614 articles  [english version]
Fiche détaillée Thèses
École Nationale Supérieure des Mines de Paris (13/12/2011), Olivier Faugeras (Dir.)
Liste des fichiers attachés à ce document : 
PDF
galtier.pdf(4.3 MB)
Une approche mathématique de l'apprentissage non-supervisé dans les réseaux de neurones récurrents
Mathieu Galtier1

Dans cette thèse nous tentons de donner un sens mathématique à la proposition : le néocortex se construit un modèle de son environnement. Nous considérons que le néocortex est un réseau de neurones spikants dont la connectivité est soumise à une lente évolution appelée apprentissage. Dans le cas où le nombre de neurones est proche de l'infini, nous proposons une nouvelle méthode de champ-moyen afin de trouver une équation décrivant l'évolution du taux de décharge de populations de neurones. Nous étudions donc la dynamique de ce système moyennisé avec apprentissage. Dans le régime où l'apprentissage est beaucoup plus lent que l'activité du réseau nous pouvons utiliser des outils de moyennisation temporelle pour les systèmes lents/rapides. Dans ce cadre mathématique nous montrons que la connectivité du réseau converge toujours vers une unique valeur d'équilibre que nous pouvons calculer explicitement. Cette connectivité regroupe l'ensemble des connaissances du réseau à propos de son environnement. Nous comparons cette connectivité à l'équilibre avec les stimuli du réseau. Considérant que l'environnement est solution d'un système dynamique quelconque, il est possible de montrer que le réseau encode la totalité de l'information nécessaire à la définition de ce système dynamique. En effet nous montrons que la partie symétrique de la connectivité correspond à la variété sur laquelle est définie le système dynamique de l'environnement, alors que la partie anti-symétrique de la connectivité correspond au champ de vecteur définissant le système dynamique de l'environnement. Dans ce contexte il devient clair que le réseau agit comme un prédicteur de son environnement.
1 :  INRIA Sophia Antipolis / Inria Rocquencourt - NEUROMATHCOMP
Réseaux de neurones récurrents – apprentissage non supervisé – Systèmes stochastiques – dynamiques – apprentissage Hebbien – STDP

A mathematical approach to unsupervised learning in recurrent neural networks
In this thesis, we propose to give a mathematical sense to the claim: the neocortex builds itself a model of its environment. We study the neocortex as a network of spiking neurons undergoing slow STDP learning. By considering that the number of neurons is close to infinity, we propose a new mean-field method to find the ''smoother'' equation describing the firing-rate of populations of these neurons. Then, we study the dynamics of this averaged system with learning. By assuming the modification of the synapses' strength is very slow compared the activity of the network, it is possible to use tools from temporal averaging theory. They lead to showing that the connectivity of the network always converges towards a single equilibrium point which can be computed explicitely. This connectivity gathers the knowledge of the network about the world. Finally, we analyze the equilibrium connectivity and compare it to the inputs. By seeing the inputs as the solution of a dynamical system, we are able to show that the connectivity embedded the entire information about this dynamical system. Indeed, we show that the symmetric part of the connectivity leads to finding the manifold over which the inputs dynamical system is defined, and that the anti-symmetric part of the connectivity corresponds to the vector field of the inputs dynamical system. In this context, the network acts as a predictor of the future events in its environment.
Recurrent neural networks – Unsupervised learning – Stochastic dynamical systems – Hebbian learning – STDP learning