2411 articles – 24 references  [version française]
Detailed view PhD thesis
Université Joseph-Fourier - Grenoble I (05/12/2008), Anne Imberty (Dir.)
Attached file list to this document: 
PDF
THESEfinalKarolineSaboia.pdf(5.6 MB)
ANNEX
these_karolineSaboia1.pps(28.7 MB)
Etudes structure-fonction de lectines (DiscI et DiscII) de Dictyostelium discoideum
Karoline Saboia Aragão1

Les lectines sont des protéines qui reconnaissent les glucides complexes de manière spécifique et réversible. L'amibe Dictyostelium discoideum est un organisme modèle eucaryote très employé pour l'étude de nombreux processus biologiques tel la phagocytose, la différenciation ou la mort cellulaire. Lorsqu'elle se différencie suite à une absence de nutriments, elle produit au cours de la phase d'agrégation, deux lectines qui reconnaissent le Gal/GalNAc : les discoidines (DiscI et DiscII). DiscI et DiscII présentent 48% d'identité de séquence, forment des trimères en solution et partagent la même organisation en domaine. Un domaine discoidine (domaine DS) impliqué dans les processus d'adhésion cellulaire est retrouvé en N-terminal suivi d'un domaine lectine de type H en C-terminal. Le domaine lectine présente des similarités avec la lectine d'escargot HPA. Cette lectine spécifique du GalNAc est utilisée extensivement en histopathologie comme marqueur des cellules tumorales à fort caractère métastatique. Les travaux de recherche développés dans cette thèse portent sur l'étude structurale et fonctionnelle de l'interaction de DiscI et DiscII avec les sucres Gal/GalNAc selon une approche pluridisciplinaire. Ces deux lectines ont été clonées, exprimées sous forme recombinante dans Escherichia coli avant d'être purifiées. Leur spécificité et leur affinité ont été déterminées par l'utilisation de puces à sucres et par microcalorimétrie de titration. L'analyse des interactions à un niveau oléculaire s'est réalisée suite à la détermination de leur structure 3-D sous forme native ou complexée par cristallographie aux rayons X. La comparaison des sites de liaison entre les Discoidines et HPA a permis une meilleure compréhension des leurs mécanismes de reconnaissance, de spécificité et d'affinité à niveau moléculaire.
1:  CERMAV - Centre de recherches sur les macromolécules végétales
domaine spécifique à galactose – lectine type H – domaine discoidine – structure – microcalorimétrie – oligosaccharides.

Studies structure-function of lectines (DiscI and DiscII) of Dictyostelium discoideum
Lectins are sugar-binding proteins which recognise saccharides with high specificity, in a reversible manner. The amoeba Dictyostelium discoideum is a eukaryote model organism used in the study of many biological processes such as phagocytosis, cell death and cell differentiation. When the amoebas adopt a cohesive stage upon starvation, they produce Discoidin I and II, two proteins able to bind galactose and N-acetyl-galactosamine. DiscI and DiscII present a sequence identity of 48%, form a trimer in solution, and exhibit a similar domain organisation. The N-terminal domain, or discoidin domain (DS), is implied in the processes of cellular adhesion binding the C-terminal domain or lectin domain of the H type family. The lectin domain presents similarities with the snail HPA lectine. This GalNAc specific lectin is used extensively in histopathology as a tumour cell marker with strong metastasizing characteristics. The research tasks developed in this thesis relate to the structural and functional study of the interaction of DiscI and DiscII with the sugars Gal/GalNAc according to a multidisciplinary approach. These two lectins were cloned and expressed in recombined form in Escherichia coli before being purified. Their specificity and their affinity were determined by the use of the printed array and titration microcalorimetry.
The determination of their 3D structure in native or complexed form by X-ray crystallography has allowed the analysis of the interactions on a molecular level. The comparison of the binding sites between Discoidins and HPA has allowed a better understanding of their recognition mechanisms, specificity and affinity on the molecular level.
specific to galactose – lectine H – discoidine – structure – microcalorimetry – oligosaccharides.