque opérateur morphologique on fait correspondre un opérateur qui agit sur les lignes de niveau, de sorte que l'on peut accomplir le filtrage indistinctement sur les lignes ou sur l'image elle même.
Pour accomplir le filtrage, nous avons donc choisi un opérateur morphologique. Plus précisément, nous utilisons le *scale space* affine morphologique ou Affine Morphological Scale Space (AMSS) ([Alvarez et al., 1993] et [Alvarez and Morel, 1994]). L’équation aux dérivées partielles qui régit cette évolution est

$$\frac{\partial u}{\partial t} = c^1(t, x).Du,$$ \hspace{1cm} (4.11)

où $c(t, x)$ est la courbure de la ligne de niveau de $u(t)$ qui passe au point x considéré. En tant qu’opérateur morphologique son action peut aussi être définie sur les lignes de niveau et l’équation qui le régit est la suivante

$$\frac{\partial C}{\partial t} = c^\frac{1}{3} \mathbf{v}(s, t).$$ \hspace{1cm} (4.12)

$C(s, t)$ est la courbe à faire évoluer dans le temps, s étant le paramètre qui décrit la courbe à chaque instant t, c est la courbure de C au point considéré et $\mathbf{v}(s, t)$ est le vecteur orthogonal à $C(., t)$ dirigé vers l’intérieur de la courbure en s. Faire évoluer l’image suivant 4.11 est théoriquement équivalent à faire évoluer chacune de ses lignes de niveau suivant l’équation 4.12. Néanmoins, numériquement les schémas approchés différent. En particulier, le choix d’un bon schéma pour 4.12 permet de préserver la structure d’inclusion des C_λ et
4.2 Détection des bords

Dans ce paragraphe nous montrons comment il est possible d’exploiter le résultat du filtrage précédent pour détecter les zones de l’image où le calcul du flou est possible avec une bonne précision.

Tout d’abord nous extrayons de chaque ligne de niveau les segments droits qui indiquent la présence d’un step edge. L’une des possibilités pour extraire les segments droits de ces lignes est d’utiliser les critères de significativité développés par Desolneux et al. dans [Desolneux et al., 2000]. Il faudrait donc choisir une précision et ne retenir comme segment significatif que les segments de l’image sur lesquels il se trouve un nombre de points alignés (i.e. auxquels la ligne de niveau est alignée avec le segment à la précision près) qui soit suffisamment grand (voir le premier chapitre pour plus de précisions). Cependant, le problème que nous nous posons est un problème local, nous ne voulons pas d’alignements non locaux. Ce que nous cherchons ce sont les zones où l’hypothèse de step edge est vérifiée. En ces zones, la carte topographique devrait être un ensemble de segments parallèles comme le montre la figure 4.15(c). Nous exigeons donc que les points qui constituent un segment appartiennent à une même ligne de niveau et soient contingents. Si nous revenons à la définition de la significativité d’un segment élaborée dans [Desolneux et al., 2000] nous voyons que cela impose simplement qu’un certain nombre de points (nombre qui ne dépend que de la taille de l’image) soient alignés sur une ligne de niveau et soient contingents. Le nombre en question, qui est la longueur minimale d’un segment significatif, n’est pas forcément le plus adapté à notre problème. En effet, la longueur que nous cherchons doit nous prémunir contre une trop grande courbure de la ligne de niveau, courbure qui nuirait à la qualité de la mesure.

4.2.4 Détection des parties droites et paquets de parallélisme

Figure 4.16: Evolution des lignes de niveau par AMSS. Remarquer l’élimination du bruit alors que les lignes droites de l’image restent bien droites. Cependant les lignes très courbes de déplacent. Par exemple la jonction en T en haut à droite disparaît.

Etude et estimation du flou dans les images numériques

Figure 4.17: Détection d’un segment de longueur maximale. Le segment détecté représente la partie en gras de la courbe de niveau.

du flou. Nous ne cherchons pas les segments "visibles" mais les parties de l’image dont les caractéristiques géométriques permettent le calcul le plus précis possible du flou. Dans la section 4.3 nous verrons un théorème qui lie le rayon de courbure des lignes de niveau à la précision du calcul du flou, un cas extrême ayant été présenté ci-dessus (cas d’une image constituée d’un Dirac flouté).

Définition 4.1 Nous appelons segment local de longueur au moins \(l \) toute partie d’une ligne de niveau située entre deux points extrêmes \(A \) et \(B \) tels que :

- la distance entre \(A \) et \(B \) est supérieure à \(l \).
- tous les points de la ligne de niveau situés entre \(A \) et \(B \) se trouvent dans une bande comprise entre deux droites parallèles à la droite \((AB) \) et symétriques par rapport à celle-ci distantes entre elles de 1 pixel.

Cette définition est illustrée par la figure 4.17.

Une fois la détection des segments effectuées il nous faut trouver les zones où ces segments se présentent sous la forme de paquets de segments parallèles car c’est à ces endroits là que l’image a le plus de chances de présenter un step edge (comme le montre les figures 4.15(c) et 4.18).

Pour détecter ces paquets de segments parallèles nous partons d’un segment donné, traçons sa médiatrice que l’on suit. Le long de la médiatrice on calcule les intersections de celle-ci avec de nouveaux segments. Les nouveaux segments rencontrés doivent avoir une orientation proche de celle du segment de départ, sinon nous ne serions plus dans le cas où l’hypothèse de step edge peut être faite. L’algorithme s’arrête lorsque l’on ne rencontre plus de nouveaux segments.

Ce processus de suivi est similaire à celui mis en oeuvre par Canny pour la détection des points de bord. Cependant, nous avons comme contrainte la détection de bords droits, il faut donc s’assurer que le chemin que l’on suit passe par des points appartenant à des lignes de niveau bien droites, alors que dans une détection de bord quelconque on suit la direction du gradient, notre méthode suit la perpendiculaire à tout un segment droit d’une ligne de niveau. Le filtrage opéré permet de rendre la direction suivie plus pertinente que la direction d’un gradient, qui peut être erronée en raison du bruit. Dans les méthodes classiques de détection, un filtrage est aussi effectué avant de chercher les points des bords. Mais comme nous le verrons plus loin le filtrage linéaire conduit à un écartement des lignes de niveau entre elles, même dans les zones où elles sont bien droites. Alors que le filtrage morphologique conserve bien la localité des objets. La figure 4.19 montre bien ce phénomène.

Conclusion Nous avons vu comment assurer une détection précise des événements de type step edge dans les images. Pour cela nous avons utilisé un filtrage morphologique
4.2 Détection des bords

Figure 4.18: La figure de droite présente tous les segments qui ont été détectés dans les lignes de gauche. Remarquer que les segments sont détectés dès que les lignes de niveaux ne sont pas trop courbées. Leur orientation suit l’orientation de la ligne de niveau si bien que quand on les trace tous on recouvre toutes les parties des lignes où la courbure est assez faible.

Figure 4.19: On voit l’effet qu’a un filtre linéaire sur l’espacement des lignes de niveau. Alors que le filtre AMSS laisse complètement invariant une carte topographique constituée de droites, le filtre linéaire fait que ces droites s’éloignent les une des autres. Ce dernier ajoute du flou à l’image.

directement sur la carte topographique de l’image. Cette approche nous permet de bien vérifier les critères géométriques que nécessite la détection des step edges (parallélisme des lignes de niveau), d’une part, et, d’autre part, le caractère morphologique du filtre est tout à fait approprié aux zones de l’images présentant des step edges car il préserve les lignes droites, qui non seulement demeurent bien droites mais qui en plus ne sont pas déplacées (figures 4.15 et 4.19).

Maintenant que nous disposons des zones de l’image où le calcul du flou est possible, nous allons utiliser ce résultat pour extraire les profils locaux. Notons que nous n’avons pas encore opéré de filtrage sur l’image elle-même. Nous allons voir dans la section suivante quel filtrage doit être appliqué à l’image pour obtenir un profil local à la fois lisse et fidèle du point de vue du calcul du flou.
4.3 Filtrage morphologique sans ajout de flou et extraction des transitions

Nous avons jusqu’à présent développé une méthode pour détecter les zones de l’image où l’on peut effectuer le calcul du flou. La deuxième étape du calcul du flou suppose que l’on évalue une forme de gradient. Plus le gradient en un bord rectiligne de l’image est élevé (par rapport au saut de niveau de gris de part et d’autre du bord) plus l’image est nette en cet endroit. Cependant, le bruit qui affecte l’image peut, bien sûr, fausser la mesure du gradient, ce qui nous conduit à utiliser un filtrage pour effacer le bruit. Dans la plupart des méthodes existantes pour évaluer le flou ([Elder and Zucker, 1998], [Bergholm, 1987]), un filtrage linéaire est utilisé. Plus précisément, il s’agit de convoluer l’image ou l’une de ses dérivées avec une gaussienne. Dans [Elder and Zucker, 1998], une hypothèse sur la variance du bruit ainsi que sur sa nature (bruit blanc gaussien) permet de connaître la quantité de filtrage à effectuer pour éliminer le bruit et détecter les zones de l’image où le gradient est trop fort pour être dû au bruit. Une fois la quantité de filtrage requise connue, on applique le filtre à l’image et à ses dérivées pour évaluer la quantité de flou présente. Il est évident qu’un tel processus nécessite de faire une hypothèse sur la forme du noyau de convolution appliqué à l’image. En effet, si nous voulons calculer la quantité de flou de l’image originale à partir de sa version filtrée, il faut savoir comment le filtrage que l’on applique interagit avec le noyau de flou pour pouvoir extraire les caractéristiques de ce dernier. Si nous supposons, par exemple, que le flou qui affecte l’image est gaussien de variance σ^2 et que l’on filtre l’image avec un filtre gaussien de variance σ_1^2. L’évaluation du flou après filtrage donne une variance de σ_2^2, avec $\sigma^2 = \sigma_2^2 - \sigma_1^2$. Comme nous le verrons plus loin, l’hypothèse faite sur le noyau de flou (gaussian) rend le calcul peu précis dès que le noyau ne la satisfait plus. Cependant, le filtrage reste nécessaire car le bruit est toujours présent dans une image, que ce soit le bruit dû à l’acquisition, le bruit de quantification ou celui dû aux zones texturées de l’image. En effet, une texture est un bruit par rapport au modèle de transition que nous avons choisi. Comme nous l’avons montré dans la section 4.1, des textures très nettes peuvent subsister près d’un bord très flou (Fig. 4.9) et introduire un bruit d’amplitude très grande. Pour effectuer le débruitage, nous avons choisi d’appliquer un filtrage morphologique qui a l’avantage d’une plus grande localisation que le filtrage linéaire, et permet de donner des mesures du flou qui soient cohérentes (i.e. très peu dépendantes de la quantité de filtrage appliquée) sans faire d’hypothèse sur la forme du noyau de convolution qu’a subi l’image.

4.3.1 Comparaison du filtrage linéaire et morphologique pour l’estimation du flou

4.3.1.1 Scale space

Pour effectuer la comparaison entre les filtrages linéaire et morphologique, nous nous plaçons dans le cadre du scale space. Un scale space est une famille d’opérateurs (T_t) indexée par une variable de temps t, positive. Chacun de ces opérateurs est défini de l’espace des images (fonctions de \mathbb{R}^2 dans \mathbb{R}) dans lui même. Le temps t représente la quantité de filtrage que l’on applique à l’image. Ainsi l’opérateur T_0 est l’identité. Par ailleurs nous nous restreignons aux scale spaces qui vérifient la condition de semi-groupe, c’est à dire qu’une évolution pendant un temps t_1 suivie d’une autre évolution pendant un temps t_2 est équivalente à une évolution pendant un temps $t_1 + t_2$. Ceci est résumé par l’équation (4.13). Cette exigence
est naturelle si on considère que nos opérateurs sont des évolutions d’un processus donné pendant un temps t. Signalons qu’il existe des processus de filtrage paramétriques qui ne peuvent satisfaire cette contrainte. Par exemple, si le filtrage T_t consiste en un médian dont l’élément structurant est un disque de rayon t, la propriété de semi-groupe n’est pas vérifiée. Cependant, cette propriété est naturelle pour tout processus de type itératif (l’évolution au temps $n \times \tau$ est le résultat de n évolutions élémentaires de temps τ chacune).

$$T_0 = Id.$$
A partir de ces deux équations il est possible de construire des scale spaces en ajoutant des contraintes sur les transformations T_t. Nous notons $I_0 = I(0)$ l’image de départ qui est une fonction de IR^2 dans IR. L’image $I(t)$ est le résultat de l’évolution au temps t soit $I(t) = T_t(I_0)$ et nous noterons $I(t,x,y)$ la valeur de $I(t)$ au point (x,y).

Scale space linéaire La première famille de scale spaces est celle où l’on impose que les T_t soient linéaires. Si on impose aussi aux transformations de commuter avec les translations et les rotations et de vérifier le principe du maximum2, ce qui est une contrainte naturelle, alors les transformations T_t sont des convolutions par des gaussiennes de variance σ^2 proportionnelle à t, $\sigma^2 = \alpha t$ (une preuve de ce résultat peut-être trouvée dans [Babaud et al., 1986]). Soit :

$$T_t(I) = I * G_t, \quad (4.14)$$

avec

$$G_t(x,y) = \frac{1}{2\pi \alpha t} e^{-\frac{x^2 + y^2}{2\alpha t}}. \quad (4.15)$$

quitte à changer l’échelle du temps on peut prendre $\alpha = 1$ et on prendra

$$G_t(x,y) = \frac{1}{2\pi t} e^{-\frac{x^2 + y^2}{2t}}. \quad (4.16)$$

L’équation (4.14) définit le scale space linéaire. Il existe un résultat qui montre que sous certaines conditions de régularité un scale space peut être caractérisé par une équation aux dérivées partielles (voir [Alvarez et al., 1993]). Ainsi le scale space linéaire défini à l’équation (4.14) se traduit en termes d’EDP par l’équation de la chaleur

$$\frac{\partial I}{\partial t} = \Delta I. \quad (4.17)$$

où ΔI est le laplacien de I.

Scale space morphologique Si l’on impose l’invariance par changement de contraste (T_t commute avec les fonctions croissantes de IR dans IR) ainsi que l’invariance par isométrie (comme on l’a fait pour le scale space linéaire), (d’après [Alvarez et al., 1993]) l’équation aux dérivées partielles qui définit le scale space devient

$$\frac{\partial I}{\partial t} = |\nabla I|F(\text{curv}(I), t),$$

2C’est-à-dire que les valeurs prises par l’image résultantes soient incluses dans le plus petit intervalle contenant les valeurs prises par l’image de départ.
where ∇I is the gradient of the image, $\text{curv}(I)$ designates the curvature of I and F is a function increasing in its first argument. $\text{curv}(I)$ corresponds to the curvature of the level line of I which passes through the considered point. It can also be expressed in the form:

$$\text{curv}(I) = \text{div}\left(\frac{\nabla I}{|\nabla I|}\right).$$

(4.18)

In the sequel, we restrict ourselves to the case where F is a power function. Let

$$\frac{\partial I}{\partial t} = |\nabla I|\text{curv}(I)^g.$$

(4.19)

Two particular cases of the equation (4.19) are interesting. When $\gamma = \frac{1}{3}$ we obtain the sole scale space invariant by affine transformation (AMSS) and if $\gamma = 1$ we obtain the movement by mean curvature (MCM). This is the last case that we study in detail since it is equivalent to a smoothing of the image following a scheme that resembles that of the convolution by equation of heat, except that the smoothing is performed only in the direction perpendicular to the gradient. If we replace the equation (4.18) in the equation (4.19) with $\gamma = 1$, we obtain

$$\frac{\partial I}{\partial t} = |\nabla I| \left(\Delta I - \frac{1}{|\nabla I|^2} \frac{\nabla^2 I(n, m)}{|\nabla I|} \right)$$

$$= \Delta I - \frac{\nabla^2 I(n, m)}{|\nabla I|^2}$$

(4.20)

where $\nabla^2 I$ is the second differential of I and $I_{\xi\xi}$ is the second derivative of I in the direction perpendicular to the gradient. The difference between the equations (4.20) and (4.17) is that the smoothing is performed parallel to the level lines of the image. Thus, the contours of the image are better preserved during a smoothing by mean curvature than during an evolution by equation of heat. For more details on the MCM, the reader can refer to [Alvarez et al., 1992]. Furthermore, the morphological character of the MCM allows to define the action of this smoothing on a Jordan curve. Thus, the MCM can be implemented as an algorithm that acts on the level lines.

Let a curve $C(s, t)$ which evolves in time, $c(s, t)$ the curvature of $C(t)$ at the point of abscissa s and $\bar{v}(s, t)$ the unit vector orthogonal to C and directed towards the interior of the curve. The action of the MCM is then defined by

$$\frac{\partial C}{\partial t} = c\bar{v}(s, t).$$

(4.21)

An implementation (for any γ) has been proposed by Moisan and Cao [Cao and Moisan, 2001]. An example of such an evolution is shown in Figure 4.20.

From now on, we consider the following two schemes:

$$\frac{\partial I}{\partial t} = \Delta I,$$

(4.22)

and

$$\frac{\partial I}{\partial t} = |\nabla I|\text{curv}(I).$$

(4.23)
4.3 Filtrage morphologique sans ajout de flou et extraction des transitions

Figure 4.20: Evolution d’une courbe suivant la MCM. Remarquer que les parties les plus courbées se déplacent le plus vite.

4.3.1.2 Échelle de comparaison

Les *scale spaces* se présentent comme une évolution dans le temps de l’image. Si on veut comparer deux *scale spaces* on ne peut pas se contenter de comparer leurs effets à des temps t égaux. La notion de temps d’évolution n’est qu’une abstraction. Cette échelle de temps est contrainte par la propriété de semi-groupe et ne reflète pas forcément la quantité de lissage. Remarquer en particulier que l’on peut prendre α quelconque dans l’équation 4.15. En passant d’un *scale space* à un autre on ne peut pas garder la même échelle comme nous allons le voir. Pour estimer l’échelle absolue de comparaison entre les deux schémas étudiés nous proposons trois méthodes. Tout d’abord, nous considérons l’homogénéité des équations (4.17) et (4.23) qui nous permettra d’exprimer le temps de chaque processus en fonction de l’échelle de temps de l’autre. Une seconde échelle est donnée par l’étude de la préservation des détails d’une image. Enfin, nous allons considérer une image synthétique bruitée à laquelle nous appliquons les deux schémas. Connaissant l’image de départ, nous pouvons à chaque étape du lissage savoir combien de bruit subsiste dans l’image. Nous noterons t_1 la variable de temps du filtrage linéaire et t_2 la variable de temps du filtrage MCM.

Homogénéité D’après les équations (4.17) et (4.16) le temps t est proportionnel à la variance de la gaussienne, c’est-à-dire à une distance au carré. Et d’après l’équation (4.20) le temps est encore homogène à une distance au carré. On doit donc avoir

$$t_1 = \lambda t_2.$$ \hspace{1cm} (4.24)

où λ est un paramètre sans dimension.

Préservation des détails de l’image Pour chacun des deux schémas étudiés nous définissons un détail et calculons le temps d’évolution au bout duquel le détail n’est plus reconnaissable dans l’image. Pour le schéma MCM nous définissons un détail comme étant un ensemble de niveau qui est inclus dans un cercle de rayon R. Compte tenu du caractère morphologique du schéma MCM il est facile de voir qu’un tel détail disparaît dès que disparaît le cercle qui l’entoure (il suffit de voir qu’il existe une image dont un ensemble de niveau supérieur λ est le cercle et dont l’ensemble de niveau supérieur $\lambda + 1$ est le détail considéré. Quand le cercle disparaît toutes les lignes de niveau qu’il contenait disparaissent aussi). Par ailleurs, si on note $R(t)$ le rayon du cercle après un temps t d’évolution MCM avec $R(0) = R$
Figure 4.21: Évolution d’un détail et perte de précision. En (a) l’évolution par MCM pendant un temps t_1 d’un disque de rayon R qui finit par disparaître. Pour le schéma linéaire (b) nous considérons le temps t_2 à partir duquel la précision sur la position d’un dirac de départ devient supérieure à R.

et que l’on remplace la courbure dans 4.21 par $\frac{1}{R(t)}$ on obtient

$$R(t) = \sqrt{-2t + R^2}, \quad (4.25)$$

et le détail disparaît donc au bout d’un temps au plus égal à

$$t_2 = \frac{1}{2} R^2. \quad (4.26)$$

Dans le cas de la MCM nous pouvons donc facilement définir ce qu’est un détail et déterminer un temps précis au bout duquel ce détail disparaît.

Cela est plus délicat dans le cas du filtre linéaire. En effet, l’action de ce filtre sur un détail tel que défini précédemment est un étalons de celui-ci. Nous choisissons comme détail un simple point, dont la position est connue avec précision. Nous considérons que le détail a disparu quand l’imprécision sur sa position est devenue plus grande que R. Pour mesurer cette imprécision nous pouvons prendre comme indicateur la variance de l’image $I(t)$ avec I_0 un dirac de masse 1 positionné en zéro. On regarde $I(t)$ comme la loi d’une variable qui indique la position du détail de départ. L’équation (4.14) donne immédiatement

$$t_1 = R^2, \quad (4.27)$$

soit finalement

$$t_1 = 2t_2. \quad (4.28)$$

Rédaction du bruit Une dernière méthode de comparaison des échelles de temps entre les deux schémas consiste à étudier numériquement comment chacun des deux réduit le bruit dans une image. Nous avons pris comme image de départ la pyramide de la figure 4.22(a) que nous avons bruitée avec un bruit additionnel blanc gaussien de variance 100, soit un écarts type de 10 sur une image qui a une dynamique de 180 (figure 4.22(b)). Pour chaque schéma d’évolution et chaque temps nous avons calculé la norme du bruit résiduel. Pour cela nous faisons évoluer l’image et sa version bruitée pendant le même temps avant de calculer la norme de la différence (pour l’équation de la chaleur ceci est équivalent à faire évoluer le bruit en raison du caractère linéaire de l’équation d’évolution). Les résultats sont donnés à la figure 4.23(a). Remarquons une décroissance de même type pour les deux courbes (on peut montrer que pour l’équation de la chaleur la décroissance est en $\frac{1}{\sigma}$ quand σ devient grand). Si on multiplie l’échelle de temps de la MCM par 2 on obtient le graphe de la figure 4.23(b).
4.3 Filtrage morphologique sans ajout de flou et extraction des transitions

Figure 4.22: A droite une image de pyramide de dynamique 180 et à gauche la même image avec un bruit d’écart type 10.

Figure 4.23: Réduction du bruit en fonction du temps pour les deux schémas. A droite nous avons recalé les échelles de temps suivant l’équation (4.29).

Ce résultat semble montrer que pour une comparaison absolue entre les deux schémas il faut poser

\[t_2 = 2t_1. \] (4.29)

C’est cette dernière équation qui doit prévaloir sur l’équation (4.28). En effet, la définition d’un détail et de sa disparition ne peut être faite de manière symétrique pour les deux schémas. Par contre, la quantité de bruit qui est éliminée est un critère absolu qui s’applique aux deux schémas. Cependant, les deux équations (4.29) et (4.28) donnent un même ordre de grandeur (de 1 à 4) ce qui nous permet d’affirmer que les deux approches sont raisonnables et cohérentes.

4.3.1.3 Comparaison des scale spaces

Choisissons donc cette dernière formule pour la correspondance entre les deux scale spaces, nous les comparons maintenant dans le cadre du calcul de la quantité de flou. D’une part nous allons voir que le filtrage linéaire conduit à un mélange des événements de type step edge.
Figure 4.24: Comparaison des images filtrées suivant des temps comparables (équation (4.29)). Le temps de référence est le temps du schéma linéaire et vaut 0.5, 2 et 3 respectivement pour les trois lignes.
Figure 4.25: Comparaison des images filtrées suivant des temps comparables (équation (4.29)). Le temps de référence est le temps du schéma linéaire et vaut 4, 5 et 7 respectivement pour les trois lignes.
Figure 4.26: Modification de la topologie d’une carte topographique sous l’effet du filtrage linéaire. Alors que les lignes de la figure (b) vérifient la propriété que pour chaque couple de lignes, l’une des deux contient l’autre, cela devient faux dans la figure (c) (par exemple la ligne la plus intérieure qui est en forme de croissant et la plus petite lignes circulaire, ne vérifient pas cette propriété). Cette dernière figure représente les lignes de niveau après filtrage linéaire.

en raison de l’étallement des détails de l’image. D’autre part nous montrons qu’en l’absence de connaissances sur le noyau de flou, le fait d’appliquer un filtrage linéaire induit une erreur sur la mesure du flou. Cette erreur ne peut être corrigée que si l’on connaît la nature du noyau de flou.

Localité Comme nous l’avons dit plus haut, un filtrage morphologique peut être défini sur la carte topographique d’une image ce qui est une conséquence de l’invariance par changement de contraste. Ceci est en revanche faux pour le filtrage linéaire. Ce filtrage appliqué à une image peut même mener à une modification de la topologie de la carte topographique comme le montre la figure 4.26. Cette expérience montre que des bords disjoints de l’image inter-
4.3 Filtrage morphologique sans ajout de flou et extraction des transitions

agissent lors du filtrage linéaire. Évidemment cette interaction rend impossible l’évaluation du flou car la localisation des deux bords ainsi que leurs caractéristiques propres (valeur du gradient, profil local) sont perdues. Par ailleurs, le filtrage linéaire étale les détails de l’image et ce quelle que soit leur géométrie. Ainsi, un step edge s’étale perpendiculairement à sa direction principale. À l’opposé la MCM conserve mieux les discontinuités. Un step edge parfait est même un point fixe pour la MCM. La figure 4.27 montre les profils et les lignes de niveaux comparés des figures 4.25(d) et 4.25(c) par rapport à ceux de l’image originale. Comme le montre les figure 4.27(b) et 4.27(d), on note un léger étalement des lignes de niveau lors d’un filtrage MCM, dû au fait que les step edge présents dans cette image ne sont pas de longueur infinie. Les coins du carrés sont peu à peu rognés ce qui transforme les bords des carré en courbes au lieu de segments. Ces courbes sont déplacées suivant leur rayon de courbure et tendent à s’éloigner les unes des autres. C’est pourquoi on ne peut pas dire que le filtrage MCM ne modifie pas la structure des bords (et leur flou), mais il le fait de manière moins forte que le filtrage linéaire. En effet, la figure 4.27(c) montre un grand étalement des bords. Les deux profils 4.27(d) et 4.27(e) montrent plus précisément comment chacun des deux filtrages transforme une transition brutale. Dans le cas linéaire, les différents sauts de niveau de gris sont devenus pratiquement indistincts alors qu’ils restent bien séparés après filtrage morphologique. Le paragraphe suivant présente une comparaison quantitative des deux filtrages du point de vue de la modification du flou.

Cohérence de la mesure Nous voulons savoir comment le filtrage modifie la valeur de flou de l’image, et en particulier s’il est possible de retrouver la valeur du flou après filtrage. La première idée intuitive est que le filtrage linéaire ajoute une quantité de flou qui est fonction du paramètre (la variance dans le cas d’un noyau de filtrage gaussien) du filtrage. D’un autre côté le filtrage MCM ou tout autre filtrage morphologique qui transforme une droite en elle-même (soit tous les filtrages morphologiques qui conservent les demi-plans en tant qu’opérateur sur les ensembles de niveau) semble ne jamais modifier la valeur du flou. En effet, un tel filtrage va laisser inchangée la carte topographique d’un step edge, car celle-ci est constituée de droites (parallèles) et l’image n’est donc pas modifiée.

Ces deux intuitions sont à peu près vérifiées à ceci près que la quantité de flou ajoutée par un filtrage linéaire dépend de la forme du noyau de convolution qu’a subi l’image durant l’acquisition et que le filtrage MCM modifie le flou dans les zones de l’image où les lignes de niveau sont courbes. Nous précisons ces points sur deux exemples élémentaires mais représentatifs.

Ajout de flou par filtrage linéaire Comme nous l’avons vu au début du paragraphe 4.2 nous avons choisi comme mesure du flou pour une transition le rapport entre l’amplitude de la transition et le maximum du gradient atteint durant cette transition. Une définition plus précise et une justification complète de ce choix seront vus au paragraphe 4.4. Nous allons considérer une image simple qui consiste en une transition suivant l’axe des x convolue avec un certain noyau dont le paramètre est à déterminer. Pour simplifier, nous nous plaçons dans le cas d’un signal à une dimension. Soit

\[f(x) = (H * k_\lambda)(x), \]

où \(H \) est la fonction indicatrice de \(\mathbb{R}^+ \) (fonction de Heavyside) et \(k_\lambda(x) \) est un noyau de masse 1 que l’on suppose symétrique, atteignant son maximum en 0 et de paramètre \(\lambda \) tel
Figure 4.27: La figure du haut montre les lignes de niveau (de 1 en 1) d’une image représentant une pyramide. Les deux figures de dessous montrent l’évolution de ces lignes après application d’un filtrage MCM (à droite) et gaussien (à gauche). La dernière ligne représente deux profils extraits des deux image (gauche pour la MCM et droite pour le gaussien), on remarque que les différents sauts restent bien séparés dans le cas du filtrage MCM alors qu’ils fusionnent dans le cas du filtrage gaussien. Les temps d’évolution ont été choisis de manière à ce que les deux filtrages enlèvent la même quantité de bruit.
4.3 Filtrage morphologique sans ajout de flou et extraction des transitions

que

\[k_\lambda(x) = \frac{1}{\lambda} k_1 \left(\frac{x}{\lambda} \right). \]

(4.31)

Par exemple, dans le cas du noyau gaussien on peut prendre pour \(\lambda \) l’écart type du noyau.

On applique ensuite un filtre linéaire gaussien \(g_\sigma \) de variance \(\sigma^2 \) à cette image. La fonction \(f \) devient

\[\tilde{f} = (H * k_\lambda * g_\sigma)(x) \]

(4.32)

L’amplitude de cette transition (variation de \(\tilde{f} \) entre \(-\infty \) et \(+\infty \)) est toujours égale à 1. Et sa dérivée est donnée par

\[\tilde{f}'(x) = (k_\lambda * g)(x) \]

(4.33)

(la dérivée de la fonction \(H \) est un Dirac situé en zéro).

Considérons deux cas simples pour la forme que peut prendre \(k_\lambda \). Si

\[k_\lambda(x) = \frac{1}{\sqrt{2\pi\lambda^2}} e^{-\frac{x^2}{2\lambda^2}} \]

est un noyau gaussien de variance \(\lambda^2 \) alors \(\tilde{f}' \) est un noyau gaussien de variance \(\lambda^2 + \sigma^2 \), son maximum est atteint en zéro et vaut

\[\frac{1}{\sqrt{2\pi\sqrt{\lambda^2 + \sigma^2}}} = \frac{1}{\lambda} \times \frac{1}{\sqrt{2\pi\sqrt{1 + r^2}}} \]

avec \(r = \frac{\sigma}{\lambda} \).

(4.34)

soit un flou de

\[\lambda \sqrt{2\pi} \sqrt{1 + r^2}. \]

(4.35)

Si le noyau est constant

\[k_\lambda = \frac{1}{2\lambda} \mathbb{I}_{[-\lambda,\lambda]}, \]

(4.36)

le maximum de (4.33) est encore atteint en zéro et vaut

\[\frac{1}{2\lambda} \times \frac{1}{2\pi\sigma} \int_{-\lambda}^\lambda e^{-\frac{x^2}{2\sigma^2}} dx = \frac{1}{2\lambda} \times \frac{1}{\sqrt{2\pi}} \int_{-\frac{1}{r}}^{\frac{1}{r}} e^{-\frac{u^2}{2}} du. \]

(4.37)

L’amplitude étant toujours égale à 1, le flou mesuré dans ce cas est

\[\lambda \sqrt{2\pi} \left(\int_{-\frac{1}{r}}^{\frac{1}{r}} e^{-\frac{u^2}{2}} du \right)^{-1}. \]

(4.38)

Remarquons d’abord que le flou mesuré est bien sûr différent du flou d’origine, et qu’il s’agit d’une erreur systématique. De plus, la correction de cette erreur nécessite de connaître la nature du noyau de convolution qu’a subi l’image lors de l’acquisition (noyau \(k_\lambda \)). En pratique c’est généralement l’hypothèse de noyau gaussien qui est faite, hypothèse simplificatrice au regard de la complexité des dispositifs d’acquisition. Analysons les erreurs commises lors de la mesure dans deux cas différents

cas 1) A partir de deux images qui ont la même valeur de flou mais qui ont été convolues par deux noyaux différents (un gaussien et un uniforme) on calcule la différence de mesure de flou après un lissage équivalent des deux images. Soit, en notant \(I_1 \) et \(I_2 \)
les deux images, k_λ le noyau uniforme (ou créneau, défini en (4.36)) de paramètre λ, g_σ la gaussienne de variance σ^2 et \mathfrak{F} la mesure du flou

$$I_1 = H * g_{\lambda_1},$$
$$I_2 = H * k_{\lambda_2},$$
$$\tilde{I}_1 = H * g_{\lambda_1} * g_\sigma,$$
$$\tilde{I}_2 = H * k_{\lambda_2} * g_\sigma,$$

on s’intéresse au rapport

$$\frac{\mathfrak{F}(\tilde{I}_2)}{\mathfrak{F}(\tilde{I}_1)}.$$

cas 2) A partir d’une image qui a subi une convolution avec un noyau uniforme. Après filtrage de l’image, on effectue une mesure de flou. Cette mesure est faite pour différentes tailles de noyaux de filtrage. Elle est corrigée suivant l’hypothèse que le noyau de flou (subi avant filtrage) est gaussien. Puis on calcule la différence entre la mesure corrigée obtenue pour chaque quantité de filtrage avec la mesure obtenue directement sur l’image originale (sans filtrage). Cette différence illustre la non cohérence de la mesure et la dépendance de l’erreur par rapport à la quantité de filtrage appliquée à l’image. Soit

$$I = H * k_\lambda$$
$$\tilde{I} = H * k_\lambda * g_\sigma$$

on essaye de retrouver le noyau d’origine par la formule

$$\lambda(\sigma) = \sqrt{\frac{\mathfrak{F}^2(\tilde{I})}{2\pi}} - \sigma^2.$$

Cette formule est justifiée parce que l’on s’est placé dans le cas où l’on faisait une hypothèse de noyau gaussien pour le flou de l’image et que la mesure du flou pour une gaussienne d’écart type α est $\sqrt{2\pi\alpha}$ (équation (4.35) avec $r = 0$). Finalement, on s’intéresse au rapport

$$\frac{\lambda(\sigma)}{\lambda(0)},$$

qui indique la dépendance de l’erreur commise par rapport à la quantité de lissage. Plus ce rapport est proche de 1 plus il est bon. On note que pour $\sigma = 0$ la mesure est considérée comme parfaite, pas parce qu’elle l’est effectivement mais parce que ce que l’on veut ici c’est montrer comment l’erreur de mesure évolue avec σ.

Dans le premier cas on note que pour qu’un noyau gaussien d’écart type λ_1 et noyau uniforme de paramètre λ_2 conduisent à la même évaluation de flou il faut que

$$\lambda_2 = \frac{2\pi}{2}\lambda_1.$$ \hspace{1cm} (4.39)
Ce qui se montre en prenant $r = 0$ dans les deux équations (4.38) et (4.35) et en identifiant les deux résultats. Si on note $r = \frac{\sigma_{\lambda}}{\sigma_{I_1}}$ le rapport entre l’écart type du lissage appliqué aux deux images et l’écart type du noyau appliqué à I_1. Alors le rapport entre les deux mesures effectuée après lissage est de

$$ \frac{\hat{\sigma}(I_2)}{\hat{\sigma}(I_2)} = \sqrt{2\pi} \times \left(\sqrt{1 + r^2} \int_{-\frac{\sigma_{\lambda}}{\sigma_{I_1}}}^{\frac{\sigma_{\lambda}}{\sigma_{I_1}}} e^{-\frac{u^2}{2}} du \right)^{-1}. \quad (4.40) $$

Nous avons tracé le graphe de cette équation dans la figure (4.28) en fonction du rapport r. Nous remarquons que la mesure de flou peut varier de 12% suivant la nature du noyau qui affecte l’image. Par ailleurs, quand r est petit la mesure est équivalente dans les deux cas car le lissage appliqué à l’image reste faible et qu’il ne modifie pas de beaucoup la valeur réelle du flou de l’image. Quand r tend vers l’infini, on ne mesure plus que le flou ajouté par le traitement et la mesure redevient cohérente.

Dans le second cas nous commettons deux types d’erreurs. La première est due au fait que l’on n’a pas fait la bonne hypothèse sur le noyau de flou. La seconde est due au fait que le lissage linéaire appliqué à l’image aggrave cette erreur. Contre la première erreur on ne peut rien faire si ce n’est améliorer l’hypothèse sur le noyau de flou. Elle ne peut pas être imputée au lissage. Le graphique 4.29, toujours tracé en fonction de r, montrent que l’erreur due au lissage peut être très grande même pour des lissages relativement faibles (25% lorsque le lissage est de taille équivalente au flou). En fait, à l’infini la courbe devient imaginaire, c’est-à-dire qu’il n’y a pas de flou gaussien qui puisse expliquer la mesure faite quand le lissage devient trop grand. Mais cela se produit pour des valeurs très grandes de r.
4.3.1.4 Modification du flou dans le cas de la MCM

D’après ce qui précède, la non connaissance de la forme du noyau de flou qui affecte l’image entraîne des erreurs d’évaluation du flou original. Cette erreur croît avec la taille du noyau de lissage, mais reste significative même pour des noyaux de lissage de taille comparable à celle du noyau de flou qui affecte l’image. Nous allons montrer dans ce qui suit que si l’on applique un filtrage MCM à une image, la mesure de flou peut être très proche de la valeur du flou original. Ainsi, il n’y a pas besoin d’appliquer une correction systématique pour revenir au flou de l’image. Ceci est vrai à condition que le rayon de courbure des lignes de niveau dans la zone d’intérêt ne soit pas trop petit. Nous avons déjà signalé qu’une image dont les lignes de niveau sont des droites n’était pas modifiée par la MCM. Pour étudier l’erreur commise sur l’évaluation du flou dans une image dont les lignes de niveau sont courbes, et qui a été filtrée par MCM, nous considérons l’image synthétique suivante

\[
f(x, y) = \begin{cases}
1 & \text{si } x^2 + y^2 < R_0^2 \\
0 & \text{si } x^2 + y^2 > R_1^2 \\
\frac{R_1 - \sqrt{x^2 + y^2}}{R_1 - R_0} & \text{si } R_0^2 \leq x^2 + y^2 \leq R_1^2
\end{cases}
\]

(4.41)

La carte topographique de cette image est une collection de cercles centrés en (0, 0) dont les rayons varient de \(R_0 \) à \(R_1 \). La largeur de flou de cette image est

\[
R_1 - R_0
\]

(4.42)

Théorème 4.1 Après filtrage par MCM pendant un temps \(2t < R_0^2 \) de l’image \(f \) définie par l’équation (4.41), la mesure du flou vaut

\[
(R_1 - R_0) \times \frac{1}{\sqrt{1 - \frac{2t}{R_1^2}}}
\]

(4.43)
4.3 Filtrage morphologique sans ajout de flou et extraction des transitions

Ce théorème montre que plus le temps de lissage MCM est petit devant R_1 plus l’erreur commise est petite. Ainsi avec un rayon de courbure de 100, on peut effectuer un lissage MCM pendant un temps 100 (qui équivaut à un filtrage linéaire d’écart type 7.07) en commettant une erreur de l’ordre de 2% sur la mesure du flou.

Démonstration On note $f(t, x, y)$ l’évolution de la fonction f au temps t. En raison de la symétrie de l’image, pour tout t, $f(t, ..,)$ est une fonction à symétrie de révolution. Sa carte topographique est une collection de cercles centrés en zéro. Pour $0 \leq v \leq 1$, on note $R(t, v)$ le rayon de la courbe de niveau v au temps t (qui est un cercle). On a

$$R(t, v) = \sqrt{R^2(0, v) - 2t}, \text{ avec}$$
$$R(0, v) = (R_0 - R_1)v + R_1 \text{ pour } 0 \leq v \leq 1, \text{ soit}$$
$$R(t, v) = \sqrt{((R_0 - R_1)v + R_1)^2 - 2t}.$$

Cette équation reste valable tant que $R_0 > 2t$, autrement dit tant que le cercle de rayon minimum ne disparaît pas. Comme l’image au temps t est à symétrie de révolution son gradient (quand il n’est pas nul) est radial. Son amplitude (quand elle n’est pas nulle) est donnée par

$$\left| \frac{dv}{dR}(t, v) \right| = \left((R_1 - R_0) \frac{R(0, v)}{\sqrt{R^2(0, v) - 2t}} \right)^{-1}$$
$$= (R_1 - R_0)^{-1} \times \sqrt{1 - \frac{2t}{R^2(0, v)}} \quad (4.44)$$

Le maximum de cette dernière expression (qui est positive) est atteint lorsque $R(0, v)$ est maximal, soit $v = 0$ et $R(0, v) = R_1$. Par ailleurs l’amplitude de la transition est toujours de 1 (tant que le cercle de rayon minimal n’a pas disparu). D’où une valeur de flou de

$$(R_1 - R_0) \times \frac{1}{\sqrt{1 - \frac{2t}{R_1^2}}} \quad (4.45)$$

Ceci conclut la preuve. □

4.3.2 Extraction des profils

Les profils sont des réductions à une dimension de l’information de l’image. Une telle réduction est naturelle dès que l’image ne varie plus que selon une seule dimension. Or la détection des bords droits ainsi que le filtrage MCM (pour éliminer le bruit) nous garantissent effectivement une telle condition dans les zones précédemment détectées. Il suffit de prendre un échantillonnage de l’image filtrée le long d’un segment perpendiculaire à la direction principale de la collection de segments parallèles pour avoir une représentation en une dimension de l’image. Cette représentation est locale. Et bien que prise sur une droite, elle est lisse du fait du filtrage qui a eu lieu.

3notons que l’on donne le gradient en fonction de la valeur de l’image v et du temps t et non pas en fonction de la position spatiale, ceci ne pose pas de problème car on recherche le maximum du module du gradient.

84
4.4 Analyse des transitions

Les profils extraits de l’image après filtrage sont le point de départ du calcul du flou. Il nous reste à définir ce que doit être la mesure du flou à partir de ces profils. Nous verrons aussi comment on peut retrouver le noyau de flou, dans certains cas favorables, à partir de ces mêmes profils.

4.4.1 Mesure du flou

Le profil d’une transition est une projection sur un axe du noyau de convolution. En effet, si \(h(x, y) \) est un noyau de convolution que l’on applique à une image \(f(x, y) \) valant 1 pour \(x < 0 \) et 0 pour \(x \geq 0 \) alors le profil résultant est

\[
 p(x) = \int_{t>x} \int_{y=-\infty}^{y=+\infty} h(t, y) \, dy \, dt. \tag{4.46}
\]

Comment extraire de ce profil une information sur le noyau de flou? Nous verrons plus loin que, sous une contrainte de symétrie de révolution, il est possible de retrouver le noyau \(h \). Mais des problèmes de stabilité numérique font que l’opération est délicate. Nous cherchons dans un premier temps à évaluer une valeur caractéristique du flou.

4.4.1.1 Approche axiomatique

Buzzi et Guichard (Buzzi and Guichard, 2004) proposent une approche axiomatique de la mesure du flou. Une fonction de mesure \(\mathcal{B} \) doit vérifier les conditions suivantes :

(i) **Additivité** : si \(g \) et \(h \) sont des noyaux alors

\[
 \mathcal{B}(h \ast g) = \mathcal{B}(h) + \mathcal{B}(g).
\]

(ii) **Homothétie** : il existe une fonction positive \(\Phi \) telle que pour tout noyau \(h \), en notant \(h_\lambda(x, y) = \lambda h(\lambda x, \lambda y) \), on ait

\[
 \mathcal{B}(h_\lambda) = \Phi(\lambda) \mathcal{B}(h).
\]

(iii) **Normalisation** : \(\mathcal{B}(g_1) = 1 \), \(g_1 \) étant le noyau gaussien de variance 1.

(iv) **Stabilité** : \(\mathcal{B} \) est continue par rapport à la norme qui à \(h \) associe

\[
 \| h \| = \int \int |h|^2 + (x^2 + y^2) |h|.
\]

(v) **Invariance** : si \(L \) est une isométrie du plan

\[
 \mathcal{B}(h \circ L) = \mathcal{B}(h).
\]

Il est démontré dans Buzzi and Guichard, 2004 que la seule mesure qui vérifie ces conditions est la variance. C’est-à-dire la fonction qui à \(h \) associe

\[
 \mathcal{B}(h) = \frac{1}{2} \int \int (x^2 + y^2) h(x, y) \, dx \, dy.
\]
4.4 Analyse des transitions

Par ailleurs des expériences montrent que la perception du flou par l’œil dépend fortement de la variance du noyau de convolution appliqué à l’image.

Nous montrons que, bien que la variance du noyau soit calculable à partir du profil, cette opération est instable numériquement et amplifie le bruit résiduel qui se retrouve dans le profil. Par ailleurs le calcul de variance est très sensible aux oscillations présentes dans les profils réels extraits d’une image, comme celui présenté à la figure 4.12(c).

Variance du noyau à partir du profil D’après (4.46), en dérivant par rapport à la variable x, on a

\[p'(x) = \int_{-\infty}^{\infty} h(x,t)dt. \] (4.47)

Si on fait l’hypothèse que le noyau h est à symétrie de révolution\(^4\), la variance de \(p'\) est égale à la variance du noyau. En effet

\[\int p'(x) \times x^2 \, dx = \iint h(x,y) \times x^2 \, dxdy \]

\[= \iint h(x,y) \times y^2 \, dxdy \]

la dernière égalité étant obtenue en inversant les variables x et y et en remplaçant \(h(x,y)\) par \(h(y,x)\) qui lui est égal. En sommant les deux formules on trouve

\[\int p'(x) \times x^2 \, dx = \frac{1}{2} \iint h(x,y) \times (x^2 + y^2) \, dxdy \] (4.48)

Instabilité du calcul de la variance à partir d’un profil réel Plaçons-nous maintenant dans un cas discret où le noyau est échantillonné à pas constant égal à 1 et dont les valeurs successives sont les \(h_i\) pour \(i = -L...L\). On suppose que ce noyau est centré en zéro. Une estimation de la variance du noyau (à partir des échantillons) est donnée par

\[\sum_{-L}^{L} h_i^2. \] (4.49)

Si les \(h_i\) sont affectées d’un bruit \(b_i\) supposé iid de variance \(b^2\) alors l’estimation devient\(^5\)

\[\sum_{-L}^{L} (h_i + b_i)^2, \] (4.50)

soit une erreur de

\[E = \sum_{-L}^{L} b_i^2. \] (4.51)

\(^4\)Pour le calcul qui suit l’hypothèse \(h(x,y) = h(y,x)\) suffit. Mais cette hypothèse seule est absurde car le repère (x,y) est fonction de la direction du bord ou l’on effectue le calcul. Qu’importe à supposer que le noyau est symétrique par rapport à une droite arbitraire (x = y dans ce cas) autant supposer que le noyau est symétrique par rapport à toutes les droites qui passent par l’origine et donc à symétrie de révolution.

\(^5\)On néglige l’erreur sur la détermination de la moyenne de la distribution des \(h_i + b_i\).
dont l’écart type est

\[V = b \sqrt{\sum_{i=-L}^{L} i^2} = b \sqrt{\frac{1}{3} (2L^3 + 3L^2 + L)}. \]

(4.52)

Autrement dit le bruit sur les échantillons se traduit par une erreur sur l’évaluation de la variance du noyau qui est équivalente à \(\sqrt{\frac{2}{3} L^3} \). Si, par exemple, le noyau en question est une gaussienne de variance 9, que l’amplitude de la transition étudiée est de 50 niveaux de gris et que l’on considère un profil de 21 échantillons (c’est la taille minimale de l’échantillonnage pour capturer plus de 95% de la variance du noyau), alors, un bruit gaussien de variance 2 induit une erreur d’écart type

\[\frac{\sqrt{2}}{50} \times \sqrt{770} \approx 0.785 \approx 8\% \text{ de la variance du noyau}. \]

(4.53)

Cette erreur peut sembler faible, mais d’abord nous avons considéré un bruit très faible. De plus cette erreur ne dépend que du bruit du profil et de la taille de l’échantillonnage elle peut donc devenir beaucoup plus grande par rapport à la variance du noyau considéré (cependant, pour les petits noyaux, on peut se restreindre à un plus petit nombre d’échantillons qui captureront une partie suffisante de la variance du noyau).

Mais le principal problème que soulève le calcul d’une variance est que ce calcul est très dépendant de la queue du noyau. Or, dans les images naturelles plusieurs phénomènes interviennent dans la formation d’une transition comme on l’a vu dans la première section. Par exemple, dans la figure 4.12(c), le rebond est certainement dû à une réflexion mutuelle et ne devrait pas être pris en compte dans le calcul de la variance. De plus, ces phénomènes parasites se produisent loin du milieu du profil, et affectent d’autant plus le calcul de la variance que le bruit qu’ils représentent (par rapport à un modèle convolutif pur) est amplifié par un facteur proportionnel à \(d^2 \) où \(d \) est la distance qui les sépare du centre. Par ailleurs, des phénomènes vibratoires peuvent se produire comme dans la figure 4.30. Combien d’échantillons de ce profil considérer pour le calcul de la variance? Si on ne va pas assez loin, on risque de perdre une partie de la variance. Si on va trop loin on risque d’introduire un bruit amplifié par un facteur en \(d^2 \).

Par opposition nous remarquons que la partie centrale des profils extrait est très lisse. Cette partie a moins de chances de subir un bruit dû à un phénomène indépendant du \textit{step edge}. Or cette partie centrale ne capture que très peu de variance et ne donne de l’information que sur la valeur en zéro du noyau de convolution. Ces considérations nous mènent à la définition suivante.

\textbf{Définition 4.2} Soit \(p \) une fonction réelle définie sur \(\mathbb{R} \) et dérivable, non constante et bornée. On appelle \(p \) un profil et on appelle largeur de flou associée à \(p \) la grandeur \(\mathcal{F} \), définie par

\[\mathcal{F}(p) = \max_{x \in \mathbb{R}} p(x) - \min_{x \in \mathbb{R}} p(x), \quad \max_{x \in \mathbb{R}} \left| p'(x) \right|. \]

Cette définition est illustrée figure 4.31. Donnons deux exemples de mesure du flou sur des noyaux déjà vus. Si on suppose que le noyau est gaussien de variance \(\sigma^2 \) alors on a

\[p'(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}}, \text{ avec} \]

\[\mathcal{F}(p) = \sqrt{2\pi\sigma}, \text{ soit} \]

\[\mathcal{F}(p) \approx \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{\mathcal{F}(p)}}, \]
4.4 Analyse des transitions

Figure 4.30: Ce type de profil pose la question du choix de la taille du support. Les rebonds successifs sont-ils dus à un phénomène parasite ou bien font-ils partie de l'information du noyau (un sinus cardinal, par exemple, expliquerait de tels rebonds?).

Figure 4.31: La largeur de flou est la distance qu'il faut à la tangente au point d'inflexion pour augmenter de la valeur de l'amplitude de la transition
Si on suppose que le noyau est uniforme sur un disque de rayon r alors on a

$$p'(x) = \begin{cases} \frac{2}{\pi r^2} \sqrt{1 - \frac{x^2}{r^2}} & \text{pour } |x| \leq r \\ 0 & \text{sinon} \end{cases}$$

avec

$$\mathcal{F}(p) = \frac{\pi r}{2}, \text{ soit } r = \frac{2}{\pi} \mathcal{F}(p).$$

La mesure de flou permet donc dans ces deux cas de retrouver les paramètres des noyaux connaissant leur type.

Pour comparer les deux mesures de flou (\mathcal{F} et \mathcal{B}) remarquons tout d’abord que \mathcal{F} est homogène à une distance alors \mathcal{B} est homogène à une surface. Par ailleurs, nous avons défini notre mesure comme s’appliquant à des profils alors que la mesure \mathcal{B} s’applique au noyau, c’est pourquoi nous écrirons $\mathcal{F}(p)$ pour noter la largeur de flou du profil p et $\mathcal{B}(p')$ pour noter la variance de la dérivée de ce profil (qui correspond à celle du noyau de convolution l’ayant engendré). Considérons le rapport

$$\mathcal{R}(p) = \frac{\mathcal{F}^2(p)}{2\pi \mathcal{B}(p')}$$

Ce rapport mesure l’écart entre les mesures \mathcal{B} et \mathcal{F} normalisé pour valoir 1 pour un noyau gaussien. Nous considérons à nouveau les deux cas gaussien et uniforme. Le noyau gaussien est un noyau C^∞ supporté par \mathbb{R}. Par ailleurs le théorème central limite dit que ce noyau est la limite itérative de tout noyau positif. À l’opposé le noyau constant sur un disque et nul ailleurs est discontinu à support compact. Ces deux noyaux peuvent être vus comme des cas extrêmes de ce que peut être un noyau de convolution. Or, le noyau uniforme a pour variance $\frac{R^2}{4}$ (si R est le rayon du disque) et le profil p_R qui lui est associé a pour dérivée

$$p'_R(x) = \frac{2R}{\pi R^2} \sqrt{1 - \frac{x^2}{R^2}},$$

le maximum est atteint en zéro et notre mesure pour un tel noyau est donc

$$\mathcal{F}(p_R) = \frac{1}{\max p'_R(x)} = \frac{\pi R}{2},$$

soit finalement

$$\mathcal{R}(p_R) = \frac{\frac{\pi^2 R^2}{4}}{2\pi \frac{R^2}{4}} = \frac{\pi}{2} \approx 1.57$$

Ce qui signifie que les deux mesures peuvent être significativement différentes. Si on les normalise pour donner le même résultat pour un noyau gaussien, alors elles diffèrent de plus de 50% pour un noyau constant.

Cependant, dans une même image on peut penser que le type de noyau qui affecte l’image en différentes zones est le même à une homothétie près. En effet, la forme du noyau étant déterminée par l’optique (lentilles) de l’appareil et par la géométrie de l’acquisition, cette hypothèse semble réaliste. Notre mesure reste donc acceptable pour comparer des zones de l’image entre elles.

Par ailleurs, nous avons comparé numériquement la précision des deux mesures dans le cas où l’image présente une réflexion du type de celle vue dans 4.12(d). Nous modélisons
4.4 Analyse des transitions

Ce phénomène par une transition brutale (fonction de Heavyside H) à laquelle s’ajoute une masse de Dirac située en zéro, δ_0 et qui est convolue par une gaussienne de variance 1, soit

$$p(x) = (H + \lambda \times \delta_0) * g_1.$$

Le profil obtenu est présenté à la figure 4.32(a). Pour comparer les mesures nous avons fait évoluer la hauteur du rebond dû à une réflexion (contrôlée par le paramètre λ) et avons appliqué les deux mesures \mathcal{F} et \mathcal{B} que nous avons normalisées pour pouvoir les comparer. La bonne mesure devrait être égale à 1. Or on constate que plus le rebond est grand, plus les deux mesures sont fausses (figure 4.32(c)). Remarquons que l’erreur est plus grande dans le cas du calcul de la variance qui devient même négative (ce qui est une aberration) à partir d’un certain temps. Cette mesure est même nulle pour le profil de la figure 4.32(a). Ceci vient du fait que le rebond engendre une partie négative dans la dérivée du profil (figure 4.32(b)). Cet exemple réaliste rend bien compte de l’instabilité de l’évaluation de la variance à partir d’un profil. La largeur de flou que nous utilisons souffre moins de ce problème d’instabilité.

4.4.2 Transformée de Radon et retour au noyau

Pour chaque profil la mesure du flou que nous appelons largeur de flou est un nombre réel. Ce nombre n’est bien sûr pas suffisant pour caractériser un noyau, à moins de savoir la forme de ce dernier (par exemple le noyau gaussien est caractérisé par sa variance). Dans ce paragraphe nous présentons une méthode pour retrouver les noyaux à partir des profils.

Tout d’abord, comme nous l’avons déjà remarqué, les profils extraits ne peuvent donner de l’information que sur une projection du noyau. En effet, l’équation (4.46) montre qu’une valeur du profil est une somme de valeurs du noyau. Dans cette équation on peut substituer au noyau $h(x,y)$ un autre noyau $h_1(x,y) = h_1(x,y + t), t \in \mathbb{R}$ sans que le profil obtenu ne change.

Si l’on veut retrouver h à partir de p il faut donc faire une hypothèse de symétrie sur h. L’hypothèse la plus naturelle pour un noyau de convolution à deux dimension est la symétrie de révolution. Si nous faisons cette hypothèse, on voit tout de suite que p' est la transformée de Radon du noyau h, comme le montre l’équation (4.47). En effet, la transformée de Radon d’une fonction $h(x,y)$ est la collection de fonctions $q_\theta(x), \theta \in [-\pi, \pi]$ définies par l’équation

$$q_\theta(x) = \int_{-\infty}^{+\infty} h(x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta) dy. \quad (4.58)$$

On constate que cette dernière équation correspond à l’équation (4.47) pour $\theta = 0$. Dans la suite nous appelons $q = p'$ la dérivée d’un profil p. Dans le cas de la symétrie de révolution tous les q_θ sont égaux à q et l’inversion de la transformation de Radon s’exprime comme suit

$$r = TFI[TF[q]](\omega),$$

alors

$$h = B[r], \quad \text{avec}$$

$$B[r](x,y) = \int_{0}^{\pi} r(x \cos(\theta) + y \sin(\theta)) d\theta.$$

où TF et TFI sont la transformée de Fourier et la transformée de Fourier inverse. $B[r]$ s’appelle la rétroprojection de r. Pour les détails des calculs on peut consulter l’ouvrage de G.T Herman [Herman, 1980]. Il faut noter que l’inversion de Radon est une opération...
Figure 4.32: Erreur de mesure due à une réflexion. Nous avons appliqué les deux mesures \mathcal{F} et \mathcal{B} au graphe de la figure (a) obtenue par la convolution d'une gaussienne et d'une fonction de Heaviside à laquelle nous avons ajouté un Dirac en zéro. Nous reportons (figure (c)) les mesures en fonction de la hauteur du Dirac. Comme prévu la mesure de variance est trop sensible aux interférences avec des phénomènes étrangers au modèle convolutif.
très instable numériquement. Comme, de plus, les profils qui respectent le modèle convolutif sont rares, cette inversion ne peut pas être appliquée de manière automatique. Elle peut être intéressante dans certains cas précis pour avoir une idée de la forme du noyau de convolution. Nous montrons deux exemples d’inversion dans lesquels le noyau retrouvé semble bien suivre la largeur de la transition (figures 4.33 et 4.34).

4.5 Récapitulatifs de la méthode et résultats

Dans cette partie nous récapitulons les étapes de notre méthode en nous fondant sur un exemple. Nous considérons l’image de la figure 4.35. Cette image contient deux zones distinctes en ce qui concerne la quantité de flou : l’image dans le miroir est nette tandis que le personnage en avant plan est flou.

4.5.1 Lignes de niveau et segments

Les lignes de niveaux entiers sont présentées à la figure 4.36(a). Un zoom sur ces lignes est présenté aux figures 4.36(b) et 4.36(c). Ces deux zooms montrent que les lignes de niveau de l’image, même quand elles correspondent à une interpolation bilinéaire comme c’est le cas ici, sont oscillantes et doivent être filtrées pour permettre la détection de segments. Le résultat du filtrage AMSS dans les deux zones précédentes est donné aux figures 4.37(a) et 4.37(b). On remarque que les circonvolutions dues à la pixelisation ont disparu. Les lignes de niveau ont maintenant une direction plus conforme à la topologie de l’image telle qu’on la perçoit. Comme prévu les lignes de niveau ne s’écartent pas les unes des autres dans les zones droites.

Nous appliquons enfin le détecteur de segments qui consiste à trouver les parties droites des lignes de niveau. La figure 4.38(a) montre les segments détectés.

4.5.2 Résultat de l’évaluation du flou

Après la détection des segments nous appliquons notre algorithme, qui consiste à trouver les paquets de segments parallèles. Rappelons que ces paquets de segments servent à identifier les zones de l’image où l’on peut calculer le flou. Quand ces paquets sont détectés, l’image est filtrée suivant la MCM et un profil est extrait dans la direction perpendiculaire à la direction du paquet de segments. Nous calculons alors la largeur de flou en ces segments conformément à la définition 4.2. Le flou calculé est présenté à la figure 4.39. Les point gris sont ceux où le flou a été calculé. Plus le flou est grand plus le point est clair. La figure 4.40 représente l’histogramme du flou calculé dans cette image, sur lequel nous voyons que l’image comporte un grand nombre de valeurs distinctes de flou. Ceci est dû à la faible profondeur de champ utilisée pour cette image. Si nous effectuons un seuillage de la quantité de flou suivant la valeur médiane de l’histogramme nous obtenons la figure 4.41 et nous vérifions que les quantités de flou sont les plus faibles du coté du miroir alors que les plus grands flous se trouvent du coté qui n’est pas mis au point. On notera aussi qu’une quantité de flou est calculée sur l’ombre du miroir (à gauche de l’image) ceci est dû au fait que rien ne peut distinguer une extinction ou un dégradé d’un flou. Les deux phénomènes produisant le même type de transition. Les ombres sont s’ailleurs moins sujettes aux parasites tels que les réflexions mutuelles que les autres bords dans une image.
Figure 4.33: Reconstruction du noyau à partir d’un profil. On note une corrélation entre la largeur du noyau et la largeur de la transition dont il est calculé par transformée de Radon inverse.
Figure 4.34: Une autre reconstruction du noyau à partir d'un profil. Noter, la encore, le rapport entre la largeur du noyau et la largeur de la transition.
Figure 4.35: Image originale. On note la présence de deux plans l’un étant net (image de l’actrice dans la glace) et l’autre flou (image directe de l’actrice). Par ailleurs, on constate la présence de dégradés qui peuvent être confondus avec du flou (tel que l’ombre du miroir). Ces dégradés sont causés par le fait que les sources lumineuses ne sont pas ponctuelles.
Figure 4.36: Lignes de niveau de l'image. En bas: deux zooms l'un (b) sur l'épaule floue à l'avant de la scène et l'autre sur le bord de la serviette dans le miroir (c).
Figure 4.37: Résultat du filtrage AMSS vu dans les deux zones déjà décrites à la figure précédente.
Figure 4.38: Les segments détectés dans l'image.
Figure 4.39: Le flou calculé. Plus un point est clair, plus le flou y est élévé.
Figure 4.40: Histogramme du flou. On note la présence d’un grand nombre de valeurs distinctes.
Figure 4.41: Flou après seuillage. Les points noirs sont ceux où le flou est inférieur au médian de l'histogramme et les points gris sont ceux où le flou est supérieur à cette même valeur.
4.6 Expériences commentées

Nous présentons dans cette section un certain nombre d’expériences supplémentaires de calcul du flou. Nous commençons par illustrer les cas où une occultation se produit entre deux objets qui ne sont pas sur un même plan. Comme nous l’avions prévu à la section 4.1.3.2 c’est le flou de l’avant-plan qui prédomine dans un tel cas. La figure 4.42 montre un cas où l’avant plan est net. On constate bien que, le long du bord de l’objet d’avant-plan, le flou calculé est faible. À l’inverse, la figure 4.44 montre une image où l’objet en avant-plan est net. Les détails de l’arrière-plan agissent alors comme du bruit qui perturbe la transition (lente) due au flou de l’avant plan, comme le montre la figure 4.9(b). Dans cette expérience nous avons relâché la condition sur la proximité entre segments parallèles à des fins d’illustration. En effet, la quantité de bruit (les lettres noires sur fond blanc écrites sur la feuille d’arrière-plan) est bien trop grande pour qu’une évaluation du flou soit possible dans de bonnes conditions.

Nous présentons ensuite deux images naturelles (figures 4.46 et 4.50), la convention prise pour présenter les calculs de flou est de représenter en gris les zones de flou faible et en blanc les zones de flou élevé. Pour montrer la séparation entre l’avant-plan et l’arrière-plan, nous seuillons l’image de flou en utilisant une valeur déduite de l’histogramme du flou. C’est ce que nous avons fait à la figure 4.49. On constate que l’avant-plan ne contient que des zones à flou faible, exception faite de dégradés qui ne peuvent être différenciés d’un flou (tel que sur la joue du personnage masculin ou sur son nez).

Sur la figure 4.51 (où le flou n’a pas été seuillé) on constate que l’avant-plan (net) a bien été affecté d’un flou faible. Par contre l’arrière plan semble posséder deux valeurs de flou différentes. L’arc de cercle a un flou plus grand que la barre horizontale au milieu de l’image. Pourtant les deux objets sont à égale distance de la caméra. Notre interprétation de cette erreur est que le profil extrait dans le deuxième cas (barre horizontale) n’a pas été assez étendu. En effet, si nous avions extrait un profil plus large nous aurions trouvé un profil tel que celui de la figure 4.54 au lieu de celui de la figure 4.53. Cette erreur a conduit à une sous-évaluation du flou car la zone sombre de 4.53 n’est pas aussi sombre qu’elle aurait dû l’être s’il n’y avait pas eu la zone claire en dessous de la barre horizontale. Ce phénomène nous conduit à une certaine prudence en ce qui concerne l’évaluation des flous trop larges par notre méthode.

Cependant, dans tous les cas la séparation entre zones nettes et floues de l’image est très satisfaisante même si la précision n’est pas très grande sur les zones très floues.
Etude et estimation du flou dans les images numériques

Figure 4.42: Image montrant un avant-plan net.

Figure 4.43: Le flou calculé sur l'image précédente. En gris les zones de flou faible et en blanc le flou élevé. Comme prévu, en cas d’occultation c’est le flou de l’avant-plan qui l’emporte.
4.6 Expériences commentées

Figure 4.44: Image montrant un arrière-plan net.

Figure 4.45: Le flou calculé sur l’image précédente. En gris les zones de flou faible et en blanc le flou élevé. Comme prévu, en cas d’occultation c’est le flou de l’avant-plan qui l’emporte. Noter qu’ici, la quantité de lissage nécessaire pour se débarrasser du bruit a entraîné la constitution d’un bord droit dans la zone nette de l’image. Cet exemple montre qu’il est difficile de concilier des détections de flou de valeurs très différentes. Nous avons choisi de montrer cet exemple pour illustrer notre propos sur les mélanges de flou. En situation normale un tel niveau de bruit doit nous faire renoncer au calcul du flou. Le dégradié dû au flou de l’avant-plan étant trop lent, les segments parallèles qui sont détectés sont alors trop éloignés. Nous sommes passés outre la règle qui impose aux paquets de segments d’être très compacts pour cette seule image.
Figure 4.46: Image originale.

Figure 4.47: Le flou calculé sur l’image précédente. En gris les zones de flou faible et en blanc le flou élevé.
Figure 4.48: Histogramme du flou calculé sur l'image.

Figure 4.49: Ici, le flou a été seuillé à 6. En gris, les zones où le flou est inférieur à cette valeur et en blanc les zones où il est supérieur. La plupart des contours de l'avant-plan sont bien en gris (flou faible). Cependant, certains dégradés qui se trouvent dans une zone nette de l'image conduisent à une valeur de flou plus grande. Ce problème n'a pas de solution simple, car on ne peut pas différencier une transition due à un flou d'une transition due à un dégradé.
Figure 4.50: Image originale.

Figure 4.51: Le flou calculé. L'avant-plan semble bien avoir un flou homogène (et faible). Cependant nous constatons deux valeurs bien distinctes pour le flou d'arrière-plan. Nous allons essayer de voir à quoi est due cette anomalie.
4.6 Expériences commentées

Figure 4.52: L’histogramme du flou montre que les grandes valeurs du flou sont réparties sur deux modes bien distincts (entre 15 et 20 et entre 20 et 25).

Figure 4.53: Voici l’un des profils qui ont servi à calculer le flou dans la zone de flou moyen (barre horizontale au milieu de l’image).
Figure 4.54: Si on calcule un profil d’une plus grande taille que le précédent, on constate que nous avons affaire à un mélange entre deux rampes. Ceci a eu pour conséquence de rendre moins sombre la zone centrale du profil et donc de diminuer le flou apparent (calculé sur la partie gauche du profil ci-dessus).
4.6.1 Effet de l’échantillonnage sur la quantité de flou

Dans l’exemple qui suit, nous partons d’une image couleur acquise à l’aide d’un appareil numérique. Nous voulons mettre en évidence la différence de traitement entre les canaux vert et bleu. Il est bien connu que l’œil humain est plus sensible à la couleur verte qu’aux autres couleurs utilisées dans une image couleur (ici, le rouge et le vert). C’est pourquoi les constructeurs d’appareils numériques privilégient le canal vert en lui attribuant un échantillonnage deux fois plus dense que pour le rouge et le bleu. L’image 4.55 a été acquise avec un tel appareil. Nous avons ensuite séparé les trois canaux vert, rouge et bleu. Enfin, on a calculé le flou sur les canaux vert et bleu. Le résultat de cette évaluation a donné un flou de 2.8 sur le canal vert tandis que le canal bleu était affecté d’un flou de 3.4. Ces résultats s’expliquent par le fait que le canal bleu étant moins bien échantillonné que le canal vert, il faut lui appliquer un filtrage plus important et, donc, augmenter son flou de manière plus conséquente. Les figures 4.57 et 4.56 montrent les profils obtenus pour chacun des deux canaux, on constate bien que la transition du canal bleu est moins brutale que celle qui se produit dans le canal vert.
Figure 4.55: Feuille blanche sur fond sombre. Nous cherchons dans cette image à mettre en évidence la différence de traitement entre deux canaux couleur (le vert et le bleu).

Figure 4.56: Le profil de la transition dans le canal bleu. Le flou calculé sur ce canal vaut 3.4.

Figure 4.57: Le profil de la transition dans le canal vert. Le flou calculé sur ce canal vaut 2.8.
4.6 Expériences commentées
ANNEXE A

Cours sur la Transformation de Fourier et la Théorie de Shannon

Introduction

Bien que notre civilisation ait multiplié la présence des signaux, images et sons, et surtout des images et sons digitaux (ou numériques), leur nature est mal connue du public, et même des spécialistes. En effet, ceux-ci sont rarement à la source de l’image : ils ne savent pas comment l’image a été enregistrée, transmise, comprimée. La vision correcte de l’image demande une connaissance approfondie de la structure des images digitaux et de toutes les distorsions entraînées par leur caractère d’images digitaux. Dans ce texte, nous allons présenter toutes les bases mathématiques utiles pour comprendre comment une image ou un son digitaux sont créés, quelles sont les distorsions inhérentes à la nature de l’image ou du son digital d’une part, et celles qui sont entraînées par une "mauvaise" digitalisation. Nous décrirons ensuite les méthodes classiques et nouvelles de restauration, c’est-à-dire les méthodes qui visent, partant d’un signal abimé, à retrouver une image conforme à une acquisition correcte. Nous commencerons par un long exposé des notions d’analyse de Fourier nécessaires pour comprendre l’échantillonnage de l’image, i.e. sa réduction à un tableau fini de valeurs numériques. Nous expliquerons la théorie de Shannon, qui fixe les règles d’échantillonnage correct, et nous décrirons les manipulations élémentaires que permet l’usage correct de cette théorie : translation, rotation et zoom de l’image notamment. Toutes ces manipulations seront illustrées d’exemples réalistes. Ensuite, nous aborderons les distorsions "nécessaires”, celles qu’entraîne la nature même des images numériques, à savoir le phénomène de Gibbs ou "ringing”, la quantification et le flou. Pour chacun de ces phénomènes, nous montrerons aussi des exemples et illustrations.

Le but de ce texte est donc de donner les outils mathématiques, mais toujours en le reliant à des expériences visuelles permettant au lecteur de voir l’effet des opérations sur les signaux, lui permettant aussi donc d’interpréter perceptuellement l’état d’un signal et les distorsions qu’il a subies.
A.1 Séries de Fourier

On considère l'espace de Hilbert $L^2([-\pi, \pi])$ que l'on notera aussi $L^2(-\pi, \pi)$. On va montrer que le système orthonormé

$$\frac{1}{(2\pi)^{\frac{1}{2}}} (e^{ikt})_{k \in \mathbb{Z}}$$

est une base hilbertienne de $L^2(-\pi, \pi)$. Cette base s'appelle la base de Fourier. On notera

$$c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx,$$

en sorte que pour toute f dans $L^2([-\pi, \pi])$ on puisse écrire

$$f(x) = \sum_{n \in \mathbb{Z}} c_n(f) e^{inx},$$

la série précédente convergeant au sens L^2. Les $c_n(f)$ s'appellent les coefficients de Fourier de f et sont proportionnels aux coordonnées de f dans la base de Fourier.

Pour montrer ce résultat, on va commencer par analyser le comportement des coefficients de Fourier selon la régularité de f. On note $C^k_0(\mathbb{R})$ l'ensemble des fonctions continues à support compact et $C^\infty_0(\mathbb{R})$ l'ensemble des fonctions infiniment dérivables à support compact. Et on rappelle que $C^\infty_0(\mathbb{R})$ est dense dans $L^1(\mathbb{R})$.

Lemme A.1 (Lemme de Riemann-Lebesgue)

i) On pose pour $f \in L^1(\mathbb{R})$,

$$\hat{f}(\xi) = \int_{\mathbb{R}} f(x) e^{-ix\xi} dx.$$

Si $f \in C_0(\mathbb{R})$ est k fois différentiable et telle que $f^{(k)} \in L^1(\mathbb{R})$, alors

$$|\hat{f}(\xi)| \leq \frac{||f^{(k)}||_{L^1}}{|\xi|^k}.$$

ii) Si $f \in L^1(\mathbb{R})$ alors $\int_{\mathbb{R}} f(x) e^{iax} dx \rightarrow 0$ quand $|a| \rightarrow \infty$.

iii) Application aux coefficients de Fourier : si $f \in L^1(-\pi, \pi)$,

$$\lim_{|n| \rightarrow \infty} c_n(f) = 0.$$

Remarque A.1 Si $f \in L^2$, on sait immédiatement que $c_n(f) \rightarrow 0$ car $c_n(f)$ s'interprètent comme les coordonnées de f sur un système orthonormé.

Démonstration

i) En intégrant par parties k fois l'intégrale définissant \hat{f}, on obtient pour $\xi \neq 0$,

$$|\hat{f}(\xi)| = \left| \frac{1}{i(\xi)^k} \int f^{(k)}(x) e^{-ix\xi} dx \right| \leq \frac{||f^{(k)}||_{L^1}}{|\xi|^k}.$$

ii) Soit f_n une suite de fonctions de C^∞_0 qui tendent vers f dans L^1. On a, pour n fixé assez grand : $||f_n - f||_1 \leq \varepsilon$, ce qui implique $|\hat{f}_n(\xi) - \hat{f}(\xi)| \leq \varepsilon$ pour tout ξ. En utilisant (i),
on voit que $|\hat{f}_n(\xi)| \to 0$ quand n est fixé et $|\xi| \to \infty$. Donc $|\hat{f}_n(\xi)| \leq \varepsilon$ pour ξ assez grand. Finalement,

$$|\hat{f}(\xi)| \leq |\hat{f}(\xi) - \hat{f}_n(\xi)| + |\hat{f}_n(\xi)| \leq 2\varepsilon$$

pour ξ assez grand. □

La proposition suivante nous dit que la série de Fourier de f converge vers $f(x)$ en tout point x où f est suffisamment régulière.

Proposition A.1 (Principe de localisation)

Si $f \in L^1(-\pi, \pi)$ et si la fonction $y \to \frac{f(y) - f(x)}{y-x}$ est intégrable sur un voisinage de x, alors $\lim_{N \to \infty} s_N f(x) = f(x)$, où on a noté : $s_N f(x) =: \sum_{|n| \leq N} c_n(f) e^{iny}$.

Expliquons pourquoi le résultat précédent s'appelle principe de localisation. Alors que $s_N(f)$ est le résultat d’un calcul intégral sur tout l’intervalle $[-\pi, \pi]$, et donc d’un calcul global, le comportement de $s_N f(x)$ dépend du comportement local de f au voisinage de x. Il y a donc “localisation”.

Démonstration

Étape 1 On se ramène au cas $f(x) = 0$, $x = 0$.

Supposons la proposition démontrée pour $x = 0$, $f(x) = 0$. Soit maintenant $g \in L^1(-\pi, \pi)$ telle que $\frac{g(y) - g(x)}{y-x}$ soit intégrable au voisinage de x. Alors on pose $f(y) = g(x+y) - g(x)$. On a bien $f(0) = 0$ et $\frac{f(y)}{y} = \frac{g(x+y) - g(x)}{y}$ est intégrable au voisinage de 0. Donc, par hypothèse, $s_N f(0) \to f(0)$. Mais

$$s_N f(0) = \sum_{|n| \leq N} c_n(g(x+y) - g(x)) = \sum_{|n| \leq N} \frac{1}{2\pi} \int_{-\pi}^{\pi} (g(x+y) - g(x)) e^{-iny} \, dy$$

$$= \left(\sum_{|n| \leq N} \frac{1}{2\pi} \int_{-\pi}^{\pi} g(z) e^{-inz} \, dz \right) - g(x) = \left(\sum_{|n| \leq N} \frac{1}{2\pi} e^{inx} \int_{-\pi}^{\pi} g(z) e^{-inz} \, dz \right) - g(x)$$

$$= s_N g(x) - g(x).$$

Donc $s_N g(x) \to g(x)$. En fait, l’argument précédent montre que s_N commute avec les translations :

$$s_N [g(\cdot + x)] = (s_N g)(\cdot + x).$$

Étape 2 On a

$$s_N f(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) \frac{\sin(N + \frac{1}{2})y}{\sin \frac{y}{2}} \, dy. \quad (A.1)$$

En effet, $\sum_{-N}^{N} e^{iky} = \frac{\sin(N+\frac{1}{2})y}{\sin \frac{y}{2}}$, ce qui se prouve aisément en sommant la suite géométrique.

Étape 3 Par l’étape 1 il suffit de montrer que si $f \in L^1([-\pi, \pi])$ et si $\frac{f(y)}{y}$ est intégrable autour de 0, alors $s_N f(0) \to 0$. Comme sur $[-\pi, \pi]$, $|\sin \frac{y}{2}| \geq \frac{|y|}{\pi}$, on a

$$\left| \frac{f(y)}{\sin \frac{y}{2}} \right| \leq \frac{\pi |f(y)|}{|y|} \in L^1([-\pi, \pi]).$$

Donc on peut appliquer le lemme de Riemann-Lebesgue à la fonction $\frac{f(y)}{\sin \frac{y}{2}}$. On conclut que l’intégrale de $(A.1)$ définissant $s_N f(0)$ tend vers 0 quand N tend vers l’infini. □
Corollaire A.1 Le système
\[\frac{1}{(2\pi)^\frac{1}{2}}(e^{ikt})_{k \in \mathbb{Z}} \]
est une base hilbertienne de \(L^2([-\pi, \pi]) \). Notant \(c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-inx} f(x) \, dx \), on a donc pour toute \(f \) dans \(L^2([-\pi, \pi]) \),
\[f(x) = \sum_{n \in \mathbb{Z}} c_n(f)e^{inx}, \]
là série précédente convergeant au sens \(L^2 \).

Démonstration On appelle polynôme trigonométrique toute expression de la forme \(P(t) = \sum_{k=-N}^{N} a_k e^{ikt} \), où les \(a_k \) sont des nombres complexes. Pour montrer que le système de Fourier est une base hilbertienne, il nous suffit de montrer que c’est un système total, c’est-à-dire que les polynômes trigonométriques forment un sous-espace vectoriel dense de \(L^2([-\pi, \pi]) \). Mais le lemme A.1 (Principe de localisation) nous assure que si \(f \) est (e.g.) \(C^2 \) et \(2\pi \)-périodique sur \(\mathbb{R} \), alors \(s_N(f)(x) \to f(x) \) en tout point. Comme de plus les coefficients de la série de Fourier de \(f \) vérifient \(|c_k(f)| \leq \frac{C}{|k|^2} \), la série de Fourier est en fait uniformément convergente et donc converge aussi dans \(L^2([-\pi, \pi]) \) vers \(f \). Or, les fonctions \(C^2 \) et \(2\pi \)-périodiques forment un sous-espace dense de \(L^2([-\pi, \pi]) \). En effet, les fonctions \(C^\infty \) à support compact dans \([-\pi, \pi]\) sont denses dans \(L^2([-\pi, \pi]) \). On conclut que le système de Fourier est total, et donc une base hilbertienne. □

Corollaire A.2 si \(f \in L^1([-\pi, \pi]) \) est Hölderienne d’exposant \(0 < \alpha \leq 1 \) en \(x \) (c’est-à-dire \(|f(x)-f(y)| \leq C|x-y|^\alpha \)), alors \(s_N f(x) \to f(x) \). Cette conclusion s’applique si \(f \) est une primitive sur \([-\pi, \pi]\) d’une fonction de \(L^2([-\pi, \pi]) \) car \(f \) est alors Hölderienne d’exposant \(\frac{1}{2} \).

Démonstration L’application du principe de localisation est immédiate :
\[\frac{|f(y)-f(x)|}{|y-x|} \leq |x-y|^{\alpha-1} \] qui est bien intégrable au voisinage de \(x \). Soit maintenant \(f \) une fonction qui est la primitive sur \([-\pi, \pi]\) d’une fonction de \(L^2([-\pi, \pi]) \). En appliquant l’inégalité de Cauchy-Schwarz,
\[|f(x)-f(y)| = \left| \int_y^x f'(t) \, dt \right| \leq |y-x|^\frac{1}{2} \left(\int_{-\pi}^{\pi} |f'(t)|^2 \, dt \right)^\frac{1}{2}. \]

La fonction \(f \) est donc Hölderienne d’exposant \(\frac{1}{2} \) et le principe de localisation s’applique. □

Remarque A.2 (importante) Le principe de localisation, quand il s’applique, nous assure que les sommes symétriques, \(s_n f(x) = \sum_{|k| \leq n} c_k(f)e^{ikx} \) de la série de Fourier convergent vers \(f(x) \). Le fait que le système de Fourier soit une base hilbertienne nous en dit plus, et moins. En effet, si \(f \in L^2([-\pi, \pi]) \), on peut assurer que les sommes asymétriques, \(s_{m,n} f(x) = \sum_{-m \leq k < n} c_k(f)e^{ikx} \) convergent dans \(L^2 \) vers \(f \) quand \(n, m \to +\infty \). Mais, attention : cette convergence n’est pas ponctuelle.
A.1.1 Convolutions des fonctions périodiques et séries de Fourier

La décomposition en série de Fourier d’une fonction $f \in L^2([-\pi, \pi])$ implique qu’on la considère comme une fonction 2π-périodique, puisque la série de Fourier l’est.

Définition A.1 et proposition Si $f \in L^1([-\pi, \pi])$ et $g \in L^1([-\pi, \pi])$, on prolonge f et g en des fonctions 2π-périodiques sur \mathbb{R} et on pose $f \ast g(x) = \int_{-\pi}^{\pi} f(y)g(x-y)dy$. La fonction $f \ast g$ ainsi définie appartient à $L^1([-\pi, \pi])$ et est 2π-périodique.

Théorème A.1 Si $f, g \in L^2(-\pi, \pi)$, alors $f \ast g$ est continue et $c_n(f \ast g) = 2\pi c_n(f)c_n(g)$. De plus, la série de Fourier de $f \ast g$ converge uniformément vers $f \ast g$.

Remarquons que la relation précédente montre l’effet régularisant de la convolution : les hautes fréquences de $f \ast g$ sont plus faibles que celles de f, puisque $c_n(g)$ tend vers zéro.

Démonstration On a par l’inégalité de Cauchy-Schwarz

$$|f(t)| \leq \int |f(t-s)||g(s)|ds \leq \|f\|_{L^2}\|g\|_{L^2}.$$

Donc $f \ast g \in L^2([-\pi, \pi])$ et on a, en appliquant plusieurs fois le théorème de Fubini (les intégrales se font sur $[-\pi, \pi]$ ou, indifféremment, sur n’importe quel intervalle de longueur 2π) :

$$c_n(f \ast g) = \frac{1}{2\pi} \int \int f(t-s)g(s)e^{-int}dsdt = \frac{1}{2\pi} \int \int f(t-s)e^{-in(t-s)}g(s)e^{-ins}dsdt$$

$$= \frac{1}{2\pi} \left(\int g(s)e^{-ins}ds \right) \left(\int f(u)e^{-inu}du \right) = c_n(f)c_n(g).$$

Le terme général de la série de Fourier de $f \ast g$ vérifie

$$|c_n(f \ast g)| = |c_n(f)||c_n(g)| \leq |c_n(f)|^2 + |c_n(g)|^2.$$

Cette dernière série est convergente. La série de Fourier de $f \ast g$ est donc uniformément convergente. Sa limite est donc continue. Remarquer que si $f_n \rightarrow f$ dans L^2 et si $f_n \rightarrow g$ presque partout, alors $f = g$: c’est une conséquence de la réciproque du théorème de Lebesgue. □

Corollaire A.3 Autres bases de Fourier :

(i) Les fonctions

$$\frac{1}{\sqrt{T}} \sqrt{\frac{2}{T}} \cos \left(\frac{2k\pi t}{T} \right), \sqrt{\frac{2}{T}} \sin \left(\frac{2k\pi t}{T} \right), k = 1, 2, ...$$

forment une base hilbertienne de $L^2([0, T])$.

(ii) Il en est de même pour les fonctions

$$\frac{1}{\sqrt{T}} \sqrt{\frac{2}{T}} \cos \left(\frac{k\pi t}{T} \right), k = 1, 2, ...$$

La transformée associée à la base en cosinus s’appelle la “transformée en cosinus.”

(iii) La ”base en sinus”, $\sqrt{\frac{2}{T}} \sin \left(\frac{k\pi t}{T} \right), k = 1, 2, ...$
Démonstration

(i) Cette première base résulte de l’application à la base de Fourier de la remarque générale suivante. Si \((e_k)_{k \in \mathbb{Z}}\) est une base hilbertienne, alors le système \(f_0 = e_0, ..., f_{2k} = \frac{e_k + e_{-k}}{\sqrt{2}},\) \(f_{2k+1} = \frac{e_k - e_{-k}}{\sqrt{2}},\) ... aussi.

(ii) Si \(f \in L^2([0, T])\), on lui associe la fonction paire \(\tilde{f}\) sur \([-T, T]\) qui coïncide avec \(f\) sur \([0, T]\). On décompose \(\tilde{f}\) sur la base de Fourier de \([-T, T]\). La base de Fourier sur \([-T, T]\) est formée des fonctions \(\frac{1}{\sqrt{2T}} \cos \left(\frac{\pi k t}{T}\right)\). Donc on a

\[
\tilde{f}(x) = L^2 \sum_{n \in \mathbb{Z}} \frac{1}{2T} \left(\int_{-T}^{T} \tilde{f}(t) e^{\frac{-i\pi k t}{T}} dt \right) e^{\frac{i\pi k x}{T}}.
\]

Comme \(\tilde{f}\) est paire, on voit en faisant le changement de variables \(t \rightarrow -t\) dans les intégrales que les coefficients de \(e^{i\pi k t}/T\) et \(e^{-i\pi k t}/T\) sont égaux. On remarque aussi que

\[
\int_{-T}^{T} \tilde{f}(t) e^{\frac{i\pi k t}{T}} dt = 2 \int_{0}^{T} f(t) \cos \left(\frac{\pi k t}{T}\right) dt.
\]

Aussi,

\[
\tilde{f}(x) = L^2 \frac{1}{2T} \int_{-T}^{T} \tilde{f}(t) dt + \sum_{n \in \mathbb{N}^*} \frac{1}{2T} \left(\int_{-T}^{T} \tilde{f}(t) e^{\frac{i\pi k t}{T}} \right) \left(e^{\frac{i\pi k x}{T}} + e^{\frac{i\pi k x}{T}} \right),
\]

et donc

\[
f(x) = L^2 \frac{1}{T} \int_{0}^{T} f(t) dt + \sum_{n \in \mathbb{N}} \frac{2}{T} \left(\int_{0}^{T} f(t) \cos \left(\frac{\pi k t}{T}\right) \right) \cos \left(\frac{\pi k x}{T}\right).
\]

Comme les fonctions \(\frac{1}{\sqrt{T}}, \sqrt{2T} \cos \left(\frac{\pi k x}{T}\right)\) forment un système orthonormé de \(L^2(0, T)\), l’égalité précédente exprime qu’elles forment en fait une base hilbertienne.

(iii) Si on prolonge la fonction \(f\) en une fonction impaire sur \([-T, T]\) et que l’on reprend le raisonnement précédent, on trouve la base en sinus. Cette base a la propriété, utile pour modéliser les cordes vibrantes, que ses éléments valent 0 aux extrémités de l’intervalle. □

Remarque A.3 Le résultat (ii), relatif à la transformée en cosinus, s’obtient en considérant la série de Fourier du signal pair \(\tilde{f}\) obtenu par symétrie par rapport à l’axe des \(y\). Ceci est très important en pratique, car l’introduction de cette symétrie, qui se généralise sans mal au cas des images, permet d’éviter la présence de discontinuités aux frontières du domaine du signal ou de l’image (supposés périodiques dans le cadre de la décomposition en séries de Fourier), qui sont à l’origine d’effets de Gibbs (voir le paragraphe A.1.3). Ce type de transformée en cosinus est souvent utilisée en compression des images (comme dans le standard JPEG). Un autre avantage de cette décomposition, pour la compression, est présenté ci-dessous.
A.1.2 Décroissance des coefficients de Fourier et problèmes de compression du signal

On s’intéresse au comportement des coefficients de Fourier quand la 2π-périodisée de f est C^1, C^2, etc... Si f est C^p et 2π-périodique, en intégrant par parties p fois sur $[0, 2\pi]$,

$$c_n(f) = \int e^{-inx} f(x) dx = \frac{1}{(in)^p} \int e^{-inx} f^{(p)}(x) dx.$$

Donc, les coefficients décroissent d’autant plus vite que f est plus régulière.

Si maintenant f présente un saut en 0, on montre que si f est C^1 sur $[0, 2\pi]$ mais pas 2π-périodique, alors $c_n(f) = O(\frac{1}{n})$. Plus précisément, si nous notons $f(0^+)$ la valeur en 0 par la droite et $f(2\pi^-)$ la valeur en 2π par la gauche

$$c_n(f) = \frac{1}{in} \int_0^{2\pi} e^{-inx} f'(x) dx + \frac{f(0^+) - f(2\pi^-)}{in}.$$

Or on montre (par le lemme de Riemann-Lebesgue) que le premier terme est $o(\frac{1}{n})$. On sait que $\sum_{n \geq N} \frac{1}{n^2} = O(\frac{1}{N^2})$, et la décroissance des coefficients de Fourier de la fonction est donc très lente (1000 termes pour une précision de 10^{-3}), dès que la fonction présente une discontinuité.

En ce qui concerne les coefficients de Fourier $c_{k,l}$ d’une “image”, c’est-à-dire une fonction $f(x, y)$ définie sur un carré $[0, 2\pi] \times [0, 2\pi]$, C^1, mais pas $2\pi \times 2\pi$-périodique, le résultat est identique. On montre que $c_{n,m} = O(\frac{1}{nm})$ et le reste (pour la norme L^2) de la série double est donc en $O(\frac{1}{nm})$. Donc, pour une précision de 10^{-3}, il faut encore 1000 termes.

Une bonne alternative lorsque la fonction présente une discontinuité du type précédent consiste à utiliser la transformée en cosinus: $c_n(f) = \frac{1}{2} \int_0^{2\pi} \cos(nx) f(x) dx$. On a, en intégrant par parties et en remarquant que $\sin(nx)$ s’annule en 0 et 2π,

$$c_n(f) = \frac{1}{i\pi n} \int_0^{2\pi} \sin(nx) f'(x) dx.$$

Puis on montre que $c_n(f) = o(\frac{1}{n})$ par le lemme de Riemann-Lebesgue. Les coefficients de Fourier “en cosinus” décroissent donc plus vite qu’avec la transformée de Fourier classique et on peut donc en transmettre moins pour une qualité d’image égale. Pour transmettre une image, on la découpe en petits carrés et on transmet une partie des coefficients de Fourier de chaque imagette (principe utilisé par le standard JPEG). On augmente ainsi la probabilité qu’une imagette présente une couleur homogène et soit donc régulière. L’utilisation de la transformée en cosinus permet donc de comprimer l’information dans les sous-carrés de l’image où celle-ci est régulière. Par contre, les calculs précédents prouvent qu’on ne gagne rien quand un “bord” est présent dans l’imagette. En effet, (on pourra expliciter le calcul pour une image blanche au dessus de la diagonale et noire en dessous), un calcul du même type que ci-dessus implique que les coefficients décroissent en $O(\frac{1}{nm})$. C’est ce qui explique les phénomènes de “halo” autour des objets sur un fond contrasté : le petit nombre de coefficients transmis ne suffit pas à approcher bien l’imagette. Nous verrons au chapitre A.1.3 qu’il y a une autre raison à ceci: le phénomène de Gibbs (voir la figure A.2). Le long des discontinuités de l’image, apparaissent toujours des oscillations résiduelles, quel que soit le nombre de coefficients transmis.

En conclusion, la transformée en cosinus, s’affranchissant des discontinuités aux frontières du domaine de l’image, présente un double avantage sur la transformée de Fourier. En termes
d’économie de la représentation, elle tire mieux partie de l’eventuelle régularité de la fonction à l’intérieur de son domaine (régularité souvent élevée dans le cas d’imagettes). De plus, elle évite l’apparition d’oscillations résiduelles le long de ces frontières.

A.1.3 Phénomène de Gibbs

Dans ce paragraphe, nous détaillons comment la représentation d’un signal par sa série de Fourier conduit à l’apparition d’oscillations résiduelles, dont l’amplitude ne dépend pas du nombre de coefficients utilisés pour représenter la fonction. Ce résultat mathématique sur l’approximation d’un signal par les sommes partielles de sa série de Fourier porte le nom de phénomène de Gibbs.

Ce phénomène est observé à la sortie de tout système physique ou numérique mesurant ou calculant une fonction \(f(t) \) (\(t \) désignant par exemple le temps) “saute” brusquement d’une valeur à une autre, alors l’expérimentateur observe une série d’oscillations avant et après le saut. Il se gardera bien de les interpréter comme faisant partie du signal. En effet, le phénomène est dû au fait que les appareils de mesure (et les programmes numériques sur ordinateur) “trouquent” nécessairement les hautes fréquences. Cela veut aussi dire que l’on n’observe jamais les fonctions elles-mêmes, mais des sommes partielles de leur série de Fourier. Et on observe donc aussi les “parasites” dus à cette troncature en fréquence ; en particulier, le phénomène de Gibbs. Du point de vue mathématique, on peut énoncer le phénomène comme suit :

“ Si une fonction \(f \), par ailleurs régulière, présente un saut en un point, alors les sommes partielles \(s_Nf \) de sa série de Fourier accentuent ce saut en le multipliant par un facteur qui ne dépend pas de \(N \).”

Voici le résultat précis dans un cas simple: on considère la fonction “en dents de scie” \(s(x) \), \(2\pi \)-périodique et telle que \(s(x) = \pi - x^2 \) sur \([0, 2\pi]\). Le calcul des coefficients de Fourier de \(s \) et le corollaire A.1 montrent que \(s(x) = \sum_{k=1}^{\infty} \frac{\sin(kx)}{k} \) au sens de la convergence \(L^2 \), ainsi qu’en tout point de l’intervalle ouvert \([0, 2\pi]\), d’après la proposition A.1. On considère les sommes partielles de cette série de Fourier, \(s_n(x) = \sum_{k=1}^{n} \frac{\sin(kx)}{k} \). Pour étudier le comportement de \(s_n \) au voisinage de 0, on établit le lemme suivant:

Lemme A.2 Pour \(|x| \leq 1 \) et uniformément en \(x \),

\[
s_n(x) = \int_{0}^{x} \frac{\sin(nt)}{t} dt - \frac{x}{2} + O(x, \frac{1}{n}).
\]

Démonstration Nous commençons par établir la formule

\[
\frac{1}{2} + \sum_{1}^{n} \cos(kx) - \frac{1}{2} \cos(nx) = \frac{\sin(nx)}{2\tan\frac{x}{2}},
\]

qui résulte du calcul suivant:

\[
\frac{1}{2} + \sum_{1}^{n} \cos nx = \frac{1}{2} \sum_{-n}^{n} e^{ikx} = \frac{1}{2} e^{-inx} \left(\frac{e^{i(2n+1)x} - 1}{e^{ix} - 1} \right) = \frac{1}{2} \frac{e^{ix(n+\frac{1}{2})} - e^{-ix(n+\frac{1}{2})}}{e^{\frac{i\pi}{2}} - e^{-i\frac{i\pi}{2}}} = \frac{\sin x \cos \frac{x}{2} + \sin \frac{x}{2} \cos nx}{2\sin\frac{x}{2}}
\]
\[G = \frac{1}{2} \tan \frac{x}{2} + \frac{\cos x}{2}. \]

Puis on intègre cette relation entre 0 et \(x \) et on soustrait des deux cotés \(\frac{\pi}{2} + \int_0^x \frac{\sin nt}{t} \, dt \).

On remarque que la fonction \(\frac{\cos t}{2 \sin \frac{t}{2}} - \frac{1}{t} \) est \(C^1 \). En effet, en développant au voisinage de 0,

\[
\frac{\cos \frac{t}{2}}{2 \sin \frac{t}{2}} - \frac{1}{t} = \frac{t \cos \frac{t}{2} - 2 \sin \frac{t}{2}}{2t \sin \frac{t}{2}}
\]

\[
= \frac{t \left(1 - \frac{t^2}{4} \right) - 2 \left(\frac{t}{8} - \frac{t^3}{384} \right) + o(t^3)}{t^2 - \frac{t^4}{24} + o(t^4)} = \frac{t^2 \left(-\frac{1}{8} + \frac{1}{24} \right) + o(t^2)}{t^2 - \frac{t^4}{24} + o(t^4)}
\]

\[
= -\frac{t}{12} + o(t).
\]

On peut donc intégrer par parties

\[
\int_0^x \left(\sin(nt) \left(\frac{\cotg \left(\frac{t}{2} \right)}{2} - \frac{1}{t} \right) + \cos(nt) \right) \, dt,
\]

et cette expression est donc majorée par \(C_n \) pour une constante \(C \) adéquate. \(\square \)

Ce lemme nous permet de préciser le comportement de \(s_n \) au voisinage de 0:

Proposition A.2 (Phénomène de Gibbs):

\[
\limsup_{n \to \infty, x \to 0^+} s_n(x) = (1 + c)s(0^+); \quad \liminf_{n \to \infty, x \to 0^+} s_n(x) = (1 - c')s(0^+). \quad (A.3)
\]

Démonstration On va étudier la suite \(s_n(\frac{\pi}{n}) \) quand \(n \to \infty \). On commence par étudier les variations de \(G(a) =: \int_0^a \frac{\sin(t)}{t} \, dt \) pour en déduire que \(G(\pi) > G(\pi) \). La fonction \(G(a) \) est croissante sur les intervalles pairs \([2k\pi, (2k + 1)\pi]\) et décroissante sur les intervalles impairs. On voit aisément que \(|G((n + 1)\pi) - G(n\pi)| \) est une suite décroissante. Il en résulte que la suite \(G(2n\pi) \) est une suite croissante strictement, la suite \(G((n + 1)\pi) \) est une suite strictement décroissante, et les deux convergent vers une valeur commune notée \(G(\pi) \). On a donc \(G(\pi) > G(\pi) \). On sait par ailleurs que \(G(\pi) = \frac{\pi}{2} \). Revenons à la suite \(s_n(\frac{\pi}{n}) \).

On a

\[
s_n(\frac{\pi}{n}) = \int_0^{\frac{\pi}{n}} \frac{\sin t}{t} \, dt - \frac{\pi}{2n} + O\left(\frac{1}{n} \right) = \int_0^{\frac{\pi}{n}} \frac{\sin u}{u} \, du
\]

\[
= G(\pi) > G(\pi) = \frac{\pi}{2} = s(0^+),
\]

car \(s(0^+) = \frac{\pi}{2} = \int_0^{\infty} \frac{\sin u}{u} \, du \). Donc pour tout \(n \), il y a une valeur très proche de 0, en l’occurrence \(\frac{\pi}{n} \), telle que la somme partielle de la série de Fourier dépasse d’un facteur constant \(\frac{G(\pi)}{G(\pi)} \) la valeur de la limite \(s(0^+) \). Pour raisons de symétrie, la même chose se produit en \(0^- \) avec la suite \(s_n(-\frac{\pi}{n}) \). Nous avons donc montré l’existence des \(\limsup \) et \(\liminf \) de l’équation (A.3). \(\square \)

Numériquement, les constantes positives \(c \) et \(c' \) sont de l’ordre de 0, 18. Plus précisément, la somme partielle \(s_n \) de la série de Fourier de \(f \) présente des oscillations, maximales aux points \(\frac{k\pi}{n} \). Les oscillations de cette approximation ont donc une fréquence de plus en plus
élevée avec l’ordre d’approximation \(n \), mais l’erreur reste proportionnelle au saut de la fonction \(f \). Ce résultat se généralise au cas d’une fonction \(C^1 \) sur \([0, 2\pi]\), mais pas \(2\pi \) périodique. Pour ce faire, on soustrait à la fonction \(f \) une fonction en “dents de scie” \(\lambda s + \mu = \tilde{s} \), où \(\lambda \) et \(\mu \) ont été choisis de manière à la rendre Lipschitzienne et on applique à la différence \(f - \tilde{s} \) le principe de localisation. Il y a donc convergence uniforme de la série de Fourier de \(f - \tilde{s} \) vers \(f \), alors que la série de Fourier de \(\tilde{s} \) présente le phénomène de Gibbs. Le développement de Fourier de \(f \) présente donc aussi le phénomène de Gibbs.

Nous illustrons, à la figure A.1, le phénomène dans le cas de la fonction \(2\pi \)-périodique, impaire, et valant 1 sur l’intervalle \([0, \pi]\). Nous montrons les sommes partielles de sa série de Fourier. Remarquons en particulier le fait que l’erreur maximum ne varie pas avec le nombre de coefficients de l’approximation. En revanche, la fréquence de ces oscillations augmente avec l’ordre d’approximation. Nous présentons ensuite une illustration du phénomène de Gibbs dans le cas des images numériques: partant d’une image, nous calculons sa série de Fourier (en fait une approximation finie de cette série présentée au paragraphe suivant: la transformée de Fourier discrète), mettons les hautes fréquences à zéro, puis calculons l’image dont la série de Fourier est celle ainsi obtenue (anticipant sur les définitions et notations du paragraphe suivant sur la transformée de Fourier discrète, nous multiplions l’image \(\tilde{u}_{mn} \) par la fonction indicatrice d’un carré centré sur \(\tilde{u}_{0,0} \), puis appliquons la TFD inverse). Nous montrons le résultat figure A.2, où l’image originale est placée à gauche. Le résultat, image obtenue après troncature des hautes fréquences, à droite, présente de très nombreuses oscillations.

Ce phénomène apparaît également lorsque le spectre est utilisé à des fins de manipulation d’image, comme nous le verrons au chapitre suivant.

A.2 Transformées de Fourier bidimensionnelles

A.2.1 Base de Fourier sur un carré

Dans ce chapitre, on va d’abord généraliser les séries de Fourier à des fonctions définies sur le carré \([0, 2\pi]^2\), puis à des fonctions périodiques sur un réseau de \(\mathbb{R}^2 \). Tous les énoncés se généralisent sans changement de démonstration à la dimension \(N \). Nous traitons le cas \(N = 2 \) pour éviter des indices de sommation inutiles. On pose \(x = (x_1, x_2) \in \mathbb{R}^2 \), \(k = (k_1, k_2) \in \mathbb{R}^2 \) et on note \(k.x = k_1x_1 + k_2x_2 \) leur produit scalaire.

Lemme A.3 Les fonctions séparables, c’est-à-dire de la forme \(w(x) = u(x_1)v(x_2) \) avec \(u, v \in L^2(0, 2\pi) \) forment un système total de \(L^2([0, 2\pi]^2) \). C’est-à-dire que le sous espace vectoriel qu’elles engendrent est dense dans \(L^2([0, 2\pi]^2) \).

Démonstration Les fonctions caractéristiques de rectangles sont séparables et elles forment un système total de \(L^2([0, 2\pi]^2) \). □

Théorème A.2 Les fonctions \(c_k(x) = \frac{1}{2\pi} e^{ik.x} \), \(k \in \mathbb{Z}^2 \), forment une base hilbertienne de \(L^2([0, 2\pi]^2) \) et on a donc pour toute fonction \(u \in L^2([0, 2\pi]^2) \),

\[
 u = \sum_{k \in \mathbb{Z}^2} c_k(u)e^{ik.x}, \quad \text{avec} \quad c_k(u) = \frac{1}{(2\pi)^2} \int_{[0,2\pi]^2} u(x)e^{-ik.x}dx,
\]

(4.4)

la convergence de la série se vérifiant au sens de \(L^2 \).
Démonstration On vérifie facilement que e_k est un système orthonormé. Pour montrer qu’il est total, il suffit de montrer, par le lemme A.3, que les e_k engendrent les fonctions séparables. Mais si $w(x) = u(x_1)v(x_2) \in L^2([0,2\pi]^2)$ est une telle fonction, par une application directe du théorème de Fubini, $u(x_1)$ et $v(x_2)$ sont dans $L^2(0,2\pi)$. Les fonctions u et v sont donc sommes au sens L^2 de leurs séries de Fourier :

$$u(x_1) = \sum_{k_1 \in \mathbb{Z}} c_{k_1} e^{ik_1x_1}, \quad c_{k_1} = \frac{1}{2\pi} \int_{[0,2\pi]} u(x_1) e^{-ik_1x_1};$$

$$v(x_2) = \sum_{k_2 \in \mathbb{Z}} c_{k_2} e^{ik_2x_2}, \quad c_{k_2} = \frac{1}{2\pi} \int_{[0,2\pi]} v(x_2) e^{-ik_2x_2};$$

En multipliant simplement les relations précédentes, on obtient une série double convergente dans $L^2([0,2\pi]^2)$, ce qui donne (A.4) dans le cas d’une fonction séparable $w(x) = u(x_1)v(x_2)$ avec $c_k(w) = c_{k_1}(u)c_{k_2}(v)$. Il en résulte que le système $(e_k)_{k \in \mathbb{Z}^2}$ est une base hilbertienne de $L^2([0,2\pi]^2)$ et (A.4) est donc valide. □
Figure A.2: Illustration de l’effet de Gibbs. Gauche: l’image originale; droite: l’image après que l’on ait tronqué ses hautes fréquences, et sur laquelle sont visibles de nombreuses oscillations. L’image de droite est obtenue en ne conservant que les fréquences dont le module est inférieur au quart de la fréquence maximale. Le phénomène est particulièrement visible le long des frontières du domaine de l’image (voir en particulier le côté droit) et le long des discontinuités de l’image. Remarquons que l’image est également devenue floue par suppression des hautes fréquences.

A.2.2 Base de Fourier sur un réseau

Définition A.2 Un sous-ensemble \(\Gamma \) de \(\mathbb{R}^2 \) est appelé un réseau s’il existe une base \((e_1, e_2)\) de \(\mathbb{R}^2 \) telle que les éléments de \(\Gamma \) soient exactement les vecteurs dont les composantes dans cette base sont entières : \(\gamma = x_1e_1 + x_2e_2, \ x_1, x_2 \in \mathbb{Z} \). On dit alors que \((e_1, e_2)\) est une base du réseau \(\Gamma \). On dit qu’une fonction \(f \) définie dans \(\mathbb{R}^2 \) est \(\Gamma \)-périodique si on a \(f(x + \gamma) = f(x) \) pour tout \(\gamma \) dans \(\Gamma \).

Remarque A.4 Tout changement de base

\[\tilde{e}_1 = ae_1 + be_2, \ \tilde{e}_2 = ce_1 + de_2 \ \text{vérifiant} \ |ad - bc| = 1, \ a, b, c, d \in \mathbb{Z} \quad (A.5) \]

est licite et nous donne une nouvelle base du réseau. Réciproquement, si \((\tilde{e}_1, \tilde{e}_2) \in \Gamma\) est une autre base du réseau, on est assuré de l’existence de \(a, b, c, d \in \mathbb{Z} \) vérifiant \((A.5)\), car la matrice de changement de base doit être inversible et d’inverse à coefficients entiers, ce qui impose que son déterminant vaille +1 ou −1.

Définition A.3 et Proposition On considère l’ensemble \(\Gamma^* \) des \(k = (k_1, k_2) \in \mathbb{R}^2 \) tels que pour tout \(\gamma \in \Gamma \), on ait

\[k.\gamma \in 2\pi\mathbb{Z}. \]
Alors Γ^* est un réseau, appelé réseau réciproque de Γ, et dont une base peut être définie de la manière suivante : Si (e_1,e_2) est une base de Γ, on appelle base réciproque de (e_1,e_2) l’unique système (e_1^*,e_2^*) vérifiant
\[
e_i e_j^* = 2\pi\delta_{ij}.
\] (A.6)
Alors (e_1^*,e_2^*) engendre Γ^*.

Démonstration Si $k \in \mathbb{R}^2$ appartient à Γ^*, on note (k_1,k_2) ses composantes dans la base réciproque (e_1^*,e_2^*) d’une base (e_1,e_2) de Γ. On a, en utilisant les relations de réciprocité (A.6), $(k,e_1) = 2\pi k_1$ et $(k,e_2) = 2\pi k_2$ et comme k est dans Γ^*, on en déduit que $k_1 \in \mathbb{Z}$, $k_2 \in \mathbb{Z}$. Réciproquement, si k est dans le réseau engendré par (e_1^*,e_2^*), on a $k = k_1 e_1^* + k_2 e_2^*$. Si $\gamma = x_1 e_1 + x_2 e_2 \in \Gamma$, on a par les relations de réciprocité (A.6),
\[
k.\gamma = 2\pi k_1 x_1 + 2\pi k_2 x_2 \in 2\pi \mathbb{Z}.
\]

\[\square\]

Corollaire A.4 Soit Γ un réseau de \mathbb{R}^2 et Γ^* son réseau réciproque. Alors la fonction de deux variables $x \to e^{ikx}$ est Γ-périodique si et seulement si $k \in \Gamma^*$.

Démonstration Comme $e^{ik(x+\gamma)} = e^{ikx} e^{ik.\gamma}$, la Γ-périodicité équivaut à $e^{ik.\gamma} = 1$ pour tout $\gamma \in \Gamma$, soit $k.\gamma \in 2\pi \mathbb{Z}$, et donc à $k \in \Gamma^*$. \[\square\]

Définition A.4 (mailles d’un réseau) Soit Γ un réseau et (e_j) une base de celui-ci. On appelle maille de Γ pour la base (e_j) un parallélépipede
\[
M = \left\{ \sum_{j=1}^{2} x_j e_j, \ a_j \leq x_j < a_j + 1 \right\},
\] (A.7)
ôù les a_j appartiennent à \mathbb{R}. Lorsque γ parcourt Γ, les translatés $M+\gamma$ de la maille M sont deux à deux disjoints et recouvrent \mathbb{R}^2.

Théorème A.3 Soient M et M' deux mailles d’un réseau Γ, relatives à deux bases (e_1,e_2) et (e_1',e_2'). Alors, pour toute fonction localement sommable et Γ-périodique, les intégrales de f sur M et M' sont égales. En particulier, M et M' ont la même surface.

Démonstration Le second énoncé découle du premier en prenant $f = 1$. Considérons les ensembles $A_{\gamma} = M' \cap (M + \gamma)$. L’ensemble M' étant borné, l’ensemble $\Gamma_0 \subset \Gamma$ constitué des γ tels que $A_{\gamma} \neq \emptyset$ est fini. Les A_{γ} sont disjoints et recouvrent M'. Notons B_{γ} le translaté $A_{\gamma} - \gamma$. Les B_{γ} sont contenus dans M. Montrons qu’ils sont disjoints : si on avait $x \in B_{\gamma} \cap B_{\gamma'}$, on aurait dans une même maille M' deux points $x + \gamma$ et $x + \gamma'$ dont la différence est un vecteur du réseau ; cela est interdit par (A.7). Montrons que la réunion des B_{γ} est M : si x appartient à M, il appartient aussi, comme tout point de \mathbb{R}^2, à un certain translaté $M_{\gamma_{0}}'$ de la maille M' par un élément du réseau ; cela signifie que $x + \gamma_0 \in A_{\gamma_0}$ et donc que $x \in B_{\gamma_0}$.

En conclusion, nous avons écrit M' comme réunion disjointe d’un nombre fini d’ensembles A_{γ}, $\gamma \in B_{\gamma_0}$ et M comme réunion disjointe des translatés $B_{\gamma} = A_{\gamma} - \gamma$. On a donc, pour $f
A.2 Transformées de Fourier bidimensionnelles

Figure A.3: Égalité des mailles

localement sommable et Γ-périodique,

\[\int_{M'} f(x)dx = \sum_{\gamma \in \Gamma_0} \int_{A_{\gamma}} f(x)dx = \sum_{\gamma \in \Gamma_0} \int_{B_{\gamma}} f(y + \gamma)dy = \sum_{\gamma \in \Gamma_0} \int_{B_{\gamma}} f(y)dy = \int_{M} f(y)dy. \]

Corollaire A.5 On appelle plus généralement cellule de Γ un sous-ensemble borné \(D \) de \(\mathbb{R}^2 \) tel que les translatés \(D + \gamma, \gamma \in \Gamma \), soient deux à deux disjoints et recouvrent \(\mathbb{R}^2 \). Alors l'intégrale sur \(D \) d'une fonction \(f \) localement sommable et Γ-périodique ne dépend pas de \(D \) et est égale à l'intégrale de \(f \) sur une maille du réseau.

Démonstration Il suffit de reprendre la démonstration précédente en remplaçant \(M \) par \(D \).

Théorème A.4 Notons \(L^2_\Gamma \) l’espace des fonctions localement de carré sommable et Γ-périodiques muni du produit scalaire

\[(f, g) = \frac{1}{S} \int_{M} \overline{f(x)}g(x)dx, \]

où \(M \) est une cellule quelconque du réseau et \(S \) sa surface. Alors \(L^2_\Gamma \) est un espace de Hilbert, et les fonctions \(x \rightarrow e^{ik.x}, k \in \Gamma^* \) en constituent une base hilbertienne. Toute fonction \(f \in L^2_\Gamma \) peut donc se décomposer d’une manière unique sous la forme

\[f = \sum_{k \in \Gamma^*} c_k(f)e^{ik.x}, \quad \text{avec} \quad c_k(f) = \frac{1}{S} \int_{M} e^{-ik.x}f(x)dx. \]

Démonstration L’espace \(L^2_\Gamma \) est isométrique à \(L^2(M) \) et est donc un espace de Hilbert. Soit \((e_1, e_2)\) une base du réseau \(\Gamma \) et choisissons la maille \(M = \{x_1e_1 + x_2e_2, \ 0 \leq x_1, x_2 \leq 1\} \).

On considère l’isomorphisme \(I \) de \(L^2(M) \) dans \(L^2([0,1]^2) \) défini par \(If(x_1, x_2) = f(x_1e_1 + x_2e_2) \).
Comme toute fonction de $L^2([0,1]^2)$ est décomposable en série double de Fourier (théorème A.2), on peut écrire

$$If(x_1, x_2) = \sum_{k_1, k_2 \in \mathbb{Z}} c_{k_1 k_2} e^{2i\pi (k_1 x_1 + k_2 x_2)}.$$

Posons $x = x_1 e_1 + x_2 e_2$; on a donc

$$f(x) = \sum_{k_1, k_2 \in \mathbb{Z}} c_{k_1 k_2} e^{2i\pi (k_1 x_1 + k_2 x_2)}.$$

En utilisant la définition de la base duale (e_1^*, e_2^*), on a

$$e_1^*.x = 2\pi x_1, e_2^*.x = 2\pi x_2$$

et $k = k_1 e_1^* + k_2 e_2^* \in \Gamma^*$. Donc

$$f(x) = \sum_{k_1, k_2 \in \mathbb{Z}} c_{k_1 k_2} e^{i(k_1 e_1^* + k_2 e_2^*).x} = \sum_{k \in \Gamma^*} c_k(f) e^{ik.x}.$$

De plus (théorème A.2),

$$c_k(f) = c_{k_1 k_2} = \int_{[0,1]^2} f(x_1 e_1 + x_2 e_2) e^{-2i\pi (k_1 x_1 + k_2 x_2)} dx_1 dx_2.$$

On fait le changement de variable $x = x_1 e_1 + x_2 e_2$, qui applique $[0,1]^2$ sur M et dont le jacobien est le rapport des aires, c’est-à-dire S. Donc, pour tout $k \in \Gamma^*$,

$$c_k(f) = \int_S f(x) e^{-ik.x} \frac{dx}{S}.$$

On note L^1_Γ l’ensemble des fonctions Γ-périodiques et localement intégrables.

Définition A.5 et Proposition Soit Γ un réseau de \mathbb{R}^2, D une cellule du réseau et u, v deux fonctions de L^1_Γ. On définit la convolée Γ-périodique de u et v par

$$u * v(x) = \int_D u(x - y)v(y)dy.$$

(A.8)

Alors $u * v$ ne dépend pas du choix de la cellule D et appartient aussi à L^1_Γ.

Démonstration C’est une conséquence immédiate du corrolaire A.5. □

Proposition A.3 La convolution Γ-périodique jouit des propriétés de la convolution sur \mathbb{R}^2 : commutativité, associativité. Si $f, g \in L^2_\Gamma$, alors leur convolée est continue et Γ-périodique et on a

$$\forall k \in \Gamma^*, \ c_k(f * g) = Sc_k(f)c_k(g).$$

(A.9)

Démonstration Les démonstrations sont strictement les mêmes qu’en dimension 1 grâce au théorème A.4 et au corollaire A.5. □
A.3 Le cas discret

A.3.1 Transformée de Fourier Discrète, applications

A.3.1.1 La dimension 1

La transformée de Fourier discrète est un moyen de calculer les coefficients de Fourier d’un fonction a-périodique u, directement à partir de ses N échantillons $u(\frac{k}{N})$, $k = 0, ..., N - 1$. Cela n’est possible exactement que si la fonction présente un nombre de fréquences inférieur à N.

Pour des raisons de simplicité des notations, nous supposerons dans ce paragraphe que N est pair. Tous les résultats énoncés (sauf ceux du paragraphe A.3.1.4 relatifs à la transformée de Fourier rapide) s’adaptent sans difficultés au cas N impair. En pratique, N est en fait toujours une puissance de 2.

Soit $u(x)$ une fonction réelle ou complexe de période a, et N un entier pair. On cherche un polynôme trigonométrique de la forme

$$P(x) = \sum_{n=-N/2}^{N/2-1} \tilde{u}_n \exp\left(\frac{2i\pi nx}{a}\right),$$ \hspace{1cm} (A.10)

qui soit égal à u aux points $\frac{ka}{N}$ pour $k = 0, ..., N - 1$. On dira dans la suite que P est de degré $\frac{N}{2}$. Le but est donc d’interpoler les échantillons $u(\frac{ka}{N}) = u_k$.

Pourquoi choisir un polynôme trigonométrique ? La raison est physique : tous les dispositifs d’acquisition de signaux (sons) ou images ont une bande passante, c’est-à-dire un intervalle de fréquences captées par le dispositif d’enregistrement ; les autres fréquences sont perdues ou tellement atténuées qu’on les néglige : on suppose donc que la ”bande passante” est $[-\frac{N}{2}, \frac{N}{2} - 1]$. Il n’y a par contre aucune raison de supposer que le signal ou image soit périodique et d’une période qui coïncide avec la fenêtre d’observation $[0, a]$. Cette hypothèse est donc imposée à la donnée et provoque une distorsion qu’on a évaluée : le phénomène de Gibbs. Si en fait la fonction u dont on possède les N échantillons n’a pas une bande de fréquence dans $[-\frac{N}{2}, \frac{N}{2} - 1]$, son interpolation par un polynôme trigonométrique de degré $\frac{N}{2}$ provoque une autre distorsion que nous allons évaluer précisément : l’aliasage.

On va commencer par calculer les coefficients de P.

Définition A.6 \textit{On pose $u_k = u(\frac{ka}{N})$, $\omega_N = \exp\left(\frac{2i\pi}{N}\right)$ et, pour $n = -\frac{N}{2}, ..., \frac{N}{2} - 1$,}

$$\tilde{u}_n = \frac{1}{N} \sum_{l=0}^{N-1} u_l \omega_N^{-nl}. \hspace{1cm} (A.11)$$

Les N coefficients \tilde{u}_n sont appelés transformée de Fourier discrète (TFD) des N échantillons u_k. On appelle transformée de Fourier discrète inverse l’application de \mathbb{C}^N dans lui même définie par

$$u_k = \sum_{n=-\frac{N}{2}}^{\frac{N}{2}-1} \tilde{u}_n \omega_N^{kn}, \quad k = 0, ..., N - 1. \hspace{1cm} (A.12)$$
Proposition A.4 Les coefficients \(\tilde{u}_n \) définis par (A.11) sont les uniques coefficients tels que le polynôme trigonométrique (A.10) vérifie \(P \left(\frac{k a}{N} \right) = u_k \), pour tout \(k = 0...N - 1 \). En d'autres termes, la transformée de Fourier discrète composée avec son inverse donne bien l'identité.

Démonstration Pour \(k = 0...N - 1 \),

\[
P \left(\frac{k a}{N} \right) = \sum_{n=-\frac{N}{2}}^{\frac{N}{2}-1} \tilde{u}_n \omega_N^{nk}
= \frac{1}{N} \sum_{n=-\frac{N}{2}}^{\frac{N}{2}-1} \left(\sum_{l=0}^{N-1} u_l \omega_N^{-nl} \right) \omega_N^{nk}
= \frac{1}{N} \sum_{l=0}^{N-1} u_l \left(\sum_{n=-\frac{N}{2}}^{\frac{N}{2}-1} \omega_N^{nk-nl} \right)
= \frac{1}{N} \sum_{l=0}^{N-1} N \delta(k - l) u_l = u_k,
\]

où on a noté \(\delta \) la fonction définie sur les entiers, valant 1 en 0, et 0 ailleurs. L’unicité provient du fait que toute application linéaire surjective de \(\mathbb{C}^N \) dans lui-même est aussi injective. □

On rappelle d’autre part que si \(u \in L^2(0, a) \), les coefficients de la série de Fourier de \(u \) sont définis, pour \(n \in \mathbb{Z} \), par

\[
c_n(u) = \frac{1}{a} \int_0^a u(x) \exp \left(\frac{-2i\pi nx}{a} \right) dx. \quad \text{(A.13)}
\]

Les coefficients \(\tilde{u}_n \) de la transformée de Fourier discrète sont approchés par les termes de la TFD de \((u_k) \) au sens suivant:

Proposition A.5 Soit \(u \) continue et \(a \)-périodique. Alors les \(\tilde{u}_n \) sont des approximations des \(c_n(u) \) par la formule des trapèzes, pour \(n = \frac{-N}{2}, ..., \frac{N}{2} - 1 \).

Démonstration Il suffit d’écritre l’approximation de l’intégrale (A.13) par la méthode des trapèzes en tenant compte du fait que \(u(a) = u(0) \) pour une fonction \(a \)-périodique. □

Corollaire A.6 Si \(u \) est un polynôme trigonométrique \(u(x) = \sum_{n=-N/2}^{N/2-1} \tilde{u}_n \exp \left(\frac{2i\pi nx}{a} \right) \), les coefficients \(\tilde{u}_n \) sont bien calculables par la formule (A.11). Ce sont les coefficients de Fourier de \(u \).

Proposition A.6 On suppose que les échantillons \(u_k \) sont réels. Alors \(\tilde{u}_0 \) et \(\tilde{u}_{-N/2} \) sont réels, et pour \(k = 1...N/2 - 1 \), \(\tilde{u}_k = \tilde{u}_{-k} \).
A.3 Le cas discret

\[u \]

Échantillonnage

Série de Fourier

\[u_k \]

TFD

\[\hat{u}_n = c_n(u) \]

Figure A.4: La TFD après échantillonnage calcule bien les coefficients de Fourier si la fonction \(u \) est un polynôme trigonométrique (corollaire A.6)

Démonstration

\[\tilde{u}_0 = \frac{1}{N} \sum_k u_k \]

et \(\tilde{u}_{-N/2} = \frac{1}{N} \sum (-1)^k u_k \); ces deux coefficients sont donc réels. D’autre part

\[\tilde{u}_{-n} = \frac{1}{N} \sum_{k=0}^{N-1} u_k \omega_n^k = \frac{1}{N} \sum_{k=0}^{N-1} u_k \omega_{-nk} \]

Remarquons tout d’abord que la transformation ainsi définie est séparable, et que le passage des \(u_{k,l} \) aux \(\tilde{u}_{m,n} \) s’effectue par deux TFD à une dimension successives.

De même qu’en dimension 1, nous avons la propriété d’interpolation suivante:

A.3.1.2 La dimension 2

On considère un réel \(a \), une fonction \(u \) de \(\mathbb{R}^2 \) dans \(\mathbb{R} \), telle que \(u(x + ia, y + ja) = u(x, y) \) où \(i \) et \(j \) sont entiers. On fixe à nouveau un entier \(N \), et l’on pose \(u_{k,l} = u \left(\frac{ka}{N}, \frac{la}{N} \right) \). On définit la TFD des \(u_{k,l} \) comme la suite des coefficients, pour \(m, n \in \{-\frac{N}{2}, \ldots, \frac{N}{2} - 1\} \),

\[\tilde{u}_{m,n} = \frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} u_{k,l} \omega_N^{-mk} \omega_N^{-nl}. \] (A.14)

Remarquons tout d’abord que la transformation ainsi définie est séparable, et que le passage des \(u_{k,l} \) aux \(\tilde{u}_{m,n} \) s’effectue par deux TFD à une dimension successives.

La Figure A.5 montre un exemple de signal (représentant le son A) et le module de sa TFD.
Figure A.5: Haut: un signal correspondant à la voyelle "Ah" (le signal représente la pression de l’air en fonction du temps); bas: module de la TFD (coefficients $|\tilde{u}|$, voir le texte). On remarque que le module du spectre est symétrique, et qu’il existe trois pics importants correspondant aux fréquences dominantes.

Proposition A.8 Soient les coefficients $\tilde{u}_{m,n}$ définis, pour $m, n = -N/2...N/2 - 1$, par (A.14). Considérons le polynôme trigonométrique

$$P(x, y) = \sum_{m,n=-N/2}^{N/2-1} \tilde{u}_{m,n} e^{(2i\pi mx/a)} e^{(2i\pi ny/a)}.$$

Les coefficients $\tilde{u}_{m,n}$ sont les seuls nombres complexes tels que, pour tout $k,l \in \{0, N - 1\}$, $P (\frac{ka}{N}, \frac{la}{N}) = u(\frac{ka}{N}, \frac{la}{N})$. Par conséquent, la transformée discrète inverse de $u_{k,l} \rightarrow \tilde{u}_{m,n}$ est donnée par le calcul du polynôme aux échantillons $(\frac{ka}{N}, \frac{la}{N})$, $0 \leq k,l \leq N - 1$:

$$u(k,l) = P \left(\frac{ka}{N}, \frac{la}{N} \right) = \sum_{m,n=-N/2}^{N/2-1} \tilde{u}_{m,n} e^{km+i ln}.$$

Démonstration Le calcul est exactement le même qu’en dimension 1. De même qu’en dimension 1, nous pouvons identifier un certain nombre de symétries des $\tilde{u}_{m,n}$ si l’image est à valeurs réelles. On suppose à nouveau que N est pair.

Proposition A.9 Supposons que les échantillons $u_{k,l}$ soient réels. Alors les coefficients $\tilde{u}_{0,0}$, $\tilde{u}_{0,-N/2}$, $\tilde{u}_{-N/2,0}$, et $\tilde{u}_{-N/2,-N/2}$ sont réels; de plus

$$\forall m,n \in \left\{ -\frac{N}{2} + 1, ..., \frac{N}{2} - 1 \right\} \quad \tilde{u}_{m,n} = \overline{\tilde{u}_{-m,-n}}$$.
A.3 Le cas discret

Figure A.6: Gauche: une image numérique de taille 256 × 256; droite: le logarithme du module de sa TFD. Le spectre décroît rapidement aux hautes fréquences (rappelons que l'image étant bornée, son spectre est dans L^2). En pratique, la grande vitesse de décroissance du spectre rend nécessaire l’utilisation du logarithme pour la visualisation. La symétrie centrale du module de la TFD est visible. Les lignes horizontales et verticales correspondent aux bords verticaux et horizontaux respectivement. Remarquer également les lignes obliques qui correspondent aux bords obliques de l’image (voir en particulier les dalles sur le sol). Les droites horizontales et verticales sont également dues aux fortes discontinuités présentes aux frontières du domaine de l’image (rappelons que le calcul de la TFD suppose la périodisation de l’image).

Démonstration Les calculs sont similaires à la dimension 1. □

A nouveau, comme en dimension 1, les coefficients (\tilde{u}_k) correspondent aux fréquences de l’image u, ordonnées des négatives aux positives. Plus précisément, si $u \in L^1$ et que l’on définit les coefficients de la série de Fourier de u par

$$c_{m,n} = \frac{1}{4\pi^2} \int_{\mathbb{R}^2} u(x,y) e^{-\frac{2\pi i mn}{a}} e^{-\frac{2\pi i nx}{a}},$$

alors, pour $m, n = -N/2......N/2 - 1$ les $\tilde{u}_{m,n}$ sont des approximations des $c_{m,n}$ par la méthode des trapézes.

La figure A.6 présente une image et le logarithme du module de sa transformée de Fourier discrète (le logarithme est utilisé car le module des TFD des images usuelles décroit très vite lorsque l'on s'éloigne des basses fréquences).

A.3.1.3 Le phénomène du repliement de spectre ou aliasage

Le but de ce paragraphe est de calculer les perturbations auxquelles est exposée la transformée de Fourier discrète d’un signal lorsque celui-ci est sous-échantillonné. On vient de voir que la transformée de Fourier discrète calculait exactement les coefficients de Fourier d’un polynôme trigonométrique de degré $N/2$, $P(x) = \sum_{n=-N/2}^{N/2-1} \tilde{u}_n e^{\frac{2\pi inx}{a}}$, dont on connaissait N échantillons $u(k\frac{a}{N})$, $N = 0, ..., N - 1$.

Dans cette section, on considère une fonction $u \in L^2(0,a)$ et sa série de Fourier

$$u(x) = \sum_{n \in \mathbb{Z}} c_n(u) e^{2\pi inx/a}.$$
Dans toute la suite, on supposera que $\sum_{n \in \mathbb{Z}} |c_n(u)| < +\infty$, ce qui implique que u est continue et a-périodique. Cette hypothèse n’est pas irréaliste. En effet, étant donné un signal v régulier (C^2 par exemple) sur $[0, a/2]$, on peut le rendre pair en posant $u(-x) = \tilde{v}(x)$ pour $x \in [-a/2, 0]$, $u(x) = v(x)$ sur $[0, a]$. On voit que l’a-périodisée de cette extension u reste Lipschitz et C^2 par morceaux et on peut en déduire (exercice !) que la série des coefficients de Fourier de u est convergente. On suppose également, ce qui est réaliste, qu’un signal u n’est en fin de compte connu que par ses échantillons sur $[0, a]$, $u(0), \ldots, u\left(\frac{N-1}{N}a\right)$.

Théorème A.5 Soit u définie sur $[0, a]$, vérifiant $\sum_n |c_n(u)| < +\infty$. Alors la transformée de Fourier discrète de u est la N-périodisée de la suite des coefficients de Fourier de u :

$$\tilde{u}_n = \sum_{q=-\infty}^{+\infty} c_{n+qN}(u), \quad n = -\frac{N}{2}, \ldots, \frac{N}{2} - 1. \quad (A.15)$$

Démonstration On rappelle la notation $\omega_N = e^{\frac{2i\pi}{N}}$ et $(\omega_N)^N = 1$. Comme $u(x) = \sum_{m \in \mathbb{Z}} c_m(u)e^{\frac{2\pi i mx}{a}}$, on a

$$u\left(\frac{ka}{N}\right) = \sum_{m \in \mathbb{Z}} c_m(u)\omega_N^{mk}.$$

On pose pour $m \in \mathbb{Z}$, $m = qN + n$, $-\frac{N}{2} \leq n \leq \frac{N}{2} - 1$. En regroupant les termes de la série de Fourier on obtient

$$u\left(\frac{ka}{N}\right) = \sum_{n=-\frac{N}{2}}^{\frac{N}{2}-1} \left(\sum_{q=-\infty}^{+\infty} c_{n+qN}(u)\right)\omega_N^{nk}, \quad k = 0, \ldots, N - 1.$$

Mais on a aussi (formule d’inversion de la transformée de Fourier discrète):

$$u\left(\frac{ka}{N}\right) = \sum_{n=-\frac{N}{2}}^{\frac{N}{2}-1} \tilde{u}_n\omega_N^{nk}, \quad k = 0, \ldots, N - 1.$$

Ces deux dernières formules définissent toutes deux la transformée de Fourier discrète et par identification on obtient la formule de "repliement de spectre" (A.15). Ce théorème va nous permettre d’interpréter les effets de moiré visibles dans beaucoup d’images digitales ou de films digitalisés (DVD). Ces effets de moiré sont dus à un "repliement de spectre", ou "aliasage". Le repliement de spectre provient d’un sous-échantillonnage abusif. Le terme aliasage se réfère à la présence des coefficients parasites c_{n+qN}, pour $q \neq 0$ dans le calcul du coefficient de la fréquence n, \tilde{u}_n. Quand la transformée de Fourier discrète fait correctement son travail, qui est de retrouver le coefficient c_n de la fréquence n de u, on doit avoir $\tilde{u}_n = c_n$. Les coefficients c_{n+qN} qui s’y ajoutent dans (A.15) sont des répliques, ou "alias" de coefficients correspondant aux fréquences plus grandes $n + qN$, $q \neq 0$. D’où le terme d’aliasage.
Définition A.7 Soit un signal échantillonné \((u_k), k = 0, \ldots, N - 1\), et soit \(p\) un entier divisant \(N\). On définit l’opérateur “sous-échantillonnage d’ordre \(p\)” comme suit:

\[S_p : \mathbb{R}^N \rightarrow \mathbb{R}^{N/p} \]

\[(u_k)_{k=0..N-1} \rightarrow (v_k) = (u_{kp})_{k=0..N/p}. \]

Le signal \((v_k)\) est dit sous-échantillonné d’un facteur \(p\).

Nous commençons par le cas, technologiquement classique, où \(p = 2\).

Corollaire A.7 Soit \((v_k) = S_2((u_k))\) (on suppose que \(N\) est pair). Alors \((\tilde{v}_n)\), la transformée de Fourier Discrète de \((v_k)\), s’écrit, pour \(n = -\frac{N}{2}, \ldots, \frac{N}{2} - 1\),

\[\tilde{v}_n = \tilde{u}_n + \tilde{u}_{n - \frac{N}{2}} + \tilde{u}_{n + \frac{N}{2}}. \] \hspace{1cm} (A.16)

le deuxième terme étant par ailleurs nul si \(n < 0\) et le troisième étant nul si \(n \geq 0\).

Démonstration Appliquons le théorème A.5 à l’unique polynôme trigonométrique \(P\) à \(N\) coefficients qui a pour échantillons les \(u_k\). Alors par définition de la transformée de Fourier discrète, \(\tilde{u}_n = c_n(P)\). On a donc pour \(\frac{N}{4} \leq n \leq \frac{3N}{4} - 1\),

\[\tilde{v}_n = \sum_{q \in \mathbb{Z}} c_{n+q\frac{N}{2}}(P) = \tilde{u}_n + \tilde{u}_{n - \frac{N}{2}} + \tilde{u}_{n + \frac{N}{2}}. \]

Remarquons que si \(n \geq 0\) cela donne \(\tilde{v}_n = \tilde{u}_n + \tilde{u}_{n - \frac{N}{2}}\), l’autre coefficient étant nul. De même, si \(n < 0\), on obtient \(\tilde{v}_n = \tilde{u}_n + \tilde{u}_{n + \frac{N}{2}}\). \(\square\)

Cette proposition indique que le spectre du signal sous-échantillonné d’un facteur deux s’obtient en superposant à lui-même le spectre du signal original avec un décalage de \(\frac{N}{2}\). On dit qu’il y a repliement de spectre. Ainsi, le spectre du signal sous-échantillonné contient généralement des informations non présentes dans le spectre du signal de départ, ce qui se traduit sur le signal sous-échantillonné par l’apparition de structures périodiques n’ayant pas de lien direct avec le contenu du signal. Ceci est particulièrement frappant dans le cas des signaux bi-dimensionnels, pour lesquels on a un résultat identique à celui du corollaire A.7. Nous montrons deux exemples d’images sous-échantillonnées aux figures A.7 (image synthétique) et A.8, exemple où l’apparition de structures périodiques est due à la superposition, lors du sous-échantillonnage, des hautes fréquences de l’image. La manipulation numérique à faire pour créer des effets de moiré dans une image est aussi simple que son interprétation est subtile : il suffit de prendre ”un point sur deux” de l’image. L’interprétation de l’opération se fait en Fourier : on a créé de basses fréquences parasites en \(c_n\) qui correspondent au ”repliement” de hautes fréquences \(c_{n+N/2}\). D’où l’apparition de sinusoides qui n’ont rien à voir avec le signal original et qui créent des effets de moiré.

Le résultat du corollaire A.7 se généralise dans le cas d’un sous-échantillonnage d’ordre plus élevé, comme le montre la proposition suivante:

Proposition A.10 Soit \((v_k) = S_p((u_k))\) (on suppose que \(N = pM\), pour un certain entier \(M\)). Alors \((\tilde{v}_k)\), la transformée de Fourier Discrète de \((v_k)\), s’écrit, pour \(k = 1\ldots M - 1\),

\[\tilde{v}_k = \sum_{a=-p+1}^{p-1} \tilde{u}_{k+a\frac{N}{p}}. \] \hspace{1cm} (A.17)
Figure A.7: Exemple de repliement avec une image synthétique. En haut à gauche: image originale, à droite son spectre. En bas à gauche: l’image sous-échantillonnée d’un facteur deux dans chaque direction, à droite le spectre correspondant. Le spectre de l’image sous-échantillonnée est obtenu en périodisant le spectre de l’image originale avec pour période le carré visible en surimpression.

Démonstration Appliquer de nouveau le théorème A.5 à l’unique polynôme trigonométrique à N coefficients qui a pour échantillons les u_k. Ce polynôme vérifie $c_n(P) = \tilde{u}_n$. □

On peut comparer les propositions A.7 et A.10 au théorème A.5. Le théorème A.5 nous donne notamment les conditions générales de Shannon et Whittaker pour qu’un signal soit correctement échantillonné : ces conditions sont que le spectre soit borné (nombre fini N de coefficients de Fourier) et que l’on dispose d’au moins N échantillons. Les propositions A.7 et A.10 sont plus pratiques : elles ne donnent aucune hypothèse sur le signal qui a été échantillonné et ont l’avantage de s’appliquer à un signal discret, quelconque, qu’il soit ou non issu d’un bon échantillonnage.

A.3.1.4 La transformée de Fourier rapide

Comme nous l’avons vu plus haut, le calcul des coefficients de Fourier \tilde{u}_n revient à l’évaluation d’un certain polynôme aux racines N-ièmes de l’unité. Dans le cas général, l’évaluation classique (ex. méthode de Hörner) d’un polynôme de degré $N - 1$ en un point prend $O(N)$ opérations. Donc si l’on répète cela pour les N racines de l’unité on devra effectuer $O(N^2)$ opérations. L’algorithme de la Transformée de Fourier Rapide (TFR) permet de résoudre le problème en $O(N \log N)$ opérations. Appelons “calcul d’ordre N” l’évaluation d’un polynôme de degré $N - 1$ aux racines N-ièmes de l’unité. Et soit $T(N)$ le nombre d’opérations (additions et multiplications) demandées par ce calcul.

On se place dans le cas $N = 2^n$ et soit un polynôme

$$P(X) = \sum_{k=0}^{N-1} a_k X^k.$$

On pose

$$Q(X) = \sum_{k=0}^{N/2-1} a_{2k} X^k,$$
Figure A.8: Sous-échantillonnage et repliement: le cas d’une image mal échantillonnée. Pour les images (a), (b), (c), (d), le principe est le même qu’à la figure A.7, mais le détail de la transformation du spectre est plus difficile à suivre ! Les effets du repliement (aliasing en anglais) sont particulièrement visibles sur les yeux de la mouche, image (c), qui présentent des oscillations à basse fréquence. Les structures quasi-périodiques de l’image originale sont visibles sous formes de taches et de filaments sur le spectre (b). Le repliement est dû à la présence de ces structures aux hautes fréquences: la TFD de l’image originale n’est pas nulle en dehors du carré visible en surimpression figure (b). Ce type d’effet de moiré est visible dans de nombreux DVD commerciaux.
Figure A.9: Une solution possible pour éviter les effets de repliement illustrés sur la figure A.8. L’image (a) est l’image dont le spectre est le même que celui de l’image A.8-(a) à l’intérieur du carré, et est nul à l’extérieur (filtrage passe-bas). L’image (c) est l’image sous-échantillonnée correspondante. On observe que l’effet de repliement a disparu.

\[R(X) = \sum_{k=0}^{N/2-1} a_{2k+1}X^k. \]

Alors

\[P(\omega_N^k) = Q \left(\left(\omega_N^k \right)^2 \right) + \omega_N^k R \left(\left(\omega_N^k \right)^2 \right). \] (A.18)

Or, si \(N \) est pair les \((\omega_N^k)^2 \) sont exactement les racines d’ordre \(\frac{N}{2} \) de l’unité. Il suffit donc d’évaluer les deux polynômes \(Q \) et \(R \) aux racines d’ordre \(\frac{N}{2} \) de l’unité ce qui est un problème
d’ordre $\frac{N}{2}$. On a donc, en tenant compte des additions et multiplications demandées par A.18,

$$T(N) = 2T\left(\frac{N}{2}\right) + 2N.$$

On en tire aisément $T(N) = \mathcal{O}(N \log(N))$.

Remarque A.5 En pratique, les programmes usuels de calcul numérique ne calculent pas les coefficients \tilde{u}_n, mais les coefficients \hat{u}_n, définis par la formule suivante, pour $n = 0, ..., N-1$:

$$\hat{u}_n = \begin{cases}
\tilde{u}_n & \text{si } n = 0, ..., \frac{N}{2} - 1 \\
\tilde{u}_{n-N} & \text{si } n = \frac{N}{2} ..., N
\end{cases} \tag{A.19}$$

De plus lorsque l’on calcule la transformée de Fourier de signaux réels, et étant donné qu’une telle transformée a une symétrie de conjugaison ($\tilde{u}_n = \overline{\hat{u}_n}$), on peut mélanger deux signaux réels u et v en un seul signal $w = u + iv$. En calculant la transformée de Fourier de w on peut déduire celles de u et v. Ce qui divise le temps de calcul par deux. En effet, on a

$$\tilde{u}_n = \frac{\tilde{w}_n + \overline{\tilde{w}_{-n}}}{2}$$

$$\tilde{v}_n = \frac{\tilde{w}_n - \overline{\tilde{w}_{-n}}}{2i}$$

A.3.1.5 L’utilisation de la transformée de Fourier discrète pour définir zoom, translations et rotations des images

Le zoom

Nous présentons une méthode d’interpolation reposant sur une extension de la TFD d’un signal ou d’une image. Nous détaillons la méthode, dite du “prolongement par des 0” (“0-padding”), en une dimension, le principe se généralisant sans mal pour une image. Comme précédemment, considérons des échantillons u_k, k variant de 0 à $N - 1$, et $\tilde{u}_n = \frac{1}{N} \sum_{n=0}^{N-1} u_n \omega_N^{-kn}$. On suppose que N est pair et que l’on veut zoomer d’un facteur 2, c’est-à-dire que l’on veut construire un signal de taille deux fois plus grande que le signal de départ. On définit un nouveau signal v, de taille $2N$ comme étant la TFD inverse de \tilde{v}, donné par

$$\tilde{v}_n = \tilde{u}_n \text{ si } -\frac{N}{2} \leq n \leq \frac{N}{2} - 1, \quad \tilde{v}_n = 0 \text{ sinon.} \tag{A.20}$$

Proposition A.11 Le signal v dont la TFD est donnée par la formule (A.20) vérifie $v_{2k} = u_k$, pour $k = 0, ..., N - 1$.

Démonstration On a

$$v_{2k} = \sum_{n=-N}^{N-1} \tilde{v}_n \omega_{2N}^{2nk} = \sum_{n=-\frac{N}{2}}^{\frac{N}{2}-1} \tilde{u}_n \omega_N^{nk} = u_k.$$

En effet, $\omega_{2N}^{2nk} = \omega_N^{nk}$. □
Remarque A.6 Ce résultat est évident sans démonstration : en effet, on peut considérer
l’unique polynôme trigonométrique de degré $\frac{N}{2}$ passant par les échantillons u_k. Les échantillons
v_k s’interprètent immédiatement comme des échantillons de ce même polynôme.

Remarque A.7 On remarquera que les signaux obtenus par cette méthode peuvent être
complexes, même lorsque le signal original est réel (ceci étant dû au terme d’aliasage $u_{-\frac{N}{2}}$).

La méthode se généralise aux cas des images. Nous considérons une image numérique
$(u_{k,l})$, et nous définissons une image zoomée $(v_{i,j})_{i,j=0,...,2N-1}$ comme étant la transformée
de Fourier discrète inverse de $\tilde{v}_{i,j}$ définie pour $i,j = -N,...,N-1$ par

$$\tilde{v}_{m,n} = \tilde{u}_{m,n} \text{ si } -\frac{N}{2} \leq m, n \leq \frac{N}{2} - 1, \quad \tilde{v}_{m,n} = 0 \text{ sinon.} \quad (A.21)$$

La figure A.10 montre la partie réelle d’une partie de l’image A.6 zoomée par TFD, ainsi que par réplication des pixels (chaque pixel est remplacé par quatre pixels de la même valeur). On remarque que le zoom par TFD produit une image bien plus régulière, et évite l’effet “marche d’escalier” visible sur l’image zoomée par réplication. La figure A.11 illustre ce point sur un détail. Une autre remarque concerne l’effet de Gibbs (cf paragraphe A.1.3). Ce phénomène produit des rebonds le long de la frontière du domaine de l’image. En effet, et comme nous l’avons déjà mentionné, le calcul des coefficients de Fourier de l’image (dont les coefficients de la TFD sont une approximation) suppose l’image périodique, ce qui fait apparaître des discontinuités le long des frontières de son domaine de définition. Le phénomène de Gibbs est également visible le long des discontinuités dans l’image, les contours. Le phénomène est mis en évidence sur la figure A.10. Expliquons pourquoi le phénomène apparaît dans le cas du zoom: une nouvelle image $v_{k,l}$ de taille $2N \times 2N$ est obtenue en utilisant les valeurs prises par le polynôme $P(x)$ entre les points dont on dispose au départ. Cette utilisation de P fait apparaître les oscillations qui étaient invisibles dans le cas de l’image de départ puisqu’il y avait interpolation des (u_k). Comme nous l’avons déjà évoqué, les oscillations aux frontières du domaine de l’image peuvent être supprimées par utilisation de la transformée en cosinus. En revanche, le problème subsistera le long des discontinuités présentes à l’intérieur de l’image.

La translation

La méthode présentée au paragraphe précédent permet de définir une translation d’une
comment 1/2 (ou $\frac{a}{2N}$) pour revenir à notre définition première du signal u_k), en ne gardant
que les points d’indice impair du signal zoomé v. Plus généralement, nous pouvons définir
une translation d’un signal d’une quantité $0 < \alpha < 1$. Comme d’habitude, l’opération de
translation sur la fonction u dont nous connaissons les échantillons u_k se fait sous l’hypothèse
que celle-ci est un polynôme trigonométrique. En d’autres termes, on translate le polynôme
d’interpolation, la "vraie" fonction u étant inconnue en dehors des échantillons. Le polynôme
d’interpolation est

$$P(x) = \sum_{-\frac{N}{2}}^{\frac{N}{2}-1} \tilde{u}_n e^{\frac{2i\pi nx}{a}}.$$

En translatant de α, on obtient

$$\tau_\alpha P(x) = P(x - \alpha) = \sum_{-\frac{N}{2}}^{\frac{N}{2}-1} \tilde{u}_n e^{-\frac{2i\pi nx}{a}} e^{-\frac{2i\pi \alpha x}{a}}.$$

139
Figure A.10: Zoom sur une partie de l’image A.6. Haut: zoom par TFD, bas: zoom par réplication des pixels. Le zoom par TFD est obtenu en prolongeant par des zéros le spectre de l’image initiale. Celui par réplication des pixels en remplaçant chaque pixel par quatre pixels de la même valeur. Remarquons tout d’abord la plus grande régularité du zoom par TFD, qui supprime les effets de “blocs” très visibles sur le zoom par réplication. En contrepartie, le phénomène de Gibbs (voir paragraphe A.1.3) est très visible sur le zoom par TFD, puisque l’on a mis à zéro brutalement des coefficients de la TFD. Ce phénomène est particulièrement visible le long des frontières de l’image, qui correspondent à des discontinuités puisque l’image est périodisée (par exemple zone entourée en haut), et des contours des objets (par exemple la zone entourée au centre).
Figure A.11: détails après zoom, à gauche par TFD, à droite par réplication des pixels.

On a donc :

Proposition A.12 La TFD (\tilde{v}_n) de $P(x - \alpha)$ s'obtient à partir de la TFD de $P(x)$, \tilde{u}_n, par

$$\tilde{v}_n = \tilde{u}_n e^{-\frac{2\pi in\alpha}{a}}.$$

Cette méthode de translation se généralise sans mal au cas des images, en remarquant qu'une translation à deux dimensions peut se décomposer en deux translations, une selon les lignes et une selon les colonnes.

La rotation

Voici, brièvement, une méthode pour implémenter une rotation discrète, due à L. Yaroslavsky. Le lecteur intéressé pourra consulter [Yaroslavsky and Eden, 1996] (en anglais). Commençons par remarquer que

$$
\begin{pmatrix}
\cos(\theta) & -\sin(\theta) \\
\sin(\theta) & \cos(\theta)
\end{pmatrix}
= \begin{pmatrix} 1 & -\tan\left(\frac{\theta}{2}\right) \\
0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\
\sin(\theta) & 1 \end{pmatrix} \begin{pmatrix} 1 & -\tan\left(\frac{\theta}{2}\right) \\
0 & 1 \end{pmatrix}
$$

(sauf si $\theta = \pi$ auquel cas il suffit de retourner l'image). Donc partant de $u_{i,j}$, on translate la première ligne de $-\tan\left(\frac{\theta}{2}\right)$, la deuxième de $-2\tan\left(\frac{\theta}{2}\right)$, etc... Puis on fait une opération similaire sur les colonnes, puis à nouveau sur les lignes. Ces translations se font par l’intermédiaire de la TFD à une dimension.

La figure A.12 montre une image après une rotation de $\pi/4$ par la méthode décrite ci-dessus. Puis, pour illustrer la stabilité de la méthode, nous montrons figure A.13 le résultat de l’application successive de 12 rotations de $\pi/4$, et, à titre de comparaison, le résultat de ces 12 rotations successives implémentés par interpolation bilinéaire (les valeurs aux nouveaux points sont des combinaisons linéaires des 4 points à coordonnées entières les plus proches). Cette figure illustre clairement la supériorité de la méthode par FFT dans le cas de rotations multiples.
Figure A.12: Rotation de $\pi/4$ par TFD. La rotation est implémentée en remarquant qu'elle peut se décomposer en trois transformations consistant en des translations selon les lignes ou les colonnes de l'image (formule A.22). Chacune de ces transformations est ensuite effectuée grâce à une TFD sur la ligne ou colonne considérée, en utilisant la méthode présentée au paragraphe précédent.

Remarque A.8 Cette méthode présente un défaut. En effet, du fait que l’on manipule des fonctions périodiques, une translation conduit à faire sortir une partie de l’image par un bord pour la faire entrer par l’autre. Ce qui conduit à l’apparition, sur les bords de l’image d’un certain nombre de détails qui sont en fait mal placés. On peut se débarrasser de ce problème en insérant l’image dans un cadre d’une surface deux fois plus grande.

Remarque A.9 Un autre défaut, plus fondamental, de la méthode est qu’elle ne peut être parfaite. En effet, supposons que l’image vérifie l’hypothèse de Shannon et qu’elle est N-périodique, ce qui revient à dire qu’elle est de la forme (pour une image carrée)

$$u(x, y) = \sum_{k,l=0}^{N-1} c_{i,j} e^{i \frac{2\pi}{N} (kx+ly)}.$$

Alors, si on lui applique une "translation" suivant l’axe des x de valeur λy, la formule devient

$$u_1(x, y) = \sum_{k,l=0}^{N-1} c_{i,j} e^{i \frac{2\pi}{N} (kx+(l-\lambda k)y)}.$$

La fonction u_1 n’est pas (pour $\lambda \notin \mathbb{Z}$) N-périodique en y. Or, après la première translation on ne dispose plus que des échantillons du signal u_1 sur une grille carrée $N \times N$. D’après la théorie de Shannon un tel ensemble de données ne permet pas de capturer toute l’information sur u_1 (à la seconde étape on effectue des translations suivant y qui est justement l’axe qui pose problème). On rencontre encore ce problème à la troisième translation. Le seul moyen d’éviter cet inconvénient est d’évaluer u aux points de l’image de $[0, N-1] \times [0, N-1]$ par une rotation d’angle $-\theta$, mais cette méthode est en N^4 ce qui la rend inopérante...
Figure A.13: Bas: après douze rotations successives de $\pi/4$ par TFD; haut: même expérience en utilisant une interpolation bilinéaire (la valeur en un nouveau point (x, y) est obtenue par combinaisons linéaires des valeurs aux quatre points à coordonnées entières de l’image originale les plus proches de (x, y)).
A.3 Le cas discret

A.3.1.6 Importances relatives de la phase et du module de la TFD pour une image

Nous nous intéressons à la pertinence visuelle des caractéristiques de la transformée de Fourier discrète dans le cas des images, et plus particulièrement à la phase et au module de la TFD, au moyen de deux exemples. Tout d’abord nous montrons, figure A.14, deux images A et B, ainsi que les images obtenues en échangeant les phases de leurs TFD. Nous remarquons grâce à cette expérience qu’une part très importante de l’information géométrique d’une image est contenue dans la phase de sa TFD. Rappelons que si l’on translate une fonction, les coefficients de sa série de Fourier sont multipliés par des exponentielles complexes de module 1, et que par conséquent la phase de la TFD contient en sens des informations sur le placement des constituants de l’image.

Dans la figure A.15, nous montrons deux images de textures, qui visuellement semblent invariantes par translation, ainsi que les deux images obtenues à partir de ces textures en ne conservant que le module de leurs TFD, et en tirant au hasard les phases (selon une loi uniforme). On voit cette fois que le module de la TFD contient l’information. Cette propriété est caractéristique des textures homogènes du type présenté figure A.15, et l’on peut même donner une définition des “microtextures” comme images caractérisées uniquement par le module de leur transformée de Fourier.

A.3.2 Lien avec la théorie de Shannon

Théorème A.6 (de Shannon pour les polynômes trigonométriques) Soit un signal trigonométrique

\[f(t) = \sum_{n=-N}^{N} c_n e^{2i\pi \lambda_n t}. \]

On a encore la formule de Shannon

\[\forall a \in \left[0, \frac{1}{2\lambda_c}\right], \forall t \in \mathbb{R}, \; f(t) = \sum_{n=-\infty}^{+\infty} f(na) \frac{\sin \frac{\pi}{a} (t - na)}{\frac{\pi}{a} (t - na)}, \]

avec \(\lambda_c = \max\{|\lambda_n|\} \). La convergence est ponctuelle.

Remarque A.10 Ce théorème complète le théorème de Shannon pour un signal qui est ni périodique ni dans \(L^2 \).

Démonstration

Il suffit de démontrer le résultat dans le cas d’une seule onde. Soit donc

\[f(t) = e^{2i\pi \lambda t}, \quad \lambda \in \mathbb{R}. \]

Soit \(g \) périodique de période \(\frac{1}{a} \) et égale à \(f \) sur \((-\frac{1}{2a}, \frac{1}{2a}) \). Les coefficients de Fourier de \(g \) sont

\[c_n = \frac{a \sin \frac{\pi}{a} (\lambda - na)}{\pi (\lambda - na)}. \]

Donc

\[g(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin \frac{\pi}{a} (\lambda - na)}{\frac{\pi}{a} (\lambda - na)} e^{2i\pi nat}. \]
Figure A.14: Haut: les deux images de départ; bas: les deux images après échange des phases de leurs TFD. L'information géométrique est contenue dans la phase ! Les formes sont principalement codées dans l'argument des coefficients de Fourier de l'image. Bien que les images (a) et (c) d'une part, et (b) et (d) d'autre part, aient des modules complètement différents, on y distingue les mêmes formes géométriques. Remarquons également que les directions horizontales et verticales très présentes sur l'image (a) apparaissent sous forme de texture dans l'image (c). Cette remarque est précisée par l'expérience de la figure A.15.
A.4 Mémento de théorie des Distributions

A.4.1 Définition des distributions

On note $\mathcal{D}(\Omega) = C^\infty_0(\Omega)$ l’ensemble des fonctions C^∞ à support compact dans un ouvert Ω de \mathbb{R}^n. Ces fonctions sont aussi appelées “fonctions test”. Si $\alpha = (\alpha_1, ..., \alpha_N) \in \mathbb{N}^N$, on notera $|\alpha| = \alpha_1 + \ldots + \alpha_N$ et $\partial^\alpha u$ la dérivée partielle

$$\partial^\alpha u = \frac{\partial^{|\alpha|} u}{\partial x_1^{\alpha_1} \ldots \partial x_N^{\alpha_N}}.$$
On dira qu’une suite φ_n de $\mathcal{D}(\Omega)$ tend vers $\varphi \in \mathcal{D}(\Omega)$ si
- Il existe pour n assez grand un compact K de Ω tel que $\text{supp}(\varphi_n - \varphi) \subset K$
- $\lim_{n \to \infty} \partial^\alpha \varphi_n = \partial^\alpha \varphi$ uniformément sur K pour tout multiindice α.

On appelle espace des distributions, $\mathcal{D}'(\Omega)$ le dual de $\mathcal{D}(\Omega)$. Chaque distribution est donc une forme linéaire sur $\mathcal{D}(\Omega)$ continue pour la notion de convergence introduite ci-dessus. On note $\langle u, \varphi \rangle = u(\varphi)$. En d’autres termes,

Définition A.8 une forme linéaire sur $\mathcal{D}(\Omega)$ est une distribution si et seulement si pour tout compact K de Ω il existe un entier p et une constante C tels que pour toute fonction $\varphi \in \mathcal{D}(\Omega)$ à support dans K, on ait

$$| \langle u, \varphi \rangle | \leq C \sup_{x \in K, |\alpha| \leq p} |\partial^\alpha \varphi(x)|$$

Lorsque l’entier p peut être choisi indépendamment de K, on dit que la distribution est d’ordre fini, et la plus petite valeur de p possible est appelée l’ordre de u.

On munit $\mathcal{D}'(\Omega)$ de la topologie de la convergence simple, c’est-à-dire que u_n tend vers u si et seulement si $\langle u_n, \varphi \rangle \to \langle u, \varphi \rangle$ pour tout $\varphi \in \mathcal{D}(\Omega)$. On admettra le théorème suivant, qui est une conséquence du théorème de Banach-Steinhaus :

Si une suite de distributions u_n est telle que $\langle u_n, \varphi \rangle$ converge pour tout φ dans $\mathcal{D}(\Omega)$, alors u_n tend vers une distribution u telle que $\langle u, \varphi \rangle = \lim_{n \to \infty} \langle u_n, \varphi \rangle$.

A.4.1 Exemples de distributions

- **Fonctions de L^1_{loc}** : A $f \in L^1_{\text{loc}}(\mathbb{R}^n)$ on associe \tilde{f} définie par $\langle \tilde{f}, \varphi \rangle = \int_{\mathbb{R}^n} f(x)\varphi(x)dx$.
 - Alors \tilde{f} est une distribution.
 - Si une suite de fonctions converge dans L^1_{loc}, elle converge aussi au sens des distributions.

- **Masse de Dirac** : La "masse de Dirac" définie par $\langle \delta_{x_0}, \varphi \rangle = \varphi(x_0)$ est une distribution qui ne peut se mettre sous la forme \tilde{f} avec $f \in L^1_{\text{loc}}$.

- **Mesures de Radon** : On appelle mesure de Radon positive toute forme linéaire positive sur $\mathcal{D}(\Omega)$.
 - Une mesure de Radon positive est une distribution d’ordre 0 sur Ω.
 - On appelle mesure de Radon toute différence de mesures de Radon positives.
 - **Exemple** : Si F est une fonction croissante définie sur \mathbb{R}, sa dérivée au sens des distributions est une mesure de Radon positive. (Voir plus bas la définition de dérivée au sens des distributions).

- **Peignes de Dirac** : Soit Γ un réseau régulier de \mathbb{R}^N. On pose $\Delta_\Gamma = \sum_{\gamma \in \Gamma} \delta_\gamma$. C’est une mesure de Radon sur \mathbb{R}^N.

A.4.2 Opérations sur les distributions

- **Translatée d’une distribution** On pose $\langle \tau_h u, \varphi \rangle = \langle u, \tau_{-h} \varphi \rangle$, où $\tau_h \varphi(x) = \varphi(x - h)$. C’est une distribution si u en est une.
Dilatée d’une distribution On appelle si f est une fonction et $\lambda > 0$, sa dilatée de λ: $f_\lambda(x) = f(\frac{x}{\lambda})$. Si u est une distribution sur \mathbb{R}^N, on définit sa dilatée par $< u_\lambda, \varphi > = |\lambda|^N < u, \varphi_\lambda >$.

Multiplication par une fonction C^∞ On pose, si $f \in C^\infty(\mathbb{R}^n)$ et $u \in \mathcal{D}'(\Omega)$,

$$< fu, \varphi > = < u, f\varphi >.$$

C’est une distribution.

Échantillonage On vérifie facilement que $f\delta_a = f(a)\delta_a$, et plus généralement,

$$f \Delta_\Gamma = \sum_{\gamma \in \Gamma} f(\gamma) \delta_\gamma,$$

sont des distributions.

Conjuguée complexe On pose $< \overline{u}, \varphi > = \overline{< u, \varphi >}$.

Dérivée d’une distribution Si u est une distribution, $\partial^\alpha u$, définie par $< \partial^\alpha u, \varphi > = (-1)^\alpha < u, \partial^\alpha \varphi >$ est aussi une distribution.

- Alors l’ordre de $\partial^\alpha u$ est inférieur ou égal à l’ordre de u, s’il existe, augmenté de $|\alpha|$.

- Cette définition de la dérivée coïncide avec la définition classique quand u est une fonction C^1. On a donc toujours le droit de dériver une distribution !

- Si une suite de distributions converge ses dérivées convergent aussi.

- Inversement, si $f \in L^1_{loc}(\mathbb{R})$ est localement intégrable et F une primitive de f, alors $F' = f$, la dérivée étant entendue au sens des distributions.

On appelle fonction de Heaviside $H(x) = 1$ si $x \geq 0$, 0 sinon. Alors H est une distribution (si on la traite comme une fonction de L^1_{loc}, voir plus haut) et $H' = \delta_0$.

Dérivée de la masse de Dirac On a, en dimension 1, $x\delta' = -\delta$. En dimension supérieure, on a

$$x_i \partial^{x_i} \delta' = -\delta$$
$$x_j \partial^{x_j} \delta' = 0 \text{ si } i \neq j.$$

Discrétisation de la dérivation

Si $u \in \mathcal{D}'(\mathbb{R})$, sa dérivée est la limite, pour $h \to 0$, des distributions $h^{-1}(\tau_h u - u)$.

A.4.3 Distributions à support compact

Définition A.9 Soit $u \in \mathcal{D}'(\Omega)$ une distribution. On considère le plus grand ouvert ω tel que la restriction de u aux fonctions test à support dans ω soit nulle. Le complémentaire de cet ouvert est appelé le support de u et noté $\text{Supp}(u)$.

On note $\mathcal{E}'(\Omega)$ l’espace des distributions dans Ω à support compact et il est facile de déduire de la définition des distributions que toute distribution à support compact est d’ordre fini. On peut alors étendre la dualité $C^\infty_0-\mathcal{D}'$ en une dualité $C^\infty-\mathcal{E}'$, car on voit aisément que si $\varphi \in C^\infty$ et $\theta \in C^\infty_0$ est une fonction égale à 1 sur un voisinage de $\text{Supp}(u)$, alors $< u, \theta \varphi >$ ne dépend pas de θ. On peut donc définir $< u, \varphi >= < u, \theta \varphi >$.

148
A.4.4 Distributions tempérées

On dit que φ est dans la classe de Schwartz, \mathcal{S}, et on note $\varphi \in \mathcal{S}(\mathbb{R}^N)$, si $\varphi \in C^\infty(\mathbb{R}^N)$ et si pour tout n et tous multindices α et β, on a $|x|^\beta \partial^\beta \varphi(x) \to 0$ quand $|x| \to +\infty$. On exprime aussi ces relations en disant que φ et toutes ses dérivées sont “à décroissance rapide”. Il est équivalent de dire que les quantités

$$N_p(\varphi) = \sum_{|\alpha| \leq p, |\beta| \leq p} ||x^\alpha \partial^\beta \varphi(x)||_\infty$$

sont finies pour tout p.

(Notation : $|\alpha| = \alpha_1 + \ldots + \alpha_n$, $x^\alpha = x_1^{\alpha_1} \ldots x_n^{\alpha_n}$ et $\partial^\beta = \frac{\partial^{\beta_1+\ldots+\beta_n}}{\partial x_1^{\beta_1} \ldots \partial x_n^{\beta_n}}$)

Définition A.10 On appelle distribution tempérée toute forme linéaire continue sur \mathcal{S}. Si u est une distribution tempérée, on note $u \in \mathcal{S}'(\mathbb{R}^n)$. D’une manière équivalente, u est une distribution tempérée s’il existe $p \in \mathbb{N}$ et une constante C_p telle que

$$\forall \varphi \in \mathcal{S}, \quad |<u,\varphi>| \leq C_p N_p(\varphi). \quad (A.23)$$

On dit qu’une suite u_n d’éléments de \mathcal{S}' converge vers $u \in \mathcal{S}'$ si $<u_n,\varphi> \to <u,\varphi>$ quand $n \to \infty$. D’après le théorème de Banach-Steinhaus, si $<u_n,\varphi>$ converge pour tout $\varphi \in \mathcal{S}$, alors il existe u dans \mathcal{S}' telle que $u_n \to u$.

On peut interpréter $\mathcal{S}'(\mathbb{R}^n)$ comme le dual de $\mathcal{S}(\mathbb{R}^n)$. En effet, l’inégalité précédente exprime que u est continue par rapport à chacune des seminormes N_p définies sur \mathcal{S}.

A.4.4.1 Propriétés des distributions tempérées, exemples

(sous forme d’exercices) 1) Un contreexemple : Démontrer que pour tout $\varphi \in C_0^\infty$ et pour tout entier p, il existe une constante C telle que $N_p(\tau_a \varphi) \leq C(1+|a|^p)$. En déduire que la fonction e^x n’appartient pas à $\mathcal{S}'(\mathbb{R})$. 2) Peignes de Dirac dans \mathcal{S}'. Démontrer que $u = \sum_{k=-\infty}^{\infty} a_k \delta_k$ appartient à $\mathcal{S}'(\mathbb{R})$ si et seulement si la suite a_k est à croissance lente. (C’est-à-dire, $\exists C, \exists N, |a_k| \leq C(1+|k|^N)$.) 3) Soit $(a_k) \in \mathbb{R}$. Démontrer que $a_k \delta_k \to 0$ dans $\mathcal{D}'(\mathbb{R})$ mais que la convergence ne se vérifie dans $\mathcal{S}'(\mathbb{R})$ que si (a_k) est à croissance lente. 4) Montrer que la fonction $x \to e^x \cos(e^x) + isin(e^x)$ appartient à $\mathcal{S}'(\mathbb{R})$. Pour cela, on calculera une primitive. Comparer avec le résultat du 1). 5) Démontrer que si une fonction est “à croissance lente”, i.e. il existe $k > 0$ et C tels que $|f(x)| \leq C(1+|x|^k)$, alors f est une distribution tempérée. 6) Démontrer que toute fonction de L^p, $p \geq 1$ est une distribution tempérée, ainsi que toute distribution à support compact. 7) Démontrer que si $f_n(x)$ est une suite de fonctions qui tend simplement vers $f(x)$ et s’il existe C et p tels que $f_n(x) \leq C(1+|x|^p)$, alors $f_n \to f$ dans \mathcal{S}'. 149
Définition A.11 On dit qu’une fonction \(f \) est dans \(\mathcal{O}(\mathbb{R}^N) \) si elle est à croissance lente ainsi que toutes ses dérivées, c’est-à-dire :
\[
\forall \alpha, \exists C \exists m \quad |\partial^\alpha f(x)| \leq C(1 + |x|)^m.
\]
Démontrer que si \(f \in \mathcal{O} \), alors pour tout \(\varphi \in \mathcal{S}, f\varphi \in \mathcal{S} \); pour tout \(u \in \mathcal{S}', fu \in \mathcal{S}' \). Si de plus \(u_n \to u \) dans \(\mathcal{S}' \), alors \(fu_n \to fu \) dans \(\mathcal{S}' \).

A.4.5 Transformée de Fourier

Définition A.12 : soit \(f \in L^1(\mathbb{R}^N) \). Par \(f(x) \leftrightarrow \hat{f}(\xi) \), ou par \(\hat{f}(\xi) = \mathcal{F}(f)(\xi) \) on entend que \(\hat{f}(\xi) \) est la transformée de Fourier de \(f(x) \):
\[
\hat{f}(\xi) = \int_{\mathbb{R}^N} f(x)e^{-ix.\xi}dx.
\]
Alors \(\hat{f}(\xi) \) est une fonction continue tendant vers 0 à l’infini.

A.4.5.1 Transformée de Fourier des fonctions de \(\mathcal{S} \)

Nous allons montrer toutes les propriétés formelles de la transformée de Fourier sur un espace de fonctions très régulières, de manière à ne jamais nous préoccuper des questions de sommabilité, dérivation sous le signe somme, etc... On rappelle que \(f \in \mathcal{S}(\mathbb{R}^N) \), si \(f \in C^\infty(\mathbb{R}^N) \) et si pour tout \(n \) et tous multindices \(\alpha, \beta \) on a
\[
|x|^{\beta} \partial^\alpha f(x) \to 0 \quad \text{quand} \quad |x| \to +\infty.
\]
Il est équivalent de dire que pour tout \(p \) les seminormes
\[
N(f) = \sum_{|\alpha| \leq p, |\beta| \leq p} ||x^\alpha \partial^\beta f(x)||_{L^\infty}
\]
sont finies pour tout entier naturel \(p \).

Théorème A.7 Si \(f \in \mathcal{S} \), alors \(\hat{f} \in \mathcal{S} \).

Exemple canonique : la gaussienne, qui est un “point fixe” pour la transformée de Fourier.

Démonstration On remarque que si \(f \) est dans \(\mathcal{S} \), elle appartient à \(L^1 \) et il en est de même pour toutes ses dérivées et pour le produit de \(f \) par n’importe quel polynôme. Les transformées de Fourier de toutes ces fonctions sont donc continues et tendent vers zéro à l’infini. En utilisant la relation
\[
\partial^\alpha \hat{f} = \mathcal{F}((-ix)^\alpha f(x)), \quad \text{soit} \quad \mathcal{F}(x^\alpha f(x)) = i^{|\alpha|} \partial^\alpha \hat{f}
\] (A.24)
obtenue en appliquant le théorème de dérivation sous le signe somme, on en déduit que \(\hat{f} \) est \(C^\infty \). Pour montrer que \(\hat{f} \) est à décroissance rapide, on intègre par parties \(|\alpha| \) fois l’intégrale définissant \(\hat{f} \) et on obtient
\[
\partial^\alpha \hat{f}(\xi) = (i\xi)^\alpha \hat{f}(\xi).
\] (A.25)
Comme \(\hat{f} \) et \(\partial^\alpha \hat{f} \) sont continues et bornées, on en déduit que \(|\hat{f}(\xi)| \leq \frac{C}{1 + |\xi|^k} \) pour tout \(k \in \mathbb{N} \) et donc que \(\hat{f} \) est à décroissance rapide. Faut-il recommencer le raisonnement pour les dérivées successives de \(\hat{f} \)? Certainement pas : on utilise le fait que les dérivées de \(\hat{f} \) sont les transformées de Fourier des fonctions \((-ix)^\alpha f(x)\) qui sont elles-mêmes à décroissance rapide. Le résultat que nous avons montré pour \(\hat{f} \) s’applique donc à toutes ses dérivées.
Corollaire A.8 Il existe des constantes C'_p telles que
\[N_p(\hat{f}) \leq C'_p N_{p+N+1}(f). \] (A.26)

Démonstration On vérifie que si $|\alpha| \leq p$, $|\beta| \leq p$, alors
\[\left\| \left(1 + \sum_{i=1,\ldots,N} x_i^{N+1} \right) x^\alpha \partial^\beta f(x) \right\|_\infty \leq N_{p+N+1}(f) \]
et qu’en conséquence
\[\|x^\alpha \partial^\beta f(x)\|_1 \leq N_{p+N+1}(f) \int \frac{1}{1 + \sum_{i=1,\ldots,N} |x_i|^{N+1}dx} \] (A.27)
qui est une intégrale finie.

- On déduit alors des formules (A.25) et (A.24) que
\[\mathcal{F}(\partial^\alpha (x^\beta f))(\xi) = (i)^{|\alpha|+|\beta|} \xi^\alpha \partial^\beta \hat{f}(\xi). \] (A.28)
Cette formule magnifique, qui résume tout, est très facile à retenir. On obtient alors en utilisant (A.27),
\[|\xi^\alpha \partial^\beta \hat{f}(\xi)| = |\int \partial^\alpha (x^\beta f(x))e^{-ix\xi}dx| \leq \|\partial^\alpha (x^\beta f(x))\|_1 \leq C_p N_{p+N+1}(f). \]

- On conclut qu’il existe une constante C'_p telle que
\[N_p(\hat{f}) \leq \sum_{|\alpha| \leq p, |\beta| \leq p} \|\partial^\alpha (x^\beta f)\|_1 \leq C'_p \sum_{|\alpha| \leq p, |\beta| \leq p} \|x^\alpha' \partial^\beta f\|_1. \] (A.29)
(Utiser l’estimation (A.27)).\]

Proposition A.13 Transformée de Fourier de la gaussienne :
La gaussienne $g(x) = e^{-a|x|^2}$ appartient à S et $e^{-a|x|^2} \leftrightarrow (\frac{\pi}{2a})^{\frac{n}{2}} e^{-\frac{|\xi|^2}{4a}}$.

Démonstration On commence par poser, en dimension 1, $g(\xi) = \int e^{-ix\xi}e^{-x^2}dx$ et on montre en faisant une dérivation sous le signe somme suivie d’une intégration par parties que $2g'(\xi) + \xi g(\xi) = 0$, de sorte que $g(\xi) = \sqrt{\pi}e^{-\xi^2/4}$. On rappelle que $\int e^{-x^2}dx = \sqrt{\pi}$, ce qui se démontre facilement en prenant le carré de cette intégrale, le considérant par Fubini comme une intégrale sur \mathbb{R}^2 que l’on calcule en coordonnées polaires. Pour passer en dimension n, il suffit de remarquer que la gaussienne est séparable, i.e. $e^{-|x|^2} = e^{-x_1^2}e^{-x_2^2} \ldots e^{-x_n^2}$, de sorte que son intégrale de Fourier est également séparable. On applique alors n fois la formule en dimension 1.\]
Dans la suite on notera
\[\mathcal{F}(f)(\xi) = \int_{\mathbb{R}^N} \hat{f}(\xi)e^{ix \cdot \xi}d\xi. \]
Cette notation est commode pour exprimer la formule d’inversion de Fourier.
Proposition A.14 Formule d’inversion de Fourier Si f est dans la classe de Schwartz, alors

$$f(x) = \frac{1}{(2\pi)^N} \int_{\mathbb{R}^N} \hat{f}(\xi) e^{ix.\xi} d\xi.$$

En d’autres termes,

$$f(x) = \frac{1}{(2\pi)^N} \mathcal{F}(\hat{f})(-\xi)(x),$$

ou bien

$$f = \frac{1}{(2\pi)^N} \mathcal{F}(\hat{f}),$$

c’est-à-dire encore

$$\mathcal{F} \mathcal{F} = (2\pi)^N \text{Id}.$$

Démonstration Pour prouver la formule d’inversion précédente, on pose

$$f_a(x) = \frac{1}{(2\pi)^N} \int e^{-a|\xi|^2} \hat{f}(\xi) e^{ix.\xi} d\xi.$$

On remarque que par le théorème de Lebesgue, $f_a(x)$ tend vers $\frac{1}{(2\pi)^N} \int_{\mathbb{R}^N} \hat{f}(\xi) e^{ix.\xi} d\xi = \frac{1}{(2\pi)^N} \mathcal{F}(\hat{f})(-\xi)(x)$. Il suffit donc pour conclure de montrer que $f_a(x) \rightarrow f(x)$ simplement quand $a \rightarrow 0$.

On a

$$f_a(x) = \frac{1}{(2\pi)^N} \int e^{-a|\xi|^2} \left(\int f(y) e^{-iy.\xi} dy \right) e^{ix.\xi} d\xi.$$

On utilise le théorème de Fubini et la formule donnant la transformée de Fourier de la gaussienne pour obtenir :

$$f_a(x) = \int f(y) \frac{e^{-|y-x|^2}}{(4\pi a)^{N/2}} dy.$$

La gaussienne sous l’intégrale précédente est d’intégrale 1 et tend vers la masse de Dirac quand $a \rightarrow 0$. On déduit que $f_a(x) \rightarrow f(x)$, ce qui achève la démonstration. □

Proposition A.15 Transformée de Fourier et convolution Si f et g appartiennent à $L^1(\mathbb{R}^N)$, alors la convolée $f * g$ aussi et on a

$$\mathcal{F}(f * g) = \hat{f} \hat{g}.$$

Démonstration C’est une application directe du théorème de Fubini. □

Proposition A.16 Formule de Parseval.

$$\int_{-\infty}^{\infty} f(x) \overline{g}(x) dx = \frac{1}{(2\pi)^N} \int_{-\infty}^{\infty} \hat{f}(\xi) \overline{\hat{g}}(\xi) d\xi.$$
Démonstration En appliquant la proposition A.15, on a
\[\int_{-\infty}^{\infty} f(y)g(x-y)dy = \frac{1}{(2\pi)^N} \int_{-\infty}^{\infty} \hat{f}(\xi)\hat{g}(\xi)e^{ix\xi}d\xi, \]
puis par de faciles ajustements, la formule de Parseval. □

Corollaire A.9 Transformée de Fourier dans \(L^2(\mathbb{R}^n) \). Grâce à la Formule de Parseval, qui exprime que la transformée de Fourier conserve la norme \(L^2 \), la transformée de Fourier peut-être prolongée de manière unique de \(S(\mathbb{R}^n) \) à \(L^2(\mathbb{R}^n) \) et elle est donc un isomorphisme de \(L^2 \).

A.4.6 Transformée de Fourier des distributions tempérées

On définit la transformée de Fourier \(\hat{u} \) d’une distribution tempérée \(u \) par
\[\forall \varphi \in \mathcal{S}(\mathbb{R}^N), \quad <\hat{u}, \varphi> = <u, \hat{\varphi}>. \]

Théorème A.8 Si \(u \) est une distribution tempérée, alors \(\hat{u} \) est une distribution tempérée.

Démonstration On rappelle l’équation (A.26), si \(f \in \mathcal{S} \), on a
\[N_p(\hat{f}) \leq C_pN_{p+N+1}(f). \]

Donc pour tout \(\varphi \) dans \(\mathcal{S} \) et pour tout \(p \in \mathbb{N} \), on obtient en utilisant la définition des distributions tempérées A.10 et l’équation (A.26)
\[|<\hat{u}, \varphi>| = |<u, \hat{\varphi}>| \leq C_pN_p(\hat{\varphi}) \leq C_pC_pN_{p+N+1}(\varphi), \]

ce qui prouve que \(\hat{u} \) est une distribution tempérée. □

A.4.6.1 Formulaire sur la transformée de Fourier dans la classe de Schwartz

- **Gaussienne :** \(\mathcal{F}(e^{-a|x|^2}) = \left(\frac{\pi}{a}\right)^N e^{-\frac{|\xi|^2}{4a}} \).
- **Séparation des variables :** \(\mathcal{F}(f_1(x_1)\ldots f_N(x_N)) = \hat{f}_1(\xi_1)\ldots \hat{f}_N(\xi_N) \).
- **Convolution-produit :** \(f \ast g \leftrightarrow \hat{f} \hat{g} \).
- **Produit-convolution :** \(f \cdot g \leftrightarrow (2\pi)^{-N} \hat{f} \ast \hat{g} \).
- **Formule d’inversion :** \(\mathcal{F}^{-1}(\hat{f}) = (2\pi)^N f \), soit aussi
\[f(x) = \frac{1}{(2\pi)^N} \mathcal{F}^{-1}(\hat{f})(-\xi)(x). \]
- **Si \(f \) est réelle et paire, \(\hat{f}(\xi) \) est réelle et \(\hat{f}(\xi) = 2 \int_0^{\infty} f(x)\cos(\xi x)dx \).**
- **Si \(f \) est réelle et impaire, \(\hat{f}(\xi) \) est imaginaire et \(\hat{f}(\xi) = -2i \int_0^{\infty} f(x)\sin(\xi x)dx \).**
- **Conjuguées :** \(\overline{f}(x) \leftrightarrow \overline{\hat{f}}(-\xi) \).
- **Changement d’échelle :** \(f(ax) \leftrightarrow \frac{1}{|a|^N} \hat{f}(\frac{\xi}{a}) \). Autre forme :
\[\mathcal{F}(f(ax))(\xi) = \frac{1}{a^N} \hat{f}\left(\frac{\xi}{a}\right). \]

- "Shift" : \(f(x-a) \leftrightarrow e^{-ia\xi} \hat{f}(\xi), \) \(e^{iax} f(x) \leftrightarrow \hat{f}(\xi-a). \)
- "Modulation" : \(f(x) \cos(\xi_0 x) \leftrightarrow \frac{1}{2} \left(\hat{f}(\xi + \xi_0) + \hat{f}(\xi - \xi_0) \right). \)
- Dérivées : \((-ix)^n f(x) \leftrightarrow \hat{f}^{(n)}(\xi), \) \(f^{(n)}(x) \leftrightarrow (i\xi)^n \hat{f}(\xi). \)

Théorème des moments : On appelle "moment d’ordre \(n \)" de \(f \), \(m_n = \int_{-\infty}^{+\infty} x^n f(x) dx. \)
Alors \(\hat{f}^{(n)}(0) = (-i)^n m_n. \)

- Régularité et décroissance à l’infini : Si \(f \) est à support compact, \(\hat{f} \) est \(C^\infty. \)

Le "sinus cardinal"

\[(N = 1) \mathbb{1}_{\left[-\frac{T}{2}, \frac{T}{2}\right]} \leftrightarrow 2 \frac{\sin T \xi}{\xi}. \quad (A.30)\]

Proposition A.17 Principe d’incertitude

Soit \(f \) une fonction telle que \(f, \) \(xf \) et \(\xi \hat{f} \) soient dans \(L^2(\mathbb{R}). \) On note

\[\sigma_f^2 = \int x^2 |f(x)|^2 dx \quad \text{(dispersion d’énergie en temps)} \]
\[\sigma_{\hat{f}}^2 = \int \xi^2 |\hat{f}(\xi)|^2 d\xi \quad \text{(dispersion d’énergie en fréquence)} \]
\[E_f = \int |f(x)|^2 dx \quad \text{(énergie de } f \text{)} \]

Alors

\[\sigma_f \sigma_{\hat{f}} \geq \frac{E_f}{4\pi}. \]

Une version moins précise, mais qualitativement importante du principe d’incertitude est la suivante :

Proposition A.18 il n’existe pas de fonction \(f \neq 0 \) dans \(L^1(\mathbb{R}^N) \) telle que \(\hat{f} \) et \(f \) soient simultanément à support compact.

Démonstration Si par exemple \(f \) est à support compact, on pose pour \(\xi \in \mathbb{R}^N \) fixé et pour \(z \in \mathbb{C}, \)

\[g(z) = \int_K e^{-iz\xi x} f(x) dx. \]

On vérifie aisément que \(g \) est une fonction holomorphe sur \(\mathbb{C} \) : on peut dériver sous le signe somme, puisque \(K \) est compact. Si \(z \in \mathbb{R}, \) on a \(g(z) = \hat{f}(z\xi) \). Si \(\hat{f} \) a un support compact, \(g(z) \) est identiquement nulle sur un intervalle de \(\mathbb{R}. \) Mais ceci implique par le principe du prolongement analytique que \(g(z) \) est identiquement nulle. Donc \(\hat{f}(\xi) = g(1) = 0 \) et donc \(\hat{f} \) est identiquement nulle. \(\square \)
A.4.6.2 Formulaire sur la transformée de Fourier des distributions tempérées

Sauf mention contraire, u et v désignent dans la suite des distributions tempérées.

- Rappelons que si $u \in S'$ et $\varphi \in S$, $\langle \hat{u}, \varphi \rangle = \langle u, \hat{\varphi} \rangle$. Pour montrer toutes les formules qui suivent, on utilise constamment et uniquement cette formule et le formulaire sur la transformée de Fourier dans la classe de Schwartz (paragraphe précédent).

\[
\begin{align*}
\hat{1} &= (2\pi)^N \delta \\
\mathcal{F}(e^{ia.x}) &= (2\pi)^N \delta_a \\
\delta &= 1 \\
\mathcal{F}(\partial^\alpha \delta) &= i^{\lvert \alpha \rvert} \xi^\alpha \\
\mathcal{F}(\delta_a) &= e^{-ia.x} \\
\mathcal{F}(x^\alpha) &= (2\pi)^N (-i)^{\lvert \alpha \rvert} \partial^\alpha \delta.
\end{align*}
\]

- Si $u \in \mathcal{E}'(\mathbb{R}^N)$, alors $\hat{u} \in \mathcal{O}_M$ (espace des fonctions C^∞ à croissance lente ainsi que toutes leurs dérivées.)

A.4.6.3 Convolution des distributions

Cette partie constitue un résumé des résultats nécessaires. Pour un traitement complet, voir (e.g.) le livre de J.M. Bony, [Bony, 1994].

Dans la suite, on va considérer une distribution u dans \mathbb{R}^N et on va l’appliquer à une fonction $\varphi(x, y)$ définie dans \mathbb{R}^{N+M}. En conséquence, et pour éviter toute ambiguïté, on notera $u(x)$ et non u pour l’application de u à $\varphi : \langle u(x), \varphi(x, y) \rangle$.

Lemme A.4 Soit u une distribution à support compact dans \mathbb{R}^N et soit $\varphi \in C^\infty(\mathbb{R}^{N+M})$. Alors la fonction $y \to f(y) = \langle u(x), \varphi(x, y) \rangle$ est de classe C^∞ dans \mathbb{R}^M et on a

\[
\partial^\alpha_y \langle u(x), \varphi(x, y) \rangle = \langle u(x), \partial^\alpha_y \varphi(x, y) \rangle.
\]
Démonstration Soit $B(0, M)$ une boule ouverte contenant le support de u et p l’ordre de u. On rappelle que si $u \in \mathcal{E}'$, on peut étendre l’action de u aux fonctions C^∞ en posant simplement $<u, \varphi> = <u, \theta \varphi>$, où $\theta \in C^\infty_0$ est une fonction arbitraire vérifiant $\theta = 1$ sur $B(0, M)$. Alors cette définition ne dépend pas de θ. Commençons par montrer que $f(y)$ est continue. Comme u est une distribution, on a

$$|f(y)| \leq C \sup_{x \in B(0,M), |\beta| \leq p} |\partial^\beta_x (\varphi(x, y))|.$$

(A.31)

En appliquant cette relation à $f(y) - f(y_0)$, on déduit que

$$|f(y) - f(y_0)| \leq C \sup_{x \in B(0,M), |\beta| \leq p} |\partial^\beta_x (\varphi(x, y) - \varphi(x, y_0))|.$$

Les dérivées successives de φ étant uniformément continues sur tout compact, le membre de droite tend vers zéro quand $y \to y_0$. Donc f est continue.

On montre ensuite l’existence des dérivées partielles $\frac{\partial f}{\partial y_i}$. Soit e_i le i-ème vecteur de la base canonique de \mathbb{R}^N. On pose

$$\psi_h(x, y) = \frac{1}{h} (\varphi(x, y + he_i) - \varphi(x, y)) - \frac{\partial \varphi}{\partial y_i}.$$

Alors,

$$\frac{1}{h} (f(y + he_i) - f(y)) - <u(x), \frac{\partial \varphi}{\partial y_i}(x, y)> = <u(x), \psi_h(x, y)>.$$

Or, par la formule de Taylor, $\psi_h(x, y)$ et toutes ses dérivées partielles successives en x tendent uniformément vers 0 pour $x \in B(0, M)$. On peut alors substituer $\psi_h(x, y)$ à $\varphi(x, y)$ dans (A.31) et on déduit que

$$\frac{\partial f}{\partial y_i}(y) = <u(x), \frac{\partial \varphi}{\partial y_i}(x, y)>.$$

En remplaçant φ par $\frac{\partial \varphi}{\partial y_i}$, on déduit par le même argument que pour φ que $\frac{\partial f}{\partial y_i}$ est continue. f est donc C^1. Une récurrence permet de conclure. □

Théorème A.9 et définition. Soient $u \in \mathcal{E}'$ et $\varphi \in C^\infty_0$. Leur produit de convolution est défini en chaque point par

$$(u * \varphi)(x) = <u(y), \varphi(x - y)>.$$

La fonction $u * \varphi$ appartient à C^∞_0 et on a

$$\partial^\alpha (u * \varphi) = u * (\partial^\alpha \varphi) = (\partial^\alpha u) * \varphi,$$

$$\text{Supp}(u * \varphi) \subset \text{Supp}(u) + \text{Supp}(v).$$

De plus, si $\psi \in C^\infty_0$, on a

$$(u * \varphi) * \psi = u * (\varphi * \psi).$$

On a des résultats analogues si $u \in \mathcal{S}'$ et $\varphi \in \mathcal{S}$.

156
Cette définition de la convolution s’étend successivement par des prolongements continus de la convolution ou par dualité aux cas où
• \(u \in \mathcal{D}' \) et \(\varphi \in C^\infty \), à condition que l’une des deux soit à support compact (plus généralement, si les supports sont convolutifs).
• \(u \) et \(v \) sont dans \(\mathcal{E}' \). Alors \(u \ast v \) est dans \(\mathcal{E}' \) et on a \(\text{Supp}(u \ast \varphi) \subset \text{Supp}(u) + \text{Supp}(v) \).
• \(u \) et \(v \) sont dans \(\mathcal{D}' \) et leurs supports sont convolutifs (par exemple, l’un des supports est compact). On a alors \(u \ast v = v \ast u \). Enfin, diverses extensions du produit de convolution sont possibles grâce au résultat de prolongement par continuité suivant :

\textbf{Proposition A.19} Si \(u \in \mathcal{E}' \) et \(v \in \mathcal{D}' \). Si \(u_n \) tend vers \(u \) et \(v_n \) tend vers \(v \) au sens des distributions et si le support des \(u_n \) est contenu dans un compact fixe, alors

\[
\lim_{n \to +\infty} u_n \ast v_n = u \ast v.
\]

L’interaction entre transformée de Fourier dans \(\mathcal{S}' \) et convolution dans \(\mathcal{S}' \) généralise le cadre fonctionnel, comme le montrent les deux propriétés d’échange de la convolution et de la multiplication qui suivent.

\textbf{Proposition A.20} Si \(u \in \mathcal{E}' \) et \(v \in \mathcal{S}' \), alors \(u \ast v \in \mathcal{S}' \) et \(\hat{u} \in \mathcal{O}_M \) et de plus

\[
\mathcal{F}(u \ast v) = \mathcal{F}(u) \mathcal{F}(v).
\]

\textbf{Proposition A.21} Si \(u \in \mathcal{S}' \) et \(\varphi \in \mathcal{O}_M \) est telle que \(\hat{\varphi} \in \mathcal{E}' \), alors \(\mathcal{F}(\varphi u) = (2\pi)^{-N} \hat{\varphi} \ast \hat{u} \).

\section*{A.5 Distributions périodiques sur un réseau}

\textbf{Définition A.13} Rappelons que si \(\gamma \in \mathbb{R}^2 \), on note \(\tau_\gamma u \) et on appelle \(\gamma \)-translatée de \(u \) la fonction \(\tau_\gamma u(x) = u(x - \gamma) \). Si \(u \) est une distribution sur \(\mathbb{R}^2 \), on pose pour toute fonction test \(\varphi \in C^\infty_0(\mathbb{R}^2) \),

\[
<\tau_\gamma u, \varphi> = <u, \tau_{-\gamma} \varphi>.
\]

\textbf{Remarque A.11} Cette définition est compatible avec celle de la translatée d’une fonction quand \(u \) est une fonction de \(L^1_{\text{loc}} \), car alors \(\int u(x - \gamma) \varphi(x) dx = \int u(y) \varphi(y + \gamma) dy \).

\textbf{Définition A.14} On se donne un réseau \(\Gamma \) de \(\mathbb{R}^2 \). On dit qu’une distribution \(u \) est \(\Gamma \)-périodique si ses transléatées \(\tau_\gamma u \) sont égales à \(u \) pour tout \(\gamma \) dans \(\Gamma \).

Commençons par définir et étudier comme premier exemple les périodisées de fonctions de la classe de Schwartz. On remarque qu’une telle périodisée \(\sum_{\gamma \in \Gamma} \varphi(x + \gamma) \) est \(C^\infty \) et \(\Gamma \)-périodique.

\textbf{A.5.0.4 Fonctions périodiques, périodisation.}

\textbf{Proposition A.22} Soit \(f \) une fonction \(\Gamma \)-périodique et de classe \(C^\infty \). Alors la suite de ses coefficients de Fourier sur le réseau \(k \in \Gamma^* \),

\[
c_k(f) = \frac{1}{2\pi} \int_\Gamma f(x) e^{ik \cdot x} dx
\]

est à décroissance rapide, c’est-à-dire que l’on a

\[
|c_k(f)| \leq C_N (1 + |k|)^{-N}
\]

pour tout \(N \) et la différence

\[
f - \sum_{k \in \Gamma^*, |k| \leq n} c_k(f) e^{ik \cdot x}
\]

tend vers 0 uniformément ainsi que chacune de ses dérivées lorsque \(n \) tend vers \(+\infty \).
Démonstration On peut exprimer les coefficients de Fourier $c_k(f)$ sur une maille M, c’est-à-dire le parallélogramme engendré par une base du réseau (e_1, e_2). On pose alors $x = x_1 e_1 + x_2 e_2$, ce qui définit un isomorphisme affine $h(x_1, x_2) = x_1 e_1 + x_2 e_2$ de $[0, 1]^2$ sur la maille M. On évidemment $\det(h) = S$. On pose de même $k = k_1 e_1^* + k_2 e_2^*$ où k_1 et k_2 sont les coordonnées de k sur la base duale (e_1^*, e_2^*). Cela donne $k.x = 2\pi(k_1 x_1 + k_2 x_2)$. On a donc

$$c_k(f) = \frac{1}{S} \int_M f(x) e^{-ik.x} dx = \int_0^1 \int_0^1 f(x_1 e_1 + x_2 e_2) e^{-2\pi i (k_1 x_1 + k_2 x_2)} dx_1 dx_2.$$ (A.33)

La fonction $(x_1, x_2) \mapsto f(x_1 e_1 + x_2 e_2)$ est évidemment \mathbb{Z}^2-périodique. En intégrant (A.33) par parties $2N$ fois par rapport à x_1 et en utilisant la $(1, 0)$ périodicité de l’intégrand, on obtient une estimation de la forme $|c_k(f)| \leq C'_N (1 + |k_1|)^{-2N}$. On a de même en intégrant par parties par rapport à la deuxième variable x_2, $|c_k(f)| \leq C'_N (1 + |k_2|)^{-2N}$. En multipliant ces deux estimations, on déduit aisément une relation du type (A.32). Grâce à cette estimation, la série double $\sum_k c_k(f) e^{ik.x}$ et toutes ses dérivées termes à terme sont uniformément convergentes. On peut donc intervertir sommation et dérivation. □

Les fonctions test φ dont la périodisée est égale à 1 vont nous être particulièrement utiles.

Définition A.15 et proposition (partition périodique de l’unité) Il existe $\chi \in C_0^\infty(\mathbb{R}^2)$ telle que

$$\sum_{\gamma \in \Gamma} \chi(x + \gamma) = 1.$$ (A.34)

On dit que χ définit une partition Γ-périodique de l’unité.

Démonstration Soit M une maille du réseau Γ. Il suffit de prendre $\varphi \in C_0^\infty$ positive ou nulle partout et strictement positive sur \overline{M}, puis de poser $\chi(x) = \frac{\varphi(x)}{\sum_{\gamma \in \Gamma} \varphi(x + \gamma)}$. Comme le support de φ est compact, la somme au dénominateur est une somme finie pour chaque x. □

Lemme A.5 Soit $\varphi \in C_0^\infty$ une fonction test et $\tilde{\varphi}(x) = \sum_{\gamma \in \Gamma} \varphi(x) \Gamma$-périodisée. Alors le développement en série de Fourier de $\tilde{\varphi}$ peut s’écrire sous la forme

$$\tilde{\varphi}(x) = \sum_{k \in \Gamma^*} c_k(\tilde{\varphi}) e^{ik.x} \text{ avec } c_k(\tilde{\varphi}) = \frac{1}{S} \int_{\mathbb{R}^2} \varphi(x) e^{-ik.x} dx.$$ (A.35)

Démonstration Les coefficients de Fourier de $\tilde{\varphi}$ sont

$$c_k(\tilde{\varphi}) = \frac{1}{S} \int_M \tilde{\varphi}(x) e^{-ik.x} dx = \frac{1}{S} \int_M \sum_{\gamma \in \Gamma} \varphi(x + \gamma) e^{-ik.(x+\gamma)} dx =$$

$$\frac{1}{S} \sum_{\gamma \in \Gamma} \int_{M+\gamma} \varphi(x) e^{-ik.x} dx = \frac{1}{S} \int_{\mathbb{R}^2} \varphi(x) e^{-ik.x} dx.$$ □

Corollaire A.10 Soit Γ^* un réseau de \mathbb{R}^2, dual d’un réseau Γ. Alors pour tout $k_0 \in \Gamma^*$, il existe une fonction $\varphi \in C_0^\infty$ telle que

$$\forall k \in \Gamma^*, \int_{\mathbb{R}^2} \varphi(x) e^{ik.x} dx = \delta_{k,k_0}.$$ (A.36)
Démonstration Il suffit de prendre \(\varphi(x) = \chi(x)e^{-ik_0 \cdot x} \), où \(\chi(x) \) définit une partition de l’unité. On a alors \(\tilde{\varphi}(x) = e^{-ik_0 \cdot x} \). On applique à \(\tilde{\varphi} \) le lemme A.5. Par unicité des coefficients de Fourier de \(\tilde{\varphi} \), on obtient (A.36). □

Soit \(u \) une distribution \(\Gamma \)-périodique. Il serait logique de définir ses coefficients en série de Fourier en "restreignant" \(u \) à une maille \(M \) du réseau. Mais une telle restriction pose problème, comme le montre l'exemple du peigne de Dirac \(\sum_{n \in \mathbb{Z}} \delta_n \). Pour contourner la difficulté, on considère une fonction test \(\chi \) définissant une partition de l'unité \(\Gamma \)-périodique. On peut alors écrire

\[
u = \sum_{\gamma \in \Gamma} \chi(x - \gamma) u,\]

ce qui prouve immédiatement que \(u \) est la périodisée d'une distribution à support compact,

\[
u = \sum_{\gamma \in \Gamma} \tau_\gamma (\chi u). \tag{A.37}
\]

A.5.0.5 Caractérisation des distributions périodiques par leur série de Fourier

Nous allons maintenant examiner la possibilité de définir les distributions \(\Gamma \)-périodiques comme sommes de séries de Fourier.

Proposition A.23 Soit \((c_k)_{k \in \Gamma^*} \) une suite indexée par un réseau \(\Gamma^* \) et à croissance lente, c'est-à-dire vérifiant pour au moins une valeur de \(M \in \mathbb{N} \) une inégalité du type

\[
\forall k \in \Gamma^*, \quad |c_k| \leq C(1 + |k|)^M.
\]

Alors la série

\[
\sum_{k \in \Gamma^*} c_k e^{ik \cdot x} \tag{A.38}
\]

converge au sens des distributions et définit une distribution \(\Gamma \)-périodique.

Démonstration La convergence au sens des distributions de la série \(\sum_{k \in \Gamma^*} c_k e^{ik \cdot x} \) équivaut à la convergence pour tout \(\varphi \in C^\infty(\mathbb{R}^2) \) de la série numérique \(\sum_{k \in \Gamma^*} c_k \langle e^{ik \cdot x}, \varphi \rangle \). En utilisant le même changement de variable que dans la preuve de la Définition-proposition A.22, on a

\[
\langle e^{ik \cdot x}, \varphi \rangle = S \int_{\mathbb{R}^2} \varphi(x_1 e_1 + x_2 e_2) e^{2i\pi(k_1 x_1 + k_2 x_2)} dx_1 dx_2.
\]

En intégrant \(m \) fois par parties et en tenant compte du fait que \(\varphi \) est à support compact, on obtient donc

\[
| \langle e^{ik \cdot x}, \varphi \rangle | \leq \frac{C'_m}{(1 + |k|)^m}
\]

pour tout \(m \in \mathbb{N} \). En choisissant (e.g.) \(m = M + 4 \), on obtient donc

\[
\sum_{k \in \Gamma^*} |c_k \langle e^{ik \cdot x}, \varphi \rangle | \leq C C'_M \sum_{k \in \Gamma^*} \frac{1 + |k|^M}{1 + |k|^{M+4}}.
\]

Cette série double est convergente car elle est majorée par une série double séparable du type \(C \sum_{k_1, k_2} \frac{1}{1 + |k_1 k_2|^2} \). Les sommes finies de la série (A.38) étant \(\Gamma \)-périodiques, il en est de même de sa limite au sens des distributions. □La proposition A.23 nous permet de construire des distributions périodiques comme sommes de séries de Fourier. Montrons maintenant que les coefficients de Fourier d’une telle distribution sont uniques.
Théorème A.10 (Unicité des coefficients de Fourier) Soit Γ^* un réseau de \mathbb{R}^2. Si $c_k, k \in \Gamma^*$ est une suite à croissance lente telle que l’on ait $u = \sum_{k \in \Gamma^*} c_k e^{ik.x} = 0$ au sens des distributions, alors $\forall k, c_k = 0$.

Démonstration Pour tout $\varphi \in C_0^\infty$,
$$< \sum_k c_k e^{ik.x}, \varphi > = \sum_k c_k < e^{ik.x}, \varphi > = \sum_k c_k \int_{\mathbb{R}^2} \varphi(x) e^{ik.x} dx.$$ Le théorème résulte alors immédiatement en choisissant φ comme indiqué dans le Corollaire A.10.

Proposition A.24 Si u est une distribution Γ-périodique, on définit ses coefficients de Fourier $c_k(u), k \in \Gamma^*$ par
$$c_k(u) = \frac{1}{S} < u, \chi e^{-ik.x} >$$ où χ est une partition de l’unité Γ-périodique. Alors $c_k(u), k \in \Gamma^*$ est à croissance lente, ne dépend que de u et l’on a
$$u = \sum_{k \in \Gamma^*} c_k(u) e^{ik.x}.$$ (A.40)

Démonstration Soit K le support de χ. Par définition d’une distribution, il existe une constante C et un entier p tels que
$$| < u, \chi e^{-ik.x} > | \leq \sum_{|\alpha| \leq p} ||\partial^\alpha (\chi(x) e^{-ikx})||_\infty,$$
ôù $\partial^\alpha = \partial^{\alpha_1}_{x_1} \partial^{\alpha_2}_{x_2}$ désigne une dérivée partielle d’ordre total $|\alpha| = \alpha_1 + \alpha_2$. En développant les dérivées par la formule de Leibnitz, on voit qu’il existe une constante C telle que
$$| < u, \chi e^{-ik.x} > | \leq C(1 + |k|^p).$$
La suite $c_k(u) = < u, \chi e^{-ik.x} >$ est donc à croissance lente et on a le droit de parler de la distribution
$$u_1 = \sum_{k \in \Gamma^*} c_k(u) e^{ik.x}.$$ (A.41)

Il nous reste à montrer que u_1 et u sont égales, ce que l’on vérifie en conséquant une fonction test $\varphi \in C_0^\infty$. Notons comme usuel $\tilde{\varphi}$ la Γ-périodisée de φ, $\tilde{\varphi}(x) = \sum_{\gamma \in \Gamma} \varphi(x)$ et rappelons que par le lemme A.5,
$$\tilde{\varphi}(x) = \sum_{k \in \Gamma^*} c_k(\tilde{\varphi}) e^{ik.x} \text{ avec } c_k(\tilde{\varphi}) = \frac{1}{S} \int_{\mathbb{R}^2} \varphi(x) e^{-ik.x} dx.$$ (A.41)

On remarque aussi que les coefficients de Fourier $c_k(\tilde{\varphi})$ sont à décroissance rapide par le Lemme A.22.

On a d’une part
$$< u, \varphi > = \sum_{\gamma \in \Gamma} \tau_\gamma(\chi u), \varphi > = < \chi u, \sum_{\gamma \in \Gamma} \tau_{-\gamma} \varphi > = < \chi u, \tilde{\varphi} > =$$
< \chi u, \sum_{k \in \Gamma^*} c_k(\tilde{\varphi}) e^{ik.x} >=

\sum_{k \in \Gamma^*} c_{-k}(\tilde{\varphi}) < \chi u, e^{-ik.x} >= S \sum_{k \in \Gamma^*} c_{-k}(\tilde{\varphi}) c_k(u).

Par ailleurs, on a

< u_1, \varphi >= < \sum_{k \in \Gamma^*} c_k(u) e^{ik.x}, \varphi >= \sum_{k \in \Gamma^*} c_k(u) < e^{ik.x}, \varphi >= S \sum_{k \in \Gamma^*} c_k(u) c_{-k}(\tilde{\varphi}).

Les deux distributions u et u_1 sont donc bien égales. □

A.5.0.6 Conclusion

On peut énoncer les résultats de cette section de manière très condensée en disant :

1) Toute distribution u Γ-périodique est la somme d’une série de Fourier dont les coefficients c_k(u) sont à croissance lente,

\[u = \sum_{k \in \Gamma^*} c_k(u) e^{ik.x}. \]

Réciproquement, toute série de Fourier à coefficients à croissance lente est une distribution Γ-périodique.

2) Les coefficients de Fourier de u se calculent avec une quelconque fonction \(\chi \) donnant lieu à une partition de l’unité Γ-périodique (\(\sum_{\gamma \in \Gamma} \chi(x + \gamma) = 1 \)) par la formule

\[c_k(u) = \frac{1}{S} < u, \chi e^{-ik.x} > \]

3) La dualité entre distributions périodiques u et fonctions tests \(\varphi \in C_0^\infty \) s’exprime grâce aux coefficients de Fourier de u et de la périodisée \(\tilde{\varphi} \) par

\[< u, \varphi > = S \sum_{k \in \Gamma^*} c_k(u) c_{-k}(\tilde{\varphi}). \]

4) Cette dernière formule traduit donc la dualité distributions périodiques-fonctions test en une dualité entre suites indexées par \(\Gamma^* \) à croissance lente et suites à décroissance rapide.

A.5.0.7 La formule de Poisson

Comme application immédiate (et une des plus importantes), on va calculer la transformée de Fourier d’un “peigne de Dirac” \(u = \sum_{\gamma \in \Gamma} \delta_{\gamma} \) sur un réseau \(\Gamma \). Par les formules (A.39, A.40) on a

\[u = \sum_{k \in \Gamma^*} c_k(u) e^{ik.x}. \]

avec

\[c_k(u) = \frac{1}{S} < u, \chi e^{-ik.x} > = \frac{1}{S} \sum_{\gamma \in \Gamma} \chi(\gamma) e^{-ik.\gamma} = \frac{1}{S} \sum_{\gamma \in \Gamma} \chi(\gamma) = \frac{1}{S}. \]
où χ est une partition de l’unité Γ-périodique. Donc

$$u = \frac{1}{S} \sum_{k \in \Gamma^*} e^{ikx}.$$

On vient de montrer la **Formule de Poisson**,

$$\sum_{\gamma \in \Gamma} \delta_\gamma = \frac{1}{S} \sum_{k \in \Gamma^*} e^{ikx} \quad (A.42)$$

Il est bon de donner une version en dimension 1 où les échelles en jeu apparaissent : soit $T > 0$ un “pas d’échantillonnage”, alors

$$\sum_{k=-\infty}^{k=\infty} \delta_{kT} = \frac{1}{T} \sum_{p=-\infty}^{p=\infty} e^{2\pi p kT}, \quad (A.43)$$

formule où l’on a pris comme réseau primal $\Gamma = T\mathbb{Z}$. Le réseau dual est alors $\Gamma^* = \frac{2\pi}{T}\mathbb{Z}$. Si on applique cette dernière formule à une fonction test $\varphi \in C_0^\infty$, on obtient la formule de Poisson proprement dite,

$$\sum_{k=-\infty}^{k=\infty} \varphi(kT) = \frac{1}{T} \sum_{p=-\infty}^{p=\infty} \hat{\varphi} \left(\frac{2\pi p}{T} \right) \quad (A.44)$$

On va encore donner une autre forme à la formule de Poisson, qui sera utile pour la théorie de l’échantillonnage (théorie de Shannon). On commence par remarquer que le peigne de Dirac $\Pi_\Gamma = \sum_{\gamma \in \Gamma} \delta_\gamma$ est une distribution tempérée et que la série double converge dans S'. On a donc en appliquant la transformation de Fourier des distributions tempérées,

$$\hat{\Pi_\Gamma} = \sum_{\gamma \in \Gamma} \hat{\delta}_\gamma = \sum_{\gamma \in \Gamma} e^{-i\gamma x}.$$

On utilise alors la formule de Poisson A.42, en échangeant les rôles (symétriques) de Γ et Γ^*. Cela donne

$$\hat{\Pi_\Gamma} = S^* \sum_{k \in \Gamma^*} \delta_k,$$

où S^* est la surface de la maille du réseau dual. Il est facile de voir que $SS^* = (2\pi)^2$. On obtient donc la formule de base de la cristallographie selon laquelle “la transformée de Fourier d’un réseau est le réseau dual”, et plus précisément

$$\hat{\Pi_\Gamma} = \frac{(2\pi)^2}{S} \Pi_{\Gamma^*} = S^* \Pi_{\Gamma^*}. \quad (A.45)$$

Remarque A.12 On peut montrer la formule de Poisson de manière élémentaire. Commencez par lui donner une forme un peu plus générale que (A.44) :

$$\sum_{\gamma \in \Gamma} \varphi(x + \gamma) = \frac{1}{S} \sum_{k \in \Gamma^*} \hat{\varphi}(k) e^{ikx}. \quad (A.46)$$
Pour passer de (A.42) à (A.46), on applique les membres de droite et de gauche à la fonction \(x \to \varphi(z + x) \). Cela donne
\[
\sum_{\gamma \in \Gamma} \varphi(x + \gamma) = \frac{1}{S} \sum_{k \in \Gamma^*} \int e^{ikx} \varphi(z + x)dx = \frac{1}{S} \sum_{k \in \Gamma^*} \int e^{ik(y-z)} \varphi(y)dy = \frac{1}{S} \sum_{k \in \Gamma^*} e^{-ikz} \hat{\varphi}(-k).
\]
On fait ensuite \(k \to -k \), \(\Gamma^* \) étant symétrique par rapport à zéro. Pour passer de (A.46) à (A.42), on fait simplement \(x = 0 \).

On va maintenant vérifier directement (A.46) en n’utilisant que la décomposition en série de Fourier. On pose pour cela \(\tilde{\varphi}(x) = \sum_{\gamma} \varphi(x + \gamma) \), pour \(\varphi \in S \). Alors on sait déjà que \(c_k(\tilde{\varphi}) = \frac{1}{S} \hat{\varphi}(k) \) et donc
\[
\tilde{\varphi}(x) = \sum_{k \in \Gamma^*} c_k(\tilde{\varphi}) e^{ikx} = \frac{1}{S} \sum_{k \in \Gamma^*} \hat{\varphi}(k) e^{ikx}.
\]
Finalement,
\[
\sum_{\gamma} \varphi(x + \gamma) = \frac{1}{S} \sum_{k \in \Gamma^*} \hat{\varphi}(k) e^{ikx}.
\]

A.5.0.8 L’unification des formalismes de Fourier

Le but de ce paragraphe est de montrer que les séries de Fourier relèvent du même formalisme, et sont un cas particulier, de la transformée de Fourier des distributions tempérées. On part de \(u \), fonction ou distribution \(\Gamma \)-périodique. On a défini
\[
c_k(u) = \frac{1}{S} < u, \chi e^{ikx} >,
\]
wù où \(\chi \) est une partition de l’unité \(\Gamma \)-périodique. On va calculer \(\hat{u} \).

Proposition A.25 Soit \(u \) une distribution \(\Gamma \)-périodique. Alors
\[
\hat{u} = (2\pi)^N \sum_{k \in \Gamma^*} c_k(u) \delta_k.
\]
En d’autres termes, la transformée de Fourier d’une distribution \(\Gamma \)-périodique donne un peigne sur le réseau dual dont les coefficients ne sont autres que les coefficients de la série de Fourier de \(u \).

Démonstration On écrit \(u = \sum_{\gamma} \tau_{\gamma}(\chi u) \). Donc
\[
\hat{u}(\xi) = \sum_{\gamma} \tau_{\gamma}(\chi u)(\xi) = \sum_{\gamma} e^{i\gamma \xi} \widehat{\chi u}(\xi) = \widehat{\chi u}(\xi) \sum_{\gamma} e^{i\gamma \xi} = \widehat{\chi u}(\xi) S^* \sum_{k \in \Gamma^*} \delta_k
\]

163
par la formule de Poisson (A.42). On peut donc donner le tableau général sur la transformée de Fourier (la double flèche signifie vers la droite transformée de Fourier, vers la gauche transformée de Fourier inverse).

\[
\begin{align*}
S &\leftrightarrow S \\
S' &\leftrightarrow S' \\
L^2 &\leftrightarrow L^2
\end{align*}
\]

polynôme trigonométrique \leftrightarrow somme finie de Diracs sur le réseau dual
distribution périodique \leftrightarrow peigne de Dirac dual pondéré par les coefficients de Fourier de u.

Il n'y a qu'une seule transformée de Fourier.

A.6 Théorie de Shannon pour les images

On va d'abord se placer dans un cadre idéal, continu et infini. On choisit un point focal et un plan ne contenant pas ce point. Dans ce plan, on délimite une région qui est l'ouverture (en général un disque). En tout point de cette ouverture, on compte les photons passant par le plan et se dirigeant vers le centre optique. On peut imaginer l'image idéale résultante O, que l'on appellera “paysage” et il sera commode de s'y référer pour toutes les opérations effectuées par les appareils optiques artificiels ou naturels. Les dispositifs physiques sont en effet un peu plus complexes. Le flux de photons passe d'abord par plusieurs ouvertures généralement circulaires. Ces ouvertures peuvent être le diaphragme d'un appareil photographique, l'orifice d'un télescope ou d'un zoom, la pupille de l'œil. Dans le dispositif le plus primitif, la “chambre noire” (*camera oscura*) connue dès l'antiquité, la lumière passe directement par un trou dans une paroi mince et se projette directement sur le mur en face, ce qui est le cas le plus simple : dans ce cas, centre optique (qui n'est pas un point) et ouverture sont simplement confondus. Pour réaliser une focalisation meilleure, une lentille permet de focaliser les photons et de les faire se projeter sur un plan image rapproché. Supposons, pour éviter les problèmes de profondeur de champ, que les trajectoires des photons soient parallèles (cas d'un télescope : point focal et ouverture sont éloignés). Alors les différents éléments du dispositif optique agissent sur le “paysage” comme des convolutions. Enfin, dernier point à ne pas négliger, les photons sont comptés au moment de l'impact par des capteurs tapissant la rétine ou le plan focal. Dans la rétine humaine, ces capteurs forment un réseau à peu près hexagonal en nid d'abeille. La plupart des capteurs CCD sont approximativement carrés et disposés en matrice. Dans tous les cas, on peut modéliser l'opération d'échantillonnage comme un décompte des photons effectué par chaque capteur dans un temps donné (le “temps d'obturation” pour un appareil photographique). Cette opération d'échantillonnage a deux temps du point de vue mathématique : la convolution du champ photonique par une fonction $g(x)$ représentant la fonction porte du capteur, puis l'attribution de cette valeur au centre du capteur. On supposera que ces centres forment un réseau de \mathbb{R}^2, ce qui est vrai si les capteurs forment un pavage régulier du plan.

On notera (toutes les fonctions et distributions considérées sont définies sur \mathbb{R}^2) :

- O, le paysage initial conçu comme un décompte d'énergie lumineuse au point x dans un plan perpendiculaire à l'axe de l'appareil optique. Comme l'ouverture de l'appareil optique

1Nous reprenons ici une partie déjà exposée au chapitre 2 afin de conserver à l'annexe son caractère complet.
a une surface finie, ce décompte s’effectue dans une région du plan compacte (un disque ou un rectangle en général). On note $x \in \mathbb{R}^2$ les points de ce plan. A priori, O est donc une fonction intégrable dans un modèle infinitésimal ou une mesure de Radon a support compact si on adopte un modèle de compte-photons, modèle justifié avec les capteurs biologiques ou digitaux.

- $h(x)$ le noyau de convolution obtenu en multipliant les différents noyaux (y compris celui du capteur). En fait, $h = h_{\text{detect}} \ast h_{\text{opt}} \ast h_{\text{filé}}$, où le premier noyau est la fonction caractéristique du détecteur, le second la convolution due à la lentille, et le troisième est le flou de mouvement ou de “filé” du capteur lui-même, dû au fait que capteur lui-même bouge dans l’intervalle de temps d’acquisition de l’image (le temps d’ouverture du diaphragme dans un appareil photographique classique). h s’appelle la “réponse impulsionnelle” de l’appareil et \hat{h} sa “fonction de transfert de modulation” ou “FTM”. Il est à noter que \hat{h} est à support compact, car \hat{h}_{opt} l’est et que $\hat{h} = h_{\text{detect}} \ast h_{\text{opt}} \ast h_{\text{filé}}$. (Remarquer que les trois fonctions considérées sont dans L^1. Leur convolée l’est donc aussi et la formule précédente est bien valide.)

- Γ, le réseau d’échantillonnage et son peigne de Dirac $\Pi_\Gamma = \sum_{\gamma \in \Gamma} \delta_\gamma$

- Le réseau effectif de capteurs se modélise comme $F_{n,m} \Pi_\Gamma$, où $F_{n,m}$ est la fonction caractéristique d’un parallélégramme adapté au réseau Γ : si e_1 et e_2 forment une base du réseau, les capteurs effectifs ont leurs centres dans un parallélégramme discret $P = \{ke_1 + le_2, 1 \leq k \leq n, 1 \leq l \leq m\}$. On peut, et cela sera utile pour donner un sens aux expressions qui suivent, supposer que $F_{n,m}$ est dans C_0^∞, car on peut trouver une telle fonction satisfaisant $F_{n,m} = 1$ dans P et $F_{n,m}(k) = 0$ aux autres points du réseau Γ.

On peut donc modéliser l’image digitale résultante par

$$u = (h \ast O).\Pi_\Gamma.F_{n,m} \quad (A.47)$$

O est une mesure de Radon à support compact et on doit supposer une régularité suffisante pour h afin que le produit de convolution avec h soit défini et continu. En fait, \hat{h} est continue et à support compact, donc intégrable et de carré intégrable. On en déduit que h appartient à O_M, est donc C^∞, appartient aussi à $L^2(\mathbb{R}^2)$ et tend vers 0 à l’infini. Donc $h \ast O$ est une fonction C^∞ tendant vers zéro à l’infini ; elle est également dans $L^2(\mathbb{R}^2)$. La théorie de Shannon-Whittaker va nous permettre d’étudier dans quelle mesure l’image convolée $h \ast O$ peut être recouverte à partir de ses échantillons $(h \ast O).\Pi_\Gamma.F_{n,m}$. On commence par appliquer la transformation de Fourier des distributions tempérées à la relation $(A.47)$.

Lemme A.6 On suppose que le paysage initial O est une mesure de Radon à support compact et que la FTM \hat{h} est continue à support compact. Alors

$$\hat{u} = S^* (\hat{h}\hat{O}) \ast (2\pi)^{-N} \Pi_{\Gamma^*} \ast (2\pi)^{-N} \hat{F}_{n,m} \quad (A.48)$$

Démonstration Vérifions que le second membre de cette relation a un sens. O est une mesure de Radon à support compact. Donc \hat{O} est une fonction C^∞. Par ailleurs \hat{h} est par hypothèse une fonction continue à support compact. Le produit $\hat{h}\hat{O}$ est donc une fonction continue à support compact. Sa convolée avec le peigne de Dirac Π_{Γ^*} est donc aussi une fonction continue et bornée qui est la Γ^*-périodisée de $\hat{h}\hat{O}$. Enfin, cette fonction bornée est convolée avec $\hat{F}_{n,m}$ qui est dans la classe de Schwartz. Le résultat final est donc une fonction C^∞, Γ^*-périodique et bornée. La relation $(A.48)$ est vraie par une application répétée de la
Dans le théorème qui suit, on va négliger l'effet de fenêtrage $F_{n,m}$ dans la digitalisation et supposer que l'image digitalisée est infinie.

Théorème A.11 Shannon-Whittaker On suppose que le support de la FTM \hat{h}, $K = \text{Supp} (\hat{h})$ est contenu dans une cellule R du réseau dual (appelé aussi réseau réciproque : c'est pourquoi on la note R.) Alors le paysage convolé $h \ast O$ peut être recouvré à partir de l’image “digitalisée” infinie $u = (h \ast O)_{\Pi_{\Gamma}}$ par la formule d’interpolation

$$h \ast O = u \ast \frac{1}{S^*} \mathcal{F} (\mathbb{1}_R),$$ \hspace{1cm} (A.49)

ou encore

$$(h \ast O)(x) = \sum_{\gamma \in \Gamma} (h \ast O)(\gamma) \frac{1}{S^*} \mathcal{F}(\mathbb{1}_R)(x - \gamma).$$ \hspace{1cm} (A.50)

Démonstration On considère la fonction caractéristique de R, $\mathbb{1}_R(\xi)=1$ is $\xi \in R$ et 0 sinon. Par le lemme A.6, on a

$$\hat{u}(\xi) = (2\pi)^{-N} S^*(\hat{h}\hat{O}) \ast \Pi_{\Gamma^*} = \frac{1}{S} \sum_{k \in \Gamma^*} \hat{h}(\xi+k) \hat{O}(\xi+k)$$

et en multipliant cette relation par $\mathbb{1}_R$ et en tenant compte du fait que les supports des différentes fonctions translatées $\hat{h}(\xi+k)O(\xi+k)$ sont disjoints, on a

$$\mathbb{1}_R(\xi) \hat{u}(\xi) = \frac{1}{S} \hat{h}(\xi) \hat{O}(\xi) \mathbb{1}_R(\xi).$$

Mais comme $\mathbb{1}_R$ est identiquement égale à 1 sur le support de \hat{h}, on a $\mathbb{1}_R(\xi) \hat{h}(\xi) = \hat{h}(\xi)$ et donc

$$\hat{O}(\xi) \hat{h}(\xi) = S \mathbb{1}_R(\xi) \hat{u}(\xi).$$

Appliquons la transformée de Fourier inverse (\mathcal{F}). Par la proposition A.21,

$$h \ast O = \frac{S}{(2\pi)^N} u \ast \mathcal{F}(\mathbb{1}_R) = u \ast \frac{1}{S^*} \mathcal{F}(\mathbb{1}_R).$$

Il est commode de réécrire cette formule comme une formule d’interpolation. On a

$$u = \sum_{\gamma \in \Gamma} (h \ast O)(\gamma) \delta_\gamma.$$

Donc

$$(h \ast O)(x) = \sum_{\gamma \in \Gamma} (h \ast O)(\gamma) \frac{1}{S^*} \mathcal{F}(\mathbb{1}_R)(x - \gamma).$$

On a donc montré la convergence de cette série dans S' (on verra qu’elle a lieu dans $L^2(\mathbb{R}^2)$).

Application : la Formule de Shannon pour l’échantillonnage de signaux. Considérons le cas de la dimension $N = 1$ et d’un réseau d’échantillonnage $\Gamma = T\mathbb{Z}$. On a
\[e_1 = 1, e_1^* = 2\pi, S = T, \Gamma^* = \frac{2\pi}{T}Z. \]

Prenons le cas le plus simple d’une cellule \(R = [-T, T] \).

Alors \(\mathcal{F}(\mathbb{1}_R)(\xi) = 2\frac{\sin(\frac{\xi T}{2})}{\xi} \) (formule (A.30)) et par la formule (A.49), le paysage convolé s’obtient par

\[h \ast O = \frac{T}{2\pi} u \ast \mathcal{F}(\mathbb{1}_R). \]

Or,

\[u = \sum_{k \in \mathbb{Z}} (h \ast O)(kT)\delta_{kT} \]

et donc

\[h \ast O = \sum_{k \in \mathbb{Z}} (h \ast O)(kT) \frac{T}{2\pi} \frac{\sin \left(\frac{\pi(x-kT)}{T} \right)}{x-kT}, \]

soit

\[h \ast O = \sum_{k \in \mathbb{Z}} (h \ast O)(kT) \sin \left(\frac{\pi(x-kT)}{T} \right). \tag{A.51} \]

Cette dernière formule est la formule de Shannon la plus classique.

A.6.0.9 L’artifice de la périodisation. L’aliasage nécessaire

La théorie de Shannon telle que nous venons de la décrire n’est pas une théorie numérique, puisque l’échantillonnage est supposé infini. Le peigne de Dirac \(u \) n’est donc pas numérisé à ce stade, si on entend par donnée numérique une donnée finie. De même, \(\hat{u} \) n’est pas numérisé, puisque c’est une fonction, certes à support compact. Or, pour en venir à la numérisation, il nous faudrait un spectre de Fourier à la fois discret et borné. Or, la donnée numérique discrète observée est, on l’a vu (relation (A.47), finie. A partir de cette donnée finie nous avons un moyen efficace de recréer un spectre discret : il suffit de prolonger \(u \) par périodicité en dehors de sa fenêtre de définition. On considère pour cela le réseau \(\Gamma_{nm} \) engendré par \(ne_1 + me_2 \). La fenêtre \(F_{n,m} \) correspond à une maille de ce réseau. On rappelle que l’image discrète est

\[u = (h \ast O) \cdot \Pi_\Gamma F_{n,m} \tag{A.52} \]

Périodiser \(u \) revient à le convoler avec \(\Pi_{\Gamma_{nm}} \) et on pose donc

\[\tilde{u} = \Pi_{\Gamma_{nm}} \ast ((h \ast O) \cdot \Pi_\Gamma F_{n,m}). \tag{A.53} \]

On Fourierise et on obtient donc

\[\hat{\tilde{u}} = c \Pi_{\Gamma^*_{\frac{1}{nm}}} \ast (\hat{h} \hat{\mathcal{O}} \ast \hat{F_{n,m}}), \tag{A.54} \]

avec \(c = \frac{1}{nm}(S^*)^2(2\pi)^{-2N} \). La surface de la maille de \(\Pi_{\Gamma_{nm}} \) est en effet \(mnS \) et donc la maille duale est de surface \(\frac{1}{nm}S^* \). Interprétons maintenant la formule (A.54), qui décrit de manière synthétique toutes les manipulations de spectre en jeu dans la digitalisation d’une image. La multiplication par le premier terme signifie que \(\hat{\tilde{u}} \) est un peigne de Dirac sur le réseau fin \(\frac{1}{nm} \Gamma^* \). Ce peigne est \(\Gamma^* \)-périodique à cause de la convolution par \(\Pi_{\Gamma^*} \). On a donc bien une donnée numérique discrète, composée de \(nm \) coefficients. Nous avons néanmoins commis un abus, la périodisation d’une fonction qui n’a rien de périodique, et nous allons maintenant le payer. D’abord, remarquons que \(F_{n,m} \) n’est pas à support compact (principe d’incertitude : \(F_{n,m} \) est à support compact donc sa transformée de Fourier ne peut l’être également). Donc
le terme $\hat{F}_{n,m}$ dans le calcul de \hat{u} implique que la fonction $\psi = (\hat{h}\hat{O} \ast \hat{F}_{n,m})$ n’est plus à support compact. Donc la théorie de Shannon ne s’applique plus. Si on convole la fonction ψ avec Π_{Γ^*}, on fait la somme de ψ et de ses translatées par les vecteurs de Γ^*, que l’on appelle des “alias”. Ces alias n’ont pas des supports disjoints. On ne peut donc pas reconstituer $O \ast h$ à partir de u. Si on applique quand même, par une sorte de forçage, la formule de Shannon, on obtient une fonction qui coïncide avec $O \ast h$ sur le réseau Γ mais qui présente deux types d’artefacts :

- L’“aliasage” (aliasing), autrement dit “repliement de spectre” : la transformée de Fourier de la reconstituée comporte dans les basses et moyennes fréquences des ondes parasites provenant de fréquences hautes. (Voir figure dans le chapitre suivant).
- Le phénomène de Gibbs dû aux sauts induits au bord de l’image par la périodisation (les valeurs de bord à droite et à gauche, en haut et en bas, n’ont aucune raison d’être égales pour $O \ast h$!).

Dans le cas unidimensionnel, le principe de “l’aliasage”, dû à la périodisation de la transformée de Fourier du signal échantillonné est illustré figure A.16. La fonction du haut est la transformée de Fourier \hat{f} de f, le signal original. Au milieu, tracée la périodisée \hat{f}, dans le cas où la période T est suffisamment petite pour que l’on soit dans les conditions du théorème de Shannon. Il est possible de retrouver \hat{f} (et donc f), en isolant le lobe central de cette fonction périodisée (c’est à dire en multipliant par 1_{R}, pour reprendre les notations de la démonstration du théorème de Shannon-Whittaker (A.11)). Dans le deuxième cas, en bas, cette période T est trop grande pour être dans les conditions du théorème de Shannon. La fonction que l’on peut récupérer à partir des échantillons a pour transformée de Fourier la fonction maximum des trois fonctions tracées en bas de la figure. Le signal reconstruit ne correspond pas au signal initial. Dans le cas des images numériques, ce phénomène d’aliasage fait souvent apparaître des structures très visibles, comme illustré sur la figure A.17. L’image originale est en haut. En bas à gauche, on a placé l’image après sous-échantillonnage (on retient une ligne sur deux et une colonne sur deux). Le spectre de l’image originale n’étant pas nul à la nouvelle fréquence de coupure (deux fois plus petite que pour l’image initiale) on voit apparaître le phénomène d’aliasage. Sur l’image en bas à droite, la même expérience a été réalisée après avoir effectué la convolution de l’image de départ avec un filtre de support suffisament petit pour que le spectre résultant nous place dans les conditions du théorème de Shannon. Après sous-échantillonnage, l’aliasage a disparu.
Figure A.16: Aliasage et échantillonnage : en haut la TF du signal original. Au milieu, la TF du signal échantillonné dans le cas critique. On peut retrouver la TF du signal en tronquant à la fréquence de coupure. En bas : sous-échantillonnage. La TF du signal échantillonné est la courbe du supérieur ; l’information est définitivement perdue.
A.6 Théorie de Shannon pour les images

Figure A.17: L’image de gauche a été sous-échantillonnée, puis ramenée à sa taille initiale. L’aliasing fait apparaître des structures organisées qui n’ont aucun rapport avec la scène observée. Pour éviter l’aliasage lorsqu’on réduit la taille de l’image, il faut appliquer un filtre passe-bas qui élimine les hautes fréquences et ramène l’image dans les conditions de Shannon. (expérience réalisée par Frédéric Guichard).
Ouvrages recommandés Pour la rédaction de ces notes de cours nous nous sommes basés sur certains des ouvrages suivants, que nous recommandons au lecteur intéressé.

Cours d’analyse de l’Ecole Polytechnique : [Bony, 1994]
Cours de méthodes mathématiques pour les sciences physiques : [Bony, 1997]
Cours d’analyse, Théorie des distributions et analyse de Fourier : [Bony, 2001]
Analyse de Fourier et applications : [Gasquet and Witomski, 1995]
A Wavelet Tour of Signal Processing : [Mallat, 1997]
Une exploration des signaux par les ondelettes : [Mallat, 2000]
Traitement du signal : [Mallat, 1998a]
Wavelets, Algorithms and Applications : [Meyer, 1993]
Ondelettes et algorithmes concurrents : [Meyer, 1992]
Fundamentals of Digital Optics : [Yaroslavsky and Eden, 1996]
A.6 Théorie de Shannon pour les images
ANNEXE B

Récapitulatif des principaux résultats sur la Transformée de Fourier

B.1 Transformée de Fourier discrète sur \mathbb{R}

f 2π-périodique, $f \in L^2([0, 2\pi])$ ($\int_0^{2\pi} |f|^2$ fini)

$$f(x) = \sum_{k \in \mathbb{Z}} c_k(f) e^{ikx}$$

$$c_k(f) = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx$$

B.2 Transformée de Fourier discrète sur \mathbb{R}^2

f (2π, 2π)-périodique, $f \in L^2([0, 2\pi]^2)$ ($\int_0^{2\pi} \int_0^{2\pi} |f(x, y)|^2 dx dy$ fini)

$$f(x, y) = \sum_{(k_1, k_2) \in \mathbb{Z}^2} c_{k_1,k_2}(f) e^{ik_1x+ik_2y}$$

$$c_{k_1,k_2}(f) = \frac{1}{(2\pi)^2} \int_0^{2\pi} \int_0^{2\pi} f(x, y) e^{-ik_1x-ik_2y} dx dy$$

B.3 Réseau de \mathbb{R}, \mathbb{R}^2, ...

- Réseau de \mathbb{R} : $\{kT\}_{k \in \mathbb{Z}}$
- Réseau de \mathbb{R}^2 :

 $$\Gamma = \{x_1e_1 + x_2e_2, \ (x_1, x_2) \in \mathbb{Z}^2\}$$

- Réseau réciproque (ou dual) :

 $$\Gamma^* = \{k_1e_1^* + k_2e_2^*, \ (k_1, k_2) \in \mathbb{Z}^2\},$$
 $$e_i, e_j = 2\pi \delta_{ij}$$
• surface de la maille M :
 \[M = \{ x_1 e_1 + x_2 e_2 | (x_1, x_2) \in [0, 1]^2 \} \]

• surface de la maille duale S^* :
 \[SS^* = (2\pi)^2 \]

• Cellule du réseau Γ : Tout ensemble D du plan tel que les $(D + \gamma)_{\gamma \in \Gamma}$ forment un pavage du plan.

B.4 Transformée de Fourier discrète sur un réseau Γ

Si f est Γ-périodique et de carré intégrable sur la maille,

\[f(x) = \sum_{k \in \Gamma^*} c_k(f)e^{ik.x} \]

\[c_k(f) = \frac{1}{S} \int_M e^{-ik.x}f(x)dx \]

où l’on a noté

\[k = k_1 e_1^* + k_2 e_2^* \]
\[x = x_1 e_1 + x_2 e_2 \]
\[k.x = 2\pi (k_1 x_1 + k_2 x_2) \]

B.5 Convolution Γ-périodique

Si u et v sont Γ-périodiques, on pose

\[(u \ast v)(x) = \int_D u(x-y)v(y)dxdy \]

où D est une cellule quelconque. Alors

\[c_k(f \ast g) = Sc_k(f)c_k(g) \quad \forall k \in \Gamma^* \]

B.6 Peignes de Dirac

• Masse de Dirac en $a \in \mathbb{R}$: δ_a
 \[\langle \delta_a, \varphi \rangle = \varphi(a) \]

• Peigne de Dirac sur un réseau Γ :
 \[\Delta \Gamma = \sum_{\gamma \in \Gamma} \delta_\gamma \]
 \[\langle \Delta \Gamma, \varphi \rangle = \sum_{\gamma \in \Gamma} \varphi(\gamma), \varphi \text{ continue à support compact} \]
B.7 Transformée de Fourier discrète des distributions Γ-périodiques

Si u est Γ-périodique,

$$u = \sum_{k \in \Gamma^*} c_k(u) e^{ik.x} \text{ ("série de Fourier")}$$

avec

$$c_k(u) = \frac{1}{S} \langle u, \chi(x)e^{-ik.x} \rangle$$

où χ est une fonction C^∞, partition de l'unité :

$$\sum_{\gamma \in \Gamma} \chi(x + \gamma) = 1$$

($c_k(u)$ ne dépend pas de χ)

B.8 Série de Fourier d’un peigne de Dirac

$$\Gamma_\gamma = \sum_{\gamma \in \Gamma} \delta_\gamma$$

$$\Delta_\Gamma = \frac{1}{S} \sum_{k \in \Gamma^*} e^{ik.x} \text{ (développement en série de Fourier de } \Delta_\Gamma)$$

B.9 Convolution

- dans $L^1(\mathbb{R}^N)$:

 $$f * g(x) = \int f(x - y)g(y)dy$$

- u distribution à support compact, $\varphi \in S$:

 $$u * \varphi(x) = \langle u, \varphi(x,.) \rangle \in S$$

- $u \in S'$, $v \in S'$ à support compact

 $$\langle v * u, \varphi \rangle = \langle v, \tilde{u} * \varphi \rangle$$

 $$\langle \tilde{u}, \varphi \rangle = \langle u, \check{\varphi} \rangle,$$

 $$\check{\varphi}(x) = \varphi(-x)$$
B.10 Transformée de Fourier dans S'

- $f \in L^1$:
 \[
 \hat{f}(\xi) = \int f(x)e^{-ix\cdot\xi}dx \\
 \mathcal{F}(f)(\xi) = \int f(x)e^{ix\cdot\xi}dx
 \]

- $u \in S'$:
 \[
 \langle \hat{u}, \varphi \rangle = \langle u, \hat{\varphi} \rangle
 \]

- Dans tous les cas,
 \[
 \mathcal{F}(\mathcal{F}(f))
 \]

- Transformée de Fourier d’un peigne de Dirac
 \[
 \hat{\Delta}_\Gamma = S^*\Delta_{\Gamma^*}
 \]

B.11 Convolution et Fourier

- u et v deux distributions tempérées, l’une à support borné,
 \[
 \hat{u} \ast \hat{v} = \hat{u} \cdot \hat{v}
 \]

- v une distribution tempérée, φ une fonction telle que $\hat{\varphi}$ soit une distribution à support borné. Alors
 \[
 \widehat{\varphi \cdot u} = (2\pi)^{-N} \hat{\varphi} \ast \hat{u}
 \]

B.12 Unification du formalisme

Si u est une distribution Γ-périodique, alors
\[
\hat{u} = (2\pi)^2 \sum_{k \in \Gamma^*} c_k(u)\delta_k
\]

où les $c_k(u)$ sont les coefficients de Fourier de u.

B.13 Commodités du formalisme

- u Γ-périodique veut dire:
 \[
 u = \Delta_{\Gamma} \ast (\chi u) \text{ où } \chi \text{ est une partition de l’unité.}
 \]

- Γ-périodisée d’une fonction ou d’une distribution u:
 \[
 \hat{\chi} = \Delta_{\Gamma} \ast u
 \]
Récapitulatif des principaux résultats sur la Transformée de Fourier

• En Fourier, cela donne :
 \[\hat{u} = \Delta_G * u = S^* \Delta_G \hat{u} \]

• Echantillonnage sur \(\Gamma \) d'une fonction \(\varphi \) continue :
 \[\hat{\varphi} \Delta_G = (2\pi)^{-2} S^* \varphi * \Delta_G = \frac{1}{S} \hat{\varphi} * \Delta_{G^*} \]
 “Echantillonner sur \(\Gamma \) revient à \(\Gamma^* \)-périodiser le spectre”

B.14 Reconstruction de Shannon

Si \(\hat{\varphi} \subset D \), cellule de \(\Gamma^* \), alors

\[
\varphi(x) = \frac{1}{S^*} \sum_{\gamma \in \Gamma} \varphi(\gamma) \left(\hat{F} (1_D) \right) (x - \gamma)
\]

• en 1-D :
 \(\Gamma = T\mathbb{Z}, \ e_1 = T, \ e_1^* = \frac{2\pi}{T}, \ D = [-\frac{\pi}{T}, \frac{\pi}{T}], \) cellule du réseau dual. Alors si \(\text{supp}((\varphi) \subset [-\frac{\pi}{T}, \frac{\pi}{T}] \),

 \[
 \varphi(x) = \sum_{k \in \mathbb{Z}} \varphi(kT) \sin \left(\frac{\pi}{T} (x - kT) \right) \frac{\sin \left(\pi T (x - kT) \right)}{T (x - kT)}
 \]

 car \(\hat{F} (1_D) (x) = 2 \frac{\sin(\pi T x)}{x} \) et \(S^* = \frac{2\pi}{T} \)

B.15 La transformée de Fourier discrète

• Si \(u \) est un peigne supporté par \(\Gamma \),

 \[
 u = \sum_{\gamma \in \Gamma} u(\gamma) \delta_\gamma,
 \]

 alors \(\hat{u} \) est \(\Gamma^* \)-périodique.

• si \(u \) est \(\Gamma \)-périodique, \(\hat{u} \) est supportée par \(\Gamma \).

• Si \(u \) est supportée par \(\Gamma \),

 \[
 u = \sum_{\gamma \in \Gamma} u(\gamma) \delta_\gamma,
 \]

 et si \(u \) est \(\Gamma_{n,m} \)-périodique, où \(\Gamma_{n,m} \) est engendré par \((ne_1, me_2) \) avec \((e_1, e_2) \) base de \(\Gamma \), alors \(\hat{u} \) est supportée par \(\Gamma_{1/n,1/m} \) et elle est \(\Gamma^* \)-périodique.

Donc \(u \) est décrite par les valeurs en matrice \((n,m) \),

\[
 u_\gamma = u_{k,l} \quad \gamma \in \{ ke_1 + le_2, \ 0 \leq k \leq n - 1, \ 0 \leq l \leq m - 1 \}
\]

et \(\hat{u} \) par les valeurs en matrice \((n,m) \),

\[
 \hat{u}_{\gamma^*} = \hat{u}_{k,l} \quad \gamma \in \left\{ k \frac{e_1^*}{n} + l \frac{e_2^*}{m}, \ 0 \leq k \leq n - 1, \ 0 \leq l \leq m - 1 \right\}
\]

L’application qui aux \(u_{k,l} \) associe les \(\hat{u}_{k,l} \) s’appelle la transformée de Fourier discrète et elle ne dépend que de \(n \) et \(m \) (et pas de \(\Gamma \)).

177
B.15 La transformée de Fourier discrète
Bibliographie

[Canny, 1986] Canny, J. (1986). A computational approach to edge detection. 3.1, 4.2

179

