HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Journal articles

Surjective separating maps on noncommutative $L^p$-spaces

Abstract : Let $1\leq p<\infty$ and let $T\colon L^p({\mathcal M})\to L^p({\mathcal N})$ be a bounded map between noncommutative $L^p$-spaces. If $T$ is bijective and separating (i.e., for any $x,y\in L^p({\mathcal M})$ such that $x^*y=xy^*=0$, we have $T(x)^*T(y)=T(x)T(y)^*=0$), we prove the existence of decompositions ${\mathcal M}={\mathcal M}_1\mathop{\oplus}\limits^\infty{\mathcal M}_2$, ${\mathcal N}={\mathcal N}_1 \mathop{\oplus}\limits^\infty{\mathcal N}_2$ and maps $T_1\colon L^p({\mathcal M}_1)\to L^p({\mathcal N}_1)$, $T_2\colon L^p({\mathcal M}_2)\to L^p({\mathcal N}_2)$, such that $T=T_1+T_2$, $T_1$ has a direct Yeadon type factorisation and $T_2$ has an anti-direct Yeadon type factorisation. We further show that $T^{-1}$ is separating in this case. Next we prove that for any $1\leq p<\infty$ (resp. any $1\leq p\not=2<\infty$), a surjective separating map $T\colon L^p({\mathcal M})\to L^p({\mathcal N})$ is $S^1$-bounded (resp. completely bounded) if and only if there exists a decomposition ${\mathcal M}={\mathcal M}_1 \mathop{\oplus}\limits^\infty{\mathcal M}_2$ such that $T|_{L^p({\tiny {\mathcal M}_1})}$ has a direct Yeadon type factorisation and ${\mathcal M}_2$ is subhomogeneous.
Document type :
Journal articles
Complete list of metadata

Contributor : Christian Le Merdy Connect in order to contact the contributor
Submitted on : Friday, January 14, 2022 - 10:24:58 AM
Last modification on : Wednesday, January 19, 2022 - 4:38:44 PM
Long-term archiving on: : Friday, April 15, 2022 - 6:28:24 PM


Files produced by the author(s)


  • HAL Id : hal-03525871, version 1
  • ARXIV : 2009.05919



Christian Le Merdy, Safoura Zadeh. Surjective separating maps on noncommutative $L^p$-spaces. Mathematical News / Mathematische Nachrichten, Wiley-VCH Verlag, inPress. ⟨hal-03525871⟩



Record views


Files downloads