236 articles – 18 references  [version française]
Detailed view PhD thesis
Université d'Orléans (18/12/2003), Millot Francis (Dir.)
Attached file list to this document: 
PDF
tel-00008293.pdf(8.8 MB)
ANNEX
Film_H2O.avi(32.9 MB)
Film_CO2.avi(32.2 MB)
Film_N2.avi(21.5 MB)
Etude expérimentale de la combustion des gouttes d'aluminium en convection forcée. Influence de l'atmosphère gazeuse
Vincent Sarou-Kanian1

De par son fort pouvoir énergétique, la combustion des particules d'aluminium dans les moteurs à propergol solide permet d'accroître les performances des gros lanceurs spatiaux tel Ariane 5. Ces particules d'aluminium brûlent dans un environnement gazeux constitué essentiellement de H2O, CO2, N2, HCl, H2, et CO, à haute pression (P=60-70 atm) et haute température (T>3000 K). Dans le présent travail, nous nous sommes particulièrement intéressés à l'influence de l'atmosphère gazeuse sur les différents processus de combustion se déroulant à la fois en phase gazeuse et à la surface de la goutte d'aluminium. Nous avons pour cela développé un dispositif expérimental permettant de décrire précisément avec de multiples techniques et moyens d'analyse (caméra rapide, pyrométrie, spectrométrie, MEB, activation nucléaire) la combustion de gouttes d'aluminium millimétriques en lévitation aérodynamique dans des atmosphères oxydantes proches des conditions réelles dans les propergols (H2O, CO2, N2). Il en ressort que chaque espèce joue un rôle différent dans la combustion de l'aluminium. La vapeur d'eau est prépondérante dans les processus en phase gazeuse grâce à la production d'hydrogène qui facilite la diffusion de chaleur et de matière entre la flamme et la goutte. L'azote est essentiellement impliqué dans les réactions de surface avec la formation de nitrure d'aluminium (AlN) et d'oxynitrure d'aluminium (AlON) qui peuvent aboutir au recouvrement complet de la goutte et à l'arrêt de la combustion en phase gazeuse. Le dioxyde de carbone a un effet double. D'une part, CO2 brûle dans la flamme mais est moins efficace que H2O du fait des moins bonnes propriétés de transport de chaleur et de matière du CO en comparaison de H2. D'autre part, il se produit un phénomène de dissolution de carbone dans la goutte d'aluminium pendant la combustion qui peut atteindre des concentrations telles (20-25% molaire) qu'il peut entraîner un rejet de carbone à la surface aboutissant également à l'arrêt de la combustion en phase gazeuse.
1:  CRMHT et LCSR
aluminium – goutte – combustion – propergol solide – convection forcée – lévitation
http://crmht.cnrs-orleans.fr/Publications/Default.asp

Experimental study of the aluminum droplet combustion under forced convection. Influence of the gaseous atmosphere
Because of its high energetic power, the combustion of aluminum particles in solid propellant rocket motors improves the efficiency of heavy-lift launcher as Ariane 5. Aluminum particles burn in a gaseous atmosphere essentially composed of H2O, CO2, N2, HCl, H2, and CO, at high pressure (P=60-70 atm) and high temperature (T>3000 K). In the present work, we have been particularly interested in the influence of the gaseous atmosphere on the different burning processes both in the gas-phase and at the aluminum droplet surface. An experimental set-up was developed in order to describe precisely, thanks to several analysis techniques (high-speed camera, pyrometry, spectrometry, SEM, nuclear activation) the combustion of aerodynamically levitated millimetric aluminum droplets in gas mixtures with compositions close to the propellant ones (H2O, CO2, N2). The main result is that each species plays a different role in the aluminum combustion. The water vapor has the biggest influence in the gas-phase process due to the production of hydrogen facilitating the heat and mass diffusion between the flame and the droplet. Nitrogen is essentially acting in surface reactions with the formation of aluminum nitride (AlN) and oxynitride (AlON) which may completely cover the droplet and stop the gas-phase combustion. Carbon dioxide has a double effect. On the one hand, CO2 burns in the flame, but it is less efficient than H2O because the heat and mass transfer properties are poorer for CO than for H2. On the other hand, a carbon dissolution phenomenon occurs in the aluminum droplet during burning which may reach saturation (20-25% molar) and involves a carbon rejection at the surface leading to the end of the gas-phase combustion.
aluminum – droplet – combustion – solid propellant – forced convection – levitation