Asymptotic behaviour for operators of Grushin type: invariant measure and singular perturbations

Abstract : This paper concerns singular perturbation problems where the dynamics of the fast variable evolve in the whole space according to an operator whose infinitesimal generator is formed by a Grushin type second order part and a Ornstein-Uhlenbeck first order part. We prove that the dynamics of the fast variables admits an invariant measure and that the associated ergodic problem has a viscosity solution which is also regular and with logarithmic growth at infinity. These properties play a crucial role in the main theorem which establishes that the value functions of the starting perturbation problems converge to the solution of an effective problem whose operator and initial datum are given in terms of the associated invariant measure.
Type de document :
Article dans une revue
Discrete & Continuous Dynamical Systems-Series S, 2019, 12 (1), pp. 119-128
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01480727
Contributeur : Claudio Marchi <>
Soumis le : mercredi 1 mars 2017 - 17:15:54
Dernière modification le : vendredi 31 août 2018 - 08:54:22
Document(s) archivé(s) le : mardi 30 mai 2017 - 18:08:55

Fichiers

GrushinPerturbato170227.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01480727, version 1

Citation

Paola Mannucci, Claudio Marchi, Nicoletta Tchou. Asymptotic behaviour for operators of Grushin type: invariant measure and singular perturbations. Discrete & Continuous Dynamical Systems-Series S, 2019, 12 (1), pp. 119-128. 〈hal-01480727〉

Partager

Métriques

Consultations de la notice

388

Téléchargements de fichiers

46