Skip to Main content Skip to Navigation
Journal articles

Quantitative and Algorithmic aspects of Barrier Synchronization in Concurrency

Abstract : In this paper we address the problem of understanding Concurrency Theory from a combinatorial point of view. We are interested in quantitative results and algorithmic tools to refine our understanding of the classical combinatorial explosion phenomenon arising in concurrency. This paper is essentially focusing on the the notion of synchronization from the point of view of combinatorics. As a first step, we address the quantitative problem of counting the number of executions of simple processes interacting with synchronization barriers. We elaborate a systematic decomposition of processes that produces a symbolic integral formula to solve the problem. Based on this procedure, we develop a generic algorithm to generate process executions uniformly at random. For some interesting sub-classes of processes we propose very efficient counting and random sampling algorithms. All these algorithms have one important characteristic in common: they work on the control graph of processes and thus do not require the explicit construction of the state-space.
Complete list of metadata
Contributor : matthieu dien Connect in order to contact the contributor
Submitted on : Wednesday, January 20, 2021 - 11:29:00 AM
Last modification on : Saturday, June 25, 2022 - 9:56:34 AM


Publisher files allowed on an open archive



Olivier Bodini, Matthieu Dien, Antoine Genitrini, Frédéric Peschanski. Quantitative and Algorithmic aspects of Barrier Synchronization in Concurrency. Discrete Mathematics and Theoretical Computer Science, DMTCS, inPress, Computational Logic and Applications (CLA'19), vol. 22 no. 3, Computational Logic and Applications (CLA'19) (3), ⟨10.46298/dmtcs.5820⟩. ⟨hal-02301925v4⟩



Record views


Files downloads