25303 articles – 19554 references  [version française]
Detailed view Preprint, Working Paper, ...
Available versions:
Attached file list to this document: 
Levyponctuel.pdf(362.1 KB)
Levyponctuel.ps(727.4 KB)
Adaptive kernel estimation of the Lévy density
Mélina Bec1, Claire Lacour2

This paper is concerned with adaptive kernel estimation of the Lévy density $N(x)$ for pure jump Lévy processes. The sample path is observed at $n$ discrete instants in the "high frequency" context ($ \Delta $ = $ \Delta_n $ tends to zero while $n \Delta_n $ tends to infinity). We construct a collection of kernel estimators of the function $g(x)=xN(x)$ and propose a method of local adaptive selection of the bandwidth. We provide an oracle inequality and a rate of convergence for the quadratic pointwise risk. This rate is proved to be the optimal minimax rate. We give examples and simulation results for processes fitting in our framework.
1:  MAP5 - Mathématiques appliquées Paris 5
2:  LM-Orsay - Laboratoire de Mathématiques d'Orsay