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1 | Introduction

1.1 Context and positioning

This PhD thesis deals with sensitivity analysis (SA) for nonlinear hyperbolic partial
differential equations (PDEs). These two topics separately are very well known and have
been studied thoroughly: however, when considered together, many problems arise and
the literature on this subject is far from being comprehensive.

1.1.1 Sensitivity analysis

SA is the study of how changes in the inputs of a model affect the outputs. The sensi-
tivity itself is defined as the derivative of the state, i.e. the solution to the PDE model
considered, with respect to a parameter of interest. SA is obviously a valuable tool
for engineering applications, since it allows the quantification of changes in the physi-
cal response of a system to any change of parameter values: one of its straightforward
application in this direction is uncertainty quantification (UQ). SA is an efficient and de-
terministic method to estimate expectation and standard deviation of the state variables,
as an uncertainty propagation technique. Another application of SA is optimization: sen-
sitivities can be used to compute the gradient of a cost functional. Finally, SA methods
can likewise be employed to monitor and explore interactively neighbouring solutions for
a negligible computational expense and provide an answer to the question “what if...”.

There are two main classes of methods to compute the sensitivities: the discretise-
then-differentiate approach and the differentiate-then-discretise one. The first approach
consists of, as the name says, first discretising the state PDE system and then differen-
tiating it to get a numerical approximation of the sensitivities. In the second approach,
one differentiates the state system obtaining in this way the sensitivity system, which
can then be discretised. The approximated sensitivities obtained with these approaches
are different, because the differentiation step and the discretisation step do not commute
in general. A popular strategy that falls into the discretise-then-differentiate category is
automatic differentiation [HMB98]: a first advantage of this is the simplification of the
code that has to be written for the sensitivity; a second one is the fact that the resulting
sensitivity is consistent with the discrete state solution, even if a coarser grid is used for
the resolution. However, an important drawback of all the discretise-then-differentiate
approaches is the need to differentiate all the computational facilitators, such as, for
instance, slope limiters in a finite volume framework or even MPI communication in
parallel computing. In [MD10] for instance, they quantify the error due to automatic
differentiation applied to classical slope limiters for the 3D Euler system. On the other
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Chapter 1. Introduction

hand, the differentiate-then-discretise approach provides a sensitivity system, for which
computational facilitators can be used, if needed. Both strategies are valid and they
are suitable for different applications. A detailed comparison between the two for opti-
mization problems is performed in [Gun03]. In this work, we will mainly focus on the
differentiate-then-discretise approach.

An alternative to SA which is worth mentioning, especially for optimization, is the
adjoint equation method [Jam88, MP01, Pir74], which introduces additional adjoint vari-
ables to compute the derivative of any functional output with respect to all input pa-
rameters. Note that for the adjoint method, too, one needs to choose whether to use
a differentiate-then-discretise or a discretise-then-differentiate approach. The adjoint
equation is independent of the input parameters, thus this approach is very efficient for
optimization problems involving a large number of design parameters, as opposed to
the SA approach, which requires the solution of a different sensitivity system for each
parameter. However, if the PDEs considered are time-dependent, the adjoint equation
should be solved backwards in time, which could lead to practical difficulties. Moreover,
SA allows the computation of the derivative of the whole state and it is not restricted to
functionals. Finally, we remark that the sensitivity systems are all independent of each
other and therefore can be solved in parallel.

Therefore, in this work we focused our attention on the continuous sensitivity equa-
tion (CSE) method [BB97, DPB06, DP06, HEPB04], which allows to compute the deriva-
tive of the PDE solution itself, at any location and time, with respect to a single input
parameter: this is done by formally differentiating the state system with respect to the
parameter of interest, and then exchanging the derivatives with respect to the parame-
ter with those in space and time, obtaining in such a way a new system of PDEs, the
sensitivity system. Of course, this can be done for as many parameters as needed. This
approach is a differentiate-then-discretise approach and it relies on a forward time inte-
gration. However, a certain regularity of the state solution is required, a condition that
is not always met in the hyperbolic framework.

1.1.2 Hyperbolic equations

A one-dimensional conservation law is an equation of the following form:

∂tU+ ∂xF(U) = 0,

where ∂t and ∂x indicate the partial derivatives with respect to time and space, respec-
tively, U is the conserved variable, or state, and F is the flux. It expresses the fact that,
on an arbitrary domain, the time variation of the state variable U are equal to the flux
of F through the boundary of the domain considered. These kinds of equations often
result from the modelling of continuum physics in cases where the dissipation effects are
negligible. A conservation law is said to be strictly hyperbolic if the Jacobian matrix of

the flux A(U) =
∂F

∂U
is R−diagonalisable, whilst if the matrix A(U) has real eigenvalues

but it is not R−diagonalisable the system is weakly hyperbolic, and this distinction will
be important in the next chapters.

Hyperbolic equations have been studied for a very long time, both from theoretical
and numerical points of view and many books have been written on the subject [Tor09,
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1.2. Thesis synopsis

GR96]. For the scalar conservation laws, a technique named the method of characteristics
can be used to compute an analytical solution to the equation, although it provides often
an implicit solution, depending on the initial data. For systems, analytical solutions are
known only for certain specific initial conditions, for instance for what it is usually
called the Riemann problem: an initial value problem with a piecewise constant data
presenting only one discontinuity. These problems play a crucial role in the numerical
approximation of hyperbolic equations with a finite volume (FV) approach, which is, as of
today, the most suitable approach for these kinds of equations thanks to its conservation
property. In particular, the first step of Godunov-type method is the solution of a
Riemann problem: this can be done exactly, for the problems for which the analytical
solution is known, or using a so-called approximate Riemann solver. Many different
approximate Riemann solvers have been developed, some based on a simplification of
the structure of the solution, such as for instance the HLL solver, some based on a
linearisation of the system, like for example the Roe solver.

Depending on the initial and boundary conditions, hyperbolic PDEs can present dis-
continuities, such as shock waves or contact discontinuities. This common feature in the
hyperbolic framework is the main reason why SA in the hyperbolic equations framework
is not straightforward. Indeed, such discontinuities in the solution lead to specific is-
sues regarding SA, because they correspond to the presence of Dirac delta functions in
the sensitivity fields: the CSE method briefly introduced in the previous section makes
sense only under certain assumptions of regularity of the state solution, which may not
be verified in the hyperbolic case. This question has been explored in [BP02, MP01]
with a theoretical viewpoint, and more recently in [Gui09, GDC09] with a numerical
viewpoint, where a modification of the sensitivity system was proposed, to “remove” the
spikes from the numerical sensitivity solution. More specifically, a modification of HLL
Riemann solver used to evaluate fluxes in a FV method was proposed in the context of
Saint-Venant equations. The correction is based on the Rankine-Hugoniot conditions,
which govern the state across a shock.

1.2 Thesis synopsis

In this work we deal with a hierarchy of models of increasing complexity. We start
in Chapter 2 from the simplest example of nonlinear hyperbolic equation, the inviscid
Burgers’ equation, before focusing on one of the most known and important examples
of nonlinear hyperbolic PDE system: the Euler system. The Euler system models the
dynamics of a compressible material, which can be a liquid or a gas, and three physical
variables are considered to describe the flow: the density of the fluid, its velocity and
its pressure. At first, in Chapter 3, we deal with a version of this system, known as
the p−system, which is simplified under certain physical and mathematical hypothesis:
the fluid is assumed to be in barotropic conditions and Lagrangian coordinates are used;
then, in Chapter 4 and Chapter 5 we deal with the complete Euler system: in particular,
in Chapter 4 the Sod shock tube is studied, along with the corresponding problem for
the sensitivity, and in Chapter 5 a non trivial topography and stationary solutions are
considered.

As mentioned in the previous section, if standard techniques of SA, such as the
CSE method, are used everywhere, even in presence of discontinuities, they provide a
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Chapter 1. Introduction

sensitivity which contains Dirac delta functions. Since a Dirac delta function cannot be
seized numerically, this leads to a spike which is spread in the neighbourhood of the shock
and which deteriorates the solution. Moreover, the spikes can change with the numerical
discretisation. The use of such sensitivities is impractical for many of the applications
mentioned above. Therefore, along the same lines as what is done in [Gui09, GDC09], we
modify the sensitivity equation in order to obtain a system which is valid also in the case
of discontinuous solutions. In this work, we adopt a similar, though slightly different,
point of view: we suggest to add a correction in the form of a source term to balance out
the spikes. The source term is non-zero only in case of shock or contact discontinuity and
has an amplitude which is proportional to the jump of the state across the discontinuity
considered. The computation of the amplitude of the correction term is carried out in
details in the next chapters and it is based on an integration of the equations over a
control volume containing a discontinuity. Regarding the discretisation of such a source
term, it is not straightforward: we remark that a shock detector is needed, in order for
the term to be consistent and to avoid numerical overcorrection.

Concerning the discretisation of the conservation law, the state problem is well-known
and all sorts of numerical schemes have been developed throughout the years. It is not
the case for the sensitivity equations. Moreover, considering the system as a whole
does not bring an advantage since the system composed by the state and the sensitivity
together is only weakly hyperbolic in most cases. For these reasons, our strategy from
a numerical point of view is the following: first, the state is solved using a classical FV
scheme; secondly, the source term, which depends on the state, is computed; finally an
adapted FV numerical scheme is applied to the sensitivity problem. This approach works
well if the state equation is a scalar equation, however numerical results show that for
systems some additional precaution is necessary: in particular, numerical diffusion plays
a fundamental role and damages the convergence to the exact solution for the sensitivity.
Hence, in this work we adapt an anti-diffusive (AD) Godunov-type numerical scheme,
first introduced in [CG08], and we propose AD versions of different FV schemes, of
different order in time and in space.

Finally, we explore two different applications of SA: optimization and uncertainty
quantification. These applications deal with several input parameters. In Chapter 4 we
perform a UQ analysis for a Riemann problem on the complete Euler system: different
SA approaches are compared to the more expensive Monte Carlo one. In Chapter 5
an optimization problem is considered: in particular, we deal with a pressure matching
problem, where the optimization parameters considered directly modify the topography.
The aim of these applications is to understand the importance of the numerical diffusion
and of the correction term in more realistic situations and to derive practical guidelines
for SA.

During my first year of PhD I worked on the modelling and optimization of running
strategies, under the supervision of Amandine Aftalion, who was my advisor. This work
resulted in a published paper [Fio17], which is reported in Appendix A.
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Introduction

1.3 Contexte et positionnement

Cette thèse porte sur l’analyse de sensibilité (AS) pour les équations aux dérivées par-
tielles (EDP) hyperboliques non-linéaires. Les deux sujets séparément sont très bien
connus et ont fait l’objet de plusieurs études approfondies : cependant, lorsqu’ils sont
considérés ensemble, de nombreux problèmes se posent et la littérature sur ce sujet n’est
pas importante.

1.3.1 Analyse de sensibilité

L’AS est l’étude de la façon dont les changements dans les entrées d’un modèle affectent
la sortie. La sensibilité elle-même est définie comme la dérivée de l’état, c’est-à-dire la
solution du modèle d’EDP considéré, par rapport à un paramètre d’intérêt. L’AS est
évidemment un outil important pour des applications d’ingénierie, car elle permet de
quantifier la réponse physique d’un système aux changements de valeurs des paramètres :
une application directe dans ce sens est la quantification d’incertitude (UQ). L’AS est
une méthode efficace et déterministe pour estimer l’espérance et l’écart-type des variables
d’état, en tant que technique de propagation d’incertitude. Une autre application de
l’AS est l’optimisation : les sensibilités peuvent être utilisées pour calculer le gradient
d’une fonctionnel coût. Enfin, les méthodes d’AS peuvent également être utilisées pour
l’exploration interactive des solutions voisines avec un coût de calcul négligeable et fournir
une réponse à la question “que se passe-t-il si ...”.

Il y a deux classes principales de méthodes pour calculer les sensibilités : l’approche
discrétiser puis différencier et l’approche différencier puis discrétiser. La première ap-
proche consiste, comme son nom l’indique, à discrétiser d’abord le système d’EDP d’état,
puis à le différencier pour obtenir une approximation numérique des sensibilités. Dans
la seconde approche, on différencie le système d’état obtenant ainsi le système de sen-
sibilité, qui peut ensuite être discrétisé. Les sensibilités approchées obtenues avec ces
deux approches sont différentes, car l’étape de différenciation et celle de discrétisation
ne commutent pas en général. La différenciation automatique [HMB98] est une stratégie
couramment employée qui entre dans la catégorie discrétiser puis différencier : un premier
avantage est la simplification du code qui doit être écrit pour la sensibilité ; un second
est le fait que la sensibilité obtenue est consistante avec la solution discrète de l’état,
même si un maillage plus grossier est utilisé pour la résolution. Cependant, un inconvé-
nient important de toutes les approches discrétiser puis différencier est la nécessité de
différencier tous les facilitateurs de calcul, comme, par exemple, les limiteurs de pente
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Chapter 1. Introduction

dans un cadre volumes finis ou même la communication MPI en calcul parallèle. Dans
[MD10] par exemple, ils quantifient l’erreur due à la différentiation automatique appli-
quée à des limiteurs de pente classiques dans le cadre des équations d’Euler 3D. D’autre
part, l’approche différencier puis discrétiser fournit un système de sensibilité pour lequel
on peut, si nécessaire, utiliser des facilitateurs de calcul spécifiques. Les deux stratégies
sont valables et adaptées à différentes applications. Une comparaison détaillée des deux
pour les problèmes d’optimisation se trouve dans [Gun03]. Dans ce travail, nous nous
concentrerons principalement sur l’approche différencier puis discrétiser.

Une alternative à l’AS qui mérite d’être mentionnée, spécialement pour l’optimisation,
est la méthode de l’équation adjointe [Jam88, MP01, Pir74], qui introduit des variables
supplémentaires, dites adjointes, afin de calculer la dérivée d’une fonctionnelle par rap-
port à tous les paramètres d’entrée. On note que pour la méthode adjointe aussi il existe
les deux approches : différencier puis discrétiser ou discrétiser puis différencier. L’équation
adjointe est indépendante du nombre de paramètres d’entrée, ce qui rend cette approche
très efficace pour les problèmes d’optimisation avec beaucoup de paramètres, plutôt que
l’approche AS, qui nécessite de résoudre un système de sensibilité différent pour chaque
paramètre. Cependant, si les EDP considérées dépendent du temps, l’équation adjointe
doit être résolue à rebours en temps, ce qui pourrait poser des difficultés pratiques. De
plus, l’AS permet de calculer la dérivée de l’état et n’est pas limitée aux fonctionnelles.
Enfin, nous remarquons que les systèmes de sensibilité sont tous indépendants entre eux
et peuvent donc être résolus en parallèle.

Par conséquent, dans ce travail nous nous sommes concentrés sur la méthode de
léquation de sensibilité continue [BB97, DPB06, DP06, HEPB04], qui permet de calculer
la dérivée de la solution de l’EDP considérée, à n’importe quel endroit et temps, par
rapport à un paramètre d’entrée : cela se fait en différenciant formellement le système
d’état par rapport au paramètre d’intérêt, puis en échangeant les dérivées par rapport au
paramètre avec celles en espace et en temps, obtenant ainsi un nouveau système d’EDP,
le système de sensibilité. Bien sûr, cela peut être fait pour autant de paramètres que
nécessaire. Cette approche est une approche différencier puis discrétiser et est basée sur
une intégration avec avance en temps. Cependant, une certaine régularité de la solution
d’état est nécessaire, condition qui n’est pas toujours vérifiée dans le cadre hyperbolique.

1.3.2 Équations hyperboliques

Une lois de conservation 1D est une équation de la forme suivante :

∂tU+ ∂xF(U) = 0,

où ∂t et ∂x désignent les dérivées partielles par rapport au temps et à l’espace, respecti-
vement, U est la variable conservée, ou état, et F est le flux. Elle exprime le fait que, sur
un domaine arbitraire, la variation temporelle de la variable d’état U est égale au flux
de F à travers la frontière du domaine considéré. Ces équations proviennent souvent de
la modélisation de la physique des milieux continus dans les cas où les effets dissipatifs
sont négligeables. Une loi de conservation se dit strictement hyperbolique si la matrice

jacobienne du flux A(U) =
∂F

∂U
est R− diagonalisable, alors que si la matrice A(U) a des
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valeurs propres réelles mais qu’elle n’est pas R− diagonalisable, le système est faiblement
hyperbolique, et cette distinction sera importante dans la suite.

Les équations hyperboliques ont été étudiées depuis très longtemps, à la fois d’un
point de vue théorique et numérique et de nombreux livres ont été écrits sur le sujet
[Tor09, GR96]. Pour les lois de conservation scalaires, une technique appelée méthode
des caractéristiques peut être utilisée pour calculer une solution analytique de l’équation,
bien qu’elle ne fournisse souvent qu’une solution implicite, selon les données initiales.
Pour les systèmes, les solutions analytiques ne sont connues que pour certaines condi-
tions initiales spécifiques, comme par exemple pour ce que l’on appelle un problème de
Riemann : un problème aux valeurs initiales avec une donnée constante par morceaux
qui présente une seule discontinuité. Ces problèmes jouent un rôle fondamental dans
l’approximation numérique des équations hyperboliques avec une approche aux volumes
finis, qui reste, à ce jour, l’approche la plus appropriée pour ces équations grâce à ses
propriétés de conservation. En particulier, la première étape de la méthode de Godunov
est la résolution d’un problème de Riemann : cela peut être fait exactement, pour les
problèmes pour lesquels la solution analytique est connue, ou en utilisant un solveur de
Riemann approché. De nombreux solveurs de Riemann approchés ont été développés,
certains basés sur une simplification de la structure de la solution, comme par exemple
le solveur HLL, d’autres basés sur une linéarisation du système, comme par exemple le
solveur de Roe.

Selon les conditions initiales et aux bords, les EDP hyperboliques peuvent présenter
des discontinuités, comme des chocs ou des discontinuités de contact. Cette caractéris-
tique, très commune dans le cadre hyperbolique, est la raison principale pour laquelle
l’AS dans le cadre des équations hyperboliques n’est pas simple. En effet, des disconti-
nuités dans l’état causent des problématiques spécifiques en AS, car elles correspondent
à la présence de distributions de Dirac dans les sensibilités : la méthode de léquation de
sensibilité introduite brièvement ci-dessus ne fonctionne que sous certaines hypothèses
de régularité de l’état, qui peuvent ne pas être vérifiées dans le cadre hyperbolique. Cette
question a été explorée dans [BP02, MP01] d’un point de vue théorique, et plus récem-
ment dans [Gui09, GDC09] d’un point de vue numérique, où une modification du système
de sensibilité a été proposée, pour “supprimer” les pics dans la sensibilité numérique. Plus
spécifiquement, une modification du solveur de Riemann HLL utilisé pour évaluer les flux
dans une méthode volumes finis a été proposée dans le contexte des équations de Saint-
Venant. La correction est basée sur les conditions de Rankine-Hugoniot, qui gouvernent
l’état à travers un choc.

1.4 Présentation des travaux de thèse

Dans cette thèse, nous étudions une hiérarchie de modèles de complexité croissante. Nous
commençons dans le chapitre 2 par l’exemple le plus simple d’équation hyperbolique
non linéaire, l’équation de Burgers, avant de nous intéresser à l’un des exemples les plus
connus et les plus importants des systèmes d’EDP hyperboliques non linéaires : le système
d’Euler. Le système d’Euler modélise la dynamique d’un matériau compressible, qui peut
être un liquide ou un gaz. Pour décrire le flux, trois variables physiques sont considérées :
la densité du fluide, sa vitesse et sa pression. Dans un premier temps, dans le chapitre 3,
nous traitons une version de ce système, connue sous le nom de p−système, qui est
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simplifiée sous certaines hypothèses physiques et mathématiques : le fluide est supposé
être dans des conditions barotropes et il est décrit en coordonnées lagrangiennes ; puis,
dans le chapitre 4 et le chapitre 5 nous traitons le système d’Euler complet : en particulier,
dans le chapitre 4 nous étudions le tube à choc de Sod et le problème correspondant pour
la sensibilité, et dans le chapitre 5 nous considérons une topographie non triviale et des
solutions stationnaires.

Comme mentionné dans la section précédente, si des techniques standard d’AS, telles
que la méthode de léquation de sensibilité continue, sont utilisées tout le temps, même en
présence de discontinuités, elles fournissent une sensibilité qui contient des Dirac. Comme
un Dirac ne peut pas être évalué numériquement, cela conduit à un pic qui s’étale dans
le voisinage du choc et qui donc détériore la solution. De plus, les pics peuvent changer
avec la discrétisation numérique. Ces sensibilités sont inadaptées à plusieurs des appli-
cations mentionnées ci-dessus. Par conséquent, dans le même ordre d’idées de ce qui est
fait dans [Gui09, GDC09], nous modifions l’équation de sensibilité afin d’obtenir un sys-
tème valable même dans le cas de solutions discontinues. Dans ce travail, nous adoptons
un point de vue similaire, quoique légèrement différent : nous suggérons d’ajouter une
correction sous la forme d’un terme source pour équilibrer les pics. Le terme source est
non nul uniquement en cas de choc ou de discontinuité de contact et a une amplitude
proportionnelle au saut de l’état à travers la discontinuité considérée. Le calcul de l’am-
plitude de cette correction est effectué en détail dans les chapitres suivants et il est basé
sur une intégration des équations sur un volume de contrôle contenant une discontinuité.
En ce qui concerne la discrétisation de ce terme source, nous remarquons qu’un détecteur
de choc est nécessaire pour que le terme soit cohérent et pour éviter une surcorrection
numérique.

En ce qui concerne la discrétisation de la loi de conservation, le problème d’état
est bien connu et de nombreux de schémas numériques ont été développés au cours des
années, mais ce n’est pas le cas pour les équations de sensibilité. De plus, considérer
le système dans son ensemble n’apporte pas d’avantage puisque le système composé
par l’état et la sensibilité n’est que faiblement hyperbolique en général. Pour ces raisons,
notre stratégie d’un point de vue numérique est la suivante : d’abord, nous résolvons l’état
en utilisant un schéma volumes finis classique ; ensuite, nous calculons le terme source,
qui dépend de l’état ; enfin, un schéma numérique volumes finis adapté est appliqué
au problème de sensibilité. Cette approche fonctionne bien si l’équation d’état est une
équation scalaire, mais les résultats numériques montrent que pour les systèmes certaines
précautions supplémentaires sont nécessaires : en particulier, la diffusion numérique joue
un rôle fondamental et dégrade la convergence vers la solution exacte de la sensibilité.
Par conséquent, dans ce travail nous adaptons un schéma numérique de type Godunov
anti-diffusif (AD), introduit dans [CG08], et nous proposons des versions AD de différents
schémas volumes finis, d’ordre différent en temps et en espace.

Enfin, nous explorons deux applications différentes de l’AS : l’optimisation et la quan-
tification d’incertitude. Dans les deux applications nous considérons plusieurs paramètres
d’entrée. Dans le chapitre 4, nous effectuons une analyse de quantification d’incertitude
pour un problème de Riemann sur le système Euler complet : différentes approches d’AS
sont comparées à la méthode de Monte Carlo plus coûteuse. Dans le chapitre 5 nous nous
attaquons à un problème d’optimisation : en particulier, nous traitons un problème in-
verse pour la pression, où les paramètres d’optimisation considérés modifient directement
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la topographie. Le but de ces applications est de comprendre l’importance de la diffusion
numérique et du terme de correction dans des situations plus réalistes et de définir des
directives pratiques pour l’utilisation de l’AS.

Au cours de ma première année de thèse j’ai travaillé sur la modélisation et l’optimisation
de stratégies de course, sous la direction d’Amandine Aftalion. Ce travail a abouti à un
papier publié [Fio17], qui est reproduit dans l’annexe A.

9



Chapter 1. Introduction

10



2 | Scalar case

This chapter deals with the nonlinear scalar case. In this simple framework we are able
to introduce and tackle some of the main problems arising in the coupling of sensitivity
analysis and hyperbolic equations: in particular, the definition of the source term and of
a shock detector.

2.1 Analytical solution of the state equation

A scalar one-dimensional conservation law can be written in the following form:
(
∂tu(x, t) + ∂xf(u(x, t)) = 0 x 2 R, t > 0

u(x, 0) = g(x) x 2 R,
(2.1)

where u : R ⇥ R+ ! R is the conserved variable, f : R ! R is the flux function and
g : R ! R is the initial condition. The method of characteristics can be used to solve
analytically (2.1): the characteristics are curves in the plane (x, t) along which the PDE
becomes an ordinary differential equation (ODE). In this case, we look for a set of curves
along which the solution u is constant. Let xc(t) be the parametrisation of the curves,
then one has:

0 =
d

dt
u(xc(t), t) = ∂xu(xc(t), t)

dxc
dt

+ ∂tu(xc(t), t). (2.2)

Considering that ∂xf(u(x, t)) = f 0(u(x, t))∂xu(x, t), where f 0 = df
du , and comparing the

equation in (2.1) with (2.2), one can write:

dxc
dt

= f 0(u(xc(t), t)) = f 0(u(xc(0), 0)))
dxc
dt

= f 0(g(x0)), (2.3)

where x0 = xc(0). Therefore, the characteristics are straight lines and their slope is
f 0(g(x0)). We can write the solution implicitly as follows:

u(x, t) = g(x− tf 0(u(x, t))). (2.4)

This method is valid as long as there is no intersection among the characteristics: in
case of intersection a shock is generated and the solution u(x, t) becomes discontinuous.
Let us now examine whether or not it is possible for two characteristic to intersect.
First, we deal with the case where g is a regular function. For this purpose, we consider
two characteristics, xc,1(t) and xc,2(t), such that xc,i(0) = xi and x1 < x2. If the two
intersect, then one has:

x1 + f 0(g(x1))t = x2 + f 0(g(x2))t,

11
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therefore:
t = − x2 − x1

f 0(g(x2))− f 0(g(x1))
,

and if f 0 ◦ g =: h 2 C1 for the mean value theorem 9 ξ 2 (x1, x2) such that:

t = − 1

h0(ξ)
.

Let us observe that if h is increasing the characteristics do not intersect for any time
t > 0, therefore there is no shock. Otherwise, we can define the breaking time ts as the
smallest t for which the characteristics intersect:

ts = −
1

minh0(x)
= − 1

min d
dxf

0(g(x))
. (2.5)

The point xs,0 from which the shock originates is known too:

xs,0 = x̄+ f 0(g(x̄))ts, where x̄ := argmin h0(x).

If g is discontinuous in a point xd, two scenarios are possible: if h(x+d ) < h(x−d ), the
initial discontinuity is transported for all t > 0 (ts = 0); otherwise the initial discontinuity
is smoothed out and a rarefaction wave is generated.

Once the shock is generated, it moves along a curve xs(t) such that dxs
dt = σ(t), which

separates the plane (x, t) into two parts, and in both of them the method of characteristics
is valid. We denote with the superscript + (respectively −) the quantities in the right
(respectively left) part of the plane, i.e. x > xs(t) (respectively x < xs(t)). The speed
of the shock σ(t) can be computed using the Rankine-Hugoniot conditions:

σ(t) =
f(u+(xs(t), t))− f(u−(xs(t), t))

u+(xs(t), t)− u−(xs(t), t)
. (2.6)

The position of the shock xs(t) can be then determined by solving the following ODE:
8
<
:

dxs
dt

= σ(t),

xs(ts) = xs,0.
(2.7)

This, along with some numerical methods to solve explicitly (2.4) and (2.7), is all we
need to compute a reference solution. Finally, the solution of (2.1) can be written in the
following compact form:

u(x, t) = u+(x, t)H(x− xs(t)) + u−(x, t)H(xs(t)− x), (2.8)

where u+ and u− are obtained separately from (2.4) and H is the Heaviside function.

2.2 Sensitivity equation

2.2.1 Derivation of the sensitivity equation

Sensitivity analysis is the study of how variations in the output of a model can be
attributed to different sources of perturbation in the model input. In this case, the model
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is a PDE such as (2.1), the input is the vector parameter a on which the initial condition
g and the flux function f depend, and the output is the state u. In the following, we
will consider a scalar parameter a: this is to simplify the notation, without any loss of
generality from a theoretical point of view.

Assuming that u is continuous and differentiable on its domain, we define its sensi-
tivity with respect to the parameter of interest a as the derivative of u with respect to a
and we use the notation ua:

ua =
∂u

∂a
. (2.9)

We now apply the CSE method and we differentiate the system (2.1) with respect to
the parameter a, obtaining:

(
∂a(∂tu(x, t)) + ∂a(∂xf(u(x, t))) = 0 x 2 R, t > 0

∂au(x, 0) = ∂ag(x) x 2 R,

and exchanging the derivatives in space and time with the ones with respect to a one
obtains the following equation and initial condition for the sensitivity:

(
∂tua + ∂x(fa(u, ua)) = 0 x 2 R, t > 0

ua(x, 0) = ga(x) x 2 R,
(2.10)

where ga := ∂ag, fa(u, ua) := f 0(u)ua + ∂af(u) and we dropped the time and space
dependence in the equation for simplicity. We remark that the exchange of the derivatives
can be done only under hypothesis of regularity of U, more precisely the equality of mixed
partials is guaranteed only if the second partial derivatives of U are continuous.

2.2.2 Analytical solution of the sensitivity equation

The analytical solution of (2.10) can be computed in the regular zones starting from
(2.4), where the definition (2.9) is valid. By differentiating (2.4) with respect to a, one
finds:

ua(x, t) = g0(x− tf 0(u(x, t)))(−tf 00(u(x, t))ua) + ga(x− tf 0(u(x, t))),

therefore one can obtain an explicit expression for the sensitivity:

ua(x, t) =
ga(x− tf 0(u(x, t)))

1 + tf 00(u(x, t))g0(x− tf 0(u(x, t)))
=

=
ga(x− tf 0(u(x, t)))

1 + th0(x− tf 0(u(x, t)))
.

(2.11)

Let us observe that the denominator 1 + th0(x− tf 0(u(x, t))) is zero if and only if there
is an intersection between two characteristics, therefore only along the shock.

If the state u is discontinuous, (2.11) is still valid on both sides of the shock. Along
the shock the state u is not differentiable in the classical sense; however, it admits a
Dirac distribution as weak derivative. Therefore, differentiating the compact expression
(2.8) one obtains:

ua(x, t) = u+a (x, t)H(x− xs(t)) + u−a (x, t)H(xs(t)− x)

+(u− − u+)∂axs(t)δ(xs(t)− x),
(2.12)

where δ is the Dirac delta function.
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2.3 Correction term

In this section, we aim at proposing a new sensitivity system, whose solution does not
exhibit spikes. To do that, we add a source term which should compensate the final term
of (2.12), obtaining this new equation:

∂tua + ∂xfa(u, ua) = S(u) x 2 R, t > 0. (2.13)

Since we do not want to change the equation if the state u is regular, the source term
has the following form:

S(u) = α(t)δ(xs(t)− x),

where α is the amplitude of the correction and it is computed by integrating the equation
(2.13) over a control volume (x1, x2) ⇥ (t1, t2), containing a discontinuity which moves
at speed σ . We obtain:

σ(t2 − t1)u
−
a − σ(t2 − t1)u

+
a + (t2 − t1)(fa(u

+, u+a )− fa(u
−, u−a )) =

Z t2

t1

α(t)dt,

and dividing this by (t2 − t1) and as the control volume goes to zero one has:

α(t) = σ(u−a − u+a ) + fa(u
+, u+a )− fa(u

−, u−a ). (2.14)

If we differentiate the Rankine-Hugoniot conditions (2.6) with respect to a we obtain:

σ(u+a − u−a ) + ∂aσ(u
+ − u−) + σk(∂xu

+ − ∂xu
−)∂axs(t) =

= fa(u
+, u+a )− fa(u

−, u−a ) + (f 0(u+)∂xu
+ − f 0(u−)∂xu

−)∂axs(t),

where the terms with ∂axs(t) come from the fact that the Rankine-Hugoniot are valid
only if evaluated in the position of the shock. This terms are very difficult to estimate,
however they are all zero in a first order finite volume framework, where the solution u
is a piecewise constant, and therefore ∂xu

+ = 0 and ∂xu
− = 0. Neglecting this terms

leads to a much simpler formulation:

σ(u+a − u−a ) + ∂aσ(u
+ − u−) = fa(u

+, u+a )− fa(u
−, u−a ).

Comparing the latter to (2.14) we have the definition of the amplitude:

α(t) = ∂aσ(u
+ − u−). (2.15)

2.4 Global system

It is possible to write (2.1) and (2.10) as a system, by defining the following vectors:

U =


u
ua

]
, F(U) =


f(u)

f 0(u)ua + ∂af(u)

]
, G =


g
ga

]
.

Therefore, the global system in the conservative form is the following:
(
∂tU+ ∂xF(U) = 0 x 2 R, t > 0

U(x, 0) = G(x) x 2 R.
(2.16)
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Figure 2.1 – Spatial discretisation.

We can also write (2.16) in the non conservative form:

(
∂tU+A(U)∂xU = 0 x 2 R, t > 0

U(x, 0) = G(x) x 2 R,
(2.17)

where the matrix A is the Jacobian of the system and can be written:

A(U) =
∂F

∂U
=


f 0(u) 0

f 00(u)ua + ∂af
0(u) f 0(u)

]
. (2.18)

Let us observe that A has two repeated eigenvalues, therefore it is not diagonalisable,
unless f 00(u)ua + ∂af

0(u) ⌘ 0. This means that the global system (2.16) is only weakly
hyperbolic. Weakly hyperbolic systems are known to develop Dirac distributions in their
solution. We remark that the fact that A is non-diagonalisable is not straightforward to
prove in the case of systems.

2.5 Numerical methods

The aim of this section is to present the numerical schemes that can be used to solve
(2.16). From now on, we will consider the equations on an interval (b, c), which is divided
into N cells, all of the same length ∆x. The subscript i indicates the i−th cell, while
i ± 1

2 refers to the interfaces (see Figure 2.1). Concerning the time discretisation, we
will use a variable time step ∆t, chosen such that the CFL-condition is respected. The
superscript n indicates the n−th time step.

As already mentioned, we treat the state and the sensitivity system separately. For
the state there is no particular issue: all the classical numerical schemes can be used.
However, for the sensitivity a modified scheme is used. The suggested strategy for solving
(2.16) consists of the following steps:

(i) solution of the state using numerical methods for hyperbolic equations;

(ii) computation of the correction term;

(iii) solution of the sensitivity with a corrected numerical scheme.

2.5.1 Numerical schemes for the state

The method chosen for the state equation is the approximate Riemann solver of Roe:
the reason of this choice is that it provides the exact solution in the case of an isolated
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x
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σ = f(u+)−f(u−)
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Figure 2.2 – Scheme of the solver of Roe for the sensitivity.

shock. For the sake of simplicity we consider the case f 0(u) > 0. The scheme in the
internal cells (i.e. i 6= 0) is the following:

un+1
i = uni +

∆t

∆x
(f(uni−1)− f(uni )), (2.19)

while for the first cell we impose un0 = g(b) 8n.

2.5.2 Numerical schemes for the sensitivity

For the sensitivity equation (2.10), i.e. the one without the source term, the same scheme
used for the state can be applied:

un+1
a,i = una,i +

∆t

∆x
(fa(u

n
i−1, u

n
a,i−1)− fa(u

n
i , u

n
a,i)),

however, this scheme provides sensitivity with spikes. We here propose a second scheme,
which comes from a quite natural discretisation of the source term:

un+1
a,i = una,i +

∆t

∆x
(fa(u

n
i−1, u

n
a,i−1)− fa(u

n
i , u

n
a,i)) + σn

a,i(u
n
i − uni−1)δ

n
i , (2.20)

where δni = 1 if there is a shock in the i−th cell at the n−th time step, δni = 0 otherwise.
One of the main difficulties of this problem is to find an efficient shock detector.

We remark that the same scheme (2.20) can be found if we consider that the solution
of equation (2.13) is the derivative of the state in the regular zones without any spike
along the shock. Therefore it is easy to define a Roe Riemann solver for the sensitivity
(cf. Figure 2.2).

Once the solver is defined, one can compute the average on each cell using a general
Godunov method (cf. Figure 2.3), which results in the following scheme:

un+1
a,i =

1

∆x


∆t

f(uni )− f(uni−1)

uni − uni−1

una,i−1 +

✓
∆x−∆t

f(uni )− f(uni−1)

uni − uni−1

◆
una,i

]
=

=una,i +
∆t

∆x

f(uni )− f(uni−1)

uni − uni−1

(una,i−1 − una,i),
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n

n+ 1

ii− 1

σ∆t ∆x− σ∆t

Figure 2.3 – Godunov scheme: σ is the slope of the blue line, i.e. the speed at which the
information travels.

which can be rewritten as follows:

un+1
a,i = una,i +

∆t

∆x
(fa(u

n
i−1, u

n
a,i−1)− fa(u

n
i , u

n
a,i)) + σn

a,i(u
n
i − uni−1), (2.21)

and one can find the correction term by difference:

σn
a,i(u

n
i − uni−1) = (fa(u

n
i , u

n
a,i)− fa(u

n
i−1, u

n
a,i−1))−

f(uni )− f(uni−1)

uni − uni−1

(una,i − una,i−1),

and using once again the Rankine-Hugoniot conditions we have the identity:

σn
a,i(u

n
i − uni−1) = fa(u

n
i , u

n
a,i)− fa(u

n
i−1, u

n
a,i−1)− σn

i (u
n
a,i − una,i−1).

2.6 Numerical results

In this section, we show the numerical results obtained with the schemes presented in
section 2.5 and we compare them with the reference solution computed as in sections 2.1
and 2.2. For this purpose, we consider the Burgers’ equation, therefore the flux function
is the following:

f(u) =
u2

2
,

with different initial data g(x). We remark that f 0(u) = u, it follows that h = g. For
the sensitivity flux, we have:

fa(u, ua) = uua.

2.6.1 Riemann problem

We start with the Riemann problem, i.e.:

g(x) =

(
uL x < xc,

uR x > xc,
(2.22)
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xs(t)

0.5 10
x

1

t

Figure 2.4 – Characteristic curves for the Burger’s equation with initial condition (2.22).

where xc 2 (b, c). Let us observe that if g is increasing (i.e. uR > uL), the initial
discontinuity is smoothed out, otherwise it is transported at a speed which is known
explicitly in this simple case:

σ =
uR + uL

2
. (2.23)

Being σ constant, the shock propagates along a straight line of equation:

xs(t) = σt+ xc. (2.24)

Since we are interested in the case of shocks, we consider uL > uR, and in particular
uL = 1 and uR = 0.1. The domain is the interval (0, 1), and xc = 0.5. The parameter of
interest a is uL, therefore the initial condition for the sensitivity guL is the following:

guL(x) =

(
1 x < 0.5,

0 x > 0.5.
(2.25)

The characteristics and the shock curve for this problem are plotted in Figure 2.4.
The analytical solution for the state is the following:

u(x, t) =

(
uL x < σt+ xc,

uR x > σt+ xc.
(2.26)

Differentiating (2.26) with respect to uL one obtains the analytical solution for the sen-
sitivity, which is:

uuL(x, t) =

(
1 x < σt+ xc,

0 x > σt+ xc.
(2.27)

In Figure 2.6 we show the numerical solution for the state obtained with ∆x = 10−3

compared to the analytical one, for different times: the difference between the two is
due to numerical diffusion, and it gets smaller as ∆x is reduced. Knowing the analytical
solution, which will be denoted by the subscript ex in the following, one can compute
the error as follows:

err(tn) = kuex(xi, tn)− uni kL1(0,1), (2.28)

18
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xc

A

L

x

Figure 2.5 – Continuous initial condition.

where uex(xi, t
n) is the exact solution in the center of the i-th cell at the n-th time step.

Figure 2.8 shows the sensitivity solution without the correction term (i.e. δi = 0 8i): as
one can see, where the state is discontinuous the numerical solution of the sensitivity has
a peak, which gets bigger with time, as expected, since the coefficient of the Dirac delta
function in (2.12) can be easily computed in this case and it is linear in t.

In order to apply the corrected scheme (2.20), we need to define a shock detector. In
this simple case, it is easy to define a good one:

δni =

(
0 if uni−1 = uni ,

1 otherwise.
(2.29)

Figure 2.10 shows in blue the cells in which a shock is detected using (2.29) and in
red the real position of the shock: the region is quite large due to the numerical diffusion.

The results obtained with the correction are shown in Figure 2.7.
Finally, in Figure 2.9 we show the L1 norm of the error at final time T = 0.2 for the

state and for the sensitivity. For reference, ku(x, T )kL1(0,1) = 0.649 and kuuL(x, T )kL1(0,1) =
0.61. We remark that for this purpose we compared the numerical sensitivity obtained
with the correction to the analytical sensitivity in (2.12) but without the Dirac term.

2.6.2 Continuous initial condition

Now we present the case of a continuous initial condition, which is plotted in Figure 2.5:

g(x) =

(
A sin2( ⇡L(x− xc) +

⇡
2 ) if xc − L

2 < x < xc +
L
2

0 otherwise.
(2.30)

Let us observe that, for x > xc, g is decreasing, therefore a shock will occur. The
breaking time can be computed using (2.5) and using the fact that for the Burger’s
equation h = g:

ts = −
1

min g0(x)
= − 1

min{−A⇡
L sin(2⇡L (x− xc))}

=
L

Aπ
.
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The point from which the shock originates is:

xs,0 = xc +
L

4

✓
1 +

2

π

◆
.

In this case, the curve xs(t) it is not known analytically because the values u+ and u−

are not (we recall that the solution for the state is known only in the implicit form (2.4)).
However, it is possible to compute numerically xs(t) and to plot the exact solution u(x, t)
as follows. One can define the following matrix:

X[n, i] = xi + tng(xi).

To compute a numerical approximation of xs(tn), the strategy is the following:

(a) let n̄ be the closest time step to the breaking time ts;

(b) find k̄ such that X[n̄, k̄]  xs,0 and X[n̄, k̄ + 1] ≥ xs,0;

(c) u+ = g(xk̄+1) and u− = g(xk̄) ) σ = u++u−

2 ;

(d) xs(t
n+1) = xs(t

n) + σ(tn+1 − tn);

(e) erase all the characteristics that cross the shock between time tn̄ and tn̄+1

(f) repeat (b)-(e) until the final time T .

In Figure 2.11 we show the characteristics of the Burger’s equation with initial con-
dition (2.30) and the shock curve computed as explained above.

It is now possible to plot u for all time steps tn in the points X[n, i] (u(X[n, i], tn) =
g(xi)), which is exact and is a good reference solution if the initial mesh is fine enough.

The same can be done for the sensitivity: ua(X[n, i], tn) =
ga(X[n, i]− tng(xi))

1 + tng0(X[n, i]− tng(xi))
.

In Figure 2.12 we show the numerical and the reference solution for the state, obtained
with ∆x = 10−3.

In this case a more complex shock detector, based on the second derivative, has been
used. Let D be the maximum of the second derivative of the initial condition, then δi is
defined as follows:

δni =

8
<
:
1 if

|uni−1 − 2uni + uni+1|
∆x2

> kD,

0 otherwise,

where k is a proper constant. In Figure 2.17 we show the results of this shock detector
with k = 30.

In Figures 2.16 and 2.15 we show the solution of the sensitivity with respect to the
parameter xc, with and without the correction. The figures in the middle correspond to
t = ts: as one can see, before the breaking time the solutions are the same, whilst after
the breaking time the solution given by the corrected scheme does not present any peak.

Finally, in Figures 2.14 and 2.13 we show the solution of the sensitivity with respect
to the parameter A, with and without the correction: in this case, the over-correction
due to the fact that a shock is detected even before the breaking time, is slightly more
evident.
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Figure 2.6 – State solution for the Riemann problem.
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Figure 2.7 – Sensitivity solution for the Riemann problem.
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Figure 2.8 – Sensitivity solution for the Riemann problem without correction.
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Figure 2.9 – L1 norm of the error at final time T = 0.2.
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Figure 2.12 – State solution for the problem with continuous i.c.
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Figure 2.13 – Sensitivity solution for the problem with continuous i.c. with correction,
a = A.
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Figure 2.14 – Sensitivity solution for the problem with continuous i.c. without correction,
a = A.
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Figure 2.15 – Sensitivity solution for the problem with continuous i.c. with correction,
a = xc.
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Figure 2.16 – Sensitivity solution for the problem with continuous i.c. without correction,
a = xc.
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Figure 2.17 – Shock detector based on the second derivative.
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3 | The p−system

In this chapter, which is an adaptation of two works [CDF17b, CDF17a], we deal with
the Euler system in barotropic conditions and in Lagrangian coordinates.

3.1 Problem description

As already mentioned in the previous chapters, standard SA methods can be used only
if the solution U is regular enough [BP02], which is usually not the case for hyperbolic
systems of the general form

⇢
∂tU+ ∂xF(U) = 0, x 2 R, t > 0,
U(x, 0) = U0(x).

In fact, it is well known systems of this type, as well as the scalar conservation laws
introduced in Chapter 2, can have discontinuous solutions, regardless of the regularity of
the initial condition U0. If the state U is discontinuous, the sensitivity Ua = ∂aU will
exhibit Dirac delta functions.

In this Chapter, we consider the barotropic Euler equations in Lagrangian coordi-
nates, i.e. the p-system; however, everything can be extended to any hyperbolic system:
for instance, the complete Euler system and the quasi 1D Euler system will be the subject
of the following chapters. The choice of starting with the p−system is motivated by the
fact that, although quite simple, it presents all the main features of hyperbolic systems:
this allows us to solve the state problem easily and to focus on the sensitivity problem.

The system is written: (
∂tτ − ∂xu = 0,

∂tu+ ∂xp(τ) = 0,
(3.1)

where τ > 0 is the co-volume (i.e. τ = 1
⇢ , a ρ is the density of the fluid), u is the

Lagrangian velocity and the pressure p(τ) is a function only of τ . We assume p0(τ) < 0
and p00(τ) > 0. The Jacobian matrix of the system is the following:

M(τ, u) =


0 −1

p0(τ) 0

]
(3.2)

and its eigenvalues are real and distinct λ± = ±c, where c =
p
−p0(τ) is the Lagrangian

sound speed. Therefore M is R−diagonalisable, and (3.1) is strictly hyperbolic. In this
work we will consider p(τ) = τ−γ , where γ = 1.4 is the heat capacity ratio.
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Chapter 3. The p−system

If we consider smooth solutions of (3.1), we can apply the CSE method, differentiate (3.1)
with respect to a and obtain the following sensitivity equations:

(
∂tτa − ∂xua = 0,

∂tua + ∂x(p
0(τ)τa) = 0.

(3.3)

We remark that if the pressure law depends directly on the parameter a (i.e. p = p(τ ; a)),
there is an additional term in the second equation: ∂xpa(τ ; a), where ∂ap(τ ; a) = pa(τ ; a).
In the following, we will not consider this case. In order to introduce a more compact
notation, we define the state and sensitivity vectors and their fluxes:

U =


τ
u

]
, F(U) =


−u
p(τ)

]
, Ua =


τa
ua

]
, Fa(U,Ua) =


−ua

p0(τ)τa

]
,

and rewrite the systems (3.1) and (3.3) in a vectorial form:

(
∂tU+ ∂xF(U) = 0,

∂tUa + ∂xFa(U,Ua) = 0.
(3.4)

The Jacobian matrix of the global system (3.4) is calculated as:

A(V) =
∂G

∂V
=

2
664

0 −1 0 0
p0(τ) 0 0 0

0 0 0 −1
p00(τ)τa 0 p0(τ) 0

3
775 , with V =


U

Ua

]
, G =


F

Fa

]
.

One can remark that A(V) is a lower triangular block matrix whose diagonal blocks are
identical to each other and to the state system’s Jacobian matrix. We observe that the
global system (3.4) has two repeated eigenvalues, the same λ± as the original system
(3.1), and that the matrix A(V) is not R−diagonalisable as soon as τa 6= 0. This
means that the global system (3.4) is only weakly hyperbolic. Therefore, the system
(3.4) as it is will provide us, in case of discontinuous state U, with a sensitivity Ua

presenting Dirac delta functions, in addition to the usual discontinuity, so that these
solutions have to be interpreted in the sense of measures. We refer for instance the
reader to the following papers, and the references therein: [BJL03, CKM12, FLF92,
Jos93, LeF90, YZ12]. However, sensitivities with Dirac delta functions are unusable for
many applications. For this reason, we add a correction term to the sensitivity equations,
as done in [Gui09]. The definition of a proper correction term is the subject of the next
section.

3.2 Source term

In this section, we aim at proposing a new version of (3.4) which is also valid for dis-
continuous solutions of the state variable U. Recall indeed that (3.4) has been derived
assuming formally that the solution is smooth whilst hyperbolic equations are well known
to develop discontinuities in finite time even for smooth initial data U(x, t = 0) = U0(x).
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and we suggest to differentiate them with respect to the parameter a. As we do that,
we should consider the fact that the Rankine-Hugoniot conditions are valid only at the
discontinuity location xk,s(t), which depends on the parameter a. Therefore, we obtain

(U−
a −U

+
a )σk + (U− −U

+)σk,a + σk(rU+ −rU−)∂axk,s(t) =

= F
−
a − F

+
a +

✓
∂F(U+)

∂U
rU+ − ∂F(U−)

∂U
rU−

◆
∂axk,s(t).

The terms depending on ∂axk,s(t) are very difficult to estimate. However we remark that,
thanks to the presence of the gradients, they are zero if we consider that the solution
U is constant in the left and right neighbourhoods of the shock. This is verified in a
standard first order finite volume approach. We obtain therefore a simpler formula:

(U−
a −U

+
a )σk + (U− −U

+)σk,a = F
−
a − F

+
a , (3.9)

with σk,a = ∂aσk. Comparing the latter with (3.8), one is thus led to set

ρρρk(t) = σk,a(U
+ −U

−). (3.10)

Our choice is of course valid for each k−discontinuity of the state solution, leading us to
definition (3.5) where the sum is taken over the number of discontinuities.

Note also that by construction, if a triple (U−,U+, σ) is associated with an admissi-
ble discontinuity with a left (respectively right) state U

− (respectively U
+) and σ is the

speed of propagation, then the triple (U−
a ,U

+
a , σ) with U

−
a = ∂aU

− and U
+
a = ∂aU

+ is
also admissible in the sense that it satisfies the generalised Rankine-Hugoniot relations
imposed by S. In other words, the sensitivity solution of (3.6) is obtained by differenti-
ating the state solution with respect to a when the solution is smooth or discontinuous
with constant left and right states. As far as the initial condition is concerned, we have:

✓
U(x, t = 0)
Ua(x, t = 0)

◆
=

✓
U0(x)
∂aU0(x)

◆
.

3.3 Exact solution of the Riemann problem

In this section, we present the exact resolution of the Riemann problem for the state and
the sensitivity, associated with the initial data:

U(x, 0) =

(
UL x < xc,

UR x > xc,
Ua(x, 0) =

(
Ua,L x < xc,

Ua,R x > xc,

for a given xc. First, we compute the solution of the state system (3.1), which is well-
known but necessary to solve (3.4). Then we differentiate it with respect to the parameter
of interest a to obtain the sensitivity. As we will see, the sensitivity exhibits interesting
and non trivial behaviours.

28



3.3. Exact solution of the Riemann problem

3.3.1 The state variable

We recall that the eigenvalues of the Jacobian matrix of the state system are:

λ1(U) = −
p
−p0(τ) and λ2(U) =

p
−p0(τ) ,

and the eigenvectors:

r1(U) =

2
6664

2
p
−p0(τ)
p00(τ)

−2p0(τ)

p00(τ)

3
7775 and r2(U) =

2
6664

−2
p
−p0(τ)
p00(τ)

−2p0(τ)

p00(τ)

3
7775 ,

which are chosen in such a way that rλi · ri = 1. Since the pairs (λi, ri) are both
genuinely non linear, the waves associated can be either shocks or rarefaction waves.
The structure of the analytical solution of the state is presented in Figure 3.4 and it
consists of two waves, whose speeds can be computed exactly.

In order to give more details on this structure, which will be necessary to explain
the structure of the sensitivity, let us consider the plane (τ, u) and the points UL and
UR: starting from UL we need to reach UR passing from an intermediate state U

⇤

using shocks and rarefaction waves, see Figure 3.4 for the notations. First, we compute
which points U are reachable through a shock of speed σ from UL. Across a shock, the
Rankine-Hugoniot conditions are valid, therefore:

(
−u+ uL = σ(τ − τL)

p(τ)− p(τL) = σ(u− uL).
(3.11)

Finding σ from the first equation and replacing it in the second one, one has:

(u− uL)
2 = −(p(τ)− p(τL))(τ − τL),

and we observe that the right-hand side is always positive because p0(τ) < 0, therefore:

u = uL ±
p
−(p(τ)− p(τL))(τ − τL) . (3.12)

In order to chose the sign in (3.12), we use the Lax conditions:

λ1(U) < σ < λ1(UL),

which implies that σ is negative (because λ1 is negative), and:

−
p
−p0(τ) < −

p
−p0(τL) ) τ < τL,

where we used the hypothesis p00(τ) > 0. Both σ and (τ − τL) are negative, therefore
their product is positive and from the first equation of (3.11) we can say that uL > u.
We can conclude that the sign in (3.12) is a minus and therefore the points reachable
from UL through a shock are on the curve of equation:

u = uL −
p
−(p(τ)− p(τL))(τ − τL) . (3.13)
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Repeating everything for the 2−wave one finds that the states U reachable from UR

through a shock are those on the curve of equation:

u = uR +
p
−(p(τ)− p(τR))(τ − τR) . (3.14)

We now repeat the same procedure to compute the set of points reachable through a
rarefaction wave from UL and from UR as we did for the shock.

The self-similar solution ξ 7! eU1(ξ) in a 1−rarefaction wave starting from UL respects
the following equation: (

eU0
1(ξ) = r1(eU1(ξ)),
eU1(ξ0) = UL,

(3.15)

with ξ = λ1(U(ξ)) for all ξ, which gives the following system:
8
>>><
>>>:

τ̃ 01(ξ) =
2
p
−p0(τ̃1)
p00(τ̃1)

, τ̃1(ξ0) = τL,

ũ01(ξ) = −
2p0(τ̃1)

p00(τ̃1)
, ũ1(ξ0) = uL.

(3.16)

The first equation can be rewritten as

(p0(τ̃1))
0 = 2

p
−p0(τ̃1),

and its solution is p0(τ̃1) = −ξ2, therefore:

τ̃1 = (p0)−1(−ξ2).

After a change of variable, the second equation is written as:

dũ1
dτ̃1

=
p
−p0(τ̃1) ,

hence, one has the curve of points reachable through a 1−rarefaction starting from UL:

ũ1 = uL +

Z ⌧̃1

⌧L

p
−p0(τ) dτ.

If p(τ) = τ−γ , one would find:

τ̃1 =

✓
γt2

(x− xc)2

◆ 1

γ+1

, ũ1 = uL +
2
p
γ

1− γ

✓
τ̃

1−γ
2

1 − τ
1−γ
2

L

◆
. (3.17)

Repeating exactly the same procedure, one can find the points reachable through a
2-rarefaction starting from UR:

ũ2 = uR +

Z ⌧R

⌧̃2

p
−p0(τ) dτ,

hence for our choice of p:

ũ2 = uR +
2
p
γ

1− γ

✓
τ

1−γ
2

R − τ̃
1−γ
2

2

◆
, τ̃2 =

✓
γt2

(x− xc)2

◆ 1

γ+1

. (3.18)
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Figure 3.2 – Set of points reachable from uL through a shock (in red) or through a
rarefaction (in blue).

Finally, in order to compute U
⇤ we define the two following 1- and 2-wave curves:

g1(τ ;UL) =

8
<
:
uL −

q
−(τ−γ − τ−γ

L )(τ − τL) if τ  τL,

uL +
2
p
γ

1−γ (τ
1−γ
2 − τ

1−γ
2

L ) if τ > τL,
(3.19)

g2(τ ;UR) =

8
<
:
uR +

q
−(τ−γ − τ−γ

R )(τ − τR) if τ  τR,

uR +
2
p
γ

1−γ (τ
1−γ
2

R − τ
1−γ
2 ) if τ > τR,

(3.20)

which are smooth functions whose derivatives with respect to τ will be denoted g0i. The
intermediate state τ⇤ is defined as the intersection between g1 and g2, and one has:
u⇤ = g1(τ

⇤;UL) = g2(τ
⇤;UR). Newton’s method can be used to compute τ⇤. We

remark that there is no intersection between g1 and g2 under the following condition:

uL − uR <
2
p
γ

1− γ

✓
τ

1−γ
2

L + τ
1−γ
2

R

◆
.

3.3.2 The sensitivity variable

As already explained, to compute the sensitivity we differentiate with respect to a the
state solution, this means that the initial data for the state and the sensitivity are linked
by the following relation:

Ua,L =
∂UL

∂a
Ua,R =

∂UR

∂a
.
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Figure 3.3 – Set of points reachable from uR through a shock (in red) or through a
rarefaction (in blue).

Furthermore, the sensitivity has the same two-wave structure as the state and the waves
travel at the same speed as for the state. Therefore, we need to compute the derivative of
U

⇤ and eU and this concludes the computation of the analytical sensitivity. To compute
τ⇤a and u⇤a, we differentiate, with respect to a, the following equality:

g1(τ
⇤;UL) = g2(τ

⇤;UR)

and we obtain (recall that UL = (τL, uL)
T and UR = (τR, uR)

T ):

u⇤a = g01(τ
⇤;UL)τ

⇤
a +

∂g1
∂τL

(τ⇤;UL)τa,L +
∂g1
∂uL

(τ⇤;UL)ua,L =

= g02(τ
⇤;UR)τ

⇤
a +

∂g2
∂τR

(τ⇤;UR)τa,R +
∂g2
∂uR

(τ⇤;UR)ua,R,

which gives an explicit solution (although dependent on U
⇤) for τ⇤a :

τ⇤a =

@g2
@⌧R

(τ⇤;UR)τa,R + @g2
@uR

(τ⇤;UR)ua,R − @g1
@⌧L

(τ⇤;UL)τa,L − @g1
@uL

(τ⇤;UL)ua,L

g01(τ
⇤;UL)− g02(τ

⇤;UR)
.

Finally, we differentiate the state solution in the rarefaction eU given by (3.17)-(3.18).

3.3.3 Examples

In the numerical section of this work, we will consider as a parameter of interest the
initial data, which means that a can either be τL, uL, τR, uR or a combination of them,
and from (3.17) and (3.18) one can observe that τ̃i does not depend on those parameters,
therefore:

τ̃a,i =
∂τ̃i
∂a

= 0 i = 1, 2.
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Figure 3.4 – Configurations for the state variable U.

Concerning the sensitivity of the velocity, one obtains:

ũa,1 =
∂ũ1
∂a

= ua,L −
p
γ τ

− 1+γ
2

L τa,L, ũa,2 =
∂ũ2
∂a

= ua,R +
p
γ τ

− 1+γ
2

R τa,R.

Interestingly, we remark that the sensitivity is constant in the rarefaction zone of the
state variable, which means that for the sensitivity this zone corresponds to at most two
discontinuities propagating with velocities given by the extreme left and right velocities
of the rarefaction in the state variable, see Figure 3.5. This simplification is due to the
fact that we are considering a reduced Euler system, under barotropic conditions (cf.
[GLC07]). In particular, there are two cases:

(i) if the state presents a 1−rarefaction (respectively a 2−rarefaction) and the param-
eter of interest a is τL (respectively, τR), the wave associated with the rarefaction
in the sensitivity splits in two discontinuities, as explained above (cf. Figure 3.6).

(ii) if the parameter of interest is uL (or uR) we have ũa,1 = ua,L and ũa,2 = ua,R,
therefore the wave associated with the rarefaction becomes a single discontinuity
for the sensitivity, travelling at the more internal velocity of the state rarefaction
wave (cf. Figure 3.7).

3.4 Classical numerical schemes

The aim of this section is to design relevant numerical schemes for (3.6). As we will see,
this task is not easy and requires a nice discretisation of S in order to avoid Dirac delta
functions and it is necessary to control numerical diffusion across the shocks where this
term is active. Only under these conditions will we get a perfect agreement between exact
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state. We obtain the following formulas (cf. Figure 3.5 for the notations):

κ1,j−1/2 =

8
<
:

u∗

j−1/2
−uj−1

⌧j−1−⌧∗
j−1/2

if 1-shock at interface j − 1/2,

λ1(U
⇤
j−1/2) if 1-rarefaction at interface j − 1/2,

κ2,j−1/2 =

8
<
:

u∗

j−1/2
−uj

⌧j−⌧∗
j−1/2

if 2-shock at interface j − 1/2,

λ2(U
⇤
j−1/2) if 2-rarefaction at interface j − 1/2,

c1,j−1/2 =

(
κ1,j−1/2 if 1-shock at interface j − 1/2,

λ1(Uj−1) if 2-rarefaction at interface j − 1/2,

c2,j−1/2 =

(
κ2,j−1/2 if 2-shock at interface j − 1/2,

λ2(Uj) if 2-rarefaction at interface j − 1/2.

Then, the update formula for the sensitivity becomes:

U
n+1
a,j = U

n
a,j +

∆t

∆x

⇣
κ2,j−1/2(U

⇤
a,j−1/2 − eUR

a,j−1/2) + c2,j−1/2(eUR
a,j−1/2 −U

n
a,j)

− κ1,j+1/2(U
⇤
a,j+1/2 − eUL

a,j+1/2)− c1,j−1/2(eUL
a,j+1/2 −U

n
a,j)
⌘
,

(3.22)

where the intermediate states U
⇤
a,j−1/2, U

⇤
a,j+1/2,

eUR
a,j−1/2 and eUL

a,j−1/2 are known an-
alytically, from section 3.3.2. We remark that the source term is encompassed in (3.22),
since (3.22) comes from the exact Riemann solver of (3.6).

3.4.2 A Roe-type method

First order

In this section we illustrate a Roe-type Riemann solver, consisting of three constant
states (which we denote UL, U⇤ and UR for the state, and Ua,L, U⇤

a and Ua,R for the
sensitivity), connected by two discontinuities travelling at velocities

λROE
L,j−1/2 = −

s
−
p(τnj−1)− p(τnj )

τnj−1 − τnj
, λROE

R,j−1/2 =

s
−
p(τnj−1)− p(τnj )

τnj−1 − τnj

if τnj−1 6= τnj and ⌥
q
−p0(τnj ) otherwise. In the following, we will use the notation

λROE
j−1/2 = λROE

R,j−1/2 = −λROE
L,j−1/2. The Harten, Lax and van Leer consistency relations

[HLVL97] for the state at the interface j − 1/2 are given as:

U
⇤
j−1/2 =

1

2
(Un

j−1 +U
n
j )−

F(Un
j )− F(Un

j−1)

2λROE
j−1/2

. (3.23)

Since U
⇤
j−1/2 and λROE

j−1/2 are known at each interface, we can write the following update
formula for the state:

U
n+1
j = U

n
j +

∆t

∆x
(λROE

j−1/2(U
⇤
j−1/2 −U

n
j ) + λROE

j+1/2(U
⇤
j+1/2 −U

n
j )). (3.24)

36



3.4. Classical numerical schemes

Writing the integral conditions for the sensitivity with the source term, one obtains:

Fa(U
n
j ,U

n
a,j)−Fa(U

n
j−1,U

n
a,j−1)−∆xSn

j−1/2 = λROE
j−1/2(U

n
a,j+U

n
a,j−1)−2λROE

j−1/2U
⇤
a,j−1/2,

from which we have the following form for U
⇤
a,j−1/2:

U
⇤
a,j−1/2 =

U
n
a,j−1 +U

n
a,j

2
−

Fa(U
n
j ,U

n
a,j)− Fa(U

n
j−1,U

n
a,j)

2λROE
j−1/2

+
∆xSn

j−1/2

2λROE
j−1/2

.

The source term is discretised as follows:

S
n
j−1/2 = λROE

a,j−1/2

✓
(Un

j−1 −U
⇤
j−1/2)

d1,j−1

∆x
+ (Un

j −U
⇤
j−1/2)

d2,j
∆x

◆
, (3.25)

where d`,j is a shock detector which is equal to 1 if there is an `−shock in the j−th cell, it
is zero elsewhere and d`,j/∆x approximates numerically the Dirac δk in the definition of
the source term (3.5). In this work, we use a very simple shock detector: in section 3.3.1
we showed that the velocity u is decreasing across a shock, whilst the co-volume ⌧
decreases across a 1−shock, and it increases across a 2−shock. Based on this, we set:

d1,j =

(
1 if uj > u⇤j+1/2 and ⌧j > ⌧⇤j+1/2,

0 otherwise,

d2,j =

(
1 if uj < u⇤j−1/2 and ⌧j > ⌧⇤j−1/2,

0 otherwise.

Finally, U⇤
a,j−1/2 is computed as follows:

U
⇤
a,j−1/2 =

1

2
(Un

a,j−1 +U
n
a,j)−

Fa(U
n
j ,U

n
a,j)− Fa(U

n
j−1,U

n
a,j)

2λROE
j−1/2

+
λROE
a,j−1/2

2λROE
j−1/2

⇣
(Un

j−1 −U
⇤
j−1/2)d1,j−1 + (Un

j −U
⇤
j−1/2)d2,j

⌘
.

(3.26)

We remark that the discretisation of the source term (3.25) is such that U
⇤
a,j−1/2 =

@aU
⇤
j−1/2, in fact differentiating (3.23) with respect to a, one finds:

@aU
⇤
j−1/2 =

U
n
a,j−1 +U

n
a,j

2
−
Fa(U

n
j ,U

n
a,j)− Fa(U

n
j−1,U

n
a,j)

2λROE
j−1/2

+
F(Un

j )− F(Un
j−1)

2λROE
j−1/2

λROE
a,j−1/2

λROE
j−1/2

.

Using again (3.23) one has:

U
⇤
a =

U
n
a,j−1 +U

n
a,j

2
−
Fa(U

n
j ,U

n
a,j)− Fa(U

n
j−1,U

n
a,j)

2λROE
j−1/2

+
λROE
a,j−1/2

2λROE
j−1/2

(Un
j−1+U

n
j −2U⇤

j−1/2),

which is equal to (3.26), once the shock detectors are added. Furthermore, the definition
(3.26) encompasses the source term, which means that we can use the update formula
(3.24) for the sensitivity, too.
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Finally, in order to prepare the second order extension in space, we define a residual
as follows:

R
I
j (U

n) = λROE
j−1/2(U

⇤
j−1/2 −U

n
j ) + λROE

j+1/2(U
⇤
j+1/2 −U

n
j ), (3.27)

where R
I
j (U

n) is a more compact notation for R
I(Uj−1,Uj ,Uj+1). This allows us to

write the update formulas in the following way:
(
U

n+1
j = U

n
j + ∆t

∆xR
I
j (U

n),

U
n+1
a,j = U

n
a,j +

∆t
∆xR

I
j (U

n
a).

Furthermore, it will be useful for the numerical schemes introduced hereafter.

Second order

We extend this scheme to the second order: for the time discretisation we use a two-
step Runge-Kutta method, whilst in space we propose a MUSCL-type scheme with some
minor modifications in order to have a second order discretisation of the source term. In
particular, we remark that (3.10) is valid only if the solution U is locally constant to the
left and to the right of the shock, which is true for a first order approximation but not for
a second order, in which, classically, the numerical solution is a piecewise affine function.
To overcome this problem, we suggest to consider the numerical solution to be a piecewise
constant function on half of every cell (cf. [Bou04], section 2.8): the value in the left
half (respectively right half) of the j−th cell is denoted Uj−1/4 (respectively Uj+1/4), as
shown in Figure 3.8 and they are computed as in a classical MUSCL approach:

U
n
j±1/4 = Uj ±∆U

n
j ,

and a usual choice for ∆U
n
j is given by a slope-limiter procedure. In this work we use

the so-called minmod limiter:

∆U
n =

1

2
minmod(Un

j+1 −U
n
j ,U

n
j −U

n
j−1),

where the function minmod is defined as follows:

minmod(a, b) =

(
sgn(a)min(|a|, |b|) if ab > 0,

0 otherwise.

This interpretation of the second order allows us to define the source term as we did
for the first order, however we need to consider an additional Riemann problem for each
cell. This leads to the following definition of the residual:

R
II
j (Un) = (λROE

j−1/2(U
⇤
j−1/2−Un

j−1/4)+λROE
j+1/2(U

⇤
j+1/2−Un

j+1/4))+λROE
j (2U⇤

j−Uj−1/4+Uj+1/4),

where all the λROE and the U
⇤ are computed from the extrapolated values U

n
j±1/4.

Finally, the second order scheme is written as:
(
U

n+1/2
j = U

n
j + ∆t

2∆xR
II(Un),

U
n+1
j = U

n
j + ∆t

∆xR
II(Un+1/2),

(
U

n+1/2
a,j = U

n
a,j +

∆t
2∆xR

II(Un
a),

U
n+1
a,j = U

n
a,j +

∆t
∆xR

II(U
n+1/2
a ).
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Uj+1/4 Uj+3/4
Uj+5/4

Figure 3.8 – Second order discretisation. In red, the corresponding first order discretisa-
tion.

3.5 Numerical results

We present some numerical results obtained with the schemes described in the previous
section, on a spatial domain is (0, 1), with final time T = 0.03. We consider Riemann
problems with xc = 0.5.

First, we consider a 1-shock–2-rarefaction case, with the following initial conditions
for the state:

UL =

✓
0.7
0

◆
, UR =

✓
0.2
0

◆
.

The parameter of interest is a = uL, so that the initial conditions for the sensitivity are:

Ua,L =

✓
0
1

◆
, Ua,R =

✓
0
0

◆
.

Figure 3.9 shows the state variables u and ⌧ and their sensitivities ua and ⌧a at the
final time T . Since the state is a quite classical problem, it is not surprising that all the
methods provide very similar solutions one to another. As for the sensitivity, we remark
that the modified formulation is able to remove the peak which approximate the Dirac
delta function, located at x ⇡ 0.4 and evident in the scheme without correction term,
whose label is “S = 0” in Figures 3.9-3.10. However, even with the addition of the source
term, the sensitivity solution have two issues: first, the discontinuity associated with the
state rarefaction is not well captured; secondly, the value of the plateau in the star zone
is not the analytical one. Out of these two problems, the first is the less important one,
for two reasons: the fact that the state rarefaction splits into two discontinuity for the
sensitivity is typical to the PDEs system considered, it does not happen, for instance, in
the case of the complete Euler system; furthermore, the numerical solution converges to
the analytical one as ∆x goes to 0, meaning that this issue can be solved by using a finer
mesh or a higher-order scheme. The second problem is more critical and we believe that
numerical diffusion is the cause of it. In Figure 3.11 we plot the convergence curves of
the all the schemes for each variable: all the methods converge as expected for the state
variable; however, for the sensitivity the error seems to be convergent for coarser meshes,
but it reaches a plateau for finer ones. This can be explained if we split the error into
two parts: the part concentrated in the rarefaction zone, which is the bigger one in the
coarse meshes, converges; however when this part reaches the same order of magnitude
as the error in the star zone, which is constant, the plateau is reached.
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Figure 3.9 – Classical finite volume schemes.

The second test case presented here is an isolated 2-shock for the state as well as for
the sensitivity. In order to have an isolated shock we choose the following initial data:

UL =

✓
0.2

g2(⌧L;UR)

◆
'
✓

0.2
−1.56

◆
, UR =

✓
0.5
−3

◆
,

where g2 is the 2−wave curve defined in (3.20). As parameter of interest a we choose
the arc length of the curve g2, which yields the following initial data for the sensitivity:

Ua,L =

✓
1

g02(⌧L;UR)

◆
'
✓

1
−9.35

◆
, Ua,R =

✓
0
0

◆
.

Figure 3.12 shows the results for the state and the sensitivity obtained with a mesh
∆x = 10−3: one can notice a spurious wave in the state which does not affect the value
in the star zone. However, in the sensitivity this spurious wave is amplified; moreover,
the value in the star zone is not correct. Considering the fact that the approximate
Riemann solver of Roe is exact in the case of an isolated shock (as well as the exact
Godunov solver), the error is necessarily introduced in the average step of the numerical
methods and therefore it is due to the numerical diffusion which comes along with the
averaging operation. For this reason, in the next section we introduce a scheme without
numerical diffusion in the shock.
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Figure 3.10 – Classical finite volume schemes for sensitivities - zoom.
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Figure 3.11 – Convergence of the classical finite volume schemes.
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Figure 3.12 – Test case: isolated shock.

3.6 An anti-diffusive Roe-type numerical scheme

Since we believe that the failure of the previous schemes is caused by the numerical
diffusion in the shock, we present a scheme that does not have any numerical diffusion
in the shock. The scheme was first introduced in [CG08] and here we adapt it to the
sensitivity problem. It is a modified Godunov method and it can be coupled with any
Riemann solver, in this work we couple it with the Roe-type method proposed in the
previous section. In fact, the first step is to solve a Riemann problem at each interface,
as for a standard Godunov method. The difference between the two methods is in the
average step: instead of averaging on the cells [xj−1/2, xj+1/2], a new temporary mesh
is defined, whose j−th cell is denoted [xnj−1/2, x

n
j+1/2], and the average is performed on

this mesh. The new mesh is non uniform and it is defined as follows:

xnj−1/2 = xj−1/2 + σn
j−1/2∆tn,

where σn
j−1/2 is a proper speed and it depends on the problem. The average operation

on the modified mesh provides us with a piecewise constant solution on the new mesh,
which we denote U

n+1
j . The final step of this method is to go back to the initial mesh,

i.e. compute U
n+1
j starting from U

n+1
j , and this is done using a sampling technique: the

value of the solution on the j−th cell at time tn+1, Un+1
j , is chosen randomly among

U
n+1
j−1 , U

n+1
j , and U

n+1
j+1 , in agreement with their rate of presence in the cell. More
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⇤
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Figure 3.13 – Definition of the temporary staggered mesh.

precisely, given a random sequence (↵n) varying in (0, 1), the choice is the following:

U
n+1
j =

8
>>><
>>>:

U
n+1
j−1 if ↵n+1 2

⇣
0, ∆t

∆x max(σn
j−1/2, 0)

⌘
,

U
n+1
j if ↵n+1 2

h
∆t
∆x max(σn

j−1/2, 0), 1 +
∆t
∆x min(σn

j+1/2, 0)
⌘
,

U
n+1
j+1 if ↵n+1 2

h
1 + ∆t

∆x min(σn
j+1/2, 0), 1

⌘
.

(3.28)

The sampling technique mimics the classical averaging if (↵n) is a well distributed random
sequence, for instance ↵n ⇠ U(0, 1), or if it is a deterministic low discrepancy sequence,
such as the van der Corput sequence (cf. [CG08]):

↵n =

mX

k=0

ik2
−(k+1), n =

mX

k=0

ik2
k,

where ik = 0, 1 is the binary expansion of the integers.
Our choice for σn

j+1/2 is the following:

σn
j+1/2 =

8
><
>:

λn
j+1/2 uj > uj+1 and ⌧j < ⌧j+1,

−λn
j+1/2 uj > uj+1 and ⌧j > ⌧j+1,

0 otherwise.

(3.29)

If u is increasing, which means that a rarefaction is expected, the mesh is not modi-
fied, whilst for the case of an expected shock the mesh follows it: in this way one never
performs the average across a shock and therefore there is no numerical diffusion (cf.
Figure 3.13).

Remark. Considering only the initial (non moving) mesh, we remark that this method
can also be understood as solving the following two-step problem:

(
@tU+ @xF(U)− σ@xU = 0,

@tU+ σ@xU = 0.
(3.30)

The first step is equivalent to solving the Riemann problems at each interface and per-
forming the average on the initial uniform mesh, whilst the second step is equivalent to
the sampling (3.28).
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First order formulas

Here, as already said, we couple this anti-diffusive approach with the same Roe-type ap-
proximate Riemann solver we presented in the previous section, so we define the following
residual:

eRI
j (U

n) = R
I
j (U

n)− σn
j−1/2U

⇤
j−1/2 + σn

j+1/2U
⇤
j+1/2,

where in the definition of σj−1/2 we use λj−1/2 = λROE
j−1/2. Then, the scheme is written:

(
U

n+1
j = ∆x

∆xj
U

n
j + ∆t

∆xj

eRI
j (U

n),

+(3.28).
(3.31)

Second order formulas

One can also couple this approach with the second order Roe-type scheme from the
previous section. As for the first order, we define the new residual as follows:

eRII
j (Un) = R

II
j (Un)− σn

j−1/2U
⇤
j−1/2 + σn

j+1/2U
⇤
j+1/2.

Then the scheme writes:
8
>><
>>:

U
n+1/2
j = U

n
j +

∆x−∆xj

∆xj
U

n
j + ∆t

2∆xj

eRII
j (Un),

U
n+1
j = U

n
j +

∆x−∆xj

∆xj
U

n+1/2
j + ∆t

∆xj

eRII
j (Un+1/2),

+(3.28).

(3.32)

From the two-step problem (3.30) point of view, the discretisation (3.32) is a second order
discretisation of the first step followed by the second step, i.e. the sampling technique,
which remains unvaried.

3.7 Numerical results of the anti-diffusive method

The results of the anti-diffusive method are shown in Figures 3.14-3.15. As one can
see, removing the numerical diffusion in the shock for the state variables allows us to
be more precise in the definition of the source term which, in turns, provides us with
better solution for the sensitivity: the plateau in the star zone is correct. Furthermore,
we show in Figure 3.16 the convergence results of the classical Roe-type schemes with
diffusion compared to the same schemes without diffusion: the latter show a good con-
vergence rate even for the sensitivity variables. For reference, k⌧(x, T )kL1(0,1) ' 0.4502,
ku(x, T )kL1(0,1) ' 0.2357, k⌧uL(x, T )kL1(0,1) ' 0.0242, and kuuL(x, T )kL1(0,1) ' 0.5158.

We now present another test case with initial data:

UL =

✓
0.7
0

◆
, UR =

✓
0.2
0

◆
, Ua,L =

✓
0
0

◆
, Ua,R =

✓
1
0

◆
,

therefore the parameter of interest a is in this case ⌧R. The initial data for the state
is the same as in the previous test case, meaning that we are in configuration (b) of
Figure 3.4 and, since a = ⌧R, the rarefaction wave splits into two discontinuities for the
sensitivity as shown in Figure 3.7-(a). For this test case we chose a bigger final time
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Figure 3.14 – Roe-type schemes without numerical diffusion.

(T = 0.07) so that the two extremes of the rarefaction wave could be well separated, in
order to attenuate the effect of the numerical diffusion in the middle. We also changed
the starting point of the discontinuity (xc = 0.3) in order to have the second discontinuity
associated with the rarefaction still in the domain at the final time. The results shown
in Figure 3.17 are obtained with a mesh ∆x = 10−4: even in this particular case, with
three discontinuities, we are able to approximate well the sensitivity provided that the
mesh is fine enough.

45



Chapter 3. The p−system
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Figure 3.15 – Roe-type schemes without numerical diffusion for the sensitivity - zoom.
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Figure 3.16 – Convergence of Roe-type schemes, with and without numerical diffusion.
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Figure 3.17 – Test case shock-rarefaction, a = ⌧R: sensitivity. ∆x = 10−4, T = 0.07.
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4 | The Euler system

4.1 Introduction

In this chapter we deal with the complete Euler system. In the last part of the chapter
an uncertainty quantification problem is defined.

4.1.1 The state system

The Euler system is written:
8
<
:

@t⇢+ @x(⇢u) = 0,
@t(⇢u) + @x(⇢u

2 + p) = 0,
@t(⇢E) + @x(u(⇢E + p)) = 0,

(4.1)

where ⇢ is the density, u is the velocity, ⇢E the total energy per volume unit, and p the
pressure. The system is closed by the following algebraic equation:

p = (γ − 1)

✓
⇢E − 1

2
⇢u2
◆
, (4.2)

where γ = 1.4 is the heat capacity ratio. We introduce two other quantities which
will be useful in the following: the total enthalpy H = E + p

⇢ and the speed of sound

c =
q
(γ − 1)(H − 1

2u
2) . We can rewrite the system (4.1) in the vectorial form:

@tU+ @xF(U) = 0, (4.3)

where

U =

2
4

⇢
⇢u
⇢E

3
5 =

2
4
w1

w2

w3

3
5 , F(U) =

2
4

⇢u
⇢u2 + p

u(⇢E + p)

3
5 =

2
664

w2
w2

2

w1
+ (γ − 1)

⇣
w3 − 1

2
w2

2

w1

⌘

γw2w3

w1
− (γ−1)

2
w3

2

w2
1

3
775 .

One can also write (4.1) in the nonconservative form:

@tU+A(U)@xU = 0, (4.4)

where the Jacobian matrix A is:

A(U) =
@F

@U
=

2
64

0 1 0
γ−3
2 u2 (3− γ)u γ − 1

γ−2
2 u3 − c2u

γ−1
3−2γ
2 u2 + c2

γ−1 γu

3
75 ,
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its eigenvalues are λ1 = u− c, λ2 = u, and λ3 = u+ c and its eigenvectors are:

r1 =

2
4

1
u− c
H − uc

3
5 , r2 =

2
4
1
u
u2

2

3
5 , r3 =

2
4

1
u+ c
H + uc

3
5 .

Therefore A is R-diagonalisable and the system (4.1) is strictly hyperbolic. At last, (4.3)
will be supplemented with a given initial data U(x, t = 0) = U0(x), 8x 2 R.

4.1.2 The sensitivity system

Considering only smooth solutions of (4.1), one can apply the Continuous Sensitivity
Equation (CSE) [HEPB04, BB97, DPB06] method which consists in differentiating (4.1)
with respect to the parameter of interest a. One can then formally exchange the deriva-
tives in time and space with the ones with respect to a (see [BP02] for the theoretical
aspects) and obtain the following sensitivity system:

8
<
:

@t⇢a + @x(⇢u)a = 0,
@t(⇢u)a + @x(⇢au

2 + 2⇢uua + pa) = 0,
@t(⇢E)a + @x(ua(⇢E + p) + u((⇢E)a + pa)) = 0,

(4.5)

which can be written in vectorial form as

@tUa + @xFa(U,Ua) = 0, (4.6)

where we used the following notation:

Ua = @aU =

2
4

⇢a
(⇢u)a
(⇢E)a

3
5 , Fa(U,Ua) = @aF(U) =

2
4

(⇢u)a
⇢au

2 + 2⇢uua + pa
ua(⇢E + p) + u((⇢E)a + pa)

3
5 .

Note that differentiating (4.2) one has:

pa = (γ − 1)((⇢E)a −
1

2
⇢au

2 − ⇢auua)

which acts as a closure relation for (4.5). The initial data for the sensitivity is nothing
but Ua(x, t = 0) = @aU0(x).

4.1.3 The global system

In order to write the global system, i.e. the state and sensitivity system, in a more
compact way, we introduce the following vectors:

V =


U

Ua

]
=

2
6666664

w1

w2

w3

w4

w5

w6

3
7777775
,
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G(V) =


F(U)

Fa(U,Ua)

]
=

2
66666666664

w2
w2

2

w1
+ (γ − 1)

⇣
w3 − 1

2
w2

2

w1

⌘

γw2w3

w1
− (γ−1)

2
w3

2

w2
1

)

w5

γ−3
2

w2
2
w4

w2
1

− (γ − 3)w2w5

w1
+ (γ − 1)w6

γw3w5

w1
− γw2w3w4

w2
1

− 3
2(γ − 1)

w2
2
w5

w1
+ (γ − 1)

w3
2
w4

w3
1

+ γw2w6

w1

3
77777777775

.

Therefore, the complete system writes:

(
@tV + @xG(V) = 0,

V(x, 0) = V0(x),
(4.7)

with V0(x) = (U0(x), @aU0(x))
t. The Jacobian matrix of the complete system has the

following form:
@G(V)

@V
= M(V) =


A 0

B A

]

where A is the Jacobian matrix of the state system and B writes:

B =

2
4

0 0 0
(γ − 3)uua (3− γ)ua 0

(?) (•) γua

3
5 , (4.8)

with

(?) = − c2

γ − 1

pa
p
u+

3

2
(γ − 2)u2ua +

c2

γ − 1

u⇢a
⇢
− c2

γ − 1
ua + γ

u3⇢a
⇢

,

and

(•) = γ

2
u2⇢a −

c2

γ − 1
⇢a +

6− 5γ

2

u2⇢a
⇢

+ (3− 2γ)uua + 3(γ − 1)
u⇢a
⇢2

+
c2

γ − 1

pa
p
.

The matrix M has three repeated eigenvalues, which are the eigenvalues of the matrix
A. More precisely, one can prove the following result.

Proposition 1. The global system (4.7) is weakly hyperbolic.

Proof. A system of the form (4.7) is weakly hyperbolic if its Jacobian matrix has real
eigenvalues and it is not R-diagonalisable. We want to investigate whether or not the
matrix M is R-diagonalisable. A matrix is diagonalisable if and only if its minimal
polynomial splits in distinct roots. Since the characteristic polynomial of the matrix M

is the following:
pM (x) = (x− λ1)

2(x− λ2)
2(x− λ3)

2, (4.9)

the minimal polynomial, in order to have distinct roots, can be at most of degree 3.
Therefore, if M is diagonalisable, it must be:

(M− λ1I6)(M− λ2I6)(M− λ3I6) = 0. (4.10)
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Let us write (4.10) by blocks:

A− λ1I3 0

B A− λ1I3

] 
A− λ2I3 0

B A− λ2I3

] 
A− λ3I3 0

B A− λ3I3

]
= 0 (4.11)

Developing the left-hand side products one obtains the following matrix:

(A− λ1I3)(A− λ2I3)(A− λ3I3) 0

(⌅) (A− λ1I3)(A− λ2I3)(A− λ3I3)

]
, (4.12)

where

(⌅) = B(A− λ2I3)(A− λ3I3) + (A− λ1I3)B(A− λ3I3) + (A− λ1I3)(A− λ2I3)B.

The top-left and bottom-right coefficients are equal to the characteristic polynomial of
A evaluated in A, thus they are zero. Therefore, the matrix M is diagonalisable if and
only if (⌅) = 0. Let us compute the coefficient (1, 1) of (⌅):

(⌅)(1,1) = 0 + [c− u, 1, 0]

2
4

0

(3− γ)u2ua − (γ−3)2

2 u2ua
}

3
5+

+[c− u, 1, 0]

2
4

(γ − 3)uua
(γ − 2)(3− γ)u2ua + (γ − 1)(?)

M

3
5 =

= −3

2
(γ − 1)u2ua + (γ − 3)cuua − c2u

pa
p

+ c2u
⇢a
⇢
− c2ua + γ(γ − 1)u3

⇢a
⇢
,

where there is no need to specify } and M. There is no reason why the quantity above
should be always be zero. Therefore, the matrix is not diagonalisable and the complete
system is not hyperbolic in general. However, as the eigenvalues are real, the system is
weakly hyperbolic.

4.2 Source term

The sensitivity system (4.5) was derived assuming that the state solution U is regular.
However, this is not generally true for hyperbolic systems such as the one considered
[BP02]. Therefore, we add a correction term in the Rankine-Hugoniot conditions of
(4.5), as done in the previous chapters in order to make this system valid also in the
present framework of hyperbolic systems with possibly discontinuous solutions:

S =

NsX

k=1

δk⇢⇢⇢k, (4.13)

where Ns is the number of discontinuities, which can be either shocks or contact discon-
tinuities, δk = δ(x−xk,s) is the Dirac delta function with xk,s position of the k−th shock
and ⇢⇢⇢k is the amplitude of the k−th correction which is

⇢⇢⇢k(t) = σk,a(U
+ −U

−). (4.14)
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The definition of the source term comes from the derivation with respect to a of the
Rankine-Hugoniot relations associated with (4.3):

−σ(U+ −U
−) + F(U+)− F(U−) = 0,

which gives:

(U−
a −U

+
a )σk + (U− −U

+)σk,a + σk(@xU
− − @xU

+)@axk,s(t) =

= F
−
a − F

+
a +

✓
@F(U−)

@U
@xU

− − @F(U+)

@U
@xU

+

◆
@axk,s(t),

(4.15)

where the terms with @axs(t) are very difficult to estimate, however they are all zero
in a first order finite volume framework, therefore they can be neglected. A special
treatment, which will be detailed later, is necessary for a second order discretisation.
The new system can thus be written as:

(
@tU+ @xF(U) = 0

@tUa + @xFa(U,Ua) = S.
(4.16)

Before going to the design of a numerical scheme to approximate the solution of (4.16),
we briefly discuss in the next section the typical structure of these solutions and compare
it with the ones of (4.3). We specify the solution for a given initial data of Riemann
type.

4.3 Riemann problem

In this section, we write the exact solution for the system (4.16) in a specific case (cf.
[App97]), which will be used as a test case to check the convergence of the numerical
schemes proposed. We consider a Riemann problem, i.e.:

V0(x) =

(
VL x < xc,

VR x > xc.

The general solution for this kind of problem is quite complicated, especially for the
sensitivity (the last three components of V). First, we study the state (the first three
components of V): the pair (λ2, r2) is linearly degenerate, i.e. rλ2 ·r2 = 0, therefore the
middle wave is always a contact discontinuity; concerning the 1−wave and the 3−wave,
they are genuinely nonlinear therefore they can either be shocks or rarefaction waves.
In Figure 4.1 we show the structure of the state in the case of a rarefaction-contact-
shock. Concerning the sensitivity, it has the same structure as the state (cf. Figure 4.2
in the case rarefaction-contact-shock): the middle wave is always a contact wave, and
the 1− and 2−wave are of the same type as for the state. The only difference is that the
sensitivity presents discontinuities in the two extrema of the rarefaction fan (and this is
why in Figure 4.2 the external lines of the rarefaction fan are thicker).

In the following, we illustrate this analysis of the wave structure by giving the detailed
solution for the state and for the sensitivity in a specific case. The initial data for the
state on the physical variables is the following:

⇢L = 1, uL = 0, pL = 1, ⇢R = 0.125, uR = 0, pR = 0.1.
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Figure 4.1 – Structure of the solution for the Riemann problem for the state.
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Ua,L

U
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⇤
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Figure 4.2 – Structure of the solution for the Riemann problem for the sensitivity.

We consider as parameter of interest a = pL, therefore the initial data for the sensitivity
is:

⇢a,L = ⇢a,R = ua,L = ua,R = pa,R = 0, pa,L = 1.

This choice of initial data leads to the structure in Figures 4.1-4.2, for the state as well
as for the sensitivity: the 1−wave is a rarefaction and the 3−wave is a shock. For the
notation, please refer to Figure 4.1 for the state and Figure 4.2 for the sensitivity. Let
us now give the exact formulas for the state and for the sensitivity.

State solution: the exact solution for the physical variables is given in [App97]. Every
variable is given as a function of the pressure in the right-star zone p⇤R, which is computed
numerically from the following implicit relation:

pL = p⇤R

0
BB@1−

(γ − 1) cRcL (
p∗R
pR
− 1)

r
2γ
⇣
2γ + (γ + 1)(

p∗R
pR
− 1)

⌘

1
CCA

− 2γ
γ−1

, (4.17)

where c` =

r
γp`
⇢`

, with ` = L,R. In the star regions, we have:

p⇤L = p⇤R = p⇤,

u⇤L = u⇤R = u⇤ = cR

✓
p⇤

pR
− 1

◆s
2

γ(γ + 1) p
∗

pR
+ γ(γ − 1)

,

because the velocity u and the pressure p are Riemann invariants across the 2−wave; as
for the density ⇢, we have:

⇢⇤R = ⇢R
p⇤

pR

 
1 + γ−1

γ+1
pR
p∗

1 + γ−1
γ+1

p∗

pR

!
,
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⇢⇤L = ⇢L

✓
p⇤

pL

◆ 1

γ

.

In the rarefaction wave, we have:

û(x, t) =
2(u⇤ − uL)

(γ + 1)u⇤

✓
x− xc

t

◆
+ 2

cLu
⇤ − uL

⇣
cL − γ+1

2 u⇤
⌘

(γ + 1)u⇤
,

⇢̂(x, t) = ⇢L

✓
1− (γ − 1)

û(x, t)

2cL

◆ 2

γ−1

,

p̂(x, t) = pL

✓
1− (γ − 1)

û(x, t)

2cL

◆ 2γ
γ−1

.

Finally, the solution is given as:

U(x, t) =

8
>>>>>>>><
>>>>>>>>:

UL x− xc < −cLt,
bU −cLt < x− xc <

⇣
γ+1
2 u⇤ − cL

⌘
t,

U
⇤
L

⇣
γ+1
2 u⇤ − cL

⌘
t < x− xc < u⇤t,

U
⇤
R u⇤t < x− xc < cR

q
γ−1
2γ + γ+1

2γ
p∗

pR
t,

UR x− xc > cR

q
γ−1
2γ + γ+1

2γ
p∗

pR
t.

(4.18)

Sensitivity solution: by differentiating (4.17) with respect to a, one obtains the fol-
lowing explicit formula for p⇤a,R:

p⇤a,R = p⇤a,L = p⇤a =
1 + Θ

1−3γ
γ−1 Ξp⇤

Θ
− 2γ

γ−1 +Θ
1−3γ
γ−1 (Λ−Ψ)p⇤

,

where:

Θ = 1−
(γ − 1)cR

⇣
p∗

pR
− 1
⌘

cL

r
4γ2 + 2γ(γ − 1)

⇣
p∗

pR
− 1
⌘ ,

Ξ =
cR

⇣
p∗

pR
− 1
⌘
ca,R
p
2γ

c2L

r
2γ + (γ + 1)

⇣
p∗

pR
− 1
⌘ ,

Λ =

p
2γ cR

cLpR

r
2γ + (γ + 1)

⇣
p∗

pR
− 1
⌘ ,

Ψ =
γ(γ + 1)cR

⇣
p∗

pR
− 1
⌘

cLpR
p
2γ
⇣
2γ + (γ + 1)

⇣
p∗

pR
− 1
⌘⌘ 3

2

.
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In the star regions, by differentiating the corresponding state, one finds:

u⇤a =
2ca,L
γ − 1

 
1−

✓
p⇤

pL

◆ γ−1

2γ

!
− cL

γ

✓
p⇤

pL

◆−γ−1

2γ
✓
pLp

⇤
a − p⇤

p2L

◆
,

⇢⇤a,R =
⇢Rp

⇤
a

pR

⇣
1 + γ−1

γ+1
pR
p∗

⌘

⇣
1 + γ−1

γ+1
p∗

pR

⌘ + ⇢R
p⇤

pR

γ − 1

γ + 1

0
@
−pRp∗a

p∗2

⇣
1 + γ−1

γ+1
p∗

pR

⌘
− p∗a

pR

⇣
1 + γ−1

γ+1
pR
p∗

⌘

(1 + γ−1
γ+1

p∗

pR
)2

1
A ,

⇢⇤a,L =
⇢L
γ

pLp
⇤
a − p⇤

p2L

✓
p⇤

pL

◆ 1−γ
γ

.

Finally, in the rarefaction:

ûa(x, t) =
2uLu

⇤

(γ + 1)u⇤2
x− xc

t
+ 2

ca,Lu
⇤2 − ca,LuLu

⇤ + cLuLu
⇤
a

(γ + 1)u⇤2
,

⇢̂a(x, t) = −⇢L
✓
ûa(x, t)cL − û(x, t)ca,L

c2L

◆✓
1− (γ − 1)û(x, t)

2cL

◆ 3−γ
γ−1

,

p̂a(x, t) =

✓
1− (γ − 1)û(x, t)

2cL

◆ 2γ
γ−1

−pLγ
✓
ûa(x, t)cL − û(x, t)ca,L

c2L

◆✓
1− (γ − 1)û(x, t)

2cL

◆ γ+1

γ−1

.

The sensitivity has the same structure as the state, therefore:

Ua(x, t) =

8
>>>>>>>><
>>>>>>>>:

Ua,L x− xc < −cLt,
bUa

(
x−xc

t

)
−cLt < x− xc <

⇣
γ+1
2 u⇤ − cL

⌘
t,

U
⇤
a,L

⇣
γ+1
2 u⇤ − cL

⌘
t < x− xc < u⇤t,

U
⇤
a,R u⇤t < x− xc < cR

q
γ−1
2γ + γ+1

2γ
p∗

pR
t,

Ua,R x− xc > cR

q
γ−1
2γ + γ+1

2γ
p∗

pR
t.

(4.19)

We remark that if one writes the Rankine-Hugoniot conditions across the shock one finds:

−cR
r

γ − 1

2γ
+

γ + 1

2γ

p⇤

pR
(Ua,R −U

⇤
a,R) + Fa(UR,Ua,R)− Fa(U

⇤
R,U

⇤
a,R) = S.

4.4 Numerical methods

In this section we consider the numerical approximation of (4.16). We derive first and
second order Roe-type numerical schemes and we pay particular attention to the nu-
merical diffusion effects induced by these approaches. Indeed and as we will see it may
prevent the numerical solution from converging to the correct solution. We consider a
uniform grid in space with a constant step ∆x, xj is the center of the j−th cell Cj , whose
extrema are xj−1/2 and xj+1/2 (cf. Figure 4.3). We use an adaptive time step ∆tn, cho-
sen according to a CFL condition, and the intermediate times are tn+1 = tn +∆tn. We
indicate with V

n
j = (Un

j ,U
n
a,j)

t the average value of the state and the sensitivity in the
cell Cj at time tn.
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xj−1/2 xj+1/2

∆x

xj

Cj

Figure 4.3 – Spatial discretisation.

We use Godunov-type schemes, which consist of two main steps: first, one solves the
Riemann problem at each interface xj−1/2 at time tn, obtaining in this way a solution at
time tn+1, v(x, tn+1) = (u(x, tn+1),ua(x, t

n+1))t; the second step is to project v(x, tn+1)
in order to obtain a piecewise constant solution on the mesh. How to compute v(x, t)
is the topic of the next subsections: different choices for the solution of the Riemann
problem lead to different numerical schemes.

4.4.1 Projection step

The projection step is usually performed by averaging the solution v(x, tn+1) on the cell:

V
n+1
j =

1

∆x

Z xj+1/2

xj−1/2

v(x, tn+1)dx. (4.20)

However, this projection method introduces numerical diffusion. As shown in Chapter 3,
numerical diffusion plays a fundamental role in the discretisation of the sensitivity, espe-
cially across shocks. For this reason, we propose another projection method, introduced
in [CG08] and inspired by Glimm’s method [Gli65, Cho76]. First, we define a staggered
mesh, whose cells will be denoted C

n
j , as follows:

C
n
j = (x̄nj−1/2, x̄

n
j+1/2), x̄nj−1/2 = xj−1/2 + σn

j−1/2∆tn,

where σn
j−1/2 is a proper speed. In this case, we choose it equal to zero if no shock is

expected at the interface j − 1/2, whilst it is equal to the speed of the shock, if there is
one. More details on the choice of σn

j−1/2 will be provided in the next subsections. The
second step is to perform the average on the staggered mesh, obtaining in this way an
intermediate solution V

n+1
j :

V
n+1
j =

1

∆xnj

Z x̄j+1/2

x̄j−1/2

v(x, tn+1)dx, (4.21)

where ∆xnj = x̄j+1/2 − x̄j−1/2. Finally, the last step is a sampling step, in order to go
back to the initial uniform grid. Let (↵n) be a random sequence varying in (0, 1), for
instance ↵n ⇠ U([0, 1]); then:

V
n+1
j =

8
>>><
>>>:

V
n+1
j−1 if ↵n+1 2

⇣
0, ∆t

∆x max(σn
j−1/2, 0)

⌘
,

V
n+1
j if ↵n+1 2

h
∆t
∆x max(σn

j−1/2, 0), 1 +
∆t
∆x min(σn

j+1/2, 0)
⌘
,

V
n+1
j+1 if ↵n+1 2

h
1 + ∆t

∆x min(σn
j+1/2, 0), 1

⌘
.

(4.22)
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The method is proven to be convergent even if a low discrepancy deterministic sequence
is used. In this work, we use the van der Corput sequence for both the state and the
sensitivity (cf. [CG08]):

↵n =

mX

k=0

ik2
−(k+1), n =

mX

k=0

ik2
k,

where ik = 0, 1 is the binary expansion of the integers.
In the next subsections we present some Riemann solvers for the state and for the

sensitivity, and their two variations: the diffusive standard version with the projection
step (4.20), and their anti-diffusive version (4.21)-(4.22) and we compare their results.
The strategy is to solve the state system separately from the sensitivity system, since
the global system (4.7) is only weakly hyperbolic and some of the standard approaches
require strict hyperbolicity. Moreover, notice that the state system (4.3) evolves in an
independent way with respect to the sensitivity system (4.6).

4.4.2 Riemann solver for the state

First, we consider the state system, for which the classical numerical schemes can be
used: in this work we used the approximate Riemann solver of Roe, because it has the
property of being exact for an isolated shock. It turns out that this property plays an
important role in the anti-diffusive approach (4.21)-(4.22). Indeed, it makes the method
equivalent to the random choice Glimm scheme in the specific case of an isolated shock
wave, and therefore is convergent to the correct solution (still in this very specific case).
In addition, we remark that it would not be possible to use a solver with only one
intermediate star state, such as HLL, because of the definition of the source term (4.14):
two intermediate states are necessary in order to be able to compute the correction term
across the contact discontinuity.

The main idea of the Roe scheme is to replace the Jacobian matrix A(U) in (4.4) with
a constant matrix A(UL,UR), obtaining in this way a linearised system, whose solution
to the Riemann problem can be computed exactly. For the Euler system, a proper
linearisation is provided by Roe in the original paper [Roe81]. Furthermore, there is no
need to assemble the matrix, it is sufficient to know its eigenvalues and eigenvectors,
which are the following:

λROE
1 = ũ− c̃, λROE

2 = ũ, λROE
3 = ũ+ c̃,

r̃1 =

0
@

1
ũ− c̃

H̃ − ũc̃

1
A , r̃2 =

0
@

1
ũ
ũ2

2

1
A , r̃3 =

0
@

1
ũ+ c̃

H̃ + ũc̃

1
A .

The quantities denoted with a tilde are Roe averaged quantities defined as follows:

ũ =

p
⇢L uL +

p
⇢R uRp

⇢L +
p
⇢R

, H̃ =

p
⇢L HL +

p
⇢R HRp

⇢L +
p
⇢R

, c̃ =

s
(γ − 1)

✓
H̃ − 1

2
ũ2
◆
.

Therefore, the Roe solver consists of four constant states (UL, U
⇤
L, U

⇤
R, and UR, cf.

Figure 4.4) connected by three discontinuities travelling at speeds λROE
i . To compute
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λROE
1 λROE

2 λROE
3

x

t

xc

UL

U
⇤
L U

⇤
R

UR

Figure 4.4 – Structure of the Roe solver for the state.

the star states U⇤
L and U

⇤
R, first we decompose the jump UR−UL along the eigenvectors

of the Jacobian matrix A:

∆U = UR −UL =
3X

i=1

↵ir̃i. (4.23)

The relation (4.23) is used to compute the coefficients ↵i, then one has:

U
⇤
L = UL +↵1r̃1 = UR−↵2r̃2−↵3r̃3, U

⇤
R = UR−↵3r̃3 = UL +↵1r̃1 +↵2r̃2. (4.24)

Once all the quantities U⇤
L, U⇤

R, and λROE
` are known at each interface xj−1/2, w(x, tn+1)

is defined and the integrals (4.20) or (4.21) can easily be computed, since w(x, tn+1) is
a piecewise constant.

It is well known that, in case of transonic rarefaction, the Roe solver provides a non-
entropic solution. To overcome this problem, we implemented the entropic fix proposed
in [HH83].

Definition of σσσn
j−1/2

As already said, σn
j−1/2 is defined in order to avoid averaging across a shock. Numerical

results show that there is no need to move the mesh for the contact discontinuity (cf.
section 4.5). The definition of σn

j−1/2 is the following:

σn
j−1/2 =

8
><
>:

λROE
1,j−1/2 if d1,j−1/2 = 1,

λROE
3,j−1/2 if d3,j−1/2 = 1,

0 otherwise,

where d`,j−1/2 are shock detectors, d`,j−1/2 = 1 if there is an `−shock at the interface
j − 1/2, it is zero otherwise. They are based on the fact that the velocity u is always
decreasing across a shock, whilst the density ⇢ is increasing across a 1−shock and it is
decreasing across a 3−shock:

d1,j−1/2 =

(
1 if ⇢j > ⇢j−1 and uj < uj−1,

0 otherwise,
d3,j−1/2 =

(
1 if ⇢j < ⇢j−1 and uj < uj−1,

0 otherwise.

Furthermore, we remark that there is no need for a contact detector because it is known
that the middle wave is always a contact discontinuity.
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λROE
1 λROE

3

x

t

xc

Ua,L

U
⇤
a

Ua,R

Figure 4.5 – Structure of the HLL-type solver for the sensitivity.

4.4.3 Riemann solvers for the sensitivity

For the sensitivity we propose two different strategies. Indeed and as explained in the
previous section, for the state it is necessary to use a Riemann solver with two different
star states, in order to be able to compute the source term across the contact discontinu-
ity. However, for the sensitivity an HLL-type approach can be used, which gives a first
strategy. Another possible strategy is to keep for the sensitivity the same structure as
for the state, and therefore to have an HLLC-type scheme. A third possibility which we
will not analyse here, explored in detail in [App97], is to rewrite the sensitivity flux in
such a way that the same Roe Riemann solver used for the state can be applied for the
sensitivity. Let us now describe the two possibilities considered in detail.

HLL-type scheme

The first Riemann solver proposed for the sensitivity has a simpler structure than the
state solver: we neglect the contact discontinuity, therefore the solver consists only of
three constant states (Ua,L, U⇤

a, and Ua,R) connected by two discontinuities travelling
at speeds λROE

1 and λROE
3 (cf. Figure 4.5). The star value of the sensitivity U

⇤
a at the

interface j−1/2 can be computed directly from the Harten, Lax and van Leer conditions
[HLL83] applied to a system of conservation laws with source terms. We get:

U
⇤
a,j−1/2 =

1

λROE
3 − λROE

1

⇣
λROE
3 U

n
a,j − λROE

1 U
n
a,j−1

−Fa(Uj ,Ua,j) + Fa(Uj−1,Ua,j−1) + Sj−1/2

⌘
,

(4.25)

where the source term is naturally discretised as follows:

Sj−1/2 = @aλ
ROE
1,j−1/2(U

⇤
L,j−1/2 −Uj−1)d1,j−1/2 + @aλ

ROE
2,j−1/2(U

⇤
R,j−1/2 −U

⇤
L,j−1/2)

+@aλ
ROE
3,j−1/2(Uj −U

⇤
R,j−1/2)d3,j−1/2.

HLLC-type scheme

Another possible approach for the sensitivity is to keep the same structure as for the
state (cf. Figure 4.4), with the same speeds of propagation for the three discontinuities.
We need to compute the two intermediate constant states U

⇤
a,L and U

⇤
a,R. Again, a
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possible strategy to compute U
⇤
a,L and U

⇤
a,R is to follow the Harten, Lax and van Leer

formalism with source term and to impose the following linear system, created from the
Rankine-Hugoniot jump relations:

8
>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

−λ1(⇢
⇤
a,L − ⇢a,L) + (⇢u)⇤a,L − (⇢u)a,L = @aλ1(⇢

⇤
L − ⇢L),

−λ2(⇢
⇤
a,R − ⇢⇤a,L) + (⇢u)⇤a,R − (⇢u)⇤a,L = @aλ2(⇢

⇤
R − ⇢⇤L),

−λ3(⇢a,R − ⇢⇤a,R) + (⇢u)a,R − (⇢u)⇤a,R = @aλ3(⇢R − ⇢⇤R),
(γ−3)

2 ũ2(⇢⇤a,R − ⇢⇤a,L) + (2− γ)ũ((⇢u)⇤a,R − (⇢u)⇤a,L)

+(γ − 1)((⇢E)⇤a,R − (⇢E)⇤a,L) = @aλ2((⇢u)
⇤
R − (⇢u)⇤L),

(λ2 − λ1)(⇢u)
⇤
a,L + (λ3 − λ2)(⇢u)

⇤
a,R + λ1(⇢u)a,L − λ3(⇢u)a,R

+Fa,R|2 − Fa,L|2 = ∆xS|2,
(λ2 − λ1)(⇢E)⇤a,L + (λ3 − λ2)(⇢E)⇤a,R + λ1(⇢E)a,L − λ3(⇢E)a,R

+Fa,R|3 − Fa,L|3 = ∆xS|3,

(4.26)

where λ1 = ũ − c̃, λ2 = ũ, and λ3 = ũ + c̃. The first three equations are the Rankine-
Hugoniot condition on ⇢ across the three waves, differentiated with respect to a. Note
that summing up these equations gives the integral condition of the Harten, Lax and van
Leer formalism of the density variable. The fourth equation is the Rankine-Hugoniot
condition on ⇢u for the linearised system differentiated with respect to a; the last two
equations are the integral conditions on the sensitivities (⇢u)a and (⇢E)a. If we define
the following vectors

x = (⇢⇤a,L, ⇢
⇤
a,R, (⇢u)

⇤
a,L, (⇢u)

⇤
a,R, (⇢E)⇤a,L, (⇢E)⇤a,R)

t

b =

0
BBBBBB@

b1
b2
b3
b4
b5
b6

1
CCCCCCA

=

0
BBBBBB@

@aλ1(⇢
⇤
L − ⇢L) + (⇢u)a,L − λ1⇢a,L

@aλ2(⇢
⇤
R − ⇢⇤L)

@aλ3(⇢R − ⇢⇤R)− (⇢u)a,R + λ3⇢a,R
@aλ2((⇢u)

⇤
R − (⇢u)⇤L)

∆xS|2 − λ1(⇢u)a,L + λ3(⇢u)a,R − Fa,R|2 + Fa,L|2
∆xS|3 − λ1(⇢E)a,L + λ3(⇢E)a,R − Fa,R|3 + Fa,L|3

1
CCCCCCA

the system can be rewritten as:

Ax = b,

where A is the following matrix:

A =

0
BBBBBB@

−λ1 0 1 0 0 0
λ2 −λ2 −1 1 0 0
0 λ3 0 −1 0 0

− (γ−3)
2 ũ2 (γ−3)

2 ũ2 −(2− γ)ũ (2− γ)ũ −(γ − 1) (γ − 1)
0 0 c̃ c̃ 0 0
0 0 0 0 c̃ c̃

1
CCCCCCA
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and we have det(A) = 4c̃4(γ − 1) 6= 0. The solution of the system has the following form:

x =

0
BBBBBBBBBBBBBBBB@

(2c̃+ũ)b1+(c̃+ũ)b2+ũb3−b5
2c̃2

−ũb1+(c̃−ũ)b2+(2c̃−ũ)b3+b5
2c̃2

(ũ2+c̃ũ)b1+(ũ2−c̃2)b2+(ũ2−c̃)ũb3+(c̃−ũ)b5
2c̃2

−(ũ2+c̃ũ)b1+(c̃2−ũ2)b2+(c̃ũ−ũ2)b3+(c̃+ũ)b5
2c̃2

(γ−1)(ũ3+c̃ũ2)b1+((γ−1)ũ3+2(2−γ)c̃2ũ)b2+(γ−1)(ũ3−c̃ũ2)b3−2c̃2b4−(γ−1)ũ2b5+2(γ−1)c̃b6
4(γ−1)c̃2

−(γ−1)(ũ3+c̃ũ2)b1−((γ−1)ũ3+2(2−γ)c̃2ũ)b2+(γ−1)(c̃ũ2−ũ3)b3+2c̃2b4+(γ−1)ũ2b5+2(γ−1)c̃b6
4(γ−1)c̃2

1
CCCCCCCCCCCCCCCCA

.

An alternative strategy to compute U
⇤
a,L and U

⇤
a,R is to differentiate with respect to a

the following relations:

U
⇤
L = UL + ↵1r1, U

⇤
R = UR − ↵3r3, (4.27)

obtaining

U
⇤
a,L = Ua,L + ↵a,1r1 + ↵1ra,1, U

⇤
a,R = Ua,R − ↵a,3r3 − ↵3ra,3, (4.28)

with

r1 =

0
@

1
ũ− c̃

H̃ − ũc̃

1
A , ra,1 =

0
@

0
ũa − c̃a

H̃a − ũac̃− ũc̃a

1
A ,

r2 =

0
@

1
ũ
ũ2

2

1
A , ra,2 =

0
@

0
ũa
ũũa

1
A ,

r3 =

0
@

1
ũ+ c̃

H̃ + ũc̃

1
A , ra,3 =

0
@

0
ũa + c̃a

H̃a + ũac̃+ ũc̃a

1
A ,

8
>>><
>>>:

↵2 =
γ − 1

c̃2

h
(⇢R − ⇢L)(H̃ − ũ2) + ũ

⇣
(⇢u)R − (⇢u)L

⌘
−
⇣
(⇢E)R − (⇢E)L

⌘i
,

↵1 =
1

c̃

h
(⇢R − ⇢L)(ũ+ c̃)−

⇣
(⇢u)R − (⇢u)L

⌘
− c̃↵2

i
,

↵3 = (⇢R − ⇢L)− (↵1 + ↵2),
8
>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

↵a,2 = −2c̃a(γ − 1)

c̃3

h
(⇢R − ⇢L)(H̃ − ũ2) + ũ

⇣
(⇢u)R − (⇢u)L

⌘
−
⇣
(⇢E)R − (⇢E)L

⌘i

+
γ − 1

c̃2

h
(⇢a,R − ⇢a,L)(H̃ − ũ2) + (⇢R − ⇢L)(H̃a − 2ũũa)

+ũa

⇣
(⇢u)R − (⇢u)L

⌘
−
⇣
(⇢E)R − (⇢E)L

⌘
+ ũ
⇣
(⇢u)a,R − (⇢u)a,L

⌘
−
⇣
(⇢E)a,R − (⇢E)a,L

⌘i
,

↵a,1 = − c̃a
c̃2

h
(⇢R − ⇢L)(ũ+ c̃)− ((⇢u)R − (⇢u)L)− c̃↵2

i

+
1

2c̃

h
(⇢a,R − ⇢a,L)(ũ+ c̃) + (⇢R − ⇢L)(ũa + c̃a)− ((⇢u)a,R − (⇢u)a,L)− c̃a↵2 − c̃↵a,2

i
,

↵a,3 = (⇢a,R − ⇢a,L)− (↵a,1 + ↵a,2).
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The next proposition states that the two strategies to define U
⇤
a,L and U

⇤
a,R are equiva-

lent.

Proposition 2. The star sensitivities (4.28) solve the system (4.26).

Proof. We will prove that the star sensitivities defined in (4.28) satisfy the system (4.26).

1. First equation. Writing the first coefficient of (4.27) one easily finds ⇢⇤L− ⇢L = ↵1,
and writing the first two coefficients of (4.28) one finds:

⇢⇤a,L − ⇢a,L = ↵a,1, (⇢u)⇤a,L − (⇢u)a,L = ↵a,1(ũ− c̃) + ↵1(ũa − c̃a).

We now replace these three expressions in the first equation of (4.26) and we obtain:

−λ1↵a,1 + ↵a,1(ũ− c̃) + ↵1(ũa − c̃a) = @aλ1↵1,

which is always verified, since λ1 = ũ− c̃.

2. Second equation. We recall that

UR −UL =
3X

i=1

↵iri, Ua,R −Ua,L =
3X

i=1

↵a,iri + ↵ira,i.

Therefore, one has:

U
⇤
R −U

⇤
L = ↵2r2, U

⇤
a,R −U

⇤
a,L = ↵a,2r2 + ↵2ra,2,

which gives us the following relations:

⇢⇤R − ⇢⇤L = ↵2, ⇢⇤a,R − ⇢⇤a,L = ↵a,2, (⇢u)⇤a,R − (⇢u)⇤a,L = ↵a,2ũ+ ↵2ũa.

We now replace them in the second equation of (4.26) and we obtain:

−λ2↵a,2 + ↵a,2ũ+ ↵2ũa = @aλ2↵2,

which is always verified, since λ2 = ũ.

3. Third equation. As we did for the first two equations, one can find the three
following expressions:

⇢R−⇢⇤R = ↵3, ⇢a,R−⇢⇤a,R = ↵a,3, (⇢u)a,R− (⇢u)⇤a,R = ↵a,3(ũ+ c̃)+↵2(ũa+ c̃a).

By replacing them in the third equation of (4.26) one can easily check that the
equation is always verified, since λ3 = ũ+ c̃.

4. Fourth equation. As we did for the previous equations, one can find the three
following expressions:

(⇢u)⇤R − (⇢u)⇤L = ↵2ũ, ⇢⇤a,R − ⇢⇤a,L = ↵a,2, (⇢u)⇤a,R − (⇢u)⇤a,L = ↵a,2ũ+ ↵2ũa,

(⇢E)⇤a,R − (⇢E)⇤a,L = ↵a,2
ũ2

2
+ ↵2ũũa.

By replacing them in the fourth equation of (4.26) one can easily check that the
equation is always verified, since λ2 = ũ.
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5. Fifth and sixth equations. The last two equations are the last two components of
the following vectorial equation:

(λ2 − λ1)U
⇤
a,L + (λ3 − λ2)U

⇤
a,R + λ1Ua,L − λ3Ua,R + Fa,R − Fa,L = ∆xS,

which can be rewritten as:

λ1(Ua,L −U
⇤
a,L) + λ2(U

⇤
a,L −U

⇤
a,R) + λ3(U

⇤
a,R −Ua,R) + Fa,R − Fa,L = ∆xS.

Replacing the definitions (4.28) one finds:

−λ1(↵a,1r1+↵1ra,1)−λ2(↵a,2r2+↵2ra,2)−λ3(↵a,3r3+↵3ra,3)+Fa,R−Fa,L = ∆xS.

We recall that by definition of Roe fluxes, one has:

FR − FL =
3X

i=1

↵iλiri ) Fa,R − Fa,L =
3X

i=1

↵a,iλiri + ↵iλa,iri + ↵iλira,i.

Therefore, we obtain:

∆xS =
3X

i=1

↵iλa,iri = λa,1(U
⇤
L −UL) + λa,2(U

⇤
R −U

⇤
L) + λa,3(UR −U

⇤
R),

which is consistent with our discretisation of the source term.

4.4.4 Second order MUSCL-type extension

In this section, we extend to the second order the schemes presented above. In time,
we use a standard two-step Runge-Kutta method, whilst in space we use a MUSCL-
type approach. In a few words the main idea of a MUSCL-type scheme is to consider
a replacement of a constant value V

n
j in each cell by a higher order polynomial Vn

j (x),
x 2 [xj−1/2, xj+1/2]. The edge values V

n
j (xj+1/2), V

n
j+1(xx+1/2) are used as left and

right values for the Riemann problem at the interface j + 1/2; the Riemann problem is
then solved as explained in the previous section. However, the definition of the source
term (4.13)-(4.14) is valid only if the state is piecewise constant (we refer to the previous
Chapter for more details). Therefore, we suggest a piecewise constant state on half of
each cell: these two constant values will be denoted V

n
j±1/4 and correspond to the edge

values V
n
j (xj±1/2) (see Figure 4.6). In this work, we compute the edge values with a

standard approach:
V

n
j±1/4 = V

n
j ±∆V

n
j ,

and the usual choice for ∆V
n
j is to use a slope-limiter procedure, for instance:

∆V
n
j =

1

2
minmod(Vn

j+1 −V
n
j ,V

n
j −V

n
j−1),

where

minmod(a, b) =

(
sgn(a)min(|a|, |b|) if ab > 0,

0 otherwise.

We remark that this approach leads to an additional Riemann problem in the middle of
the cell: in this way we are able to account for the neglected terms in (4.15).
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xxj−3/2 xj−1/2 xj+1/2 xj+3/2

Vj−5/4

Vj−3/4

Vj−1/4

Vj+1/4

Vj+3/4
Vj+5/4

Figure 4.6 – MUSCL discretisation. Dashed red line: first order discretisation. Dotted
blue line: classical second order discretisation. Solid black line: second order discretisa-
tion used in this work.
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Figure 4.7 – Convergence test for the state.

4.5 Convergence tests for the numerical schemes

We consider the Riemann problem of section 4.3. In Figures 4.7-4.8-4.9 we show the
convergence of the different numerical schemes presented in Section 4.4. For reference,
the L1 norms of the states ⇢ex, uex and pex are respectively, 0.5625, 0.2204, and 0.5354.
Furthermore, those for the sensitivities ⇢a,ex, ua,ex and pa,ex are 0.0379, 0.1768, and 0.462.
Figure 4.7 shows the convergence for the state: the rate of convergence is the expected
one; one can remark that the antidiffusive schemes are slightly less precise than the
diffusive ones. In Figures 4.8-4.9 we plot the error for the sensitivity, first with the HLL-
type scheme (Figure 4.8) and then with the HLLC-type scheme (Figure 4.9): considering
two different star regions for the sensitivity does not seem to make much difference;
however one can remark the same effect shown in [CDF17a] for a simpler system: the
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10−2

Roe I
Roe II

Roe I AD
Roe II AD

(a) kρa(x, T )− ρa,ex(x, T )kL1
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10−3

10−2

(b) kua(x, T )− ua,ex(x, T )kL1

10−5 10−4 10−3 10−2

10−3

10−2

(c) kpa(x, T )− pa,ex(x, T )kL1

Figure 4.8 – Convergence test for the sensitivity - HLL-type scheme.
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Figure 4.9 – Convergence test for the sensitivity - HLLC-type scheme.

diffusive schemes do not converge for the sensitivity, this is especially evident for the
variable ⇢a. In Figure 4.10 we plot the solution at the final time T = 0.1, obtained with
a mesh ∆x = 10−3 with the first order schemes, both diffusive and antidiffusive (for
the sensitivity, the HLL-type scheme has been used): one can notice that the plateau
in the right-star zone is not properly captured by the diffusive scheme. This does not
change as one refines the mesh, nor with a higher order scheme, as one can see from
Figure 4.11. In Figure 4.12 we compare the antidiffusive schemes, first and second order:
for the state, the difference is noticeable mainly in the contact discontinuity (therefore
only for ⇢), whilst for the sensitivity the difference is significant in the neighbourhood of
the discontinuities before and after the rarefaction. Finally, in Figure 4.13 we compare
the HLL and the HLLC-type schemes for the sensitivity: as anticipated by the error
plots, the two schemes are almost equivalent in terms of results. For this reason, the
use of HLL-type scheme is preferable, being less expensive from a computational point
of view and less complicated to implement.

4.6 Uncertainty Quantification

4.6.1 Problem description

In this section, we show how SA can be used for uncertainty quantification (UQ), cf.
[PNTG01, TPB01, Del14]. Many UQ techniques have been developed during the last
decades: these methods can be either probabilistic or deterministic. SA falls into the
second category while the most well-known of these techniques, the Monte Carlo method,
is in the first. Other UQ techniques are polynomial chaos [Wal03, XK03, KM06] and
the random space partition [AC12]. The first one is based on a decomposition of the
stochastic part of the solution using an orthogonal polynomial basis. Then using a
Galerkin method a new system of equations is derived, that provides the coefficients of
different statistical quantities, allowing in this way the computation of the statistical
moments of the output. Concerning the second approach, the main idea behind it is to
consider the random parameters as variable and to solve the system with a finite volume
method in a higher dimensional space, the new dimension being the sum of the spatial
dimension and the random space dimension. A very good review and comparison of
many techniques with applications to fluid dynamics can be found in [WH02].

The main aim of UQ is to determine a confidence interval for the output of a model,
in our case U, given the uncertainty and the error on the input parameters. According
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Figure 4.10 – First order schemes, with and without numerical diffusion. HLL-type
scheme for the sensitivity.
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Figure 4.11 – Second order schemes, with and without numerical diffusion. HLL-type
scheme for the sensitivity.
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Figure 4.12 – First and second order schemes, without numerical diffusion. HLL-type
scheme for the sensitivity.
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Figure 4.13 – Second order antidiffusive schemes: HLL and HLLC comparison.
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to the AIAA definition, error has a deterministic nature, while uncertainty a stochastic
one. Furthermore, uncertainty can be categorised in aleatoric uncertainty and epistemic
uncertainty.

In this work, we compare two different UQ methods: Monte Carlo and sensitivity
analysis. Both methods aim to provide statistical quantities like moments (mean, vari-
ance, ...) of the output of the model. In the following, X will represent one of the
variables, considered as random variables, i.e. X can either be ⇢, u or p, and Xa the
corresponding sensitivity. We use the notation µX to indicate the expected value of the
variable X and σ2

X for its variance. Once these two quantities are known, one can build a
confidence interval for the variable X as: CIX = [µX − σX , µX + σX ]. The coefficient
 regulates the amplitude of the interval and it is related to the probability that the
variable X will fall within the interval. For instance, the choice  = 2 provides an ⇠ 95%
confidence interval.

Monte Carlo method. Here we briefly introduce the Monte Carlo method, for more
details see for instance [CC99]. The Monte Carlo method is a probabilistic technique:
to obtain an estimate of the average and of the standard deviation one needs to perform
multiple simulations. Let a be the vector of uncertain parameters, with a known dis-
tribution. Then, N random samples ai are drawn from this distribution, and for each
ai the corresponding solution Xi is computed. Then, the unbiased average and variance
estimators are used:

µX =
1

N

NX

i=1

Xi, σ2
X =

1

N − 1

NX

i=1

(µX −Xi)
2.

These estimates are good if N is sufficiently large: the slow convergence, and therefore
the high computational cost, is the main limitation of the Monte Carlo method. However,
this method is readily parallelisable.

Sensitivity analysis method. SA is a deterministic approach to estimate the average
µX and the variance σ2

X of the output X. Let µa be the average of the uncertain vector
a, and σa the covariance matrix:

µa =

2
64
µa1
...

µaM

3
75 , σa =

2
6664

σ2
a1 cov(a1, a2) . . . cov(a1, aM )

cov(a1, a2) σ2
a2 . . . cov(a2, aM )

...
. . .

...
cov(a1, aM ) . . . σ2

aM

3
7775 ,

where M is the number of uncertain parameters, µai the average of the i−th parame-
ter, σ2

ai its variance and cov(·, ·) the covariance. Let us consider the first order Taylor
expansion for the variable X with respect to the vector of parameters a:

X(a) = X(µa) +
MX

i=1

(ai − µai)Xai(µa) + o(kak2).
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Then computing the average, since X(µa) and Xai(µa) are not random variables, at first
order one gets:

µX = E[X(a)] = X(µa) +

MX

i=1

Xai(µa)E[ai − µai ] = X(µa),

because E[(ai − µai)] = 0. In the same way, one can compute the variance:

σ2
X = E[(X(a)− µX)2] = E

2
4
 

MX

i=1

Xai(µa)(ai − µai)

!2
3
5 =

=
MX

i=1

X2
ai(µa)E[(ai − µai)

2] +
MX

i,j=1
i 6=j

Xai(µa)Xaj (µa)E[(ai − µai)(aj − µaj )].

Therefore, we obtain the following first order estimates of the average and the variance
of the variable X:

µX = X(µa), σ2
X =

MX

i=1

X2
aiσ

2
ai +

MX

i,j=1
i 6=j

XaiXajcov(ai, aj).

Higher order estimates require higher order sensitivities [MD10].

4.6.2 Numerical results

We applied the uncertainty quantification techniques described in the previous subsection
to the test case already introduced in section 4.3. The uncertain parameters are the left
and right values of the physical variables for the state, i.e.:

a = (⇢L, ⇢R, uL, uR, pL, pR)
t,

with the following average and covariance matrix:

µa = (1, 0.125, 0, 0, 1, 0.1)t, σa = diag(0.001, 0.000125, 0.0001, 0.0001, 0.001, 0.0001).

This choice means that all the parameters are uncorrelated and we chose as their variance
the 0.1% of their average, except for the velocity, whose average is 0. In Figure 4.14 we
show the results of the Monte Carlo approach: the average and the average plus and
minus twice the standard deviation (i.e.  = 2) are plotted in red, five samples are
plotted in black. These results are obtained with N = 1000 samples, on a mesh with
∆x = 10−3 using a Roe first order diffusive scheme. As one can see, the average process
smudges the shock and the standard deviation is larger in that zone. In Figures 4.15-
4.16 we show the results of the SA approach, with ∆x = 10−3 and the diffusive first
order scheme, when the sensitivity is computed without the correction term (4.13): the
spikes in the neighbourhood of the shock are very different with respect to the ones we
get with the Monte Carlo approach. On one hand, these peaks lead to non-physical
values for the solution (in particular, the confidence intervals contains negative values
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Figure 4.14 – Monte Carlo approach. Average and the average plus and minus twice the
standard deviation in red. Five samples in black dashed lines.
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Figure 4.15 – SA approach without correction. Average and the average plus and minus
twice the standard deviation in red. Five samples in black dashed lines.

for the pressure and for the density); on the other hand, they do not enlarge the zone
enough to contain the majority of the samples: one can observe that four out of five
samples fall outside of the predicted interval in the neighbourhood of the shock. For
these reasons, we suggest that the corrected sensitivity are more appropriate in this
context. The results obtained with the corrected sensitivities are shown in Figure 4.17:
the confidence interval obtained correspond to the ones obtained with the Monte Carlo
approach, apart for the shock zone. Of course, the SA approach does not capture the
uncertainty in the neighbourhood of the shock, because it neglects the dependence of the
speed of the shock on the parameters. This is why most of the samples fall out of the
zone predicted with the SA approach, and it is the case with and without correction.
However, the SA approach is less expensive: the Monte Carlo approach requires 1000
solutions of the state, whilst the SA approach requires only one solution of the state
and as many solutions of the sensitivity as the number of uncertain parameters, in this
case 6. Furthermore, the solution of the different sensitivities can be done in parallel.
Finally, in Figure 4.18 we show the results obtained with the anti-diffusive scheme: the
difference with respect to the diffusive scheme is not significant. This is a good news for
possible future developments in 2D: the anti-diffusive scheme is very difficult to adapt
in higher dimensional spaces; in fact the Glimm method has been proven not to work in
a two-dimensional space. With these results, we underline how the numerical diffusion
plays an important role in the convergence of the scheme, but it is not so significant for
the final application.
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Figure 4.16 – SA approach without correction. Average and the average plus and minus
twice the standard deviation in red. Five samples in black dashed lines - zoom.
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Figure 4.17 – SA approach with correction. Average and the average plus and minus
twice the standard deviation in red. Five samples in black dashed lines.
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Figure 4.18 – SA approach with correction, anti-diffusive scheme. Average and the av-
erage plus and minus twice the standard deviation in red. Five samples in black dashed
lines.
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5.1 Introduction

5.1.1 State and sensitivity system

The quasi-1D Euler system is written:

8
<
:

@t(h⇢) + @x(h⇢u) = 0,
@t(h⇢u) + @x(h⇢u

2 + p) = p@xh,
@t(h⇢E) + @x(hu(⇢E + p)) = 0,

(5.1)

where ⇢ is the density, u is the velocity, ⇢E the total energy per mass unit, p the pressure,
and h = h(x) > 0 is a smooth function of the space x and it is known. This system
describes a flow in a nozzle of height h and it allows us to investigate more realistic
applications, while remaining in the simpler and computationally less expensive one-
dimensional framework. In this work, we considered the following height:

h(x) =

8
<
:
2−A sin2

✓
x− xc

`
⇡ − ⇡

2

◆
xc −

`

2
< x < xc +

`

2
,

2 otherwise,
(5.2)

which is plotted in Figure 5.1. It is described by three parameters: A is the maximal
depth, xc the point of maximal depth and ` the length. The system is closed by the
following algebraic equation:

p = (γ − 1)

✓
⇢E − 1

2
⇢u2
◆
,

where γ = 1.4 is the heat capacity ratio. We introduce two other quantities which
will be useful in the following: the total enthalpy H = E + p

⇢ and the speed of sound

c =
q
(γ − 1)(H − 1

2u
2) . We can rewrite the system (5.1) in the vectorial form:

@t(hU) + @x(hF(U)) = P@xh, (5.3)

where

U =

2
4

⇢
⇢u
⇢E

3
5 F(U) =

2
4

⇢u
⇢u2 + p

u(⇢E + p)

3
5 P =

2
4
0
p
0

3
5 .
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`

Figure 5.1 – Height of the channel h(x) (5.2).

Since h(x) does not depend on time, one can formally rewrite the system (5.3) as:

@tU+ @xF(U) = (P− F(U))
@xh

h
. (5.4)

We remark that the left-hand side corresponds to the classical Euler system.
To obtain the sensitivity system, we differentiate (5.4) with respect to the parameter

a. Let ha be the derivative of the height of the channel with respect to a; then, the
sensitivity equations are:

@tUa + @xFa(U,Ua) = (Pa − Fa(U,Ua))
@xh

h
+ (P− F(U))

h@xha − ha@xh

h2
, (5.5)

where we recall that

Fa(U,Ua) = @aF(U) =

2
4

(⇢u)a
⇢au

2 + 2⇢uua + pa
ua(⇢E + p) + ua((⇢E)a + pa)

3
5

and P = (0, pa, 0)
t. Once again, the left-hand side is the sensitivity of the Euler system,

and as done previously, a correction term needs to be added to the right-hand side in
order to consider the possible discontinuities:

@tUa + @xFa(U,Ua) = (Pa − Fa(U,Ua))
@xh

h

+(P− F(U,Ua))
h@xha − ha@xh

h2
+ S(U).

(5.6)

The source S is defined as follows:

S(U) =

NsX

k=1

⇢⇢⇢kδ(x− xs,k(t)), (5.7)

where ⇢⇢⇢k is the amplitude of the correction, the computation of which is the object of
the next subsection.
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Figure 5.3 – Spatial discretisation.

5.2 Numerical schemes

In this section we briefly describe the numerical schemes implemented for the state and
for the sensitivity.

We consider a uniform grid in space with a constant step ∆x, xj is the center of the
j−th cell Cj , whose extrema are xj−1/2 and xj+1/2 (cf. Figure 5.3). We use an adaptive
time step ∆tn, chosen according to a CFL condition, and the intermediate times are
tn+1 = tn +∆tn. We indicate with V

n
j = (Un

j ,U
n
a,j)

t the average value of the state and
the sensitivity in the cell Cj at time tn.

We remark that the left-hand side of the state equation (5.4) is the classical Euler
system (4.3) and the left-hand side of the sensitivity equation (5.6) is identical to the
left-hand side of the sensitivity of the Euler system (4.6). Therefore, the same numerical
schemes used to solve the Euler system and its sensitivity can be used here to discretise
the conservative part. For more details, cf. Chapter 4.

Concerning the right-hand side of the state equation (5.4) and its corresponding
part in the sensitivity equation (5.6), we propose a very simple discretisation: the term
(P− F(U)) is evaluated in each cell, whilst for the derivative of h(x) we can either use
the analytical derivative evaluated in the center of each cell, or a centred finite-difference
discretisation.

As we did for all the systems considered in this thesis, for the conservative part of
the system we use Godunov-type schemes, which consist of two main steps: first, the
solution of the Riemann problem at each interface xj−1/2 at time tn; then, the projection
step in order to obtain a piecewise constant solution on the mesh:

• Riemann solvers. For the first step, we use two different approximate Riemann
solvers, one for the state and one for the sensitivity. For the state, we choose the
approximate Riemann solver of Roe. This choice is motivated by the fact that to
compute a correction term of the form (5.7) we need to be very accurate for the
state in the shock and this solver has the property of being exact for an isolated
shock. However, different numerical schemes can be used, provided they have
two intermediate states, as already discussed in the previous chapter. This means
that the HLL solver cannot be used for the state. Concerning the sensitivity, we
analysed two different approximate Riemann solvers in the previous chapter: an
HLL-type scheme and an HLLC-type scheme. Numerical results show that these
two schemes provide almost the same solution (the difference is negligible), the
HLL-type scheme being less expensive from a computational point of view. For
this reason, in this framework we adopted the HLL-type scheme for the sensitivity.

• Projection step. In a classical Godunov method, the projection step is usually per-
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formed just by averaging over each cell the solution of the Riemann problem com-
puted in the previous step. At the moment, we have not considered anti-diffusive
schemes for this kind of problem. This is mainly motivated by two reasons: first,
numerical results in the previous chapter show how the role of numerical diffusion
is very important to have the expected order of convergence, but is less signifi-
cant when it comes to applications; secondly, for this system we are interested in
stationary solutions and an anti-diffusive scheme such as the one used in the previ-
ous chapters can significantly slow down the convergence in time if, for instance, a
shock keeps jumping back and forth between two adjacent cells. For similar reasons
we do not consider higher order schemes for the moment.

5.3 Stationary solutions

The system (5.4) admits stationary solutions. As a first step in order to validate the
code, we want to be able to reproduce the results obtained in [TAI11, GP01] for two test
cases with and without shock and described hereafter in details (subsections 5.3.2-5.3.3).
Let us first address the boundary conditions definition.

5.3.1 Boundary conditions

Inlet and outlet boundary conditions have to be considered to compute the fluxes at
domain extremities. In [TAI11, GP01], they consider the triplet (H, p, ptot) (ptot being
the total pressure, defined as ptot = p + 1

2⇢u
2), and depending on the test case they

impose the value of these physical quantities at the inlet and/or at the outlet in a
fictitious external cell, before computing the boundary flux. The quantities not imposed
are extrapolated from the interior adjacent cell. The fluxes are based on the conservative
variables (⇢, ⇢u, ⇢E), therefore the first thing to do is to obtain the triplet (⇢, ⇢u, ⇢E)
from (H, p, ptot):

8
>>>><
>>>>:

H = E +
p

⇢
,

p = (γ − 1)

✓
⇢E − 1

2
⇢u2
◆
,

ptot = p+
1

2
⇢u2,

)

8
>>>><
>>>>:

⇢ =

✓
ptot +

p

γ − 1

◆
1

H

⇢u =
p

2⇢(ptot − p)

⇢E =
p

γ − 1
+

1

2
⇢u2.

(5.11)

We remark two things about this:

(i) this result is valid only if u > 0, otherwise we should take ⇢u = −
p

2⇢(ptot − p) .
In our test cases we will always consider a positive velocity;

(ii) the square root
p
2⇢(ptot − p) should not present any problem because ⇢ > 0 and

ptot > p. However, this second inequality is valid cell by cell: if neither p nor ptot
are imposed at the boundary, the inequality is naturally verified; if one wants to
impose both of them, the constraint needs to be verified; finally, if we are in a
case in which we impose only one of them (and the other one’s value is taken from
the first cell inside the domain) the inequality is not guaranteed to be verified. To
avoid this problem, if ptot < p for some time step, we force ⇢u = 0.
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Concerning the sensitivity boundary conditions, for each variable we impose the same
type of condition as for the state: for instance, if ⇢ is imposed as inlet external state,
the corresponding sensitivity ⇢a is imposed as inlet external value as well. The values for
(⇢a, (⇢u)a, (⇢E)a) are obtained by differentiating with respect to a the second system of
(5.11): 8

>>>>><
>>>>>:

⇢a =

✓
ptot,a +

pa
γ − 1

− ⇢Ha

◆
1

H
,

(⇢u)a =
⇢a(ptot − p) + ⇢(ptot,a − pa)

⇢u
,

(⇢E)a =
pa

γ − 1
+ u(⇢u)a −

1

2
⇢au

2.

Once again, this is valid only if u > 0.

5.3.2 Isentropic transonic case

The first test case, taken from [TAI11, GP01], that we want to reproduce is an isentropic
transonic case, i.e. with the following boundary conditions for the state:

(
HL = 4,

ptot,L = 2,

and all the other variables are extrapolated from the interior solution. The value of the
parameters describing h are A = 1, ` = 0.5, and xc = 0.5. We do not have an analytical
solution for the state, however the analytical Mach number (Ma =

u
p
⇢p

γp ) is known and it
is plotted in Figure 5.4 for the case considered, compared to the numerical one obtained
with our numerical scheme: the two perfectly match. The Mach number is continuous
in this case, as are all the physical quantities. The passage from the subsonic regime
(Ma < 1) to the supersonic one (Ma > 1) happens in the neck of the nozzle, i.e. x = xc,
as expected. To validate the numerical results obtained for the sensitivity, we compute
the empirical sensitivity, defined as follows:

U
emp
a =

U(a+ δa)−U(a)

δa
,

for a sufficiently small δa. In Figure 5.5 we show in colour the sensitivity obtained with
our numerical schemes, and in black the empirical sensitivity computed with δa = 10−3,
on a mesh of constant spatial step ∆x = 10−3 with a first order Roe scheme. Furthermore,
we consider that at the continuous level:

ERR(U) := kU(a+ δa)−U(a)− δaUa(a)kL1 , (5.12)

which is supposed to be O(δa2). Figure 5.7 shows (5.12) for all the variables for different
values of δa computed with the discrete solutions. We remark that for ⇢ and u we have
the expected rate of convergence for the bigger δa: the slight change in the slope for
smaller δa corresponds to the point in which O(∆xr), r being the order of the scheme
used, gets comparable with O(δa2) and consequently the error due to the discretisation
gets comparable with the one of the Taylor expansion. We recall that the spatial step
is ∆x = 10−3 and the scheme is a first order Roe scheme. Concerning ERR(p), we do
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Figure 5.4 – Numerical results Mach number comparision - isentropic transonic case.

not have the expected order of convergence even for larger δa. We remark however, that
the case here considered presents a transonic rarefaction and it is well known that a Roe
scheme is not able to capture that. To overcome this problem, an entropy fix has been
implemented: however, a small jump still remains in the state at x = 0.5 (cf. left side of
Figure 5.6) and this generates the peak in the sensitivity noticeable in the right side of
Figure 5.6, which deteriorates the convergence.

5.3.3 Transonic case with shock

The second test case we consider is a transonic case with shock, i.e. with the following
boundary conditions for the state:

8
><
>:

HL = 4,

ptot,L = 2,

pR = 1.6,

and all the other variables are extrapolated from the interior solution. The value of the
parameters describing h are the same as the previous test case, i.e. A = 1, ` = 0.5, and
xc = 0.5. We show in Figure 5.8 the comparison of the analytical and numerical Mach
number for the case considered. As expected, the results are identical. The Mach number
and all the physical variables present a discontinuity at x ' 0.6. As in the previous case,
the transition from subsonic to supersonic happens at x = xc. In Figure 5.9 we plotted
the sensitivity of the three variables with respect to a = HL, and we compare the scheme
with and without correction term S(U): as one cas see, the two solutions are identical
in the whole domain except for the spikes at x ' 0.6 which are present if the correction
term is not taken into account. In this case, we do not compute ERR(U) for different
δa, because it comes from a first order Taylor expansion, which of course is not valid in
case of discontinuity.
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Figure 5.5 – Numerical vs empirical sensitivity for the isentropic transonic case.
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Figure 5.6 – Small pressure shock due to transonic rarefaction on the left and its sensi-
tivity on the right.
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Figure 5.7 – L1 norm of the error for Roe first order scheme - isentropic transonic case.
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Figure 5.8 – Numerical vs Analytical Mach number - shocked flow.
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Figure 5.9 – Scheme with correction (in color) and without correction (in black) for the
sensitivity.
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5.4 Optimization

5.4.1 Problem description

Sensitivity analysis can be used to solve PDE constrained optimization problems such
as:

min
a2A

J(U),

subject to a system of PDEs, for instance (5.3). J is the cost functional and it depends
on the vector of parameters a through the state U. The set A is the set of admissi-
ble parameters. The existence of the minimum is guaranteed under some hypotheses:
continuity of the cost functional J and compactness of the set A. Moreover, if the cost
functional is convex with respect to the parameters, the minimum is unique.

Let us consider a problem where the cost functional can be written as a bilinear form:

J(U) =
1

2
b(U,U).

Classical optimization algorithms require the gradient of cost functional, whose i−th
component can be written as:

[raJ(U)]i = @aiJ(U) = b(U,Uai). (5.13)

One of the most used techniques to compute such gradients is the adjoint equation
method [Jam88, MP01, Pir74], which introduces additional adjoint variables to compute
the derivative of any functional output with respect to all input parameters. The ad-
joint equation is independent of the input parameters, thus this approach is very efficient
for optimization problems involving a large number of design parameters. However, the
adjoint equation should be solved backwards in time, which could lead to practical diffi-
culties for unsteady problems. Here, we use the continuous sensitivity equation method:
one sensitivity system has to be solved for each parameter ai. However, all the sensitivity
systems are independent of each other, therefore they can be solved in parallel.

5.4.2 Optimization algorithm

In this section we briefly describe the optimization algorithm used to obtain the results
presented in the next section. It is a projected gradient descent method and it is detailed
in Algorithm 1. First, the state U is solved and the cost functional J is evaluated in the
initial parameters a. Secondly, all the sensitivity equations are solved (line 7) in order
to compute the gradient of the cost functional raJ (5.13): we remark that this step is
performed in parallel, all the sensitivities being independent from each other. Finally, a
line search is performed (lines 15-20): notice that for this step, only the solution of the
state equation is required. The parameters value is updated and the loop is repeated
until convergence.

5.4.3 Test cases

In all the test cases presented in this section, we deal with pressure matching problems,
i.e. the cost functional is the following:

J(U) =
1

2
kp− p⇤k2L2 , (5.14)
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5.4. Optimization

Algorithm 1 Projected gradient descent method using sensitivities

1: Choice of initial parameters ! a

2: State solution ! U

3: Evaluation of J(U)! J
4: Initialisation of anew
5: while kanew − ak >toll do

6: r  r0
7: Parallel sensitivities solution ! Uai

8: Computation of raJ(U,Ua)
9: anew = a− rraJ

10: if anew /2 A then

11: Projection of anew onto A
12: end if

13: State solution ! U

14: Evaluation of J(U)! Jnew
15: while Jnew > J do

16: r  1
2r

17: anew = a− rraJ
18: State solution ! U

19: Evaluation of J(U)! Jnew
20: end while

21: J = Jnew a = anew

22: end while
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where p⇤ is the target pressure.

Test case 1

For the first test case, we consider two parameters of optimization: A and ` (cf. definition
of h(x) (5.2) and Figure 5.1). The set of admissible parameters A is the rectangle
A = [0, 2) ⇥ [0, 1]. We remark that A is open (A = 2 is not admitted because we ask
for h(x) > 0). This is not a problem because we will consider a test case with minimum
inside the domain; on the other hand, ` = 0 is to be intended as h(x) = const. 8x 2 (0, 1).
The target pressure is the pressure obtained with A = 1 and ` = 0.5: in this way, the
optimum is known and reachable and we aim at recovering this value with our algorithm.
The gradient of the cost functional is the following:

raJ(U) =


(p− p⇤, pA)L2

(p− p⇤, p`)L2

]
,

where we used the notation (·, ·)L2 to indicate the L2 dot product. The two sensitivities
UA and U` can be computed by solving the system (5.6), with

hA(x) =

8
<
:
sin2

✓
x− xc

`
⇡ − ⇡

2

◆
xc − `

2 < x < xc +
`
2 ,

0 otherwise,

and

h`(x) =

(
−⇡(x−xc)

`2
sin
(
2⇡ x−xc

`

)
xc − `

2 < x < xc +
`
2 ,

0 otherwise.

Isentropic transonic flow. First we deal with the isentropic transonic case, already
introduced in the previous section. In Figure 5.10 we show the cost functional: as one
can see, it is quite flat in one direction, which can significantly slow down the convergence
of the gradient descent method. Furthermore, one can remark a discontinuity: this is
due to the fact that, when the nozzle is too deep (i.e. bigger A), a shock occurs in
the state solution. In Figure 5.11 we show the optimization algorithm steps obtained
with a first order Roe scheme with a constant spatial step ∆x = 10−2. We chose
as starting parameters (A, `) = (0.5, 0.2). The algorithm stops after 154 iterations at
(A, `) = (1.0003, 0.5002), with a value of the cost functional J = 2.2013 ⇥ 10−9. We
remark that there is no crossing of the cost functional discontinuity. In Figure 5.12 we
show the value of the cost functional J and of the euclidean norm of its gradient raJ
with respect to the number of iterations in a semi-logarithmic scale. One can notice
that the decrease of the cost functional is faster at the beginning and then slows down
significantly, as we expected, given the shape of the cost functional.

Shocked flow. The second optimization test case we present is the shocked flow case.
Here, because of the presence of a shock in the solution, we compare the results of two
different numerical schemes: with and without the correction term (5.7). In Figure 5.13
we show the cost functional: it has a quite different shape with respect to the previous
test caseIn this test case, first we computed the sensitivity without the correction term,
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i.e. by solving the equations (5.5), and then with the correction term, i.e. by solving
(5.6). This leads to different gradients: in fact, if we think of the analytical solution for
the sensitivities pA and p`, with and without the Dirac delta function, there is a missing
term in the second case, when computing the integrals to obtain raJ(U). On the other
hand, considering the discrete solution, there is an approximation error due to the Dirac
delta function, which cannot be seized numerically. In Figure 5.14 we show the steps of
the gradient descent method: in blue the results obtained without the correction and in
red the results obtained with the correction. As one can see from the zoom (right side of
the Figure), the convergence is smoother if the gradient is computed with the corrected
sensitivities. This can be seen also from Figure 5.15, in which the cost functional and its
gradient are plotted in a semi-logarithmic scale with respect to the iterations: we remark
that the difference in the value of the cost functional is unimportant, while the gap
between the gradients is more significant. The algorithm with the corrected sensitivities
converges in 169 iterations to the point (A, `) = (1.0003, 0.5002) with a value of the cost
functional J = 1.2185 ⇥ 10−8, as opposed to the one with the uncorrected sensitivities,
which stops in 196 iteration at the point (A, `) = (1.0003, 0.5001), with J = 1.6821⇥10−9.

Test case 2

Here, we consider two other parameters of optimization: xc and ` (cf. definition of h(x)
(5.2) and Figure 5.1). The set of admissible parameters A is a closed triangle:

A = {(xc, `) 2 R
2 : 0  xc  1, 0  `  min(2xc, 2− 2xc)},

in order for the nozzle not to exit the domain. We remark that ` = 0 means h(x) =
const. 8x 2 (0, 1). The target pressure is the pressure obtained with xc = 0.5 and
` = 0.5: in this way, the optimum is again known and reachable. The gradient of the
cost functional is the following:

raJ(U) =


(p− p⇤, pxc)L2

(p− p⇤, p`)L2

]
.

The two sensitivities Uxc and U` can be computed by solving the system (5.6), with

hxc(x) =

(
−⇡

` sin
(
2⇡ x−xc

`

)
xc − `

2 < x < xc +
`
2 ,

0 otherwise,

and

h`(x) =

(
−⇡(x−xc)

`2
sin
(
2⇡ x−xc

`

)
xc − `

2 < x < xc +
`
2 ,

0 otherwise.

Isentropic transonic flow. The first optimization test case we deal with is the isen-
tropic transonic case, already introduced in the previous section. In Figure 5.16 we
show the cost functional: as one can see from the left plot, changes in the parameter
xc affect the value of J way more than changes in the parameter `. This leads to a
cost functional which is quite flat in one direction and that can significantly slow down
the convergence of the gradient descent method. On the right part of Figure 5.16, it

85



Chapter 5. Quasi 1D Euler system

is plotted the cost functional with respect to ` for xc = 0.5: as one can see, the mini-
mum is in (xc, `) = (0.5, 0.5). In Figure 5.17 we show the optimization algorithm steps
obtained with a first order Roe scheme with a constant spatial step ∆x = 10−2. We
chose as starting parameters (xc, `) = (0.4, 0.4). The algorithm stops after 88 iterations
at (xc, `) = (0.499998, 0.49974), with a value of the cost functional J = 4.36936⇥ 10−9.
In Figure 5.18 we show the value of the cost functional J and of the euclidean norm of
its gradient raJ with respect to the number of iterations in a semi-logarithmic scale.
One can notice that the decrease of the cost functional is faster at the beginning and
then slows down significantly, as we expected, given the shape of the cost functional.
Concerning the oscillations of the gradient, they are due to the naïf choice of the step
and a relaxation step would probably guarantee a faster convergence.

Shocked flow. The second optimization test case we present is the shocked flow case.
Here, because of the presence of a shock in the solution, we compare the results obtained
with and without the correction term (5.7), with the diffusive Roe first order scheme. In
Figure 5.19 we show the cost functional: againt it has a quite different shape with respect
to the previous isentropic transonic test case. In this test case, first we computed the
sensitivity without the correction term, i.e. by solving the equations (5.5), and then with
the correction term, i.e. by solving (5.6). This leads to different gradients. In Figure 5.20
we show the steps of the gradient descent method: in blue the results obtained without
the correction and in red the results obtained with the correction. As one can see from
the zoom (right side of the Figure), the convergence is faster if the gradient is computed
with the corrected sensitivities. This can be seen also from Figure 5.21, in which the cost
functional and its gradient are plotted in a semi-logarithmic scale with respect to the
iteration: the algorithm with the corrected sensitivities converges in 9 iterations to the
point (xc, `) = (0.5002, 0.498539) with a value of the cost functional J = 4.50852⇥10−7,
as opposed to the one with the uncorrected sensitivities, which stops in 36 iteration at
the point (xc, `) = (0.502818, 0.477847), with J = 1.12238⇥ 10−4.
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Figure 5.10 – Cost functional (5.14) for the isentropic transonic case, a = (A, `).
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Figure 5.11 – On the left: optimization algorithm steps for the isentropic transonic case,
a = (A, `). On the right: emphasising the behaviour near optimality.
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Figure 5.12 – Value of the cost functional and norm of its gradient with respect to
iterations in a semilogarithmic scale - isentropic transonic case, a = (A, `).
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Figure 5.13 – Cost functional (5.14) for the shocked case, a = (A, `).

88



5.4. Optimization

0 0.5 1 1.5 2

0

0.5

1

1.5

A

`

With correction
Without correction

0.95 1 1.05 1.1 1.15
0.45

0.5

0.55

0.6

0.65

0.7

A

`

Figure 5.14 – On the left: optimization algorithm steps for the shocked flow case, a =
(A, `). On the right: emphasising the behaviour near optimality.
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Figure 5.15 – Value of the cost functional and norm of its gradient with respect to
iterations in a semilogarithmic scale - shocked flow case, a = (A, `).
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Figure 5.16 – Cost functional (5.14) for the isentropic transonic case, a = (xc, `).
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Figure 5.17 – Optimization algorithm steps for the isentropic transonic case, a = (xc, `).
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Figure 5.18 – Value of the cost functional and norm of its gradient with respect to
iterations in a semilogarithmic scale - isentropic transonic case, a = (xc, `).
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Figure 5.19 – Cost functional (5.14) for the shocked flow case, a = (xc, `).
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Figure 5.20 – On the left: optimization algorithm steps for the shocked flow case. On
the right: emphasising the behaviour near optimality. a = (xc, `).
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Figure 5.21 – Value of the cost functional and norm of its gradient with respect to
iterations in a semilogarithmic scale - shocked flow case, a = (A, `).
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6 | Conclusion and perspectives

The first goal of this thesis was to adapt some sensitivity techniques, and in particu-
lar the continuous sensitivity equation method, to the hyperbolic framework in case of
discontinuous solutions. The first step was to define a sensitivity system valid also in
the case of discontinuous state: this was achieved by adding a correction term to the
sensitivity equations. The definition of this correction term was given for a general hy-
perbolic system and, in Chapter 5, we showed how this definition is valid also in the
case of non-conservative systems. The scalar case of Chapter 2 allowed us to understand
more in depth the Dirac delta functions exhibited by the sensitivities in the absence of
the correction term, since we were able to compute analytically their coefficient.

The sensitivity system obtained with the correction term provided us with solutions
without spikes approximating the Dirac delta function. This was an objective of this
thesis, because Dirac delta function cannot be seized numerically and this corrupts the
solution in the neighbourhood of the shocks and makes convergence impossible. More-
over, the spikes change with the numerical discretisation.

The second aim of this thesis was to design proper numerical schemes in order to
discretise and approximate the solution of the sensitivity system obtained. This did not
present any particular issue in the scalar case of Chapter 2, however the numerical results
presented in Chapters 3-4-5 showed that, in the case of systems, the numerical diffusion
plays a very important role in the discretisation of the sensitivity, to such an extent that
classical finite volume schemes do not converge to the analytical solution: in particular,
the value of the plateau in the intermediate zones is not correct.

To overcome this problem, we proposed some anti-diffusive numerical schemes, based
on sampling techniques and inspired by Glimm random choice method: with these
schemes we were able to discretise more precisely the source term and to obtain a correct
solution for the sensitivity.

Two applications were tackled: an uncertainty quantification and an optimization
problem. Both of them underlined the importance of the correction term: on one hand,
for the uncertainty quantification the results obtained without the correction term pro-
vide non-physical estimates for some of the variables, without adding any useful informa-
tion on the shock displacement; on the other hand, the optimization algorithm converges
more quickly and with a smoother trajectory if the corrected sensitivity are employed
to compute the gradient of the cost functional. Concerning the anti-diffusive schemes,
they were only tested on the uncertainty quantification problem and they did not pro-
vide better results, in spite of their higher computational cost. This is a very interesting
point because anti-diffusive schemes such as Glimm method are not extendible in 2D:
comparing the results obtained with diffusive and anti-diffusive schemes, we can say that
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the firsts are suitable for more complex applications, even though they do not provide a
solution for the sensitivity as precise as one would expect with respect to the mesh.

This work leads to some new interesting problems. Firstly, it would be interesting
to investigate higher order sensitivities: the first order sensitivity exhibits more disconti-
nuities than the state, therefore the correction term for a second order sensitivity would
be even more complex. Moreover, the definition of such a correction term would add
constraints of the numerical schemes used to solve the first order sensitivity. Secondly,
to tackle more realistic fluid dynamics application, one should extend the methods here
developed in higher spatial dimension. From a theoretical point of view, it should be
straightforward. The main practical difficulties that we can foresee are the definition of
a good shock detector and, if needed, the 2D extension of the anti-diffusive numerical
schemes. To do this, one would need a parametric description of the shock and then
some shock fitting techniques [PB09] could be used in this framework. Finally, one could
perform SA on conservation laws presenting non-classical shocks [LeF02] and study the
sensitivity of the solutions with respect to the underlying kinetic function, which allows
to select the admissible solutions.

It follows a more detailed conclusion, chapter by chapter.

Chapter 2. In this chapter we considered a scalar nonlinear hyperbolic PDE. Start-
ing from the scalar case allowed us to introduce some of the main problems in a simpler
framework. In the first part of the chapter, the analytical solution for the state equation
was computed using the method of characteristics, which provided us with an implicit
solution, unless the initial data was particularly simple, like in the case of a Riemann
problem. Secondly, the sensitivity system was defined and its analytical solution was ob-
tained starting from the state solution: interestingly, for the sensitivity we were able to
give an explicit solution, although depending on the state, for all initial data. Then, the
correction term was defined and the hyperbolicity of the global system was briefly anal-
ysed. We remarked that the solution to the sensitivity equation without the correction
term presented a Dirac delta function where the state is discontinuous: in this simple
scalar case, we were able to compute analytically the coefficient associated to the Dirac
and one could notice that the spikes were larger if the dependence of the position of the
shock on the parameter of interest was stronger. Finally, a numerical scheme was pre-
sented, along with the results obtained for the inviscid Burgers’ equation with different
initial data: a Riemann problem and a continuous initial conditions. We observed that,
for a scalar equation, numerical diffusion does not play a fundamental role, because the
problem is too simple: for instance, for the Riemann problem there is no intermediate
state to be computed. On the other hand, the test case of a continuous initial data was
complicated enough to tackle the problem of the definition of a shock detector: in this
case it is way more difficult to numerically detect a discontinuity than in the case of a
piecewise constant function (which is the solution to a scalar Riemann problem).

Chapter 3. In this chapter, which is an adaptation of [CDF17a], we dealt with the
Euler equations in barotropic conditions and in Lagrangian coordinates. It is a system
of two equations with two unknowns. It describes the dynamics of a compressible ma-
terial in barotropic conditions (i.e. the density is a function only of the pressure), using
two physical variables: the co-volume ⌧ , which is the reciprocal of the density, and the
Lagrangian speed. The choice of the Lagrangian coordinates was motivated by the fact
that in this way the sign of the eigenvalues of the system is known, which simplified the
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design of numerical schemes. In the first sections, we presented the state equations and
derived the sensitivity equations in the regular case. Next, a section was devoted to the
definition of the correction term in order to have a sensitivity system which was valid
also in the case of discontinuous state. The correction term was defined by integrating
the sensitivity equation over a control volume and then using the Rankine-Hugoniot con-
ditions, which govern the state across a shock. We then detailed the exact resolution of
the Riemann problem for the state and for the corrected sensitivity system: the state
presents a classical structure, composed by two waves which can be either shocks or
rarefaction waves; contrarily, the sensitivity has a quite particular structure, with two
discontinuities associated with the beginning and the end of the rarefaction wave and
a constant plateau inside the rarefaction itself. Then, some classical numerical meth-
ods for the state and their adaptation for the sensitivity were examined. In particular
an exact Godunov scheme was implemented for both state and sensitivity, and a Roe
approximate Riemann solver was implemented for the state and an adaptation of it for
the sensitivity. We extended the Roe-type schemes to the second order, with a two-step
Runge-Kutta method in time and a MUSCL-type approach in space. However, the sec-
ond order extension in space is not classical: a precaution was necessary in order to be
able to discretise the source term in the second order framework. Some numerical tests
were conducted, which exhibited mesh-convergence issues, regardless of the order of the
scheme. In particular, the test case of an isolated shock led us to conclude that the
convergence problem was due to numerical diffusion. For this reason, an anti-diffusive
version of the Roe-type schemes mentioned above was introduced, inspired to Glimm’s
random choice method, both for the first and second order. This allowed to overcome
the mesh-convergence problems, as shown in some numerical results in the last section
of the chapter.

Chapter 4. In this chapter we studied the complete Euler system. It is a system
of three PDEs with four unknowns, closed by an algebraic equation. One can choose
different sets of variables to describe the flow. A common choice is, for instance, to work
with the conserved variables: the density of the fluid ⇢, the momentum ⇢u and the total
energy per unit mass ⇢E. In this work, we presented all the results with the physical,
or primitive, variables: the density ⇢, the speed u and the pressure p. In the first part
of the chapter the state system was described and the sensitivity system was derived in
the regular case. It followed a detailed analysis on the hyperbolicity of the global system
of state and sensitivity as a whole and we proved that, in the general case, the system
is only weakly hyperbolic. Then, the case of discontinuous state was considered and
the correction term for the sensitivity equations was computed, in a similar way to the
previous chapter. The solution of a specific Riemann problem, known as the Sod shock
tube, was detailed for the state. The choice of this case was motivated by the presence
of three different waves: a rarefaction, a contact discontinuity and a shock. Starting
from the analytical solution for the state, the analytical sensitivity was derived: as we
observed in the previous chapter, the sensitivity exhibits two discontinuities, one at the
beginning and the other at the end of the rarefaction wave; however in this case there is
a proper rarefaction wave for the sensitivity, too. In the following part of the Chapter,
some numerical schemes were presented: we illustrated some constraints regarding the
schemes that could be used for the state. In particular, what we categorised as HLL-
type Riemann solvers (i.e. with only one intermediate star state) are not suitable for
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our problem: if used, they would make impossible the definition and the computation of
the correction term across the contact discontinuity. For this reason, the approximate
Riemann solver of Roe was used. Concerning the schemes for the sensitivity, first we
introduced a simpler HLL scheme, we then illustrated two approaches to obtain an HLLC-
type scheme (i.e. with two different intermediate zones) and proved that they both lead
to the same scheme. Diffusive and anti-diffusive versions of all of the schemes mentioned
were implemented at first and second order, as done in the previous chapter, and some
mesh-convergence tests were performed. The results obtained were consistent with the
ones obtained in the previous chapter: the numerical diffusion affects the plateau values
and this corrupts the convergence. Concerning the sensitivity, the computationally most
expensive HLLC-type scheme did not provide a more accurate solution.

In the final part of the Chapter, the first application was tackled. A UQ analysis
was performed on the Riemann problem: confidence intervals were calculated for all the
physical variables, using the sensitivities. We computed the sensitivities in three different
ways: with and without the correction term, and with the diffusive and anti-diffusive
numerical schemes. We showed the confidence intervals obtained with the well-known
Monte Carlo method and with the SA methods for each physical variable. In the regular
zones the two approaches gave the same results, with a significantly lower computational
cost of the SA method. In the neighbourhood of the discontinuity there was a loss of
precision of the SA methods, due to the fact that the influence of the uncertain parameters
on the position of the shock was neglected. However, the corrected sensitivities gave
more reasonable results: the sensitivities obtained without the correction term, due to
the presence of the spikes, provided non-physical confidence intervals for the density
and the pressure. An important observation is that the anti-diffusive schemes did not
provide a significantly different solution: this is interesting in the perspective of more
realistic, two-dimensional applications because the random choice methods, on which our
anti-diffusive methods are based, are not easily extendible in 2D.

Chapter 5. In this chapter, we investigated the quasi 1D Euler system: this is
an extension of the Euler system considered in the previous chapter, but it models a
flow happening in a channel whose section is not constant. To describe that, a smooth
function of the space, h(x;a), depending on some parameters a, was introduced and a
term depending on h(x;a) and on its derivative in space was added to the right-hand
side of the Euler system. Once again, the sensitivity system was defined at first in the
regular case and then a correction term was added to account for possible discontinuities
in the state. Since the state system considered in this chapter was not conservative, the
computation of the correction term was slightly different, because it could not rely on
the Rankine-Hugoniot conditions. Nonetheless the same conclusion as in the previous
cases was reached. As the conservative part of the system coincided with the Euler
system of the previous chapter, the same numerical schemes were used. However, in
light of the results obtained, in particular the UQ ones, we chose to focus our attention
on the first order diffusive Roe scheme. A brief description of the discretisation of the
non-conservative part was done. This system admits stationary solutions. We considered
in particular two test cases: an isentropic transonic case and a case presenting a shock.
The boundary conditions for these cases were discussed in details. We compared the
numerical results obtained for the state to the analytical solution given in [GP01] for the
Mach number. Concerning the sensitivity, we do not have an analytical solution for this
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case, therefore we compared the numerical sensitivities obtained with our schemes with
the empirical sensitivities. The empirical sensitivities were computed by finite differences,
starting from two different realisations of the state for two close enough values of the
parameter of interest.

In the final part of the Chapter, a second application was tackled: we defined an op-
timization problem. The optimization method used was a projected gradient algorithm
which used sensitivities to compute the gradient of the cost functional. The problem
considered is an inverse problem, and in particular a pressure matching one: we set a
target pressure p⇤, which is a pressure obtained with a certain vector of parameters a

⇤,
and we aimed at recovering this value with the optimization algorithm. We performed
the same test in the isentropic transonic case and in the case with shock, for two different
choices of optimization parameters. In the case with shock, we compared the results ob-
tained if the sensitivities, and therefore the gradient, were computed with or without the
correction term. The results showed that the correction term speeds up the convergence
of the optimization algorithm, and therefore confirmed the importance of the correction.
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Conclusion et perspectives

Le premier objectif de cette thèse était d’adapter certaines techniques d’AS, et en par-
ticulier la méthode de l’équation de sensibilité continue, au cadre hyperbolique en cas
de solutions discontinues. La première étape consistait à définir un système de sensibi-
lité valable également en cas d’état discontinu : ceci a été réalisé en ajoutant un terme
de correction aux équations de sensibilité. La définition de ce terme de correction a été
donnée pour un système hyperbolique général et, dans le chapitre 5, nous avons montré
que cette définition est valable aussi dans le cas de systèmes non conservatifs. Le cas
scalaire du chapitre 2 nous a permis de comprendre plus en détail les Dirac présents
dans les sensibilités en l’absence du terme de correction, puisque nous avons pu calculer
analytiquement leur amplitude.

Le système de sensibilité obtenu avec le terme de correction nous a fourni des solutions
sans pics approchant les Dirac. Ceci était un objectif de cette thèse, car une distribution
de Dirac ne peut pas être évaluée numériquement et cela dégrade la solution au voisinage
des chocs et rend la convergence vers la solution analytique impossible. De plus, les pics
changent avec la discrétisation numérique.

Le deuxième objectif de cette thèse était de définir des schémas numériques appropriés
afin de discrétiser et d’approximer la solution du système de sensibilité obtenu. Cela n’a
pas posé de problèmes particuliers dans le cas scalaire traité dans le chapitre 2, cependant
les résultats numériques présentés dans les chapitres 3-4-5 ont montré que, dans le cas
des systèmes, la diffusion numérique joue un rôle très important dans la discrétisation de
la sensibilité, à tel point que les schémas volumes finis classiques ne convergent pas vers
la solution analytique : en particulier, la valeur du plateau dans les zones intermédiaires
n’est pas correcte.

Pour surmonter ce problème, nous avons proposé des schémas numériques anti-
diffusifs, basés sur des techniques d’échantillonnage et inspirés de la méthode de choix
aléatoire de Glimm : avec ces schémas, nous avons pu discrétiser plus précisément le
terme source et obtenir la bonne solution pour la sensibilité.

Nous nous sommes attaqués à deux applications : un problème de quantification d’in-
certitude et un d’optimisation. Les deux ont souligné l’importance du terme de correc-
tion : d’une part, pour la quantification d’incertitude, les résultats obtenus sans le terme
de correction fournissent des estimations non physiques pour certaines variables, sans
cependant ajouter d’informations utiles sur le déplacement du choc ; d’autre part, l’al-
gorithme d’optimisation converge plus rapidement et avec une trajectoire plus lisse si la
sensibilité corrigée est utilisée pour calculer le gradient de la fonctionnel coût. Concernant
les schémas anti-diffusifs, nous ne les avons testés que sur le problème de quantification
d’incertitude et ils n’ont pas donné de meilleurs résultats, malgré un coût de calcul plus
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élevé. C’est un point très intéressant car les schémas anti-diffusifs comme la méthode de
Glimm ne sont pas facilement extensibles en deux dimensions : en comparant les résul-
tats obtenus avec des schémas diffusifs et anti-diffusifs, on peut dire que les premiers sont
adaptés à des applications plus complexes, même si ils ne fournissent pas une solution
de sensibilité au niveau de précision que l’on s’attend par rapport au maillage.

Ce travail mène à des nouveaux problèmes intéressants. D’abord, il serait intéressant
d’étudier des sensibilités d’ordre supérieur : la sensibilité de premier ordre présente plus de
discontinuités que l’état, donc le terme de correction pour une sensibilité de second ordre
serait encore plus complexe. De plus, la définition d’un tel terme de correction ajouterait
des contraintes aux schémas numériques utilisés pour résoudre la sensibilité de premier
ordre. Deuxièmement, pour aborder une application plus réaliste de la dynamique des
fluides, on devrait étendre les méthodes développées ici en dimension spatiale supérieure.
D’un point de vue théorique, cela devrait être simple. Les principales difficultés pratiques
que nous pouvons prévoir sont la définition d’un bon détecteur de choc et, si nécessaire,
l’extension 2D des schémas numériques anti-diffusifs. Pour cela, il faudrait avoir une
description paramétrique du choc et les techniques de shock fitting [PB09] pourraient
être adaptées à ce contexte. Enfin, on pourrait appliquer l’AS à des lois de conservation
présentant des chocs non classiques [LeF02] et étudier ainsi la sensibilité des solutions
par rapport à la fonction cinétique sous-jacente qui permet de sélectionner les solutions
admissibles.

Ci-dessous une conclusion plus détaillée, chapitre par chapitre.

Chapitre 2. Dans ce chapitre, nous avons considéré une EDP hyperbolique non li-
néaire scalaire. Partir du cas scalaire nous a permis d’affronter certains des problèmes
principaux dans un cadre plus simple. Dans la première partie du chapitre, la solution
analytique pour l’équation d’état a été calculée en utilisant la méthode des caractéris-
tiques, qui nous a fourni une solution implicite, sauf dans des cas de donnée initiale
particulièrement simple, comme un problème de Riemann. Deuxièmement, le système
de sensibilité a été défini et sa solution analytique a été obtenue à partir de la solution
d’état : il est intéressant de noter que, pour la sensibilité, nous avons pu donner une
solution explicite, en fonction de l’état, pour toute donnée initiale. Ensuite, le terme
de correction a été défini et l’hyperbolicité du système global a été brièvement analysée.
Nous avons observé que la solution de l’équation de sensibilité sans le terme de correction
présentait un Dirac là où l’état était discontinu. Dans ce cas scalaire simple, nous avons
pu calculer analytiquement le coefficient associé au Dirac et nous avons constaté que
les pics étaient plus petits si l’influence du paramètre d’intérêt sur la position du choc
était faible. Enfin, un schéma numérique a été présenté, ainsi que les résultats obtenus
pour l’équation de Burgers non visqueux avec différentes données initiales : un problème
de Riemann et un problème avec conditions initiales continues. Nous avons observé que,
pour une équation scalaire, la diffusion numérique ne joue pas un rôle fondamental, car le
problème est trop simple : par exemple, pour le problème de Riemann, il n’y a pas d’état
intermédiaire à calculer. D’autre part, le cas d’une donnée initiale continue était suffi-
samment compliqué pour aborder le problème de la définition d’un détecteur de choc :
dans ce cas, il est beaucoup plus difficile de détecter numériquement une discontinuité
que dans le cas d’une fonction constante par morceaux, qui est la solution du problème
scalaire de Riemann.

Chapitre 3. Dans ce chapitre, qui est une adaptation de [CDF17a], nous avons traité
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les équations d’Euler dans des conditions barotropes et en coordonnées lagrangiennes.
Il s’agit d’un système de deux équations à deux inconnues. Il décrit la dynamique d’un
matériau compressible dans des conditions barotropes (c’est-à-dire la densité est une
fonction seulement de la pression), utilisant deux variables physiques : le co-volume
⌧ , qui est l’inverse de la densité, et la vitesse lagrangienne. Le choix des coordonnées
lagrangiennes a été motivé par le fait que l’on connaît le signe des valeurs propres du
système, ce qui a simplifié la conception des schémas numériques. Dans les premières
sections, nous avons présenté les équations d’état et nous avons dérivé les équations de
sensibilité dans le cas régulier. Ensuite, une section a été consacrée à la définition du terme
de correction, pour avoir un système de sensibilité valable également dans le cas d’état
discontinu. Le terme de correction a été défini en intégrant l’équation de sensibilité sur un
volume de contrôle, puis en utilisant les conditions de Rankine-Hugoniot, qui gouvernent
l’état à travers un choc. Nous avons ensuite détaillé la résolution analytique du problème
de Riemann pour l’état et pour le système de sensibilité corrigé : l’état présente une
structure classique, composée par deux ondes qui peuvent être soit des chocs, soit des
ondes de détente ; au contraire, la sensibilité a une structure assez particulière, avec deux
discontinuités associées au début et à la fin de l’onde de détente et un plateau constant
à l’intérieur de la détente elle-même. Ensuite, quelques méthodes numériques classiques
pour l’état et leur adaptation pour la sensibilité ont été examinées. En particulier un
schéma de Godunov exact a été implémenté pour l’état et la sensibilité, et un solveur de
Riemann approché, le solveur de Roe, a été implémenté pour l’état et une adaptation de
celui-ci pour la sensibilité. Nous avons étendu les schémas de type Roe au second ordre,
avec une méthode Runge-Kutta en temps et une approche de type MUSCL en espace.
Cependant, l’extension au second ordre en espace n’est pas classique : une précaution était
nécessaire pour pouvoir discrétiser le terme source au second ordre. Des tests numériques
ont été faits, qui présentaient des problèmes de convergence en maillage, indépendamment
de l’ordre du schéma. En particulier, le cas test d’un choc isolé nous a mené à conclure
que le problème de convergence était dû à la diffusion numérique. Pour cette raison,
une version anti-diffusive des schémas de type Roe mentionnés ci-dessus a été introduite,
inspirée de la méthode de choix aléatoire de Glimm, à la fois pour le premier et le second
ordre. Cela a permis de surmonter les problèmes de convergence en maillage, comme le
montrent certains résultats numériques dans la dernière section du chapitre.

Chapitre 4. Dans ce chapitre, nous avons étudié le système d’Euler complet. C’est
un système de trois EDP à quatre inconnues, fermé par une équation algébrique. On peut
choisir différentes variables pour décrire le flux. Un choix commun est, par exemple, de
travailler avec les variables conservatives : la densité du fluide ⇢, la quantité de mouvement
⇢u et l’énergie totale par unité de volume ⇢E. Dans ce travail, nous avons présenté tous
les résultats avec les variables physiques, ou primitives : la densité ⇢, la vitesse u et la
pression p. Dans la première partie du chapitre, nous avons présenté le système d’état
et nous avons dérivé le système de sensibilité dans le cas régulier. Il a suivi une analyse
détaillée sur l’hyperbolicité du système global formé par l’état et la sensibilité et nous
avons prouvé que, dans le cas général, le système n’est que faiblement hyperbolique.
Ensuite, nous avons considéré le cas d’état discontinu et nous avons calculé le terme
de correction pour les équations de sensibilité, de la même façon que dans le chapitre
précédent. La solution d’un problème de Riemann spécifique, connu sous le nom de tube
à choc de Sod, a été détaillée pour l’état. Le choix de ce cas est motivé par la présence
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de trois ondes différentes : une détente, une discontinuité de contact et un choc. À partir
de la solution analytique de l’état, nous avons dérivé celle de la sensibilité : comme nous
l’avons observé dans le chapitre précédent, la sensibilité présente deux discontinuités,
une au début et une à la fin de l’onde de détente ; cependant, dans ce cas, il y a une
vraie onde de détente aussi pour la sensibilité. Dans la partie suivante du chapitre,
des schémas numériques ont été présentés : nous avons illustré certaines contraintes
concernant les schémas qui peuvent être utilisés pour l’état. En particulier, ce que nous
avons classé comme solveurs de Riemann de type HLL (c’est-à-dire avec un seul état étoile
intermédiaire) ne conviennent pas à notre problème : si utilisés, ils rendraient impossible
la définition et le calcul du terme de correction à travers la discontinuité de contact.
Pour cette raison, le solveur de Riemann approché de Roe a été utilisé. Concernant
les schémas de sensibilité, nous avons d’abord introduit un schéma HLL classique, puis
nous avons illustré deux approches pour obtenir un schéma de type HLLC (c’est-à-dire
avec deux zones intermédiaires différentes) et montré qu’elles conduisaient au même
schéma. Des versions diffusives et anti-diffusives de tous les schémas mentionnés ont été
implémentées au premier et au second ordre, comme dans le chapitre précédent, et des
tests de convergence en maillage ont été également réalisés. Les résultats obtenus sont
en accord avec ceux obtenus dans le chapitre précédent : la diffusion numérique affecte
les valeurs du plateau et cela dégrade la convergence. En ce qui concerne la sensibilité,
le schéma de type HLLC, plus coûteux en termes de calcul, n’a pas fourni une solution
plus précise.

Dans la dernière partie du chapitre, nous nous sommes attaqués à la première ap-
plication. Une analyse de quantification d’incertitude a été effectuée sur le problème de
Riemann : nous avons calculé les intervalles de confiance pour toutes les variables phy-
siques, en utilisant les sensibilités. Nous avons calculé les sensibilités de trois manières
différentes : avec et sans le terme de correction, et avec les schémas numériques diffusifs
et anti-diffusifs. Nous avons montré les intervalles de confiance obtenus avec la méthode
Monte Carlo et avec les méthodes d’AS pour chaque variable physique. Dans les zones
régulières, les deux approches ont donné les mêmes résultats, avec un coût de calcul signi-
ficativement plus bas pour la méthode d’AS. Au voisinage de la discontinuité, il y avait
une perte de précision des méthodes d’AS, due au fait que l’influence des paramètres
incertains sur la position du choc a été négligée. Cependant, les sensibilités corrigées ont
donné des résultats plus raisonnables : les sensibilités obtenues sans le terme de correc-
tion, en raison des pics, ont fourni des intervalles de confiance non physiques pour la
densité et la pression. Une observation importante est que les schémas anti-diffusifs ne
donnent pas une solution significativement différente : ceci est intéressant dans la perspec-
tive d’applications bidimensionnelles plus réalistes car les méthodes de choix aléatoires,
sur lesquelles sont basées nos méthodes anti-diffusives, ne sont pas facilement extensibles
en 2D.

Chapitre 5. Dans ce chapitre, nous avons étudié le système d’Euler quasi-1D : il
s’agit d’une extension du système d’Euler considéré dans le chapitre précédent, mais il
modélise un écoulement dans un canal dont la section n’est pas constante. Pour décrire
cela, une fonction lisse de l’espace, h(x;a), dépendante d’un vecteur de paramètres a, a
été introduite et un terme dépendant de h(x;a) et de sa dérivée en espace ont été ajoutés
à la partie droite du système d’Euler. Encore une fois, le système de sensibilité a été défini
d’abord dans le cas régulier, puis un terme de correction a été ajouté pour tenir compte
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des éventuelles discontinuités dans l’état. Comme le système d’état considéré dans ce
chapitre n’était pas conservatif, le calcul du terme de correction était légèrement différent,
car il ne pouvait pas s’appuyer sur les conditions de Rankine-Hugoniot. Néanmoins, la
même conclusion que dans les cas précédents a été obtenue. Comme la partie conservative
du système coïncidait avec le système d’Euler du chapitre précédent, les mêmes schémas
numériques ont été utilisés. Cependant, vus les résultats obtenus, en particulier ceux
de la quantification d’incertitude, nous avons choisi de concentrer notre attention sur
le schéma de Roe diffusif au premier ordre. Une brève description de la discrétisation
de la partie non conservative a été faite. Ce système admet des solutions stationnaires.
Nous avons considéré en particulier deux cas tests : un cas isentropique transsonique et
un cas transsonique avec un choc. Les conditions aux limites de ces deux cas ont été
discutées en détail. Nous avons comparé les résultats numériques obtenus pour l’état
à la solution analytique donnée dans [GP01] pour le nombre de Mach. Concernant la
sensibilité, nous n’avons pas de solution analytique pour ce cas, donc nous avons comparé
les sensibilités numériques obtenues avec nos schémas avec les sensibilités empiriques.
Les sensibilités empiriques ont été calculées par des différences finies, à partir de deux
réalisations différentes de l’état pour deux valeurs proches du paramètre d’intérêt.

Dans la dernière partie du chapitre, une deuxième application a été abordée : nous
avons défini un problème d’optimisation. La méthode d’optimisation utilisée est un al-
gorithme de gradient projeté qui utilise des sensibilités pour calculer le gradient de la
fonctionnelle coût. Le problème considéré est un problème inverse pour la pression : nous
établissons une pression cible p⇤, qui est une pression obtenue avec un certain vecteur de
paramètres a

⇤, et nous visons à récupérer cette valeur avec l’algorithme d’optimisation.
Nous avons effectué le même test dans le cas isentropique transsonique et dans le cas
transsonique avec choc, pour deux choix différents de paramètres d’optimisation. Dans
le cas du choc, nous avons comparé les résultats obtenus si les sensibilités, et donc le gra-
dient, étaient calculés avec ou sans le terme de correction. Les résultats ont montré que
le terme de correction accélère la convergence de l’algorithme d’optimisation, confirmant
ainsi l’importance de la correction.
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A | Modelling of running strategies

A.1 Abstract

In order to describe the velocity and the anaerobic energy of two runners competing
against each other for middle-distance races, we present a mathematical model relying
on an optimal control problem for a system of ordinary differential equations. The
model is based on energy conservation and on Newton’s second law: resistive forces,
propulsive forces and variations in the maximal oxygen uptake are taken into account.
The interaction between the runners provides a minimum for staying one meter behind
one’s competitor. We perform numerical simulations and show how a runner can win a
race against someone stronger by taking advantage of staying behind, or how they can
improve their personal record by running behind someone else. Our simulations show
when it is the best time to overtake, depending on the difference between the athletes.
Finally, we compare our numerical results with real data from the men’s 1500m finals of
different competitions.

A.2 Introduction

The running strategy to win an Olympic medal is quite complex. It relies on outstanding
physiology, good preparation, psychological factors and the optimal way to compete with
the others to beat them. Quite a few mathematical works starting with Keller’s [10],
have analysed running strategies for a single runner [1, 2, 12, 13, 22], but very few take
into account the competition situation where the point is to beat the others [11, 16].

The point of view of Keller [10] is to write the equations governing the energy and the
velocity of a single runner, starting from Newton’s second law and energy conservation.
He considers a simple problem, in which the athlete runs alone on a straight path of length
D, and the aim is to minimise the time T when the runner reaches the final distance D.
This model matches the final times of world records. However some hypotheses are not
physiologically reasonable, and this leads to a non-realistic velocity profile. Some authors
have tried to improve Keller’s model: Woodside in [22] and Mathis in [12] introduce
a correction by adding a fatigue term for long races. Ward-Smith [21] and Morton
[13, 14, 15] follow a different approach. Morton has introduced a three component model
to take into account the variations in the oxygen uptake (V̇ O2) but the full optimal
control problem is not solved. Behncke [2] incorporates the hydraulic model of Morton
to a biomechanical model that extends the ones of Keller and Ward-Smith: it is more
detailed in terms of resistive forces and takes into account the reaction time of the
athlete. Aftalion and Bonnans [1] improve the models of Keller [10], Behncke [2] and
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Morton [13, 14, 15] and assume that maximal oxygen uptake is a function of the anaerobic
energy of the athlete. The aim is to match experimental measurements, in particular, in
[8, 9, 20], where Hanon et al. show how the oxygen uptake varies during races of 400,
800 and 1500m. They solve the full numerical control problem using an optimal control
solver Bocop.

As pointed out by Pitcher [16], in middle distance running, it is common practice to
try to position oneself behind but within striking distance of the leader for most of the
race and then overtake them near the finish line. Pitcher explains that the runner behind
can take advantage of the slipstream of the runner in front and relies on analyses of Pugh
[17] and Kyle [11]. We believe that it is a combination of slipstream and psychological
factors which explain why it is better to stay behind, and the equations can incorporate
all this. The weakness of Pitcher’s paper is that she imposes a strategy for one of the
runners and allows only the second runner to have a free strategy. Therefore, in this
paper, based on the recent work of Aftalion-Bonnans [1], we extend the model of Pitcher
[16] to include slipstream and psychological factors in a two runners race and we set a
realistic optimal control problem with each runner having a free strategy.

A.2.1 Mathematical model for a single runner

The system of Keller couples together the velocity of the runner at instant t, v(t), the
energy of the runner at instant t, e(t), and the propulsive force of the runner at instant t,
f(t). The first equation is Newton’s second law: it involves the propulsive force and the
friction. Here, ⌧ is a constant coefficient which gathers together all the friction effects,
supposed to be linear in v. The friction term can be modified to include air resistance
[11] which adds a term in −cv2 to the first equation.

The second equation is an energy balance incorporating the oxygen uptake, σ, con-
sidered constant in Keller’s paper, while the second term is the work of the propulsive
force f . Both equations are normalised with respect to the runner’s mass:

(
v̇(t) = f(t)− v(t)

⌧ v(0) = 0, x(0) = 0, x(T ) = D

ė(t) = σ − f(t)v(t) e(0) = e0.
(A.1)

We use the dot notation to indicate the derivative with respect to time, i.e. v̇ = dv
dt and

ė = de
dt . We have set x(t) to be the position so that ẋ = v. The final time T is defined

as the time to reach the distance D. Moreover, e0 is the initial energy. It is necessary to
add some physiological constraints to the system (A.1):

· the energy must be positive:

e(t) ≥ 0 8t ≥ 0; (A.2)

· the propulsive force has an upper bound which depends on the runner’s physiology,
and a positive lower bound due to the fact that they are moving forwards:

0  f(t)  fM 8t ≥ 0. (A.3)

Therefore, in this model, the athlete is identified by four parameters: e0, the initial
energy, ⌧ , the friction coefficient, σ, the oxygen uptake, and fM the maximal propulsive
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force. The aim is to solve (A.1)-(A.2)-(A.3) in such a way that, given a distance D, the
final time T is minimal. From a mathematical point of view, it is a problem of optimal
control: the propulsive force f is the control variable and the time T is the cost functional
to be minimised, which depends on f through the states variables v and e. Therefore,
the problem can be written as follows:

min
f2F

T (f) s.t (A.1)-(A.2), (A.4)

where F is the set of admissible controls:

F = {f : 0  f(t)  fM 8t ≥ 0}.

In his work, Keller [10] claims that his energy balance takes into account only the
aerobic energy (i.e. energy provided by oxygen consumption). However, Aftalion and
Bonnans [1] remark that what he encompasses in the balance is the accumulated oxygen
deficit: e0 − e(t). Therefore, e(t) in equation (A.1) is in fact the anaerobic energy (i.e.
energy provided by glycogen and lactate). In order to reproduce the results of [7, 8, 9],
the oxygen uptake σ introduced in [1] is piecewise defined: in the most part of the race,
σ is constant equal to its maximal value σmax, but it is increasing at the beginning of the
race, and decreasing at the end (see Figure A.1). In fact, σ depends on five parameters:
the initial value at rest σr, the maximal value σmax, the final value σf and two parameters
ϕ and ecr which denote the transition point from one zone to another, ϕ, ecr 2 (0, 1):

σ(e;σmax,σf ,σr,ϕ, ecr) =

8
>><
>>:

σmax
e

e0ecr
+ σf

⇣
1− e

e0ecr

⌘
if e < e0ecr

σmax if e0ecr  e  e0ϕ

σr +
(σmax−σr)(e0−e)

e0(1−')
if e ≥ e0ϕ,

(A.5)

The oxygen uptake σ as defined in (A.5) is continuous but not C1. In the numerical
simulations, it has been smoothed, since from the physiology, it is clear that the passage
from one zone to the other occurs smoothly. The sigma used is shown in Figure A.1. Let
us observe that, consistently with Hanon experimental results [7], the functional form of
σ does not change with the athlete, whilst the values of σmax and σf do.

Moreover, in [1], a second modification is introduced to the energy equation: for
sufficiently long races (longer than 1000m), it has been observed that slowing down
recreates some of the anaerobic energy. Therefore, the energy equation results in:

ė = σ(e) + η(v̇)− fv,

where η depends on the acceleration v̇ and has the following form:

η(v̇) =

(
0 if v̇ > 0

c⌘|v̇|2 if v̇  0,
(A.6)

where c⌘ is a constant to be tuned. This leads to oscillations in the velocity profile (cf.
[1], Figure 2.4). In this paper, we will not focus on the term η and on the causes of the
oscillations: we will briefly present some numerical results obtained with the term η in
one simple case. For further details, see [1].
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Figure A.2 – Term that modulates the friction with the air in the two-runners model.

A.2.2 Equations for two runners

In real races, the competition between runners has a fundamental impact on the strategy.
Starting from the works of Keller [10], Quinn [18] and Kyle [11], Pitcher introduces a
two-runners model in [16] based on the slipstream. The observation is that running
behind someone can save 1 or 2 seconds per lap in middle distance races. Therefore, in
the equations, the friction gets reduced when runners are just behind their competitor.

Some of the quantities in this model have a subscript i, which refers to the runner
i: therefore xi, vi and ei are, respectively, the position, the velocity and the energy of
runner-i. All the physiological parameters which depend on the runner have the subscript
i, too. Finally, the state variable xD represents the distance between the runners, defined
as xD := x2 − x1. The energy balance for each runner is the same as in (A.1), with a
constant value of σ, while the dynamics equation incorporates an aerodynamical term.
Because it is the relative position which is important, instead of using xi, the position of
each runner as parameters, we use x1 and the relative position xD. The resulting model
is the following: for i = 1, 2

8
>>>>>><
>>>>>>:

ẋ1 = v1 x1(0) = 0

ẋD = v2 − v1 xD(0) = 0

v̇1 = f1 − v1
⌧1
− c1v

2
1(1− γ(e−↵(xD−β)2)) v1(0) = 0

v̇2 = f2 − v2
⌧2
− c2v

2
2(1− γ(e−↵(xD+β)2)) v2(0) = 0

ėi = σi − fivi ei(0) = e0i .

(A.7)

As in Keller’s model, the velocities and energies equations are normalized with respect
to the mass of the runner. The term −civ2i is the friction with the air. It is necessary to
highlight and separate the effect of the friction with the air from the other ones, because
it is the only one that is reduced while running in the slipstream of someone else. This
frictional term is modulated by 1− γ(e−↵(xD±β)2), which is shown in Figure A.2.

The parameter β represents the optimal distance a runner should keep from the
other in order to obtain the maximal reduction of the air friction, while γ 2 (0, 1) is the

115



Appendix A. Modelling of running strategies

percentage reduction at the optimal distance. The parameter ↵ is an index of the variance
of the phenomenon and is chosen large enough so that the exponential term becomes
negligible as we deviate by half a meter from β. We observe that the choice of a non
symmetric term would probably be more accurate and realistic, but more complicated
and with more parameter to estimate: for these reasons, in this work we use the term
suggested by Pitcher in [16], which gives reasonable results when compared to real races.
The parameters ↵, β and γ do not depend on the runner, however the parameter c is
related to the drag coefficient and depends on the shape and surface properties of the
athlete’s body (see [18] for further details). For simplicity, in this work, we consider
c1 = c2 = c. If ever the athletes have different masses, then we would have m1c1 = m2c2.

The problem has physiological constraints:

ei(t) ≥ 0 8t ≥ 0, i = 1, 2. (A.8)

In order to have the state equations for both runners defined on the same time interval,
Pitcher chooses a fixed final time T . Moreover, she fixes the running strategy of runner
1 (therefore f1(t) is given), as the optimal strategy they would adopt if running alone,
therefore the only control is f2(t). Formally, the resulting optimization problem is:

max
f22F

xD(T ) s.t. (A.7)-(A.8). (A.9)

It is clear that this strategy is not realistic, because all the runners adapt their strategy
according to the performances of their opponents. In fact, one of the crucial point in a
two-runners problem is how to model competition between them: some possible ways are
game theory or multi-objective optimization. However, in this work, as explained below,
we model the competition by leaving both strategies free, therefore having two controls,
f1 and f2, and by encompassing in the cost functional the distance between the runners
at the final time.

A.3 Mathematical model

In this work, we use Pitcher’s two-runners model [16] and the single runner model of
Aftalion-Bonnans [1] to build a new model for two runners, which incorporate psycho-
logical factors.

In order to simplify the notation, we substitute the expression σ(ei; σmax,i, σf,i, σr,i,
ϕi, ecr,i) from (A.5) with σi(ei). We recall that the friction in Pitcher’s paper is −cv2i (1−
γe−↵(xD±β)2) and is supposed to model the slipstream. Shielding behind someone has
a strong impact when there is wind or when the velocity is high, however in real races
this position does not come entirely from slipstream but from strategic factors, too, for
which the position one meter behind is the best. Therefore, the potential 1−γe−↵(xD±β)2

can also be considered to model a psychological factor which consists in trying to follow
one’s competitor, in order to be able to overtake. Indeed, it is a potential which has a
minimum at distance β behind and decreases global friction. On the other hand, when
the other runner is too far, there is no benefit. Let us observe that this model does not
take into account the lateral displacement, and therefore the additional propulsive force,
that is necessary to overtake. One can model the fact that overtaking requires some
additional energy, by possibly using a non symmetric potential well 1 − γe−↵(xD±β)2 ,
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with a varying ↵, which is not what we have done in the simulations presented to reduce
the number of parameters involved. We obtain the following equations: for i = 1, 2

8
>>>>>><
>>>>>>:

ẋ1 = v1 x1(0) = 0

ẋD = v2 − v1 xD(0) = 0

v̇1 = f1 − v1
⌧1
− cv21(1− γ(e−↵(xD−β)2)) v1(0) = 0

v̇2 = f2 − v2
⌧2
− cv22(1− γ(e−↵(xD+β)2)) v2(0) = 0

ėi = σi(ei) + ηi(v̇i)− fivi ei(0) = e0i .

(A.10)

The equations in (A.10) are defined for t 2 (0, T ), where T is the time at which the first
of the two runners reaches the final distance D; to model this, it is necessary to add the
following boundary condition to the system:

(x1(T )−D)(x2(T )−D) = 0. (A.11)

As in the previous models, the energy has a lower bound:

ei(t) ≥ 0 8t 2 (0, T ), i = 1, 2. (A.12)

The choice of the cost functional, i.e. the quantity to be minimised, is a key point.
As said before, in contrast with Pitcher’s choice, in this case none of the strategies is
fixed, therefore there are two controls: f1(t) and f2(t). Here, we propose to minimise the
following quantity, given a proper constant weight cw > 0:

J(f1, f2) = T + cw|xD(T )|. (A.13)

The aim of this choice is to minimise the final time of the winner, and the term cw|xD(T )|
models the fact that the loser has tried to win as well. Different values of cw can lead to
different results, as in real races when two runners compete against each other multiple
times the outcome of the race can change.

The resulting problem is:

min
fi2Fi

J s.t. (A.10)-(A.11)-(A.12), (A.14)

where Fi is the set of the admissible controls, and depends on the athlete. For phys-
iological reasons, it is necessary to impose a bound to the variations of ḟ , in addition
to the bounds on f already introduced, related to the fact that athletes cannot vary
their propulsive force too quickly (see more details in [1]). This leads to the following
definition of Fi:

Fi := {f : 0  f(t)  fM,i, |ḟ(t)|  Ki 8t 2 (0, T )}, (A.15)

where Ki and fM,i are constants depending on the athlete, which model the fact that
every runner has a limited maximal force (fM,i) and cannot vary it too quickly (Ki).
The rest of the paper consists in providing numerical simulations of (A.14).
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A.4 Numerical results

All the results presented in this section are obtained with the free software BOCOP
[3]. The equations are solved with a finite difference scheme (implicit Euler), while the
optimization problem is solved with an iterative method, using as stopping criterion the
difference between successive iterates, with a tolerance of 10−10.

The aim of these simulations is to find out if a runner can win a race against someone
stronger, by running behind the first part of the race, and to quantify in term of variation
of some parameters how much weaker they can be and when the best time to overtake
is.

The single runner strategy has been mathematically proven and numerically com-
puted in [1], and found experimentally in [8], and it consists in three parts:

• a first part of maximal force with a strong acceleration during which the peak
velocity is achieved,

• a second part in which the propulsive force first decreases smoothly and then in-
creases again, with the corresponding decrease and increase of the velocity,

• a final part at maximal force and maximal velocity again, until zero energy level is
reached, where the velocity drops.

From the two-runners model, we expect an overall similar strategy: however, the ad-
ditional term in the velocities equations encourages one of the runners to start slightly
slower and to position themselves at distance β from the other. This allows them to keep
the same velocity as the other runner while using a smaller propulsive force, which, in
turn, leads to a lower energy consumption. We expect that, at a certain point during
the race, the runner who is behind, will overtake the other by using the energy they have
saved throughout the race and will be able to perform a longer final sprint. Moreover,
it is reasonable to think that this moment occurs sooner if the runner who runs the first
part of the race behind is stronger. Let us observe that this running strategy could also
lead, in some favourable situations, to an improvement of the personal record. Nonethe-
less, it is important to underline that the decrease in the final time is not the main goal
for a runner in some occasions, such as the Olympic finals, in which the final position is
definitely more important than the final time: in [19], Thiel et al. study, starting from
the Beijing 2008 Olympic Games data and the world records data, how the difference in
the goal affects the pacing strategies: win the race versus minimising the final time.

How to estimate the parameters values starting from a race is beyond the scope of this
paper. For this reason, the reference values for the parameters used in the simulations
are taken from the literature and reported in Table A.1. The initial, maximal and final
value of sigma (respectively σr, σmax and σf ) are taken from the V̇ O2 values reported
in [8]: let us observe that these values are given in ml kg−1min−1. In order to convert
them in the unity of measurement needed (i.e. m2 s−3 = J kg−1s−1), we consider that
the uptake of 1ml of oxygen is often converted into an energy expenditure estimate of
21J . It is then necessary to convert the minutes in seconds, obtaining in this way the
conversion factor 21/60. The values chosen for ϕ and ecr aim at fitting the 2 profile
reported in Figure 2 of [8]. The values for fM and τ are strongly related: in fact, a first
order approximation of the maximal velocity vpeak a runner can reach is τfM . Therefore,
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starting from the velocity profile plotted in Figure 1 of [8], one can chose a couple of
reasonable values. The value of the constant c is taken from [18], c⌘ from [1], ↵ and β
from [16] and, finally, γ from [17].

Table A.1 – Parameters values for 1500m

Parameter Unit of Measurement Value

⌧ s 1.33
c m−1 0.0028
e0 J/kg 1400
σr m2/s3 6

σmax m2/s3 24.22
σf m2/s3 20.44
ϕ - 0.5
ecr - 0.3
c⌘ s 4
α m−2 10
β m 1
γ - 0.8
fM N/kg 5
cw - 0.1

First of all, let us consider the perfectly symmetric situation, in which the two runners
have the same parameters. In this case it is very influential which runner is running the
first part of the race behind: this can be mathematically modelled by choosing, in a
proper way, the initial guess for the variable xD given to the iterative method that solves
the optimization problem. In fact, giving as initial guess β (or −β) forces runner-1
(or runner-2) to start the race more slowly and to position themselves behind for the
first part. If one gives as initial guess xD = 0, one finds a solution in which the runners
overtake each other multiple times, which is not very realistic. The non uniqueness of the
solution is not surprising, especially in a perfectly symmetric situation, such as the one
considered: if a certain couple of strategies {f1(t), f2(t)} provides a minimum for the cost
functional, the couple {f2(t), f1(t)} provides a minimum, too. This can be considered to
model the fact that if the same two runners run against each other multiple times, the
outcome of the race can change. The results of this simulation are shown in Figures A.3-
A.4: one can observe that the runner who stays behind can keep the same velocity as
the other runner, while using a significantly lower propulsive force and therefore having
a much lower energy consumption. All the graphs in Figure A.3 have the position on the
x-axis, which means that the velocity of runner-i is plotted with respect to the position of
runner-i (and it is the same for the propulsive force, the energy and sigma). The choice
of plotting with respect to position, and not time, has been made because it is the most
common in the sports literature. Figure A.4 shows the distance between the runners:
the overtaking occurs at about 94% of the race, corresponding to 1416m. This variable
is plotted with respect to a normalized time (i.e. t/T ), because it does not concern only
one runner, but both of them, therefore it does not make sense to plot it with respect to
the position of any of them.
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Figure A.3 – Competition between two runners with the same parameters.
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Figure A.4 – Competition between two runners with the same parameters; distance
between the runners.
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Figure A.5 – Running alone vs running behind.

From this first result, it is clear that running behind someone for the most part of
the race allows runners to win against athletes as strong as themselves. We now want
to investigate how the strategy of runners changes if they are running alone or behind
someone else. In Figure A.5, two performances of the same runner are compared: the
blue line represents the optimal strategy of the runner running alone (they complete
the race in 249.681s), the red line represents the strategy adopted when running behind
someone as strong as themselves (they completes the race in 247.822s). This difference in
the final time (almost 2s of improvement) is equivalent to a difference of about 0.05m/s
in the mean velocity. However, what we have simulated is not the most favourable
situation to reduce the final time, and therefore to improve the mean velocity. If the aim
is exclusively to improve the personal best performance and not to win the race, the best
scenario possible for a runner is to run behind someone slightly stronger for the whole
race. However, let us observe that the opponent must not be too much stronger: in this
case, the runner would use too much energy to stay behind and would soon reach the
zero energy level, which would cause a drop in the propulsive force too soon in the race.
Nevertheless, from Figure A.5 we can still observe how running behind someone else
allows an athlete to have a higher velocity in spite of keeping a smaller force throughout
the race.

The results presented in Figures A.3-A.4-A.5 are obtained with the model (A.10)
without the recreational term η introduced in (A.6). In Figures A.6-A.7 we present the
same scenario, but with recreation: the two runners have the same parameters. We
recall that, as explained in section A.2.1, the recreational term η leads to oscillations
in the velocity profile. One can observe, comparing Figure A.3 with Figure A.6 and
Figure A.4 with Figure A.7, that the strategy does not change: runner-2 slows down
at the beginning, in order to be behind runner-1; in the middle part of the race the
propulsive forces are oscillating (this behaviour is caused by the additional term η and
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Figure A.6 – Competition between two runners with the same parameters, with the
recreation term η.

can be found also in the single-runner problem, see [1] for further details), and the mean
value around which the propulsive force of runner-1 is oscillating is slightly bigger than
the one around which the force of runner-2 is oscillating; the energy curve does not change
significantly, compared to the previous results. From Figure A.7, one can notice that
runner-2 overtakes at about 94.85% of the race, which corresponds to 1417m: one meter
later, if compared with the case without oscillations. Let us observe that in this case
the final time is smaller: in fact runner-2 completes the race in 247.75s. This decrease
in the final time, when adding the recreation η, is consistent with the results for the
single-runner problem presented in [1].

Finally, we can say that the recreation term does not change the strategy of the race,
however the results are more difficult to read, due to the oscillations. For this reason,
from now on we will present only results obtained without η.

We now want to find the threshold values, i.e. how much runners can be weaker
than their opponent and still win the race by running behind. Therefore, we vary one
parameter at a time, making runner-2 weaker. Figures A.8-A.9 show the results for two
runners who have a different initial energy. Given the reference value for e01 = 1400 (as
in Table A.1), the lowest initial energy runner-2 can have, while still being able to win
the race, is:

e02 = 1275J/kg.

At the beginning of the race, runner-2 slows down in order to stay behind: in this way
runner-2 manages to keep the same velocity as runner-1 using a smaller force; this leads
to a smaller energy consumption, therefore at the end of the race runner-2 has enough
energy to speed up and overtake runner-1. For the boundary condition (A.11), the time
stops as soon as the first runner finishes the race. Therefore, when runner-2 reaches the
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Figure A.7 – Competition between two runners with the same parameters, with the
recreation term η; distance between the runners.

finish line (i.e. 1500m), runner-1 has covered only 1498.13m. The final time of runner-2
is 249.43s, while their best performance running alone is 251.403s, again an improvement
of almost 2s. As shown in Figure A.9, the overtaking occurs later in the race, if compared
with the case in which the runners were equally strong: here occurs at 99% of the race
(i.e. about 1487m ). This is reasonable: in fact, being weaker, runner-2 has to exploit
the advantage of staying behind as long as possible.

In Figures A.10-A.11, the two runners have different oxygen uptake. The threshold
values are the following:

σmax,1 = 24.22m2/s3, σf,1 = 20.44m2/s3

σmax,2 = 23.75m2/s3, σf,2 = 20.18m2/s3.

The initial strategy is the same as the previous case: runner-2 slows down in order to stay
behind; this allows them to keep the same velocity as runner-1 using a smaller force and
therefore compensating the smaller σ. The speed up in the final part is less evident than
it was in the previous case, because the difference between the energies is smaller. The
final distance covered by runner-1 in this case is 1499.72m. The final time of runner-2 is
249.66s, compared to 251.665s if running alone. Figure A.11 shows the distance between
the runners during the race: as in the previous case, the overtaking occurs late in the
race.

Figures A.12-A.13 show the results for two runners who have a different value for τ .
The threshold values are:

τ1 = 1.33s τ2 = 1.31s.

A smaller τ indicates a bigger drop in velocity due to frictional effects, therefore, a
greater force is necessary to keep the same velocity. Being behind another runner is a
way to compensate this weakness: as shown in Figure A.12, runner-2 manages to keep
the same velocity as runner-1, using a slightly smaller force, in spite of having a smaller
τ . In the final part, when the difference in the energies is sufficiently big, runner-2
overtakes runner-1. In this case, at the end of the race, runner-1 has covered a distance
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Figure A.8 – Competition between two runners with different e0.
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Figure A.9 – Competition between two runners with different e0; distance between the
runners.
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Figure A.10 – Competition between two runners with different σ.
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Figure A.11 – Competition between two runners with different σ; distance between the
runners.
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Figure A.12 – Competition between two runners with different ⌧ .

of 1498.82m. The final time of runner-2 is 249.536s, while their best performance running
alone is 251.83s, i.e. they have an improvement of more than 2s.

Finally, let us consider a case in which the runner who starts behind is stronger. For
this purpose, we use the following parameters:

⌧1 = 1.29s ⌧2 = 1.33s.

All the other parameters remain unvaried (reference values from Table A.1). Figures A.14-
A.15 show the results obtained: in this case, the difference between the athletes is much
bigger than in the previous ones, and this is evident from all the curves in Figure A.14.
From Figure A.15, one can notice that the overtaking occurs very early in the race: at
about 87.1%, i.e. 1290m. What is interesting in this case is that runner-2 completes
the race in 248.726s, which is almost 1s less than their best performance running alone:
therefore, in order to improve a personal record, it is not necessary to run behind someone
stronger.

Let us now compare the results obtained here with Pitcher’s ones. In [16], Figure 5.2,
when the weaker runner is the one with the fixed strategy, the stronger runner remains
only slightly ahead of their opponent until nearly the end of the race. This is in order
that the weaker runner does not gain the advantage of running in the slipstream of the
stronger for a long part of the race. However, it is the runner who stays behind who
should adjust their position with respect to the other one, and not the opposite. The
advantage of having two strategies free allow us to avoid this unrealistic result, and in
this case, we get that the weaker runner stays one meter behind, and either wins the race
if the difference in energy is not too big or drops following if they do not have enough
energy.

Finally, we want to analyse the strategy and to see when the overtaking occurs in
real races and compare them with our results. For this purpose, we have considered
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Figure A.13 – Competition between two runners with different ⌧ ; distance between the
runners.
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Figure A.14 – Competition between two runners with different ⌧ ; stronger runs the first
part of the race behind.
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Figure A.15 – Competition between two runners with different ⌧ ; stronger runs the first
part of the race behind; distance between the runners.

the men’s 1500m finals of three different competitions: Beijing 2008 Olympic Games,
Rome 2014 IAAF Diamond League and Singapore 2015 SEA Games. Videos of the races
can be found on the internet [4, 5, 6]. We want to point out that the athlete who won
the Beijing 2008 Olympics was disqualified one year later for doping and his gold medal
was reassigned. Nonetheless, it is still interesting to analyse the race, knowing that
doping increases the maximal value of σ but delays the time at which the peak velocity
is reached: this should lead to a slower start, but it provides a capacity to keep a higher
velocity for a longer part of the race. From the three videos [4, 5, 6], one can observe that
the winner always runs the first part of the race behind, and this is consistent with our
numerical results. The overtaking occurs at 84.6% of the race in Beijing 2008, at 96.9%
in Rome 2014 and at 91.8% in Singapore 2015: these values are close to our numerical
results, that vary between 87% and 99% of the race depending on the difference between
the athletes.

A.5 Conclusion

In this work, we have presented a new model for a two-runners problem, starting from
the single runner model of Aftalion and Bonnans [1] and from the two-runners model
of Pitcher [16], changing the optimal control problem. The key of our simulations is
that they quantify very precisely in terms of physiological parameters, optimal control
problems and numerical simulations, phenomena which are only qualitatively understood.
In this paper, we do not take into account the curvature of the track, which is the aim
of an upcoming paper, since it requires more effort in the modelling.

As expected, going from one runner to two runners does not change the main char-
acteristics of the velocity profile individuated already in [1]. We can still clearly distin-
guish the different phases of the race: the fast start, with maximal propulsive force and
strong acceleration until the peak velocity is reached; an intermediate phase in which the
propulsive force and the velocity first smoothly decrease and then increase; a final part at
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maximal force again, where the runner speeds up (final sprint), followed by a very short
zero energy arc, in which there is a drop in force and velocity. Running behind someone
allows to keep a velocity with a smaller propulsive force than the one needed when run-
ning alone; this leads to a smaller energy consumption, therefore the zero energy level
occurs later and the speed up at the end of the race is more pronounced.

Our numerical results show that if a runner has a fast start and leads the race for
the most part, even if they are slightly stronger than their opponent, at the end they
are overtaken: in order to lead the race and win, the physiological difference between
the athletes has to be significant. Furthermore, we have shown how runners can improve
their personal best performance by exploiting the advantage of running behind someone
else, who can be stronger or weaker. The most significant improvements are obtained by
running behind someone stronger.

An interesting development, in order to have more realistic results, would be to
include a delayed reaction term which takes into account the fact that runners cannot
adapt instantaneously their strategy to changes in their competitor’s strategy. This could
be compared to a stochastic model. Finally, one could increase the number of runners,
in order to be able to model real races more accurately. These considerations are outside
the scope of this paper, but they can be important for future research.

This model suggests to use special runners to set the pace for others and help improve
their racing times in training. The other major application for Olympic training could
be for athletes to estimate whether they should stay behind or lead, and when, given
their physiology, and that of their opponents, is the best time to overtake.
Acknowledgements: I would like to thank Frédéric Bonnans for his very helpful com-
ments and A. Aftalion for suggesting this interesting topic of research and for her many
remarks. A first version of this work, of which she is co-author, can be found on arxiv
(http://arxiv.org/abs/1508.00523v1).

Bibliography

[1] A. Aftalion and J.-F. Bonnans. Optimization of running strategies based on anaer-
obic energy and variations of velocity. SIAM Journal on Applied Mathematics,
74(5):1615–1636, 2014.

[2] H. Behncke. A mathematical model for the force and energetics in competitive
running. Journal of mathematical biology, 31(8):853–878, 1993.

[3] J.-F. Bonnans, D. Giorgi, V. Grelard, S. Maindrault, and P. Martinon. BOCOP -
A toolbox for optimal control problems. http://bocop.org.

[4] Y. channel: Athletics. Men’s 1500m Final IAAF Diamond League Rome 2014 [video
file], 2014. https://www.youtube.com/watch?v=CTVUGLapmPY.

[5] Y. channel: Beijing 2008 Athletics Gymnastics Aquatics. Athletics -
Men’s 1500M - Beijing 2008 Summer Olympic Games [video file], 2008.
https://www.youtube.com/watch?v=0HcGVbDLhI8.

129



Bibliography

[6] Y. channel: Sport Singapore. Athletics Men’s 1500m Final
(Day 6) | 28th SEA Games Singapore 2015 [video file], 2015.
https://www.youtube.com/watch?v=pfeVSzDnv-I.

[7] C. Hanon, P.-M. Lepretre, D. Bishop, and C. Thomas. Oxygen uptake and
blood metabolic responses to a 400-m run. European journal of applied physiol-
ogy, 109(2):233–240, 2010.

[8] C. Hanon, J. M. Leveque, C. Thomas, and L. Vivier. Pacing strategy and VO2
kinetics during a 1500-m race. International journal of sports medicine, 29(3):206–
211, 2008.

[9] C. Hanon and C. Thomas. Effects of optimal pacing strategies for 400-, 800-, and
1500-m races on the VO2 response. Journal of sports sciences, 29(9):905–912, 2011.

[10] J. B. Keller. Optimal velocity in a race. American Mathematical Monthly, pages
474–480, 1974.

[11] C. R. Kyle. Reduction of wind resistance and power output of racing cyclists and
runners travelling in groups. Ergonomics, 22(4):387–397, 1979.

[12] F. Mathis. The effect of fatigue on running strategies. SIAM review, 31(2):306–309,
1989.

[13] R. H. Morton. A three component model of human bioenergetics. Journal of math-
ematical biology, 24(4):451–466, 1986.

[14] R. H. Morton. A 3-parameter critical power model. Ergonomics, 39(4):611–619,
1996.

[15] R. H. Morton. The critical power and related whole-body bioenergetic models.
European journal of applied physiology, 96(4):339–354, 2006.

[16] A. B. Pitcher. Optimal strategies for a two-runner model of middle-distance running.
SIAM Journal on Applied Mathematics, 70(4):1032–1046, 2009.

[17] L. G. C. E. Pugh. The influence of wind resistance in running and walking and the
mechanical efficiency of work against horizontal or vertical forces. The Journal of
Physiology, 213(2):255–276, 1971.

[18] M. Quinn. The effects of wind and altitude in the 400-m sprint. Journal of sports
sciences, 22(11-12):1073–1081, 2004.

[19] C. Thiel, C. Foster, W. Banzer, and J. De Koning. Pacing in olympic track races:
competitive tactics versus best performance strategy. Journal of sports sciences,
30(11):1107–1115, 2012.

[20] C. Thomas, C. Hanon, S. Perrey, J. M. Le Chevalier, A. Couturier, H. Vandewalle,
et al. Oxygen uptake response to an 800-m running race. International journal of
sports medicine, 26(4):268–273, 2005.

130



[21] A. J. Ward-Smith. A mathematical theory of running, based on the first law of
thermodynamics, and its application to the performance of world-class athletes.
Journal of biomechanics, 18(5):337–349, 1985.

[22] W. Woodside. The optimal strategy for running a race (a mathematical model
for world records from 50 m to 275 km). Mathematical and computer modelling,
15(10):1–12, 1991.




