26768 articles – 20450 Notices  [english version]
Fiche détaillée Rapport de recherche
Liste des fichiers attachés à ce document : 
FieldsB.pdf(348.7 KB)
On fields with the Property (B)
Francesco Amoroso1, Sinnou David2, Umberto Zannier3

Let K be a number field and let L/K be an infinite Galois extension with Galois group G. Let us assume that G/Z(G) has finite exponent. We show that L has the Property (B) of Bombieri and Zannier: the absolute and logarithmic Weil height on L^* (outside the set of roots of unity) is bounded from below by an absolute constant. We discuss some feature of Property (B): stability by algebraic extensions, relations with field arithmetic. As a as a side result, we prove that the Galois group over Q of the compositum of all totally real fields is torsion free.
1 :  LMNO - Laboratoire de Mathématiques Nicolas Oresme
2 :  IMJ - Institut de Mathématiques de Jussieu
3 :  Scuola Normale Superiore
Heights – Field Arithmetic