26723 articles – 20431 references  [version française]
Detailed view Article in peer-reviewed journal
Journal of Multivariate Analysis 95, 2 (2005) 345-369
A multivariate empirical characteristic function test of independence with normal marginals
Martin Bilodeau1, Pierre Lafaye De Micheaux2, 3

This paper proposes a semi-parametric test of independence (or serial independence) between marginal vectors each of which is normally distributed but without assuming the joint normality of these marginal vectors. The test statistic is a Cramér­von Mises functional of a process defined from the empirical characteristic function. This process is defined similarly as the process of Ghoudi et al. [J. Multivariate Anal. 79 (2001) 191] built from the empirical distribution function and used to test for independence between univariate marginal variables. The test statistic can be represented as a V-statistic. It is consistent to detect any form of dependence. The weak convergence of the process is derived. The asymptotic distribution of the Cramér­von Mises functionals is approximated by the Cornish­Fisher expansion using a recursive formula for cumulants and inversion of the characteristic function with numerical evaluation of the eigenvalues. The test statistic is finally compared with Wilks statistic for testing the parametric hypothesis of independence in the one-way MANOVA model with random effects.
1:  DMS - Département de mathématiques et de statistique
2:  LJK - Laboratoire Jean Kuntzmann
3:  GIN - U836 - Grenoble Institut des Neurosciences