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Abstract

Constraint Programming is a general framework used to model and to solve complex
combinatorial problems. However, modeling a problem as a constraint network requires
significant expertise in the field. Such level of expertise is a bottleneck to the broader up-
take of the constraint technology. To alleviate this issue, several constraint acquisition
systems have been proposed to assist the non-expert user in the modeling task. Neverthe-
less, in these systems the user is only asked to answer very basic questions. The drawback
is that when no background knowledge is provided, the user may need to answer a large
number of such questions to learn all the constraints. In this thesis, we show that using
the structure of the problem under consideration may improve the acquisition process a
lot. To this aim, we propose several techniques. Firstly, we introduce the concept of gen-
eralization query based on an aggregation of variables into types. Secondly, to deal with
generalization queries, we propose a constraint generalization algorithm, named GENACQ,
together with several strategies. Thirdly, to make the build of generalization queries totally
independent of the user, we propose the algorithm MINE&ASK, which is able to learn the
structure, during the constraint acquisition process, and to use the learned structure to
generate generalization queries. Fourthly, toward a generic concept of query, we introduce
the recommendation query based on the link prediction on the current constraint graph.
Fifthly, we propose a constraint recommender algorithm, called PREDICT&ASK, that asks
recommendation queries, each time the structure of the current graph has been modified.
Finally, we incorporate all these new generic techniques into QUACQ algorithm leading to
three boosted versions, G-QUACQ, M-QUACQ, and P-QUACQ. To evaluate all these tech-
niques, we have made experiments on several benchmarks. The results show that the
extended versions improve drastically the basic QUACQ.

Keywords: Artificial Intelligence (AI), Constraint Programming (CP), Constraint Satisfaction

Problems (CSP), Constraint Acquisition, Learning, Graph Community Detection, Recommenda-

tion Systems.





Résumé

La Programmation par Contraintes est un cadre général utilisé pour modéliser et ré-
soudre des problèmes combinatoires complexes. Cependant, la modélisation d’un problème
sous forme d’un réseau de contraintes nécessite une bonne expertise dans le domaine. Ce
niveau d’expertise est un obstacle majeur pour une large diffusion de la programmation par
contraintes. Pour remédier à ce problème, plusieurs systèmes d’acquisition de contraintes
ont été proposés pour aider l’utilisateur dans la tâche de modélisation. Dans ces systèmes,
l’utilisateur ne répond qu’à des questions très simples. L’inconvénient est que lorsqu’aucune
connaissance de base n’est fournie, l’utilisateur peut avoir besoin de répondre à un grand
nombre de questions pour apprendre toutes les contraintes. Dans cette thèse, nous mon-
trons que l’utilisation de la structure du problème peut améliorer considérablement le pro-
cessus d’acquisition. Pour ce faire, nous proposons plusieurs techniques. Tout d’abord,
nous introduisons le concept de requête de généralisation basée sur une agrégation de vari-
ables sous forme de types. Deuxièmement, pour faire face aux requêtes de généralisation,
nous proposons un algorithme de généralisation de contraintes, nommé GENACQ, ainsi que
plusieurs stratégies. Troisièmement, pour rendre la construction de requêtes de généralisa-
tion totalement indépendante de l’utilisateur, nous proposons l’algorithme MINE&ASK, qui
est en mesure d’apprendre la structure au cours du processus d’acquisition, et d’utiliser la
structure apprise pour générer des requêtes de généralisation. Quatrièmement, pour aller
vers un concept générique de requête, nous introduisons la requête de recommandation
basée sur la prédiction de liens dans le graphe de contraintes apprises jusqu’à présent.
Cinquièmement, nous proposons un algorithme de recommandation de contraintes, appelé
PREDICT&ASK, qui demande à l’utilisateur de classifier des requêtes de recommandation
chaque fois que la structure du graphe courant a été modifiée. Enfin, nous intégrons toutes
ces nouvelles techniques dans l’algorithme QUACQ, menant à trois nouvelles versions, à
savoir G-QUACQ, M-QUACQ, et P-QUACQ. Pour évaluer toutes ces techniques, nous avons
fait des expérimentations sur plusieurs jeux de données. Les résultats montrent que les
versions étendues améliorent considérablement le QUACQ de base.

Mots clefs : Intelligence Artificielle, Programmation par contraintes, Problèmes de satis-

faction de contraintes, Acquisition de contraintes, Détection de communautés, Systèmes de

recommandation.





CHAPTER

1
Introduction

Constraint Programming (CP) is a very active research area within Artificial In-
telligence (AI), and its importance has increased dramatically within the last years.
CP is a highly successful technology for solving a wide range of combinatorial prob-
lems, such as scheduling, resource allocation, and design. Nowadays, a number of
companies, like ILOG and Dash Optimization, sell constraint programming toolkits,
which are used by companies as diverse as Amazon.com, British Airways, Cisco,
Ford, HP, SNCF, and Volvo.

Constraint programming is a declarative style of modeling combinatorial prob-
lems. The user identifies the decision variables, their possible domain of values, and
specifies constraints over the allowed values. For instance, the constraint X1+X2 ≤X3

specifies that any combination of values for variables X1, X2 and X3 has to be such
that the sum of X1 and X2 less than or equals X3. Sophisticated AI search techniques
like constraint propagation, which allow to prune irrelevant parts of the search tree,
and chronological backtracking can then be used to find solutions.

Unfortunately, modeling a combinatorial problem as a constraint network re-
mains limited to specialists in the field. However, it is well known that modeling
a combinatorial problem in the constraint formalism requires significant expertise
in constraint programming [Freuder, 1999; Puget, 2004]. Such a level of knowl-
edge prevents non-expert users from being able to use constraint networks without
the help of an expert. Consequently, this has a negative effect on the uptake of
constraint technology in the real-world by novices.

One answer to the task of modeling is constraint acquisition, which is an active
research field that lies in the conjunction of two fields, namely Constraint Program-
ming and Machine Learning. The idea behind constraint acquisition is to assist
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a non-expert user in modeling her problem as a constraint network. Several con-
straint acquisition systems have been introduced in the last decade [Bessiere et al.,
2005, 2007; Lallouet et al., 2010; Beldiceanu and Simonis, 2012; Bessiere et al.,
2013]. Unfortunately, Most of these constraint acquisition systems interact with
the user by asking her to classify an example as positive or negative. Such queries
do not use the structure of the problem and can thus lead the user to answer a large
number of queries. Hence, it can be hard to put constraint acquisition in practice.

The propose of this thesis is to provide new approaches to constraint acquisition
in order to make it more efficient in practice. However, we show that learning and
using the structure of the problem under consideration may accelerate the process
of learning a lot. To this end, we introduce two new concept of queries that use
the structure of the problem. The first one, called generalization query, is an op-
portunistic query based on the aggregation of variables into types. Generalization
query asks the user whether or not a learned constraint can be generalized on other
variables of the same types as those of the learned constraint. The second query,
called recommendation query, based on the analysis of the partial constraint graph
learned so far, by using techniques borrowed from data mining and link predic-
tion in dynamic graphs. Recommendation query asks the user whether or not a
predicted constraint may belongs to the target network.

We propose several algorithms that manage these new concept of queries. First,
we propose GENACQ algorithm, which is a generic algorithm that asks generalization
queries. Second, we present MINE&ASK algorithm, which is able to learn types
during the constraint acquisition process and to use the extracted types to build
generalization queries. Third, we introduce PREDICT&ASK, which is a constraint
recommender algorithm that uses the structure, of the constraint graph learned so
far, to predict new constraints that may belong to the target network, and to ask the
user to classify recommendation queries. Finally, all these generic algorithms are
incorporated into QUACQ leading to three boosted versions, which are G-QUACQ (i.e,
QUACQ+GENACQ), M-QUACQ (i.e, QUACQ+MINE&ASK), and P-QUACQ (i.e, QUACQ+

PREDICT&ASK). To show the efficiency of our new techniques, we experimentally
evaluate their benefit on several benchmark problems. The results show that G-
QUACQ, M-QUACQ and P-QUACQ dramatically improve the basic QUACQ algorithm
in terms of number of queries.

The organization of this thesis is as follows. In chapter 2, we present the es-
sential material to understand the technical presentation of this thesis. We present
also the state of the art related to the constraint acquisition. In chapter 3, we in-
troduce the concept of generalization query based on an aggregation of variables
into types. We present a constraint generalization algorithm that can be plugged
into any constraint acquisition system. We propose several strategies to make our
approach more efficient in terms of number of queries. Finally, we experimentally
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compare the recent QUACQ system to an extended version boosted by the use of our
generalization functionality. The results show that the extended version dramati-
cally improves the basic QUACQ. This chapter is based on the research previously
published in the following papers:

— C. Bessiere, R. Coletta, A. Daoudi, N. Lazaar, Y. Mechqrane, and E.H.
Bouyakhf. Boosting constraint acquisition via generalization queries. In ECAI
2014 - 21st European Conference on Artificial Intelligence, 18-22 August 2014,
Prague, Czech Republic - Including Prestigious Applica- tions of Intelligent Sys-
tems (PAIS 2014), pages 99–104, 2014.

— C. Bessiere, R. Coletta, A. Daoudi, N. Lazaar, Y. Mechqrane, and E.H.
Bouyakhf. Acquisition de contraintes par requêtes de généralisation. In Dix-
ièmes Journées Francophones de Programmation par Contraintes (JFPC’14),
Angers, France, 2014.

— C. Bessiere, R. Coletta, A. Daoudi, E. Hebrard, G. Katsirelos, N. Lazaar, Y.
Mechqrane, N. Narodytska, C. Quimper, and T. Walsh. New Approaches to

Constraint Acquisition. In ICON Book, Lecture Notes in Artificial Intelligence,
April 2016.

In chapter 4, we present a new algorithm that is able to learn the structure of the
problem during the constraint acquisition process. The idea is to infer potential
types by analyzing the structure of the current constraint network and to use the
extracted types to ask generalization queries. Our approach gives good results al-
though no knowledge on the types is provided. Chapter 4 is based on the research
previously published in the following paper:

— A. Daoudi, N. Lazaar, Y. Mechqrane, C. Bessiere, and E.H. Bouyakhf. Detecting

types of variables for generalization in constraint acquisition. In 27th IEEE
International Conference on Tools with Artificial Intelligence, ICTAI 2015, Vietri
sul Mare, Italy, November 9-11, 2015, pages 413–420, 2015.

In chapter 5, we propose PREDICT&ASK, an algorithm based on the prediction of
missing constraints in the partial network learned so far. Such missing constraints
are directly asked to the user through recommendation queries, a new, more infor-
mative kind of queries. PREDICT&ASK can be plugged in any constraint acquisition
system. We experimentally compare the QUACQ system to an extended version
boosted by the use of our recommendation queries. The results show that the ex-
tended version improves the basic QUACQ. Chapter 5 based on the the following
paper:

— A. Daoudi, Y. Mechqrane, C. Bessiere, N. Lazaar, and E.H. Bouyakhf. Con-

straint acquisition using Recommendation Queries. In IJCAI 2016, New York
City, USA.

In chapter 6, we conclude this thesis and give some perspective to constraint acqui-
sition.
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2
Background

Preamble

In this chapter, we present the essential material to understand the technical

presentation of this thesis. We then present the state of the art related to the

constraint acquisition.

Contents

2.1 Constraint Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Constraint Language and Basis . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Concept Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Constraint Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Existing Constraint Acquisition Systems . . . . . . . . . . . . . . . . . . 20

2.1 Constraint Programming

This section introduces the formalism of constraint programming (CP), which
can represent many academic and industrial problems. More details can be found
in the text books [Lecoutre, 2013; Rossi et al., 2006a; Dechter, 2003].

Constraint programming is a declarative paradigm. The basic idea underlying
CP is to model a combinatorial problem as a constraint network. That is, to specify
a set of variables, a set of domain values, and a set of constraints. Each constraint
is a rule that impose a limitation on the values that a variable, or a combination of
variables, may be assigned. A solution of the constraint network is an assignment
of variables to domain values that satisfies all constraints in the network. The Con-
straint Satisfaction Problem (CSP) is, therefore, the problem of determining whether



12 Background

a solution exists, finding one or all solutions, finding whether or not a partial instan-
tiation can be extended to a full solution. The CSP is not known to admit polynomial
running time algorithms to solve its instances; hence, CSP is NP-hard.

After this brief overview of CP, we first start with formal definition of the central
concepts.

2.1.1 Basic Definitions

Constraint satisfaction problems include two important components, namely
variables with associated domains and constraints.

Definition 2.1 (Variable and Domain). Variables are objects or items that can take

on a variety of values. The set of possible values for a given variable is called its

domain. In our context, the pair (X,D) is called the vocabulary, with X is a finite set

{x1, ...,xn} of variables, and D = {D(x1), ...,D(xn)} are a finite subsets of Z named the

domains.

The second component of a constraint satisfaction problem is the set of con-
straints themselves.

Definition 2.2 (Constraint). Constraints are rules that impose a limitation on the

values that a variable, or a combination of variables, may be assigned. Formally

speaking, a constraint c is a pair (var(c),rel(c), where var(c) is a sequence of variables

of X, called the constraint scope of c, and rel(c) is a relation over D|var(c)|, called the

constraint relation of c. For each constraint c, the tuples of rel(c) indicate the allowed

combinations of simultaneous value assignments for the variables in var(c). The arity

of a constraint c is given by the size |var(c)| of its scope.

For the purpose of clarity, we limit ourselves to binary constraints; that is, con-
straints with a scope involving only two variables. In the following, we use cij to
refer to the binary relation that specifies which pairs of values are allowed for the
sequence 〈xi,xj〉. For instance, 6=12 denotes the constraint specified on 〈x1,x2〉 with
the relation “not equal”.

A model that includes variables, their domains, and constraints is called a con-
straint network.

Definition 2.3 (Constraint Network). A constraint network over a given vocabulary

(X,D) is a finite set C of constraints.

In real problems, variables often represent components of the problem that can
be classified in various types. For instance, in a school time-tabling problem, vari-
ables can represent teachers, students, rooms, courses, or time-slots. Such types
are often known by the user.

Definition 2.4 (Variable Type). A type Ti is a subset of variables defined by the user

as having a common property. A variable x is of type Ti if and only if x ∈ Ti. A scope
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var = (x1, . . . ,xk) of variables is said to belong to a sequence of types s = (T1, . . . ,Tk)

(denoted by var ∈ s) if and only if xi ∈ Ti for all i ≤ k. Consider s = (T1,T2, . . . ,Tk) and

s ′ = (T ′
1
,T ′

2
, . . . ,T ′

k
) two sequences of types. We say that s ′ covers s (denoted by s⊑ s ′) if

and only if Ti ⊆ T ′
i

for all i ∈ 1..k. A relation r holds on a sequence of types s if and only

if (var,r) ∈C for all var ∈ s. A sequence of types s is maximal with respect to a relation

r if and only if r holds on s and there does not exist s ′ covering s on which r holds.

When a variable is assigned a value from its domain, we say that the variable
has been instantiated.

Definition 2.5 (Assignment/Example). Given a vocabulary (X,D). Let Y = {x1, ...,xk}

be a subset of X. An assignment is a vector ey = {v1, ...,vk} in D|Y|. This assignment

is partial if and only if Y 6= X, complete otherwise (dented by e). ey is rejected by a

constraint c (i.e., ey 6|= c) if and only if var(c)⊆ var(ey) and the projection ey[var(c)] of ey
on var(c) is not in c. Otherwise we say that ey is accepted by c.

A solution of the constraint network is an assignment of variables to domain
values that satisfies all constraints of the network.

Definition 2.6 (Solution of a Constraint Network). A solution of a Constraint Net-

work C is an assignment of each variable of the constraint network to a value in its

domain such that all the constraints are simultaneously satisfied. Formally speaking,

a complete assignment e of X is a solution of C if and only if for all c ∈C, c does not

reject e. We denote by sol(C) the set of solutions of C.

Figure 2.1 – An example of constraint graph

Graph concept is very useful in capturing the structure of a constraint prob-
lem. A constraint network can be represented by a graph called a primal constraint
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graph, where each vertex represents a variable and the arcs connect all vertices
whose variables belong to a constraint scope (see Figure 2.1).

Definition 2.7 (Constraint Graph). A constraint graph can be associated with a con-

straint graph G=(V,E), where vertices V represent variables X, and edges E represent

constraints C.

2.1.2 Examples of Constraint Networks

In this section, we present some common examples of problems that can be
intuitively modeled as constraint networks.

Queens Problem

Figure 2.2 – An example of 8-Queens problem

The Description. The classic example used to illustrate a constraint satisfaction
problem is the n-queens problem (see Figure 2.2). The problem is to place n queens
on a n×n chessboard such that the placement of no queen constitutes an attack on
any other.
The Model. One possible constraint network formulation of the problem is as fol-
lows. There is a variable for each column of the chessboard.
Variables: X= {x1, . . . ,xn};
Domains: Di= {1,. . . ,n};
Constraints:

— ∀i,j ∈ {1,. . . ,n} xi 6= xj (One queen each row.)

— ∀i,j ∈∈ 1,. . . ,n |xi−xj| 6= |i− j| (One queen diagonally.)
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Graph-coloring Problem

The Description. Another example of constraint network is the graph-coloring
problem. In this problem, the goal is to color the nodes of a graph so that there
is not a pair of linked nodes colored with the same color. Each node has a finite
number of possible colors. This problem can be modeled as a constraint network by
representing each node of the graph as a variable. The domain of each variable is
defined by the possible colors that this variable can take. There exits a constraint
between each pair of linked variables that forbids these variables to have the same
color.

Figure 2.3 – An example of graph-coloring problem

The Model. The graph-coloring problem of Figure 2.3 is modeled as follows.
Variables: X= {WA,NT,Q,NSW,V,SA,T };
Domains: Di= {red,green,blue};
Constraints: adjacent regions must have different colors.

Sudoku Problem

The Description. Sudoku, originally called Number Place, is a logic-based combi-
natorial number-placement puzzle (Figure 2.4). The task is to fill a 9×9 grid with
digits so that each column, each row, and each block contains all of the digits from
1 to 9. The puzzle setter provides a partially completed grid, which for a well-posed
puzzle has a unique solution.
The Model. The Sudoku puzzle can be modeled as follows.
Variables: X= {x11, . . . ,x99};
Domains: D= {Dij= {1,. . . ,9} |∀i,j ∈ 1,. . . ,9};
Constraints:

— ∀i ∈ 1,. . . ,9 AllDifferent(xij | j ∈ 1,. . . ,9);
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— ∀j ∈ 1,. . . ,9 AllDifferent(xij | i ∈ 1,. . . ,9);

— ∀i,j ∈ 1,. . . ,9 AllDifferent(x(3i+k)(3j+q) | k,q ∈ 1,. . . ,3).

Figure 2.4 – An example of sudoku problem.

2.1.3 Solving Methods

Constraint satisfaction problems are solved using search techniques. The most
used techniques are variants of backtracking, constraint propagation, and local
search.

Backtracking Search

Backtracking is a recursive algorithm [Knuth, 1968; Rossi et al., 2006b]. It
maintains a partial assignment of the variables. Initially, all variables are unas-
signed. At each step, a variable is chosen, and all possible values are assigned to
it consecutively. For each value, the consistency of the partial assignment with the
constraints is checked, and in case of consistency, a recursive call is performed.
When all values have been tried, the algorithm backtracks. In this basic backtrack-
ing algorithm, consistency is defined as the satisfaction of all constraints whose
variables are all assigned. In the literature, several variants of backtracking have
been proposed. Backmarking [Gaschnig, 1977] improves the efficiency of check-
ing consistency. Backjumping [Prosser, 1993] allows saving part of the search by
backtracking “more than one variable” in some cases. Constraint learning [Dechter,
1990] infers and saves new constraints that can be later used to avoid exploring
part of the tree search. Look-ahead [Haralick and Elliott, 1980] is also often used in
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backtracking to anticipate the effects of choosing a variable or a value, thus, some-
times determining in advance when a subproblem is satisfiable or unsatisfiable.

Propagation

Constraint propagation techniques are methods used to modify the structure of
a constraint satisfaction problem [Bessiere, 2006]. More accurately, they are meth-
ods that enforce a form of local consistency, which are conditions related to the
consistency of a group of variables and/or constraints. Constraint propagation has
various uses. First, it change a problem into equivalent one, which is usually sim-
pler to solve. Second, it may prove satisfiability or unsatisfiability of problems. This
is not guaranteed to happen in general; however, it always happens for some forms
of constraint propagation and for some certain kinds of problems. The most used
form of local consistency are arc consistency, hyper-arc consistency, and path con-
sistency. The most popular constraint propagation method is the AC−3 algorithm
[Mackworth, 1977], which enforces arc consistency.

Local search

Local search methods [Hoos and Tsang, 2006] are incomplete satisfiability algo-
rithms. They may find a solution of a problem, but they may fail even if the problem
has a solution. They work by iteratively improving a complete assignment over the
variables. At each step, it changes the values of some variables, with the over-
all purpose of increasing the number of constraints satisfied by this assignment.
based in that principle, the min-conflicts algorithm [Minton et al., 1992] is a local
search algorithm dedicated for solving CSPs. In practice, local search appears to
work well when these changes are also affected by random choices. Integration of
backtracking search with local search has been developed, leading to hybrid algo-
rithms [Wallace and Schimpf, 2002].

2.2 Constraint Language and Basis

In this section, we present two essential components for the constraint acquisi-
tion problem, which are constraint language and basis. A constraint language is a
set of relations that restricts the type of constraints that are allowed when modeling
a constraint satisfaction problem as a constraint network.

Definition 2.8 (Constraint Language). A constraint language is a set Γ = {r1, . . . ,rt} of

t relations over some subset of Z.

We are now ready to define the basis for the constraint acquisition problem. The
basis is the set of all possible constraints that are candidate for being in the target
constraint network.
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Definition 2.9 (Basis). Given a vocabulary (X,D) and a constraint language Γ . The

basis for the constraint acquisition problem is the set B of all constraints c for which

var(c) is a sequence of variables of X, and there exists a relation ri in Γ such that

rel(c)= ri∩D|var(c)| .

It is worth to notice that the building of a basis B using a constraint language of
bounded arity k is polynomial in the input dimension; the size of B is bounded by nkt

in the general case, and by n2t in the case of binary constraint networks. However,
if Γ contains global constraints, th size of B is no longer polynomial; as one global
constraint gives rise to 2n possible constraints in B.

Example 2.1. Consider the binary constraint language Γ = { 6=,≥,≤} over Z. Given the

vocabulary defined by X= {x1,x2,x3} and D= {1,2,3,4}, we observe that the constraint

network C= { 6=12,≥12,≤23} is indeed a subset of the basis B= { 6=12,≥12,≤12, 6=13,≥13,≤13

, 6=23,≥23,≤23}.

2.3 Concept Learning

Inducing general functions from specific training examples is a main issue of
machine learning [Mitchell, 1997]. Concept Learning consists on acquiring the def-
inition of a general concept from positive and negative training examples of the
target concept. Concept Learning can be seen as a problem of searching through a
predefined space of potential hypotheses for the hypothesis that is consistent with
the training examples. The hypothesis space has a general-to-specific ordering of
hypotheses, and the search can be efficiently organized by taking advantage of a
naturally occurring structure over the hypothesis space.

In our setting, which is acquiring constraints from examples, a general concept is
a Boolean function over DX=Πxi∈XD(xi); that is, a map that assigns to each example
e ∈DX a value in {0,1}. A representation of a general concept f is a constraint network
C for which f−1(1)= sol(C). A general concept f is said to be representable by a basis
B if there is a subset C of B such that C is a representation of f. We call target concept

the concept fT that returns 1 for e if and only if e is a solution of the problem the
user has in mind. The target concept is represented by a target constraint network

denoted by CT .

Definition 2.10 (Membership query). A membership query Ask(e), with var(e) ⊆ X,

is a classification question asked to the user, where e is an assignment in Dvar(e) =

Πxi∈var(e)D(xi). A set of constraints C accepts an assignment e if and only if there does

not exist any constraint c ∈C rejecting e. The answer to Ask(e) is yes if and only if CT

accepts e.

2.4 Constraint Acquisition

In Constraint Programming, it is well known that the modeling task is a bot-
tleneck [Freuder, 1999; Puget, 2004]. This bottleneck has a negative effect on the
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uptake of CP technology on a large scale, especially in the industrial field. An an-
swer to the modeling task is constraint acquisition, which lies in the conjunction of
two research areas, namely Constraint Programming and Machine Learning. The
idea behind that is to assist a non-expert user in modeling her problem as a con-
straint network. Several constraint acquisition systems have been proposed in the
last decade; we will survey the existing systems in the following section. In this
section, we formally define constraint acquisition.

Figure 2.5 – Constraint acquisition.

Constraint acquisition can be seen as an interplay between the user and the
learner (see Figure 2.5). The learner has a combinatorial problem in her mind, noted
CT . We suppose that the common knowledge between the user and the learner is the
vocabulary (X,D). In one hand, the user has in her disposal a set of examples that
represent both solutions and non-solutions of her problem. In the other hand, the
learner owns a library of constraints L and a basis B that we suppose capturing the
problem of the user. The objective of the learner is to induce a constraint network
CL that best fits the training examples proposed by the user, and which is equivalent
to CT (i.e, CL ≡CT ). That is, a constraint network that accepts the positive examples
and rejects the negative ones.

In the literature, there are two forms of constraint acquisition. The first form is
a passive learning, and the second form is an active learning.

2.4.1 Passive Learning

In a passive constraint acquisition context, there is no interplay between the user
and the learner. The user provides a set of positive and negative examples, and the
learner tries to find a set of constraints that classifies the training examples.

Definition 2.11 (Passive constraint acquisition problem). Given a vocabulary (X,D),

an unknown constraint network C, a basis B, a constraint language L, a set of solu-
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tions E+, and an other set of non-solutions E− of the problem the user has in mind, the

constraint acquisition problem is, therefore, to find C such that:

— C⊆B

— For each e ∈E+, e satisfies all constraints in C

— For each e ∈E−, e rejected by at least one constraint in C

2.4.2 Active Learning

By contrast, in an active setting, the user dialogs with the learner. The learner
proposes informative examples, and the user classifies them as positive or negative.
The benefit of such kind of learning is that it provides less of a burden on the user.

Definition 2.12 (Active constraint acquisition problem). Given a basis B and an

unknown user classification function f, the active constraint acquisition problem is to

find a converging sequence Q= {q1, . . . ,qm} of queries. That is, a sequence such that

qi+1 is a query relative to B and CL, where CL is the constraint network learned so far,

i.e the learned constraint network after classifying qi. After the classification of the

query qm, the learner converges on the target constraint network, i.e CL ≡CT .

The general context underlying this thesis is the active constraint acquisition.
Our objective is to make this kind of learning more efficient in practice despite the
context of use.

2.4.3 Constraint Acquisition as a Search

Constraint acquisition can be seen as a form of search through a search space.
The search space can be represented as a lattice (see Figure 2.6). Each node of
the lattice is a possible constraint network. The top ⊤ of the lattice represents
the general constraint network, which accepts all examples provided by the user.
The specific born of the lattice is represented by all constraints of the basis B. The
search space is explored via examples classified by the user. In the case of a positive
example, we prune the search space by removing all constraints that reject the
example. Hence, we generalize our learned constraint network, and we then go
up through the lattice. In the case of a negative example, we learn at least one
constraint that explains the rejection of that example. That is, we specify our learned
constraint network, by going dawn through the lattice.

2.5 Existing Constraint Acquisition Systems

In this section, we survey the existing constraint acquisition systems proposed
in the last years.
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Figure 2.6 – Search space in constraint acquisition

2.5.1 CONACQ.1

CONACQ.1 is a SAT-based algorithm presented in [Bessiere et al., 2004, 2005]
for acquiring constraint networks based on version space [Winston, 1992; Mitchell,
1997]. In CONACQ.1, Bessiere et al. made the assumption that the only thing
the user is able to provide is examples of solutions and non-solutions of the target
problem. Based on these examples, the CONACQ.1 system learns a set of constraints
that correctly classifies all examples given so far. This type of learning is called
passive learning.

Description of CONACQ.1

The set of the training examples provided to CONACQ.1 by the user is composed
of negative and positive examples.

Definition 2.13 (Training Data). The set Ef of training examples provided to

CONACQ.1 is composed of a set E of instances and a classification function f : E−→
{0,1}. Given an element e of E, f(e) = 1 if and only if e is a solution of the problem that

the user has in mind. That is, e is a positive example noted e+. If e is a non-solution

of the problem, therefore, f(e)= 0, and we say that the example is negative, noted e−.

We say that a constraint network C is consistent with the training data Ef if and
only if each example e+ ∈ Ef belongs to the set of solutions of C, and each e− ∈ Ef is
a non-solution of C. Given a basis B and a set of training data Ef, the problem of
constraint acquisition consists on finding a constraint network C admissible for B

and consistent with the training data Ef.
CONACQ.1 is a constraint acquisition system based on the version space intro-

duced by Mitchel in [Mitchell, 1997]. The version space is a supervised machine
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learning technique that aims at acquiring a target concept from positive and nega-
tive examples. Formally speaking, given a set of hypotheses H and a set of training
examples E, the version space is the set of hypotheses of H that are consistent with
the training examples. In the setting of constraint acquisition, the version space
VB(E

f), of a constraint acquisition problem, is the set of all constraint networks
admissible by B and consistent with the training examples Ef. In the SAT-based for-
mulation of CONACQ.1, the version space is encoded by the clausal theory K, where
each model of this theory is a constraint network of VB(E

f).
If B is the basis, a literal is either an atom bij of B or its negation ¬bij. It is wroth

to stress that ¬bij is not a constraint, but it point out that bij does not belong to
the learned constraint network. A clause is a disjunction of literals, and the clausal
theory K is a conjunction of clauses.

Definition 2.14 (Interpretation). Let B be a basis. An interpretation I over B is a

function that assigns to each literal bij in B a value I(bij) in {0,1}

Definition 2.15 (Transformation). Let B be a basis. A transformation is a function φ

that assigns to each interpretation I of B the constraint network φ(I) admissible by B

and such that:

Cij ∈φ(I) iff Cij=
⋂
{b

p
ij
∈B | I(b

p
ij
)= 1}

An interpretation I is a model of the clausal theory K if K is true in I according
to the standard propositional semantic. The set of all the models of K is noted
Models(K).

The construction of K is as follows. For each training example e provided by
the user, CONACQ.1 builds the set k(e), of literals corresponding to the constraints
bij ∈ B, that rejects e. Then, CONACQ.1 adds iteratively a set of clauses such that,
for each interpretation I of Models(K), the network φ(I) classifies correctly the the
training examples given so far, as well as the example e. The update of the clausal
theory differs according to the learning class of e:

— If e is a negative example, then one of the constraints in k(e) explains the
rejection of e. We then add to K the disjunction {

∨
bij∈k(e)bij} of elements of k(e).

— If e is a positive example, then CONACQ.1 is ensured that no one of the con-
straints of k(e) belongs to the target network. Consequently, K is updated by
adding the conjunction of the unitary clauses ¬bij of k(e).

The analysis of positive instances of Ef allows to simplify, with unitary propaga-
tion, the clauses that explain the rejection of negative examples. The correction of
the algorithm CONACQ.1 is formulated by the theorem 2.1.

Theorem 2.1 (Correctness of CONACQ.1). Let Ef be a set of training examples and B

a basis. The clausal theory built by CONACQ.1 for Ef and B is such that:

VB(E
f)= {φ(m) |m ∈Models(K)}
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Proof. The proof of the theorem 2.1 is given in [Bessiere et al., 2005].
CONACQ.1 has numerous advantages. Firstly, the formulation is generic; there-

fore, it can use any SAT solver as a basis for version space learning. Secondly, it can
exploit powerful SAT concepts, such as unit propagation and backbone detection to
improve learning rate. Finally, CONACQ.1 can easily incorporate domain-specific
knowledge in constraint programming to improve the quality of the learned net-
work. Specifically, for handling redundant constraints in constraint acquisition,
two generic techniques have been developed. The first is based on the notion of
redundancy rules, which can deal with some forms of redundancy. The second
technique, based on backbone detection, is far more powerful.

Despite its distinct number of advantages, CONACQ.1 has also some limitations.
Firstly, It cannot acquire global constraints. Secondly, it may require a number
exponential of examples to get the target network [Bessiere and Koriche, February,
2012]. Thirdly, and finally, CONACQ.1 needs positive examples to learn constraints;
why modeling a problem if we have already, at our disposal, solutions for it?

2.5.2 CONACQ.2

To overcome the limitations reproached to CONACQ.1, Bessiere et al. have pro-
posed an active learning version, called CONACQ.2 [Bessiere et al., 2007]. The
system CONACQ.2 proposes examples to the user to classify as solutions or non-
solutions. Such questions are called membership queries [Angluin, 1987].

Description of CONACQ.2

In order to generate queries, the authors proposed several approaches. First, a
random affectation to the variables, which is a baseline approach. Second, a query
with a small K(e). Finally, a query with a large k(e). It is worth to notice that using
these approaches could generate useless queries. In fact, a query does not contain
information if it is rejected by the version space. We then talk about redundant
queries.

Definition 2.16 (A redundant query). A redundant query is a query that do not allow

us to learn new informations. Let e be an example, we have tow cases of redundant

queries:

— Either k(e)=∅ and in this case we automatically detect that e is a solution;

— Or all constraints rejecting e are already in K; then, any constraint network in

the version space accepts e.

Hence, redundant queries are useless, and it is not necessary asking the user to
classify them.

To make CONACQ.2 more efficient in terms of number of queries, the authors
propose some optimizations. They propose to break some clauses of K. That is, they
propose to compute a query with k(e) containing a strict subset of literals present in
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the clause that they wish to break. If this query is classified as negative, they get a
smaller clause that contains only literals existing in k(e). Otherwise, they decrease
the size of the clause by setting all literals of k(e) to false. Note that if one seeks
a query with a k(e) of size 1, and if the query is classified by the user as negative;
then, the clause will be simplified to a single variable, which must therefore be true.

The last optimization, proposed by the authors, concerns a case occurring if they
try to break clauses. This case arises when they force the not fixed variables to be
true in order to such variables do not appear in k(e). In this case, it is possible that
no query exists. They propose to extract a conflict set S of literals and to add the
clause

∨
bij∈S¬bij forcing at least one of the variables to be false. In practice, there

are several methods to produce such conflict sets. One method is, for each variable
bij ∈ k(e), to test whether to fix it to true; then, K becomes inconsistent. In this case,
this variable must be false.

Even that CONACQ.2 is active and generates only informative examples, it re-
mains exponentially large in terms of number of queries; it may require a large
number of queries to get the target constraint network. Thus, it is hard to put
CONACQ.2 in practice. An other weakness of CONACQ.2 is that it is not able to learn
global constraints that are not decomposable.

2.5.3 MODELSEEKER

In [Beldiceanu and Simonis, 2012], Beldiceanu and Simonis proposed Model

Seeker, another passive learning approach. Positive examples are provided by the
user. The system arranges these examples as a matrix, or any other data structure,
and identifies constraints in the global constraints catalog ([Beldiceanu et al., 2007])
that are satisfied by rows or columns of all examples.

Description of MODELSEEKER

The general schema of MODELSEEKER is shown in Figure 2.7. Here, we will give a
general overview of the different steps of the system. MODELSEEKER takes as input
positive examples of the problem that we want to model as a constraint network.
Transformation In the first step, MODELSEEKER tries to convert the format of in-
put examples to other more appropriate representations. For instance, it tries to
replace a boolean format with finite domain values. MODELSEEKER also converts
different graph representations into the successor variable form used by the global
constraints in the catalog.
Candidate Generation The second step (Sequence Generation) tries to group the
variables of the example into regular subsets. For instance, it interprets the input
vector as a matrix and creates subsequences for all rows and all columns. In the Ar-

gument Creation step, MODELSEEKER creates call patterns for constraints from the
subsequences. it can try each subsequence on its own, or combine pairs of subse-
quences, or use all subsequences together in a single collection. It also tries to add
additional arguments based on functional dependencies of constraints, described
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Figure 2.7 – General schema of MODELSEEKER.

as meta-data in the global constraint catalog. For each call pattern, MODELSEEKER

then calls the Constraint Seeker to discover matching constraints, which satisfy all
subsequences of each example. Only the highest ranking candidates are retained
for further analysis.
Candidate Simplification After the Constraint Seeker step, MODELSEEKER poten-
tially has a very large list of possible candidate global constraints (up to 2 000 global
constraints for some examples). The next step is to reduce this list as much as pos-
sible. first, MODELSEEKER applies a Dominance Check to remove all candidate con-
straints that are implied by other constraints in the candidate list. The dominance
check is the core of modeling system, helping to remove useless constraints from
the candidate list. In the last step before the final candidate list output, the system
removes trivial constraints and simplifies some constraint pattern. At the end of this
step, MODELSEEKER performs a ranking of the remaining candidates based on the
constraint and sequence generator used.
Code Generation As a side effect of the initial transformation in the first step,
MODELSEEKER generates potential domains for the variables of the problem under
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consideration. In the default case, the system just creates variable domains using
all values occurring in the examples. But, for some graph-based transformations a
more accurate domain definition is used. At the last step, which is Code Generation,
given the candidate list and domains for the variables, It can be easily to generate
code for a model using the constraints. MODELSEEKER produces SICStus Prolog
code using the call format of the catalog. The generated code can then be used
to validate the provided examples or to find solutions for the learned constraint
network.

MODELSEEKER remains the only system that deals with global constraints. The
major drawback of MODELSEEKER is that it does not handle all global constraints
in the catalog [Beldiceanu et al., 2007]. It deals only with 67 global constraints.
Another reproach to that system is that it learns only from positive examples; hence,
it makes the system hard to put in practice, as the provide of such examples by a
novice is not an obvious task.

2.5.4 QUACQ

QUACQ is a recent active learner system that is able to ask the user to classify
partial queries [Bessiere et al., 2013]. Using partial queries and given a negative
example, QUACQ is able to find a constraint of the problem the user has in mind in
a number of queries logarithmic in the size of the example. This key component of
QUACQ allows it to always converge on the target set of constraints in a polynomial
number of queries. However, even that good theoretical bound can be hard to put
in practice. For instance, QUACQ requires the user to classify more than 8000
examples to get the complete Sudoku model.

Description of QUACQ

QUACQ takes as input a basis B on a vocabulary (X,D). It asks partial queries of
the user until it has converged on a constraint network CL equivalent to the target
network CT , or collapses. When a query is answered yes, constraints rejecting it
are removed from B. When a query is answered no, QUACQ enters a loop (functions
FindScope and FindC) that will end by the addition of a constraint to CL.

QUACQ (see Algorithm 1) initializes the network CL it will learn to the empty
set (line 2). If CL is unsatisfiable (line 6), the space of possible networks collapses
because there does not exist any subset of the given basis B that is able to correctly
classify the examples already asked of the user. In line 8, QUACQ computes a
complete assignment e satisfying CL but violating at least one constraint from B. If
such an example does not exist (line 10), then all constraints in B are implied by
CL, and we have converged. If we have not converged, we propose the example e to
the user, who will answer by yes or no. If the answer is yes, we can remove from B

the set κB(e) of all constraints in B that reject e (line 12). If the answer is no, we are
sure that e violates at least one constraint of the target network CT . We then call the
function FindScope to discover the scope S of one of these violated constraints (line
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Algorithm 1: QUACQ: Acquiring a constraint network CT with partial queries

1 CL←∅;
2 while true do

3 if sol(CL)=∅ then return “collapse”;
4 choose e in DX accepted by CL and rejected by B ;
5 if e=nil then return “convergence on CL”;
6 if ASK(e)=yes then B←B\κB(e) ;
7 else

8 S←FindScope(e,∅,X,false);
9 cS←FindC(S);

10 if cS=nil then return “collapse”;
11 else CL←CL∪ {cS};

20). FindC will return a constraint of CT whose scope is in S (line 9). If no constraint
is returned (line 22), this is again a condition for collapsing as we could not find
in B a constraint rejecting one of the negative examples. Otherwise, the constraint
returned by FindC is added to the learned network CL (line 28).

The recursive function FindScope (see Algorithm 2) takes as parameters an ex-
ample e, two sets R and Y of variables, and a Boolean ask_query. An invariant of
FindScope is that e violates at least one constraint whose scope is a subset of R∪Y.
When FindScope is called with ask_query= false, we already know whether R con-
tains the scope of a constraint that rejects e (line 3). If ask_qery= true we ask the
user whether e[R] is positive or not (line 4). If yes, we can remove all the constraints
that reject e[R] from the basis, otherwise we return the empty set (line 5). We reach
line 6 only in case e[R] does not violate any constraint. We know that e[R∪Y] violates
a constraint. Hence, as Y is a singleton, the variable it contains necessarily belongs
to the scope of a constraint that violates e[R∪Y]. The function returns Y. If none
of the return conditions are satisfied, the set Y is split in two balanced parts (line
7) and we apply a technique similar to QUICKXPLAIN ([Junker, 2004a]) to elucidate
the variables of a constraint violating e[R∪Y] in a logarithmic number of steps (lines
8–10).

The function FindC (see Algorithm 3) takes as parameter Y, the scope on which
FindScope has found that there is a constraint from the target network CT . FindC
first removes from B all constraints with scope Y that are implied by CL because
there is no need to learn them (line 3). The set ∆ is initialized to all candidate
constraints (line 4). In line 6, an example e is chosen in such a way that ∆ contains
both constraints rejecting e and constraints satisfying e. If no such example exists
(line 7), this means that all constraints in ∆ are equivalent wrt CL[Y]. Any of them
is returned except if ∆ is empty (lines 8-9). If a suitable example was found, it is
proposed to the user for classification (line 10). If classified positive, all constraints
rejecting it are removed from B and ∆ (line 11). Otherwise we test whether the
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Algorithm 2: Function FindScope: returns the scope of a constraint in CT

1 function FindScope(in e: example, R,Y: scopes, ask_query: Boolean): scope;
2 begin

3 if ask_query then

4 if ASK(e[R]) =yes then B←B\κB(e[R]) ;
5 else return ∅;

6 if |Y|= 1 then return Y;
7 split Y into < Y1,Y2 > such that |Y1|= ⌈|Y|/2⌉ ;
8 S1←FindScope(e,R∪Y1,Y2,true);
9 S2←FindScope(e,R∪S1,Y1,(S1 6=∅));

10 return S1∪S2;

Algorithm 3: Function FindC: returns a constraint of CT with scope Y

1 function FindC(in Y: scope): constraints;
2 begin

3 B←B\{cY |CL |= cY};
4 ∆← {cY | (cY ∈B[Y]);
5 while true do

6 choose e in sol(CL[Y]) such that ∃cY ,c
′
Y
∈∆,e |= cY and e 6|= c ′

Y
;

7 if e=nil then

8 if ∆=∅ then return nil;
9 else pick cY in ∆; return c;

10 if ASK(e)=yes then

11 B←B\κB(e); ∆←∆\κB(e);
12 else

13 if ∃cS ∈ κB(e) | S( Y then

14 return FindC(FindScope(e,∅,Y,false));
15 else ∆←∆∩κB(e) ;

example e does not violate constraints with scope strictly included in Y (line 13). If
yes, we recursively call FindScope and FindC to find that smaller arity constraint
before the one having scope Y (line 14). If no, we remove from ∆ all constraints
accepting that example e (line 15) and we continue the loop of line 5.

Complexity of QUACQ

The complexity of QUACQ, in terms of queries, is given by Theorem 2.2.

Theorem 2.2 (Complexity). Given a basis B built from a language Γ of bounded arity
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constraints, and a target network CT , QUACQ uses O(CT .(log |X|+ |Γ |)) queries to find

the target network or to collapse and O(|B|) queries to prove convergence.

Proof. The proof of the theorem 2.2 is given in [Bessiere et al., 2013].

Illustrative Example

Table 2.1 – The example

call R Y ASK return
0 ∅ X1,X2,X3,X4,X5 × X3,X4

1 X1,X2,X3 X4,X5 yes X4

1.1 X1,X2,X3,X4 X5 no ∅

1.2 X1,X2,X3 X4 × X4

2 X4 X1,X2,X3 yes X3

2.1 X4,X1,X2 X3 yes X3

2.2 X4,X3 X1,X2 no ∅

We illustrate the behavior of QUACQ on a simple example. Consider the set
of variables X1, . . . ,X5 with domains {1..5}, a language Γ = {=, 6=}, a basis B = {=ij

, 6=ij| i,j ∈ 1..5,i < j}, and a target network CT = {=15, 6=34}. Suppose the first exam-
ple generated in line 8 of QUACQ is e1 = (1,1,1,1,1). The trace of the execution of
FindScope(e1,∅,X1 . . .X5,false) is in Table 2.1. Each line corresponds to a call to
FindScope. Queries are always on the variables in R. ’×’ in the column ASK means
that the previous call returned ∅, so the question is skipped. The queries in lines
1 and 2.1 in the table permit FindScope to remove the constraints 6=12, 6=13, 6=23 and
6=14, 6=24 from B. Once the scope (X3,X4) is returned, FindC requires a single example
to return 6=34 and prune =34 from B. Suppose the next example generated by QUACQ

is e2 = (1,2,3,4,5). FindScope will find the scope (X1,X5) and FindC will return =15

in a way similar to the processing of e1. The constraints =12,=13,=14,=23,=24 are
removed from B by a partial positive query on X1, . . . ,X4 and 6=15 by FindC. Finally,
examples e3 = (1,1,1,2,1) and e4 = (3,2,2,3,3), both positive, will prune 6=25, 6=35,=45

and =25,=35, 6=45 from B respectively, leading to convergence.
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3
Constraint Acquisition with

Generalization Queries

Preamble

In this chapter, we introduce the concept of generalization query based on an

aggregation of variables into types. We present a constraint generalization al-

gorithm that can be plugged into any constraint acquisition system. We propose

several strategies to make our approach more efficient in terms of number of

queries. Finally we experimentally compare the recent QUACQ system to an

extended version boosted by the use of our generalization functionality. The

results show that the extended version dramatically improves the basic QUACQ.
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3.1 Introduction

Constraint programming (CP) is used to model and to solve combinatorial prob-
lems in many application areas, such as resource allocation or scheduling. However,
building a CP model requires some expertise in constraint programming. This pre-
vents the use of this technology by a novice and thus this has a negative effect on
the uptake of constraint technology by non-experts.

Several techniques have been proposed for assisting the user in the modeling
task. In [Freuder and Wallace, 2002], Freuder and Wallace proposed the match-
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maker agent, an interactive process where the user is able to provide one of the
constraints of her target problem each time the system proposes a wrong solution.
In [Lallouet et al., 2010], Lallouet et al. proposed a system based on inductive logic
programming that uses background knowledge on the structure of the problem to
learn a representation of the problem correctly classifying the examples. In [Bessiere
et al., 2004, 2005], Bessiere et al. made the assumption that the only thing the user
is able to provide is examples of solutions and non-solutions of the target problem.
Based on these examples, the Conacq.1 system learns a set of constraints that cor-
rectly classifies all examples given so far. This type of learning is called passive

learning. In [Beldiceanu and Simonis, 2012], Beldiceanu and Simonis proposed
Model Seeker, another passive learning approach. Positive examples are provided
by the user. The system arranges these examples as a matrix and identifies con-
straints in the global constraints catalog ([Beldiceanu et al., 2007]) that are satisfied
by rows or columns of all examples.

By contrast, in an active learner like Conacq.2, the system proposes examples
to the user to classify as solutions or non solutions [Bessiere et al., 2007]. Such
questions are called membership queries [Angluin, 1987]. CONACQ introduces two
computational challenges. First, how does the system generate a useful query?
Second, how many queries are needed for the system to converge to the target set
of constraints? It has been shown that the number of membership queries required
to converge to the target set of constraints can be exponentially large [Bessiere and
Koriche, February, 2012].

QUACQ is a recent active learner system that is able to ask the user to classify
partial queries [Bessiere et al., 2013]. Using partial queries and given a negative
example, QUACQ is able to find a constraint of the problem the user has in mind in
a number of queries logarithmic in the size of the example. This key component of
QUACQ allows it to always converge on the target set of constraints in a polynomial
number of queries. However, even that good theoretical bound can be hard to put
in practice. For instance, QUACQ requires the user to classify more than 8000
examples to get the complete Sudoku model.

In this chapter, we propose a new technique to make constraint acquisition more
efficient in practice by using variable types. In real problems, variables often repre-
sent components of the problem that can be classified in various types. For instance,
in a school time-tabling problem, variables can represent teachers, students, rooms,
courses, or time-slots. Such types are often known by the user. To deal with types
of variables, we introduce a new kind of query, namely, generalization query. We
expect the user to be able to decide if a learned constraint can be generalized to
other scopes of variables of the same type as those in the learned constraint. We
propose an algorithm, GENACQ for generalized acquisition, that asks such general-
ization queries each time a new constraint is learned. We propose several strategies
and heuristics to select the good candidate generalization query. We plugged our
generalization functionality into the QUACQ constraint acquisition system, leading
to the G-QUACQ algorithm. We experimentally evaluate the benefit of our technique
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on several benchmark problems. The results show that G-QUACQ dramatically im-
proves the basic QUACQ algorithm in terms of number of queries.

The rest of this chapter is organized as follows. Section Section 3.2 describes
the generalization algorithm. In Section 3.3, several strategies are presented to
make our approach more efficient. Section 3.4 presents the experimental results we
obtained when comparing G-QUACQ to the basic QUACQ and when comparing the
different strategies in G-QUACQ. Section 3.5 concludes the chapter and gives some
directions for future research.

3.2 GENACQ Algorithm

In this section we present GENACQ, a generalized acquisition algorithm, The idea
behind this algorithm is, given a constraint c learned on var(c), to generalize this
constraint to sequences of types s covering var(c) by asking generalization queries
AskGen(s,r). A generalization query AskGen(s,r) is answered yes by the user if and
only if for every sequence var of variables covered by s the relation r holds on var in
the target constraint network CT .

Algorithm 4: GENACQ (c,NonTarget)

22 Table← {s | var(c) ∈ s}\ {var(c)}

44 G←∅

66 #NoAnswers← 0

88 foreach s ∈ Table do

1010 if ∃(s ′,r) ∈NegativeQ | rel(c)⊆ r∧s ′ ⊑ s then

1212 Table← Table\{s}

1414 if ∃c ′ ∈NonTarget | rel(c ′)= rel(c)∧var(c ′) ∈ s then15 Table← Table\{s} ;

1717 while Table 6=∅ ∧ #NoAnswers<cutoffNo do

1919 pick s in Table

2121 if AskGen(s,rel(c))=yes then

2323 G←G∪ {s}\ {s ′ ∈G | s ′ ⊑ s}

2525 Table← Table\{s ′ ∈ Table | s ′ ⊑ s}

2727 #NoAnswers← 0

28 else

3030 Table← Table\{s ′ ∈ Table | s⊑ s ′}

3232 NegativeQ←NegativeQ∪ {(s,rel(c))}

3434 #NoAnswers++

3636 return G;
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3.2.1 Description of GENACQ

The algorithm GENACQ (see Algorithm 4) takes as input a target constraint c

that has already been learned and a set NonTarget of constraints that are known
not to belong to the target network. It also uses the global data structure NegativeQ,
which is a set of pairs (s,r) for which we know that r does not hold on all sequences
of variables covered by s. c and NonTarget can come from any constraint acquisition
mechanism or as background knowledge. NegativeQ is built incrementally by each
call to GENACQ. GENACQ also uses the set Table as local data structure. Table will
contain all sequences of types that are candidates for generalizing c.

In line 2, GENACQ initializes the set Table to all possible sequences s of types
that contain var(c). In line 3, GENACQ initializes the set G to the empty set. G will
contain the output of GENACQ, that is, the set of maximal sequences from Table

on which rel(c) holds. The counter #NoAnswers counts the number of consecutive
times generalization queries have been classified negative by the user. It is initialized
to zero (line 6). #NoAnswers is not used in the basic version of GENACQ but it
will be used in the version with cutoffs. (In other words, the basic version uses
cutoffNo=+∞ in line 17).

The first loop in GENACQ (line 8) eliminates from Table all sequences s for which
we already know the answer to the query AskGen(s,rel(c)). In lines 10-12, GENACQ

eliminates from Table all sequences s such that a relation r entailed by rel(c) is
already known not to hold on a sequence s ′ covered by s (i.e., (s ′,r) is in NegativeQ).
This is safe to remove such sequences because the absence of r on some scope in
s ′ implies the absence of rel(c) on some scope in s (see Lemma 3.1). In lines 14-15,
GENACQ eliminates from Table all sequences s such that we know from NonTarget

that there exists a scope var in s such that (var,rel(c)) ∉CT .
In the main loop of GENACQ (line 17), we pick a sequence s from Table at each

iteration and we ask a generalization query to the user (line 21). If the user says
yes, s is a sequence on which rel(c) holds. We put s in G and remove from G all
sequences covered by s, so as to keep only the maximal ones (line 23). We also
remove from Table all sequences s ′ covered by s (line 25) to avoid asking redundant
questions later. If the user says no, we remove from Table all sequences s ′ that cover
s (line 30) because we know they are no longer candidate for generalization of rel(c)
and we store in NegativeQ the fact that (s,rel(c)) has been answered no. The loop
finishes when Table is empty and we return G (line 16).

3.2.2 Completeness and Complexity

We analyze the completeness and complexity of GENACQ in terms of number of
generalization queries.

Lemma 3.1. If AskGen(s,r) = no then for any (s ′,r ′) such that s ⊑ s ′ and r ′ ⊆ r, we

have AskGen(s ′,r ′)=no.



3.2 GENACQ Algorithm 35

Proof. Assume that AskGen(s,r) = no. Hence, there exists a sequence var ∈ s such
that (var,r) ∉ CT . As s ⊑ s ′ we have var ∈ s ′ and then we know that (var,r) ∉ CT . As
r ′ ⊆ r, we also have (var,r ′) ∉CT . As a result, AskGen(s ′,r ′)=no.

Lemma 3.2. If AskGen(s,r) = yes then for any s ′ such that s ′ ⊑ s, we have

AskGen(s ′,r)=yes.

Proof. Assume that AskGen(s,r) = yes. As s ′ ⊑ s, for all var ∈ s ′ we have var ∈ s and
then we know that (var,r) ∈CT . As a result, AskGen(s ′,r)=yes.

Proposition 3.1 (Completeness). When called with constraint c as input, the algo-

rithm GENACQ returns all maximal sequences of types covering var(c) on which the

relation rel(c) holds.

Proof. All sequences covering var(c) are put in Table. A sequence in Table is either
asked for generalization or removed from Table in lines 12, 15, 25, or 30. We know
from Lemma 3.1 that a sequence removed in line 12, 15, or 30 would necessarily
lead to a no answer. We know from Lemma 3.2 that a sequence removed in line 25
is subsumed and less general than another one just added to G.

Proposition 3.2. Given a learned constraint c and its associated Table, GENACQ uses

O(|Table|) generalization queries to return all maximal sequences of types covering

var(c) on which the relation rel(c) holds.

Proof. For each query on s ∈ Table asked by GENACQ, the size of Table strictly
decreases regardless of the answer. As a result, the total number of queries is
bounded above by |Table|.

3.2.3 Illustrative Example

Let us take the Zebra problem to illustrate our generalization approach. The
Lewis Carroll’s Zebra problem has a single solution. The target network is formu-
lated using 25 variables, partitioned in 5 types of 5 variables each. The types are
thus color, nationality, drink, cigaret, pet, and the trivial type X of all variables. There
is a clique of 6= constraints on all pairs of variables of the same non trivial type and
14 additional constraints given in the description of the problem.

Figure 3.1 shows the variables of the Zebra problem and their types. In this
example, the constraint x2 6= x5 has been learned between the two color variables
x2 and x5. This constraint is given as input of the GENACQ algorithm. GENACQ

computes the Table of all sequences of types covering the scope (x2,x5). Table =

{(x2,color), (x2,X),(color,x5),(color,color),(color,X),(X,x5),(X,color), (X,X)}. Suppose
we pick s = (X,x5) at line 19 of GENACQ. According to the user’s answer (no in
this case), the Table is reduced to Table = {(x2,color),(x2,X),(color,x5),(color,color),

(color,X)}. As next iteration, let us pick s= (color,color). The user will answer yes

because there is indeed a clique of 6= on the color variables. Hence, (color,color) is
added to G and the Table is reduced to Table= {(x2,X),(color,X)}. If we pick (x2,X),
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Figure 3.1 – Variables and types for the Zebra problem.

the user answers no and we reduce the Table to the empty set and return G =

{(color,color)}, which means that the constraint x2 6= x5 can be generalized to all
pairs of variables in the sequence (color,color), that is, (xi 6= xj) ∈CT for all (xi,xj) ∈
(color,color).

3.2.4 Using Generalization in QUACQ

GENACQ is a generic technique that can be plugged into any constraint acquisi-
tion system. In this section we present G-QUACQ, a constraint acquisition algorithm
obtained by plugging GENACQ into QUACQ, the constraint acquisition system pre-
sented in [Bessiere et al., 2013],

G-QUACQ is presented in Algorithm 5. We do not give the code of functions
FindScope and FindC as we use them exactly as they appear in [Bessiere et al.,
2013]. But let us say a few words on how they work. Given sets of variables S1
and S2, FindScope(e,S1,S2,false) returns the subset of S2 that, together with S1
forms the scope of a constraint in the basis of possible constraints B that rejects
e. Inspired from a technique used in QUICKXPLAIN [Junker, 2004b], FindScope

requires a number of queries logarithmic in |S2| and linear in the size of the final
scope returned. The function FindC takes as parameter the negative example e and
the scope returned by FindScope. It returns a constraint from CT with the given
scope that rejects e. For any assignment e, κB(e) denotes the set of all constraints
in B rejecting e.

G-QUACQ has a structure very similar to QUACQ. It initializes the set NonTarget

and the network CL it will learn to the empty set (line 2). If CL is unsatisfiable (line
6), the space of possible networks collapses because there does not exist any subset
of the given basis B that is able to correctly classify the examples already asked of
the user. In line 8, QUACQ computes a complete assignment e satisfying CL but
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Algorithm 5: G-QUACQ =QUACQ +GENACQ

22 CL←∅, NonTarget←∅;
44 while true do

66 if sol(CL)=∅ then return”collapse”;
88 choose e in DX accepted by CL and rejected by B

1010 if e=nil then return “convergence on CL”;
1212 if Ask(e)=yes then

1414 B←B\κB(e)

1616 NonTarget←NonTarget∪κB(e)

1818 else

2020 c←FindC(e,FindScope(e,∅,X,false))

2222 if c=nil then return “collapse”;
2424 else

2626 G←GENACQ(c,NonTarget)

2828 foreach s ∈G do

3030 CL←CL∪ {(var,rel(c)) | var ∈ s}

violating at least one constraint from B. If such an example does not exist (line 10),
then all constraints in B are implied by CL, and we have converged. If we have not
converged, we propose the example e to the user, who will answer by yes or no (line
12). If the answer is yes, we can remove from B the set κB(e) of all constraints in B

that reject e (line 14) and we add all these ruled out constraints to the set NonTarget

to be used in GENACQ (line 16). If the answer is no, we are sure that e violates at
least one constraint of the target network CT . We then call the function FindScope

to discover the scope of one of these violated constraints. FindC will select which
one with the given scope is violated by e (line 20). If no constraint is returned (line
22), this is again a condition for collapsing as we could not find in B a constraint
rejecting one of the negative examples. Otherwise, we know that the constraint c

returned by FindC belongs to the target network CT . This is here that the algorithm
differs from QUACQ as we call GENACQ to find all the maximal sequences of types
covering var(c) on which rel(c) holds. They are returned in G (line 26). Then, for
every sequence of variables var belonging to one of by these sequences in G, we add
the constraint (var,rel(c)) to the learned network CL (line 28).

3.3 Strategies

GENACQ learns the maximal sequences of types on which a constraint can be
generalized. The order in which sequences are picked from Table in line 19 of Al-
gorithm 4 is not specified by the algorithm. As shown on the following example,
different orderings can lead more or less quickly to the good (maximal) sequences



38 Constraint Acquisition with Generalization Queries

on which a relation r holds. Let us come back to our example on the Zebra problem
(Section 3.2.3). In the way we developped the example, we needed only 3 gener-
alization queries to empty the set Table and converge on the maximal sequence
(color,color) on which 6= holds:

1. AskGen((X,x5), 6=)=no

2. AskGen((color,color), 6=)=yes

3. AskGen((x2,X), 6=)=no

Using another ordering, GENACQ needs 8 generalization queries:
1. AskGen((X,X), 6=)=no

2. AskGen((X,color), 6=)=no

3. AskGen((color,X), 6=)=no

4. AskGen((X,x5), 6=)=no

5. AskGen((x2,X), 6=)=no

6. AskGen((x2,color), 6=)=yes

7. AskGen((color,x5), 6=)=yes

8. AskGen((color,color), 6=)=yes

If we want to reduce the number of generalization queries, we may wonder which
strategy to use. In this section we propose two techniques. The first idea is to
pick sequences in the set Table following an order given by a heuristic that will
try to minimize the number of queries. The second idea is to put a cutoff on the
number consecutive negative queries we accept to face, leading to a non complete
generalization startegy: the output of GENACQ will no longer be guaranteed to be
the maximal sequences.

3.3.1 Query Selection Heuristics

We propose some query selection heuristics to decide which sequence to pick
next from Table. We first propose optimistic heuristics, which try to take the best
from positive answers:

— max_CST: This heuristic selects a sequence s maximizing the number of possi-
ble constraints (var,r) in the basis such that var is in s and r is the relation we
try to generalize. The intuition is that if the user answers yes, the generaliza-
tion will be maximal in terms of number of constraints.

— max_VAR: This heuristic selects a sequence s involving a maximum number of
variables, that is, maximizing |

⋃
T∈sT |. The intuition is that if the user answers

yes, the generalization will involve many variables.

Dually, we propose pessimistic heuristics, which try to take the best from nega-
tive answers:

— min_CST: This heuristic selects a sequence s minimizing the number of possible
constraints (var,r) in the basis such that var is in s and r is the relation we try
to generalize. The intuition is to maximize the chances to receive a yes answer.
If, despite this, the user answers no, a great number of sequences are removed
from Table (see Lemma 3.1).
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— min_VAR: This heuristic selects a sequence s involving a minimum number of
variables, that is, minimizing |

⋃
T∈sT |. The intuition is to maximize the chances

of a yes answer while focusing on smaller sets of variables than min_CST.
Again, a no answer leads to a great number of sequences removed from Table.

As a baseline for comparison, we define a random selector.

— random: It picks randomly a sequence s in Table.

3.3.2 Using Cutoffs

The idea here is to exit GENACQ before having proved the maximality of the
sequences returned. We put a threshold cutoffNo on the number of consecutive
negative answers to avoid using queries to check unpromising sequences. The hope
is that GENACQ will return near-maximal sequences of types despite not proving
maximality. This cutoff strategy is implemented by setting the variable cutoffNo to
a predefined value. In lines 27 and 34 of GENACQ, a counter of consecutive negative
answers is respectively reset and incremented depending on the answer from the
user. In line 17, that counter is compared to cutoffNo to decide to exit or not.

3.4 Experimentations

We made some experiments to evaluate the impact of using our generalization
functionality GENACQ in the QUACQ constraint acquisition system. We implemented
GENACQ and plugged it in QUACQ, leading to the G-QUACQ version. We first present
the benchmark problems we used for our experiments. Then, we report the results
of several experiments. The first one compares the performance of G-QUACQ to the
basic QUACQ. The second reports experiments evaluating the different strategies we
proposed (query selection heuristics and cutoffs) on G-QUACQ. The third evaluates
the performance of our generalization approach when our knowledge of the types of
variables is incomplete.

3.4.1 Benchmark Problems

Zebra problem. As introduced in section 3.2.3, the Lewis Carroll’s Zebra problem
is formulated using 5 types of 5 variables each, with 5 cliques of 6= constraints and
14 additional constraints given in the description of the problem. We fed QUACQ

and G-QUACQ with a basis B of 4450 unary and binary constraints taken from a
language with 24 basic arithmetic and distance constraints.
Sudoku. The Sudoku model is expressed using 81 variables with domains of size 9,
and 810 6= binary constraints on rows, columns and squares. In this problem, the
types are the 9 rows, 9 columns and 9 squares, of 9 variables each. We fed QUACQ

and G-QUACQ with a basis B of 6480 binary constraints from the language Γ = {=, 6=}.
Latin Square. The Latin square problem consists of an n×n table in which each
element occurs once in every row and column. For this problem, we use 25 variables
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with domains of size 5 and 100 binary 6= constraints on rows and columns. Rows
and columns are the types of variables (10 types). We fed QUACQ and G-QUACQ

with a basis of constraints based on the language Γ = {=, 6=}.
Radio Link Frequency Assignment Problem. The RLFAP problem is to provide
communication channels from limited spectral resources [Cabon et al., 1999]. Here
we build a simplified version of RLFAP that consists in distributing all the frequen-
cies available on the base stations of the network. The constraint model has 25
variables with domains of size 25 and 125 binary constraints. We have five stations
of five terminals (transmitters/receivers), which form five types. We fed QUACQ

and G-QUACQ with a basis of 1800 binary constraints taken from a language of 6
arithmetic and distance constraints
Purdey. Like Zebra, this problem has a single solution. Four families have stopped
by Purdey’s general store, each to buy a different item and paying differently. Under
a set of additional constraints given in the description, the problem is how can we
match family with the item they bought and how they paid for it. The target network
of Purdey has 12 variables with domains of size 4 and 30 binary constraints. Here
we have three types of variables, which are family, bought and paid, each of them
contains four variables.

3.4.2 Results

For all our experiments we report, the total number #Ask of standard queries
asked by the basic QUACQ, the total number #AskGen of generalization queries,
and the numbers #no and #yes of negative and positive generalization queries, re-
spectively, where #AskGen=#no+#yes. The time overhead of using G-QUACQ rather
than QUACQ is not reported. Computing a generalization query takes a few millisec-
onds.

Our first experiment compares QUACQ and G-QUACQ in its baseline version,
G-QUACQ +rand, on our benchmark problems. Table 3.1 reports the results. We
observe that the number of queries asked by G-QUACQ is dramatically reduced
compared to QUACQ. This is especially true on problems with many types involving
many variables, such as Sudoku or Latin square. G-QUACQ acquires the Sudoku
with 260 standard queries plus 166 generalization queries, when QUACQ acquires
it in 8645 standard queries.

Let us now focus on the behavior of our different heuristics in G-QUACQ. Ta-
ble 3.2(top) reports the results obtained with G-QUACQ using min_VAR, min_CST,
max_VAR, and max_CST to acquire the Sudoku model. (Other problems showed sim-
ilar trends.) The results clearly show that max_VAR, and max_CST are very bad
heuristics. They are worse than the baseline random. On the contrary, min_VAR
and min_CST significantly outperform random. They respectively require 90 and
132 generalization queries instead of 166 for random. Notice that they all ask the
same number of standard queries (260) as they all find the same maximal sets of
sequences for each learned constraint.
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Table 3.1 – QUACQ vs G-QUACQ.

QUACQ G-QUACQ +random
#Ask #Ask #AskGen

Zebra 638 257 67
Sudoku 8645 260 166

Latin square 1129 117 60
RFLAP 1653 151 37
Purdey 173 82 31

Table 3.2 – G-QUACQ with heuristics and cutoff strategy on Sudoku.

cutoff #Ask #AskGen #yes #no
random

+∞ 260

166 42 124
min_VAR 90 21 69
min_CST 132 63 69
max_VAR 263 63 200
max_CST 247 21 226

min_VAR

3
260

75 21 54
2 57 21 36
1 39 21 18

min_CST

3 626 238 112 126
2 679 231 132 99
1 837 213 153 60

At the bottom of Table 3.2 we compare the behavior of our two best heuristics
(min_VAR and min_CST) when combined with the cutoff strategy. We tried all values
of the cutoff from 1 to 3. A first observation is that min_VAR remains the best what-
ever the value of the cutoff is. Interestingly, even with a cutoff equal to 1, min_VAR
requires the same number of standard queries as the versions of G-QUACQ without
cutoff. This means that using min_VAR as selection heuristic in Table, G-QUACQ is
able to return the maximal sequences despite being stopped after the first negative
generalization answer. We also observe that the number of generalization queries
with min_VAR decreases when the cutoff becomes smaller (from 90 to 39 when the
cutoff goes from +∞ to 1). By looking at the last two columns we see that this
is the number #no of negative answers which decreases. The good performance
of min_VAR + cutoff=1 can thus be explained by the fact that min_VAR selects first
queries that cover a minimum number of variables, which increases the chances
to have a yes answer. Finally, we observe that the heuristic min_CST does not
have the same nice characteristics as min_VAR. The smaller the cutoff, the more
standard queries are needed, not compensating for the saving in number of gen-
eralization queries (from 260 to 837 standard queries for min_CST when the cutoff
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Table 3.3 – G-QUACQ with random, min_VAR, and cutoff=1 on Zebra, Latin square,
RLFAP, and Purdey.

#Ask #AskGen #yes #no
Zebra

Random

257
67 10 57

min_VAR 48 5 43
min_VAR +cutoff=1 23 5 18

Latin square
Random

117
60 16 44

min_VAR 34 10 24
min_VAR +cutoff=1 20 10 10

RLFAP
Random

151
37 16 21

min_VAR 41 14 27
min_VAR +cutoff=1 22 14 8

Purdey
Random

82
31 5 26

min_VAR 24 3 21
min_VAR +cutoff=1 12 3 9

goes from +∞ to 1). This means that with min_CST, when the cutoff becomes too
small, GENACQ does not return the maximal sequences of types where the learned
constraint holds.

In Table 3.3, we report the performance of G-QUACQ with random, min_VAR and
min_VAR +cutoff=1 on all the other problems. We see that min_VAR +cutoff=1 sig-
nificantly improve the performance of G-QUACQ on all problems. As in the case of
Sudoku, we observe that min_VAR +cutoff=1 does not lead to an increase in the num-
ber of standard queries. This means that on all these problems min_VAR +cutoff=1
always returns the maximal sequences while asking less generalization queries with
negative answers.

From these experiments we see that G-QUACQ with min_VAR +cutoff=1 leads to
tremendous savings in number of queries compared to QUACQ: 257+23 instead of
638 on Zebra, 260+39 instead of 8645 on Sudoku, 117+20 instead of 1129 on Latin
square, 151+22 instead of 1653 on RLFAP, 82+12 instead of 173 on Purdey.

In our last experiment, we show the effect on the performance of G-QUACQ of a
lack of knowledge on some variable types. We took again our 5 benchmark prob-
lems in which we have varied the amount of types known by the algorithm. This
simulates a situation where the user does not know that some variables are from
the same type. For instance, in Sudoku, the user could not have noticed that vari-
ables are arranged in columns. Figure 3.2 shows the number of standard queries
and generalization queries asked by G-QUACQ with min_VAR +cutoff=1 to learn the
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RLFAP model when fed with an increasingly more accurate knowledge of types. We
observe that as soon as a small percentage of types is known (20%), G-QUACQ re-
duces drastically its number of queries. Table 3.4 gives the same information for all
other problems.
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Figure 3.2 – G-QUACQ on RLFAP when the percentage of provided types increases.

Table 3.4 – G-QUACQ when the percentage of provided types increases.

% of types #Ask #AskGen

Zebra

0 638 0
20 619 12
40 529 20
60 417 27
80 332 40
100 257 48

Sudoku 9×9

0 8645 0
33 3583 232
66 610 60
100 260 39

Latin Square

0 1129 0
50 469 49
100 117 20

Purdey

0 173 0
33 111 8
66 100 10
100 82 12
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3.5 Conclusion

We have proposed a new technique to make constraint acquisition more efficient
by using information on the types of components the variables in the problem rep-
resent. We have introduced generalization queries, a new kind of query asked to the
user to generalize a constraint to other scopes of variables of the same type where
this constraint possibly applies. Our new technique, GENACQ, can be called to gen-
eralize each new constraint that is learned by any constraint acquisition system. We
have proposed several heuristics and strategies to select the good candidate gener-
alization query. We have plugged GENACQ into the QUACQ constraint acquisition
system, leading to the G-QUACQ algorithm. We have experimentally evaluated the
benefit of our approach on several benchmark problems, with and without complete
knowledge on the types of variables. The results show that G-QUACQ dramatically
improves the basic QUACQ algorithm in terms of number of queries.

The drawback of generalization queries is that they require types of variables of
the learned constraint to be generated. To overcome this weakness, and in order to
make the build of such queries totally independent of the user, we propose in the
next chapter to learn types of variables during the constraint acquisition process,
and then to use the learned types to generate generalization queries.
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4
Detecting Types of Variables

for Constraint Generalization

Preamble

In this chapter, we propose a new algorithm that is able to learn types during

the constraint acquisition process. The idea is to infer potential types by ana-

lyzing the structure of the current constraint network and to use the extracted

types to ask generalization queries. Our approach gives good results although

no knowledge on the types is provided.
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4.1 Introduction

Constraint programming (CP) is a paradigm that allows effective solving of com-
binatorial problems in many areas, such as planning and scheduling. However,
modeling a combinatorial problem using constraints requires significant expertise
in CP [Freuder, 1999].

To alleviate this issue, several constraint acquisition systems have been intro-
duced [Bessiere et al., 2005, 2007; Beldiceanu and Simonis, 2012; Lallouet et al.,
2010; Bessiere et al., 2014b; Shchekotykhin and Friedrich, 2009; Bessiere et al.,
2013]. Most of these systems interact with the user by asking her to classify simple
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examples. The drawback is that when the problem has a lot of constraints, the user
may have to classify a large number of such questions to learn them all.

To make constraint acquisition systems more efficient in practice, an oppor-
tunistic kind of query that uses the structure of the problem has been introduced
in [Bessiere et al., 2014a] with the GENACQ algorithm. This kind of query, named
“generalization query", is based on an aggregation of variables into types. The user
provides the variable types and based on these types, generalization queries ask
the user whether or not a learned constraint can be generalized to other scopes
of variables of the same type as those on the learned constraint. By using such
queries over existing constraint acquisition systems, the number of queries needed
to converge on the target constraint network can be significantly reduced.

Nevertheless, the aggregation of variables into types may not always be a
straightforward task for the user especially when the problem under consideration
has a hidden structure. In this chapter, we propose to learn the potential types
during the constraints acquisition process. The idea is to analyze the structure of
the partial constraint network learned so far in order to detect potential types and
to build generalization queries.

Indeed, when one looks more closely at the constraint network of a given prob-
lem, the variables of the same type are often tightly connected with similar con-
straints whereas the variables of different types are connected in a weaker way. To
illustrate this point, let us consider the well known Lewis Carroll’s Zebra problem.
The constraint network of this problem is usually formulated using 25 variables,
partitioned into 5 types of 5 variables each. The types are color, nationality, drink,
cigaret and pet. There is a clique of 6= constraints on all pairs of variables of the
same type and 14 additional constraints, among which 3 are unary, given in the
description of the problem. Figure 4.1 shows the constraint network of the Zebra
problem. In this example, it is clear that types have dense internal links but there
are only a lower density of external links between different types.

The idea of detecting tightly connected sub-graphs arose in the study of networks
such as social networks [Wasserman and Faust, 1994] and biochemical networks
[Ito et al., 2001]. An important characteristic that commonly occurs in such net-
works is community structure. Informally, a network or a graph is said to have
community structure, if the nodes of the network can be easily grouped into (poten-
tially overlapping) sets of nodes such that the groups have more internal edges than
outgoing edges. Each such group is called a community.

Given the similarity between the structure of a type and that of a community,
we propose in this chapter to detect potential types by finding communities in the
constraint network during the constraint acquisition process. Several methods for
community finding have been proposed in the literature. We have considered three
different techniques in this chapter. The first one is based on the concept of mod-
ularity [Newman and Girvan, 2004] which provides information on the strength of
division of a network into communities. Networks with high modularity have dense
connections between the nodes within communities but sparse connections between
nodes in different communities. The second technique exploits the notion of edge
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Figure 4.1 – The constraint graph of the Zebra problem.

betweenness [Girvan and Newman, 2002], which is a measure that assigns a score
to each edge. The edges that lie “between" many pairs of nodes have high scores
which enables their easier identification. Removing these edges will leave behind
just the communities themselves. The third technique is more straightforward. It
is based on the assumption that the variables of the same type will tend to form
quasi-cliques during the constraint acquisition process. That is, this technique
finds sub-graphs with an edge density exceeding a threshold parameter.

In this chapter we propose an algorithm, named MINE&ASK, that makes use
of the extracted potential types to ask the user to classify generalization queries.
We plugged MINE&ASK into the QUACQ constraint acquisition system, to obtain
the boosted version M-QUACQ algorithm. We experimentally evaluate the benefit of
our technique on several benchmark problems. The results show that M-QUACQ

improves the basic QUACQ algorithm in terms of number of queries although no
knowledge on the types is provided.

The outline of this chapter is as follows. The algorithm MINE&ASK is presented in
Section 4.2. We illustrate the idea behind our approach with an example in section
4.3. Section 4.4 gives more details on the techniques used to extract potential types.
The experimental results we obtained when comparing MINE&ASK with the different
techniques to the basic QUACQ are given in section 4.5. Section 4.6 concludes the
chapter.
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4.2 MINE&ASK Algorithm

In this section we present the MINE&ASK algorithm. The idea behind this algo-
rithm is to mine the partial graph of the current constraint network in order to get
potential types and then ask the user to classify generalization queries.

4.2.1 Description of MINE&ASK

Algorithm 6: MINE&ASK

Input: C: a set of constraints, r: a relation,
mine ∈ {modularity,betweenness,γ-clique}: a mine strategy, GQmax:
the maximum number of generalization queries

Output: L: a set of learned constraints
1 L←∅; #GQ← 0

2 X ′←
⋃
var(c) s.t. c ∈C∧rel(c)= r

3 GC←G(X ′,E), E= {{x,y} | x,y ∈ var(c)∧x 6=y∧c ∈C∧rel(c)= r}

4 Table← {Y | Y ∈ component(GC)∧¬isClique(GC(Y))}

5 while Table 6=∅∧#GQ≤GQmax do

6 pick Y in Table

7 generalized← false

8 if ( 6 ∃(Y ′,r ′) ∈NegativeQ | Y ′ ⊆ Y∧r⊆ r ′)∧ (6 ∃var ∈ Y |r| | (var,r) 6∈B) then

9 if Sol(CL∪ {(var,r) | var ∈ Y |r|}) 6=∅ and AskGen(Y,r)= Yes then

10 L← L∪ {(var,r) | var ∈ Y |r|}

11 generalized← true

12 else NegativeQ←NegativeQ∪ {(Y,r)};
13 #GQ++

14 if ¬generalized then

15 Table← Table∪mine(G(Y))

16 return L;

The algorithm MINE&ASK takes as argument the set of constraints C learned so
far, a relation r, the operator mine that corresponds to the strategy used for extract-
ing potential types and the maximum number of generalization queries GQmax that
we are allowed to ask. The algorithm uses a global data structure NegativeQ, which
is a set of pairs (Y,r) for which we know that r does not hold. MINE&ASK also uses
the local data structure Table which contains all potential types that are candidates
for generalization.

MINE&ASK starts by initializing L to the empty set and the number of general-
ization queries #GQ to zero (line 1). The set L will contain the output of MINE&ASK,
that is all learned constraints. In line 3, we build the constraint graph G(X ′,E),
noted GC and restricted to the relation r. This step is important because it helps to
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reveal the structure of the network. To illustrate what this means, let us consider
the example given in Figure 4.2(a). This problem consists of 12 variables and 66
binary constraints which means that the constraint network of this problem is a
complete graph (i.e. clique). Two relations are used in the constraints namely 6=

and ≥. Although the constraint network is a clique, no learned constraint can be
generalized to the other scopes in this clique as the links connecting the variables of
the clique come from different relations. On the contrary, as shown in Figure 4.2(b),
when we focus on the only 6= relation, useful types can be easily detected.

Figure 4.2 – A constraint network with a hidden structure

Afterwards, we put in Table all connected components of G whilst excluding the
already formed cliques (line 4). At each iteration, MINE&ASK picks a potential type Y

from this table (line 6) and asks a generalization query on (Y,r) (line 9) if the answer
cannot be deduced. That is, the answer to an AskGen(Y,r) is negative if the user
already classifies as negative a query on a sub-type of Y (line 8). A negative answer
can also be deduced in the case of the unsatisfiability of the resulting network where
in such case the answer cannot be positive (line 9). Such satisfiability tests allow
us to avoid asking unnecessary queries. For instance, trying to generalize a non-
commutative relation to a clique, or asking if a clique of difference applies on a set
of 4 variables with the same domain of size 3.

Now, if the answer of the user to AskGen(Y,r) is yes, this means that r holds
on the type Y. Thus, we add all inferred constraints on Y to the set L (line 10). In
the case of a negative answer, we add (Y,r) to NegativeQ with intent to avoid asking
redundant queries afterwards. When no generalization happened on (Y,r) (line 15),
this means that Y is not a type on which r can be generalized. Here, we call the
operator mine to extract potential types from the subgraph G(Y). The resulting
potential types are added to Table to be taken into account later. The main loop (line
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5) terminates when all potential types in Table are processed, or when the number
of generalization queries exceeds a given threshold GQmax.

4.2.2 M-QUACQ Algorithm

MINE&ASK is a generic technique that can be plugged into any constraint acqui-
sition system. In this section we present M-QUACQ (Algorithm 7) where we plugged
MINE&ASK into the QUACQ system [Bessiere et al., 2013].

M-QUACQ initializes the constraint network CL to the empty set (line 1). When CL

is unsatisfiable (line 3), the space of possible networks collapses because there does
not exist any subset of the given basis B that is able to correctly classify the examples
already asked to the user. In line 4, M-QUACQ computes a complete assignment e

satisfying CL and violating at least one constraint from B. If such an example does
not exist (line 5), then all constraints in B are implied by CL, and the algorithm has
converged. Otherwise, we propose the example e to the user, who will answer by
yes or no (line 6). If the answer is yes, we can remove from B the set κB(e) of all
constraints in B that reject e (line 7). If the answer is no, we are sure that e violates at
least one constraint of the target network CT . We then call the function FindScope

to discover the scope of one of these violated constraints. Here, FindScope acts
in a dichotomous manner and asks a number of queries logarithmic in the size of
the example. Afterwards, FindC will select which constraint with the given scope
is violated by e (line 9). If no constraint is returned (line 10), this is a condition
for collapsing as we could not find in B a constraint rejecting one of the negative
examples. Otherwise, we know that the constraint c returned by FindC belongs
to the target network CT , then we add it to the learned network CL (line 12). Note
that FindScope and FindC functions are used exactly as they appear in [Bessiere
et al., 2013]. Afterwards, we call MINE&ASK to mine the learned constraint network
CL in order to extract potential types and to ask generalization queries. M-QUACQ

updates CL by adding all learned constraints (line 13).

4.3 An Illustrative Example

In this section we illustrate on an example the idea of extracting potential types
during the constraint acquisition process. Let us consider the example given in
Figure 4.3. The part (a) of Figure 4.3 shows the constraint network of the problem
that the user has in mind. This problem consists in 15 variables and 39 binary
constraints. Two relations are used, noted r1 and r2 in Figure 4.3. The part (b) of
Figure 4.3 shows the constraint network learned, at a given point, using QUACQ

system. Suppose that the last constraint learned using QUACQ was ((x1,x2),r1).
Now, we want to extract potential types on which the relation r1 can be generalized.
To this end, MINE&ASK restricts the constraint network to the constraints that
use r1 (part (c) in Figure 4.3). Suppose now that MINE&ASK algorithm finds three
potential types T1 = {x1, . . .x5}, T2 = {x6, . . .x10} and T3 = {x11, . . .x15}. According to what
the user has in mind (part (a) of Figure 4.3), a generalization query on T3 will be
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Algorithm 7: M-QUACQ = QUACQ + MINE&ASK

Input: mine ∈ {modularity,betweenness,γ-clique}: a mine strategy, GQmax:
the maximum number of generalization queries

Output: CL: a set of learned constraints
1 CL←∅ ;
2 while true do

3 if sol(CL)=∅ then return”collapse”;
4 choose e in DX accepted by CL and rejected by B

5 if e=nil then return “convergence on CL”;
6 if Ask(e)=yes then

7 B←B\κB(e);
8 else

9 c←FindC(e,FindScope(e,∅,X,false));
10 if c=nil then return “collapse”;
11 else

12 CL←CL∪ {c};
13 CL←CL∪MINE&ASK(CL,mine,rel(c),GQmax);

14 return CL;

classified as negative whereas the ones on T1 and T2 will be classified as positive.
Nine constraints will be, in one shot, added to the current constraint network (see
part (d) of Figure 4.3).

4.4 Extraction of Potential Types

MINE&ASK extracts variable types by finding communities in the current graph
of learned constraints. The way in which the operator mine finds communities at
line 15 of Algorithm 6 is described in this section.

4.4.1 Optimizing Modularity

One of the most effective approaches for detecting communities in networks is
based on the optimization of the measure known as modularity [Newman and Gir-
van, 2004]. Given a partition of vertices of a network into disjoint communities,
modularity reflects the concentration of edges within communities compared with
random distribution of links between all nodes regardless of communities.

More formally, let G = (X,E) be a graph, with X = {x1, . . . ,xn} the set of vertices
and let A be the adjacency matrix of G. That is, Aij = 1 if there exists an edge
between vertices xi and xj and Aij = 0 otherwise. Suppose the vertices are divided
into communities such that vertex xi belongs to community c(xi) and let deg(xi)

denotes the degree of xi. Then the modularity Q is given by the following formula:
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Figure 4.3 – Illustrative Example

Q=
∑

i,j [
Aij

2m −
deg(xi)×deg(xj)

4m2 ]δ(c(xi),c(xj))

where m is the total number of edges in the network, and δ(c(xi),c(xj)) = 1 if xi and
xj belong to the same community (i.e., c(xi)= c(xj)) and 0 otherwise.

High values of the modularity correspond to good partitions of a network into
communities [Newman and Girvan, 2004]. Hence one should be able to find such
good partitions by searching through the possible candidates for ones with high
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modularity. Unfortunately, finding the global maximum modularity over all possible
divisions is NP-hard, but reasonably good solutions can be found with approximate
optimization techniques. In this chapter, we have used the algorithm introduced in
[Aaron et al., 2004] and implemented in the igraph software package [Csardi and
Nepusz, 2006]. This algorithm uses a greedy optimization where, starting with a
partition where each vertex is the unique member of a community, it repeatedly
joins together the two communities whose fusion produces the largest increase in
Q.

4.4.2 Edge Betweenness Centrality

Recently, the concept of edge betweenness was introduced [Girvan and Newman,
2002] as a measure that provides information on edges centrality in networks. This
measure can be implemented in several ways but the most common way is the
one based on shortest paths. Formally speaking, let xi and xj be two nodes in the
network. Let σij denotes the number of shortest paths between nodes xi and xj and
σij(e) denotes the number of shortest paths between xi and xj which go through the
edge e. The Betweenness centrality of e, denoted by B(e), is defined as follows:

B(e)=
∑

ij
σij(e)

σij

If two communities are joined by only a few inter-community edges, then all
paths through the network from vertices of one community to vertices of the other
must pass through one of those few edges. Thus, the edge betweenness scores for
inter-community edges are expected to be larger than the ones for intra-community
edges. The betweeness based algorithm to find community structure is used as
it appears in [Girvan and Newman, 2002]. The idea behind this algorithm is to
iteratively calculate the betweenness score for each edge and to remove the one with
the highest score. That is, removing edges with high betweenness scores allows us
to isolate the communities. This algorithm is also available in the igraph software
package [Csardi and Nepusz, 2006].

4.4.3 Quasi-cliques Detection

Mining the constraint network for dense subgraphs may be a possible way for
discovering communities. Cliques are the densest form of subgraphs. A graph is
a clique if there is an edge between every pair of the vertices. This requirement is
not desirable in our case because the idea is to anticipate the formation of complete
cliques in order to be able to infer some constraints. Therefore, instead of mining
cliques, our goal is to extract γ−cliques (i.e. quasi-cliques), which are sub-graphs
with an edge density exceeding a given threshold parameter γ ∈ [0,1].

Definition 4.1. (γ−clique) Let G= (X,E) be a graph with X the set of vertices, E the

set of edges, and a parameter γ ∈ [0,1]. A γ−clique is a subset of vertices K⊆X such
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that the induced subgraph G(K) is a connected component and |E∩K×K|≥γ
q(q−1)

2 , with

q= |K|.

Algorithm 8: FindQCliques (G,A,B,K,γ)

1 if A=∅ then

2 report K as a quasi-clique;

3 while A 6=∅ do

4 choose x ∈A;
5 K ′←K∪ {x};
6 A ′← {y |y ∈X\K ′∧K ′∪ {y} is a γ−clique};
7 A ′←A ′ \A ′∩B;
8 FindQCliques(G,A ′,B,K ′,γ) ;
9 A←A\{x};

10 B←B∪ {x};

We propose an incomplete recursive algorithm (Algorithm 8) for finding γ−cliques

in an undirected graph G. This algorithm is an adaptation of the basic form of
the well-known Bron-Kerbosch’s algorithm [Bron and Kerbosch, 1973] for find-
ing maximal cliques in a graph. Algorithm 8 is based on the recursive function
FindQCliques that takes as arguments an undirected graph G, a set A of candi-
dates, a set B of vertices to exclude from consideration to avoid generating the same
quasi-clique several times, the quasi-clique K being constructed and a parameter
γ ∈]0,1[ which specifies the minimum edge density of quasi-cliques. The recursion
is initiated by setting B and K to be the empty set and A to be the vertex set of the
graph. Each time a new element is added to the current quasi-clique (line 5 ), we
calculate a new set A ′ of candidates. A vertex y is an element of A ′ if and only if
when it is added to the current quasi-clique we obtain a new quasi-clique (line 6).
This condition is not a necessary condition to lead to a new quasi-clique. Conse-
quently, Algorithm 8 is incomplete. When the candidate set becomes empty (line
1), a new quasi-clique is reported and a backtrack to the last choice is performed.
Then, the last choice is added to the set B to exclude it from consideration in future
quasi-cliques.

4.5 Experimentations

We performed some experiments to evaluate the impact of using MINE&ASK in
constraint acquisition. We implemented MINE&ASK and plugged it in QUACQ sys-
tem, leading to the M-QUACQ version. We first present the benchmark problems we
used for our experiments. Then, we report the results of acquiring these problems
with the basic version of QUACQ [Bessiere et al., 2013], our version M-QUACQ and
G-QUACQ version. The G-QUACQ version includes the generalization process with
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GENACQ algorithm and the user provides all variable types [Bessiere et al., 2014a].
The experiments evaluate also the different ways in which our approach extracts
potential types, namely the modularity, the betweenness and the γ-clique. Our
tests were conducted on an Intel Core i5-3320M CPU @ 2.60GHz × 4 with 4 Gb of
RAM.

4.5.1 Benchmark Problems

Zebra problem. The Lewis Carroll Zebra problem is formulated using 5 types of 5
variables each, with 5 cliques of 6= constraints and 14 additional constraints given
in the description of the problem. We fed QUACQ, G-QUACQ and M-QUACQ with a
basis B of 4450 unary and binary constraints taken from a language with 24 basic
arithmetic and distance constraints.
Latin Square. The Latin square problem consists of an n×n table in which each
element occurs once in every row and column. For this problem, we use 36 variables
with domains of size 6 and 180 binary 6= constraints on rows and columns. Rows
and columns are the types of variables (10 types). We fed QUACQ, G-QUACQ and
M-QUACQ with a basis B of 1260 constraints based on the language Γ = {=, 6=}.
Purdey. Like Zebra, this problem has a single solution. Four families have stopped
by Purdey’s general store, each to buy a different item and paying differently. Under
a set of additional constraints given in the description, the problem is how can we
match family with the item they bought and how they paid for it. The target network
of Purdey has 12 variables with domains of size 4 and 30 binary constraints. Here
we have three types of variables, which are family, bought and paid, each of them
contains four variables. We fed QUACQ, G-QUACQ and M-QUACQ with a basis B of
396 constraints based on the language Γ = {=, 6=}.
PlaceNumPuzzle. The PlaceNumPuzzle problem is to place numbers 1 through N
on nodes of a given graph such that each number appears exactly once and no
connected nodes have consecutive numbers. For this problem, we use 25 variables
with domains of size 25 and 64 binary constraints. The problem has three types
which are the cliques of the graph. We fed QUACQ, G-QUACQ and M-QUACQ with
a basis B of 1260 binary constraints taken from a language of 4 arithmetic and
distance constraints.
Murder. Someone was murdered last night, and you are summoned to investigate
the murder. The objects found on the spot that do not belong to the victim include:
a pistol, an umbrella, a cigarette, a diary, and a threatening letter. There are also
witnesses who testify that someone had argued with the victim, someone left the
house, someone rang the victim, and some walked past the house several times
about the time the murder occurred. The suspects are: Miss Linda Ablaze, Mr. Tom
Burner, Ms. Lana Curious, Mrs. Suzie Dulles, and Mr. Jack Evilson. Each sus-
pect has a different motive for the murder, including: being harassed, abandoned,
sacked, promotion and hate. Other clues are given below. Under a set of additional
clues given in the description, the problem is who was the Murderer? And what
was the motive, the evidence-object, and the activity associated with each suspect.
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The target network of Murder has 20 variables with domains of size 5 and 53 binary
constraints. Here we have four types of variables, which are suspect, motive, object,
and activity, each of them contains five variables. We fed QUACQ, G-QUACQ and
M-QUACQ with a basis B of 380 constraints based on the language Γ = {=, 6=}.
Sudoku. The Sudoku model is expressed using 81 variables with domains of size
9, and 810 6= binary constraints on rows, columns and squares. In this problem,
the types are the 9 rows, 9 columns and 9 squares, of 9 variables each. We fed
QUACQ, G-QUACQ and M-QUACQ with a basis B of 6480 binary constraints from
the language Γ = {=, 6=}.

4.5.2 Results

For all our experiments we report, the total number #Ask of standard queries
asked by the basic QUACQ, the total number #AskGen of generalization queries, and
the numbers #no and #yes of negative and positive generalization queries, where
#AskGen=#no+#yes. The time overhead of using M-QUACQ rather than QUACQ is
not reported since computing a generalization query takes a few milliseconds.

First of all, it should be noted that the parameter γ specifying the minimum edge
density of quasi-cliques may have an influence on the performance of M-QUACQ.
Indeed, the lower γ, the greater the number of extracted quasi-cliques. This means
that the probability that extracted types do not correspond to real types increases
when γ is small and therefore, the number of negative answers to generalization
queries may become important. This phenomenon can be more or less controlled by
adjusting the value of γ. That being said, the value of γ was fixed to 0.8 after a few
preliminary tests.

Now, with the results reported in table 4.1, we aim at comparing the performance
of the basic QUACQ, G-QUACQ where the types are provided by the user and the
three versions of M-QUACQ where types are learned during the acquisition process.

Not surprisingly, we notice that M-QUACQ is always better than QUACQ but still
less efficient than G-QUACQ. Furthermore, the number of queries (#Ask+#AskGen)
that were asked using M-QUACQ is often closer to the number of queries asked using
G-QUACQ. For instance, to learn the PlaceNumPuzzle QUACQ needs 3746 queries.
Providing the types to G-QUACQ reduced the number of queries to 390. Now, using
our approach, M-QUACQ needed only 662 queries although no knowledge on types
was provided.

In addition, Table 4.1 reports the performance of the three versions of M-QUACQ.
What is noticeable about the three different ways for extracting potential types is
that modularity clearly outperforms the two other techniques and improves signif-
icantly the performance of M-QUACQ on all considered problems. Indeed, the com-
bination of M-QUACQ with modularity leads to tremendous savings in the number
of queries compared to QUACQ: 627+35 (-82%) instead of 3746 on PlaceNumPuzzle,
272+12 (-41%) instead of 483 on Murder, 410+14 (-39%) instead of 694 on Zebra,
140+8 (-28%) instead of 205 on Purdey, 7963+57 (-28%) instead of 9593 on Sudoku.
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Table 4.1 – M-QUACQ with modularity, betweenness and γ-clique on Pla-
ceNumPuzzle, Murder, Zebra, Purdey and Sudoku.

QUACQ G-QUACQ M-QUACQ

Strategies #Ask #Ask #AskGen #Ask #AskGen #no #yes
Latin Square

modularity

2058 129 68
987 61 26 35

betweenness 1674 22 5 17
γ-clique 1172 35 1 34

PlaceNumPuzzle
modularity

3746 351 39
627 35 4 31

betweenness 655 33 2 31
γ-clique 688 33 2 31

Murder
modularity

483 230 55
272 12 2 10

betweenness 272 12 2 10
γ-clique 342 13 3 10

Zebra
modularity

694 257 67
410 14 0 14

betweenness 410 14 0 14
γ-clique 410 14 0 14

Purdey
modularity

205 93 39
140 8 0 8

betweenness 140 8 0 8
γ-clique 140 8 0 8

Sudoku
modularity

9593 260 166
7963 57 20 37

betweenness 8960 50 18 32
γ-clique 9461 117 104 13

We also notice that the betweenness outperforms the γ-clique on all problems
except for the Latin Square. This can be explained by the fact that the types overlap
(rows and columns) in Latin Square and that γ-clique is likely more able to detect
overlapping types than betweenness.

In conclusion we can say that when modularity is used to extract the types, the
algorithm M-QUACQ performs very well and is very close to G-QUACQ although no
knowledge on types is provided. Furthermore, since modularity was introduced to
find communities in very large networks, we think that the performance of M-QUACQ

with modularity can be more significant when the size of the problem increases.
For instance, Figure 4.4 shows the gain of M-QUACQ with modularity compared to
QUACQ on the Latin Square when fed with an increasing number of variables. It is
clear in this figure that the gain significantly increases with the size of the problem.

4.6 Conclusion

We have proposed MINE&ASK, a generalization based algorithm that is able to
mine partial graphs of constraint networks and to generalize, on potential types,
constraints learned by any constraint acquisition system. MINE&ASK acts when no
knowledge is provided on the variable types. We have detailed and tested three tech-
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Figure 4.4 – The gain of M-QUACQ on Latin Square when the number of variables
increases.

niques to extract potential types, namely the modularity, the betweenness and the
γ-clique techniques. We have plugged our MINE&ASK into the QUACQ constraint
acquisition system, leading to the M-QUACQ algorithm. We have experimentally
evaluated the benefit of our approach on several benchmark problems. The results
show that M-QUACQ significantly improves the basic QUACQ algorithm and they are
quite close to the results when variable types are provided.

The advantage of such an approach is that, despite we lose in performance, there
is no need for the user to provide the types. Nevertheless, generalization queries do
not work for all problems. They work only for high structured problems that their
variables can be grouped into types. In the following chapter, we introduce a generic
kind of query based on the link prediction on dynamic graphs. The advantage of
such queries is that they work for a wide range of problems, and they do not need
any background knowledge from the user.



CHAPTER

5
Constraint Acquisition with

Recommendation Queries

Preamble

In this chapter, we propose PREDICT&ASK, an algorithm based on the predic-

tion of missing constraints in the partial network learned so far. Such missing

constraints are directly asked to the user through recommendation queries, a

new, more informative kind of queries. PREDICT&ASK can be plugged in any

constraint acquisition system. We experimentally compare the QUACQ system

to an extended version boosted by the use of our recommendation queries. The

results show that the extended version improves the basic QUACQ.
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5.1 Introduction

Constraint programming (CP) allows effective solving of combinatorial problems
in many areas, such as planning and scheduling. However, modeling a combinato-
rial problem using constraints is a fastidious task that requires significant expertise
in CP [Freuder, 1999].
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To make constraint programming accessible to novices, several constraint ac-
quisition systems have been introduced in the last decade [Bessiere et al., 2005,
2007; Beldiceanu and Simonis, 2012; Lallouet et al., 2010; Shchekotykhin and
Friedrich, 2009]. These systems either need an expert to validate the learned model
or need an exponential number of queries to converge on the target constraint net-
work [Bessiere et al., 2015]. Recently, a system polynomial in terms of queries,
called QUACQ, has been proposed [Bessiere et al., 2013]. QUACQ iteratively gener-
ates partial queries (that is, partial assignments of the variables) and asks the user
to classify them. When the answer of the user is yes, QUACQ reduces the search
space by removing constraints that reject the positive example. In the case of a
negative answer, QUACQ focuses on a constraint in a number of queries logarithmic
in the size of the example. This key component allows QUACQ to converge on the
target network in a polynomial number of queries. Despite this good theoretical
bound, QUACQ may require a lot of queries to learn the target constraint network,
especially when the problem is highly structured and involves a large number of
constraints. For instance, the user has to classify more than 8000 queries to get
the Sudoku model.

The next challenge to constraint acquisition is to reduce the dialog length be-
tween the user and the learner or, in other words, to reduce the number of asked
queries to get the target model. This chapter presents a generic approach to con-
straint acquisition which is centered on the following question: Given the constraint
graph learned so far, can we infer which new constraints are more likely to belong to
the target constraint network? We formalize this question as a link prediction prob-
lem in the partial constraint graph learned so far. Furthermore, we introduce a new
concept of query, called recommendation query. Borrowing techniques from the link
prediction field, a recommendation query asks the user whether or not a predicted
constraint belongs to the target constraint network. To deal with recommendation
queries, we propose a new constraint recommender algorithm called PREDICT&ASK,
which we plugged into the QUACQ constraint acquisition system leading to the P-
QUACQ algorithm. We experimentally evaluated the benefit of our approach on sev-
eral benchmark problems. The results show that P-QUACQ significantly improves
the basic QUACQ algorithm in terms of number of queries.

The rest of the chapter is organized as follows. Section 5.2 describes the con-
straint recommender algorithm. We illustrate the idea behind our constraint rec-
ommender algorithm through an example in Section 5.3. In Section 5.4, several
predictor techniques are presented. Section 5.5 presents the experimental results
we obtained when comparing P-QUACQ to the basic QUACQ. Section 5.6 presents
the related work. Section 5.7 concludes the chapter.

5.2 PREDICT&ASK Algorithm

In this section, we present our constraint recommender PREDICT&ASK algorithm.
The idea behind this algorithm is to predict missing constraints in the partial net-
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work learned so far, and then to recommend the predicted constraints to the user
through a new kind of query, recommendation queries. A recommendation query

AskRec(c) asks the user whether or not the constraint c belongs to the target con-
straint network CT . It is answered yes if and only if c belongs to CT .

5.2.1 Description of PREDICT&ASK

The algorithm PREDICT&ASK takes as argument the set of constraints C learned
so far, a relation r, and the predictor score that corresponds to the strategy used
to assign a cost to a candidate constraint for recommendation. The algorithm uses
the local data structure ∆ which contains all constraints that are candidate for
recommendation.

PREDICT&ASK starts by initializing L to the empty set (line 1). The set L will
contain the output of PREDICT&ASK, that is all constraints learned by prediction
plus recommendation query. In line 4, we build the constraint graph G = (Y,E)

restricted to the relation r. The counter #No counts the number of consecutive times
recommendation queries have been classified negative by the user. It is initialized
to zero at line 5. We put in ∆ all constraints that are candidate for recommendation.

In the main loop of PREDICT&ASK (line 7), for each iteration, we pick a constraint
from ∆ such that its score is maximum (line 8). A constraint with a high score means

Algorithm 9: PREDICT&ASK

Input: C: a set of constraints,
r: a relation,
score ∈ {AA,LHN}: a prediction strategy
Output: L: a set of predicted constraints

1 L←∅;
2 Y←

⋃
var(c) s.t. (c ∈C∧rel(c)= r)

3 E← {(x,y) | c ∈C∧rel(c)= r∧var(c)= (x,y)}

4 G← (Y,E)

5 #No← 0

6 ∆← {((x,y),r) ∈B | (x,y) ∈ Y2 \E}

7 while ∆ 6=∅ ∧ #No<α do

8 pick ((x,y),r) in ∆ that maximizes score((x,y),G)

9 if AskRec((x,y),r)=yes then

10 L← L∪ {((x,y),r)}

11 E←E∪ (x,y)

12 #No← 0

13 else

14 B←B\{((x,y),r ′) | r⊆ r ′}

15 #No++

16 return L;
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that it is likely that this constraint belongs to the target constraint network. Hence,
PREDICT&ASK asks a recommendation query on ((x,y),r) (line 9). If the user says
‘yes’, ((x,y),r) is a constraint of the target network. Hence, we put ((x,y),r) in L (line
10). We also add the edge (x,y) to E to be taken into account in the next iteration
when computing the score. In line 12, we reinitialize #No to zero. If the user says
‘no’, we remove from B the constraint ((x,y),r) (line 14) and we increment #No (line
15). The loop ends when ∆ is empty or when #No reaches the given threshold α,
and we return L (line 16).

5.2.2 Using Recommendation in QUACQ

PREDICT&ASK is a generic constraint recommender algorithm that can be
plugged into any constraint acquisition system. In this section, we present P-QUACQ

(Algorithm 10) where we incorporate PREDICT&ASK into the QUACQ system.
P-QUACQ initializes the constraint network CL to the empty set (line 1). When CL

is unsatisfiable (line 3), the space of possible networks collapses because there does
not exist any subset of the given basis B that is able to correctly classify the examples
already asked to the user. In line 4, P-QUACQ computes a complete assignment e

satisfying CL and violating at least one constraint from B. If such an example does
not exist (line 5), then all constraints in B are implied by CL, and the algorithm has
converged. Otherwise, we propose the example e to the user, who will answer by
yes or no (line 6). If the answer is yes, we can remove from B the set κB(e) of all
constraints in B that reject e (line 7). If the answer is no, we are sure that e violates at
least one constraint of the target network CT . We then call the function FindScope

to discover the scope of one of these violated constraints. Here, FindScope acts in
a dichotomous manner and asks a number of queries logarithmic in the size of the
example. FindC selects which constraint with the given scope is violated by e (line
9). If no constraint is returned (line 10), this is a condition for collapsing as we
could not find in B a constraint rejecting one of the negative examples. Otherwise,
we know that the constraint c returned by FindC belongs to the target network CT ,
we then add it to the learned network CL (line 12). Note that FindScope and FindC

functions are used exactly as they appear in [Bessiere et al., 2013]. Afterwards, we
call PREDICT&ASK to mine the learned constraint network CL in order to predict and
recommend missing constraints that may belong to the target network. P-QUACQ

updates CL by adding all learned constraints (line 13).

5.2.3 Complexity Analysis

Let us now give the theoretical upper bound of the new constraint acquisition
system P-QUACQ.

Theorem 5.1. Given a constraint basis B built from a language Γ of bounded arity,

and a target network CT , P-QUACQ uses O(CT .(log|X|+ Γ)+ |B|) queries to prove con-

vergence or to collapse.
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Algorithm 10: P-QUACQ = QUACQ + PREDICT&ASK

Input: score ∈ {AA,LHN}: a predictor strategy
Output: CL: a set of learned constraints

1 CL←∅ ;
2 while true do

3 if sol(CL)=∅ then return “collapse”;
4 choose e in DX accepted by CL and rejected by B

5 if e=nil then return “convergence on CL”;
6 if Ask(e)=yes then

7 B←B\κB(e);
8 else

9 c←FindC(e,FindScope(e,∅,X,false));
10 if c=nil then return “collapse”;
11 else

12 CL←CL∪ {c};
13 CL←CL∪PREDICT&ASK(CL,rel(c),score);

Proof. By construction, P-QUACQ inherits the correctness of QUACQ, and thus,
it always finishes by proving convergence or collapsing. As for its complexity,
P-QUACQ asks partial queries (line 6 of P-QUACQ) and recommendation queries
(line 9 of PREDICT&ASK). By construction, the number of partial queries in P-
QUACQ is bounded above by the number of partial queries of pure QUACQ, that is,
O(CT .(log|X|+ Γ)+ |B|) [Bessiere et al., 2013]. Concerning recommendation queries,
we know that they are asked on constraints that are in B and not in CL (Algorithm
9, lines 6 and 8). Furthermore, a recommendation query cannot be asked twice on
the same constraint as, whatever the answer, the constraint is put in CL (yes an-
swer, Algorithm 9, line 10 and Algorithm 10, line 13) or removed from B (no answer,
Algorithm 9, line 14). As a result the number of recommendation queries asked
by PREDICT&ASK is in O(|B|) and the number of queries asked by P-QUACQ is in
O(CT .(log|X|+Γ)+ |B|).

5.3 An Illustrative Example

In this section, we illustrate our constraint recommender algorithm PRE-
DICT&ASK through an example. Figure 5.1(a) shows the constraint network of the
problem that the user has in mind. This problem involves 10 variables and 21
binary constraints. Two relations are used, noted r1 and r2 in Figure 5.1. Fig-
ure 5.1(b) shows the constraint network partially learned by QUACQ. Suppose
that the last constraint learned using QUACQ was ((x1,x2),r1). At that point, we
want to recommend potential constraints on which the relation r1 may hold. PRE-
DICT&ASK builds a partial network limited to the relation r1 (Figure 5.1(c)), and
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Figure 5.1 – PREDICT&ASK on the illustrative example.

then computes the set ∆ of all candidate constraints that may belong to the target
network. ∆ = {((x1,x3),r1),((x1,x4),r1),((x2,x3),r1), ((x2,x4),r1),((x2,x5),r1),((x3,x5),r1)}.
Then, PREDICT&ASK assigns to each candidate constraint in ∆ a score. We sort the
elements of ∆ in decreasing order of their score. Suppose that we have the follow-
ing order 〈((x1,x4),r1),((x2,x4),r1),((x2,x5),r1), ((x2,x3),r1),((x3,x5),r1),((x1,x3),r1)〉. Sup-
pose that α= 1, which means that we have to exit PREDICT&ASK after one negative
answer. We pick the first constraint ((x1,x4),r1) in ∆, and we ask the user the recom-
mendation query AskRec((x1,x4),r1), which will be answered yes, as the constraint
((x1,x4),r1) belongs to the target network. The other questions are as follows:

— AskRec((x2,x4),r1)=yes (#No= 0)

— AskRec((x2,x5),r1)=yes (#No= 0)

— AskRec((x2,x3),r1)=no (#No= 1⇒ exit)
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At the end, thanks to PREDICT&ASK three (out of four) constraints are added to the
current constraint network (see Figure 5.1(d)).

5.4 Prediction Strategies

The way PREDICT&ASK computes the score has not been detailed in Section 5.2.
In this section, we present the two techniques that we have used to predict missing
constraints. Bessiere et al. (2014a) have shown that when a constraint network has
some structure, variables of the same given type are often involved in constraints
with the same relation. Hence, we expect that when variable types are not known in
advance, predicting type similarity or type proximity of variables could be done by
prediction link techniques.

Link prediction in dynamic graphs is an important research field in data min-
ing. Link prediction can be used for recommendation systems [Li and Chen, 2009],
security domain [Krebs, 2002], social networks [Liben-Nowell and Kleinberg, 2003],
and many other fields. Several techniques have been proposed in the literature for
link prediction. All these techniques compute and assign a score to pairs of nodes
(x, y), based on the input graph and then produce a ranked list in a decreasing or-
der of scores. They can be viewed as computing a measure of proximity or similarity
between nodes x and y, with respect to the network topology. Most of these tech-
niques are based either on node neighborhood or on path ensemble [Lu and Zhou,
2010]. In our experiments we selected one link prediction technique representative
of node-neighborhood-based techniques (Adamic/Adar –AA), and one representa-
tive of path-ensemble-based techniques (Leicht-Holme-Newman Index –LHN). Both
of these techniques have a time complexity in O(n3). We will see in our experiments
that this never takes more than a few milliseconds.

5.4.1 Adamic-Adar Index (AA)

Adamic and Adar (2003) proposed a measure in the context of deciding when two
personal home pages are strongly "related". They compute features of the pages and
define the similarity index between two pages to be:

∑

z:Z

1

log(frequency(z))

where Z is the set of features shared by x and y. This refines the simple counting
of common features by weighting rarer features more heavily. This suggests the
measure

score(x,y)=
∑

z∈N(x)∩N(y)

1

log|N(z)|

where N(x) denotes the neighborhood of x, that is, the set of variables with whom it
shares a constraint.
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5.4.2 Leicht-Holme-Newman Index (LHN)

Leicht-Holme-Newman (2006) proposed to compute vertex similarity, or prox-
imity, based on the concept that two nodes are similar when their neighbors are
similar. This index can be expressed into a matrix form as:

S= 2mλ1D
−1(I−

φA

λ1
)−1D−1

where m is the number of links in the network, λ1 is the largest Eigenvalue of the
adjacency matrix A, D is a diagonal degree matrix, I is the identity matrix, and φ

(0 < φ < 1) is a free parameter that assigns higher weights to shorter paths if it is
closer to 0 and to longer paths if it is closer to 1 [Lu and Zhou, 2010]. In all our
experiments we have set φ to 0.5 to assign the same weight to both shorter and
longer paths.

5.5 Experimental Evaluation

We made experiments to evaluate the impact of using PREDICT&ASK in con-
straint acquisition. We first present the benchmark problems we used for our ex-
periments. Then, we report the results of acquiring these problems with the basic
version of QUACQ, with a brute-force algorithm using only recommendation queries
(denoted by ONLYREC), and with our P-QUACQ using the Adamic/Adar (AA) and
Leicht-Holme-Newman (LNH) indexes to recommend constraints to the user. ON-
LYREC makes a brute-force use of recommendation queries: it asks recommendation
queries on constraints from B and removes redundant constraints from B each time
a new constraint is learned, until convergence is reached. Our tests were conducted
on an Intel Core i5-3320M CPU @ 2.60GHz × 4 with 4 Gb of RAM.

5.5.1 Benchmark Problems

Radio Link Frequency Assignment Problem. The RLFAP is to provide communi-
cation channels from limited spectral resources [Cabon et al., 1999]. Here we build
a simplified version of RLFAP that consists in distributing all the frequencies avail-
able on the base stations of the network. The constraint model has 36 variables
with domains of size 36, and 210 binary constraints. We fed QUACQ and P-QUACQ

with a basis of 1800 binary constraints taken from a language of 6 arithmetic and
distance constraints.
Vessel Loading. Supply vessels transport containers from site to site. The deck
area is rectangular. Containers are cuboid, and are laid out in a single layer. All
containers are positioned parallel to the sides of the deck. The contents of the con-
tainers determine their class. Certain classes of containers are constrained to be
separated by minimum distances either along the deck or across the deck. The con-
straint model has 25 variables with domains of size 25, and 210 binary constraints.
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We fed QUACQ and P-QUACQ with a basis of 2610 binary constraints taken from a
language of 6 arithmetic and distance constraints.
Murder. Someone was murdered last night, and you are summoned to investigate
the murder. The objects found on the spot that do not belong to the victim include:
a pistol, an umbrella, a cigarette, a diary, and a threatening letter. There are also
witnesses who testify that someone had argued with the victim, someone left the
house, someone rang the victim, and some walked past the house several times
about the time the murder occurred. The suspects are: Miss Linda Ablaze, Mr.
Tom Burner, Ms. Lana Curious, Mrs. Suzie Dulles, and Mr. Jack Evilson. Each
suspect has a different motive for the murder, including: being harassed, aban-
doned, sacked, promotion and hate. Under a set of additional clues given in the
description, the problem is who was the Murderer? And what was the motive, the
evidence-object, and the activity associated with each suspect. The target network
of Murder has 20 variables with domains of size 5, and 53 binary constraints. We
fed QUACQ and P-QUACQ with a basis B of 1140 binary constraints based on the
language Γ = {=, 6=,≥,<,≤,>}.
Zebra problem. The Lewis Carroll’s Zebra problem is formulated using 25 variables,
with 5 cliques of 6= constraints and 14 additional constraints given in the description
of the problem. We fed QUACQ and P-QUACQ with a basis B of 4450 unary and
binary constraints taken from a language with 24 basic arithmetic and distance
constraints.

5.5.2 Results

We compare QUACQ, ONLYREC, and P-QUACQ. For P-QUACQ we report results
when predicting links with AA or LHN, without cutoff (i.e, α=+∞) and also with four
values for the cutoff α (from 1 to 4). We also report results when predicting links with
a Random strategy, which serves as baseline selector as it randomly picks a candi-
date constraint from ∆, and recommends it to the user. For all our experiments we
report the number of (standard) queries asked by the basic QUACQ, the number of
(recommendation) queries asked by ONLYREC, and the number of queries asked by
P-QUACQ. For P-QUACQ we report the number #Ask of standard queries, the num-
ber #AskRec of recommendation queries, the numbers #no and #yes of negative and
positive recommendation queries (i.e., #AskRec= #no+#yes), and the total number
#query of queries (i.e., #query= #Ask+#AskRec). The time overhead of computing
scores and generating recommendation queries is not reported because it takes a
few milliseconds.

Table 5.1 reports the results of acquiring the RLFAP problem. We first observe
that the number of queries asked by P-QUACQ is always significantly lower than
with QUACQ or ONLYREC, whatever the way we predict links in P-QUACQ. We also
observe that AA and LHN outperform Random for all values of α, which means
that their predictions are correlated to the probability of having a constraint at
the selected link. When predicting links with AA, we observe that cutoffs hurt the
acquisition: the smaller the cuttoff, the greater the number of queries required
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Table 5.1 – P-QUACQ on RLFAP.

α #query #Ask #AskRec #no #yes
QUACQ – 1653 1653 – – –

ONLYREC – 1575 – 1575 – –

P-QUACQ +Random

+∞ 964 560 404 322 82
4 1017 676 341 268 73
3 1129 817 312 250 62
2 1281 1013 268 220 48
1 1553 1370 183 161 22

P-QUACQ +AA

+∞ 964 560 404 322 82
4 970 643 327 250 77
3 1010 719 291 220 71
2 1028 784 244 178 66
1 1229 1055 174 128 46

P-QUACQ +LHN

+∞ 964 560 404 322 82
4 886 564 322 240 82
3 859 580 279 197 82
2 851 624 227 148 79
1 1052 878 174 114 60

for convergence. On the contrary, P-QUACQ +LHN is better with cutoff: it reaches
its lower number of queries to learn the RLFAP network when α = 2 (851 queries
instead of 1653 for basic QUACQ and 1575 for ONLYREC). The good performance
of LHN on RLFAP can be explained by the structure of that problem. The RLFAP
structure contains bicliques and cliques. The constraints that belong to the same
clique can be easily predicted by both the neighborhood-based method, AA, or the
path-ensemble-based method, LHN. However, constraints in bicliques cannot be
predicted by AA because variables of the same constraint do not share any neighbor
(see Figure 5.2a).

Table 5.2 reports the results on the Vessel Loading problem. The structure of
this problem is quite similar to the structure of RLFAP. Thus, the results follow the
same trend as on the RLFAP (P-QUACQ +LHN with α= 2 is the best). However, we
see that as opposed to the RLFAP, P-QUACQ +AA benefits from the cutoffs.

Table 5.3 reports the results on the Murder problem. The structure of that
problem is essentially composed of cliques, as we can see in Figure 5.2b. In this
case, we observe that P-QUACQ +AA with a cutoff equal to 1 is the best. It requires
367 queries to get the model instead of 585 queries for QUACQ and 1050 for ON-
LYREC. The good performance of the AA predictor can be explained by the fact that
neighborhood-based predictors are effective in detecting cliques.

Table 5.4 reports the results on the Zebra problem. Again, P-QUACQ with AA
or LHN predictors outperforms QUACQ, ONLYREC, and P-QUACQ +Random. When
comparing AA to LHN, we observe that, interestingly, P-QUACQ +AA and P-QUACQ

+LHN give exactly the same results for all values of the cutoff α. This can be ex-
plained by the fact that only the relation 6= shows a structure in the network, and
that structure is such that all cliques are isolated, as illustrated in Figure 5.2c.
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Figure 5.2 – Constraint graphs of our problems.

Such a structure is perfectly well detected both by AA and LHN. This explains that
they behave the same and that the shorter the cutoff, the better.

This experimental analysis clearly shows that the use of prediction strategies
with recommendation queries can significantly reduce the number of queries asked
to the user. The brute-force use of recommendation queries (ONLYREC) is always
close to the worst case (i.e., close to |B| queries). The AA prediction strategy seems
to be particularly well-suited to problem containing cliques of constraints, whereas
the LHN can be highly efficient to predict biclique structures.

5.6 Related Work

Several papers have already proposed to use the structure of the constraint graph
to decrease the number of examples needed to learn the target constraint network.
Beldiceanu and Simonis (2012) have proposed MODELSEEKER, a passive constraint
acquisition system devoted to problems having a regular structure. MODELSEEKER
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Table 5.2 – P-QUACQ on Vessel Loading.

α #query #Ask #AskRec #no #yes
QUACQ – 2252 2252 – – –

ONLYREC – 2595 – 2595 – –

P-QUACQ +Random

+∞ 1505 864 641 501 140
4 1655 1159 496 378 118
3 1686 1212 474 361 113
2 1758 1368 390 289 101
1 1934 1658 276 196 80

P-QUACQ +AA

+∞ 1505 864 641 501 140
4 1385 889 496 357 139
3 1240 852 388 266 122
2 1195 882 313 194 119
1 1270 1033 237 128 109

P-QUACQ +LHN

+∞ 1505 864 641 501 140
4 1381 892 489 350 139
3 1213 831 382 259 123
2 1137 827 310 187 123
1 1217 988 229 116 113

Table 5.3 – P-QUACQ on Murder.

α #query #Ask #AskRec #no #yes
QUACQ – 585 585 – – –

ONLYREC – 1050 – 1050 – –

P-QUACQ +Random

+∞ 433 267 166 138 28
4 453 315 138 115 23
3 496 380 116 100 16
2 497 406 91 78 13
1 523 467 56 49 7

P-QUACQ +AA

+∞ 433 267 166 138 28
4 414 282 132 105 27
3 404 292 112 86 26
2 386 301 85 60 25
1 367 313 54 30 24

P-QUACQ +LHN

+∞ 433 267 166 138 28
4 448 309 139 115 24
3 428 310 118 94 24
2 439 349 90 70 20
1 459 401 58 43 15

learns global constraints from the global constraints catalog ([Beldiceanu et al.,
2007]) whose scopes are the rows, the columns, or any other structural property
MODELSEEKER can capture. The counterpart is that it misses any constraint that
does not belong to one of the structural patterns it is able to capture. Bessiere et al.
(2014a) introduced a new concept of query, called generalization query. By using
some background knowledge, namely types of variables, a generalization query asks
the user whether or not a learned constraint can be generalized to other scopes of
variables of the same types as those of the learned constraint. The drawback of
such queries is that they require types of variables to be provided by the user.



5.7 Conclusion 71

Table 5.4 – P-QUACQ on Zebra.

α #query #Ask #AskRec #no #yes
QUACQ – 694 694 – – –

ONLYREC – 4142 – 4142 – –

P-QUACQ +Random

+∞ 675 423 252 221 31
4 679 496 183 163 20
3 660 505 155 132 23
2 711 593 118 106 12
1 693 625 68 60 8

P-QUACQ +AA

+∞ 675 423 252 221 31
4 602 431 171 141 30
3 576 434 142 112 30
2 524 417 107 77 30
1 498 428 70 40 30

P-QUACQ +LHN

+∞ 675 423 252 221 31
4 602 431 171 141 30
3 576 434 142 112 30
2 524 417 107 77 30
1 498 428 70 40 30

To overcome this weakness, Daoudi et al. (2015) have proposed to learn types of
variables during the constraint acquisition process, and then to use the learned
types to generate generalization queries. The advantage of such an approach is that
there is no need for the user to provide the types. Of course learning the types
requires extra queries that were not needed when types are given for free at the
beginning of the learning process. In addition, generalization queries do not work
on all problems. They work only for the problems for which variables can be grouped
into types.

By contrast, in our work, recommendation queries are generic and do not require
any background knowledge to be generated. By using techniques borrowed from link
prediction in dynamic graphs, we infer constraints that are more likely to belong to
the target constraint network, and that are validated by asking recommendation
queries to the user.

5.7 Conclusion

We have proposed a new kind of queries, called recommendation queries. To deal
with these queries, we have proposed a generic constraint recommender algorithm,
PREDICT&ASK, which uses techniques borrowed from link prediction to predict con-
straints that are likely to belong to the target network. Finally, we have plugged
PREDICT&ASK into QUACQ to have a boosted version called P-QUACQ. Our exper-
iments on several benchmark problems show that our new technique outperforms
the basic QUACQ. An interesting direction would be to use a reinforcement learn-
ing to decide on the use of neighborhood-based predictions or path-ensemble-based
predictions.





CHAPTER

6
Conclusion & Perspectives

We have proposed a new technique to make constraint acquisition more efficient
by using information on the types of components the variables in the problem rep-
resent. We have introduced generalization queries, a new kind of query asked to the
user to generalize a constraint to other scopes of variables of the same type where
this constraint possibly applies. Our new technique, GENACQ, can be called to gen-
eralize each new constraint that is learned by any constraint acquisition system. We
have proposed several heuristics and strategies to select the good candidate gener-
alization query. We have plugged GENACQ into the QUACQ constraint acquisition
system, leading to the G-QUACQ algorithm. We have experimentally evaluated the
benefit of our approach on several benchmark problems, with and without complete
knowledge on the types of variables. The results show that G-QUACQ dramatically
improves the basic QUACQ algorithm in terms of number of queries.

The drawback of generalization queries is that they require types of variables of
the learned constraint to be generated. To overcome this weakness, and in order to
make the build of such queries totally independent of the user, we have proposed to
learn types of variables during the constraint acquisition process, and then to use
the learned types to generate generalization queries. We have proposed MINE&ASK,
a generalization based algorithm that is able to mine partial graphs of constraint
networks and to generalize, on potential types, constraints learned by any con-
straint acquisition system. MINE&ASK acts when no knowledge is provided on the
variable types. We have detailed and tested three techniques to extract potential
types, namely the modularity, the betweenness and the γ-clique techniques. We
have plugged our MINE&ASK into the QUACQ constraint acquisition system, leading
to the M-QUACQ algorithm. We have experimentally evaluated the benefit of our
approach on several benchmark problems. The results show that M-QUACQ signif-
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icantly improves the basic QUACQ algorithm and they are quite close to the results
when variable types are provided.

The advantage of such an approach is that, despite we lose in performance, there
is no need for the user to provide the types. Nevertheless, generalization queries do
not work on all problems; they work only for high structured problems that their
variables can be grouped into types. Toward a generic concept of query, we have
introduced a new kind of query, recommendation queries based on the link pre-
diction in dynamic graphs. The advantage of such queries is that they work for
a wide range of problems, and they do not need any background knowledge from
the user. To deal with that kind of queries, we have proposed a generic constraint
recommender algorithm, named PREDICT&ASK, which uses techniques borrowed
from the link prediction in dynamic graphs to predict constraints that are more
likely to belong to the target network, and then asks the user to classify recom-
mendation queries. Finally, We have plugged PREDICT&ASK into QUACQ system to
have a boosted version called P-QUACQ. To evaluate the benefit of recommendation
queries, we have made experiments on several benchmarks. The results show that
our new technique outperform drastically the basic QUACQ.

Our framework opens up two general areas for further work. First, the framework
can be applied as it stands to other disciplines, such as criteria weight elicitation
and preference learning. Second, the framework can be extended and improved
in several ways. First, we plan to learn the structure of the problem in order to
choose the appropriate prediction technique. We know that the performance of a
prediction technique depends on the topology of the constraint network. We think
that a multi-armed bandit technique may be useful for the choice of the appropriate
technique during the acquisition process. Second, we plan to recommend not only
one constraint that may belongs to the target network, but also to recommend a
part of that network or, why not, the entire network. Third, we plan to incorporate
in one system all the proposed techniques. In other words, we will make all our
new generic techniques collaborating in order to get the target network as quickly
as possible. That is, using at the same time the three kind of queries, namely basic
queries, generalization queries, and recommendation queries. The question that we
will try to answer is, which query to ask at a given step in the learning process?
One answer to that question may be the use of the enforcing learning towards an
adaptive constraint acquisition. Forth, so far we deal just with binary constraints;
so we plan to extend our framework to deal also with constraints of different arities.
And also to be able to learn global constraints. Finally, as a perspective of that
work, we plan also to propose a distributed constraint acquisition system to learn
problems, which may involve a large number of constraints, by several users; that
is, a collaborative learning by users that may have to model the same problem.
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Abstract

Most of the existing constraint acquisition systems interact with the user by ask-
ing her to classify an example as positive or negative. Such queries do not use the
structure of the problem and can thus lead the user to answer a large number of
queries. In this thesis, we show that using the structure of the problem may improve
the acquisition process a lot. To this end, we introduce two new concept of queries
that use the structure. The first one, called generalization query, based on an ag-
gregation of variables into types. The second one, named recommendation query,
based on the prediction of missing constraints in the current constraint graph. In
addition, we propose several algorithms and strategies to deal with these new kind
of queries. We incorporate all our proposed algorithms into QUACQ constraint ac-
quisition system, leading to three boosted versions, namely G-QUACQ, M-QUACQ,
and P-QUACQ. The results show that the extended versions improve drastically the
basic QUACQ.

Keywords: Artificial Intelligence, Constraint Programming, Constraint Acquisi-
tion, Graph Community Detection, Recommendation Systems.

Résumé

La plupart des systèmes d’acquisition de contraintes existants interagissent avec
l’utilisateur en lui demandant de classer un exemple comme positif ou négatif. Ces
requêtes n’utilisent pas la structure du problème ce qui peut entraîner l’utilisateur
à répondre à un grand nombre de questions pour apprendre toutes les contraintes.
Dans cette thèse, nous montrons que l’utilisation de la structure du problème peut
améliorer considérablement le processus d’acquisition. Pour ce faire, nous intro-
duisons deux nouveaux concepts de requêtes utilisant la structure du problème.
Le premier concept est celui de requête de généralisation basée sur une agrégation
des variables sous forme de types. Le deuxième concept est celui de requête de re-
commandation basée sur la prédiction des contraintes manquantes dans le graphe
courant de contraintes. En outre, nous proposons plusieurs algorithmes et straté-
gies pour faire face à ces nouveaux types de requêtes. Enfin, nous intégrons ces
nouveaux algorithmes dans le système d’acquisition de contraintes QUACQ, menant
à trois nouvelles versions, à savoir G-QUACQ, P-QUACQ, et M-QUACQ. Les résultats
montrent que les versions étendues améliorent considérablement le système QUACQ

de base.

Mots clefs : Intelligence Artificielle, Programmation par contraintes, Acquisition de
contraintes, Détection de communautés, Systèmes de recommandation.


