26535 articles – 20363 Notices  [english version]
Fiche détaillée Preprint, Working Paper, Document sans référence, etc.
Liste des fichiers attachés à ce document : 
PDF
FastBirkhoffNew62.pdf(114.4 KB)
PS
FastBirkhoffNew62.ps(234 KB)
On the fast Khintchine spectrum in continued fractions
Fan Ai-Hua1, Lingmin Liao2, Bao-Wei Wang3, Jun Wu3

For $x\in [0,1)$, let $x=[a_1(x), a_2(x),\cdots]$ be its continued fraction expansion with partial quotients $\{a_n(x), n\ge 1\}$. Let $\psi : \mathbb{N} \rightarrow \mathbb{N}$ be a function with $\psi(n)/n\to \infty$ as $n\to \infty$. In this note, the fast Khintchine spectrum, i.e., the Hausdorff dimension of the set $$ E(\psi):=\Big\{x\in [0,1): \lim_{n\to\infty}\frac{1}{\psi(n)}\sum_{j=1}^n\log a_j(x)=1\Big\} $$ is completely determined without any extra condition on $\psi$.
1 :  LAMFA - Laboratoire Amiénois de Mathématique Fondamentale et Appliquée
2 :  LAMA - Laboratoire d'Analyse et de Mathématiques Appliquées
3 :  Department of Mathematics
Continued fractions – fast Khintchine spectrum – Hausdorff dimension