122 articles  [version française]
Detailed view PhD thesis
Université Claude Bernard - Lyon I (03/11/1972), J.-C. Sabonnadière (Dir.)
Attached file list to this document: 
PDF
TheseAuriol1972.pdf(3.4 MB)
Contribution à l'étude numérique des régimes transitoires dans les réseaux à très haute tension
Philippe Auriol1, 2

Le transport de l'énergie électrique se pose de manière de plus en plus aiguë étant donnée la croissance rapide de l a quantité d'énergie à transporter quotidiennement. En effet, les besoins des villes et des zones industrielles augmentent sans cesse, et des conditions d'esthétique ou d'environnement nécessitent l'installation des ensembles de production dans des sites éloignés des centres de consommation.
De ce fait, des études technico-économiques récentes ont montré l'intérêt de prévoir les futurs réseaux à des échelons de tension très élevés, de l'ordre du million de volts. La conception technologique de telles lignes de transport d'énergie doit tenir compte non seulement des conditions de régime permanent mais aussi des régimes transitoires dont l'importance peut, dans certains cas, être prépondérante du point de vue de l'isolement.
On conçoit donc facilement l'intérêt des méthodes d'études des régimes non sinusoïdaux, applicables à la prédétermination de la nature et de la forme des ondes de tensions et de courant qui peuvent se propager sur ces réseaux. Cette prédétermination peut être effectuée de deux façons complémentaires : d'une part l'étude analogique à l'aide d'analyseurs transitoires, qui sont de véritables calculateurs analogiques particuliers, d'autre part à l'aide de méthodes numériques implantées sur des ordinateurs. Jusqu'à ces dernières années, les exploitants de réseaux et les constructeurs donnaient la préférence à l'analyseur transitoire, qui permet une meilleure visualisation des phénomènes physiques. Néanmoins, il semble que les méthodes numériques, par leur souplesse, leur fiabilité et leur rapidité d'exécution tendent à prendre le pas sur les études analogiques.
Parmi les méthodes numériques on distingue trois grandes familles : celles qui utilisent des transformations intégrales (transformation de Laplace ou transformation de Fourier modifiée), celles du type Bergeron ou des ondes mobiles et les méthodes aux différences finies.

Si le choix définitif ne s'est point encore porté de manière unanime sur l'une ou l'autre d'entre elles, il semble que les deux premiers groupes soient proches de leurs possibilités maximales, tandis que les méthodes aux différences finies, quoique encore assez peu développées, se révèlent de plus en plus prometteuses.
C'est pour cette raison que, en collaboration étroite avec le service des Etudes et Recherches de 1'E.D.F. (ERMEL), nous avons, au sein de notre équipe, fait porter notre effort sur cette dernière méthode. Une première étude, effectuée par J .C . SABONNADIERE, puis par A. N'DIR, a permis de dégager les caractères d'un schéma semi-implicite et d'une méthode associée, appelée Méthode de Double Balayage; son application à l'ensemble d'une ligne et de son système d'alimentation a donné lieu à la mise au point d'une première version du programme PEGASE (Programme d'Etude Générale et d'Analyse des Surtensions d'Enclenchement. Le travail que nous présentons ci-après est une extension de ces résultats à l'étude d'un réseau de transport d'énergie complexe, comportant un nombre quelconque d'éléments à constantes réparties, voire non linéaires.

Dans le premier chapitre, nous exposerons la méthode de Double Balayage, ses principales caractéristiques, et son application au calcul de surtensions d'enclenchement lors de la mise sous tension d'une ligne à vide à partir d'un seul générateur.

Le chapitre II, qui est le plus important de notre travail, est consacré à l'extension de notre méthode numérique au traitement d'un réseau de transport d'énergie comportant un nombre quelconque de lignes triphasées et de générateurs, mais un seul jeu de barres, à partir duquel une ligne à vide est mise sous tension.

Dans le chapitre III, nous avons généralisé les méthodes mises au point et appliquées dans le chapitre précédant, en traitant le calcul des régimes transitoires dans des réseaux à très haute tension non maillés formés d'un nombre quelconque de lignes et de deux jeux de barres, dans un premier temps, et d'un nombre quelconque de lignes et de jeux de barres ensuite.

Nous avons regroupé dans le chapitre IV quelques résultats obtenus à l'aide des programmes de calculs établis dans les chapitres II e t III; nous présentons également des comparaisons avec des courbes résultant d'essais sur analyseur transitoire de réseaux, ou d'essais réels « in situ », ce qui permet de juger la fiabilité de nos méthodes.

Enfin, on trouvera dans le chapitre V l'esquisse d'une méthodologie d'utilisation de nos programmes de calculs à des fins d'essais industriels; nous nous appuierons pour cela sur deux exemples : le calcul des phénomènes transitoires qui se développent dans un réseau complexe, d'abord lors de l'apparition d'un défaut en ligne, ensuite lors de la mise sous tension d'éléments triphasés non linéaires, tels que résistances ou inductances.
1:  Laboratoire d'électrotechnique de l'Ecole Centrale de Lyon
2:  Ampère
réseaux très haute tension – simulation numérique – différences finies – double balayage

(not available)