Joint Inpainting of Depth and Reflectance with Visibility Estimation

Abstract : This paper presents a novel strategy to generate, from 3-D lidar measures, dense depth and reflectance images coherent with given color images. It also estimates for each pixel of the input images a visibility attribute. 3-D lidar measures carry multiple information, e.g. relative distances to the sensor (from which we can compute depths) and reflectances. When projecting a lidar point cloud onto a reference image plane, we generally obtain sparse images, due to undersampling. Moreover, lidar and image sensor positions typically differ during acquisition; therefore points belonging to objects that are hidden from the image view point might appear in the lidar images. The proposed algorithm estimates the complete depth and reflectance images, while concurrently excluding those hidden points. It consists in solving a joint (depth and reflectance) variational image inpainting problem, with an extra variable to concurrently estimate handling the selection of visible points. As regularizers, two coupled total variation terms are included to match, two by two, the depth, reflectance, and color image gradients. We compare our algorithm with other image-guided depth upsampling methods, and show that, when dealing with real data, it produces better inpainted images, by solving the visibility issue.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01348304
Contributeur : Marco Bevilacqua <>
Soumis le : vendredi 22 juillet 2016 - 17:41:31
Dernière modification le : mercredi 27 juillet 2016 - 01:03:46
Document(s) archivé(s) le : dimanche 23 octobre 2016 - 13:54:42

Fichier

jrnl_jointinp_v05_sub1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01348304, version 1

Citation

Marco Bevilacqua, Jean-François Aujol, Mathieu Brédif, Aurélie Bugeau. Joint Inpainting of Depth and Reflectance with Visibility Estimation. 2016. 〈hal-01348304〉

Partager

Métriques

Consultations de la notice

270

Téléchargements de fichiers

78