26453 articles – 20333 references  [version française]
.:. Browse > By author > Ammari .:.
11 documents ordered by :

fulltext access Remark on stabilization of second order evolution equations by unbounded dynamic feedbacks and applications
Abbas Z. et al
[hal-01022854 - version 1] (2014-07-11)
fulltext access Boundary feedback stabilization of a chain of serially connected strings
Ammari K. et al
[hal-00998329 - version 2] (04/06/2014)
fulltext access Rate of decay of some Petrowsky-like dissipative systems
Ammari K. et al
[hal-01018784 - version 2] (2014-07-08)
The rate at which energy decays in a viscously damped hinged Euler-Bernoulli beam.
Ammari K. et al
Journal of Differential Equations, (2014) . [hal-01018783 - version 1]
Spectral analysis and stabilization of a chain of serially connected Euler-Bernoulli beams and strings
Ammari K. et al
Communications on Pure and Applied Mathematics 11, 2 (2012) 785--807 [hal-00644058 - version 1]
Sharp energy estimates for nonlinearly locally damped PDE's via observability for the associated undamped system.
Alabau-Boussouira F. et al
Journal of Functional Analysis 260, 8 (2011) 2424--2450 [hal-00594846 - version 1]
fulltext access Bilinear control of discrete spectrum Schrödinger operators
Ammari Z. et al
[hal-00479584 - version 1] (2010-04-30)
Nonlinear stabilization of abstract systems via a linear observability inequality and application to vibrating PDE's.
Alabau-Boussouira F. et al
Comptes Rendus Mathematique 348, 3-4 (2010) 165-170 [hal-00594841 - version 1]
A Sharp Geometric Condition for the Boundary Exponential Stabilizability of a Square Plate by Moment Feedbacks only
Tenenbaum G. et al
In Control of Coupled Partial Differential Equations (2007) 1-12 [hal-00151493 - version 1]
Decay rates at low and high frequencies for a plate equation with feedback concentrated in interior curves.
Ammari K. et al
Z. Angew. Math. Phys. 57, 5 (2006) 832--846. [hal-00140920 - version 1]
Optimal location of the actuator for the pointwise stabilization at high frequencies of a Bernoulli-Euler beam.
Ammari K. et al
Control Cybern. 31, 1 (2002) 57-66 [hal-00140913 - version 1]