Accéder directement au contenu Accéder directement à la navigation
Pré-publication, Document de travail

Regularization estimates and hydrodynamical limit for the Landau equation

Abstract : In this paper, we study the Landau equation under the Navier-Stokes scaling in the torus for hard and moderately soft potentials. More precisely, we investigate the Cauchy theory in a perturbative framework and establish some new short time regularization estimates for our rescaled nonlinear Landau equation. These estimates are quantified in time and optimal, indeed, we obtain the instantaneous expected anisotropic gain of regularity (see [53] for the corresponding hypoelliptic estimates on the linearized Landau collision operator). Moreover, the estimates giving the gain of regularity in the velocity variable are uniform in the Knudsen number. Intertwining these new estimates on the Landau equation with estimates on the Navier-Stokes-Fourier system, we are then able to obtain a result of strong convergence towards this fluid system.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-03299125
Contributeur : Isabelle Tristani <>
Soumis le : lundi 26 juillet 2021 - 10:34:09
Dernière modification le : mardi 21 septembre 2021 - 16:06:03

Fichiers

LNS15.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-03299125, version 1

Citation

Kleber Carrapatoso, Mohamad Rachid, Isabelle Tristani. Regularization estimates and hydrodynamical limit for the Landau equation. 2021. ⟨hal-03299125⟩

Partager

Métriques

Consultations de la notice

26

Téléchargements de fichiers

22