11043 articles  [english version]
Fiche détaillée Thèses
Université de Grenoble (20/06/2011), Georges-pierre Bonneau (Dir.)
Versions disponibles :
Liste des fichiers attachés à ce document : 
PDF
Hassan_Sahar_2011-1.pdf(5.6 MB)
Intégration de connaissances anatomiques a priori dans des modèles géométriques
Sahar Hassan1

L'imagerie médicale est une ressource de données principale pour différents types d'applications. Bien que les images concrétisent beaucoup d'informations sur le cas étudié, toutes les connaissances a priori du médecin restent implicites. Elles jouent cependant un rôle très important dans l'interprétation et l'utilisation des images médicales. Dans cette thèse, des connaissances anatomiques a priori sont intégrées dans deux applications médicales. Nous proposons d'abord une chaîne de traitement automatique qui détecte, quantifie et localise des anévrismes dans un arbre vasculaire segmenté. Des lignes de centre des vaisseaux sont extraites et permettent la détection et la quantification automatique des anévrismes. Pour les localiser, une mise en correspondance est faite entre l'arbre vasculaire du patient et un arbre vasculaire sain. Les connaissances a priori sont fournies sous la forme d'un graphe. Dans le contexte de l'identification des sous-parties d'un organe représenté sous forme de maillage, nous proposons l'utilisation d'une ontologie anatomique, que nous enrichissons avec toutes les informations nécessaires pour accomplir la tâche de segmentation de maillages. Nous proposons ensuite un nouvel algorithme pour cette tâche, qui profite de toutes les connaissances a priori disponibles dans l'ontologie.
1 :  INRIA Grenoble Rhône-Alpes / LJK Laboratoire Jean Kuntzmann - EVASION
Imagerie médicale – Géométrie discrète – Modélisation géométrique – Segmentation de maillage

Integration of anatomic a priori knowledge into geometric models
Medical imaging is a principal data source for different applications. Even though medical images represent a lot of knowledge concerning the studied case, all the a priori knowledge known by the specialist remains implicit. Nevertheless this a priori knowledge has a major role in the interpretation and the use of the images. In this thesis, anatomical a priori knowledge is integrated in two medical applications. First, an automatic processing pipeline is proposed in order to detect, quantify and localize aneurysms on a segmented cerebrovascular tree. Centerlines of blood vessels are extracted and then used to automatically detect aneurysms and quantify them. To localize aneurysm, a matching is made between the cerebrovascular tree of the patient and a healthy one. The a priori knowledge, in this case, is represented by a graph. In the context of identifying sub-parts of an organ represented by a mesh, we propose the use of an anatomical ontology. This ontology is first enhanced by all information necessary to achieve the task of mesh segmenting. A new algorithm using this ontology to accomplish the segmentation task is then proposed.
Medical imaging – Discrete geometry – Geometric modeling – Mesh segmentation