998 articles 
Fiche détaillée Thèses
Université Blaise Pascal - Clermont-Ferrand II (17/02/2012), Bertrand Devouard (Dir.)
Liste des fichiers attachés à ce document : 
PDF
Chaumard-2012CLF22226.pdf(129.5 MB)
Etude pétrologique et expérimentale des chondrites CV-CK et conditions du métamorphisme des astéroïdes carbonés
Noël Chaumard1

Les chondrites carbonées (CCs) sont des objets primitifs accrétés lors de la formation du Système Solaire. Composées en grande partie de chondres, de matrice et d'inclusions réfractaires, elles ont enregistré les hétérogénéités chimiques, isotopiques et minéralogiques de la nébuleuse solaire. Contrairement aux autres classes de chondrites, la grande majorité des CCs sont primitives (types pétrologiques 1 à 3). Elles n'ont donc pas subi de métamorphisme important sur leur corps parent. Toutefois, un groupe de CCs, les CKs, montre un métamorphisme thermique intense (types pétrologiques 4 à 6). Ces chondrites sont caractérisées par des matrices recristallisées, des olivines équilibrées à ∼Fa31, un degré d'oxydation important (olivines riches en NiO, rapport métal/magnétite proche de zéro), des teneurs en éléments réfractaires lithophiles intermédiaires aux CVs et aux COs, ou encore des compositions isotopiques en oxygène se situant dans le champ défini par les CVs et les COs. Les CKs ont été peu étudiées jusqu'au début des années 90, car peu nombreuses (seulement 210 classifiées au 6 décembre 2011) et de petite taille (masse médiane ∼33,5g). Leurs compositions isotopiques et chimiques laissent supposer l'existence d'un lien génétique avec les CV3. Les découvertes récentes de nouvelles CKs depuis 1990, et notamment de CK3 par le biais de collectes systématiques au Sahara et en Antarctique, permettent l'étude détaillée de l'évolution métamorphique des CKs, notamment à la transition 3-4. Ce travail a pour but de caractériser les conditions dans lesquelles s'est déroulé cet épisode métamorphique, et grâce à l'observation de plusieurs CK3-4, d'étudier la relation CV-CK. La caractérisation détaillée de l'évolution métamorphique de 19 CKs dont 5 CK3 a permis de confirmer que les différences observées entre les divers composants chondritiques (abondance, minéralogie, texture) des CVs et des CKs peuvent être expliquées par un épisode thermique secondaire de HT-BP (∼300-650°C) en conditions oxydantes (∼NNO). De plus, l'analyse de profils de diffusions dans les chondres des CKs indique des durées de métamorphisme intermédiaires à celles communément invoquées pour du choc (de quelques secondes à quelques jours) et pour la désintégration d'éléments à courte durée de vie (plusieurs millions d'années). Une série d'expériences réalisées en four 1 atmosphère avec contrôle de la fugacité d'oxygène nous a permis de reproduire les textures caractéristiques des CKs et d'obtenir une teneur en fer d'équilibre des olivines des CVs, valeur proche de celle mesurée dans les CKs. Cela semble donc confirmer que les CKs sont des CVs rééquilibrées. Par conséquent, la classification actuelle de ces chondrites en deux groupes distincts devrait être modifiée afin de rendre compte de l'existence de cette série métamorphique CV-CK continue. Nous proposons de considérer le chauffage radiatif comme cause possible du métamorphisme des CKs. Un modèle numérique nous a permis de confirmer que des météoroïdes carbonés avec des périhélies situés entre 0,07 et 0,15 UA peuvent être chauffés à des températures pouvant aller jusqu'à 780°C. Les tailles pré-atmosphériques estimées pour les CV-CK (de quelques centimètres à 2,5 mètres) sont compatibles avec ce type de processus. La fragmentation d'un corps parent homogène de type CV (possiblement l'astéroïde à l'origine de la famille d'Eos) pourrait former des météoroïdes qui, sous l'effet de phénomènes de résonances, seraient redirigés vers l'intérieur du Système Solaire et pourraient ainsi être métamorphisés par chauffage radiatif. Ce type de processus thermique secondaire n'étant efficace que pour de petits fragments d'astéroïdes, il ne doit pas être considéré comme un processus corps-parent stricto sensu.
1 :  LMV - Laboratoire Magmas et Volcans
Laboratoire Magmas et Volcans
Chondrites carbonées – Pétrologie – Métamorphisme – Météoroïde – Chaleur radiative

Petrological and experimental study of CV-CK chondrites and conditions of metamorphism in carbonaceous asteroids
Carbonaceous chondrites (CCs) are primitive objects accreted during the earliest stage of the Solar System formation. Mainly composed of chondrules, matrix and refractory inclusions, CCs recorded chemical, isotopic and mineralogical heterogeneities of the solar nebula. Unlike other chondrite classes, most CCs are primitive (petrologic types 1 to 3), i.e., they have not been affected by thermal parent-body processes. However, CK chondrites suffered an intense metamorphism (petrologic types 4 to 6). The CK group is characterized by recrystallized matrices, equilibrated olivines (∼Fa31), a high level of oxidation (Ni-rich olivines, metal/magnetite ratio close to zero), low contents of refractory inclusions, refractory lithophile abundances intermediate between CV and CO groups, and oxygen isotope compositions overlapping the CV and CO groups. CKs have been poorly studied until the 1990's, in part due to the small number of classified samples (210 as of December 6th, 2011), and their small masses (median mass∼33.5g). Isotopic and major element compositions support a genetic link with CV3s. Since1990, recent discoveries of CKs, in particular of CK3s recovered by systematic Antarctic and Saharan collects, allow a detailed study of the CK metamorphic evolution, especially at the 3-4 transition. The objective of this study is the characterization of the conditions of metamorphism of CKs, and through analyses of several CK3-4 samples, the study of the CV-CK relationship. The detailed characterization of the metamorphic evolution of 19 CKs, including 5 CK3, confirms that observed differences between chondritic components in CVs and CKs (abundance, mineralogy, texture) can be explained by a secondary HT-BP thermal process (∼300-650°C) under oxidizing conditions (∼NNO). Moreover, durations of metamorphism obtained by the analysis of diffusion profiles in CK chondrules are intermediate between those commonly admitted for shock (few seconds to several days) and for short-lived radionuclides decay (several million years). An experimental study, using a 1-atmosphere furnace with controlled oxygen fugacity, provides additional arguments for the CV-CK relationship. We reproduced characteristic CK textures and obtained olivine iron contents of equilibrated CVs close to those measured in CKs. These experiments confirm that CKs can be considered as reequilibrated CVs. Thus, the current classification of CVs and CKs in two distinct groups should be modified in order to account for the existence of the CV-CK continuous metamorphic series from type 3 to 6. We propose to consider radiative heating as a possible cause of metamorphism for CKs. Numerical thermal modeling indicates that carbonaceous meteoroids with low perihelia (between 0.07 and 0.15 AU) can be heated at temperatures up to 780°C. Pre-atmospheric sizes estimated for CVs and CKs (from a few centimeters to 2.5 meters) support this thermal process. Fragmentation of an homogeneous CV-type parent body (possibly the parent asteroid at the origin of the Eos family) could be the source of meteoroids which, due to resonances, move toward the Sun and thus be metamorphosed by radiative heating. This secondary thermal process, affecting only small asteroid fragments, should not be considered as a parent-body process in the sense that it did not occur on the asteroid before its disruption.
Carbonaceous chondrites – Petrology – Metamorphism – Meteoroid – Radiative heating