26752 articles – 20449 Notices  [english version]
Fiche détaillée Preprint, Working Paper, Document sans référence, etc.
Versions disponibles :
Liste des fichiers attachés à ce document : 
preprojective2APRv3.pdf(251.6 KB)
preprojective2APRv3.ps(903.7 KB)
A derived equivalence between cluster equivalent algebras
Claire Amiot1

Let $Q$ be an acyclic quiver. Associated with any element $w$ of the Coxeter group of $Q$, triangulated categories $\underline{\Sub}\Lambda_w$ were introduced in \cite{Bua2}. There are shown to be triangle equivalent to generalized cluster categories $\Cc_{\Gamma_w}$ associated to algebras $\Gamma_w$ of global dimension $\leq 2$ in \cite{ART}. For $w$ satisfying a certain property, called co-$c$-sortable, other algebras $A_w$ of global dimension $\leq 2$ are constructed in \cite{AIRT} with a triangle equivalence $\Cc_{A_w}\simeq \underline{\Sub}\Lambda_w$. The main result of this paper is to prove that the algebras $\Gamma_w$ and $A_w$ are derived equivalent when $w$ is co-$c$-sortable. The proof uses the 2-APR-tilting theory introduced in \cite{IO}.
1 :  IRMA - Institut de Recherche Mathématique Avancée
generalized cluster categories – 2-APR-tilting – derived equivalence – tilting theory