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Résumé

Les caractéristiques des rayonnements solaire dépendent fortement de certains
événements météorologiques non observés (fréquence, taille et type des nuages
et leurs propriétés optiques; aérosols atmosphériques, albédo du sol, vapeur d’eau,
poussière et turbidité atmosphérique) tandis qu’une séquence du rayonnement so-
laire peut être observée et mesurée à une station donné. Ceci nous a suggéré de
modéliser les processus de rayonnement solaire (ou d’indice de clarté) en utilisant
un modèle Markovien caché (HMM), paire corrélée de processus stochastiques.

Notre modèle principal est un HMM à temps continu (Xt, yt)t≥0 tel que (yt),
le processus observé de rayonnement, soit une solution de l’équation différentielle
stochastique (EDS) :

dyt = [g(Xt)It − yt]dt+ σ(Xt)ytdWt,

où It est le rayonnement extraterrestre à l’instant t, (Wt) est un mouvement Brown-
ien standard et g(Xt), σ(Xt) sont des fonctions de la chaîne de Markov non observée
(Xt) modélisant la dynamique des régimes environnementaux.

Pour ajuster nos modèles aux données réelles observées, les procédures
d’estimation utilisent l’algorithme EM et la méthode du changement de mesures
par le théorème de Girsanov. Des équations de filtrage sont établies et les équations
à temps continu sont approchées par des versions robustes.
Les modèles ajustés sont appliqués à des fins de comparaison et classification de
distributions et de prédiction.





Abstract

Characteristics of solar radiation highly depend on some unobserved meteoro-
logical events (frequency, height and type of the clouds and their optical properties;
atmospheric aerosols, ground albedo, water vapor, dust and atmospheric turbidity)
while a sequence of solar radiation can be observed and measured at a given sta-
tion. This has suggested us to model solar radiation (or clearness index) processes
using a hidden Markov model (HMM), a pair of correlated stochastic processes.

Our main model is a continuous-time HMM (Xt, yt)t≥0 such that the solar radi-
ation process (yt)t≥0 is a solution of the stochastic differential equation (SDE):

dyt = [g(Xt)It − yt]dt+ σ(Xt)ytdWt,

where It is the extraterrestrial radiation received at time t, (Wt) is a standard
Brownian motion and g(Xt), σ(Xt) are functions of the unobserved Markov chain
(Xt) modelling environmental regimes.

To fit our models to observed real data, the estimation procedures combine the
Expectation Maximization (EM) algorithm and the measure change method due to
Girsanov theorem. Filtering equations are derived and continuous-time equations
are approximated by robust versions.

The models are applied to pdf comparison and classification and prediction pur-
poses.





Introduction

Context

The aim of the present thesis is to propose some probabilistic models for sequences
of solar radiation which is defined as the energy given off by the sun (W/m2) at
the earth suface. Our main model concerns a Stochastic Differential Equations
(SDE) in random environment, the latter being modelized by a hidden Markov chain.
Statistical fitting of such models hinges on filtering equations that we establish in
order to update the estimations in the steps of EM algorithm. Experiments are done
using real large datasets recorded by some terrestrial captors that have measured
solar radiation.
Such a modelling problem is of greatest importance in the domain of renewable
energy where short-term and very short-term time horizon prediction is a challenge,
particularly in the domain of solar energy.

Random aspects

Probabilistic models turn out to be relevant as the measured solar radiation is ac-
tually a global radiation, or total radiation, which results from two components, a
deterministic one and a random one, namely
- the direct radiation which is the energy coming through a straight line from the
sun to a specific geographical position of the earth surface. At a given time this
deterministic radiation can be computed quite precisely and as it roughly corre-
sponds to a measurement during a perfectly clear-sky weather, it is also known as
the extra-terrestrial radiation
- the diffuse radiation which is reflected by the environment and depends on mete-
orolgical conditions, and is therefore highly random.
Both components can be measured by captors.

The total solar radiation can also be studied indirectly by considering its dimen-
sionless form, the so-called clearness index (CI), which is defined as the ratio of the
total radiation to the direct radiation and thus is a nice descriptor of the atmo-
spheric transmittance.
Our approach will therefore consist in considering a discrete (resp. continous) se-
quence of solar observations as a path of a discrete-time (resp. continuous-time)
stochastic process.
The following figure (Figure 1) illustrates our arguments: the iobserved irregular
falls are due to frequent cloud passages which depend on some random conditions
such as wind speed, type of clouds and some other meteorological variables:
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Figure 1: Measurements of total solar radiation and extraterrestrial radiation (a).
Corresponding clearness index (b). [Soubdhan 2009]

Two possible approaches

In the present understanding, the establishment of meteorological radiation mod-
els are usually based on physical processes as well as on statistical techniques
[Gueymard 1993, Kambezidis 1989, Muneer 1997, Psiloglou 2000, Psiloglou 2007].

The physical modelling studies the physical processes occurring in the atmo-
sphere and influencing solar radiation. Accordingly, the solar radiation is absorbed,
reflected, or diffused by solid particles in any location of space and especially by
the earth, which depends on its arrival for many activities such as weather, climate,
agriculture, . . . . The physical calculation method is exclusively based on physi-
cal considerations including the geometry of the earth, its distance from the sun,
geographical location of any point on the earth, astronomical coordinates, the com-
position of the atmosphere, . . . . The incoming irradiation at any given point takes
different shapes.
The second approach, “statistical solar climatology” branches into multiple aspects:
modelling of the observed empirical frequency distributions, forecasting of solar
radiation values at a given place based on historical data, looking for statistical in-
terrelationships between the main solar irradiation components and other available
meteorological parameters such as sunshine duration, cloudiness, temperature, and
so on.
Our work has clearly taken the second approach.

HMM and SDE

Stochastic characteristics of solar radiation highly depend on some unobserved me-
teorological events such as frequency, height and type of the clouds and their optical
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properties, atmospheric aerosols, ground albedo, water vapor, dust and atmospheric
turbidity (Woyte et al. (2007)) while a sequence of solar radiation can be observed

and measured at a given station. This has suggested us to model a random sequence
of clearness index (resp. a stochastic process of solar radiation) by using a HMM
which is a pair of correlated stochastic processes: the first (unobserved) one, called
the state process, is a finite-state Markov chain in discrete-time (resp. in continous-
time) representing meteorological regimes while the second (observed) one depends
on the first one and describes the sequence of clearness index (resp. the process of
solar radiation) as a discrete process (resp. a continuous one, solution of a SDE).
The idea of using HMM and SDE in the study of solar radiation sequences was
mentioned by T. Soubdhan and R. Emilion in [Soubdhan 2009, Soubdhan 2011].
After a classification of daily solar radiation distributions, the authors thought that
the sequence of class labels can be governed by a HMM in discrete time with some
underlying unobservable regimes. The same authors have also proposed a SDE to
model a continuous-time clearness index sequence but their data-driven approach
fails for prediction during high variability regimes. However our work has been
developed starting from these ideas. Our results can be summarized as follows:

1. We propose a discrete time HMM to model a daily (resp. hourly, resp.
monthly) clearness index sequence.

2. We propose a continuous time HMM to model the clearness index process
over a time interval [0, T ] in a solar day.

3. We propose a continuous time HMM and a SDE to directly model the total
solar radiation process over a time interval [0, T ].

Estimation procedures

To fit our models to observed data, the estimation procedures will combine
Maximum Likelihood Estimators (MLE) and Expectation Maximization (EM)
algorithm for partially observed systems [Dempster 1977, Celeux 1989].

Filtering

A crucial notion in our estimation procedure is that of filter which is a time-indexed
increasing family of σ-algebras, each one being generated by the events occured up to
time t. The filtering process is defined as the family of conditional expectations w.r.t.
these σ-algebras. A large part of our contribution deal with recursive equations of
the filtering process needed in the estimation algorithms. They hinge on the work
of [Dembo 1986, Campillo 1989, Elliott 1995, Elliott 2010].
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Continuous-time filtering equations will be approximated by robust versions,
following an approach due to [Clark 1977] and using some results of [James 1996,
Krishnamurthy 2002, Clark 2005].

Reference probability method. Girsanov theorem

A great part of our computations concerns the so-called reference probability method
which refers to a procedure where a probability measure change is introduced to
reformulate the original estimation and control task into a new probability space
(fictitious world) in which well-known results for identically and independently dis-
tributed (i.i.d.) random variables can be applied. Then the results are reinterpreted
back to the original probability space (real world) by applying [Elliott 1995, chp.
1]. The Radon-Nykodim derivative of the new probabily measure w.r.t. the original
one is given by the famous Girsanov theorem in both its discrete and continuous
time version.

Thesis organization

Our thesis is divided into five Chapters following this introductory part.

Chapter 1.

In the first chapter we present some backgroung notions concerning solar radiation:
direct, diffuse and global radiations, clearness index. The computation of the direct
solar radiation is detailed. The end of the chapter briefly presents some points
concerning measurement devices and datasets the we have dealt with.

Chapter 2.

In the second chapter, we recall some mathematical results that will be needed in
chapters 3 and 4: conditional Bayes formula, Ito product, Ito formula, Girsanov
theorem, HMM, EM algorithm.

Chapter 3.

In this third chapter we introduce three models for clearness index sequences
(CISs):
- DTM-K, a Discrete-Time Model for discrete daily CISs, (Kh)h=1,2,...

- CTM-k, a Continuous-Time Model for continuous processes of CI, (kt), t ∈ [0, T ],
and its Discrete-Time Approximate Model, DTAM-k, obtained from time dicretiza-
tion by uniformly partitionning [0, T ] into intervals of width ∆.
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For each model, we define the state process, the observation process and the
parameter vector. The state process of these models are finite-state homogeneous
Markov chains. For CTM-k, the transition matrix of the chain is a rate matrix. For
DTAM-k, the ∆ width in the time partition is chosen to be small enough so that the
transition matrix of the chain be a stochastic matrix. The observation process is a
function of the chain which values are corrupted by a Gaussian noise (for DTM-K
and DTAM-k) and by a standard Brownian motion (for CTM-k).

The filtering equations are established with complete proofs. Computations to ob-
tain MLE updating formulas in the iterations of EM algorithm are detailed. Using
DTAM-k, we first establish the computable approximation of the continuous time
equations in CTM-k, and then we provide the estimates for the noisy variance.

Chapter 3 ends with some experiments with real data. Parameters of DTM-K are
estimated from La Réunion island (France) data with daily CISs having similar char-
acteristics while parameters of the CTM-k approximated by parameters of DTAM-k
are estimated from Guadeloupe island (France) data which were sampled at 1Hz
(i.e. at each second).

Chapter 4.

In this fourth chapter, we propose our main model, a continuous-time HMM for
the total solar radiation sequence (yt)t≥0 under the random effects of meteorological
events, denoted CTM-y.

The state process is similar to the CTM-k case but the observation process (yt)

modelling total solar radiation process, is assumed to be of the SDE:

dyt = [g(Xt)It − yt]dt+ σ(Xt)ytdWt,

where It is the extraterrestrial radiation received at time t, (Wt) is a standard Brow-
nian motion and g(Xt), σ(Xt) are functions of the Markov chain (Xt).

Again, the change-of-measure technique and the steps of EM algorithm establishing
the filtering equations for updating the parameter vector g, are fully detailed.

Here too, we propose an approximation of state filter equation and we build a
Discrete-Time Approximate Model (DTAM-y) to provide discrete-time approximate
equations. Our computations hinge on a robust discretization of continuous-time
filters recently obtained by [Elliott 2010, chap. 1]. Estimation of the noisy variance
is studied.

Experimentations with real data and parameter estimations are performed from var-
ious samples of data sampled at 1Hz. Using the model with estimated parameters,
we generate some simulations of solar radiation process paths.
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Chapter 5.

In this fifth chapter, we first use DTM-K, with estimated parameters from La Réu-
nion island data, to generate a large number of paths. A distribution of daily
clearness index is then estimated from these simulated data.

Next, using the estimations for our two models CTM-k and CTM-y from 1Hz solar
radiation (or clearness index) Guadeloupe island data, measured over time interval
[0, T ], we simulate a large number of paths in the next hour [T, T + 1] and we pro-
pose a confidence interval for total solar radiation in [T, T + 1]. Such predictions
are compared to observations.

Given the data up to hour T and predicting total solar radiation during the next
hour [T, T + 1] is of great interest for solar energy suppliers.

Chapter 6.

In this concluding part we discuss about some problems concerning parameter esti-
mations, predictions, and comparison between the physical model approach and the
statistical model approach. Some perspectives for future works are also proposed.
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Résumé

Dans ce chapitre, nous rappelons d’abord quelques notions de physique en énergie
solaire : rayonnement solaire extraterrestre, calcul du rayonnement direct, rayon-
nement diffus, rayonnement total ou global, indice de clarté. Nous parlerons briève-
ment des instruments de mesure du rayonnement et nous décrirons enfin les données
réelles que nous avons utilisées.

Abstract

In this chapter, we first recall some physics notions in solar energy: extraterrestrial
solar radiation, direct radiation computation, diffuse radiation, total or global ra-
diation, clearness index. Then, we will briefly talk about radiation measurement
instruments and last, we will describe the real data that we have dealt with.
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Figure 1.1: The types of solar radiation.

1.1 Introduction

Solar radiation emission from the sun into every corner of space appears in the
form of electromagnetic waves that carry energy at the speed of light. The solar
radiation is absorbed, reflected, or diffused by solid particles in any location of
space and especially by the earth (Figure 1.1). This process depends on many
environment conditions such as weather, climate, pollution, . . . . The incoming
radiation at any given point takes different shapes depending on its geographical
location, its astronomical coordinates, its distance from the sun, the composition of
the local atmosphere and the local topgraphy.
This section provides some basic concepts, definitions, and astronomical equations
which are used in our thesis. These concepts, definitions and equations are referenced
from [Liu 1960, Psiloglou 2000, Sen 2008, Tovar-Pescador 2008].

1.2 Extraterrestrial solar radiation

1.2.1 Extraterrestrial normal radiation

The extraterrestrial normal radiation, denoted I0, also called top of the atmosphere
radiation, is the solar radiation arriving at the top of the atmosphere. It can simply
be considered as the product of a solar constant denoted by ICS and a correction
factor of the earth’s orbit, namely its excentricity, denoted by ε:

I0 = ICS · ε. (1.1)
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Figure 1.2: Horizontal plane for the extraterrestrial horizontal radiation.

The World Radiation Center has adopted that ICS = 1367 W/m2 with an uncer-
tainty of 1% [Duffie 2006] and introducing ICS is justified as follows. As already
said, the sun radiation is subject to many absorbing, diffusing, and reflecting effects
within the earth’s atmosphere which is about 10 km average thick and, therefore,
it is necessary to know the power density, i.e., watts per meter per minute on the
earth’s outer atmosphere and at right angles to the incident radiation. The density
defined in this manner is referred to as the solar constant ICS . It is equivalent to the
energy from the sun, per unit time, received on a unit area of surface perpendicular
to the direction of propagation of the radiation, at mean earth-sun distance, outside
of the atmosphere.
The excentricity ε, as suggested by [Spencer 1972], is given by

ε = 1.00011 + 0.034221 cos Γ + 0.00128 sin Γ + 0.000719 cos 2Γ + 0.000077 sin 2Γ,

(1.2)
where the day angle Γ (in radians) is equal to:

Γ =
2πnd − 1

365
,

nd denoting the number of the day in the year (1 for first of January, 365 for
December 31).

A simple approximation for ε was suggested by [Duffie 1980, Duffie 1991]:

ε = 1 + 0.033 cos

(
2πnd
365

)
. (1.3)
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1.2.2 Extraterrestrial horizontal radiation

At time t of a day, the amount incident radiation per horizontal surface area unit
along the zenith direction, called the extraterrestrial horizontal radiation and de-
noted It, is related to the extraterrestrial normal radiation I0 as follows:

It = I0 cos θz, (1.4)

where θz is the zenith angle at time t between the normal to the surface and the
direction of the direct beam (Figure 1.2). The zenith angle calculation is described
in Section 1.3 assuming, for sake of simplicity of modelling, that land is horizontal.

1.3 Zenith angle calculation

1.3.1 Equation of time

Figure 1.3: Relative positions of the Sun (photo: [Tingilinde 2006]).

The solar day is defined as the time that is needed by the Sun to achieve a
complete tour of the Earth [Lanini 2010]. This does not necessarily correspond
to 24 hours and varies from year to year. Figure 1.3 illustrates how the relative
Sun position is moving across the sky: pictures of the Sun taken by an immobile
photographer at the same time of the day have been superimposed. It can be seen
that after one whole year of observations, the Sun is computing a eight-shape circuit.
The principal causes of this phenomena are the elliptical shape of the terrestrial orbit
around the Sun and the tilt of the Earth in relation to the plane of its orbit.

As a consequence, at 12 noon the Sun does not have the same position in the
different months. The curve described by the so called the equation of time, (Et),
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was proposed by [Spencer 1972] and then truncated by [Iqbal 1986]:

Et = 229.18(0.000075+0.001868 cos Γ− 0.032077 sin Γ

−0.014615 cos 2Γ− 0.04089 sin 2Γ), (1.5)

where Γ = 2π(nd−1)
365 , nd = 1, 2, . . . , 365.

1.3.2 Apparent solar time

Most meteorological measurements are recorded in terms of local standard time.
In many solar energy calculations, it is necessary to obtain irradiation, wind, and
temperature data for the same instant. It is, therefore, necessary to compute local
apparent time, which is also called the true solar time. Solar time is the time to be
used in all solar geometry calculations. It is necessary to apply the corrections due
to the difference between the local longitude, Lloc, and the longitude of the standard
time meridian, Lstm. The apparent time, Lat, can be calculated by considering the
standard time, Lst according to [Iqbal 1986] as:

Lat = Lst ± (Lstm − Lloc) + Et. (1.6)

where Et is caculated as in (1.5).
In this expression, “+” applies to west direction and “−” applies to east direction.

All terms in the above equation are to be expressed in hours.

1.3.3 Hour angle

The hour angle, denoted ω, is the angular displacement of the sun east or west of
the local meridian due to rotation of the earth on its axis at 150 per hour as morning
negative and afternoon positive [Iqbal 1986]:

ω = 15(12− Lat), (1.7)

where Lat is the apparent time which is calculated as in (1.6).

1.3.4 Declination

The solar declination, denoted δ, is the angle between a line joining the centers of
the Sun and the Earth to the equatorial plane, depends on the date and on the
location (Figure 1.4): north direction has positive value, its maximum is equivalent
to +23.450 at the summer solstice and its minimum to −23.450 at the winter solstice.

We can consider the following expressions for the approximate calculation of δ
([Iqbal 1986]) as:

δ = 23.45 sin

[
360(284 + nd)

365

]
, (1.8)

where nd is the day number of year: nd = 1, 2, . . . , 365.
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Figure 1.4: The declination angles.

1.3.5 Zenith angle

The zenith angle, denoted θz, is the angle between the vertical and the line to the
sun i.e., the angle of incidence of beam radiation on a horizontal surface (see again
Figure 1.2). At solar noon zenith angle is zero, in the sunrise and sunset this angle
is 900. The zenith angle θz can be actually calculated by [Sen 2008, page 86]:

cos θz = cosφ cos δ cosω + sinφ sin δ, (1.9)

where φ is the latitude of the location and δ calculated by (1.8), ω calculated by
(1.7).

1.4 Total solar radiation

Total (global) solar radiation, Gt, is the sum of the direct beam, Ib, and the diffuse
solar radiation, Id, on a horizontal surface (Figure 1.5).

Solar radiation from the sun after traveling in space enters the atmosphere at
the space-atmosphere interface, where the ionization layer of the atmosphere ends.
Afterwards, a certain amount of solar radiation is absorbed by the atmosphere,
by the clouds, and by particles in the atmosphere. A certain amount is reflected
back into the space, and a certain amount is absorbed by the earth’s surface. The
combination of reflection, absorption (filtering), refraction, and scattering result in
highly dynamic radiation levels at any given location on the earth. As a result of
the cloud cover and scattering sunlight, the radiation received at any point is both
direct (or beam) and diffuse (or scattered), see again Figure 1.1.
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Figure 1.5: Gt = Ib + Id.

1.4.1 Direct solar radiation

Direct solar radiation is defined as the radiation which travels in a straight line from
the sun to the earth’s surface. It is the solar radiation received from the sun without
scatter by the atmosphere and without any disturbances. The quantity of direct
solar radiation reaching any particular parts of the earth’s surface is determined by
the position of the point, time of year, shape of the surface, . . . . To model this
would require knowledge of intensities and direction at different times of the day
. . . . As examples, we can refer to the models in [Psiloglou 2000, Psiloglou 2007].

1.4.2 Diffuse solar radiation

After the solar radiation enters the earth’s atmosphere, it is partially scattered
and partially absorbed. The scattered radiation is called diffuse radiation. Again, a
portion of this diffuse radiation goes back to space and a portion reaches the ground.

Diffuse radiation is first intercepted by the constituents of the air such as water
vapor, CO2, dust, aerosols, clouds, etc., and then it is released as scattered radiation
in many directions. This is the main reason why diffuse radiation scattering in all
directions and closed to the earth’s surface as a source does not give rise to sharp
shadows. When the solar radiation in the form of an electromagnetic wave hits a
particle, a part of the incident energy is scattered in all directions and is called diffuse
radiation. Diffuse radiation is scattered out of the solar beam by gases (Rayleigh
scattering) and by aerosols (which include dust particles, as well as sulfate particles,
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soot, sea salty particles, pollen, etc.). The Reflected radiation is mainly reflected
from the terrain and is therefore more important in mountainous areas.

Diffuse radiation occurs when small particles and gas molecules diffuse part of
the incoming solar radiation in random directions without any alteration in the
wavelength of the electromagnetic energy. Diffuse cloud radiation would require
modeling of clouds and this is considered as quite impossible because of a great
daily variability.

1.5 Clearness index

The ratio of the total solar radiation Gt to the extraterrestrial horizontal radiation
It is defined as the clearness index and is denoted kt:

kt =
Gt

It
, (1.10)

Clearness index is the quantity needed to focus on the analysis of fluctuations in
solar radiance. It gives the ratio of the actual energy on the ground to that initially
available at the top of the atmosphere accounting, therefore evaluating at time t
the transparency of the atmosphere. Alternatively, this index can be considered as
an instantaneous class membership degree, the class being an ideal perfect clear-sky
day, the more this index is closed to one, the more the day is clear at time t.

For long-term predictions, the clearness index is often considered over a given
time interval ∆t. It is denoted by K∆t and is defined as the relation between the
horizontal total radiation on the ground and the extraterrestrial horizontal radiation
over the same time interval ∆t:

K∆t =

∫
∆t
Gsds∫

∆t
Isds

. (1.11)

The usually used integration periods are the day and the hour, termed daily
clearness index and hourly clearness index, respectively.

1.6 Solar radiation measurement

This section is designed to be a concise introduction for the instrumentation used to
measure the components of solar radiation as well as for the climatic characteristics
and geographical location of the areas where the observed data were recorded.

1.6.1 Solar radiometers

Pyrheliometer
The Pyrheliometer is a solar radiometer which is used to measure the “direct normal
radiation” Ibn (note that Ib = Ibn cos θz). Pyrheliometers have a narrow aperture
(generally between 50 and 60 total solid angle), admitting only beam radiation with
some inadvertent circumsolar contribution from the Sun’s aureole within the field
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of view of the instrument, but still excluding all diffuse radiation from the rest of
the sky. Pyrheliometers must be pointed at, and track the Sun throughout the day.
Their sensor is always normal to the direct beam, so that Ibn is often called “direct
normal radiation” (Figure 1.6a).
Pyranometer
A Pyranometer is used to perfomed the horizontal total radiation Gt or the diffuse
radiarion Id. Pyranometers have a 1800 field of view. The horizontal total radiation
Gt is measured by a Pyranometer with a horizontal sensor (Figure 1.6c) while the
diffuse radiarion Id is measured by a shaded Pyranometer under a tracking ball
(Figure 1.6b).

(a) (b)

(c)

Figure 1.6: Typical instruments for measuring solar radiation components:
(a) Pyrheliometer, (b) shaded Pyranometer, (c) Pyranometer with a horizontal sen-
sor.

1.6.2 Data observed in Guadeloupe and La Réunion islands

The total solar radiation measurements used in our estimation procedures were
performed in two French islands, namely Guadeloupe and La Réunion, located in
the West Indies and the Indian Ocean, respectively. These areas are exposed to an
important solar radiation and are characterized by a humid tropical climate.

Guadeloupe island is located at 16015N latitude and 60030W longitude. The
average solar load for a horizontal surface is between 4 kWh/m2 and 7 kWh/m2

per day. The air temperature varies between 170C and 330C. Relative humidity
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ranges from 70% to 80% and the trade winds are relatively constant throughout the
year. The total solar radiation measurements were performed in this island in 2006
by a Pyranometer from KIPP&ZONEN, model SP-Lite, a sensor having a response
time inferior to 1 s. The SP-Lite measures the solar energy received from the entire
hemisphere (1800 field of view). These data were recorded, pretreated, analyzed
ans interpreted by Dr. T. Soubdhan, Assistant Professor in Physics at University
of Antilles-Guyane, Guadeloupe.

La Réunion is a Southern Hemisphere volcanic island with an average tempera-
ture oscillating from 240C to 320C in the coastal regions and oscillating from 150C
to 220C in the regions located above an altitude of 1500 m in the interior of the
island. The combination of a very steep terrain, with large variations in altitude,
and prevailing trade winds from south-southeast induce local contrasts in weather
patterns at ground level. The radiations were captured by a SPN1 Pyranometer
([Delta-T-Devices 2012]), a sensor rated as a “good quality” one by World Meteo-
rological Organization. This sensor is actually based on a set of seven thermopiles,
symmetrically arranged below a shadow dome according to a specific geometry,
ensuring by that way that, at any time of the day, wherever in the world the mea-
surement is made, there is always one sensor fully exposed to the sun and one sensor
fully shadowed. The recorded data used for our daily clearness index sequences mod-
elling were sampled at 0.1 s at Moufia campus location (20054S, 55029E) from 2009
to 2011 in the setting of a La Réunion region project titled RCI-GS. They were
managed by software engineer M. Delsaut and were averaged to give one collected
point per minute for final storage purpose.

Both data collections and storages used a datalogger from CAMMPBELL SCI-
ENTIFIC (the “burning” sunshine recorders were first developed by John Francis
Campbell in 1853 and later modified in 1879 by Sir George Gabriel Stokes, . . . ).
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Résumé

Nous supposons connu les ésprances conditionnelles, les chaînes de Markov à temps
discret et à temps continu, les martingales et le calcul stochastique.
Nous précisons dans ce chapitre formalisme, notations et méthodes utilisés dans les
prochains chapitres en suivant la présentation de [Elliott 2010] : modèles Markoviens
cachés (HMM) à temps discret et méthode de changement de probabilité dite méth-
ode de la probabilité référente basée sur le théoreme de Girsanov en version discrète,
rappels de certains résultats de calcul stochastique, HMM à temps continu et méth-
ode de la probabilité référente, algorithme EM en temps continu.

Abstract

Conditional expectations, discrete-time and continuous time Markov chains, mar-
tingales and stochastic calculus are assumed to be known.
We precise in this chapter the formalism, the notations and the methods used in the
next chapters, following the presentation in [Elliott 2010] : Hidden Markovian Mod-
els (HMM) in discrete time and reference probability method based on a discrete
version of Girsanov theorem, recalls of some results in stochastic calculus, contin-
uous time HMM and reference probability method, EM algorithm in continuous
time.

2.1 Conditional expectations

2.1.1 Radon-Nikodym derivative

Theorem 2.1. (Radon-Nikodym) If P and P are two probability measures on (Ω,B)
such that for each B ∈ B, P (B) = 0 implies P (B) = 0, then there are exists a non-
negative random variable Λ, such that P (C) =

∫
C
ΛdP for all C ∈ B. We write

dP/dP |B = Λ.

For a proof, see [Wong 1985].

Definition 2.1. Let X ∈ L1 and A be a sub-σ-field of B. If X is non-negative and
integrable we can use the Radon-Nikodym to deduce the existence of an A-measurable
random variable, denoted by E(X|A), which is uniquely determined except on an
even of probability zero, such that

∫

A

XdP =

∫

A

E(X|A)dP, (2.1)

for all A ∈ A.
E(X|A) is called the conditional expectation of X give A. For a general inte-

grable random variable we define E(X|A) as E(X+|A)− E(X−|A).
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The following is a list of classical results. If A1 and A2 are two sub-σ-fields of
B such that A1 ⊂ A2, then

E(E(X|A1)|A2) = E(E(X|A2)|A1) = E(X|A1). (2.2)

If X,Y,XY ∈ L1, and Y is A-measurable, then

E(XY |A) = Y E(X|A). (2.3)

If X and Y are independent, then

E(Y |σ(X)) = E(Y ). (2.4)

2.1.2 Jensen inequality

Theorem 2.2. Let {Ω,F , P} be a probability space and G a subfield of F . Let
φ : R → R be convex and let X be an integrable random variable such that φ(X) is
integrable. Then, we have

φ(E(X|G)) ≤ E(φ(X)|G).

A proof can be found in [Elliott 1982].

2.1.3 Conditional Bayes formula

Theorem 2.3. Suppose (Ω,F , P ) is a probability space and G ⊂ F is a sub-σ-field.
Suppose P is another probability measure absolutely continuous with respect to P

and with Radon-Nikodym derivative dP/dP = Λ. Then if φ is any P integrable
random variable

E[φ|G] = ψ where ψ =
E[Λφ|G]
E[Λ|G] if E[Λ|G] > 0

and ψ = 0 otherwise.

Theorem 2.3 was proved by [Elliott 2010, Theorem 3.2].

2.2 Martingale difference sequence

Definition 2.2. Let (Xh) = {Xh, h = 1, 2, . . . } be an adapted discrete stochastic
process on a filtered probability space (Ω,F , (Fh), P ). (Xh) is called a martingale
difference sequence (MDS) if it satisfies the following two conditions:

i. E(|Xh|) <∞,

ii. E(Xh|Fh−1) = 0, a.s., for all h.

So, a stochastic serie is an MDS if its expectation with respect to the past is
zero. MDS is an extremely useful concept in modern probability theory because it
implies much milder restrictions on the memory of the sequence than independence.
Most of limit theorems that hold for an independent sequence also hold for an MDS.

The definition implies that:
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• if (Yh) is a martingale, then (Uh) = (Yh − Yh−1) will be an MDS,

• (Vh) = (Xh − E[Xh|Fh−1]) is an MDS.

The sequences (Uh), (Vh) above are also called sequences of martingale increments.

2.3 Binary vector representation of a Markov chain

Consider a (discrete or continuous time) Markov chain (Xtime) with finite state space
SX = {s1, s2, ..., sN}.

Let 1(Xtime=si) denote the so-called indicator function defined as 1(Xtime=si) = 1 if
Xtime = si and 1(Xtime=si) = 0 if Xtime 6= si. The prime symbol denoting transpose,
we consider the following binary vector representation:

Xtime = (1(Xtime=s1),1(Xtime=s2), ...,1(Xtime=sN ))
′,

so that at any time, just one component of Xtime is one while the others are zero.

Then, for sake of simplicity in computations, we will now consider the chain
(Xtime) which is derived from (Xtime), the state space of (Xtime) being the set of
unit vectors ei with all components 0 but 1 at the i -th component:

S = {e1, e2, ..., eN}.

Let 〈· , · 〉 denote the usual inner product in R
N . Noticing that 〈Xtime, ei〉 =

1(Xtime=si), i = 1, 2, . . . , N , we will write the vector representation of the Markov
chain as

Xtime = (〈Xtime, e1〉, 〈Xtime, e2〉, ..., 〈Xtime, eN 〉)′.

Throughout this thesis, we will assume without loss of generality, that the state
space of the finite-state Markov chain (Xtime) is a set of unit vectors defined as
above and that X0 is given or its distribution π0 is known.

2.4 Hidden Markov models

A Hidden Markov Model (HMM) is a pair of stochastic processes called the state
process and the observation process, respectively. The state process is a hidden,
that is an unobserved, homogeneous Markov chain modelling the environment, each
state of the chain representing a specific regime of the environment. The observa-
tion process is a real valued function of the chain corrupted by a Gaussian noise (in
discrete time) or is assumed to satisfy a stochastic differential equation (in contin-
uous time). Such processes will be defined on a complete filtered probability space
(Ω,F , (Ftime), P ).
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2.5 Discrete-time HMM

In this section we present a discrete time HMM that will be used to model daily
clearness index sequences.

Consider a system whose states are described by a discrete-time homoge-
neous Markov chain (Xh)h=0,1,2,..., called the state process, with state space S =

{e1, e2, ..., eN}.
For h = 1, 2, . . . , we will write

Xh = (〈Xh, e1〉, 〈Xh, e2〉, . . . , 〈Xh, eN 〉)′.

Recall that 〈Xh, ei〉 = 1(Xh=ei), i = 1, 2, . . . , N .

Remark 2.1. For i = 1, 2, . . . , N , we have

E(〈Xh, ei〉) =
N∑

j=1

〈ej , ei〉P (Xh = ej) = P (Xh = ei). (2.5)

Let Xh denote the σ-algebra generated by {X0, X1, . . . , Xh} and let A = (aji) ∈
RN×N denote the probability transition matrix of (Xh)h=1,2,... defined as

aji = P (Xh = ej |Xh−1 = ei), i, j = 1, 2, . . . , N.

Note that aii = 1−∑
j 6=i aji (i = 1, 2, . . . , N).

The equation of the process (Xh)h=1,2,..., the so-called state equation, will be
obtained from the following lemma.

Lemma 2.1. Let (Vh)h=1,2,... be a sequence defined by

Vh , Xh −AXh−1. (2.6)

Then (Vh)h=1,2,... is a sequence of martingale increments.

Recall that a sequence of martingale increments is a random discrete series whose
expectation with respect to the past is 0 (see Section 2.2).

Proof. The Markov property implies that

P (Xh = ej |Xh−1) = P (Xh = ej |Xh−1). (2.7)

From (2.7) and Remark 2.1, we have

E(Xh|Xh−1) = E(Xh|Xh−1) = AXh−1. (2.8)

Thus,
E(Vh|Xh−1) = E(Xh −AXh−1|Xh−1) = AXh−1 −AXh−1 = 0. (2.9)
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From Lemma 2.1, the state process (Xh)h=1,2,... can be represented by the state
equation:

Xh = AXh−1 + Vh, (2.10)

where (Vh)h=1,2,... is a sequence of martingale increments.
We suppose that the state process (Xh) is not observed directly, but rather

observed through a function of the Markov chain (Xh), say (Kh)h=1,2,....

Definition 2.3. A discrete-time HMM is a pair of processes (Xh,Kh)h=1,2,... deter-
mined by the following equations:

Xh = AXh−1 + Vh, (2.11)

Kh = b(Xh) + α(Xh)wh, (2.12)

where (Vh) is sequence of martingales, (wh) is a sequence of i.i.d. N (0, 1) random
variables, wh is independent of σ{X1, X2, . . . , Xh,K1,K2, . . . ,Kh} and b(Xh) =

〈Xh, b〉, α(Xh) = 〈Xh, α〉, with b = (b1, b2, . . . , bN )′, α = (α1, α2, . . . , αN )′. The
parameter vector of the model is defined as the vector:

θ = (aji, 1 ≤ j 6= i ≤ N ; b1, b2, . . . , bN ;α1, α2, . . . , αN ),

We shall assume αi 6= 0 and thus without loss of genrality that αi > 0, 1 ≤ i ≤ N .
We will assume that θ belongs to a compact set Θ ⊂ R

N×N+N and will denote
by Pθ a probability measure on (Ω,F) for which the process (Xh,Kh)h=1,2,... satisfies
equations (2.12) with parameter θ.

In practice the number of states N will be suggested by the user.

2.5.1 Filtrations, number of jumps, occupation time and level sums

The following notions will be useful for estimating the model parameters.

Definition 2.4. For h = 1, 2, . . . , let

GK
h , σ{X1, X2, . . . , Xh,K1,K2, . . . ,Kh},

YK
h , σ{K1,K2, . . . ,Kh}

be the σ−algebras generated by (Xh,Kh) and (Kh), respectively.

These σ−algebras containing all the available information up to time h form
increasing sequences, and thus are filtrations. GK

h is called the filtration of complete
data and YK

h the filtration of incomplete observation data.
Note that YK

h ⊂ GK
h ⊂ Fh for all h.

Estimating the model parameters requires the computation of the conditional
expectations of the following quantities given the observation history YK

h .

Definition 2.5. Let (Xh,Kh)h=1,2,... be a discrete-time HMM and let f(·) be any
bounded function. Let us define:
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1. the number of jumps of the Markov chain from ei to ej until time h by

J ij
h =

h∑

l=1

〈Xl−1, ei〉〈Xl, ej〉, (2.13)

2. the occupation time of the Markov chain in state ei until time h by

Oi
h =

h∑

l=1

〈Xl, ei〉, (2.14)

3. and the level sums of the observation process in state ei up to time h by

T i
h (f) =

h∑

l=1

f(Kl)〈Xl, ei〉. (2.15)

2.5.2 Reference Probability Method of measure change

In the so-called Reference Probability Method [Elliott 1995, Elliott 2010], the main
technique for obtaining ML (Maximum Likelihood) estimates of parameters is the
change of measure which is a discrete time version of Girsanov theorem (see The-
orem 2.5). To achieve such a mathematical objective, we are going to work in a
“fictitious world” (Ω, (Fh), P ), called the reference probability space, with a refer-
ence probability measure P which is determined by a fix parameter vector θ0 ∈ Θ

and then we will relate these results in the “real world” (Ω, (Fh), Pθ) by using a back
change of measure and by applying Bayes’s rule.

The reference probability measure P , a convenient measure to work with, is
defined such that under P the observations are i.i.d. random variables. Working
under P , we will reformulate the initial estimate of the parameter vector θ in a
”fictitious world” (Ω, (Ftime), P ) where the well-known results for i.i.d. random
variables can be applied. Then the results will be reinterpreted back to the real
world (Ω, (Fh), Pθ) with the initial probability measure Pθ (see [Elliott 2010, chap.
1, pg. 3-11] for more details).

Introduce a reference probability measure P from Pθ such that under P :

(C3.1) (Kh)h=1,2,... is a sequence of N (0, 1) i.i.d. random variables which are inde-
pendent of the Markov chain (Xh),

(C3.2) (Xh)h=1,2,... is a Markov chain with transition matrix A so that
E(Xh|GK

h−1) = AXh−1, where E is the expectation under P .

The existence of P with the characteristics above is described by Lemma 2.2
below.

Lemma 2.2. Let Pθ be the measure determined by the parameter vector θ (Defini-
tion 2.3) and let P be a new probability measure such that

P

Pθ

∣∣∣∣
GK
h

= Λ
K,θ
h =

h∏

l=1

λl, (2.16)
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where λl =
〈Xl,α〉φ(Kl)

φ
(

Kl−〈Xl,b〉
〈Xl,α〉

) , l = 1, 2, . . . , h , φ(·) is the N (0, 1) density function.

Then P satisfy conditions (C3.1), (C3.2) stated above.

Proof. Our proof starts by observing that the existence of P such that (P/Pθ)|GK
h−1

=

Λ
K,θ
h follows from Kolmogorov’s Extension Theorem.

We first prove that ΛK,θ
h is integrable and a martingale under Pθ by (a) and (b)

below.

(a) For l = 2, 3, . . . , h, we have Kl = 〈Xl, b〉+〈Xt, α〉wl, so that wl =
Kl−〈Xl,b〉
〈Xt,α〉 with

wl ∼ N (0, 1)). Moreover as GK
l−1 ⊂ GK

l−1 ∨Xl, it follows that

Eθ

(
λl|GK

l−1

)
=Eθ



Eθ


 〈Xl, α〉φ (Kl)

φ
(
Kl−〈Xl,b〉
〈Xl,α〉

)
∣∣∣∣GK

l−1 ∨Xl




∣∣∣∣GK
l−1





=Eθ





+∞∫

−∞

〈Xl, α〉φ (Kl)

φ(wl)
φ(wl)dwl

∣∣∣∣GK
l−1





=

∫ +∞

−∞
φ(Kl)dKl

=1, (2.17)

because wl is independent of GK
h−1.

From this,

Eθ(Λ
K,θ
h ) = Eθ

(
h∏

l=1

λl

)
= 1 <∞.

(b) By (2.17),

Eθ(Λ
K,θ
h |GK

h−1) = Λ
K,θ
h−1Eθ

(
λh|GK

h−1

)
= Λ

K,θ
h−1.

We now note that P (Kh ≤ x|GK
h−1) = E(1(Kh≤x)|GK

h−1). By a version of Bayes
theorem,

E(1(Kh≤x)|GK
h−1) =

Eθ(Λ
K,θ
h 1(Kh≤x)|GK

h−1)

Eθ(Λ
K,θ
h |GK

h−1)

=
Λ
K,θ
h−1

Λ
K,θ
h−1

Eθ

(
λh1(Kh≤x)|GK

h−1

)

Eθ

(
λh|GK

h−1

) . (2.18)

From (2.18) and (2.17), we have

P (Kh ≤ x|GK
h−1) =Eθ


 〈Xh, α〉φ (Kh)

φ
(
Kh−〈Xh,b〉

〈Xh,α〉

)1(Kh≤x)

∣∣∣∣GK
h−1




=

∫ +∞

−∞

〈Xh, α〉φ (Kh)

φ(wh)
φ(wh)1(Kh≤x)dwh

=

∫ x

−∞
φ(Kh)dKh.
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Then P (Kh ≤ x|GK
h−1) = P (Kh ≤ x)), Kh ∼ N (0, 1) under P .

Let Xh = σ{X0, X1, . . . , Xh}, by considering similarly,

P (Kh ≤ x|Xh) =Eθ



Eθ


 〈Xh, α〉φ (Kh)

φ
(
Kh−〈Xh,b〉

〈Xh,α〉

)1(Kh≤x)

∣∣∣∣GK
h




∣∣∣∣Xh





=Eθ





+∞∫

−∞

〈Xh, α〉φ (Kh)

φ(wh)
φ(wh)1(Kh≤x)dwl

∣∣∣∣Xh





=

∫ +∞

−∞

〈Xh, α〉φ (Kh)

φ(wh)
φ(wh)1(Kh≤x)dwh

=

∫ x

−∞
φ(Kh)dKh,

a quantity which is independent of Xh. Condition (C3.1) follows.
Consider now condition (C3.2). We have

E(Xh|GY
h−1) =

Eθ(Λ
K,θ
h Xh|GY

h−1)

Eθ(Λ
K,θ
h |GY

h−1)

=Eθ


 〈Xh, α〉φ (Kh)

φ
(
Kh−〈Xh,b〉

〈Xh,α〉

)Xh

∣∣∣∣GK
h−1




=Eθ(Xh|GK
h−1)

=AXh−1.

So, under P , (Xh) remains a Markov chain with transition matrix A. This completes
our proof.

Remark 2.2. Starting with the probability measure P we can recover the measure
Pθ by observing that

dPθ

dP

∣∣∣∣
GK
h

= ΛK,θ
h =

h∏

l=1

φ
(
Kl−〈Xl,b〉
〈Xl,α〉

)

〈Xl, α〉φ (Kl)
, (2.19)

Note that ΛK,θ
h Λ

K,θ
h = 1.

2.5.3 Normalized and unnormalized filters

Definition 2.6. For any GK
h -adapted sequence (Hh) (for instance Hh ≡ J ij

h ,Oi
h or

T i
h (f)), define

γ(Hh) , E(ΛK,θ
h Hh|YK

h ), (2.20)

π(Hh) , Eθ(Hh|YK
h ), (2.21)

where ΛK,θ
h is determined as in (2.19).

The processes γ(Hh) and π(Hh) are called the unnormalized filter and the nor-
malized filter of the process (Hh), respectively.
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In the problem of parameter estimation, we have to compute the normalized
filters π(Hh), for Hh ≡ J ij

h ,Oi
h or T i

h (f). We first work on the reference prob-
ability space (Ω, (Fh), P ) to establish the equation of unnormalized filters γ(Hh).
These results will be used to obtain the normalized filters π(Hh) in the real world
(Ω, (Fh), Pθ). By using Bayes rule:

Eθ(Hh|YK
h ) =

E(ΛK,θ
h Hh|YK

h )

E(ΛK,θ
h |YK

h )
, (2.22)

which is equivalent to

π(Hh) =
γ(Hh)

γ(1)
. (2.23)

On the other hand, it is not possible to compute directly the filter γ(Hh), for
Hh ≡ J ij

h ,Oi
h or T i

h (f), but we can compute its associated process γ(HhXh) =

E(ΛK,θ
h HhXh|YK

h ) and note that

γ(Hh) =γ(Hh〈Xh, 1〉), because 1 =
N∑

i=1

〈Xh, ei〉 = 〈Xh, 1〉,

=〈γ(HhXh), 1〉.

Consequently, we can rewrite (2.23) as

π(Hh) =
〈γ(HhXh), 1〉
〈γ(Xh), 1〉

. (2.24)

Thus, for obtaining the normalized filters π(Hh) (Hh ≡ J ij
h ,Oi

h or T i
h (f)) in

the real world (Ω, (Fh), Pθ), we must determine the equation of unnormalized filter
processes γ(HhXh). This will be computed in Chapter 3.

2.6 Some recalls on stochastic calculus

2.6.1 Ito product rule

For two semimartingales Xt and Yt, Ito product rule gives

XtYt =

∫ t

0
XsdYs +

∫ t

0
YsdXs + [X,Y ]t, (2.25)

where

[X,Y ]t = lim
n→∞

(in prob.)

{
X0Y0 +

∑

0≤k<2n

[
(Xt(k+1)2−n −Xtk2−n)

× (Yt(k+1)2−n − Ytk2−n)
]}

is the quadratic variation of Xt and Yt.
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Remark 2.3. If the process [X,Y ]t has a compensator denoted by 〈X,Y 〉t, it will
be called the predictabe quadratic variation of Xt and Yt. If the martingale part of
the semimartingale is discontinuous, then [X,Y ]t = X0Y0 +

∑
0<s≤t∆Xs∆Ys.

Remark 2.4. If Xt and Yt are Ito processes, then:

Xt = X0 +

∫ t

0
µXs ds+

∫ t

0
σXs dWs,

Yt = X0 +

∫ t

0
µYs ds+

∫ t

0
σYs dWs,

where Wt is a standard Brownian motion, and

[X,Y ]t = X0H0 +

∫ t

0
σXs σ

Y
s ds. (2.26)

2.6.2 Ito formula

Let (ξt)t∈[0,T ] be a random process satisfying the stochastic differential equation
(SDE)

dξ = atdt+ btdWt, (2.27)

where (Wt) is a Wiener process, and the nonanticipative functions at, bt are such
that

P

{∫ T

0
|at|dt <∞

}
= 1, (2.28)

P

{∫ T

0
b2tdt <∞

}
= 1. (2.29)

Theorem 2.4. Let f(t, x) : [0,+∞) ×R → R be a continuous function satisfying
ft ∈ C1([0,+∞)) and fx ∈ C2(R). Then the process f(t, ξt) satisfies the SDE

df(t, ξt) =

[
f ′t(t, ξt) + f ′x(t, ξt)at +

1

2
f ′′xx(t, ξt)b

2
t

]
dt+ f ′x(t, ξt)btdWt. (2.30)

Theorem 2.4 which is Theorem 4.4 of [Lipster 2010]. The formula given by (2.30)
was obtained by K. Itô and is called the Itô formula.

2.6.3 Girsanov theorem

Theorem 2.5. (Girsanov, [Elliott 2010, page 355]) Suppose that (Yt), t ∈ [0, T ], is a
standard Brownian motion on a filtered space {Ω,F , (Ft), Q}. Let f : Ω×[0, T ] → R

be a predictable process such that 1

∫ T

0
|ft|2dt <∞ a.s.

E

[
exp

(
1

2

∫ T

0
f2t dt

)]
<∞

1Note that if ft is bounded (|ft| ≤ L < ∞) then E
[

exp

(

1
2

∫ T

0
f2
t dt

)]

≤ exp

(

T
2
L2

)

< ∞
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Let

Λt = exp

{∫ t

0
fsdYs −

1

2

∫ t

0
|fs|2ds

}
, (2.31)

and suppose that
EQ[Λt] = 1 for all t ∈ [0, T ].

If P is the probability measure on {Ω,F} defined by

dP

dQ
= ΛT ,

then the process defined by

Wt = Yt −
∫ t

0
fsds.

is a standard Brownian motion on {Ω,F ,Ft, P}.

For a proof, refer to [Elliott 1982].

Remark 2.5. By Ito formula, the process (Λt) defined as in (2.31) satisfies the
following equation:

Λt = 1 +

∫ t

0
ΛsfsdYs, (2.32)

and EQ[Λt] = 1 [Krishnamurthy 2002].

Remark 2.6. Let (Yt) be a process determined on {Ω,F ,Ft, P} by the SDE:

dYt = ftdt+ dWt, (2.33)

where (Wt) is a standard Brownian motion and the function f is defined as in
Theorem 2.5. If Q is the measure defined by

dQ

dP
= (Λt)

−1 = exp

{
−

∫ t

0
fsdWs −

1

2

∫ t

0
|fs|2ds

}
,

then (Yt) is a standard Brownian motion under Q and we have, by Itô’s formula,

(Λt)
−1 = 1−

∫ t

0
(Λs)

−1fsdWs. (2.34)

2.7 Continuous-time homogeneous Markov chain

Consider a continuous-time Markov chain (X)t∈(0,T ) with state space S = {e1, e2, ...,
eN}. Let pji(t, h) be the transition probability from state ei at time t to state ej at
time t+ h:

pji(t, h) = P (Xt+h = ej |Xt = ei).

The Markov chain is said homogeneous if pji(t, h) does not depend on t and only
depends on h :

P (Xt+h = ej |Xt = ei) , pji(h).
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The time interval between state transition from state ei to state ej is a random
variable Hji and note that its distribution is exponential with a given parameter λji
[Gross 2012].

Therefore
P (Hji ≤ h) = 1− exp(−λjih),

and
pji(h) = 1− exp(−λjih).

Let h = ∆t be a small increment of time so that:

pji(∆t) = 1− exp(−λji∆t) ≈ 1− (1− λji∆t) = λji∆t.

Assume that pii(∆t) is approximately an affine function of ∆t:

pii(∆t) = 1− λi∆t.

We can define the transition rates using

λji , lim
∆t→0

pji(∆t)

∆t
,

λi , lim
∆t→0

1− pii(∆t)

∆t
.

Note that
pii(∆t) +

∑

j 6=i

pji(∆t) = 1.

From this, we have the following relationship

λi = lim
∆t→0

1− pii(∆t)

∆t
= lim

∆t→0

∑
j 6=i

pji(∆t)

∆t
=

∑

j 6=i

λji, ∀i.

The column sums of the probability transition matrix P (∆t) = (pji(∆t)) is 1.
Define the transition rate matrix for (Xt) as

A∆ ,




−λ1 λ12 . . . λ1N
λ21 −λ2 . . . λ2N
...

... . . .
...

λN1 λN2 . . . −λN


 .

It follows from the relations above that:

A∆ = lim
∆t→0

P (∆t)− I

∆t
,

where I is the N ×N unit matrix.
From this, it is seen that

P (∆t) ≈ ∆tA∆ + I.

This approximation will be used to establish the transition probability matrix
in ours approximate models later (Section 3.3.1 and Section 4.4.1).
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2.8 Continuous-time HMM

Following [Dembo 1986, James 1996, Elliott 1995, Elliott 2010], we review now some
of the standard definitions and notions of a continuous-time HMM based on a SDE
with a noise variance taken to be one.

The state process of the model is a continuous-time homogeneous Markov chain
(Xt)t∈[0,T ] with state space S = {e1, e2, ..., eN} and transition probabilities deter-
mined by:

Pji(∆) = P (Xt+∆ = ej |Xt = ei) =

{
λji∆+ o(∆), if j 6= i, ∆ → 0,

1 + λii∆+ o(∆), if i = j, ∆ → 0.
(2.35)

where λii = − ∑
j 6=i

λji, i = 1, 2, . . . , N .

In this case, the transition matrix A∆ = (λji) ∈ R
N×N is a transition rate

matrix (or infinitesimal generator, see Section 2.7). It is well-known that (Xt) now
has a semimartingale representation [Elliott 2010, page 198]:

Xt = X0 +

∫ t

0
A∆Xsds+ Vt, (2.36)

where (Vt) is an Ft-martingale.
The process (Xt) is not observed directly, it is observed through a scalar process

(Yt) which is assumed to satisfy a stochastic differential equation.

Definition 2.7. A continuous-time HMM is a pair of processes (Xt, Yt)t∈[0,T ] such
that

Xt = X0 +

∫ t

0
A∆Xsds+ Vt, (2.37)

dYt = h(Xt, Yt, t)dt+ dWt, (2.38)

where (Vt) is an Ft-martingale, (Wt) is a standard Brownian motion which is inde-
pendent of (Xt) and ht = h(Xt, Yt, t) is a predictable process such that

∫ T

0
|ht|2dt <∞ a.s.

ht is bounded.

Equation 2.38 is called the observation equation of the model.

2.8.1 Filtrations, number of jumps, occupation time and level sums

We next precise some notations in the continuous-time standard HMM which will
be used in the problem of parameter estimation.

Definition 2.8. Let (Xt, Yt)t∈[0,T ] be a continuous-time standard HMM, define:
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1. the filtration of complete data

GY
t , σ{Xs, Ys; 0 ≤ s ≤ t}, (2.39)

2. the filtration of incomplete data

YY
t , σ{Ys; 0 ≤ s ≤ t}, (2.40)

3. the number of jumps of the Markov chain from ei to ej until time t

J ij
t =

∫ t

0
〈Xs, ei〉〈dXs, ej〉, (2.41)

4. the occupation time of the Markov chain in state ei until time t

Oi
t =

∫ t

0
〈Xs, ei〉ds, (2.42)

5. the level sums of the observation process in state ei up to time t

T i
t (f) =

∫ t

0
f(Ys)〈Xs, ei〉dYs, (2.43)

where f(·) is any bounded function.

Remark 2.7. We have YY
t ⊂ GY

t , for all t ∈ [0, T ].

2.8.2 Change of measure

Let θ be the parameter set of the model (Xt, Yt) (Definition 2.8) and write Pθ for
the measure determined by the set θ.

Again, in the computations of parameter estimation, we will also use the ref-
erence probability method with the change-of-measure technique similar to the
discrete-time case.

For this, we first introduce a reference probability measure P from the initial
measure Pθ by putting:

dP

dPθ

∣∣∣∣
GY
t

= Λ
Y,θ
t = exp

{
−

∫ t

0
hsdWs −

1

2

∫ t

0
|hs|2ds

}
. (2.44)

By Girsanov’s theorem (see Theorem 2.5, Remark 2.6), (Yt) is a standard Brow-
nian motion under P .

We will work with a standard Brownian motion (Yt) defined on the reference
probability space (Ω,F , P ).

Then, the obtained results will be reinterpreted in the initial probability space
(Ω,F , Pθ) by a back change of measure form P to Pθ:

dPθ

dP

∣∣∣∣
GY
t

= ΛY,θ
t = exp

{∫ t

0
hsdYs −

1

2

∫ t

0
|hs|2ds

}
. (2.45)
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Specifically, the results obtained on (Ω,F , P ) for the unnormalized filters
γ(Ht) = E(ΛY,θ

t Ht|YY
t ), Ht ≡ J ij

t ,Oi
t, T i

t (f), will be related to (Ω,F , Pθ) for ob-
taining the normalized filters π(Ht) = Eθ(Ht|YY

t ) by Bayes’s rule:

Eθ(Ht|YY
t ) =

E(ΛY,θ
t Ht|YY

t )

E(ΛY,θ
t |YY

t )
, (2.46)

or

π(Ht) =
γ(Ht)

γ(1)
. (2.47)

Remark 2.8. As in the discrete-time HMM, we have

π(Ht) =
〈γ(HtXt), 1〉
〈γ(Xt), 1〉

. (2.48)

Remark 2.9. From (2.45) and by applying Ito formula (see Section 2.6.2, Theo-
rem 2.4) with ξt =

∫ t

0 hsdYs − 1
2

∫ t

0 |hs|2ds, f(t, ξt) = ΛY,θ
t = eξt , we obtain

ΛY,θ
t = 1 +

∫ t

0
ΛY,θ
s hsdYs, (2.49)

and

Λ
Y,θ
t = 1−

∫ t

0
Λ
Y,θ
s hsdWs. (2.50)

Note that Λ
Y,θ
t ΛY,θ

t = 1.

2.9 Parameter estimation

Because the state process is unobserved, the parameter estimation can be only based
on incomplete data Y ·

time (Y ·
time ≡ YK

h or Y ·
time ≡ YY

t ). In this case, the Maximum
Likelihood Estimator cannot be easily handled [James 1996, Charalambous 2000,
Elliott 2010] so that several algorithms were proposed by statisticians and engineers,
among the most successful ones is the EM algorithm.

We first describe the likelihood function, the pseudo log-likelihood used in the EM
algorithm and the two main steps of this algorithm. We then summarize without
proofs some relevant theorems on the stationary and the converging properties of
the sequence of estimates.

2.9.1 Likelihood function

Let {Pθ, θ ∈ Θ} be a family of probability measures and let P be a reference prob-
ability mesure defined as in Section 2.4, the likelihood function for computing an
estimate θ′ of parameter vector θ based on the available information Y ·

time is:

L(θ) = E

(
dPθ

dP

∣∣Y ·
time

)
,

and the ML estimate θMLE is defined by

θMLE = argmax
θ∈Θ

L(θ).
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2.9.2 Pseudo log-likelihood function

The EM algorithm provides an iterative numerical method which can be used to
generate a sequence {θ(p), p ≥ 0} for updating the ML estimates of parameter vector
θ. To this end, we first consider the following log-likelihood function:

L(θ) = log

[
E

(
dPθ

dP

∣∣∣∣Y ·
time

)]
.

Due to the monotonicity of the log function, the maximization of L(θ) is equiv-
alent to the maximization of L(θ).

Let P y
θ denote the restriction of Pθ to Y ·

time. It can be proved [Dembo 1986,
Lipster 2010], that

dP y
θ′

dP y
θ

= Eθ

(
dPθ′

dPθ

∣∣∣∣Y ·
time

)
.

Then

L(θ′)− L(θ) = log
dP y

θ′

dP
y − log

dP y
θ

dP
y

= log
dP y

θ′

dP y
θ

,

and

L(θ′)− L(θ) = logEθ

(
dPθ′

dPθ

∣∣∣∣Y ·
time

)
.

Jensen inequality then yields

L(θ′)− L(θ) ≥Eθ

(
log

dPθ′

dPθ

∣∣∣∣Y ·
time

)
,

Therefore, for all θ, θ′ ∈ Θ, we have obtained

L(θ′)− L(θ) ≥Q(θ′, θ),

with equality if and only if θ = θ′, where

Q(θ′, θ) , Eθ

(
log Λ·,θθ′

time|Y ·
time

)
with Λ·,θθ′

time ,
dPθ′

dPθ

∣∣∣∣
G·
time

. (2.51)

The function Q(θ′, θ) as defined in (2.51) is called the pseudo log-likelihood func-
tion.

2.9.3 EM Algorithm

Starting with an initial parameter vector θ(0), each iteration of EM algorithm con-
sists in the two following steps:
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E-Step (Expectation Step) : From (2.51), set θ = θ′(p) and compute the pseudo
log-likelihood function

Q(θ′, θ′(p)) = E
θ′(p)

[
log Λ·,θ′(p)θ′

time |Y ·
time

]
,

M-Step (Maximization Step) : Find θ′(p+1) ∈ arg max
θ′∈Θ

Q(θ′, θ′(p)).

Repeat from E-Step with p = p + 1, unless a stopping test is satisfied.
The stationary and converging properties of the EM algorithm were evaluated by
[Dempster 1977, Dembo 1986] via Theorem 2.6, Theorem 2.7 and Theorem 2.8 be-
low.

Theorem 2.6. For every sequence {θ(p), p = 0, 1, 2, . . . } generated by EM algorithm,

L(θ(p+1)) ≥ L(θ(p)) (2.52)

with equality if and only if θ(p+1) = θ(p).

Theorem 2.6 is Theorem 1 in [Dembo 1986] and the infinite dimensional analogue
of Theorem 1 in [Dempster 1977].

Theorem 2.7. Suppose that {θ(p), p = 0, 1, 2, . . . } is an instance generated by EM
algorithm such that

(1) the sequence L(θ(p)) is bounded, and

(2) Q(θ(p+1)|(θ(p)))−Q(θ(p)|(θ(p))) ≥ λ(θ(p+1) − θ(p))2 for some λ > 0 and all p.

Then the sequence {θ(p), p = 0, 1, 2, . . . } converges to some θ∗ in the closure of Θ.

The proof can be found in [Dempster 1977, Theorem 2].

Theorem 2.8. Assume that

(1) Θθ0 = {θ ∈ Θ : L(θ) ≥ L(θ0)} is compact for any θ0 ∈ Θ.

(2) L(θ) is continuous in Θ and differentiable in the interior of Θ.

(3) Q(θ′, θ) is continuous with respect to θ and θ′.

(4) All the EM instances {θ(p), p = 0, 1, 2, . . . } are in the interior of Θ.

Then, all the limit points of any instance {θ(p), p = 0, 1, 2, . . . } of the EM algorithm
(and there exists at least one such limit point) are stationary points of L(·), having
the same value L∗ (of L(·)). Furthermore, L(θ(p)) converges monotonically to L∗.

Theorem 2.8 was proved by [Dembo 1986, Theorem 2].
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Résumé

Dans ce chapitre, nous proposons un modèle de type HMM à temps discret, noté
DTM-K, pour une suite d’indices journaliers de clarté (Kh)h=1,2,..., ainsi qu’un mod-
èle de type HMM à temps continu, noté CTM-k, pour un processus d’indice de
clarté (kt)t∈[0,T ] sur un intervalle de temps [0, T ]. Les estimations numériques des
paramètres de CTM-k nécessite de construire un modèle approché à temps discret,
noté DTAM-k, obtenu en discrétisant le temps par une partition de [0, T ].

Pour chacun de ces modèles, nous définissons un processus des états, un processus
des observations, et un vecteur de paramètres. Nous détaillons les équations de
filtrages pour obtenir les formules de mise à jour des estimations dans les itérations
de l’algorithme EM, en particulier pour estimer la variance du bruit.

Les applications numériques ont été faites en utilisant des données provenant de
mesures effectuées à La Réunion pour DTM-K et en Guadeloupe pour CTM-k et
DTAM-k.

Les résultats de ce chapitre ont été présentés à la conférence [Tran 2013] (voir
aussi [Tran a]).

Abstract

In this chapter, we propose a discrete-time HMM model, denoted DTM-K, for a
sequence of daily clearness index (Kh)h=1,2,..., and also a continuous-time HMM
model, denoted CTM-k, for a process (kt)t∈[0,T ] of clearness index on a time interval
[0, T ]. Numerical estimations of CTM-k parameters requires to build a discrete-time
approximating model, denoted by DTAM-k, obtained by discretizing time, using a
partition of [0, T ].

For each of these models, we define a state process, an observation process, and
a parameter vector. We detail the filtering equations in order to get estimation
update formulas used in the iterations of EM algorithm, in particular for estimating
the noise variance.

Experiments for DTM-K (resp. for CTM-k and DTAM-k) are done using data
coming from measurements performed in La Réunion island (resp. in Guadeloupe
island).

The results of this chapter have been presented in [Tran 2013] conference (also
see [Tran a]).
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Figure 3.1: Histogram of observed data: (a) daily CIS measured in October 2010,
La Réunion; (b) k-DATA-II.1 (see Table 3.3).

3.1 Modelling a daily clearness index sequence

The empirical distribution of a daily Clearness Index Sequence (CISs) during a
period (for instance during October 2010 Figure 3.1a) suggests that the daily CIS
distribution could be a Gaussian mixture, each Gaussian component corresponding,
may be, to some specific meteorological regime. This has lead us to modelize the
dynamic of the sequence by a discrete-time HMM where

1. the unobserved state process is a Markov chain representing the dynamic of
regimes, each daily index belonging to a regime, several daily indices belonging
eventually to a same regime,

2. the observed process is such that, given (or within) regime i, the various
observed daily clearness indices are outcomes of a Gaussian distribution whose
mean bi and standard deviation αi depend on regime i, i = 1, 2, . . . , N .

Actually, each regime corresponds to a Gaussian component of the suggested Gaus-
sian mixture, and in terms of probabilistic classification, each regime corresponds
to a (Gaussian) class. The advantage of considering a HMM is that it provides a
parametric description of the random dynamic of the regimes, which is not the case
in a classification setting.

In this section we propose a discrete-time HMM (Xh,Kh)h=1,2,... to model a
daily clearness index sequence in random environment. We first describe the state
process, the observation process and the parameters of the model denoted DTM-K.
Then we will detail the pseudo log-likelihood function, the filtering equations and
the computations used in the EM algorithm. Experiments with real data will be
presented in Section 3.4.
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3.1.1 State process

The random dynamic of meteorological regimes will be modellized by a state process,
an unobserved discrete-time, finite-state homogeneous Markov chain (Xh)h=0,1,2,...

(Figure 3.2).

Markov Chain X
h
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0.4

0.6
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K
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e
1
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Figure 3.2: An illustration for the DTM-K: (Xh,Kh)h=1,2,....

The state space of (Xh) is the set of unit vectors:

S = {e1, e2, . . . , eN}, ei = (0, . . . , 0, 1︸︷︷︸
i−th

, 0, . . . , 0)′ ∈ R
N .

Recall that we can write Xh = (〈Xh, e1〉, 〈Xh, e2〉, . . . , 〈Xh, eN 〉)′ and the process
(Xh)h=1,2,... can be represented by the following equation, called the state equation,

Xh = AXh−1 + Vh, (3.1)

where (Vh)h=1,2,... is a sequence of martingale increments.

3.1.2 Observation Process and model parameters

The random values of a daily CIS (Kh) are modelled by the so-called observation
process as follows. In regime i, that is when the Markov chain is in state ei, (i =
1, 2, . . . , N) the daily clearness index Kh will be considered as an outcome of a
Gaussian distribution N (bi, α

2
i ) depending on regime i. In other words:

1(Xh=ei)Kh = 1(Xh=ei)(bi + αiwh), h = 1, 2, . . . , (3.2)
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where wh are N (0, 1) i.i.d. random variables and bi, αi are parameters to be esti-
mated.

The DM-K model of daily CIS under the random effects of meteorological events
will be the HMM (Xh,Kh)h=1,2,..., where the state process (Xh) is determined by
(3.1) and the observation process (Kh) is defined as

Kh =

N∑

i=1

1(Xh=ei)Kh =

N∑

i=1

1(Xi=ei) (bi + αiwh) , h = 1, 2, . . . . (3.3)

If b = (b1, b2, . . . , bN )′ and α = (α1, α2, . . . , αN )′, then we have equivalently

Kh = 〈Xh, b〉+ 〈Xh, α〉wh, h = 1, 2, . . . . (3.4)

The parameter vector for the proposed model DM-K is

θ = (aji, 1 ≤ j 6= i ≤ N ; b1, b2, . . . , bN ; α1, α2, . . . , αN ),

where the number of states N will be suggested by the user.

3.1.3 Parameter estimation

As mentioned in Chapter 2, our aim is to determine a new parameter vector θ′ =
{(a′ji), 1 ≤ j 6= i ≤ N ; b′, α′} which maximizes the pseudo log-likelihood function at
each iteration of EM algorithm, where b′ = (b′1, b

′
2, . . . , b

′
N )′, α′ = (α′

1, α
′
2, . . . , α

′
N )′.

Updating the transition probabilities aji is as follows ([Elliott 1995, chap. 3, pg.
68-70] and [James 1996]):

a′ji =
π(J ji

h )

π(Oi
h)

1 ≤ j 6= i ≤ N, (3.5)

where π(J ji
h ) and π(Oi

h) are the normalized filters (see Section 2.5.3) of the number
of jumps and the occupation time, respectively.

Note that in (3.5), π is built using θ (corresponding to θ′(p) in p-th iteration of
the EM algorithm), and not θ′ (corresponding to θ′(p+1)).

We now consider the update from b and α to b′ and α′, respectively.

3.1.3.1 Pseudo log-likelihood function

Given the filtration YK
h of observed data at day h, consider the conditional expec-

tation of the log-likelihood function:

Q(θ′, θ) = Eθ

[
log ΛK,θθ′

h |YK
h

]
, (3.6)

where ΛK,θθ′

h =
dPθ′
dPθ

∣∣
GK
h

.

We first have

ΛK,θθ′

h =

h∏

l=1

〈Xl, α〉φ
(
Kl−〈Xl,b

′〉
〈Xl,α′〉

)

〈Xl, α′〉φ
(
Kl−〈Xl,b〉
〈Xl,α〉

) , (3.7)
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where φ(·) denotes the N (0, 1) density.
From (3.6) and (3.7), we get:

Q(θ′, θ) = Eθ

{
h∑

l=1

[
log

1

〈Xl, α′〉 −
1

2

(
Kl − 〈Xl, b

′〉
〈Xl, α′〉

)2
]
∣∣YK

h

}
+R(θ,YK

h ), (3.8)

where the function R(θ,YK
h ) does not depend on θ′.

3.1.3.2 Computations in EM algorithm

E-Step (Expectation Step) : Set θ = θ′(p) and rewrite (3.8) as

Q(θ′, θ′(p)) =
N∑

i=1

Eθ′(p)

{
h∑

l=1

[
〈Xl, ei〉 log

1

α′
i

− 1

2

〈Xl, ei〉
α′2
i

(Kl − b′i)
2

] ∣∣YK
h

}

+R(θ′(p),YK
h )

=
N∑

i=1

{
π(Oi

h) log
1

α′
i

− 1

2α′2
i

[
π(T i

h (K
2
h))− 2b′iπ(T i

h (Kh)) + b′2i π(Oi
h)
]}

+R(θ′(p),YK
h ),

where

Oi
h =

h∑

l=1

〈Xl, ei〉, (3.9)

T i
h (Kh) =

h∑

l=1

Kh〈Xl, ei〉, (3.10)

T i
h (K

2
h) =

h∑

l=1

K2
h〈Xl, ei〉, (3.11)

and π(Hh) = Eθ′(p)(Hh|YK
h ) for Hh ≡ Oi

h, T i
h (Kh) or T i

h (K
2
h).

M-Step (Maximization Step) : Let us find now θ′(p+1) ∈ arg max
θ′∈Θ

Q(θ′, θ′(p)).

1. Taking derivative of Q(θ′, θ′(p)) with respect to bi, i = 1, 2, . . . , N , we
obtain

∂

∂b′i
Q(θ′, θ′(p)) = − 1

2α′2
i

[
−2π(T i

h (Kh)) + 2b′iπ(Oi
h)
]
. (3.12)

Now ∂
∂b′i
Q(θ′, θ′(p)) = 0 yields

b′i =
π(T i

h (Kh))

π(Oi
h)

. (3.13)

2. Similarly, for i = 1, 2, . . . , N , ∂
∂α′

i
Q(θ′, θ′(p)) = 0 yields

α′2
i =

1

π(Oi
h)

[
π(T i

h (K
2
h))− 2b′iπ(T i

h (Kh)) + b′2i π(Oi
h)
]
. (3.14)
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3.1.3.3 Updating parameter

For Hh ≡ Oi
h, T i

h (Kh) or T i
h (K

2
h), as π(Hh) = 〈γ(HhXh),1〉

〈γ(Xh),1〉 , (3.5), (3.13), (3.14)
become:

a′ji =
〈γ(XhJ ij

h ), 1〉
〈γ(XhOi

h), 1〉
, b′i =

〈γ(XhT i
h (Kh)), 1〉

〈γ(XhOi
h), 1〉

, 1 ≤ j 6= i ≤ N, (3.15)

α′2
i =

(
〈γ(XhOi

h), 1〉
)−1

×
[
〈γ(XhT i

h (K
2
h)), 1〉 − 2b′i〈γ(XhT i

h (Kh)), 1〉+ b′2i 〈γ(XhOi
h), 1〉

]
. (3.16)

It remains to establish some recursive equations to compute γ(XhJ ji
h ), γ(XhOi

h),
γ(XhT i

h (Kh)) and γ(XhT i
h (K

2
h)). This is done in the next section.

3.1.4 Filtering equations

Definition 3.1. Let ΛK,θ
h be the process determined as in (2.19), h = 1, 2, . . . .

Define

qh = γ(Xh) = E(ΛK,θ
h Xh|YK

h ). (3.17)

The process (qh) is called the state filter process of model (Xh,Kh).

In oder to obtain a recursive equation for (qh), h = 1, 2, . . . , introduce the fol-
lowing quantities:

B
(i)
h ,

φ
(
Kh−bi

αi

)

αiφ (Kh)
, i = 1, 2, . . . , N,

Bh , diag(B
(1)
h , B

(2)
h , . . . , B

(N)
h ).

Lemma 3.1. The recursive equation of state process qh is given by

qh = BhAqh−1, h = 1, 2, . . . (3.18)

with initial condition q0 = π0.

Proof. By definition of (qh)h=1,2,... we have

qh =E(ΛK,θ
h Xh|YK

h )

=E

[
ΛK,θ
h−1

φ
(
Kh−〈Xh,b〉

〈Xhα〉

)

〈Xh, α〉φ (Kh)
Xh

∣∣∣∣YK
h

]

=

N∑

i=1

E
[
ΛK,θ
h−1〈Xh, ei〉|YK

h−1

]
B

(i)
h ei

=

N∑

i=1

E
{
E
[
ΛK,θ
h−1〈Xh, ei〉|GK

h−1

]∣∣YK
h−1

}
B

(i)
h ei,
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Noticing that YK
h−1 ⊂ GK

h−1, we get

qh =
N∑

i=1

E
{
ΛK,θ
h−1E

[
〈Xh, ei〉|GK

h−1

]∣∣YK
h−1

}
B

(i)
h ei

=

N∑

i=1

E
[
ΛK,θ
h−1〈AXh−1, ei〉|Kh−1

]
B

(i)
h ei

=

N∑

i=1

〈Aqh−1, ei〉B(i)
h ei

=BhAqh−1.

Using the state filter process (qh) computed in Lemma 3.1 above, the recursive
equation for the number of jumps, for the occupation time and for the level sum are
now stated in Theorem 3.1 and Theorem 3.2 below.

Theorem 3.1. Let J ij
h =

h∑
l=1

〈Xl−1, ei〉〈Xh, ej〉 be the number of jumps from state

ei to state ej up to time h. The process γ(J ij
h Xh) is computed by the following

recursive equation:

γ(J ij
h Xh) = BhAγ(J ij

h−1Xh−1) + 〈qh−1, ei〉〈BhAei, ej〉ej , h = 1, 2, . . . , (3.19)

with initial condition γ(J ij
0 X0) = 0.

Proof. We have

γ(J ij
h Xh) =E(ΛK,θ

h J ij
h Xh|YK

h )

=E

[
ΛK,θ
h−1

φ
(
Kh−〈Xh,b〉

〈Xh,α〉

)

〈Xh, α〉φ (Kh)

(
J ij
h−1 + 〈Xh−1, ei〉〈Xh, ej〉

)
Xh

∣∣∣∣YK
h

]

=

N∑

l=1

E
[
ΛK,θ
h−1〈Xh, el〉

(
J ij
h−1 + 〈Xh−1, ei〉〈Xh, ej〉

)
|YK

h−1

]
B

(l)
h el

=

N∑

l=1

E
[
ΛK,θ
h−1〈Xh, el〉J ij

h−1|YK
h−1

]
B

(l)
h el

+ E
[
ΛK,θ
h−1〈Xh, ej〉〈Xh−1, ei〉|YK

h−1

]
B

(j)
h ej . (3.20)

As YK
h ⊂ GK

h , conditional expectation properties imply that

E
[
ΛK,θ
h−1〈Xh, el〉J ij

h−1|YK
h−1

]
=E

{
E
[
ΛK,θ
h−1〈Xh, el〉J ij

h−1|GK
h−1

]∣∣YK
h−1

}

=E
[
ΛK,θ
h−1〈AXh−1, el〉J ij

h−1|YK
h−1

]

=〈Aγ(J ij
h−1Xh), el〉. (3.21)
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Similarly,

E
[
ΛK,θ
h−1〈Xh, el〉〈Xh−1, ei〉|YK

h−1

]
=E

{
E
[
ΛK,θ
h−1〈Xh, ej〉〈Xh−1, ei〉|GK

h−1

]∣∣YK
h−1

}

=E
[
ΛK,θ
h−1〈AXh−1, ej〉〈Xh−1, ei〉|YK

h−1

]

=aji〈qh−1, ei〉. (3.22)

Plugging (3.19), (3.21) into (3.22) and noticing that ajiB
(j)
h = 〈BhAei, ej〉, we get

γ(J ij
h Xh) =

N∑

l=1

〈Aγ(J ij
h−1Xh), el〉B(l)

h el + aji〈qh−1, ei〉B(j)
h ej

=BhAγ(J ij
h−1Xh−1) + 〈qh−1, ei〉〈BhAei, ej〉ej , h = 1, 2, . . . . (3.23)

Theorem 3.2. Let T i
h (f) =

h∑
l=1

f(Kl)〈Xl−1, ei〉 be the level sum for state ei, where

f(·) is any bounded function. The process γ(T i
h (f)Xh) is determined by:

γ(T i
h (f)Xh) = BhAγ(T i

h−1(f)Xh−1) + f(Kh)〈qh−1, ei〉BhAei, (3.24)

with initial condition γ(T i
0 (f)X0) = 0.

Proof. Starting with the definition of γ(T i
h (f)Xh) and noticing that YK

h ⊂ GK
h ,

similar arguments as those used in Lemma 3.1 and Theorem 3.1 give :

γ(T i
h (f)Xh) =E(ΛK,θ

h T i
h (f)Xh|YK

h )

=E

[
ΛK,θ
h−1

φ
(
Kh−〈Xh,b〉

〈Xh,α〉

)

〈Xh, α〉φ (Kh)

(
T i
h−1(f) + f(Kh)〈Xh−1, ei〉

)
Xh

∣∣∣∣YK
h

]

=

N∑

l=1

E
[
ΛK,θ
h−1〈Xh, el〉T i

h−1(f)
∣∣YK

h−1

]
B

(l)
h el

+

N∑

l=1

E
[
ΛK,θ
h−1〈Xh, el〉〈Xh−1, ei〉

∣∣YK
h−1

]
f(Kh)B

(l)
h el

=
N∑

l=1

E

{
E
[
ΛK,θ
h−1〈Xh, el〉T i

h−1(f)
∣∣GK

h−1

]∣∣∣∣YK
h−1

}
B

(l)
h el

+

N∑

l=1

E

{
E
[
ΛK,θ
h−1〈Xh, el〉〈Xh−1, ei〉

∣∣GK
h−1

]∣∣∣∣YK
h−1

}
f(Kh)B

(l)
h el.
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It follows that

γ(T i
h (f)Xh) =

N∑

l=1

E
[
ΛK,θ
h−1〈AXh−1, el〉T i

h−1(f)
∣∣YK

h−1

]
B

(l)
h el

+

N∑

l=1

E
[
ΛK,θ
h−1〈Xh−1, ei〉

∣∣YK
h−1

]
alif(Kh)B

(l)
h el

=
N∑

l=1

〈Aγ(T i
h−1(f)Xh−1), el〉B(l)

h el

+
N∑

l=1

〈qh−1, ei〉
]
alif(Kh)B

(l)
h el

=BhAγ(T i
h−1(f)Xh−1) + f(Kh)〈qh−1, ei〉BhAei.

Now, we apply Theorem 3.2 to get the recursive equations for γ(Oi
hXh),

γ(T i
h (Kh)Xh) and γ(T i

h (K
2
h)Xh).

Taking f(Kh) ≡ 1 in (3.24), we get:

Corollary 3.1.

γ(Oi
hXh) = BhAγ(Oi

h−1(f)Xh−1) + 〈qh−1, ei〉BhAei, (3.25)

with initial condition γ(Oi
0X0) = 0.

Applying Theorem 3.2 with f(Kh) ≡ Kh and then with f(Kh) ≡ K2
h, we obtain

the recursive equations for γ(T i
h (Kh)Xh) and γ(T i

h (K
2
h)Xh):

Corollary 3.2.

γ(T i
h (Kh)Xh) =BhAγ(T i

h−1(Kh)Xh−1) +Kh〈qh−1, ei〉BhAei, (3.26)

γ(T i
h (K

2
h)Xh) =BhAγ(T i

h−1(K
2
h)Xh−1) +K2

h〈qh−1, ei〉BhAei, (3.27)

with the initial conditions γ(T i
0 (Kh)X0) = γ(T i

0 (K
2
h)X0) = 0.

3.2 Modelling a clearness index process on a time inter-

val

3.2.1 CTM-k model

We now describe CTM-k, a continuous-time HMM (Xt, kt)t∈[0,T ] for modelling a
stochastic process of clearness index (kt)t∈[0,T ] during a continuous-time interval of
a solar day.

We define the state process (Xt)t∈[0,T ] as a continuous-time homogeneous Markov
chain (Section 2.8): the state space is again S = {e1, e2, . . . , eN}, where ei denotes
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the unit N -vector with 1 at the i-th position, and the transition rate matrix A∆ =

(λji) ∈ R
N×N with λii = − ∑

j 6=i

λji for i = 1, 2, . . . , N .

We define the observation process (kt), kt representing the random clearness
index at time t ∈ [0, T ], as a solution of the following SDE:

dkt = 〈Xt, c〉dt+ 〈Xt, β〉dWt, 0 ≤ t ≤ T, (3.28)

where (Wt) is a standard Brownian motion, and c =(c1, c2, . . . , cN )′, β =(β1, β2,
. . . , βN )′.

Our model CTM-k (Xt, kt) depends on the parameter vector:

θ = (λji, 1 ≤ j 6= i ≤ N ; c1, c2, . . . , cN ; β1, β2, . . . , βN ).

Let Gk
t = σ{Xs, ks; 0 ≤ s ≤ t} and Yk

t = σ{ks; 0 ≤ s ≤ t} denote the filtrations
of the complete data and the incomplete data, respectively.

3.2.2 Change of measure

For each parameter vector θ ∈ Θ, first consider the change of probability measure
from the initial measure Pθ in the real world (Ω, (Ft), Pθ) to the reference probability
measure P by putting

dP

dPθ

∣∣∣∣
Gk
t

= Λ
k,θ
t = exp

{
−

∫ t

0

〈Xs, c〉
〈Xs, β〉

dWs −
1

2

∫ t

0

[ 〈Xs, c〉
〈Xs, β〉

]2
ds

}
. (3.29)

By Ito formula, equation (3.28) has the equivalent form:

d

(
kt

〈Xt, β〉

)
=

〈Xt, c〉
〈Xt, β〉

dt+ dWt. (3.30)

By (3.29), (3.30) and Girsanov theorem, the process
(

kt
〈Xt,β〉

)
is a standard

Brownian motion under P .
We now consider the reverse change, from P to Pθ, by putting:

dPθ

dP

∣∣∣∣
Gk
t

= Λk,θ
t = exp

{∫ t

0

〈Xs, c〉
〈Xs, β〉

d

(
kt

〈Xt, β〉

)
− 1

2

∫ t

0

[ 〈Xs, c〉
〈Xs, β〉

]2
ds

}
. (3.31)

Then, Ito formula yields

Λk,θ
t = 1 +

∫ t

0
Λθ
s

〈Xs, c〉
〈Xs, β〉

d

(
ks

〈Xs, β〉

)
, (3.32)

and we have E(Λk,θ
t ) = 1.

With this back change, Girsanov theorem implies that under Pθ, W̃t is a standard
Brownian motion if we define

dW̃t = d

(
kt

〈Xt, β〉

)
− 〈Xt, c〉

〈Xt, β〉
dt. (3.33)
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Thus, under Pθ, (kt) satisfies the following equation equivalent to (3.28), due to Ito
formula and (3.33):

dkt = 〈Xt, c〉dt+ 〈Xt, β〉dW̃t, (3.34)

where (W̃t) is a standard Brownian motion.
That is, under Pθ, (kt) satisfies the real world dynamics. However, as P is a

more convenient measure, we will work on the reference probability space (Ω,Ft, P )

to compute the unnormalized filters γ(Ht) = E(Λk,θ
t Ht|Yk

t ), where (Ht) is a Gk
t -

adopted scalar process (for example Ht ≡ J ij
t ,Oi

t, . . . ). These results will be related
to (and used in) the real world (Ω, (Ft), Pθ) by using a version of conditional Bayes
Theorem:

Eθ(Ht|Yk
t ) =

E(Λk,θ
t Ht|Yk

t )

E(Λk,θ
t |Yk

t )
. (3.35)

A complete proof for (3.35) can be found in [Elliott 1995, Theorem 3.2]. We
here consider in cases where E(Λk,θ

t |Yk
t ) > 0. Suppose B is any set in G = {ω :

E(Λk,θ
t |Yk

t ) > 0)} ⊂ Yk
t , we must show

∫

B

E(Λk,θ
t Ht|Yk

t )

E(Λk,θ
t |Yk

t )
dPθ =

∫

B

Eθ(Ht|Yk
t )dPθ.

Proof. By noting E
[
E

(
ξ|Yk

t

)]
= E(ξ) for any ξ, we have:

∫

B

E(Λk,θ
t Ht|Yk

t )

E(Λk,θ
t |Yk

t )
dPθ =Eθ

[
1B

E(Λk,θ
t Ht|Yk

t )

E(Λk,θ
t |Yk

t )

]

=E

[
1BΛ

k,θ
t

E(Λk,θ
t Ht|Yk

t )

E(Λk,θ
t |Yk

t )

]

=E

[
E

[
1BΛ

k,θ
t

E(Λk,θ
t Ht|Yk

t )

E(Λk,θ
t |Yk

t )

∣∣Yk
t

]]

=E

[
1BE[Λk,θ

t |Yk
t ]
E(Λk,θ

t Ht|Yk
t )

E(Λk,θ
t |Yk

t )

]

=E
[
1BE(Λk,θ

t Ht|Yk
t )

]

=E
[
1BΛ

k,θ
t Ht

]

=

∫

B

Λk,θ
t HtdP

=

∫

B

HtdPθ

=

∫

B

Eθ(Ht|Yk
t )dPθ.

Remark 3.1. By Ito formula, the process in (3.29) can be determined by

Λ
k,θ
t = 1−

∫ t

0
Λ
k,θ
s

〈Xs, c〉
〈Xs, β〉

dWs, (3.36)
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and we have Λk,θ
t Λ

k,θ
t = 1.

3.2.3 Parameter estimation

At each iteration of EM algorithm, the new transition probabilities will be updated
by [Elliott 1995, chap. 3, pg. 68-70] and [James 1996]:

λ′ji =
π(J ji

t )

π(Oi
t)
, 1 ≤ j 6= i ≤ N, (3.37)

where π(J ji
t ) and π(Oi

t) are the normalized filter (see Section 2.8.2).

Because measures corresponding to Wiener processes with different variances are
not absolutely continuous [Lipster 2010, James 1996], we cannot obtain the ML esti-
mates of parameters β1, β2, . . . , βN in continuous time. However, we get around this
problem using discretization by introducing a Discrete Time Approximate Model
(DTAM) in which we can use densities with respect to the Lebesgue measure and
compute Radon-Nikodym derivatives of observation processes with different noisy
variances.

We now use the EM algorithm mentioned in Section 2.9 to update the ML
estimates of the parameter c = (c1, c2, . . . , cN )′.

3.2.3.1 Expectation step

We consider the pseudo log-likelihood function defined as:

Q(θ′, θ) = Eθ

(
log Λk,θθ′

t |Yk
t

)
,

where

Λk,θθ′
t =

dPθ′

dPθ

∣∣∣∣
Gk
t

=exp

{∫ t

0

〈Xs, c
′〉

〈Xs, β′〉2
dks −

1

2

∫ t

0

( 〈Xs, c
′〉

〈Xs, β′〉

)2

ds

}

×
[
exp

{∫ t

0

〈Xs, c〉
〈Xs, β〉2

dks −
1

2

∫ t

0

( 〈Xs, c〉
〈Xs, β〉

)2

ds

}]−1

=exp

{∫ t

0

[ 〈Xs, c
′〉

〈Xs, β′〉2
− 〈Xs, c〉

〈Xs, β〉2
]
dks

− 1

2

∫ t

0

[( 〈Xs, c
′〉

〈Xs, β′〉

)2

−
( 〈Xs, c〉
〈Xs, β〉

)2
]
ds

}
.
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Hence

Q(θ′, θ) =Eθ

{∫ t

0

[ 〈Xs, c
′〉

〈Xs, β′〉2
− 〈Xs, c〉

〈Xs, β〉2
]
dks

− 1

2

∫ t

0

[( 〈Xs, c
′〉

〈Xs, β′〉

)2

−
( 〈Xs, c〉
〈Xs, β〉

)2
]
ds

∣∣∣∣Yk
t

}
(3.38)

=Eθ

{ N∑

i=1

1

β′2i

[
c′i

∫ t

0
〈Xs, ei〉dks

− 1

2
c′2i

∫ t

0
〈Xs, ei〉ds

]∣∣∣∣Kt

}
+R(θ,Yk

t ), (3.39)

where R(θ,Yk
t ) does not depend on θ′.

Then, by setting θ = θ′(p) at the p-th iteration of EM algorithm, we get

Q(θ′, θ′(p)) =Eθ′(p)

{ N∑

i=1

1

β′2i

[
c′i

∫ t

0
〈Xs, ei〉dks

− 1

2
c′2i

∫ t

0
〈Xs, ei〉ds

]∣∣∣∣Yk
t

}
+R(θ′(p),Yk

t ). (3.40)

Using the notation π(Ht) = Eθ′(p)(Ht|Yk
t ), for Ht ≡ Oi

t or T i
t with

Oi
t =

∫ t

0
〈Xs, ei〉ds, T i

t =

∫ t

0
〈Xs, ei〉dks, i = 1, 2, . . . , N, (3.41)

we rewrite (3.40) as:

Q(θ′, θ′(p)) =
N∑

i=1

1

β′2i

[
c′iπ(T i

t )−
1

2
c′2i π(Oi

t)

]
+R(θ′(p),Yk

t ). (3.42)

3.2.3.2 Maximization step

From (3.42), ∂
∂c′i
Q(θ′, θ′(p)) = 0 becomes

c′i =
π(T i

t )

π(Oi
t)
, i = 1, 2, . . . , N. (3.43)

Observing that π(Ht) = γ(Ht)
γ(1) = 〈γ(XtHt),1〉

〈γ(Xt),1〉 (for Ht ≡ J ′ji
t , Oi

t or T i
t ), update

from λji to λ′ji in (3.37) and update from ci to c′i in (3.43) up to time T are now
given by

λ′ji =
〈γ(XTJ ji

T ), 1〉
〈γ(XTOi

T ), 1〉
, 1 ≤ j 6= i ≤ N, (3.44)

c′i =
〈γ(XTT i

T ), 1〉
〈γ(XTOi

T ), 1〉
, 1 ≤ i ≤ N, (3.45)

where the filter processes γ(XTOi
T ), γ(XTT i

T ) and γ(XTJ ji
T ) are obtained from

Theorem 3.3 and Theorem 3.4 in the next section.
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3.2.4 Filtering equations

Let the state process qt be defined as

qt = γ(Xt) = E(XtΛ
k,θ
t |Yk

t )

and let
C = diag

( c1
β1
,
c2
β2
, . . . ,

cN
βN

)
.

Theorem 3.3. Let Oi
t and T i

t be respectively the occupation time and the level sum
defined in (3.41). The recursive equations of filtering processes γ(XtOi

t), γ(XtT i
t )

and qt are given by

qt =π0 +

∫ t

0
A∆qsds+

∫ t

0
Cqs

dks
〈Xt, β〉

, (3.46)

γ(XtOi
t) =

∫ t

0
A∆γ(XsOi

s)ds+

∫ t

0
Cγ(XsOi

s)
dks

〈Xs, β〉
+

∫ t

0
〈qs, ei〉eids, (3.47)

γ(XtT i
t ) =

∫ t

0
A∆γ(XsT i

s )ds+

∫ t

0
Cγ(XsT i

s )
dks

〈Xs, β〉

+

∫ t

0
ci〈qs, ei〉eids+

∫ t

0
〈qs, ei〉eidks. (3.48)

Proof. Firstly, remark that the filtering equations of Theorem 3.3 which involvethe
process Xt are Yk-measurable, Yk = σ{ks, 0 ≤ s ≤ t}, because the observation
process (kt) is determined by a SDE depending on Xt:

dkt = 〈Xt, c〉dt+ 〈Xt, β〉dWt >

Consider a general scalar process defined as:

Ht = H0 +

∫ t

0
ρsds+

∫ t

0
δsdWs, (3.49)

where ρt and δt are Gt-predictable and square-integrable processes.
Ito product rule for semimartingales yields:

XtHt = X0H0 +

∫ t

0
Xsρsds+

∫ t

0
XsδsdWs +

∫ t

0
HsA

∆Xsds+

∫ t

0
HsdVs, (3.50)

in which it should be noticed that [X,H]t = X0H0 because ∆Xs∆Hs = 0 a.s.
Again Ito product rule applied to XtHt and Λk,θ

t yields:

XtHtΛ
k,θ
t =X0H0 +

∫ t

0
XsρsΛ

k,θ
s ds+

∫ t

0
XsδsΛ

k,θ
s dWs +

∫ t

0
HsA

∆XsΛ
k,θ
s ds

+

∫ t

0
HsΛ

k,θ
s dVs +

∫ t

0
Λk,θ
s

〈Xs, c〉
〈Xs, β〉

XsHs
dks

〈Xs, β〉
+ [XH,Λk,θ]t, (3.51)

where

[XH,Λk,θ]t =

∫ t

0
Λk,θ
s

〈Xs, c〉
〈Xs, β〉

Xsδsds. (3.52)
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As 〈Xs, ei〉Xs = 〈Xs, ei〉ei, we have

∫ t

0
Λk,θ
s

〈Xs, c〉
〈Xs, β〉

XsHs
dks

〈Xs, β〉
=

N∑

i=1

∫ t

0
〈Λk,θ

s XsHs, ei〉
ci
βi

dks
βi
ei, (3.53)

∫ t

0
XsδsΛ

k,θ
s dBs +

∫ t

0
Λk,θ
s

〈Xs, c〉
〈Xs, β〉

Xsδsds =

∫ t

0
XsδsΛ

k,θ
s

dks
〈Xs, β〉

=

N∑

i=1

∫ t

0
〈Λk,θ

s δsXs, ei〉
dks
βi
ei. (3.54)

Plugging (3.52), (3.53) and (3.54) into (3.51) we get

XtHtΛ
k,θ
t =X0H0 +

∫ t

0
XsρsΛ

k,θ
s ds+

N∑

i=1

∫ t

0
〈Λk,θ

s δsXs, ei〉
dks
βi
ei

+

∫ t

0
HsA

∆XsΛ
k,θ
s ds+

∫ t

0
HsΛ

k,θ
s dVs +

N∑

i=1

∫ t

0
〈Λk,θ

s XsHs, ei〉
ci
βi

dks
βi
ei.

(3.55)

Appliying conditional expectation E given Yk
t to both sides of (3.55) and noticing

that E(dVs|Yk
t ) = 0 ([Elliott 2010, Lemma 2.1, page 198]), it follows that

γ(XtHt) =γ(X0H0) +

∫ t

0
γ(Xsρs)ds+

N∑

i=1

∫ t

0
〈γ(δsXs), ei〉

dks
βi
ei

+

∫ t

0
A∆γ(XsHs)ds+

N∑

i=1

∫ t

0
〈γ(XsHs), ei〉

ci
βi

dks
βi
ei

=γ(X0H0) +

∫ t

0
γ(Xsρs)ds+

∫ t

0
γ(δsXs)

dks
〈Xs, β〉

+

∫ t

0
A∆γ(XsHs)ds+

∫ t

0
Cγ(XsHs)

dks
〈Xs, β〉

. (3.56)

We now apply (3.56) to obtain the recursive equations of qt, Ot
i and T i

t :

1. Taking Ht = H0 = 1, ρs = δs = 0, we obtain the recursive equation for the
state process qt = γ(Xt) = E(XtΛ

θ
t |Yk

t ):

qt = π0 +

∫ t

0
A∆qsds+

∫ t

0
Cqs

dks
〈Xs, β〉

. (3.57)

2. For the occupation time Ht ≡ Oi
t =

∫ t

0 〈Xs, ei〉ds, i = 1, 2, . . . , N , we take
Ht = Oi

t, H0 = 0, ρs = 〈Xs, ei〉, δs = 0 and Xtρs = Xs〈Xs, ei〉 = 〈Xs, ei〉ei.
Applying (3.56), we obtain

γ(XtOi
t) =

∫ t

0
A∆γ(XsOi

s)ds+

∫ t

0
Cγ(XsOi

s)
dks

〈Xs, β〉
+

∫ t

0
〈qs, ei〉eids. (3.58)



3.2. Modelling a clearness index process on a time interval 45

3. For the level sum T i
t =

∫ t

0 〈Xs, ei〉dks, i = 1, 2, . . . , N , we first observe that

T i
t =

∫ t

0
ci〈Xs, ei〉ds+

∫ t

0
βi〈Xs, ei〉dBs. (3.59)

Then, taking Ht = T i
t , H0 = 0, ρs = ci〈Xs, ei〉, δs = βi〈Xs, ei〉 and applying

(3.56), we get

γ(XtT i
t ) =

∫ t

0
A∆γ(XsT i

s )ds+

∫ t

0
Cγ(XsT i

s )
dks

〈Xs, β〉

+

∫ t

0
ci〈qs, ei〉eids+

∫ t

0
〈qs, ei〉eidks. (3.60)

Theorem 3.4. Let J ij
t =

∫ t

0 〈Xs, ei〉〈dXs, ej〉 be the number of jumps from state ei
to state ej, 1 ≤ i 6= j ≤ N , t ∈ [0, T ]. The filtering process γ(J ij

t ) is obtained from
the following recursive equation

γ(XtJ ij
t ) =

∫ t

0
A∆γ(XsJ ij

s )ds+

∫ t

0
Cγ(XsJ ij

s )
dks

〈Xs, β〉
+

∫ t

0
〈qs, ej〉λjieids, (3.61)

where C = diag
(
c1
β1
, c2
β2
, . . . , cN

βN

)
.

Proof. Using dXs = AXsds+ dVs, we first decompose

J ij
t =

∫ t

0
〈Xs, ei〉〈dXs, ej〉 =

∫ t

0
〈Xs, ei〉e′jdXs

=

∫ t

0
〈Xs, ei〉aijds+

∫ t

0
〈Xs, ei〉e′jdVs. (3.62)

Applying Itô product rule and noticing that Xs〈Xs, ei〉 = 〈Xs, ei〉ei, we have

XtJ ij
t =

∫ t

0
〈Xs, ei〉ajidsei +

∫ t

0
〈Xs, ei〉e′jdVsei

+

∫ t

0
AXsJ ij

s ds+

∫ t

0
J ij
s dVs + [X,J ij ]t, (3.63)
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where [X,J ij ]t is the quadratic variation computed as follows

[X,J ij ]t =
∑

0≤s≤t

∆J ij
s ∆Xs =

∑

0≤s≤t

(〈Xs, ei〉e′j∆Xs)(∆Xs)

=

∫ t

0

(
〈Xs, ei〉e′jdXs − 〈Xs, ei〉e′jXs−

)
(dXs −Xs−)

=
N∑

l,m=1

∫ t

0

(
〈Xs, ei〉e′jel − 〈Xs, ei〉e′jem

)
〈Xs− , em〉〈dXs, el〉(el − em)

=
N∑

l,m=1

∫ t

0

(
〈Xs, ei〉e′jel − 〈Xs, ei〉e′jem

)
〈Xs− , em〉almds(el − em)

+

N∑

l,m=1

∫ t

0

(
〈Xs, ei〉e′jel − 〈Xs, ei〉e′jem

)
〈Xs− , em〉〈dVs, el〉(el − em)

=
N∑

l,m=1

∫ t

0
〈〈Xs, ei〉e′jelei − 〈Xs, ei〉e′jemei, em〉almds(el − em)

+
N∑

l,m=1

∫ t

0
〈〈Xs, ei〉e′jelei − 〈Xs, ei〉e′jemei, em〉〈dVs, el〉(el − em).

Plugging into (3.63), the product XtJ ij
t becomes:

XtJ ij
t =

∫ t

0
〈Xs, ei〉ajidsei +

∫ t

0
〈Xs, ei〉e′jdVsei +

∫ t

0
AXsJ ij

s ds+

∫ t

0
J ij
s dVs

+
N∑

l,m=1

∫ t

0
〈〈Xs, ei〉e′jelei − 〈Xs, ei〉e′jemei, em〉almds(el − em)

+
N∑

l,m=1

∫ t

0
〈〈Xs, ei〉e′jelei − 〈Xs, ei〉e′jemei, em〉〈dVs, el〉(el − em).

Applying Ito product rule to XtJ ij
t and Λk,θ

t , we obtain

XtJ ij
t Λk,θ

t =

∫ t

0
〈XsΛ

k,θ
s , ei〉ajidsei +

∫ t

0
〈XsΛ

k,θ
s , ei〉e′jdVsei

+

∫ t

0
A∆XsJ ji

s Λk,θ
s ds+

∫ t

0
J ij
s Λk,θ

s dVs

+
N∑

l,m=1

∫ t

0
〈〈XsΛ

k,θ
s , ei〉e′jelei − 〈XsΛ

k,θ
s , ei〉e′jemei, em〉almds(el − em)

+
N∑

l,m=1

∫ t

0
〈〈XsΛ

k,θ
s , ei〉e′jelei − 〈XsΛ

k,θ
s , ei〉e′jemei, em〉〈dVs, el〉(el − em)

+

N∑

i=1

∫ t

0
〈XsΛ

k,θ
s , ei〉J ij

s

ci
βi

dks
βi
. (3.64)
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The recursive equation of γ(XtJ ij
t ) is then obtained taking conditional expectation

E given Yk
t of both sides of (3.64):

γ(XtJ ij
t ) =

∫ t

0
〈qs, ei〉ajidsei +

∫ t

0
A∆γ(XsJ ij

s )ds

+
N∑

l,m=1

∫ t

0
〈〈qs, ei〉e′jelei − 〈qs, ei〉e′jemei, em〉almds(el − em)

+

∫ t

0
Cγ(XsJ ij

s )
dks

〈Xsβ〉

=

∫ t

0
〈qs, ei〉ajidsei +

∫ t

0
A∆γ(XsJ ij

s )ds+

∫ t

0
Cγ(XsJ ij

s )
dks

〈Xsβ〉

+
N∑

l,m=1

∫ t

0
〈〈qs, ei〉e′jelei − 〈qs, ei〉e′jemei, em〉almdsel

−
N∑

l,m=1

∫ t

0
〈〈qs, ei〉e′jelei − 〈qs, ei〉e′jemei, em〉almdsem

=

∫ t

0
〈qs, ei〉ajidsei +

∫ t

0
A∆γ(XsJ ij

s )ds+

∫ t

0
Cγ(XsJ ij

s )
dks

〈Xsβ〉∫ t

0
〈qs, ei〉ajidsej −

∫ t

0
〈qs, ei〉ajidsei.

3.3 Discrete-Time Approximate Model DTAM-k

Since the data that we deal with have been sampled at regular time intervals, the
observation range [0, T ] is split into a regular partition

0 = t0 < t1 < t2 < · · · < th−1 < th < . . . tM = T, (3.65)

where ∆ = th− th−1 is such that M∆ = T and M is the size of the observed sample
k1, k2, . . . , kM used to estimate the model parameter vector.

3.3.1 Components of DTAM-k

Define the following discrete-time observations

uh =
1

∆
(kh − kh−1), h = 1, 2, . . . .

From (3.28) uh verifies:

uh = 〈Xh, c〉+
1√
∆
〈Xh, β〉wh, h = 1, 2 . . . ,M, (3.66)

where c = (c1, c2, . . . , cN )′, β = (β1, β2, . . . , βN )′ and wh
i.i.d.∼ N (0, 1), h = 1, 2 . . . .
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Equation (3.66) determines an observation sequence (uh)h=1,2,... which is driven
by state process (Xh)h=0,1,2,..., a discrete time Markov chain with state space S =

{e1, e2, . . . , eN} and transition probability matrix:

P = I +∆A∆ = (ǫji) ∈ R
N×N .

Note that, for a small enough time step ∆, P is a stochastic matrix.
The parameter vector of this model is

θ = (ǫji, 1 ≤ j 6= j ≤ N ; c1, c2, . . . , cN ;β1, β2, . . . , βN ).

For i = 1, 2, . . . , N , let us define the level sums of DTAM-k by

T i
h (u) ,

h∑

l=1

〈Xl, ei〉ul,

T i
h (u

2) ,
h∑

l=1

〈Xl, ei〉u2l .

Let Yu
h = σ(u1, u2, . . . , uh) denote the filtration of incomplete data. We will use

the following filter processes to obtain ML estimates of the model parameters:

π̃(Hh) , Eθ(Hh|Yu
h ),

γ̃(Hh) , E(HhΛ
u,θ
h |Yu

h ),

γ̃(XhHh) , E(XhHhΛ
u,θ
h |Yu

h ),

where Hh ≡ J ij
h ,Oi

h, T i
h (u) or T i

h (u
2).

3.3.2 Discrete-time approximate filtering equations

Our purpose here is to approximate the continuous-time filtering equations in order
that the resulting equations are locally Lipschitz continuous given the observation
path {k1, k2, . . . , kM}.

3.3.2.1 Approximation of state filter equation

For studying the approximate scheme of the state filtering equation, a particular case
of the Duncan-Mortenson-Zakai equation, we follow Clark’s robust filter approach
[Clark 1977]. We first introduce the following processes:

φ
(i)
t = exp

{∫ t

0

ci
βi

dks
βi

− 1

2

∫ t

0

(
ci
βi

)2

ds

}
, i = 1, 2, . . . , N, (3.67)

Φt = diag
(
φ
(1)
t , φ

(2)
t , . . . , φ

(N)
t

)
, (3.68)

qt = Φ−1
t qt. (3.69)

The process qt is called the robust filter of the state process qt. We will use this
process to provide an approximate equation for the state equation (3.46).
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Applying Ito product rule to the two processes

(φ
(i)
t )−1 = 1−

∫ t

0
(φ

(i)
t )−1 ci

βi
dWs, by (3.31) and (3.36),

q
(i)
t = π

(i)
0 +

∫ t

0
(λi1q

(1)
s + · · ·+ λiNq

(N)
s )ds+

∫ t

0
q(i)s

ci
βi

dks
βi
, from (3.46),

for i = 1, 2, . . . , N , we get

(φ
(i)
t )−1q

(i)
t = π

(i)
0 +

∫ t

0
(φ(i)s )−1(λi1q

(1)
s + · · ·+ λiNq

(N)
s )ds (3.70)

and

qt = π0 +

∫ t

0
(Φs)

−1A∆qsds. (3.71)

From (3.71), we can determine (qt) by the following ordinary differential equa-
tion:

d

dt
q = (Φt)

−1A∆Φtqt, (3.72)

with initial condition q0 = π0.
Integrating (3.72) between sampling times th−1 and th of the partition (3.65)

yields

qth = qth−1
+

∫ th

th−1

(Φs)
−1A∆Φsqsds, (3.73)

and the Euler-Maruyama method [Higham 2001] shows that

qth ≃ qth−1
+ (Φth−1

)−1A∆Φth−1
qth−1

∆. (3.74)

Multiplying both sides of (3.74) by Φth , we get

qth ≃ Φth(Φth−1
)−1[I+∆A∆]qth−1

= Φth(Φth−1
)−1Pqth−1

, (3.75)

where P = I+∆A∆, with I is the N ×N unit matrix..
We now consider the product Φth(Φth−1

)−1.

The definition of φ(i)t in (3.67) implies that

φ
(i)
th
(φ

(i)
th−1

)−1 = exp

{∫ th

th−1

ci
β2i
dks −

1

2

∫ th

h−1

(
ci
βi

)2

ds,

}
, (3.76)

for i = 1, 2, . . . , N .
As the partition (3.65) is such that ∆ = th − th−1, kh − kh−1 = ∆uh, (3.76)

becomes

φ
(i)
th
(φ

(i)
th−1

)−1 = exp

{
∆

2β2i
(2ciuh − c2i )

}
, i = 1, 2, . . . , N. (3.77)

We then have
Φth(Φth−1

)−1 = diag
(
B̃1

h, B̃
2
h, . . . B̃

N
h

)
= B̃h, (3.78)



50 Chapter 3. Stochastic models for clearness index processes

where B̃(i)
h = exp

{
∆
2β2

i

(2ciuh − c2i )
}

, for i = 1, 2, . . . , N .

Our numerical approximation of qth will be denoted by q̃h. From (3.75) and
(3.78), an approximation of the Duncan-Mortenson-Zakai equation is now given by

q̃h = B̃hP q̃h−1, q̃0 = π0. (3.79)

Clark [Clark 1977] has showed that the robust filter (qt) determined by qt =

Φ−1
t qt is a locally Lipschitz continuous function given the observed path {ks, 0 ≤

s ≤ t}. Therefore, applying (3.79), it is seen that the process (q̃m) determined by
equation (3.79) can be used to approximate the state filter (qt) which inherits this
continuity property.

3.3.2.2 Approximate filter equation of the number of jumps, of the oc-

cupation time and of the level sums

Using similar arguments as those used to obtain a robust filter of the state process
qs, robust versions γ(XtHt) of the filters γ(XtHt) for the processes Ht ≡ J ij

t ,Oi
t, T i

t

can be obtained from
d

dt
γ(XtJ ij

t ) =Φ−1
t A∆γ(XtJ ij

t )Φtγ(XtJ ij
t )

+ 〈q, ej〉〈Φ−1
t A∆γ(XtJ ij

t )Φtej , ei〉ei, (3.80)

d

dt
γ(XtOi

t) =Φ−1
t A∆γ(XtOi

t)Φtγ(XtOi
t) + 〈q, ei〉ei, (3.81)

dγ(XtT i
t ) =Φ−1

t A∆γ(XtT i
t )Φtγ(XtT i

t )dt+ 〈q, ei〉eidkt, (3.82)

with initial conditions γ(X0J ij
0 ) = γ(X0Oi

0) = γ(X0T i
0 (u0)) = 0, 1 ≤ i 6= j ≤ N .

For Ht ≡ J ij
t ,Oi

t or T i
t , let γ(XthHth) be an approximation of continuous-time

filter processes γ(XtHt) between sampling times th−1 and th in partition (??), using
robust filtering equations (3.80), (3.81) and (3.82).

The filter processes γ(XthJ ji
th
), γ(XthOi

th
) and γ(XthT i

th
) will be approximated

in the DTAM-k model by ∆−time filters γ̃(XhJ ji
h ), γ̃(XhOi

h) and γ̃(XhT i
h (uh)),

respectively, where:

γ̃(XhJ ij
h ) = B̃hP γ̃(Xh−1J ij

h−1) + 〈q̃h−1, ej〉〈B̃hPej , ei〉ei, (3.83)

γ̃(XhOi
h) = B̃hP γ̃(Xh−1Oi

h−1) + 〈q̃h−1, ei〉B̃hPei, (3.84)

γ̃(XhT i
h (uh)) = B̃hP γ̃(Xh−1T i

h−1(uh)) + uh〈q̃h−1, ei〉B̃hPei, (3.85)

with initial conditions γ̃(X0J ij
0 ) = γ̃(X0Oi

0) = γ̃(X0T i
0 (u0)) = 0, 1 ≤ i 6= j ≤ N .

The error between 〈γ̃(XhHh), 1〉 (for Hh ≡ J ij
h , Oi

h or T i
h , h = 1, 2, . . . ,M) and

〈γ(XthHth), 1〉 (for Hth ≡ J ij
th

, Oi
th

or T i
th

, 0 ≤ th ≤ T ) is evaluated by [James 1996,
Theorem 3.3 and Corollary 3.4]:

|〈γ(XthHth), 1〉[k]− 〈γ̃(XhHh), 1〉[k]| ≤ C‖k‖|∆+ ω∆(k)|, (3.86)

where the constant C‖k‖ depends on ‖k‖ , sup
0≤t≤T

|kt| and

ω∆(k) = max {|kt − ks| : 0 ≤ s, t ≤ T, |t− s| ≤ ∆} . (3.87)
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3.3.3 Updating parameter

EM algorithm is also used to obtain numerical ML estimates for DTAM-k. At each
iteration of algorithm, ML estimates of transition probabilities are updated by

ǫ′ji =
〈γ̃(XMJ ij

M ), 1〉
〈γ̃(XMOi

M ), 1〉 , 1 ≤ j 6= i ≤ N. (3.88)

For updating remaining parameters, we consider the following conditional ex-
pectation:

Q(θ′, θ) = Eθ




log




h∏

l=1

1√
∆
〈Xl, σ〉φ

(
ul−〈Xl,c

′〉
1√
∆
〈Xl,σ′〉

)

1√
∆
〈Xl, σ′〉φ

(
ul−〈Xl,c〉
1√
∆
〈Xl,σ〉

)




∣∣∣∣∣Y
u
h




, (3.89)

where c′ = (c′1, c
′
2, . . . , c

′
N )′, β′ = (β′1, β

′
2, . . . , β

′
N )′ and φ(·) is the N (0, 1) density

function.
At the p-th iteration of EM algorithm, vector θ = θ(p) and transform Q(θ′, θ(p))

as follows

Q(θ′, θ(p)) =
N∑

i=1

{
π̃(Oi

h) log
1

β′i
− ∆

β′2i

[
π̃(T i

h (u
2
h))− 2b′iπ̃(T i

h (uh)) + b′2i π̃(Oi
h)
]}

+R(θ′(p),Yu
h ),

where the function R(θ′(p),Yu
h ) does not depend on θ′.

Maximizing the function Q(θ′, θ(p)) above yields

c′i =
π̃(T i

h (u))

π̃(Oi
h)

, i = 1, 2, . . . , N, (3.90)

β′2i =
∆

π̃(Oi
M )

[
π̃(T i

M (u2))− 2c′iπ̃(T i
M (u)) + c′2i π̃(Oi

M )
]
. (3.91)

For Hh ≡ J ij
h ,Oi

h or T i
h (u), by plugging π̃(Hh) = γ̃(Hh)

γ̃(1) = 〈γ̃(XhHh,1〉)
〈q̃h,1〉 , into

(3.90), (3.91), we get:

c′i =
〈γ̃(XMT i

M (uM )), 1〉
〈γ̃(XMOi

M ), 1〉 , i = 1, 2, . . . , N (3.92)

β′2i =∆
(
〈γ̃(XMOi

M ), 1〉
)−1 [〈γ̃(XMT i

M (u2)), 1〉
− 2c′i〈γ̃(XMT i

M (u)), 1〉+ c′2i 〈γ̃(XMOi
M ), 1〉

]
, (3.93)

where the discrete-time filter process
(
γ̃(XhT i

h (u
2))

)
h=1,2,...,M

is determined by:

γ̃(XhT i
h (u

2
h)) = ΨhP γ̃(Xh−1T i

h−1(u
2
h)) + (uh)

2〈ph−1, ei〉ΨhPei, (3.94)

with initial condition γ̃(X0T i
0 (u

2)) = 0, i = 1, 2, . . . , N .
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3.4 Experiments with real data

The parameters will be estimated from the observed data, the number of states
being chosen after examining the data histograms. We deal with data coming from
some tropical humid areas, but our method can also be tested on other types of
climate.

3.4.1 Real data

Using standard formulas of the extraterrestrial radiation (Chapter 1), we compute
the CISs from the total solar radiation measurements performed in two French
islands: Guadeloupe and La Réunion which are tropical areas (as mentioned in
Section 1.6.2).

To apply DTM-K model, we have used one month length samples of daily clear-
ness index (Table 3.1) from measurements sampled at 1-minute in La Réunion in
2009, 2010 and 2011. Measurements corresponding to March 2009 are denoted K-
DATA-0309. Similar notations hold for other measurements.

We have applied DTAM-k model of CTM-k with total radiations sampled at
1−s (Section 1.6.2) in Guadeloupe in 2006 (see Table 3.3) by Dr. T. Soubdhan,
University of Antilles-Guyane. Time interval [0, T ] with T = 1 hour was split using
(3.65) with a small enough ∆ = 1/3600.
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2009 2010 2011
Month Average Variance Average Variance Average Variance

March 0.4569 0.0372 0.4187 0.0484 0.5290 0.0108
April 0.2044 0.0394 0.5534 0.0089 0.4604 0.0304
May 0.3486 0.0467 0.5127 0.0172 0.4463 0.0353
August 0.4949 0.0080 0.5043 0.0140 0.5170 0.0074
September 0.5368 0.0116 0.4385 0.0269 0.5122 0.0180
October 0.5484 0.0113 0.5554 0.0171 0.4811 0.0268

Table 3.1: Average and variance of clearness index sequences in some months in
2009, 2010 and 2011, La Réunion - France.

Day type Kh

I Clear 0.7 ≤ Kh < 0.9

II Partially cloudy 0.3 ≤ Kh < 0.7

III Cloudy 0.0 ≤ Kh < 0.3

Table 3.2: Classification of days according to clearness index (Table 4.2 in
[Ianetz 2008, page 94]).

Iqbal 1983 proposed utilizing the magnitude of the daily clearness index Kh to
define sky conditions, see Table 3.2. Note that there are several criterias for solar-
day classification which depend on geographical location and climatic conditions.
For expample, 4 classes were identified in Guadeloupe [Soubdhan 2009]: clear sky
days, intermittent clear sky days, intermittent cloudy sky days and cloudy sky days
while in La Réunion 5 classes were found [Delsaut 2013]: cloudy days, intermittent
bad days, disturbed days, intermittent good days and clear sky days. For simplicity,
we here use the classification according to Iqbal 1983.

3.4.2 Estimations

CTM-k will be considered by estimating DTAM-k parameters with ∆ = 1/3600,
using1-s mean CISs: k-DATA-I.1, k-DATA-II.2 and k-DATA-III.3.

Observing the histograms of these data Figure 3.3, Figure 3.4 and Figure 3.5,
we have decided that N = 4 states.

3.4.2.1 DTM-K parameter estimations

DTM-K parameter are estimated when using three daily CISs observed in August
2009 (K-DATA-0809, variance 0.0080, Figure 3.6(a)), March 2010 (K-DATA-0310,
variance 0.0484, Figure 3.7(a)) and October 2011 (K-DATA-1011, variance 0.0268,
Figure 3.8(a)).
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Data set Mean of CIS Variance of CIS time − dayth (in 2006)

DATA-I.1 0.7904 0.0069 09h10h− 262th
DATA-I.2 0.7536 0.0062 13h14h− 109th
DATA-I.3 0.7205 0.0097 13h14h− 139th
DATA-II.1 0.6162 0.2715 09h10h− 118th
DATA-II.2 0.4172 0.2234 13h14h− 234th
DATA-II.3 0.6178 0.1730 09h10h− 234th
DATA-III.1 0.2975 0.0308 13h14h− 339th
DATA-III.2 0.1052 0.0201 09h10h− 285th
DATA-III.3 0.1229 0.0269 13h14h− 180th

Table 3.3: Mean clearness index (k) sequences computed from measurements of total
solar radiation sample at 1-s in Guadeloupe-France in 2006. DATA-I.1 stands for
sequences belonging to type I in Table 3.2, and similarly for others.
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Figure 3.3: Histogram of daily CIS measured in: (a) August 2009, (b) March 2010,
La Réunion.
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Figure 3.4: Histogram of observed data: (a) daily CIS measured in October 2011,
La Réunion; (b) k-DATA-I.1.
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Figure 3.5: Histogram of observed data: (a) k-DATA-III.3; (b) k-DATA-II.2.

The histograms have incited to take N = 4 states, the parameter vector is
θ = {(aji), 1 ≤ j 6= i ≤ 4; b, α}, with b = (b1, b2, b3, b4)

′ and α = (α1, α2, α3, α4)
′.

The transition probability matrix is

A =




a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


 .

Note that aii = 1− ∑
j 6=i

aji, for i = 1, 2, 3, 4.
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Figure 3.6: Graph of daily CIS measured in August 2011, La Réunion-France, (a),
and its simulation, (b).
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Figure 3.7: Graph of daily CIS measured in March 2010, La Réunion-France, (a),
and its simulation, (b).
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Figure 3.8: Graph of daily CIS measured in October 2011, La Réunion-France, (a),
and its simulation, (b).
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Initial parameter vector was:

A(0) =




0.3 0.3 0.2 0.3

0.4 0.4 0.4 0.4

0.2 0.1 0.3 0.1

0.1 0.2 0.1 0.2


 ,

b(0) =(0.25, 0.5, 0.7, 0.8)′,

α(0) =(0.076, 0.076, 0.076, 0.076)′.

After 50 iterations, we obtain the following estimates:

1. From K-DATA-0809:

A(50) =




0.3075 0.1978 0.3271 0.0000

0.6925 0.5078 0.3210 0.0000

0.0000 0.0688 0.3519 0.8259

0.0000 0.2256 0.0000 0.1741


 ,

b(50) = (0.3874, 0.4872, 0.5749, 0.6223)′,

β(50) = (0.0586, 0.0473, 0.0167, 0.0154)′.

2. From K-DATA-0310:

A(50) =




0.4274 0.2736 0.1504 0.0000

0.4420 0.2979 0.3835 0.3299

0.0000 0.0000 0.4660 0.6687

0.1306 0.4285 0.0001 0.0014


 ,

b(50) = (0.0620, 0.4268, 0.5816, 0.6396)′,

α(50) = (0.0425, 0.1097, 0.0250, 0.0084)′.

The graphs in Figure 3.9, Figure 3.10 and Figure 3.11 show the evolution of
these estimates.

Models with their estimated parameters were used to simulated some
paths:Figure 3.6(b) and Figure 3.7(b).
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Figure 3.9: Estimation of probability transition matrix A from daily CIS measured
in: (a) August 2009, (b) March 2010, La Réunion-France.
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Figure 3.10: Estimation of parameter vector b from daily CIS measured in: (a)
August 2009, (b) March 2010, La Réunion-France.
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Figure 3.11: Estimation of parameter vector α from daily CIS measured in: (a)
August 2009, (b) March 2010, La Réunion-France.
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Different limit estimations (θ1,∗ and θ2,∗) are obtained from the same obser-
vation data when using different initial parameters (θ(1,0) and θ(2,0), respectively).
However, simulated data obtained from the models with these limit vectors do not
have many differences. Simulated values generated by these models have the same
distribution as observation data. The mean of simulated paths converge to the mean
of observation data. These remarks confirm the properties of EM algorithm used in
our estimatiion setting.

We checked this problem in several cases. For instance, to estimate the parame-
ters of DTM-K with N = 4 states by using the daily CISs observed in October 2011
at La Réunion ( Figure 3.8(a)), we started with two initial parameter vectors θ(1,0),
θ(2,0) as follows:

The vector θ(1,0) includes : The vector θ(2,0) includes :

A(1,0) =




0.3 0.3 0.2 0.3

0.4 0.4 0.4 0.4

0.2 0.1 0.3 0.1

0.1 0.2 0.1 0.2


 , A(2,0) =




0.18 0.08 0.10 0.20

0.21 0.11 0.60 0.20

0.31 0.20 0.19 0.40

0.30 0.61 0.11 0.40


 ,

b(1,0) =(0.25, 0.5, 0.7, 0.8)′, b(2,0) =(0.35, 0.45, 0.55, 0.65)′,

α(1,0) =(0.076, 0.076, 0.076, 0.076)′. α(2,0) =(0.1, 0.2, 0.3, 0.4)′.

Results after 100 iterations:

1. The limit vector θ(1,∗) obtained from θ(1,0):

A(1,100) =




0.2192 0.3714 0.0000 0.1646

0.4008 0.2282 0.5722 0.5197

0.3800 0.4005 0.1956 0.0000

0.0000 0.0000 0.2322 0.3158


 ,

b(1,100) =(0.2793, 0.4312, 0.6392, 0.7004)′,

α(1,100) =(0.0522, 0.0985, 0.0343, 0.0050)′.

2. The limit vector θ(2,∗) obtained from θ(2,0):

A(2,100) =




0.2223 0.0000 0.0000 0.5443

0.0000 0.1095 0.7774 0.1528

0.7777 0.0000 0.2226 0.0000

0.0000 0.8905 0.0000 0.3029


 ,

b(2,100) =(0.2860, 0.6459, 0.3818, 0.5567)′,

α(2,100) =(0.0428, 0.0381, 0.1173, 0.1139)′.

The graphs in Figure 3.12, Figure 3.13 and Figure 3.14 show the evolution of
estimates from θ(1,0) and θ(2,0). Figure 3.8(b) shows a simulated path from the
model with limit vector parameter θ(1,∗). Convergence of averages and estimated
cumulative distribution function of simulated values generated by the models with
these limit vector parameter θ(1,∗), θ(2,∗) are shown in Figure 3.15.
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Figure 3.12: Estimation of the transition matrix A from K-DATA-1011 and the
initial parameter vector: (a) θ(1,0); (b) θ(2,0).
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Figure 3.13: Estimation of parameter vector b from K-DATA-1011 and the initial
parameter vector: (a) θ(1,0); (b) θ(2,0).
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Figure 3.14: Estimation of parameter vector α from K-DATA-1011 and the initial
parameter vector: (a) θ(1,0); (b) θ(2,0).
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Figure 3.15: (a) Convergence of average of simulated values; (b) Estimated CDF
from simulated values.

3.4.2.2 Some illustrations for DTAM-k

By using the three 1-s mean CISs: k-DATA-I.1 (Figure 3.19a), k-DATA-II.2 (Fig-
ure 3.21a) and k-DATA-III.3 (Figure 3.20a), the parameter vector θ = {A∆ =

(λji), 1 ≤ j 6= i ≤ 4; c, β} of CTM-k will be approximated by estimated parameter
vector θ = {P = (ǫji), 1 ≤ j 6= i ≤ 4; c, β} of its DTAM-k with ∆ = 1/3600, here
c = (c1, c2, c3, c4)

′, β = (β1, β2, β3, β4)
′ and P = I +∆A∆.

For CTM-k, we start with

A∆(0) =




−13 3 2 3

4 −9 4 3

2 3 −10 1

7 3 4 −7


 ,

c(0) =(0.25, 0.35, 0.55, 0.85)′,

β(0) =(1, 2, 3, 4)′.

then estimates of transition matrix in its DTAM-k will be started with:

P = I +∆A∆ =




0.9964 0.0008 0.0006 0.0008

0.0011 0.9975 0.0011 0.0008

0.0006 0.0008 0.9972 0.0003

0.0019 0.0008 0.0011 0.9981


 .

After 50 iterations of EM algorithm, we obtain
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1. From k-DATA-I.1:

P (50) =




0.9964 0.0008 0.0006 0.0008

0.0011 0.9975 0.0011 0.0008

0.0005 0.0008 0.9972 0.0003

0.0019 0.0008 0.0011 0.9981


 ,

c(50) = (0.0252, 0.0252, 0.0253, 0.0252)′,

β(50) = (0.0615, 0.0618, 0.0600, 0.0622)′.

2. From k-DATA-II.2:

P (50) =




0.9964 0.0008 0.0006 0.0008

0.0011 0.9975 0.0011 0.0008

0.0006 0.0008 0.9972 0.0003

0.0019 0.0008 0.0011 0.9981


 ,

c(50) = (−0.6084,−0.4740,−0.9695,−0.4315)′,

β(50) = (1.3048, 1.3032, 1.3242, 1.2984)′.

3. From k-DATA-III.3:

P (50) =




0.9941 0.0041 0.0073 0.0000

0.0046 0.9940 0.0000 0.0133

0.0013 0.0000 0.9927 0.0000

0.0000 0.0019 0.0000 0.9867


 ,

c(50) = (0.2189,−0.1635, 1.1028,−1.0794)′,

β(50) = (0.0068, 0.0068, 0.0096, 0.0100)′.

The graphs in Figure 3.16, Figure 3.17 and Figure 3.18 show the evolution of
estimates from k-DATA-III.3 and k-DATA-II.2.

The models with estimated parameters are used to simulate some paths: Fig-
ure 3.19(b), Figure 3.20(b) and Figure 3.21(b).
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Figure 3.16: Estimation of transition probability matrix P from: (a) k-DATA-III.3;
(b) k-DATA-II.2.
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Figure 3.17: Estimation of parameter vector c from: (a)k-DATA-III.3; (b) k-DATA-
II.2.

1 50
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

β

Estimation of parameter β

β
1

β
2

β
3

β
4

(a)

1 50
1

1.5

2

2.5

3

3.5

4

β

Estimation of parameter β

β
1

β
2

β
3

β
4

(b)

Figure 3.18: Estimation of parameter vector β from: (a) k-DATA-III.3; (b) k-DATA-
II.2.
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Figure 3.19: Graph of observed data k-DATA-I.1, (a), and its simulation, (b).
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Figure 3.20: Graph of observed data k-DATA-III.3, (a), and its simulation, (b).
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Figure 3.21: Graph of observed data k-DATA-II.2, (a), and its simulation, (b).
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Résumé

Dans ce chapitre, nous proposons un HMM à temps continu, noté CTM-y, pour
modéliser le rayonnement solaire total (yt)t≥0 considéré comme un processus aléa-
toire en milieu aléatoire.

Comme pour CTM-k, le processus détat (Xt) est une chaîne de Markov à temps
continu dont les états représentent les divers régimes météorologiques mais main-
tenant, le processus d’observation (yt) des mesures du rayonnement solaire total est
solution de l’équation différentielle stochastique en milieu aléatoire suivante :

dyt = [g(Xt)It − yt]dt+ σ(Xt)ytdWt,

où It désigne le rayonnement extraterrestre à l’instant t et (Wt) est un mouvement
Brownien standard.

Nous détaillons la méthode de probabilité de référence avec la technique de
changement de mesure et nous établissons les équations de filtrage pour la mise à
jour de l’estimation du vecteur de paramètres dans l’algorithme EM. Nous faisons
de même pour DTAM-y, un modèle approché à temps discret.

Les applications numériques, faites à partir de mesures échantillonnées à 1Hz,
permettent la. Les travaux de ce chapitre ont été présentés à [Tran 2011] et dans
[Tran b].

Abstract

In the present chapter, we propose a continuous-time HMM, denoted CTM-y, for
modelling the total solar radiation (yt)t≥0 considered as a stochastic process in
random medium.

As for CTM-k, the state process (Xt) is a continuous-time Markov chain whose
states represent various meteorological regimes but now, the total solar radiation
observation process (yt) is solution of the following stochastic differential equation
in random medium:

dyt = [g(Xt)It − yt]dt+ σ(Xt)ytdWt,

where It denotes the extraterrestrial radiation at time t and (Wt) a standard Brow-
nian motion.

We detail the reference probability method with the change of measure technic
and we establish the filter equations for updating the parameter vector estimation
in EM algorithm. We do the same for DTAM-y, an approximating discrete-time
model.

Experiments are done using measurements sampled at 1Hz.

The works of this chapter have been presented in [Tran 2011] and in [Tran b].
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4.1 CTM-y

4.1.1 State process

Assuming that there are N ≥ 1 regimes (states) in meteorological dynamics, we
will model the state dynamics by a continuous-time homogeneous Markov chain
(Xt)0≤t≤T with state space S = {e1, e2, ..., eN}, transition rate matrix A∆ = (λji) ∈
R

N×N and verifying the following equation

Xt = X0 +

∫ t

0
A∆Xsds+ Vt, (4.1)

where (Vt) is a (Ft)-martingale.

4.1.2 Pseudo-clearness index

Recall that clearness index kt is a dimensionless indicator of total solar radiation
Gt: kt = Gt

It
, where It is the extraterrestrial radiation.

We now assume that each meteorological regime i = 1, . . . , N induces a level of
pseudo-clearness index, say gi. Let g = (g1, g2, . . . , gN )′ and assume that the gi’s
are distinct.

The dynamics of such levels is descibed through the pseudo-clearness index func-
tion:

g(Xt) =
N∑

i=1

〈Xt, ei〉gi = 〈Xt, g〉. (4.2)

4.1.3 Observation process

During regime i, we assume that the process (yt) is solution of a SDE with an almost
affine drift depending on both pseudo-clearness index and extraterrestrial radiation,
the change dyt generally being likely to be negative but not lower than a threshold:

〈Xt, ei〉dyt = 〈Xt, ei〉[(giIt − yt)dt+ σiytdWt], (4.3)

where It is the extraterrestrial radiation received at time t, (Wt) is a standard
Brownian motion and σ2i is a constant noise variance during regime i.

We then have

N∑

i=1

〈Xt, ei〉dyt =
N∑

i=1

〈Xt, ei〉[(giIt − yt)dt+ σiytdWt]. (4.4)

and since
N∑
i=1

〈Xt, ei〉 = 1, (4.4) can be written as

dyt = [g(Xt)It − yt]dt+ σ(Xt)ytdWt, (4.5)

where σ(Xt) =
∑N

i=1〈Xt, ei〉σi = 〈Xt, σ〉 with σ = (σ1, σ2, . . . , σN )′ .
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Figure 4.1: An illustration for the CTM-y: (Xt, yt)t∈[0,T ].

The proposed model CTM-y that we propose for the total solar radiation process
is the pair of processes (Xt, yt) (Figure 4.1) defined by equations (4.1) and (4.5),
with parameter vector:

θ := {λji, 1 ≤ i 6= j ≤ N ; g1, g2, . . . , gN ; σ1, σ2, . . . , σN} . (4.6)

The number of states N will be suggested by the user and our aim is to estimate
the parameter vector θ given the observed data.

4.1.4 Filtrations

Let Gy
t = σ{Xs, ys; 0 ≤ s ≤ t} and Yy

t = σ{ys; 0 ≤ s ≤ t} denote the filtrations of
the complete data and the incomplete data, respectively. These filtrations contain
all the available information of observation history up to time t and Yy

t will be used
to estimate the parameters of the model.

4.1.5 Change of measure

Let us now detail the reference probability method with the change-of-measure tech-
nique.

By Ito formula

d

(
log yt
σ(Xt)

)
=
g(Xt)It − yt
σ(Xt)yt

dt+ dWt. (4.7)
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Working on the reference probability space (Ω, (Ft), P ) with a fix probability
measure P , we will frst establish the equations of filter processes. Then we will
translate these results in the “real world” (Ω, (Ft), Pθ) with a change of probability
measure using Girsanov theorem.

Using Ito formula in the “real world” (Ω, (Ft), Pθ) the observation process equa-
tion (4.5) has the equivalent form:

d

(
log yt
σ(Xt)

)
=
g(Xt)It − yt
σ(Xt)yt

dt+ dWt. (4.8)

Consider a change of measure from Pθ to P such that

P

Pθ

∣∣∣∣
Gy
t

= Λ
y,θ
t = exp

{
−

∫ t

0

g(Xs)Is − ys
σ(Xs)ys

dWs −
1

2

∫ t

0

[
g(Xs)Is − ys
σ(Xs)ys

]2
ds

}
. (4.9)

By Girsanov theorem and (4.8),
(

log yt
σ(Xt)

)
is a standard Brownian motion under

P , a more convenient measure to work with.
We can come back to the “real world” with the initial probability measure Pθ by

inverse change:

Pθ

P

∣∣∣∣
Gy
t

= Λy,θ
t = exp

{∫ t

0

g(Xs)Is − ys
σ(Xs)ys

d

(
log ys
σ(Xs)

)
− 1

2

∫ t

0

[
g(Xs)Is − ys
σ(Xs)ys

]2
ds

}
.

(4.10)
Girsanov theorem implies that under Pθ, (W̃t) is a standard Brownian motion if

we define

dW̃t = d

(
log yt
σ(Xt)

)
− g(Xt)It − yt

σ(Xt)yt
dt. (4.11)

It follows that under Pθ,

dyt = [g(Xt)It − yt]dt+ σ(Xt)ytdW̃t, (4.12)

where (W̃t) is a standard Brownian motion. That is, Pθ is the distribution law of
the observation process (yt) in the “real world”.

Note that:

1. By Ito formula and (4.10), the process Λ
θ
t is solution of the SDE:

Λ
y,θ
t = 1−

∫ t

0
Λs
g(Xs)Is − ys
σ(Xs)ys

dWs. (4.13)

2. Similarly,

Λy,θ
t =1 +

∫ t

0
Λθ
s

g(Xs)Is − ys
σ(Xs)ys

d

(
log ys
σ(Xs)

)
(4.14)

=1 +

∫ t

0
Λθ
s

(
g(Xs)Is − ys
σ(Xs)ys

)2

ds+

∫ t

0
Λθ
s

g(Xs)Is − ys
σ(Xs)ys

dWs. (4.15)

3. We have Λy,θ
t Λ

y,θ
t = 1.
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4.2 Parameter estimations in continuous time

As for CTM-k, the estimates of transition probabilities λji (1 ≤ i 6= j ≤ N) are
given by [Elliott 1995, chap. 3, pg. 68-70] and [James 1996]:

λ′ji =
π(J ji

t )

π(Oi
t)
, 1 ≤ j 6= i ≤ N (4.16)

where π(J ji
t ) and π(Oi

t) are the normalized filter (see Section 2.8.2).
We now proceed to the computations in EM algorithm for getting ML estimates

of the parameter vector g = (g1, g2, . . . , gN )′.

4.2.1 Expectation Step

Update from parameter θ to new parameter θ′ will be obtained by maximizing the
pseudo log-likelihood function defined as

Q(θ′, θ) = Eθ

(
log Λy,θ′θ

t |Yy
t

)
, (4.17)

where

Λy,θ′θ
t =

dPθ′

dPθ

∣∣∣∣
Gy
t

.

First, we have:

Q(θ′, θ) =Eθ

{∫ t

0

[〈Xs, g
′〉Is − ys

(〈Xs, σ′〉ys)2
− 〈Xs, g〉Is − ys

(〈Xs, σ〉ys)2
]
dys

− 1

2

∫ t

0

[(〈Xs, g
′〉Is − ys

〈Xs, σ′〉ys

)2

−
(〈Xs, g〉Is − ys

〈Xs, σ〉ys

)2
]
ds

∣∣∣∣Y
y
t

}
, (4.18)

where g′ = (g′1, g
′
2, . . . , g

′
N )′, σ′ = (σ′1, σ

′
2, . . . , σ

′
N )′.

At the p-th iteration of the algorithm Expectation Step, we set θ = θ′(p) in (4.18)
to obtain

Q(θ′, θ′(p)) = Eθ′(p)

{
N∑

i=1

1

σ′2i

[
g′i

∫ t

0

Is
y2s

〈Xs, ei〉dys −
∫ t

0

1

ys
〈Xs, ei〉dys

− 1

2
g′2i

∫ t

0

I2s
y2s

〈Xs, ei〉ds+ g′i

∫ t

0

Is
ys

〈Xs, ei〉ds

− 1

2

∫ t

0
〈Xs, ei〉ds

]∣∣∣∣Y
y
t

}
+R(θ′(p),Yy

t ), (4.19)

where R(θ′(p),Yy
t ) does not depend on θ′.
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4.2.2 Maximization Step

The maximum of Q(θ′, θ′(p)) is achieved by solving

∂

∂θ′
Q(θ′, θ′(p)) = 0.

We will then find a ML estimate g′i for updating gi, i = 1, 2, . . . , N as follows. We
first see that

∂

∂g′i
Q(θ′, θ′(p)) =

1

σ′2i

[
Eθ′(p)

(∫ t

0

Is
y2s

〈Xs, ei〉dys
∣∣∣∣Y

y
t

)
− g′iEθ′(p)

(∫ t

0

I2s
y2s

〈Xs, ei〉ds
∣∣∣∣Y

y
t

)

+ Eθ′(p)

(∫ t

0

Is
ys

〈Xs, ei〉ds
∣∣∣∣Y

y
t

)]
. (4.20)

Let

Mi
t =

∫ t

0

Is
ys

〈Xs, ei〉ds, (4.21)

N i
t =

∫ t

0

I2s
y2s

〈Xs, ei〉ds, (4.22)

T i
t =

∫ t

0

Is
y2s

〈Xs, ei〉dys. (4.23)

Then
∂

∂g′i
Q(θ′, θ′(p)) = 0 ⇐⇒ g′i =

Eθ′(p)(Mi
t|Yy

t ) + Eθ′(p)(T i
t |Yy

t )

Eθ′(p)(N i
t |Yy

t )
. (4.24)

For Ht ≡ Mi
t, N i

t and T i
t , we use the unnormalized filters π(Ht) = Eθ′(p)(Ht|Yy

t ),
to see that the new estimate g′i of gi up to time T is

g′i =
π(Mi

T ) + π(T i
T )

π(N i
T )

, i = 1, 2, . . . , N, (4.25)

Now, we have to compute π(Ht) = Eθ′(p)(Ht|Yy
t ), for Ht ≡ J ij

t , Oi
t, Mi

t, N i
t and

T i
t .

4.3 Equation of continuous time filters

As mentioned briefly in Chapter 2 and as applied in Chapter 3, we can obtain
the normalized filter π(Ht) = Eθ′(p)(Ht|Yy

t ) from the unnormalized filter γ(Ht) =

E(HtΛ
y,θ
t |Yy

t ) by noticing that

π(Ht) =
γ(Ht)

γ(1)
(4.26)

Now our aim is to compute γ(Ht) for Ht ≡ 1, J ij
t , Oi

t, Mi
t, N i

t or T i
t .

Recall that it is not generally possible to obtain directly the equations for γ(Ht),
see [James 1996], but, it is possible to obtain the equations for γ(HtXt) and then
get γ(Ht) as γ(Ht) = 〈γ(HtXt), 1〉, where 1 denotes the column N -vector of ones.
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In particular, for Ht ≡ 1, pt = γ(Xt), and γ(1) = 〈γ(Xt), 1〉 = 〈pt, 1〉 so that
(4.26) yields

π(Ht) =
〈γ(HtXt), 1〉

〈pt, 1〉
(4.27)

A recursive equation for γ(XtHt) for Ht ≡ 1, J ij
t , Oi

t, Mi
t, N i

t and T i
t is stated

in the following theorem.

Theorem 4.1. Let Ht a scalar process of the form

Ht = H0 +

∫ t

0
µsds+

∫ t

0
ρ′sdVs +

∫ t

0
δsdWs, (4.28)

where the real µs, δs and N -dimensional vector ρs are (Ft)-predictable, square-
integrable processes.

The unnormalized estimate γ(HtXt) is given by

γ(HtXt) =γ(H0X0) +

∫ t

0
A∆γ(HsXs)ds+

∫ t

0
γ(µsXs)ds

+

N∑

i,j=1

∫ t

0
〈γ(ρjsXs − ρisXs), ei〉ajids(ej − ei)

+

∫ t

0
Csγ(XsHs)

dys
σ(Xs)ys

+

∫ t

0
γ(δsXs)

dys
σ(Xs)ys

. (4.29)

Proof. Applying Ito product rule for semimartingales, compute the product HtXt

(where the process Xt is given by (2.36)) as follows:

HtXt =H0X0 +

∫ t

0
HsA

∆Xsds+

∫ t

0
HsdVs

+

∫ t

0
µsXsds+

∫ t

0
ρ′sXsdVs +

∫ t

0
δsXsdBs + [X,H]t (4.30)

Since ∆Ht = ρ′t∆Vt + ρ′t∆Wt, ∆Xt = ∆Vt and ∆Xt∆Wt = 0 a.s., we have:

[X,H]t =
∑

0<s≤t

(ρ′s∆Xs)∆Xs

=

∫ t

0

(
ρ′sdXs − ρ′sXs

)
(dXs −Xs)

=
N∑

i,j=1

∫ t

0
(ρjs − ρis)〈Xs, ei〉〈dXs, ej〉(ej − ei).

Then, using dXs = AXsds+ dVs, we get:

[X,H]t =
N∑

i,j=1

∫ t

0
(ρjs − ρis)〈Xs, ei〉〈dVs, ej〉(ej − ei)

+
N∑

i,j=1

∫ t

0
〈ρjsXs − ρisXs〉ajids(ej − ei)
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Plugging in (4.30) yields

HtXt =H0X0 +

∫ t

0
HsA

∆Xsds+

∫ t

0
HsdVs

+

∫ t

0
µsXsds+

∫ t

0
ρ′sXsdVs +

∫ t

0
δsXsdWs (4.31)

+
N∑

i,j=1

∫ t

0
(ρjs − ρis)〈Xs, ei〉〈dVs, ej〉(ej − ei)

+

N∑

i,j=1

∫ t

0
〈ρjsXs − ρisXs, ei〉ajids(ej − ei) (4.32)

Now, Ito product applied to the processes Λy,θ
t and HtXt yields:

Λy,θ
t HtXt =H0X0 +

∫ t

0
Λy,θ
s HsA

∆Xsds+

∫ t

0
Λy,θ
s HsdVs

+

∫ t

0
µsΛ

y,θ
s Xsds+

∫ t

0
ρ′sΛ

y,θ
s XsdVs +

∫ t

0
δsΛ

y,θ
s XsdWs (4.33)

+

N∑

i,j=1

∫ t

0
(ρjs − ρis)〈Λy,θ

s Xs, ei〉〈dVs, ej〉(ej − ei)

+
N∑

i,j=1

∫ t

0
〈ρjsΛy,θ

s Xs − ρisΛ
y,θ
s Xs, ei〉ajids(ej − ei)

+

∫ t

0
Λy,θ
s XsHs

g(Xs)Is − ys
σ(Xs)ys

dys
σ(Xs)ys

+ [HX,Λy,θ]t (4.34)

where the quadratic variation is given by

[XH,Λy,θ]t =

∫ t

0
δsΛ

y,θ
s Xs

g(Xs)Is − ys
σ(Xs)ys

ds (4.35)

Plugging (4.35) into (4.34), we get

∫ t

0
Λy,θ
s XsHs

g(Xs)Is − ys
σ(Xs)ys

dys
σ(Xs)ys

=
N∑

i=1

∫ t

0
〈Λy,θ

s XsHs, ei〉
giIs − ys
σiys

dys
σiys

ei,

(4.36)
∫ t

0
δsΛ

y,θ
s XsdBs +

∫ t

0
δsΛ

y,θ
s Xs

g(Xs)Is − ys
σ(Xs)ys

ds =

∫ t

0
δsΛ

y,θ
s Xs

dys
σ(Xs)ys

=

N∑

i=1

∫ t

0
〈Λy,θ

s δsXs, ei〉
dys
σiys

ei.

(4.37)
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Hence

Λy,θ
t HtXt =H0X0 +

∫ t

0
Λy,θ
s HsA

∆Xsds+

∫ t

0
Λy,θ
s HsdVs +

∫ t

0
µsΛ

y,θ
s Xsds

+

∫ t

0
ρ′sΛ

y,θ
s XsdVs +

N∑

i,j=1

∫ t

0
(ρjs − ρis)〈Λy,θ

s Xs, ei〉〈dVs, ej〉(ej − ei)

+
N∑

i,j=1

∫ t

0
〈ρjsΛy,θ

s Xs − ρisΛ
y,θ
s Xs, ei〉ajids(ej − ei)

+

N∑

i=1

∫ t

0
〈Λy,θ

s XsHs, ei〉
giIs − ys
σiys

dys
σiys

ei

+

N∑

i=1

∫ t

0
〈Λy,θ

s δsXs, ei〉
dys
σiys

ei. (4.38)

Taking conditional expectation E given Yy
t of both sides of (4.39) we obtain

γ(HtXt) =γ(H0X0) +

∫ t

0
A∆γ(HsXs)ds+

∫ t

0
γ(µsXs)ds

+
N∑

i,j=1

∫ t

0
〈γ(ρjsXs − ρisXs), ei〉ajids(ej − ei)

+
N∑

i=1

∫ t

0
〈γ(XsHs), ei〉

giIs − ys
σiys

dys
σiys

ei

+
N∑

i=1

∫ t

0
〈γ(δsXs), ei〉

dys
σiys

ei. (4.39)

As
N∑

i=1

∫ t

0
〈γ(δsXs), ei〉

dys
σiys

ei =

∫ t

0
γ(δsXs)

dys
σ(Xs)ys

,

(4.39) completes the proof.

Let us specify Theorem 4.1.
Take Ht = H0 = 1, µs = δs = 0, ρ = 0. Then

Corollary 4.1. The recursive equation for the state process pt = γ(Xt) =

E(XtΛ
y,θ
t |Yy

t ) is:

pt = π0 +

∫ t

0
A∆psds+

∫ t

0
Csps

dys
σ(Xs)ys

(4.40)

As in (3.62), we decompose the number of jumps from ei to ej in the time interval
[0, t] as follows:

J ij
t =

∫ t

0
〈Xs, ei〉ajids+

∫ t

0
〈Xs, ei〉e′jdVs
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Then, applying Theorem 4.1 with Ht = J ij
t , H0 = 0, µs = 〈Xs, ei〉aji, ρ =

〈Xs, ei〉ej , δs = 0, we get:

Corollary 4.2.

γ(J ij
t Xt) =

∫ t

0
A∆γ(J ij

t Xs)ds+

∫ t

0
aji〈ps, ei〉ejds+

∫ t

0
Csγ(J ij

s Xs)
dys

σ(Xs)ys
(4.41)

Note here that
N∑

i,j=1

∫ t

0
〈γ(ρjsXs − ρisXs), ei〉ajids(ej − ei) =

∫ t

0
aji〈ps, ei〉ejds−

∫ t

0
aji〈ps, ei〉eids.

because ρjs = 〈Xs, ei〉, ρis = 0.
Recalling that Xs〈Xs, ei〉 = 〈Xs, ei〉ei and applying Theorem 4.1 to the processes

Oi
t =

∫ t

0 〈Xs, ei〉ds, Mi
t =

∫ t

0
Is
ys
〈Xs, ei〉ds and N i

t =
∫ t

0
I2s
y2s
〈Xs, ei〉ds, i = 1, 2, . . . , N ,

we obtain the recursive equations for γ(Oi
tXt), γ(Mi

tXt) and γ(N i
tXt), respectively,

as stated in Corollary 4.3, Corollary 4.4 and Corollary 4.5 below.
Take Ht = Oi

t, H0 = 0, µs = 〈Xs, ei〉, δs = 0, ρ = 0, to get

Corollary 4.3.

γ(Oi
tXt) =

∫ t

0
A∆γ(Oi

sXs)ds+

∫ t

0
Csγ(Oi

sXs)
dys

σ(Xs)ys
+

∫ t

0
〈ps, ei〉eids (4.42)

Take Ht = Mi
t, H0 = 0, µs = Is

ys
〈Xs, ei〉, δs = 0, ρ = 0, to get

Corollary 4.4.

γ(Mi
tXt) =

∫ t

0
A∆γ(Mi

sXs)ds+

∫ t

0
Csγ(Mi

sXs)
dys

σ(Xs)ys
+

∫ t

0

Is
ys

〈ps, ei〉eids
(4.43)

Take Ht = N i
t , H0 = 0, µs =

I2s
y2s
〈Xs, ei〉, δs = 0, ρ = 0, to get

Corollary 4.5.

γ(N i
tXt) =

∫ t

0
A∆γ(N i

sXs)ds+

∫ t

0
Csγ(N i

sXs)
dys

σ(Xs)ys
+

∫ t

0

I2s
y2s

〈ps, ei〉eids (4.44)

Consider now T i
t =

∫ t

0
Is
y2s
〈Xs, ei〉dys, i = 1, 2, . . . , N and observe that

T i
t =

∫ t

0

Is
y2s

(Isgi − ys)〈Xs, ei〉ds+
∫ t

0

Is
ys
σi〈Xs, ei〉dBs. (4.45)

Applying Theorem 4.1 with Ht = T i
t , H0 = 0, µs = Is

y2s
(Isgi − ys)〈Xs, ei〉, ρ = 0,

δs =
Is
ys
σi〈Xs, ei〉, we obtain

γ(T i
t Xt) =

∫ t

0
A∆γ(T i

sXs)ds+

∫ t

0
Csγ(T i

sXs)
dys

σ(Xs)ys

+

∫ t

0

Is
y2s

(Isgi − ys)〈ps, ei〉eids+
∫ t

0

Is
ys
σi〈ps, ei〉ei

dys
σ(Xs)ys

(4.46)
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Noticing that

∫ t

0

Is
ys
σi〈ps, ei〉ei

dys
σ(Xs)ys

=

∫ t

0

Is
ys
σi〈ps, ei〉ei

dys
σiys

we then get

Corollary 4.6.

γ(T i
t Xt) =

∫ t

0
A∆γ(T i

sXs)ds+

∫ t

0
Csγ(T i

sXs)
dys

σ(Xs)ys

+

∫ t

0

Is
y2s

(Isgi − ys)〈ps, ei〉eids+
∫ t

0

Is
y2s

〈ps, ei〉eidys. (4.47)

4.4 Discrete-time approximating model DTAM

In this section we consider partition (3.65) of time interval [0, T ] (0 = t0 < t1 <

t2 < · · · < tm−1 < tm < · · · < tM ≤ T with equal width ∆ = tm − tm−1) to obtain
an approximating model of Continuous-Time Model (CTM) and the computable
approximations of the continuous-time filter equations described in Section 4.2.

4.4.1 Components of the model

From partition (??), we first define the following discrete-time sampled observations:

zm =
1

∆
(ym − ym−1), m = 1, 2 . . . (4.48)

The CTM-y discrete-time approximating model is the pair of processes
(Xm, zm)m=1,2,... defined as follows:

1. the state process is a discrete time Markov chain (Xh)h=0,1,2,... with state space
S = {e1, e2, . . . , eN} and transition probability matrix:

P = I +∆A∆ = (ǫji) ∈ R
N×N ;

2. the state process (Xm) is related to the observation sequence (zm)m=1,2,...,

through the equation:

zm = [〈Xm, g〉Im − ym] +
1√
∆
〈Xm, σ〉ymwm, m = 1, 2 . . . , (4.49)

where wm
i.i.d.∼ N (0, 1), m = 1, 2 . . . ;

3. the parameter vector of the model is:

θ = {ǫji, 1 ≤ j 6= i ≤ N ; g1, g2, . . . , gN ;σ1, σ2, . . . , σN}.
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4.4.2 Robust approximation of filter equations

We propose now some computable equations approximating the continuous-time
equations described in Section 4.2.

For the approximating schema of the state filter equation, we follow again Clark
robust filter approach [Clark 1977] using the robust forward state filter density in-
troduced by [James 1996, Krishnamurthy 2002].

We first introduce the following processes:

φ
(i)
t = exp

{∫ t

0

giIs − ys
σiys

dys
σiys

− 1

2

∫ t

0

(
giIs − ys
σiys

)2

ds

}
, i = 1, 2, . . . , N, (4.50)

Φt = diag
(
φ
(1)
t , φ

(2)
t , . . . , φ

(N)
t

)
. (4.51)

Definition 4.1. For t ∈ [0, T ], define

pt , (Φt)
−1pt. (4.52)

The process (pt) is called the robust filter of the state filter process (pt).

Considering similarly as in (4.13) and (4.14), we have

(φ
(i)
t )−1 = 1−

∫ t

0
(φ

(i)
t )−1 giIs − ys

σiys
dWs, i = 1, 2, . . . , N. (4.53)

From the state filter equation,

p
(i)
t = π

(i)
0 +

∫ t

0
(λi1p

(1)
s + · · ·+ λiNp

(N)
s )ds+

∫ t

0
p(i)s

giIs − ys
σiys

dys
σiys

,

i = 1, 2, . . . , N. (4.54)

By Itô rule, we have

(φ
(i)
t )−1p

(i)
t = π

(i)
0 +

∫ t

0
(φ(i)s )−1(λi1p

(1)
s + · · ·+ λiNp

(N)
s )ds, i = 1, 2, . . . , N.

(4.55)

An equivalent form of (4.52) is therefore:

pt = (Φt)
−1pt = π0 +

∫ t

0
(Φs)

−1A∆psds. (4.56)

By (4.56), the process (pt) will be determined by the ordinary differential equa-
tion:

d

dt
pt = (Φt)

−1A∆Φtpt, p0 = π0. (4.57)

An approximating schema to get the equation of (pt) from (pt) will be considered
below.
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From (4.57), an approximation of pt between the sampling times tm−1 and tm
of the partition (3.65) is given by

ptm = ptm−1
+

∫ tm

tm−1

(Φs)
−1A∆Φspsds. (4.58)

Euler-Maruyama method (see e.g. [Higham 2001]) yields

ptm ≃ ptm−1
+ (Φtm−1)

−1A∆Φtm−1ptm−1
∆. (4.59)

Multiplying both sides of (4.59) by Φtm , we obtain

ptm ≃ Φtm(Φtm−1)
−1[I+∆A∆]ptm−1 , (4.60)

where I is the N ×N unit matrix.
Plugging Ã = I+∆A∆ into (4.60) yields

ptm ≃ Φtm(Φtm−1)
−1Ãptm−1 . (4.61)

For i = 1, 2, . . . , N , the definition of φ(i)t in (4.50) implies that

φ
(i)
tm
(φ

(i)
tm−1

)−1 = exp

{∫ tm

th−1

giIs − ys
(σiys)2

dys −
1

2

∫ tm

m−1

(
giIs − ys
σiys

)2

ds

}
. (4.62)

As the partition (3.65) is such that ∆ = tm − tm−1, ym − ym−1 = ∆zm, (4.62)
becomes

φ
(i)
tm
(φ

(i)
tm−1

)−1 = exp

{
∆

[
(giIm − ym) zm

(σiym)2
− 1

2

(
giIh − ym
σiym

)2
]}

= ψ(i)
m i = 1, 2, . . . , N. (4.63)

We then have

Φtm(Φtm−1)
−1 = diag

(
ψ(1)
m , ψ(2)

m . . . ψ(N)
m

)
= Ψm, (4.64)

where

ψ(i)
m = exp

{
∆

[
(giIm − ym) zm

(σiym)2
− 1

2

(
giIm − ym
σiym

)2
]}

, i = 1, 2, . . . , N.

From (4.61) and (4.64), it is seen that

qm = ΨmÃqm−1, q0 = π0, m = 1, 2, . . . ,M, (4.65)

defines a numerical approximation qm of ptm .
Let Yz

m denote the σ-algebra generated by {z1, z2, . . . , zm} and let γ̃(HmXm) =

E(Λz,θ
m HmXm|Yz

m) for Hm ≡ J ij
m , Oi

m, Mi
m, N i

m and T i
m (i = 1, 2, . . . , N) with:

J ij
m =

m∑

h=1

〈Xh−1, ei〉〈Xh, ej〉, Oi
m =

m∑

h=1

〈Xh, ei〉, Mi
m =

m∑

h=1

Ih
yh

〈Xh, ei〉

N i
m =

m∑

h=1

I2h
y2h

〈Xh, ei〉, T i
m =

m∑

h=1

zhIh
y2h

〈Xh, ei〉.
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Similarly to Section 3.3.2.2, the continuous-time filtering processes γ(J ji
t Xt),

γ(Oi
tXt), γ(Mi

tXt), γ(N i
tXt) and γ(T i

t Xt) in CTM-y will be approximated by the
processes γ̃(J ji

mXm), γ̃(Oi
mXm), γ̃(Mi

mXm), γ̃(N i
mXm) and γ̃(T i

mXm), respectively,
if they are determined as follows:

γ̃(J ji
mXm) = ΨmÃγ̃(J ji

m−1Xm−1) + αji〈qm−1, ei〉ψj
mej , (4.66)

γ̃(Oi
mXm) = ΨmÃγ̃(Oi

m−1Xm−1) + 〈qm−1, ei〉ΨmÃei, (4.67)

γ̃(Mi
mXm) = ΨmÃγ̃(Mi

m−1Xm−1) +
Im
ym

〈qm−1, ei〉ΨmÃei, (4.68)

γ̃(N i
mXm) = ΨmÃγ̃(N i

m−1Xm−1) +

(
Im
ym

)2

〈qm−1, ei〉ΨmÃei, (4.69)

γ̃(T i
mXm) = ΨmÃγ̃(T i

m−1Xm−1) +
zmIm
y2m

〈qm−1, ei〉ΨmÃei, (4.70)

with initial conditions γ̃(J ji
0 X0) = γ̃(Oi

0X0) = γ̃(Mi
0X0) = γ̃(N i

0X0) = γ̃(T i
0X0)

= 0, where 0 denotes the column-vector of N zeros and (qm) is the state filter
approximation obtained from (4.65).

By using the discrete-time approximate filter processes above, updates, in our
DTAM-y model, from ǫji to ǫ′ji (1 ≤ j 6= i ≤ N) and from gi to gi (i = 1, 2, . . . , N)
are given by

ǫ′ji =
〈γ̃(J ji

MXM ), 1〉
〈γ̃(Oi

MXM ), 1〉 , (4.71)

g′i =
〈γ̃(T i

MXM ), 1〉+ 〈γ̃(Mi
MXM ), 1〉

〈γ̃(N i
MXM ), 1〉 . (4.72)

4.4.3 Estimation of the noise variance

In DTAM-k model, ML estimation of the noise variance can be obtained by using
Radon-Nikodym derivative [James 1996]:

dPθ′

dPθ
=

M∏

h=1

1
1√
∆
yh〈Xh, σ′〉

√
2π

exp

{
−(zh − Ih〈Xh, g

′〉+ yh)
2

2 (yh〈Xh,σ′〉)2
∆

}

×
[

1
1√
∆
yh〈Xh, σ〉

√
2π

exp

{
−(zh − Ih〈Xh, g〉+ yh)

2

2 (yh〈Xh,σ〉)2
∆

}]−1

. (4.73)
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The conditional expectation of the log-likelihood function is determined by

Q(θ′, θ) =Eθ

{
log

(
dPθ′

dPθ

)
|Yz

m

}

=Eθ

{ m∑

h=1

[
− log〈Xh, σ

′〉 − 1

2

∆

(yh〈Xh, σ′〉)2
(
z2h + I2h〈Xh, g

′〉2

+ y2h − 2zhIh〈Xh, g
′〉+ 2zhyh − 2yhIh〈Xh, g

′〉
)]∣∣∣∣Yz

m

}
+R(θ,Yz

m)

=Eθ

{ m∑

h=1

[
−

N∑

i=1

〈Xh, ei〉 log σ′i −
∆

2

N∑

i=1

〈Xh, ei〉
1

σ′2i

(z2h
y2h

+
I2h
y2h
g′2i

+ 1− 2
zhIh
y2h

g′i + 2
zh
yh

− 2
Ih
yh
g′i
)]∣∣∣∣Yz

m

}
+R(θ,Yz

m)

=

N∑

i=1

[
− π̃(Oi

m) log σ′i −
∆

2

1

σ′2i

(
π̃(Li

m) + π̃(N i
m)g′2i

+ π̃(Oi
m)− 2π̃(T i

m)g′i + 2π̃(Qi
m)− 2π̃(Mi

m)g′i
)]

+R(θ,Yz
M )

where the function R(θ,Yz
m) does not depend on θ′ and π̃(Hm) = Eθ(Hm|Yz

m) for
Hm ≡ Li

m, N i
m, Oi

m, T i
m, Qi

m and Mi
m (i = 1, 2, . . . , N,m = 1, 2, . . . ,M) where:

Li
m =

m∑

h=1

z2h
y2h

〈Xh, ei〉, Qi
m =

m∑

h=1

zh
yh

〈Xh, ei〉.

Taking the derivative of Q(θ′, θ) with respect to σ′i (i = 1, 2, . . . , N), we obtain

∂

∂σ′i
Q(θ′, θ) =− 1

σ′i
π̃(Oi

m) +
∆

σ′3i

[
π̃(Li

m) + π̃(N i
m)g′2i

+ π̃(Oi
m)− 2π̃(T i

m)g′i + 2π̃(Qi
m)− 2π̃(Mi

m)g′i
]
.

Now ∂
∂σ′

i
Q(θ′, θ) = 0 becomes

σ′2i =
∆

π̃(Oi
m)

[
π̃(Li

m) + π̃(N i
m)g′2i

+ π̃(Oi
m)− 2π̃(T i

m)g′i + 2π̃(Qi
m)− 2π̃(Mi

m)g′i
]
, i = 1, 2, . . . , N. (4.74)

Note that

π̃(Hm) =
〈γ̃(HmXm), 1〉

〈pm, 1〉
, for Hm ≡ Li

m,N i
m,Oi

m, T i
m,Qi

m and Mi
m, (4.75)

From (4.75), it is seen that (4.74) (up to time M) becomes:

σ′2i =
∆

〈γ̃(Oi
MXM ), 1〉

[
〈γ̃(Li

MXM ), 1〉+ 〈γ̃(N i
MXM ), 1〉g′2i + 〈γ̃(Oi

MXM ), 1〉

− 2〈γ̃(T i
MXM ), 1〉g′i + 2〈γ̃(Qi

MXM ), 1〉 − 2〈γ̃(Mi
MXM ), 1〉g′i

]
, i = 1, 2, . . . , N.

(4.76)
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where the discrete-time filter processes γ̃(Oi
MXM ), γ̃(Mi

MXM ), γ̃(N i
MXM ),

γ̃(T i
MXM ) are obtained from recursive equations (4.67), (4.68), (4.69), (4.70), re-

spectively, and the processes γ̃(Li
MXM ), γ̃(Qi

MXM ) are computed from

γ̃(Li
mXm) =ΨmÃγ̃Li

m−1Xm−1) +

(
zm
ym

)2

〈qm−1, ei〉ΨmÃei, (4.77)

γ̃(Qi
mXm) =ΨmÃγ̃(Qi

m−1Xm−1) +
zm
ym

〈qm−1, ei〉ΨmÃei, m = 1, 2, . . . ,M, (4.78)

with initial condition γ̃(Li
0X0) = γ̃(Qi

0X0) = 0.
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Figure 4.2: Histograms of observed data: (a) y-DATA-I.4; (b) y-DATA-III.4.
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Figure 4.3: Histograms of observed data: (a) y-DATA-II.1; (b) y-DATA-II.2.

4.5 Experiments with real data

We proceed now to parameter estimations with all the total solar radiation sequences
mentioned in Table 3.3. Various shapes of data histograms being observed, we tried
different numbers of states: N = 2, 4, 6, . . . .

The sequence of ML estimates {θ(p), p = 1, 2, . . . } generated by EM algorithm
fastly converges to a stability point when choosing reasonable initial parameter
vectors and correct number of states.

Here are some illustrations when dealing with two 4 hours-long data sequences:

• y-DATA-I.4, a total solar radiation sequence of type I (clear day) recorded
from 06:00 to 10:00 during the 262th-day, 2006, in Guadeloupe. Clearness
index mean and variance are 0.7564, 0.0014, repectively

• y-DATA-III.4, a total solar radiation sequence of type III (cloudy day)
recorded from 13:00 to 17:00 during the 180th-day, 2006, in Guadeloupe.
Clearness index mean and variance are 0.1456, 0.0018, respectively.

Similarly, we proceed with two 1 hour-long sequences of type II (partially cloudy
day): y-DATA-II.1, y-DATA-II.2 (see Table 3.3).

Observing these data histograms (Figure 4.2 and Figure 4.3), we have decided
that the number of states is N = 4.

Consider the two data sequences: y-DATA-I.4 (Figure 4.7(a)), y-DATA-III.4
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(Figure 4.8(a)) and start with initial parameter vector θ(0):

A(0) =




−30 13 7 8

11 −39 7 10

9 13 −20 9

10 13 6 −27


 ,

g(0) = (0.1, 0.5, 0.7, 0.9)′,

σ(0) = (0.2, 2, 4, 6)′.

The parameters of the CTM-y will be approximated by the estimates of its
DTAM-y from the initial parameter vector {P (0), g(0), σ(0)}, where

P (0) = I +∆A(0) =




0.9917 0.0036 0.0019 0.0022

0.0031 0.9892 0.0019 0.0028

0.0025 0.0036 0.9944 0.0025

0.0027 0.0036 0.0017 0.9925


 ,

and ∆ = 1/3600.
The estimated parameters after 100 iterations are (from the 30-th iteration, the

estimated parameters are quite similar, see Figure 4.4, Figure 4.5 and Figure 4.6):

1. For y-DATA-I.4:

P (100) =




0.9661 0.0000 0.0000 0.0000

0.0339 0.9718 0.0000 0.0000

0.0000 0.0282 0.9812 0.0000

0.0000 0.0000 0.0188 1.0000


 ,

g(100) = (20.5595, 15.2412, 12.6386, 1.5645)′,

σ(100) = (0.5107, 0.4960, 0.4993, 0.1346)′.

2. For y-DATA-III.4:

P (100) =




0.9905 0.0000 0.0000 0.0007

0.0000 0.9833 0.0013 0.0000

0.0000 0.0167 0.9934 0.0013

0.0095 0.0000 0.0053 0.9980


 ,

g(100) = (−0.7715, 1.7319, 0.6673, 0.0638)′,

σ(100) = (0.0923, 0.0881, 0.0782, 0.0551)′.

The graphs in Figure 4.4, Figure 4.5 and Figure 4.6 show the estimates evolution
for y-DATA-I.4 and y-DATA-III.4.

Using the estimated parameters, we generate some simulations for y-DATA-I.4,
y-DATA-III.4 which are shown in Figure 4.7(b) and Figure 4.8(b), respectively.
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Figure 4.4: Estimation of transition probability matrix P : (a) from y-DATA-I.4;
(b) from y-DATA-III.4.
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Figure 4.5: Estimation of parameter vector g: (a) from y-DATA-I.4; (b) from y-
DATA-III.4.
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Figure 4.6: Estimation of parameter vector σ: (a) from y-DATA-I.4; (b) from y-
DATA-III.4.



4.5. Experiments with real data 89

06:00 07:00 08:00 09:00 10:00
0

200

400

600

800

1000

1200

1400

     time (hh:min)

W
/m

2
observed total radiation

extraterrestrial radiation

(a)

06:00 07:00 08:00 09:00 10:00
0

200

400

600

800

1000

1200

1400

    time (hh:min)

W
/m

2

simulated total radiation

extraterrestrial radiation

(b)

Figure 4.7: (a) Graph of observed data y-DATA-I.4; (b) A simulation for y-DATA-
I.4.
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Figure 4.8: (a) Graph of observed data y-DATA-III.4; (b) A simulation for y-DATA-
III.4.
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Figure 4.9: (a) Graph of observed data y-DATA-II.1, a1), and its simulation, a2);
(b) Graph of observed data y-DATA-II.2, b1), and its simulation, b2).
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We now consider numerical estimations based on the data sequences y-DATA-
II.1 (Figure 4.9a1)) and y-DATA-II.2 (Figure 4.9b1)). We started with the following
initial parameters:

A(0) =




−7 4 3 2

3 −13 3 4

3 2 −9 4

1 7 3 −10


 ,

g(0) = (0.15, 0.45, 0.65, 0.95)′,

σ(0) = (1.5, 2.5, 3.5, 4.5)′.

and the matrix:

P (0) = I +∆A(0) =




0.9981 0.0011 0.0008 0.0006

0.0008 0.9964 0.0008 0.0011

0.0008 0.0006 0.9975 0.0011

0.0003 0.0019 0.0008 0.9972


 ,

where ∆ = 1/3600.
The estimates obtained after 100 iterations:

1. From y-DATA-II.1:

P (100) =




0.9418 0.1219 0.0000 0.1186

0.0212 0.8781 0.0060 0.0000

0.0070 0.0000 0.9843 0.0000

0.0300 0.0000 0.0096 0.8814


 ,

g(100) = (−30.7737, 92.3213, 3.5591, 94.4960)′,

σ(100) = (3.4343, 3.6536, 1.3474, 3.6932).

2. From y-DATA-II.2:

P (100) =




0.9980 0.0011 0.0008 0.0006

0.0008 0.9964 0.0008 0.0011

0.0009 0.0006 0.9975 0.0011

0.0003 0.0019 0.0008 0.9972


 ,

g(100) = (0.9527, 0.9378, 0.9022, 0.9583)′,

σ(100) = (2.4123, 2.4157, 2.4168, 2.4193)′.

The evolutions of these estimates are shown in Figure 4.10, Figure 4.11 and
Figure 4.12.

Using the estimated parameters, we generate some simulations for y-DATA-II.1,
y-DATA-II.2 shown in Figure 4.9a2) and Figure 4.9b2), respectively.
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Figure 4.10: Estimation of transition probability matrix P : (a) from y-DATA-II.1;
(b) from y-DATA-II.2.

1 50 100
−40

−20

0

20

40

60

80

100

120
Estimate of parameter g

g

g
1

g
2

g
3

g
4

(a)
1 50 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
g

Estimation of parameter g

g
1

g
2

g
3

g
4

(b)

Figure 4.11: Estimation of parameter vector g: (a) from y-DATA-II.1; (b) from
y-DATA-II.2.
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Figure 4.12: Estimation of parameter vector σ: (a) from y-DATA-II.1; (b) from
y-DATA-II.2.
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4.6 Simulations of total solar radiation day

Applying similar methods, we have obtained the simulations shown in Fig-
ure 4.13(b), Figure 4.14(b) and Figure 4.15(b) for observed data y-DATA-day-I,
y-DATA-day-II and y-DATA-day-III whose graphs are plotted in Figure 4.13(a),
Figure 4.14(a) and Figure 4.15(a), respectively.
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Figure 4.13: (a) Graph of observed data y-DATA-day-I; (b) A simulation for y-
DATA-day-I.
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Figure 4.14: (a) Graph of observed data y-DATA-day-II; (b) A simulation for y-
DATA-day-II.
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Figure 4.15: (a) Graph of observed data y-DATA-day-III; (b) A simulation for y-
DATA-day-III.
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Résumé

Ce chapitre présente deux applications utilisant des trajectoires simulées par nos
modèles : amélioration de l’estimation de la distribution de l’indice journalier de
clarté et prédiction du rayonnement solaire total.

Pour la première application, nous utilisons DTM-K estimé avec les données
mesurées à l’île de La R éunion, et npEM un algorithme d’estimation de mélanges.

Pour la seconde application, nous utilisons CTM-k et CTM-y estimés par des
données mesurées à 1Hz à l’île de La Guadeloupe et nous proposons une prédiction
à un horizon d’une heure.

Abstract

This chapter presents two applications using paths simulated by our models: im-
provement of the daily clearness index distribution estimation and prediction of total
solar radiation.

For the first application, we use DTM-K estimated from La R éunion island data
and npEM a mixture estimation algorithm.

For the second application, we use CTM-k and CTM-y estimated from data
sampled at 1Hz in Guadeloupe and we propose a prediction with horizon one hour.

5.1 Estimating the distribution of daily clearness index

Estimating the distribution of daily clearness index over a month or over a specific
period can be of interest for deciding wether our model estimated over this period
still works on a longer period or not. It can also be used for clustering daily CISs
observed on various periods.

Indeed, using DTM-K with its parameter estimated from a sample of daily CISs,
of one-month-length say, (Table 3.1), we can simulate a much larger n-sample of
Kh, say K ′

1, . . . ,K
′
n, over this period and get a smooth estimation of the pdf over

this month. Doing the same with another month and getting another n-sample, a
KS (Kolmogorov-Smirnov) test can be performed to reject or not the hypothesis
that both pdf are the same. If the hypothesis is rejected (w.r.t. a p-value), we
can reject the hypothesis that both models are the same. On the other hand, KS
distance between two sequences, computed from the two n-samples, can be used for
clustering CISs by performing some standard clustering methods.

5.1.1 Kernel estimators

The Gaussian kernel estimator of the density is the function f̂δ defined as

f̂δ(x) =
1

δn

n∑

h=1

φ

(
x−K ′

h

δ

)
, (5.1)
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where δ > 0 is a bandwidth (a smoothing parameter) and φ(·) denotes the N (0, 1)

density function kernel.
This estimator is of course much smoother than the uniform kernel estimator,

that is the empirical pdf f̂ , defined as follows: divide [0, 1] interval (the range
of Kh) into L sub-intervals ]xl−1, xl] of equal length ∆x = 1

L
with x0 = 0 and

xl = l∆x, l = 1, 2, . . . , L, then

f̂(x) =
nl
n

1

∆x
, (5.2)

where nl is the number of observed values in the interval ]xl−1, xl], l = 1, 2, . . . , L.

5.1.2 Mixtures of nonparametric densities

The estimator of the preceding section can be improved by assuming that the density
is a finite mixture of nonparametric densities, which means that the components of
the mixture are completely unspecified. While such a mixture is identifiable and
can be estimated by an EM-type algorithm in the parametric case (for example in
the case of a Gaussian mixture, Figure 5.1), this model, in the nonparametric case,
is not necessarily identifiable but can be estimated by the npEM (nonparametric
EM) algorithm [Benaglia 2009] which is implemented in the npEM fuction of the R
package mixtools.
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Figure 5.1: pdf of La Réunion Kh in March, estimated as a mixture by npEM
algorithm

5.1.3 Experiments

From each of the three daily CISs observed in La Réunion island during October
2009, 2010 and 2011, respectively, we have estimated the parameters of the three
corresponding DTM-k models. We have generated 50000 simulated paths of 31

values from each of these three estimated model. Then, from these n = 3×50000×31

values, we have estimated the pdf as shown in Figure 5.2 with different levels of
smoothing parameter, bandwidth δ and ∆t, see Figure 5.3 and Figure 5.2.

pdf of Kh were obtained similarly in March, April, May, August and September,
see Figure 5.4, Figure 5.5 and Figure 5.6, respectively.
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Figure 5.2: pdf of La Réunion Kh in October: a) observed data histogram with
∆x = 1/200, (b) kernel estimation with bandwidth δ = 1/200.
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Figure 5.3: pdf of La Réunion Kh in October: (a) observed data with ∆x = 1/25

(b) ∆x = 1/100.
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Figure 5.4: pdf of La Réunion Kh from simulated values (with ∆x = 1/300) : (a)
in March, (b) in August.
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Figure 5.5: pdf of La Réunion Kh estimated from simulated values (with ∆x =

1/300): (a) in April; (b) in September.
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Figure 5.6: pdf of Kh for May in La Réunion: (a) observed values with ∆x = 1/200;
(b) kernel estimation with δ = 1/200.
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5.2 Prediction

In this Section we implicitely assume that the model estimated on a time interval
[0, T ] still works on the time interval [T, T ′], with T ′ > T . Using the model with
its estimated parameters and the extraterrestrial radiation computed on [T, T ′], we
generate a large number of paths in the period [T, T ′]. Prediction of total solar
radiation on [T, T ′] then follows.

5.2.1 Confidence region and prediction error for hourly total solar

radiation

First, CTM-k and CTM-y parameters have been estimated from the 1 Hz measure-
ments of total solar radiation observed during T = 1h. Extraterrestrial radiation
has been computed on [T, T ′] with T ′ = 1h. Using this, L = 500 paths have been
simulated on [T, T ′], providing a confidence region of prediction for the total radia-
tion.

The error of prediction is usually evaluated by the MSPE (Mean Square Predic-
tion Error), that is the expectation (estimated by a mean) of the squared difference
between predicted values and observed values. MSPE has also to be averaged over
the L paths, that can also provide a confidence interval. We prefer here to simplfy
the prediction evaluation by computing, for each simulated path, the relative error
between the mean of predicted values and the mean of obseved values and then
provide the mean of these relative errors.

Observed datasets are mentioned in Table 3.3. The results are shown in Ta-
ble 5.1. The results obtained from CTM-y seem better than that from CTM-k.
Some cases of simulated paths are shown in Figure 5.7, Figure 5.8, Figure 5.9,
Figure 5.11, Figure 5.13, Figure 5.15 and Figure 5.17.
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Figure 5.7: Paths simulated from 14h to 15h (a) using CTM-k with parameters
estimated from k-DATA-I.2 (left), observed data (right), (b) using CTM-y with
parameters estimated from y-DATA-I.2.
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Figure 5.8: Paths simulated from 14h to 15h (a) using CTM-k with parameters
estimated from k-DATA-II.2 (left), observed data (right), (b) using CTM-y with
parameters estimated from y-DATA-II.2.
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Figure 5.9: Paths simulated from 14h to 15h (a) using CTM-k with parameters
estimated from k-DATA-III.3 (left), observed data (right), (b) using CTM-y with
parameters estimated from y-DATA-III.3.
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Mean 95% C.I. from CTM-y 95% C.I. from CTM-k
Data set obs. data err. err.

(Wm−2) (Wm−2) (%) (Wm−2) (%)

DATA-I.1 937.0 (935.7,942.6) 0.29 (937.2,943.0) 0.33
DATA-I.2 838.6 (836.2,842.1) 0.07 (842.4,850.5) 0.94
DATA-I.3 802.0 (800.4,803.6) 0.52 (814.4,822.3) 1.51
DATA-II.1 797.2 (780.5,798.7) 0.75 (797.1,815.0) 1.10
DATA-II.2 370.5 (359.6,371.9) 1.28 (370.0,383.2) 1.64
DATA-II.3 488.5 (646.3,661.9) 33.9 (639.0,652.7) 32.2
DATA-III.1 210.2 (209.0,214.4) 0.72 (209.0,215.6) 1.01
DATA-III.2 249.5 (162.2,163.8) 34.7 (126.8,128.6) 48.8
DATA-III.3 169.6 (169.2,174.1) 1.18 (170.3,175.1) 1.81

Table 5.1: 95% confidence intervals for the mean total radiation during the hour
next to T using the models CTM-k and CTM-y with parameters estimated from
observations up to T .

5.2.2 Discussion on the prediction results

Our prediction method by simulating a large number of paths hinges on the strong
law of large numbers.

Predictions quality highly depends on the pdf, average and variance of the data
observed during the learning time interval [0, T ] and used to estimate the parameters
of the model. As it will be observed, prediction quality also depends on the number
of states N of the model and on the distribution of the forecasting period data.

We illustrate this considering 4 examples of data recorded in Guadeloupe in 2006
and using CTM-y model. Predictions on 10h-11h are done from data observed in
the interval 07h-10h (resp. 09h-10h).
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Case 1: Measurements: day 262, type I (clear day).

Predictions and real value:

• Measurements: 07h-10h (DATA-07h10h), (kt) average: mk = 0.76, (kt)
variance σ2k = 0.0014, 95% confidence interval for AVERAGE-10h11h:
95%C.I.07h10h = (942.4, 948.6) W/m2.

• Measurements: 09h-10h (DATA-09h10h), mk = 0.79, σ2k = 0.0001,
95%C.I.09h10h = (935.7, 942.6) W/m2.

• Forecasting period 10h-11h, Observed: mk = 0.80, σ2k = 0.0001, Average
total radiation: 936.9 W/m2.
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kt 95% C.I./ err.
Time mk σ2k Mean obs. data (%)

07h-10h .76 .0014 (942.4,948.6) 0.91
09h-10h .79 .0001 (935.7,942.6) 0.29
10h-11h .80 .0001 936.9 W/m2 0.00

(simulated paths are plotted in Figure 5.10 and
Figure 5.11)

Comments:

• AVERAGE-10h11h does not belong to 95%C.I.07h10h, the relative error
between the average of simulated data and the average of observed data
is 0.91%), probability distribution/histogram, average, variance as
well as the disposition of classes of DATA-07h10h and that of observed
data in 10h-11h are different (see the figure and the table above).

• In contrast, 95%C.I.09h10h contains AVERAGE-10h11h (relative error
is 0.29%) and similar statistical characteristics are observed.

Case 2: Measurements: day 285, type III (cloudy day).

Predictions and observed values: (see table below)

• Measurements: DATA-07h10h (mk = 0.06, σ2k = 0.0015). 95% confi-
dence interval for AVERAGE-10h11h: (118.3, 120.0) W/m2.

• Measurements: DATA-09h10h (mk = 0.11, σ2k = 0.0004). 95% confi-
dence for AVERAGE-10h11h: (162.2, 163.8) W/m2.

• Observed: AVERAGE-10h11h 249.5 W/m2 (mk = 0.22, σ2k = 0.0017).
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kt 95% C.I./ err.
Time mk σ2k Mean obs. data (%)

07h-10h .06 .0015 (118.3,120.0) 52.3
09h-10h .11 .0004 (162.2,163.8) 34.7
10h-11h .22 .0017 249.5 W/m2 0.00

Simulated paths are plotted
in Figure 5.12 and Figure 5.13

Comments: AVERAGE-10h11h does not belong to 95%C.I.07h10h
(error: 52.3%) neither to 95%C.I.09h10h (error: 34.7%). Distribution
characteristics of the data used for estimations are not similar to that of data
in the prediction interval 10h-11h.

Case 3: Measurements: Day 118, type II (partially cloudy day).
Distribution characteristics of the data used for estimations (07h-10h, 09h10h)
are similar to those of data observed in the prediction interval 10h-11h. The
obtained predictions are quite nice (see the figure and the table below).
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kt 95% C.I./ err.
Time mk σ2k Mean obs. data (%)

07h-10h .63 .0643 (787.4,806.2) 0.06
09h-10h .62 .0472 (780.5,798.7) 0.75
10h-11h .61 .0627 797.2 W/m2 0.00

(Simulated paths are plotted
in Figure 5.14 and Figure 5.15)
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Case 4: Measurements Day 234, type II.
The distribution characteristics of data used for estimation (07h-10, 09h-10h)
are not similar to that of data in the prediction interval 10h-11h. Predictions
present large errors (see table and figure below).
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kt 95% C.I./ err.
Time mk σ2k Mean obs. data (%)

07h-10h .54 .0397 (656.7,671.5) 36.0
09h-10h .61 .0471 (646.3,661.9) 33.9
10h-11h .42 .0499 488.5 W/m2 0.00

(Simulated paths are plotted
in Figure 5.16 and Figure 5.17)

Our simulated data are distributed as the data used for estimating the models.
So, if the meteorological conditions in the forecasting period change significantly
(more clouds for instance), predictions (from CTM-y as well as CTM-k) do not
work well.

Therfore we propose in our illustrations a short-horizon prediction interval
[T, T ′], T ′ = T + 1 (hour) and this horizon is also of interest for solar energy
providers.
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Figure 5.10: (a) Simulated paths in 10h-11h generated by CTM-y with parameters
estimated from observations in 07h-10h, day 262 (type I, clear day), 2006, Guade-
loupe. (b) Data observed during 10h-11h: blue solid line.
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Figure 5.11: (a) left: Simulated paths in 10h-11h generated by CTM-k with pa-
rameters estimated from observations in 09h-10h, day 262 (type I, clear day), 2006,
Guadeloupe (k-DATA-I.1), right: Observed data. (b) Simulated paths in 10h-11h
generated by CTM-y with parameters estimated from y-DATA-I.1.
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Figure 5.12: (a) Simulated paths in the next hour (10h-11h) generated by CTM-y
with parameters estimated from observations in 07h-10h, day 28 (type III, cloudy
day), 2006, Guadeloupe. (b) Observed data: blue solid line.
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Figure 5.13: (a) left: Simulated paths in 10h-11h generated by CTM-k with param-
eters estimated from observations in 09h-10h, day 285 (type III, cloudy day), 2006,
Guadeloupe (k-DATA-III.2), right: Observed data. (b) Simulated paths in 10h-11h
generated by CTM-y with parameters estimated from y-DATA-III.2.
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Figure 5.14: (a) Simulated paths in 10h-11h generated by CTM-y with parameters
estimated from observations in 07h-10h, day 118 (type II, partially cloudy day),
2006, Guadeloupe. (b) Observed data: blue solid line.
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Figure 5.15: (a) left: Simulated paths in 10h-11h generated by CTM-k with pa-
rameters estimated from observations in 09h-10h, day 118 (type II, partially cloudy
day), 2006, Guadeloupe (k-DATA-II.1), right: Observed data. (b) Simulated paths
in 10h-11h generated by CTM-y with parameters estimated from y-DATA-II.1.
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Figure 5.16: (a) Simulated paths in 10h-11h generated by CTM-y with parameters
estimated from observations in 07h-10h, day 234 (type II, partially cloudy day),
2006, Guadeloupe. (b) Observed data observed: the blue solid line.
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Figure 5.17: (a) left: Simulated paths in 10h-11h generated by CTM-k with param-
eters estimated from observations in 09h-10h, day 234-th (type II, partially cloudy
day), 2006, Guadeloupe (k-DATA-II.3), right: Observed data. (b) Simulated paths
in 10h-11h generated by CTM-y with parameters estimated from y-DATA-II.3.





Chapter 6

Conclusion

In order to understand and model the behaviour of solar radiation and clearness
index, besides the two other approaches commonly used (“physical modelling” and
“statistical solar climatology”, as mentioned in the introduction), we have proposed
a new approach, a HMM-type stochastic model for taking in account the influence
of meteorological regimes.

The parameters of the model are estimated from real data using filtering equa-
tions, Girsanov change of measure theorem in stochastic calculus and the celebrated
EM algorithm. The method has been tested and illustrated on several different
types of observational data. The simulated data has been used to estimate the dis-
tribution of the daily clearness index and to predict the total solar radiation in a
short horizon.

As a conclusion, we emphasize some elements that compare our model to physical
models and other statistic models. We then take some notes in the problem of
model construction, the problem of parameter estimation as well as the problem
of simulated data application. From this, we determine the work which can be
continued to study in the future.

Comparison with physical models

Our models are mainly data-driven as parameters of models are estimated from
observed data and the number of regimes is chosen by observing the distribution of
those data but they also include a physical model part through the extraterrestrial
radiation.

In the physical models, direct beam (Ib) and diffuse (Id) radiation compo-
nents are obtained as a function of the specific atmospheric transmittances. They
require several physical parameters as inputs: water vapor absorption (Tw),
Rayleigh scattering (Tr), uniformly mixed gases absorption (Tg), ozone absorption
(To), aerosol total extinction (Ta), . . .

For instance, Psiloglou et al. [Psiloglou 2000] proposed a clear-sky radiation
model with the following components:

· total radiation : Gt = Ib + Id,

· direct-beam radiation : Ib = I0 cos θzTwTrTgTa,

· diffuse radiation : Id = I0 cos θzTwTgToTaa

(
1− Ta

Taa
Tr

)
/2 + Idm,
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where Taa is the absorption aerosol broadband transmittance function, Tdm is a
multiple-scattering component, θz is the zenith angle and I0 is the extraterrestrial
normal solar radiation in the nl-th day of the year:

I0 = ISC(1.00011 + .034221 cos Γ + .00128 sin Γ + .000719 cos 2Γ + .000077 sin 2Γ),

here ISC = 1373W/m2 is the solar constant and Γ (in radians) is the day angle
which is represented by:

Γ =
2πnl − 1

365
, nl = 1, 2, . . . , 365. (6.1)

However, our models also have a physical factor, namely the local extraterrestrial
radiation It. The observation equation (4.4) of CTM-y depends on It. For DTM-K
and CTM-k, the observations used in the parameter estimation are CISs computed
using It and measurements of total solar radiation Gt:

(1.10) : kt =
Gt

It
,

or (1.11) : K∆t =

∫
∆t
Gsds∫

∆t
Isds

.

As a consequen our models generate data having meteorological characteristics
of areas where data used for estimation were collected.

Comparison with other statistical models

Statistical models and methods have played a wide range of applications in solar
radiation and the climatology research.

As far as we know, most of statistical models used for solar radiation and clear-
ness index hinge on regression models using the correlative relation between sta-
tistical variables (including main solar radiation components, clearness index and
meteorological parameters such as sunshine duration, cloudiness, temperature, etc).
The parameters of the statistical models are estimated from complete observation
data of all these statistical variables.

For instance, Angstrom (1924) suggested the following linear expression for
the relationship between daily clearness index Kh and sunshine duration ratio Sh
[Tovar-Pescador 2008]:

Kh = a+ bSh,

where a, b are model parameters which are estimated by regression technique from
observation data of statistical variables Kh and Sh (complete data of model).
This linear expression was used in practical applications for many years to estimate
the daily, monthly and annual total solar radiation from the comparatively simple
measurements of sunshine duration. [Ogelmen 1984, Akinoglu 1990] proposed a
quadratic expression by adding a non-linear term.

Our method is also based on several statistic techniques (ML parameter esti-
mation, EM algorithm, filtered estimate, . . . ). However, in comparison with usual
statistical models, our proposed models have three original features:
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• Our models take in account the hidden (unobserved) dynamic of environmen-
tal regimes as well as observed variables (extraterrestrial, direct and diffuse
radiations)

• Our model parameters can be estimated from incomplete data. This is impor-
tant for solar radiation research as well as for climatological research because
all climatological quantities and meteorological components are not always
available.

• Our models having a random component, simulated data can be used to study
the probability distribution of clearness index and total radiation.

Future works

Problems in the model construction

Our models depend on measurements of the total solar radiation and the ex-
traterrestrial radiation It with astronomical calculations depending on the geograph-
ical location. A better modelling should consider more information on observed data
and meteorological parameters, dealing with multidimensional vector as it is done
in many physical models.

Problems in parameter estimation

The technique we used in the problem of parameter estimation is the filtering
estimates, also called forward estimates, which are based on the observation history
up to time h in discrete time, YK

h , σ{K1,K2, . . . ,Kh}, h = 1, 2, . . . (or up to time
t in continuous time, YY

t , σ{Ys : 0 6 s 6 t}, t ∈ [0, T ], respectively).
To achieve better estimates, we think of backward estimates, an estimating

technique based on observations in the future, YK
h:M , σ{Kh,Kh+1, . . . ,KM} (or

YY
t:T , σ{Ys : t 6 s 6 T}, resp.). Backward estimates are calculated as a backward

recursion from the end of the batch of observations. The forward-backward estimate
is termed smoothing estimation, based on the past, present and future of observation
data, YK

h ∨ YK
h:M (or YY

t ∨ YY
t:T , resp.) [Elliott 2010, James 1996].

Problems in prediction

First, our prediction results should be compared to recent prediction results ob-
tained by EDF (French electricity company) using some data analysis techniques.
Next, our 1h prediction horizon was a short-term one and we need to refine our
models to deal with very short-term (10mn) prediction and also long-term predic-
tion (next day, next month, next year).
Moreover, as seen in the examples of chapter 5, prediction is connected to classifi-
cation problems (classification of sequences, of days, of several months periods) and
this classification aspect is not considered in our present models. Conversely it can
be thought that estimated parameters can be used for classification purposes.
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Van Ly TRAN

Modèles Stochastiques

des Processus de Rayonnement Solaire

Résumé :

Les caractéristiques des rayonnements solaire dépendent fortement de certains événements météorologiques non

observés comme fréquence, taille et type des nuages et leurs propriétés optiques (aérosols atmosphériques, al-

bédo du sol, vapeur d’eau, poussière et turbidité atmosphérique) tandis qu’une séquence du rayonnement solaire

peut être observée et mesurée à une station donné. Ceci nous a suggéré de modéliser les processus de rayon-

nement solaire (ou d’indice de clarté) en utilisant un modèle Markovien caché (HMM), paire corrélée de processus

stochastiques.

Notre modèle principal est un HMM à temps continu (Xt, yt)t≥0 est tel que (yt), le processus observé de rayonne-

ment, soit une solution de l’équation différentielle stochastique (EDS) : dyt = [g(Xt)It − yt]dt+ σ(Xt)ytdWt, où It
est le rayonnement extraterrestre à l’instant t, (Wt) est un mouvement Brownien standard et g(Xt), σ(Xt) sont des

fonctions de la chaîne de Markov non observée (Xt) modélisant la dynamique des régimes environnementaux.

Pour ajuster nos modèles aux données réelles observées, les procédures d’estimation utilisent l’algorithme EM et

la méthode du changement de mesures par le théorème de Girsanov. Des équations de filtrage sont établies et les

équations à temps continu sont approchées par des versions robustes.

Les modèles ajustés sont appliqués à des fins de comparaison et classification de distributions et de prédiction.

Mots de clé : rayonnement solaire, indice de clarté, HMM, EDS, algorithme EM, Thérème de Girsanov, filtrage.

Stochastic Models of Solar Radiation Processes

Abstract :

Characteristics of solar radiation highly depend on some unobserved meteorological events such as frequency,

height and type of the clouds and their optical properties (atmospheric aerosols, ground albedo, water vapor, dust

and atmospheric turbidity) while a sequence of solar radiation can be observed and measured at a given station.

This has suggested us to model solar radiation (or clearness index) processes using a hidden Markov model (HMM),

a pair of correlated stochastic processes.

Our main model is a continuous-time HMM (Xt, yt)t≥0 is such that the solar radiation process (yt)t≥0 is a solution

of the stochastic differential equation (SDE) : dyt = [g(Xt)It − yt]dt + σ(Xt)ytdWt, where It is the extraterrestrial

radiation received at time t, (Wt) is a standard Brownian motion and g(Xt), σ(Xt) are functions of the unobserved

Markov chain (Xt) modelling environmental regimes.

To fit our models to observed real data, the estimation procedures combine the Expectation Maximization (EM) al-

gorithm and the measure change method due to Girsanov theorem. Filtering equations are derived and continuous-

time equations are approximated by robust versions.

The models are applied to pdf comparison and classification and prediction purposes.

Keywords : solar radiation, clearness index, HMM, SDE, EM algorithm, Girsanov theorem, filtration.
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