
HAL Id: tel-00919684
https://theses.hal.science/tel-00919684

Submitted on 17 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementability of distributed systems described with
scenarios

Rouwaida Abdallah

To cite this version:
Rouwaida Abdallah. Implementability of distributed systems described with scenarios. Other [cs.OH].
École normale supérieure de Cachan - ENS Cachan, 2013. English. �NNT : 2013DENS0027�. �tel-
00919684�

https://theses.hal.science/tel-00919684
https://hal.archives-ouvertes.fr

Implementability of distributed systems described

with scenarios

by

c©Rouwaida ABDALLAH

A Thesis submitted to the School of Graduate Studies in partial fulfillment of the
requirements for the degree of

PHD in Computer Science

Ecole Normale Superieure de cachan

ENS-cachan

July 2013

Rennes

Abstract

Distributed systems lie at the heart of many modern applications (social networks,

web services, etc.). However, developers face many challenges in implementing dis-

tributed systems. The major one we focus on is avoiding the erroneous behaviors,

that do not appear in the requirements of the distributed system, and that are caused

by the concurrency between the entities of this system.

The automatic code generation from requirements of distributed systems remains an

old dream. In this thesis, we consider the automatic generation of a skeleton of code

covering the interactions between the entities of a distributed system. This allows us

to avoid the erroneous behaviors caused by the concurrency. Then, in a later step,

this skeleton can be completed by adding and debugging the code that describes the

local actions happening on each entity independently from its interactions with the

other entities.

The automatic generation that we consider is from a scenario-based specification

that formally describes the interactions within informal requirements of a distributed

system. We choose High-level Message Sequence Charts (HMSCs for short) as a

scenario-based specification for the many advantages that they present: namely the

clear graphical and textual representations, and the formal semantics. The code gen-

ii

eration from HMSCs requires an intermediate step which is their transformation into

an abstract machine model that describes the local views of the interactions by each

entity (A machine representing an entity defines sequences of messages sending and

reception). This transformation is called "synthesis". Then, from the abstract ma-

chine model, the skeleton’s code generation becomes an easy task.

A very intuitive abstract machine model for the synthesis of HMSCs is the Com-

municating Finite State Machine (CFSMs for short). However, the synthesis from

HMSCs into CFSMs may produce programs with more behaviors than described in

the specifications in general. We thus restrict then our specifications to a sub-class

of HMSCs named "local HMSC". We show that for any local HMSC, behaviors can

be preserved by addition of communication controllers that intercept messages to add

stamping information before resending them.

We then propose a new technique that we named "localization" to transform an ar-

bitrary HMSC specification into a local HMSC, hence allowing correct synthesis. We

show that this transformation can be automated as a constraint optimization problem.

The impact of modifications brought to the original specification can be minimized

with respect to a cost function.

Finally, we have implemented the synthesis and the localization approaches into an

existing tool named SOFAT. We have, in addition, implemented to SOFAT the au-

tomatic code generation of a Promela code and a JAVA code for REST based web

services from HMSCs.

iii

Table of Contents

Abstract ii

Table of Contents vii

1 Introduction 2

1.1 Context . 2

1.2 Motivation . 2

1.3 The synthesis problem . 5

1.4 Contribution . 7

1.4.1 Any local HMSC is correctly implementable 7

1.4.2 The synthesis of non-local HMSCs 8

1.4.3 SOFAT tool . 8

1.5 Thesis organization . 9

2 State of the art 10

2.1 Basic Message Sequence Charts . 10

2.1.1 Graphical representation . 11

2.1.2 Textual representation . 12

2.1.3 Formal definition . 13

2.1.4 Events Ordering and Co-regions 14

iv

2.1.5 Gates . 15

2.1.6 MSC composition . 16

2.2 High-level Message Sequence Charts 18

2.2.1 Graphical representation . 18

2.2.2 Textual representation . 20

2.2.3 Formal definition . 20

2.3 MSCs Versions . 23

2.4 Variants of Message Sequence Charts and

similar notations . 23

2.4.1 Interworkings . 24

2.4.2 UML Sequence Diagram . 24

2.4.3 Live Sequence Charts . 24

2.4.4 Conclusion . 26

2.5 Implementation of Message Sequence Charts 27

2.5.1 Abstract machine models . 27

2.5.1.1 Petri Nets . 28

2.5.1.2 Statecharts . 30

2.5.1.3 Communicating Finite State Machine 32

2.5.2 The realizability and the synthesis of HMSCs 35

2.5.2.1 Globally-cooperative HMSC 36

2.5.2.2 Regular HMSC . 38

2.5.2.3 Locally-cooperative HMSC 39

2.5.2.4 Local HMSC . 40

2.5.2.5 Reconstructible HMSC 41

2.5.3 Implementation algorithms . 41

2.6 MSCs tools . 43

v

2.7 Conclusion . 43

3 Local HMSCs : a correctly implementable class of HMSCs 45

3.1 Definitions . 46

3.1.1 Basic definitions around the specification model 46

3.1.2 Prefix-closed semantics of HMSCs 47

3.1.3 Semantics of abstract machines 50

3.1.4 Restrictions . 52

3.2 Local HMSCs . 53

3.3 The Synthesis Problem . 56

3.4 Implementing HMSCs with message controllers 62

3.4.1 Distributed architecture . 63

3.4.2 Tagging mechanism . 64

3.4.3 Correctness of controlled synthesis 69

3.5 Conclusion and future work . 71

4 Localization of HMSCs 74

4.1 Example . 75

4.2 Localization of HMSCs . 76

4.3 Messages and processes counting cost function 79

4.4 Localization as a constraint optimization problem 82

4.4.1 Constraint solving over finite domains 83

4.4.2 From HMSC to COP . 84

4.5 Implementation and experimental results 86

4.6 Conclusion and future work . 92

5 SOFAT tool 93

5.1 Description of SOFAT . 93

vi

5.2 Use Case . 94

5.3 CFSM generation . 101

5.4 Promela code generation . 101

5.5 Java code generation for Rest platforms 101

5.5.1 Implemented model . 104

5.5.1.1 Automaton’s generated code 107

5.5.1.2 Controller’s generated code 108

5.6 localization of HMSC . 111

6 Conclusion and perspectives 114

6.1 Summary of contributions . 114

6.2 Future work . 115

7 Appendix 117

7.1 Chapter 3 . 117

7.2 Chapter 4 . 125

7.2.1 Proof of correctness of theorem 4.4.1 125

7.3 Chapter 5 . 127

7.3.1 Promela code generated for the Morse Code example 127

7.3.2 A step-by-step execution of the Morse code example 134

7.3.3 The generated Prolog Code for the localisation of the toaster

example . 141

vii

Supervisors

Family

Friends
Husband

Thank you

Figure 1: Thank you

1

Chapter 1

Introduction

1.1 Context

A distributed system consists of a collection of autonomous entities (i.e., computers,

processes), that are connected through a network which enables them to communicate

and to share common resources. From 1945 until mid 80’s, computers were large and

expensive: A mainframe used to cost millions of dollars; even minicomputers used

to cost at least tens of thousands of dollars each. That is why, most organizations

only had a handful of computers. Furthermore, these computers operated indepen-

dently because there was no way to connect them. Since the mid 80’s, the advances

in technology, namely the development of powerful microprocessors and the invention

of high-speed networks, have begun to change that reality [80]. Since, distributed

systems have become widely used in many applications that range from television

sets and train signaling systems to e-commerce and stand-alone PC-based software

applications. These days distributed systems have become a need, as many recent ap-

plications are by nature distributed (bank teller machines, airline reservations, ticket

purchasing, communication applications, social networks, etc.).

1.2 Motivation

Nowadays, distributed systems are everywhere and there is a concrete need for imple-

menting functional, usable, and high-performance distributed systems. It is therefore

2

important for the developers to have an understanding of the requirements of the sys-

tem and the problems that may occur. Actually, the various entities in a distributed

system can operate concurrently and possibly autonomously and this concurrency

gives rise to a number of well-studied problems: Processes may use old data; they can

make inconsistent updates; the order of updates may or may not matter; the system

might deadlock; the data in different systems might never converge to consistent val-

ues; etc [44]. Several of these problems come from the erroneous behaviors that occur

in the system and that were not described in the requirements. Actually, it is not an

easy task to correctly move from requirements towards a distributed implementation

while preserving the set of required behaviors for the entities of the distributed system.

We have mainly two distinct approaches to go from requirements to implementation:

On one hand, developers consider generally to go directly from informal requirements

to implementation. Prototyping and testing remain the principal methods for develop-

ers for exploring designs and validating implementations. Methods like the V-Model

software development process, presented in Figure 1.1, may be used in the develop-

ment of distributed system. The V-Model consists respectively in defining a design

that describes the requirements of the system, implementing the corresponding code,

and finally testing this code. The V-Model software development process might be

repeated several times while still finding modifications to do. Such methods are ex-

pensive in terms of time and money (the code might be tested and modified several

times) and provide only partial coverage of the range of behaviors that a piece of

software may exhibit (it is hard to cover and test all the behaviors that may occur on

the system, and when the set of behaviors is infinite testing all of them is impossible).

On the other hand, the second approach, which is the one that we consider in this the-

sis, is the implementation based on the use of scenario-based specifications. Scenario-

based specifications present the abstract descriptions of the interactions between the

entities of the system. They have become popular as a powerful means of communica-

tion for system requirements due to their simplicity and expressive power [40]. Some

scenario-based specifications have solid mathematical foundations that can be used

to support rigorous analysis and mechanical verification of properties. They allow

verifications of system requirements at early stages before the implementation of the

code of the system. Their use ranges from requirements engineering [40] and formal

specifications [75] to code synthesis [3] and test case specification and generation (e.g.

[32]). Furthermore, scenario-based specifications are used to move from requirements

towards a skeleton of an implementation for distributed systems and thus to facilitate

3

����������	
�

��
�������
�

��
	���

��
�
�

���	�����

��
�
�

�����

���	�����

��������	���

��
	���

��������	���

��
	���

������	���

Figure 1.1: The V life cycle model in software development

their construction: Scenario-based specifications mainly describe the interactions be-

tween the entities of the distributed system and not the detailed behaviors occurring

locally on each entity. Then, the implementation of scenarios results in a skeleton

of code that presents the interactions within the distributed system described in the

requirements. The rest of the code, that describes the local behaviors for each entity,

can then be debugged and added to the skeleton of code to get the complete imple-

mentation of the distributed system. Furthermore, the automatic generation of this

skeleton of code is very important and offers many advantages:

• The errors that might be induced by developers’ implementations are avoided,

as this transformation from scenario-based specification into a code is an error-

prone task. The correct generation of the skeleton helps the developers to avoid

the problems caused by the concurrency in distributed systems.

• Skeleton’s code generation is time saving and can lead to a relatively fast gen-

eration of prototype and test cases software.

• The high redundancy in distributed systems’ code, makes this automatic gener-

ation a desirable goal. It will save time needed for writing similar and redundant

code.

In this thesis, we are interested in producing a reliable implementation for distributed

systems. We will consider a scenario-based specifications approach and our main

target is to propose a method that transforms requirements into a skeleton of code

that guarantees correct interactions behaviors in a distributed system.

4

1.3 The synthesis problem

To proceed the skeleton’s code generation from a scenario-based specification, we have

an intermediate step. This step transforms the scenario-based specification, which is a

high-level specification that describes the behaviors of the system from a global point

of view, into an abstract machine model that describes the local views (the commu-

nicating machines, which define sequences of messages sendings and receptions) that

is consistent with the original specification. Then, from the abstract machine model

the skeleton’s code generation becomes an easy task. This transformation from a

high-level specification to an abstract machine model is called the synthesis.

This thesis addresses the automatic synthesis problem in the context of distributed

applications running on networks of computers, and more precisely correct synthesis

algorithms. Synthesis is correct when the abstract machine model preserves the be-

haviors described in the high-level specification.

In the literature, many different definitions of scenario-based specifications can be

found [23, 19, 45, 50]. There are significant differences in terms of syntax, features,

semantics, etc. (a more detailed presentation and comparison of scenarios is pre-

sented in chapter 2). Sequence charts are one of the approaches to describe scenarios.

Sequence charts have been used to describe system behaviors for some time before

the International Telecommunications Union (ITU), has undertaken their standard-

ization process. This has resulted in a language called Message Sequence Charts

(MSCs). MSCs have undergone several revisions since their first version, the latest

one being in 2011 [1].

MSCs are particularly useful in the early stages of system development; they allow

describing the communications of a system and can be used to find design errors.

First, the graphical representation of MSCs is one of the reasons for their popularity.

It makes MSCs intuitively comprehensible and easy to learn and there is no need to

have a mathematical background to start using this notation. Furthermore, MSCs

have a textual representation that was originally intended for exchanging MSCs be-

tween tools. Last but not least, MSCs also have a formal semantics, which allows

them to be used for various analysis purposes. Since MSCs are used at a very early

stage of design, any error revealed during their analysis yields a high pay-off. This

has already motivated the development of algorithms for a variety of analyses includ-

ing the presence of a race condition in an MSC [9], model checking [10], pattern

5

matching [69], detection of non-local choices [15, 31], deadlocks, livelocks, and many

more (for more details see e.g. [24]).

�� ��

� �

��

���	
��

��

������

� �

��

���	
��

��

Figure 1.2: Example of MSCs: two bMSCs M1 and M2 and one HMSC H

MSCs are composed of several specification layers. At the lowest level, basic MSCs

(bMSCs for short) defining finite specifications of interactions among processes. For

instance, Figure 1.2 shows two examples of bMSCs M1 and M2, where two processes

A and B interchange messages: In bMSC M1, the process A sends a message m1

to the process B then B sends a message m2 to A. M2 presents another scenario

where B sends the message m3 to A then A sends m4 to B. However, the real sys-

tems are often very complex. MSC specification allows addressing the complexity

of distributed systems by composing bMSCs with several means. High-level MSCs

(HMSCs for short) describe the composition of bMSCs in a clear and attractive way,

which makes them the most used composition mechanism. For instance, Figure 1.2

shows an example of an HMSC H, that composes the two bMSCs M1 and M2. It

describes an alternative between the bMSC M1 or M2. The whole MSC formalism

will be described later in chapter 2.

In this thesis, we will consider the synthesis of HMSCs. A very natural way to syn-

thesize abstract machine models from HMSCs is by projection (see chapter 3). The

principle of projection is to copy the original behaviors specified in the HMSC spec-

ification on each process in the distributed system, and to remove the part of the

behaviors that do not belong to this considered process.

6

A very intuitive abstract machine model for the projection of HMSCs is the Commu-

nicating Finite State Machine [17] (CFSMs for short). This model presents several

advantages; it allows the definition of concurrent components exchanging messages

asynchronously through FIFO channels. This well-known formalism is easily imple-

mentable on many distributed platforms built on top of standard communication

protocols (TCP, REST, ...).

Unfortunately, all the global coordination expressed by HMSCs cannot always be

translated to CFSMs in the synthesis by projection algorithm. Consequently, some

HMSC specifications may not be implementable as CFSMs.

For instance, HMSCs allow for the definition of distributed choices that are con-

figurations in which distinct processes may choose to behave according to different

scenarios. The HMSC semantics assumes a global coordination among processes, so

all processes decide to execute the same scenario. However, when such distributed

choice is implemented by local machines, each process may decide locally to execute

a different scenario. When such an unspecified situation occurs, the implementation

is not always consistent with the original HMSC: It exhibits more behaviors and even

worse, the synthesized machines can deadlock. For instance, in the HMSC H of Fig-

ure 1.2, the process B can send the message m3 to A, and at the same time A might

send m1 to B. In this case, we have more behaviors than what is defined in H where

only one bMSC can be run. The processes A and B will deadlock because A considers

that it is running the bMSC M1 then after sending the message m1 it will wait for

m2 from B. On the other hand, B considers that it is running the bMSC M2 and will

wait for m4 from A. We consider that correct implementations should not deadlock.

HMSCs that do not contain distributed choices are called local HMSCs, and are con-

sidered as a reasonable sub-class to target a distributed implementation. However,

the deadlock-free synthesis solutions proposed so far (see chapter 2 for more details)

do not apply to the whole class of local HMSCs.

1.4 Contribution

1.4.1 Any local HMSC is correctly implementable

In this thesis, we first propose a new implementation mechanism that applies with-

out deadlocks to the whole class of local HMSCs, that is a class of HMSCs that do

7

not require distributed consensus to be executed. The proposed synthesis technique

is to project an HMSC on each process participating to the specification. However,

even the projection of local HMSCs may produce programs with more behaviors than

described in the specification because the order between two consecutive choices can

be lost. That is why we compose the projections with local controllers that intercept

messages between processes and tag them with sufficient information to avoid the

additional behaviors that appear in the sole projection. The main result of this first

part of the thesis is that the projection of the behaviors of the controlled system on

behaviors of the original processes is equivalent (up to a renaming) to the behaviors

of the original local HMSC.

1.4.2 The synthesis of non-local HMSCs

Non-local HMSCs are generally considered as too incomplete or too abstract to be

implemented. Therefore, we extend synthesis to general HMSCs by proposing a lo-

calization procedure that transforms any non-local HMSC into a local one, and thus

allowing its synthesis into CFSMs. The localization can be achieved by adding new

messages and processes in scenarios. We have an infinite number of solutions for the

localization problem but we are interested in finding solutions with the minimal num-

ber of added messages because they correspond to the less disturbing transformation

of the specification. We propose to address the localization problem with a constraint

optimization technique that finds the best way to add processes and messages in an

HMSC specification to transform it into a local HMSC. The experiments we ran on

a large class of randomly generated HMSCs, with a prototype tool implementation,

show that the localization problem can be solved in general in a few seconds on ordi-

nary machines.

1.4.3 SOFAT tool

We have implemented the proposed approaches into an existing tool called SOFAT

(Scenario Oracle and Formal Analysis Toolbox). SOFAT is a formal toolbox for the

manipulation of scenarios. SOFAT provides several functionalities, like: syntactical

analysis of scenario descriptions, formal analysis of scenario properties, and many

others. In this thesis, we have extended SOFAT with synthesis approach for local

HMSCs: First we added the automatic generation of CFSMs from local HMSCs.

Then from this model, we added the automatic generation of a Promela code(allowing

8

the verification of some MSCs properties using the XSPIN tool), and JAVA code for

REST based web services. We have also implemented the localization procedure as

well into SOFAT, so we can get the optimal way to transform any non local HMSC

into a local one.

1.5 Thesis organization

This thesis is organized as follows: In chapter 2, we present a brief state of the art on

scenario-based specifications in general and Message Sequence Charts in particular.

We also present some abstract machines models and in particular the Communicating

Finite State Machines model. Then we analyze some important works on synthesis

from MSCs and some of the existing sub-classes of MSCs. In Chapter 3, we propose

a solution based on local control and message tagging to implement correctly local

HMSCs. In Chapter 4, we propose an encoding of minimal localization as a constraint

optimization problem, and show the correctness of the approach. In addition, we

describe an experimentation conducted to evaluate the performance of our localization

procedure, and comment the results. Chapter 5 presents a prototype called SOFAT.

We mainly present the functionalities that we have added namely: the projection of

an HMSC into a CFSM, the code generation of Promela and JAVA code for a REST

platform. Finally, we conclude and present some perspectives in Chapter 6.

9

Chapter 2

State of the art

This chapter presents the basic definitions and formalisms concerning MSCs, some of

their variants, and the synthesis problem.

Message Sequence Chart (MSC for short) is a partial-order based formalism standard-

ized by the International Telecommunication Union [35]. Basically, an MSC describes

the communication behavior of a number of logically or physically distributed pro-

cesses that run in parallel and communicate by exchanging asynchronous messages.

MSCs and their variants are widely used to capture use cases and requirements during

the early design stages of distributed systems. They have been adopted within several

software engineering methodologies and tools for concurrent, reactive and real-time

systems. e.g. [6, 9, 79], and a variant called Sequence Diagrams has been integrated

to UML 2.0 (see [71]).

MSCs are composed of several specification layers. At the lowest level, basic MSCs

define interactions among instances, and then these interactions are composed by

means of High-level MSCs (HMSCs for short).

2.1 Basic Message Sequence Charts

Basic Message Sequence Chart is the core language of MSC. A bMSC defines a simple

scenario describing the communication behaviors and the internal actions of a finite

set of entities (called instances) in a distributed software system.

10

2.1.1 Graphical representation

Graphically, a bMSC is presented by a frame containing a graphical representation

of the instances. Instances are referred to by means of their names, so these must be

unique within a bMSC. An instance is represented by a vertical axis (a top down pro-

gressing time line) where events are ordered. The axis starts with the instance head

symbol (white rectangle) and ends with the instance end symbol (black rectangle).

The two symbols do not describe the creation and the termination of the instance, but

the start and the end of the behaviors of the instance in the description. Figure 2.1

from [38] summarizes the different kinds of events that can be found within a bMSC.

������������	�

���
�����	�

���	���������	�

���������

�������

��	

����	

�����	

�
��	���

�	��

��	�
������	���

�

�

�

���
��

���
��

���
��

Figure 2.1: Types of events in a bMSC

The message exchanges are represented by arrows labeled by a message name. The

local actions are denoted by boxes labeled with the name of the action. Figure 2.2

presents a simple example of a bMSC named bMSC_Example. This example de-

scribes a scenario involving three instances {Sender, Medium, Receiver} described

by three vertical axes. The arrows labeled {Data, Ack, Info} between the instances

describe messages that are exchanged. The box labeled by a denotes internal activity

of instance Sender. The event et1 on the instance Sender is to start a timer for 10

units of time and the event et2 is the timeout of the timer. The timer means that

Sender should receive the message Ack before the timeout of the timer.

As it is presented in Figure 2.1, bMSCs allow for the creation and the termination of

processes and the time handling. Time handling and conditions are also supported

11

������ �����	

���

��

��������	���

��������

�

����

��

��

��

��

��
��

�	�

���

���

Figure 2.2: An example of bMSC

in bMSC specifications. They are used to improve the readability of the bMSCs, but

they do not have any specific semantic meaning. Figure 2.3 shows a condition labeled

“Data Processed” that concerns to the two instances Sender and Receiver. As one

���������	

	�

������ �����	

��
��
��

��������

����

Figure 2.3: Condition Example

can see, the graphical representation of bMSCs is rather intuitive.

2.1.2 Textual representation

BMSCs also have a textual representation that was mainly intended to be an ex-

change formalism for case tools using MSCs (Telelogic Tau[42], Object Geode [86]).

The following example describes the bMSC presented in Figure 2.2:

12

msc bMSC_Example

instance Sender ;

out Data to Medium ;

action a ;

in Ack from Medium ;

endinstance ;

instance Medium ;

in Data from Sender ;

out Info to Receiver ;

out Ack to Sender ;

endinstance ;

instance Receiver ;

in Info from Medium ;

endinstance ;

endmsc ;

In the previous example, the two keywords msc and endmsc delimits the bMSC

description and, in between, come the name of the bMSC and the description of the

instances. Each instance’s description is delimited by the two keywords instance and

endinstance and, in between, come the name of the instance and the description of

the events that occur on this instance ordered by their occurrence time. A message

output event is described by: out mssg to d, where mssg is the name of the message

and d its receiving instance. In the same way, a message input is described by: in

mssg from s, where mssg is the message name and s its sending instance. A local

action a is described by : action a. In this example, the instances are presented

in the order of their representation in the bMSC, but this is not required by the

recommandation Z.120.

2.1.3 Formal definition

A bMSC can be defined formally as follows:

Definition 2.1.1 (bMSCs). A bMSC over a finite set of instances I is a tuple M =

(E, ≤, C, φ, t, µ) where:

• E is a finite set of events.The map φ : E −→ I localizes each event on an

instance of I. E can be split into a disjoint union ⊎p∈IEp, where Ep = {e ∈

E | φ(e) = p} is the set of events occurring on instance p. E can also be

13

considered as the disjoint union S ⊎ R ⊎ L in order to distinguish send events

(e ∈ S), receive events (e ∈ R) or local actions (e ∈ L).

• C is a finite set of message contents and action names.

• t : E −→ Σ gives a type to each event, with

Σ = {p!q(m), p?q(m), a | p, q ∈ I, m, a ∈ C}. We have t(e) = p!q(m) if e ∈

Ep ∩ S is a send event of message “m” from p to q, t(e) = p?q(m) if e ∈ Ep ∩ R

is a receive event of message “m” by p from q and t(e) = a if e ∈ Ep ∩ L is a

local action, named “a” located on p.

• µ : S −→ R is a bijection that matches send and receive events. If µ(e) = f ,

then t(e) = p!q(m) and t(f) = q?p(m) for some p, q ∈ I and m ∈ C.

• ≤ ⊆ E2 is a partial order relation (the “causal order”). It is required that events

of the same instance are totally ordered: ∀(e1, e2) ∈ E2 φ(e1) = φ(e2) =⇒ (e1 ≤

e2) ∨ (e2 ≤ e1). For an instance p, let us call ≤p this total order. The causal

ordering ≤ must also reflect the causality induced by the message exchanges, i.e.

≤= (
⋃

p∈I
≤p ∪ µ)∗

For instance in Figure 2.2, we have µ(e1) = e3 (where t(e1) = Sender!Medium(Data)

and t(e3) = Medium?Sender(Data)), thus e1 and e3 are ordered as follows: e1 ≤ e3.

On the other side, events e3, e4 and e5 occur on the same instance Medium, so they

are ordered as well, and we have: e3 ≤ e4 and e4 ≤ e5.

The semantics of a bMSC M is given in terms of sequences of actions allowed by the

causal ordering ≤. More formally, we have:

Definition 2.1.2. A linearization of a bMSC M is a word w = a1....a|E| that is the

labeling of some linear extension of M (i.e. a total order on E respecting the causal

ordering ≤). The semantics of M is the set of all its linearizations, and is denoted

Lin(M).

2.1.4 Events Ordering and Co-regions

A bMSC defines a precedence relation between events:

• the sending of a message precedes its reception

• all the events specified on the same instance are causally ordered. This order

on the axis can be relaxed in some parts of the instance called co-regions.

14

A co-region is represented graphically by dashed parts of the instance axis(see Figure

2.4). Events specified within a co-region are not necessarily concurrent: Their order

is not specified yet, or is not important for the specification. For instance, in Figure

2.4 we have s1 ≤ s2 and s1 ≤ s3. The two events s2 and s3 are in a co-region then

we have (s2 ≤ s3) ∨ (s3 ≤ s2).

����

��

��

��

Figure 2.4: Graphical representation of coregion

2.1.5 Gates

MSC also allow messages called gates which describe messages coming from some

other instances not described in the MSC. Gates could be regarded as being a simple

way to model the passing of data between a sequence diagram and its environment. A

gate is depicted as message arrow connected to surrounding frame of the bMSC where

the name of gate is presented. Example of gates’ usage is shown in Figure 2.5. Other

� �

����

���	
���

����

������

Figure 2.5: Example of bMSC with gate

basic concepts about bMSCs can be found in its ITU standardization documents [46].

15

2.1.6 MSC composition

The bMSCs present very simple and finite specifications, however, the real systems are

often very complex. Many specification languages offer a way to address this complex-

ity. MSC specification allows several type of composition described using composition

operators. MSC specifications provide, mainly, three types of composition [75]:

• The sequential composition using the operator seq: Composing sequentially two

bMSCs M1 and M2 results in a bMSC where events of the first bMSC M1 on

each instance p ∈ I occur before the events of the second bMSC M2 on instance

p.

• The parallel composition with the operator par: When two MSCs are composed

with parallel composition the events on the common instances are interleaved.

This can be expressed in a coregion as shown in Figure 2.6. In the case that the

bMSCs have no common instances, the composition is similar to the sequential

composition.

• The alternative composition using the operator alt: In most of the systems we

might, at some points, have several possible behaviors.

Figure 2.6 presents two bMSCs called respectively First_bMSC and Second_bMSC.

The sequential composition of these two bMSCs gives the bMSC V _bMSC, and their

parallel composition gives the bMSC P_bMSC. The expression First_bMSC alt

Second_bMSC means that either First_bMSC is executed or Second_bMSC is

executed.

In addition to the seq, alt, par operators, MSC allows the following constructs:

• High − level message sequence charts (HMSCs): Here the composition is

described in a automaton like format. they will be described in details in the

next section.

• MSC references : MSC references can be used inside an MSC (bMSC or

HMSC) to refer to another one. An example of the use of MSC references is

presented in Figure 2.7. In this example, the bMSC ref_bMSC contains an

MSC reference expression that is attached to the instances A, B, and C and that

contains the expression First_bMSC alt Second_bMSC. This means that we

execute either the bMSC First_bMSC or the bMSC Second_bMSC then the

instance C sends the message md to D.

16

• Inline expressions: These expressions allow the description of the composition

of MSCs within an MSC. Figure 2.8 shows an example of the graphical repre-

sentation of an inline expression. At the beginning the process K has the choice

between sending the message m or the message n.

� �

��

����	
��
�

� �

��

�����
��
�

� �

��

�
��
�

�

��

� �

��

�
��
�

�

��

Figure 2.6: Sequential and parallel composition

� �

��

����	
��

�

��������	
���
���	��������	

Figure 2.7: Example of MSC Reference Expressions

17

� �

�

�����	
�

��� �

�

Figure 2.8: Example on MSC Inline Expressions

2.2 High-level Message Sequence Charts

High-level Message Sequence Charts [35] describe the composition of MSCs in a clear

and attractive way, which makes it the most used composition mechanism. HMSCs

allow to represent the composition situations covered by MSC references and the

Inline expressions as well.

2.2.1 Graphical representation

Graphically an HMSC is represented as a directed graph which nodes are of the form

presented in Figure 2.9. A reference symbol can contain a reference to a bMSC,

another HMSC, or any other MSC reference expression. A condition symbol may

contain one or several condition names. The start symbol and the end symbol are

respectively the initial and the terminal nodes of an HMSC.

Every HMSC should have exactly one start symbol and the graph must be connected

so that any node can be reached from the start node. In the directed graph, all nodes

have outgoing arrows except an end node, and all have incoming arrows except the

start node.

The connection nodes (called choice nodes) are used mainly when we have several

possible choices or alternatives at a point of the HMSC, and they are used as well to

connect other nodes to make the HMSC easily readable. A choice node that is directly

connected to the start node is called initial node, and the one directly connected to

18

�����

���

��	
�������	�

	���
�
��

	����	�
��

��������
�����

Figure 2.9: HMSC symbols types

the end node is called sink node. Figure 2.10 presents a first example of HMSC with

two nodes n0, n1, where n0 is the initial node (and also a choice node), and n1 is a

sink node.

�� ��

�
�

�
�

� �

��

��

� �

��

��

Figure 2.10: An example of High-level Message Sequence Chart.

A parallel frame denotes the parallel composition of one or several HMSCs that it

contains. Figure 2.11 shows the graphical representation of a parallel frame.

19

�� �� ��

���������

Figure 2.11: An example of HMSC with a parallel frame.

2.2.2 Textual representation

As for bMSCs, HMSCs have a textual description. The HMSC from Figure 2.10 is

presented textually by:

msc Example ;

expr l0 ;

l1: connect seq (l2 alt l3) ;

l2: M1 seq (l1) ;

l3: M2 seq (l4) ;

l4: connect seq (l5) ;

l5: end ;

endmsc ;

2.2.3 Formal definition

In this thesis we will consider HMSCs without co-regions or parallel frames. This

choice is argued in chapter 3 section 3.1.4. The formal definition of the HMSC that

we consider can be presented as follows:

Definition 2.2.1 (HMSCs). An HMSC is a graph H = (I, N, →, M, n0, F in), where

• I is a finite set of instances,

20

• N is a finite set of nodes, n0 ∈ N is the initial node of H, and Fin ⊆ N is the

set of final states,

• M is a finite set of bMSCs which participating instances belong to I, and defined

on disjoint sets of events,

• →⊆ N × M × N is the transition relation.

In the example of Figure 2.10, M = {M1, M2} and the transition relation contains

two transitions, namely (n0, M1, n0) and (n0, M2, n1). The behavior M1 can be re-

peated an arbitrary number of times, and then be followed by the behavior described

in M2. we would like to mention that running M1 followed by M2 does not mean that

all the events described by M1 occur before the ones described by M2 (the process B

might receive the message m2 before receiving m1).

Before giving the definitions of the semantics of HMSC let us formally present Sequen-

tial composition of two bMSCs. BMSCs allow for the compact definition of concurrent

behaviors but are limited to finite and deterministic interactions. To obtain infinite

and non-deterministic specifications, we will use HMSCs, that compose sequentially

bMSCs to obtain languages of bMSCs. The sequential composition is formally defined

as follows:

Definition 2.2.2 (Sequential composition). Let M1 = (E1, ≤1, C1, φ1, t1, µ1) and

M2 = (E2, ≤2, C2, φ2, t2, µ2) be two bMSCs, defined over disjoint sets of events. The

sequential composition of M1 and M2 is denoted by M1 ◦ M2. It consists in a con-

catenation of the two bMSCs instance by instance, and is the bMSC M1 ◦ M2 = (E, ≤

, C, φ, t, µ), where:

• E = E1 ∪ E2, C = C1 ∪ C2

• ∀e, e′ ∈ E, e ≤ e′ iff e ≤1 e′ or e ≤2 e′ or ∃(e1, e2) ∈ E1 × E2 : φ1(e1) =

φ2(e2) ∧ e ≤1 e1 ∧ e2 ≤2 e′

• ∀e ∈ E1, φ(e) = φ1(e), µ(e) = µ1(e), t(e) = t1(e)

• ∀e ∈ E2, φ(e) = φ2(e), µ(e) = µ2(e), t(e) = t2(e)

Note that the definition requires the concatenated bMSCs to be defined over disjoint

sets of events. In the rest of the chapter, we will use concatenation to assemble several

occurrences of the same bMSC. Slightly abusing the definition, we will consider that

concatenation M1 ◦ M2 is always defined, and if E1 ∩ E2 Ó= ∅, we will consider that

21

M1 ◦M2 is a bMSC obtained by composing M1 with an isomorphic copy of M2 defined

over a set of events that is disjoint from E1. In particular, this allows us to define,

for a bMSC M , the bMSC M ◦ M which denotes a scenario with two consecutive

occurrences of M . An intuitive and graphical interpretation for M1 ◦ M2 is that the

interactions in M2 are appended to M1 after M1 (i.e. drawn below M1). An example

of sequential composition is shown in Figure 2.12: The bMSC M1 ◦ M2 can simply be

obtained by drawing M2 below M1, and extending the lifelines of instances. Note that

sequential composition does not require both bMSCs to have the same set of instances.

� �

��

������

�

�	

� �

�

�����	

�

� �

��

���������	

�

�	

�

�

�

�

��� ���

���

Figure 2.12: Two bMSCs M1 and M2 and their concatenation M1 ◦ M2

Definition 2.2.3 (HMSC behavior). Let H = (I, N, →, M, n0, F in) be an HMSC.

A path of H is a sequence ρ = (n0, M0, n1)(n1, M1, n2) . . . (nk, Mk, nk+1) of transi-

tions. We will say that a path is acyclic if and only if it does not contain the same

transition twice. We define as Paths(H) the set of paths of H starting from the ini-

tial node. A path ρ = (n0, M0, n1) . . . (nk, Mk, nk+1) in Paths(H) defines a sequence

M0.M1 . . . Mk ∈ M∗ of bMSCs. We will denote by Mρ the bMSC associated to ρ and

define it as Mρ = M0 ◦ M1 ◦ · · · ◦ Mk.

The semantics of an HMSC is given both in terms of generated MSCs FH = { Mρ |

ρ ∈ Paths(H) }, and linearization LH = { lin(Mρ) | ρ ∈ Paths(H) }.

22

2.3 MSCs Versions

Message Sequence Charts emerged from the SDL (ITU-T Specification and Descrip-

tion Language) community leading to its first ITU-T recommendation in 1992 . Later

there have been revisions of MSC in 1996 [77], in 2000 [35], in 2004 [46], and more

recently in 2011 [1]. MSC 2000 differs from MSC-96 mainly in the following areas:

better integration of conditions, quantitative notion of time, data specification. We

refer the reader to [35] for further details. So far, there exists no formal semantics

comparable to the one of MSC-96 for MSC-2000. MSC-2004 is a natural continuation

of the MSC-2000 version, refining concepts including: extended data interface, and

references to default SDL interface, uni-directional time constraints, and in-line high

level expressions. The MSC 2011 is intended to be the same as the 2004 it is only

correcting a number of errors into the main text and the appendix. Figure 2.13 shows

a brief history of the evolution of the MSC standard.

����������	

��
�	

��
��

��
	���

���������������������������

���������������������������������������

�
����������������

�������������������������� !��������

������!���������������"�����������������

���������������������������

��
	��#
� ��$%������������

����
�����������������������������

���
����������������� !��������

Figure 2.13: Brief history of MSCs.

2.4 Variants of Message Sequence Charts and

similar notations

Several variants of MSCs exist [55]. We present some of the most popular ones in this

section.

23

2.4.1 Interworkings

Interworkings is a graphical formalism for describing communications between com-

ponents of a system. It also has a formal semantics based on process-algebra [63].

Interworkings were first developed to be used in the analysis phase of the develope-

ment process at PKI (Philips Kommunikations Industrie) Nürnberg for the message

interactions between blocks [50]. They were also used in the specification of radio

communication systems and other industry telecommunication applications. Inter-

workings are considered as one of the direct predecessors of MSC-96. However, they

can only model synchronous communications which means that messages receptions

cannot be delayed as in MSCs, where the communications are asynchronous. Several

elements from MSC-96 and other recent versions are absent from Interworkings like

asynchronous messages, gates, instance creation and stop, timers, etc. In particu-

lar, there is no means for expressing alternatives and repetition, and no referencing

mechanism.

2.4.2 UML Sequence Diagram

The UML Sequence Diagrams (SDs for short) are one of the UML diagrams to model

the dynamics of a system. Originally, they result from two modeling diagrams: Ivar

Jacobson’s interaction diagrams[45], and an Object Oriented variant of MSC-92 lan-

guage called OMSC[19]. SDs are very popular for their role within use case driven

object oriented software engineering. They are used to describe either the interactions

between the system and the actors of its environment or the communications between

objects in a system. However, the SDs are not as formal as MSCs. In [78], the authors

propose to make a harmonization between the UML SDs and the MSCs so that they

have a mutual benefit: MSCs benefit from the popularity of SDs and SDs benefit

from all the advantages that offer the MSCs (mainly the composition mechanisms).

[34] consider that a specific MSC profile of UML 2.0 could add the innovative data

mechanism which possibly could make it easier to handle Interactions formally.

2.4.3 Live Sequence Charts

Live Sequence Charts (LSCs for short)[23] is a language for scenarios, based on bM-

SCs. LSCs provide the means to distinguish mandatory and provisional behaviors

during system runs. In [23], the authors relate LSC specifications to system runs. A

system run, in their approach, is an infinite sequence of snapshots, where a snapshot

24

consists of the set of current events (being either synchronous or asynchronous sends

or receives between components or between a component and the environment), and

an assignment of values to all variables of the system.

LSCs provide the means to distinguish mandatory and provisional behaviors on the

level of the whole chart and three other elements: messages, locations and conditions.

This distinction is achieved graphically by using solid line for mandatory LSC element

and dashed lines for possible ones. Table 2.14 summarizes the dual mandatory/pro-

visional notions supported in LSCs, with their informal meaning: Mandatory charts

are classified as Universal LSC and provisional ones as Existential LSC. The distinc-

tion regarding an internal chart element is referred to as the element’s temperature;

mandatory elements are hot and provisional elements are cold.

��������� 	��
������

����� �����

���������

��������	

�

�������������������

�����������������

���������	

���
���������������������������

�������������������

�������� ������������

���������

��

��������������������
��

�������
�������

��	�

������������������������
�

�������
�������

������� ������������

���������

��

���������������������

��

���������
��

��	�

�������������������������

����������

��������� ������������

���������

 ��

���������������������!

���������������

��	�

����������������������"��

��������#���$�����

Figure 2.14: LSC elements

Furthermore, It is important for a Universal LSC, to state at which point(s) of the

run the LSC should be considered, otherwise the behaviors of the entire system have

to be specified in one LSC. The authors in [23] define the activation condition and the

pre-chart of an LSC: The activation condition is a boolean condition, which expresses

the activation point of an LSC. The pre-chart allows to specify a prefix or history

which must be fulfilled by a run in order to activate the LSC. Pre-charts do not re-

place the activation condition, but extend it; the activation condition in the presence

of a pre-chart indicates the starting point of the prefix. The informal semantics of an

LSC with pre-chart is consequently: If the activation condition holds and afterwards

25

the pre-chart is completed, then the LSC is activated.

�������

� �

	
�

��

��������	

	����������

� �

�����
��

��������
��

�
� �
�

Figure 2.15: Example of LSCs

Figure 2.15 shows an example of two LSCs of a distributed system describing the

behaviors of two machines X and Y . The LSC in Figure 2.15-a) is a Universal LSC

(solid line) with a pre-chart. When this pre-chart is completed (which means that X

sends the message Connect to Y then Y sends the message Connected to X), the

chart is activated (X sends the message data to Y then Y sends Ok to X). The LSC

in Figure 2.15-b) is an Existential LSC (dashed line) with an activation condition

(which is the message badConnection). When the activation condition is satisfied

this does not necessarily means that the LSC is activated.

2.4.4 Conclusion

MSC is probably one of the most powerful specification models. The main reason

is that it allows to give an hierarchical order to the diagrams and, thereby, describe

parallel, sequential and alternative scenarios, and to describe non-regular behaviors

as well. All this can be presented in a clear and easy way. However, a disadvantage

of MSC, which is also common with other high level specification formalisms, is that

the descriptions of these scenarios are not precise enough to derive an equivalent code

or an abstract machine model, that we will call in the sequel "implementation".

26

2.5 Implementation of Message Sequence Charts

Many researchers consider that, in order to use MSCs in the software life-cycle, it is

important that the MSC specification can be translated into distributed state-based

specifications (abstract machine models). A natural question is: why not to use di-

rectly abstract machine specification? Actually, specifying the system directly with a

state-based specification requires explicit identification of states and thus much more

consistency when constructing scenarios. This forces the users to reason about their

system in terms of states rather than sequences of actions which is very complex spe-

cially for large distributed systems.

Then scenario-based inter-object specifications (e.g., via live sequence charts) and

state-based intra-object specifications (e.g., via statecharts) are two complementary

ways to specify behavioral requirements. This raises the questions of realizability and

implementation. The realizability (or implementability) problem is to know whether

we can build an abstract machine model with exactly the same behaviors as the given

specification. The implementation problem (or the synthesis) consists in building an

abstract machine model with exactly the same behaviors as the given specification.

Before formalizing the synthesis problem, we present some of the most important and

used abstract machine models.

2.5.1 Abstract machine models

The abstract machine model is the operational model of the system. It describes how

each process should behave independently in the system. The code generation is a sim-

ple task once an abstract machine model exists. Thus, it is very important to choose a

specification model that can be easily translated into an operational model so we can

benefit from the specification. As human translation is error-prone, it is important to

produce this translation automatically. However, this local view of the specification

that each process have in an abstract machine model may add concurrency between

the processes. This concurrency might then allow additional behaviors that were not

described at the high-level specification. Thus the concurrency is an important point

to consider when translating a high-level specification into an abstract machine model.

Several abstract machine models appeared in the literature, next we will present only

some of the most popular notations.

27

2.5.1.1 Petri Nets

Petri nets (PN for short) [68] can be used to describe the state-based behavior of one

instance of the system, or the interactions between several instances as well. It was

first introduced in the doctoral thesis of C.A. Petri [73]. Since then the PN model

has been developed and applied in a wide range of applications like in communication

networks, data flow systems, etc [84]. A Petri Net is a directed bipartite graph with

two nodes types: The first, called places, represent conditions. The second, called

transitions, represent the events that may occur. These nodes are connected via

directed arcs such that these arcs never occur between two nodes of the same type.

A PN is defined as follows:

Definition 2.5.1 (Petri net). A Petri net is a tuple (P, T, F), where

• P is a finite set of places,

• T is a finite set of transitions,

• F ⊆ (P × T)
⋃

(T × P) is a set of arcs (flow relation).

Graphically the places are represented by circles and the transitions by dashes. Several

works treated the transformation of MSCs into PN as an abstract machine model

[20, 72]. A simple way for representing an MSC by a PN is as follows: The head and

the end symbols of instances in a bMSC are represented by a start and an end place

for each instance. The MSC events are represented by transitions. A token moving

through the net represents the control flows within the system. This token moves from

start place to the end place passing all along the transitions and places presenting the

occurring MSC events. The Figure 2.16 presents the different representations of MSC

events in PN: Figure 2.16(a)for the local actions, Figure 2.16(b) for the sent event and

Figure 2.16(c) for receive event. Figure 2.17 presents an example of a transformation

of a bMSC into a PN based on the elements presented in Figure 2.16: For each

instance in the bMSC we get the events that we transform into Petri net fragments.

The resulting Petri net fragments are then composed sequentially in correspondence to

the bMSC instances. Finally, the Petri net fragments for the instances are composed

in parallel (see [47] for more details). In Figure 2.17, markings of places represent

these facts about the system:

– The tokens in places p11, p21 and p31 represent respectively the fact that the

processes A, B and C have been started. And the tokens in places p13, p24 and

p32 represent respectively the fact that the processes A, B and C have ended.

28

��

��

��

�

��

�

��

��

�

��

��

��� �	� �
�

Figure 2.16: The representation of some MSC’s events in PN

– p11: represents the fact that the process A has been started, and that A is ready

to send the message m1 to the process B.

– p12: A has sent the message m1 to B, and that A is ready to send the message

m2 to B.

– p13: A has sent the message m2 to B, and this is the end place for A.

– p21: represents the fact that the process B has been started, and that it is ready

to receive the message m1 from the process A.

– p22: B has received the message m1 from A, and that B is ready to send the

message m3 to C.

– p23: B has sent the message m3 to C, and that B is ready to receive the message

m2 from A.

– p24: B has received the message m2 from A, and this is the end place for B.

– p31: represents the fact that the process C has been started, and that it is ready

to receive the message m3 from the process B.

– p24: C has received the message m3 from B, and this is the end place for C.

– A token in the place p121 represents the message m1.

– A token in the place p122 represents the message m2.

– A token in the place p321 represents the message m3.

The transitions represent the following activities in the system:

– t11: A sends the message m1 to B,

– t21: B receives the message m1 from A,

– t12: A sends the message m2 to B,

– t23: B receives the message m2 from A,

– t22: B sends the message m3 to C,

29

– t31: C receives the message m3 from B,

� �
��

���

���

���

���

���

���

����

���

�

���

��� ���
����

���

���

���

���

����

���

���

��

�	

�

�

�

Figure 2.17: The transformation of a bMSC into a PN

The implementation of an HMSC with Petri nets results in additional behaviors [20].

for instance let us consider the example of HMSC of Figure 2.18.

If the process A of the HMSC of Figure 2.18 sends the message m1 then the message

m2 to the process B, then B must receive the message m1 before receiving the message

m2 what might not be the case in the corresponding Petri Net presented in Figure 2.19

Then, one shall notice that HMSCs semantics can enforce messages between a pair of

processes to respect FIFO ordering (that we will explain in chapter 3), which cannot

be enforced by Petri nets. In fact, it has been shown that synthesis of Petri nets from

HMSCs usually produces an overapproximation of the initial HMSC language [20].

So PN cannot be used as implementation model.

2.5.1.2 Statecharts

Statecharts are synchronous languages originally introduced by Harel in [33]. They

are a variant of the Finite State Machines (denoted FSMs). FSM is a model of com-

putation that consists of a set of states, a start state, an input alphabet, a transition

functions, and accepting states. The computation begins at the start state, then it

30

�� ��

�
�

�
�

� �

��

��

� �

��

��

Figure 2.18: Example of HMSC

���

���

���

����

���
��� ���

��� ���
��� ���

����

� 	

Figure 2.19: The PN implementation of the HMSC of Figure 2.18

31

changes to a new state for each event/message (an event is somethig that occurs in the

system like an input from the environment, a message, etc.) depending on the tran-

sition function. Statecharts have extended the FSMs with some additional features

like hierarchy and parallelism, and broadcast communications. Statecharts formalism

continue evolving over the years, spawning many variants like classical statecharts (or

Harel’s Statecharts) UML Statecharts, and Rhapsody Statecharts [22].

It is clearly stated in the Z.120 standard [35] that bMSCs and HMSCs depict the

behavior of agents that communicate asynchronously, which rules out statecharts as

a possible abstract machine model. In [49] the authors consider the transformation

of a finite set of bMSCs into statecharts but the communications are supposed syn-

chronous. Some other works deal with the transformation of HMSCs into statecharts

but they change HMSCs semantics so that the execution of a bMSC does not start

while the execution of the previous bMSC have not yet ended. In the method of syn-

thesis that we propose in chapter 3, we will not change the semantics of the HMSC

[58], and yet implement correctly a subset of the language.

2.5.1.3 Communicating Finite State Machine

Communicating F inite State Machines (CFSM for short) [17] appeared as one of

the earliest abstract machine models to represent distributed systems [18, 87], and are

used for instance in the specification language SDL. A CFSM A is a network of finite

state machines that communicate over unbounded, non-lossy, error-free and FIFO

communication channels. One state machine is presented as a directed labeled graph

where nodes represent states and edges represent transitions. A transition between

two states can be either a send or a receive or a local transition. An edge is labeled by

p!q(m) (when the current machine named p sends a message m to another machine

named q), or by p?q(m) (when the current machine named p receives a message m

from another machine named q), or by a (where a is the name of a local action of the

current machine). Each state in a state machine has at least one output edge except

the final state. One of the states is identified as its initial state; and all states are

reachable from the initial state. A subset of states, called accepting states (or final

states), are states that mark a successful run which is a run that ends with emtpy

buffers. We give a formal definition of CFSM and their semantics in chapter 3 section

3.

Figure 2.20 presents an HMSC and two CFSMs A and B that describe the behaviors

of the two processes in the HMSC. The initial states of these two machines are de-

32

� �

��

��

� �

��

��

�������

�������
�	�����

�	�����

�

��

��

��

� �

Figure 2.20: Two communicating machines.

noted by a dark incoming arrow and the final states by a cross.

The tight relationship of CFSMs with MSCs is well known [56, 8]. For instance,

Lohrey in [56] considers that an accepting run of a CFSM generates in a canonical

way an MSC. In the sequel, we choose CFSM model as the implementation model,

so we will mainly focus on realizability and implementation problems for HMSCs and

CFSMs.

Actually the synthesis of an HMSC into a CFSM might contain deadlocks. For in-

stance let us consider the figure 2.21 that presents an HMSC and its corresponding

CFSM. In this example, if the process A sends the message ma to the process B and

at the same time the process B sends the message mb to the process A; In this case the

two corresponding communicating automata will be respectively at the states s1 and

s1′ with the two messages ma and mb in their respective buffers. This is a deadlock

situation.

The semantics of CFSMs is usually defined as the set of runs that do not lead to

deadlocks. The events that occur and lead a run to deadlock should not appear in

the semantics, thus these events are canceled. We consider that allowing deadlocks in

an implementation, and considering that we can simply cancel the events that lead to

deadlock is not a realistic solution. In the real life applications (like avionics), events

cannot be canceled simply by undoing them. In the synthesis algorithm that we will

propose in chapter 3, we consider as semantics of CFSM all prefixes of extensions of

the network of machines, including prefixes of executions that end on a deadloack.

33

� �

��

��
� �

��

��

�������

�����	�
�����	�

�������

�

�

���

�
�

� �

Figure 2.21: Example of a CFSM that might deadlock.

� �

��
��

Figure 2.22: A run of the example of Figure 2.21 that deadlocks

34

2.5.2 The realizability and the synthesis of HMSCs

The synthesis of a scenario-based model consists in building an abstract machine

model with exactly the same behaviors as the scenario-based model. Several patholo-

gies in scenario-based models that prevent their synthesis have been studied. An

overview of 21 approaches is given in [55] where the authors compare some of the al-

gorithms that generate abstract machine models from scenario-based models that have

been proposed in the literature. The differences and similarities of the approaches are

identified using two sets of comparison criteria: criteria relevant from a user’s perspec-

tive (Intended use, Support of parallelism, Support of composition mechanism, etc),

and criteria relevant from a technical perspective (Consistency check: The require-

ments can be semantically inconsistent, Completeness check: the behaviors inferred

from the synthesized abstract machine models may not be equal to the behaviors

specified by the specification models, etc.). One of their goals is to identify the dif-

ferences and similarities among approaches and highlight them in the comparison

results. The other goal is to explore some of the challenges that current approaches

may face are: the implied scenarios (the additional behaviors that were not described

in the specification), the consistency (e.g., the synthesized model contains deadlocks),

the support of parallelism or concurrency (They noticed that more than half of the

approaches do not support parallelism. The reason behind this may be related to the

computational complexity typically introduced by the support of parallelism that we

explain in chapter 3 section 3.1.4), etc.

Next we will consider works about the synthesis of MSCs specifications. Some of

these works consider the synthesis of bMSCs into abstract machine models. A bMSC

depicts the exchange of messages among the communicating entities in a distributed

system, it contains neither loops nor alternatives and then it corresponds to a single

execution of the system that describe a finite set of behaviors. Therefore, a finite

set of bMSCs also describes a finite set of behaviors. In [7], the authors study the

synthesis of CFSM from a set of bMSCs, and present an algorithm that detects other

unspecified and possibly unwanted scenarios called implied scenarios. Thereby, if we

have no implied scenarios then there is an algorithm that can synthesize CFSM with

exactly the same behaviors as the specification. The authors present two notions of

realizability, depending on whether the realization is required to be deadlock-free (safe

realizability) or not (weak realizability).

However, to provide a more complete description of system behaviors we need to use

35

richer formalisms and HMSCs have received a quite attention for this. Several works

consider synthesis of HMSC specifications into abstract machine models. For instance,

[48] considers a synthesis method that translates an HMSC into SDL specifications,

by projection (that is build one communicating agent per process) of the HMSC on its

instances. However, the generated SDL system allows more traces than those defined

by the HMSC specification. This is due to the impossibility of preserving an order

between message receptions from different senders. The projection on processes does

not preserve this order. It is the same for [20] that considers the implementation of

HMSCs by Petri nets but with a larger set of behaviors. In the sequel, and as we have

chosen CFSM as the implementation model, we will mainly focus on realizability and

implementation problems for HMSCs and CFSMs.

The realizability (or implementability) problem of HMSCs into CFSMs consists in

deciding whether we can build a CFSM with exactly the same behaviors as the given

HMSC. Some works [8, 83] present two notions of realizability depending on whether

we require the implementation to be deadlock-free (safe realizability) or not (weak

realizability). The question about the realizability of the HMSCs by CFSMs was

studied in several approaches [7, 8, 31]. These studies show that this realizability

is in general undecidable, unless the specifications meet some restrictions. In [56],

Lohrey prove that the realizability of HMSCs into CFSMs is undecidable for class of

general HMSCs. Thus several sub-classes of HMSCs that have synthesis algorithms

were presented in the literature. Trivially the realizability of these sub-classes into

CFSMs is decidable.

2.5.2.1 Globally-cooperative HMSC

The Globally-cooperative HMSCs have been introduced in [66]. Before introducing

the definition of Globally-cooperative HMSCs let us define the communication Graph

of a bMSC:

Definition 2.5.2 (communication Graph of a bMSC). The communication graph of

a bMSC M is the directed graph G(I,Ô→) where I is the set of active instances of M :

, and such that for i ∈ I and j ∈ I, (i, j) ∈ Ô→, if there exists an event e=i!j(m).

An MSC is called connected (resp. strongly connected) if its communication graph is

connected (resp. strongly connected). Communication graphs are useful to classify

high-level MSCs.

A Globally-cooperative HMSC is defined as follows:

36

Definition 2.5.3 (Globally-cooperative HMSC). An HMSC H = (I, N, →, M, n0)

is called globally-cooperative, if for every cycle ρ in H, Mρ has a weakly connected

communication graph.

In Figure 2.23, the HMSC Hngc is not a globally-cooperative HMSC, since Gngc, the

communication graph corresponding to (n0,M1,n0) in Hngc, has two weakly connected

components one over A,B and the other over C,D. The HMSC Hgc is a globally-

cooperative HMSC as Ggc, the communication graph corresponding to (n1,M2,n1) in

Hgc, is a weakly connected graph.

� �

��

��

� �

��

���������

	

��

��

��������

	
 � � �

��	������� ��	������

�� ��

Figure 2.23: globally-cooperative HMSCs

Globally-cooperative HMSCs are always implementable by a CFSM but with possi-

ble deadlocks [30]. There is an EXPSPACE-complete algorithm to test whether a

globally-cooperative HMSC is implementable with a deadlock-free CFSM and with-

out additional data [56]. However, it is clear that the algorithm is obviously time-

consuming, and sometimes even some easily implementable HMSC are considered not

deadlock-free implementable, as the globally-cooperative HMSC of Figure 2.24 [29].

At node n0 we have a similar situation as for the example of the Figure 2.21 that lead

to a deadlock. Such situation will be called a non-local choice, and will be discussed

in details in chapter 3.

37

�� ��

�
�

�
�

���	
���	
��

�������

��

���	
���	
��

�������

���	
���	
��

�������

�
������� ����

���	�

Figure 2.24: HMSC depicting the transactions of usb 1.1

2.5.2.2 Regular HMSC

Another subclass of HMSC, the regular HMSCs, was introduced in [10].

Definition 2.5.4 (Regular HMSC). An HMSC H is called regular, if every bMSC

labeling a loop of H has a strongly connected communication graph.

The HMSC Hreg presented in the figure 2.25 is a regular HMSC. A regular HMSC

is a globally-cooperative HMSC with bounded communication channels (buffers have

bounded contents in any execution).

� �

��

��

��

���������

Figure 2.25: Regular HMSC

The authors in [67] proved that any regular set of MSCs admits a deterministic imple-

mentation with bounded channel capacities up to some additional message contents

38

called time-stamps. This result shows the power of adding contents to messages com-

pared to the more restrictive approach proposed in [7] where no additional message

content is allowed. For non-FIFO communications systems [66] proved that weak

realizability is decidable for bounded HMSCs. The work in [7] was extended in [8] to

consider realizability of bounded HMSCs. In [8], the authors proved that for FIFO

communication systems weak realizability is, surprisingly, undecidable for bounded

MSC-graphs, while safe realizability is in Expspace. However, the question of the

exact complexity remains open. In [56], Lohrey prove that for FIFO communications

safe realizability is EXPSPACE-complete for bounded HMSCs and that under non-

FIFO communication weak realizability is EXPSPACE-hard for bounded HMSCs.

[13] extends [67] and consider non-FIFO communication, and identify a subclass of

HMSCs (called coherent HMSCs), which are safely realizable with additional message

contents. However, checking whether an HMSC is coherent is in general difficult. Co-

herence is undecidable for HMSCs, and EXPSPACE-complete for locally synchronized

HMSCs and for globally cooperative HMSCs. (theorem 5.1 in [13]).

2.5.2.3 Locally-cooperative HMSC

The locally-cooperative HMSCs sub-class was introduced in [31] and is a sub-class of

globally-cooperative HMSCs.

Definition 2.5.5 (locally-cooperative HMSC). An HMSC H = (I, N, →, M, n0) is

called locally − cooperative, if for every bMSCs M1 and M2 such that (n0,M1,n1) ∈

→ and (n1,M1,n2) ∈ →, the bMSCs M1,M2 and M1◦M2 all have weakly connected

communication graphs.

Figure 2.26 shows an example of a non-locally cooperative HMSC Hnlc.

39

� �

��

��

��

� �

�	

��

�

���������

Figure 2.26: Locally cooperative HMSC

In [31], the authors show that locally-cooperative HMSCs can be implemented with an

exponential blowup in the number of states and the message contents. Furthermore

in general, the implementation is not deadlock-free.

2.5.2.4 Local HMSC

Let us consider the example of Figure 2.24. Node n1 is a choice node, depicting a

choice between two behaviors: either continue to send data (bMSC M1), or close the

data transmission (bMSC M2). However, at implementation time, this may result in

a situation where host decides to perform M1 and function decide concurrently to

perform M2, leading to a deadlock of the protocol. Such situation is called a non-

local choice, and causes implementation with deadlocks. It is then safer to implement

HMSCs without non-local choices. Ben-Abdallah et al. [15] focus on detecting non-

local choices, for which efficient algorithms are given but with restrictions (they only

consider nodes not the paths). Intuitively, locality of an HMSC H guarantees that

every choice in H is controlled by a unique instance called deciding instance. Check-

ing whether an HMSC is local is decidable [37] The authors in [31] show that local

HMSCs can be implemented but with deadlocks and additional message contents, and

with initial conditions. The synthesized machines do not deadlock if all the bMSCs

in the HMSC have the same set of instances.

We will give more details on local HMSCs in chapter 3.

40

2.5.2.5 Reconstructible HMSC

Another subclass of local HMSCs that are safely realizable without additional message

contents was studied in [37]. In [37], the authors show that the absence of non-local

choices is not a sufficient condition to ensure a correct synthesis of CFSM via pro-

jection and that a reconstructibility condition is also required (we will present the

reconstructible class in more details in chapter 3).

����

����	��
����
��	�����

����
���	������

���	��
����
��	�����

����
�����	������

���������������

�����

Figure 2.27: Some HMSC sub-classes

Figure 2.27 shows the relations between listed sub-classes. The arrow going from a

sub-classe A to a sub-classe B means that A is a sub-classe of B.

2.5.3 Implementation algorithms

Many classical distributed algorithms add data to messages to solve inherent prob-

lems of asynchronous systems mainly due to the lack of synchronization between

processes. This additional data can be logical clocks as proposed by Lamport [51],

or later by Fidge and Mattern [62, 26]. Furthermore, some works like [67, 13, 31]

show the importance of adding some finite data to the messages when implementing

the specifications. They take advantage of the existing messages to send this addi-

tional contents that help to control the computation of the abstract machine in order

to achieve the communication sequences as described in the specification. However

and as we have already presented, some works [8] and [57] do not allow adding data

into messages or adding extra synchronization messages. We think that, just like

[67, 13, 31] consider, this is a very restrictive notion of realizability. In the synthesis

algorithm that we propose in the next chapter, we allow additional data into messages.

41

We would like to mention that some synthesis approaches proposed these last 10 years

assume a synchronous semantics of HMSCs (usually by considering synchronous com-

munications among instances, or synchronization among instances at the end of each

bMSC), and take finite state machines, or statecharts variants as target language. In

[83], the authors present a technique to detect implied scenarios from a specification

consisting of both positive and negative scenarios (positive scenarios are the wanted

system behaviors and negative scenarios are the behaviors that the system should

not exhibit). The work in [81] assumes synchronous communications in bMSCs, and

defines the semantics of HMSCs as a parallel (and synchronous) composition of finite

state machines associated to instances. As a result, the synthesized specification can

be described as a finite automaton. The work in [54] synthesizes RoomCharts (a vari-

ant of statecharts) as target language, and hence assumes a synchronous semantics of

HMSCs. The synchronous approach is well adapted to contexts where instances are

seen as components of a synchronous system. Synthesizing finite objects then allows

for standard model-checking techniques. We refer interested readers to surveys [11, 55]

for a more exhaustive list of synthesis approaches with statecharts variants as target

language.

Two interesting surveys on synthesis from scenarios have been published [11, 55],

where the authors compare and classify many approaches based on the comparison

criteria they provided. Liang et al [55] compare the synthesis approaches according to

the source formalism, the intended use (analysis or code generation), the support for

composition operators and parallelism. The intended use of the technique presented

in chapter 3 is mainly code generation. Other interesting criteria address the target

model, which can be with global or local control, the degree of automation, and tool

support. Last, Liang et al check if the synthesis technique checks correctness and

completeness of the synthesized model. Amyot et al [11] use some criteria of [55],

and introduce several other criteria such as component focus, which considers whether

the distribution of behaviors is detailed in the specification formalism, hiding i.e. the

specification formalism considers internal behavior of the modeled system as a black

box or allows description of internal details. In addition, Amyot et al consider repre-

sentation issues i.e. whether the specification formalism is graphical or textual, and

ordering issues, i.e. whether concurrency is made explicit in the formalism, time (does

the scenario model and the synthesis approach address time issues?), abstraction (can

the scenario model represent generic behaviors), identity (the ability to define generic

scenarios involving groups of agents rather than precisely identified ones), and dy-

namicity (the ability to change the behavior of agents at runtime).

42

2.6 MSCs tools

MSCs are particularly useful in the early stages of system development procedure.

For example, it was reported that an MSC static analysis tool, MINT, helped Mo-

torola reduce appraisal costs and improve productivity [12]. Another software tool,

FATCAT [65] has been developed by Motorola UK Research Labs. FATCAT has been

used to analyze features developed for 3G handsets, and it has discovered errors in the

specifications that had previously gone undetected and which were subsequently dis-

covered only during field testing of pre-release models. Several tools were developed

to deal with MSCs, some of them are used for simply display the graphical diagrams

like Mscgen, others allow in addition verifications like Möbius or SCStudio (Sequence

Chart Studio) tools. Some tools also allow the transformation of existing scenarios

into MSC like the PathFinder tool that is used for extracting the core scenarios from

existing systems and representing them in MSC, for the maintenance of the system.

Other tools allow the transformation of MSC specifications into other formalisms like

the tool MSC2SDL and MOST (Moscow Synthesizer tool) [59] that provide a bridge

from MSC models to SDL specifications or the SOFAT tool (presented in chapter 5).

2.7 Conclusion

MSCs have proved to be efficient modeling tools to discover errors at early stages of

system design and were extensively used (especially bMSCs) to model requirements

in distributed systems.

In particular, HMSCs are very expressive, and can model infinite state systems. How-

ever, the main difficulty is that general HMSCs are not implementable. It means

that system designers cannot benefit from the formal modeling and verification steps

performed at early stages of design, to synthesize an implementation and to guarantee

its correctness.

In the literature, several works on synthesis use HMSC projection. Most of these

works propose solutions for syntactic subclasses of HMSCs only, and usually local

43

HMSCs. Working with local HMSCs is not sufficient to guarantee a correct synthesis.

Indeed, the machines synthesized by the MSC2SDL tool [2] or the MOST tool [59]

frequently allow for more behaviors than the original specification. To solve this prob-

lem, [37] introduced reconstructible HMSCs and showed that synthesis by projection

is correct for this subclass. The solution in [31] uses local HMSCs, and furthermore

requires that all processes of the HMSC are active (i.e. send or receive a message)

in all branches. The approach in [14] considers regular HMSC specifications, that is

a subclass of HMSCs with the expressive power of finite automata, and synthesizes

a correct target model. Other works allow the implementation to deadlock [67] and

consider that deadlocked runs are not part of the implemented language. Correctness

is an improvement with respect to [2, 59], and completeness an improvement with

respect to [31].

In the next chapter, we will define and prove the correctness of a method that allows

the implementation of any local HMSC by translating it into an operational model,

namely CFSM with controllers and additional messages contents. The translation is

done by projecting the HMSC on each active process to get the CFSM. And as it

is well known that this solution produces programs with more behaviors than in the

specification [37], the proposed model composes the projections with local controllers

that intercept the exchanged messages between the automata and tag them with some

information to avoid the additional unwanted behaviors. This will prove once again

the benefit of using additional data in the contents of messages.

44

Chapter 3

Local HMSCs : a correctly

implementable class of HMSCs

This chapter extends the state of the art by proposing a correct synthesis mechanism

for the whole subclass of local HMSCs. The proposed synthesis technique is to project

an HMSC on each process participating to the specification. This technique, without

additional message contents or control mechanism, is correct for a subclass of local

HMSCs, namely the reconstructible HMSCs, but may produce programs with more

behaviors than in the specification for local HMSCs that are not reconstructible [37].

When an HMSC is not reconstructible, we compose the projections with controllers,

that intercept messages between processes and tag them with sufficient information to

avoid the additional behaviors that appear in the sole projection. The main result of

this work is that the projection of the behavior of the controlled system on events of

the original processes is equivalent (up to a renaming) to the behavior of the original

HMSC.

This chapter is organized as follows: Section 3.1 defines the formal models that will

be used in the next sections. Section 3.2 characterizes the syntactic class of local

HMSCs. Section 3.3 defines the projection operation, that generates communicating

finite state machines from an HMSC, and shows that an HMSC and its projection are

not equivalent in general. Section 3.4 proposes a solution based on local control and

message tagging to implement properly an HMSC. Section 3.5 compares our approach

with existing techniques (also we classify our approach with respect to some criteria

for scenario-based synthesis approaches) and finally in this section we conclude and

45

propose future research directions.

3.1 Definitions

We first define some basic definitions that will be used in this chapter.

3.1.1 Basic definitions around the specification model

For a bMSC M defined as presented in chapter 2, we will denote by min(M) = {e ∈

E | ∀e′ ∈ E, e′ ≤ e ⇒ e′ = e}, the set of minimal events of M . Similarly, we will

denote by max(M) = {e ∈ E | ∀e′ ∈ E, e ≤ e′ ⇒ e′ = e} the set of maximal events

of M . We will call φ(E) the set of active instances of M , and an instance will be

called minimal if it carries a minimal event.

� �

��

������

�

�	

� �

�

�����	

�

��

�� �	

�

�

Figure 3.1: An example of local HMSC

We will suppose, without loss of generality, that the HMSCs we have to implement

comprise only one hierarchical level, i.e. they are automata whose transitions are

labeled by bMSCs. An HMSC can formally be defined as presented in chapter 2, i.e.

as a tuple H = (I, N, →, M, n0, F in).

46

HMSCs contain a unique initial node n0, that has no incoming transition (i.e, there is

no transition of the form (n, M, n0) in →), but also sink nodes, i.e. nodes that have no

successor, and choice nodes, i.e. nodes that have several successors. For convenience,

we will consider that all nodes, except possibly the initial node and sink nodes are

choice nodes, i.e. have several successors by the transition relation. This results in no

loss of generality, as an HMSC can always be transformed in such a canonical form by

concatenating bMSCs appearing in a path. A transition from a (choice) node will be

frequently called a branch of this choice. We also require HMSCs to be deterministic,

that is if (n, M1, n1) ∈−→ ∧(n, M2, n2) ∈−→, then M1 Ó= M2. This can be ensured

by the standard determinization procedure of finite automata.

In the Figure 3.1, we have an HMSC with the set of bMSCs M = {M1, M2}. The

transition relation contains two transitions, namely (n0, M1, n0) and (n0, M2, n1). The

behavior M1 can be repeated an arbitrary number of times, and then be followed by

the behavior described in M2.

�� ��

�
�

��
��

�	
���
�����

����

���

�
����

�	
���
�����

������

�
����

Figure 3.2: a non-local HMSC

3.1.2 Prefix-closed semantics of HMSCs

In chapter 2, we have presented the standard semantics of HMSCs, in terms of gen-

erated bMSCs. However, as we target deadlock free implementations, the execution

of HMSCs have to take into account that a started and incomplete execution also

belongs to the semantics of a system. So in the next sections, executions of bMSCs

47

will be represented as partially ordered multisets of events (pomsets). Furthermore,

these pomsets are not necessarily bMSCs, as we will consider incomplete executions in

which some messages have been sent and not yet received. This notion of incomplete

execution is captured by the definition of pieces and prefixes.

Definition 3.1.1 (prefix, suffix, piece of bMSCs). Let M = (E, ≤, C, φ, t, µ) be a

bMSC. A prefix of M is a tuple (E ′, ≤′, C ′, φ′, t′, µ′) such that E ′ is a subset of E

closed by causal precedence (i.e. e ∈ E ′ ∧ f ≤ e =⇒ f ∈ E ′) and ≤′, C ′, φ′, t′, µ′

are restrictions of ≤, C, φ, t, µ to E ′. A suffix of M is a tuple (E ′, ≤′, C ′, φ′, t′, µ′)

such that E ′ is closed by causal succession (i.e. e ∈ E ′ ∧ e ≤ f =⇒ f ∈ E ′) and

≤′, C ′, φ′, t′, µ′ are restrictions of ≤, C, φ, t, µ to E ′. A piece of M is the restriction of

M to a set of events E ′ = E \ X \ Y , such that the restriction of M to X is a prefix

of M and the restriction of M to Y is a suffix of M .

Note that prefixes, suffixes and pieces are not always bMSCs, as their message map-

pings m are not necessarily bijections from sending events to receiving events. In the

rest of the chapter, we will denote by Pref(M) the set of all prefixes of a bMSC M .

We will denote by Oǫ the empty prefix, i.e. the prefix that contains no event. For

a particular type of action a, we will denote by Oa a piece containing a single event

of type a. The examples of Figure 3.3 shows a bMSC M involving three processes

P, Q, R, a prefix Pr, a suffix S, and a piece Pc. Observe that Pc is obtained by

erasing Pr and S from M . Note also that Pr, S and Pc contain incomplete messages.

In the next sections, we will also need to concatenate prefixes and pieces of bMSCs.

Prefix and piece concatenation is defined alike bMSC concatenation with an additional

phase that rebuilds the message mappings. Let O1 be a prefix of a bMSC, and O2

be a piece of bMSC. Then, the concatenation of O1 and O2 is denoted by O1 ◦ O2 =

(E, ≤, C, φ, t, µ), where E, ≤, C, φ, and t are defined as in definition 2.2.2 and µ is a

function that associates the nth sending event from p to q to the nth reception from

p on q for every pair of processes p, q ∈ I. Note that this sequencing is not defined if

for some p, q, n, the types of the nth sending and reception do not match, that is one

event is of the form p!q(m) and the other one q?p(m′) with m Ó= m′. In particular,

we will denote by O ◦ {e} the prefix obtained by concatenation of a single event e to

a prefix O. We consider that all nodes in an HMSC are accepting nodes and thus we

define the prefix language of H as the set of behaviors L(H) =
⋃

ρ∈P aths(H) Pref(Mρ).

To simplify notation, we will write ρ = n0
M0−→ n1

M1−→ n2 . . .
Mk−→ nk+1 to denote a

path ρ = (n0, M0, n1)(n1, M1, n2) . . . (nk, Mk, nk+1). Note that our definition of the

language of an HMSC H includes all prefixes of bMSCs generated by H. A correct

implementation of an HMSC H is a distributed system reproducing exactly (and

48

� �

��

�����

	

�

��

��

�

� �

��

���������

	

�

� �

��������

	

��

�

� �

��������

	

�

��

��

��� ���

��� ���

Figure 3.3: A bMSC (a), a prefix (b), a suffix (c) and a piece (d)

49

nothing more) L(H).

3.1.3 Semantics of abstract machines

Figure 3.4 describes a CFSM composed of two finite state machines AClient and AServer.

�
�

��
��

��

���������	
�	��
�
���

���������	
�	�����

���������	
�	������

�������

�
�

��
��

��	
�	���������
�
���

��	
�	�

��

��	
�	�������������

��	
�	������������

Figure 3.4: Two communicating machines

We will write A = ‖
i∈I

Ai to denote that A is a network of machines describing the

behaviors of a set of machines {Ai}i∈I . A communication buffer B(i,j) is associated to

each pair of instances (p, q) ∈ I2. Buffers will implement messages exchanges. More

formally, we can define a communicating automaton as follows:

Definition 3.1.2. A communicating automaton associated to an instance p is a tuple

Ap = (Qp, δp,Σp, q0,p) where Qp is a set of states, q0,p is the initial state, Σp is an

alphabet with all letters of the form p!q(m) p?q(m) or a, symbolizing message sending

to a process q, reception from a process q, an atomic action a executed by process p,

or a silent move ǫ. The transition relation δp ⊆ Qp × Σp × Qp is composed of triples

(q, σ, q′) indicating that the machine moves from state q to state q′ when executing

action σ. A CFSM A = ‖
i∈I

Ai is a composition of communicating automata.

Each run of a set of communicating machines defines a prefix, that can be built

incrementally starting from the empty prefix, and appending one executed event after

the other (i.e. it is built from a total ordering of all events occurring on the same

process, plus a pairing of messages sendings and receptions). Then, the language

L(A) of a set of communicating machines is the set of all prefixes associated to runs

of A.

50

The semantics of CFSM is usually defined as sequences of events. Each event occurs

on a single process, and changes the configuration of the CFSM. A configuration of

a network of automata A = ‖
i∈I

Ai is a pair C = (L, W) where L is a sequence of

states q1 . . . qI depicting the local state of each communicating machine, and W =

{w11, . . . w1|I|, w21, . . . w2|I|, . . . w|I||I|} is a set of |I|2 words depicting the contents of

message buffers. Each wij is a sequence of message names, and depicts the contents

of the queue from Ai to Aj. Then, the behavior of A is defined as follows:

• all machines start from their initial states with all communication buffers empty,

that is the initial configuration is C0 = (L0 = q0,1.q0,|I|, W0 = {ǫ, . . . ǫ}).

• From a configuration C, a machine Ap can send a message m to a machine

Aq if Ap is in local state qp, and there exists a transition (qp, p!q(m), q′
p) in Ap.

Executing this action p!q(m) simply appends m to the buffer wp,q from p to q

and changes Ap’s local state to q′
p in the configuration. Hence, if C = (L, W)

with L = q0 . . . qp . . . q|I| and W = {w11, . . . wp,q . . . w|I||I|}, executing p!q(m)

results in a configuration C ′ = (L′, W ′) with L′ = q0 . . . q′
p . . . q|I| and W ′ =

{w11, . . . wp,q.m . . . w|I||I|}. Local actions of communicating automata change

the local state of a machine and leave the buffer contents unchanged.

• From a configuration C, Ap can receive a message m from process q, if Ap

is in local state qp, there exists a transition (qp, p?q(m), q′
p) in Ap, and the

first letter of wq,p is m (which means that m is the first message that has

to be received in the queue from q to p). Executing this action p?q(m) sim-

ply removes m from the buffer wp,q from p to q and changes Ap’s local state

to q′
p in the configuration. Hence, if C = (L, W) with L = q0 . . . qp . . . q|I| and

W = {w11, . . . wp,q = m.w . . . w|I||I|}, executing p?q(m) results in a configuration

C ′ = (L′, W ′) with L′ = q0 . . . q′
p . . . q|I| and W ′ = {w11, . . . wp,q = w . . . w|I||I|}.

This way, CFSMs define sequences of actions σ1. . . . σk that can be executed by their

local components from their initial states. Each action moves the communicating

machines from one configuration to another. However, CFSM are concurrent models,

and their executions can be represented in a non-interleaved way by bMSC prefixes.

Definition 3.1.3. Let A = ‖
i∈I

Ai be a CFSM. The language of A is denoted by L(A)

and is the set of prefixes defined inductively as follows :

• the prefix associated to an empty sequence of actions is the empty prefix Oǫ,

51

• the prefix associated to a sequence of actions σ1. . . . σk.σk+1 of A is the prefix

O ◦ {e} where e is an event labeled by σk+1 and O is the prefix associated to

σ1. . . . σk.

3.1.4 Restrictions

We have assumed some restrictions on the scenarios that we implement. Some of

them are introduced for the sake of readability, and some of them are essential to

ensure a solution to the synthesis problem. Standard notation of bMSCs allow for

the definition of a zone on an instance axis called co-region. Events appearing in a

co-region can be executed in any order. We do not consider co-regions, but they can

be simulated by adding to an HMSC a finite number of alternatives enumerating all

possible interleavings of events. We also consider that HMSCs are deterministic, and

that two bMSCs labeling distinct transitions of a local HMSC start with distinct mes-

sages. We use this assumption to differentiate branches at runtime. We could achieve

a similar result by introducing additional tags during synthesis. However, this mild

restriction simplifies the notations and proofs.

BMSCs also allow behaviors with message overtaking, i.e. in which some messages

mandatorily cross other messages from the same bMSC. In this work, we consider

only FIFO architectures as a target for synthesis. This is hence a natural restriction

to consider that all bMSCs are FIFO, that is for two sending events e, e′ such that

p = φ(e) = φ(e′), q = φ(µ(e)) = φ(µ(e′)) we always have e ≤p e′ ⇐⇒ µ(e) ≤q µ(e′).

Note that our synthesis technique could be easily adapted to allow overtaking in bM-

SCs. This requires a slight modification of the communication architecture, to allow

a bounded lookahead at the contents of communication buffers, and consumption of

messages appearing at a fixed position in a FIFO buffer rather that in first position.

Such semantics exists for instance in extended automata models such as SDL, and

a synthesis technique to generate SDL code from HMSCs in which bMSCs contain

message crossings was proposed in [2].

We restrict to HMSCs without parallel frames for deeper reasons. When parallel

frames are used, the behavior of an agent may not be a regular language, i.e. it

may not be expressible as a finite state machine. The implementation technique

proposed in this chapter uses vectorial clocks that may grow unboundedly, but the

systems generated always comport a finite number of control states. Furthermore, the

use of parallel frames may add a new source of unexpected behaviors, as one agent

52

may have to react differently when a pair of actions a, b are executed concurrently

or in sequence, and such non-determinism may lead to the execution of unspecified

behaviors. Hence, we doubt that a simple machine model can handle at the same time

unbounded parallelism in agents and asynchronous communications, to implement the

extremely complex (and very often ambiguous) behaviors allowed with parallel frames.

3.2 Local HMSCs

Consider a choice node in an HMSC, that is a node n with at least two outgoing

transitions (n, M1, n1) and (n, M2, n2). Executing an event in M1 (resp. M2) can be

seen as taking the decision to execute the whole behavior contained in M1 (resp. M2).

Once the decision to perform M1 or M2 is taken, all the other instances in the bMSC

have to conform to this decision to remain consistent with the HMSC specification.

Hence, every bMSC Mi labeling a transition leaving a choice node defines a set of

deciding instances φ(Min(Mi)), which is the set of instances that carry the minimal

events of Mi, and hence can take the decision to perform bMSC Mi. Obviously, the

minimal events in each Mi cannot be message receptions.

We can now state the main difficulty when moving from HMSCs to local machines.

In an HMSC, the possible executions are built by concatenating bMSCs one after an-

other. Hence in an execution of an HMSC, all processes conform to a single sequence

of bMSCs collected along a path. In a CFSM setting, when two processes have to

take a decision to perform scenario M1 or M2, they can of course take concurrently

the same decision, but conversely, one instance can decide to perform scenario M1

while the other instance decides to perform M2. Consider for instance the HMSC of

Figure 3.2. The instance Client can decide to send Data and wait for an acknowledg-

ment while the instance Server decides to send Logout. Such situation can lead to a

deadlock of the system.

Even worse, this scenario was not specified in the original description. Such unspec-

ified scenarios are frequently called “implied scenarios”, and were originally studied

in [82]. The main intuition behind this notion of implied scenario is that even though

a scenario was not part of the original specification H, as a distributed implementa-

tion of H can execute it, then it should be considered as part of the specification, and

explicitly appended to the original model [83]. This approach may work for simple

cases, but not for all kind of HMSC. First of all, an HMSC may exhibit an infinite

53

number of implied scenarios. Furthermore, it is undecidable if an implied scenario

is a prefix of some run that already exists in the original specification (this problem

can be brought back to a language inclusion problem for HMSCs, which was shown

to be undecidable [70, 20]). So, one cannot decide if a specification already includes

all implied scenarios that appear for a particular choice node. Furthermore, every

implied behavior appended to an HMSC may produce new implied scenarios and the

growth of a specification due to the integration of these new behaviors may never

stop. A safer design choice is to consider that situations leading to non-local choices

and hence to implied scenarios have to be avoided. For this, we define local HMSCs.

When the outgoing transitions of a choice node are labeled by bMSCs with distinct

deciding instances, then, without additional synchronization the synthesized machines

might decide to perform distinct scenarios. This situation is called non-local choice,

and should be avoided in a specification. We consider that specifications containing

non-local choices are not refined enough to be implemented.

Definition 3.2.1 (Local choice node). Let H = (I, N, →, M, n0) be an HMSC, and

let c ∈ N be a choice node of H. Choice c is local if and only if for every pair of (not

necessarily distinct) paths ρ = c
M1−→ n1

M2−→ n2 . . . nk and ρ′ = c
M ′

1−→ n1
M ′

2−→ n′
2 . . . n′

k

there is a single minimal instance in Oρ and in Oρ′ (i.e. φ(Min(Oρ)) = φ(Min(Oρ′))

and |φ(Min(Oρ))| = 1). H is called a local HMSC if all its choices are local.

We will also say that an HMSC is non-local if one of its choices is not local. Intuitively,

the locality property described in [15] guarantees that every choice is controlled by

a unique instance. We will show however that ensuring locality of choices is not

sufficient to guarantee a correct synthesis.

Proposition 1 (Deciding locality). Let H be an HMSC. H is not local iff there exists

a node c and a pair of acyclic paths ρ, ρ′ originating from c, such that Oρ and Oρ′

have more than one minimal instance.

Proof: One direction is straightforward: If we can find a node c and two (acyclic)

paths with more than one deciding instance, then obviously, c is not a local choice,

and H is not local. Let us suppose now that for every node c, and for every pair of

acyclic paths of H originating from c, we have only one deciding instance. Now, let

us suppose that there exists a node c1 and two paths ρ1, ρ′
1 such that at least one (say

ρ1) of them is not acyclic, and ends with transitions that appear several times along

this path. Then ρ1 has a finite acyclic prefix w1 in which the set of minimal instances

in Ow1 and in Oρ1 is the same, as for all bMSC M , φ(min(M ◦ M)) = φ(min(M)).

54

Hence, c, ρ1, ρ′
1 are witnesses for the non-locality of H iff c, w1, ρ′

1 are also such wit-

nesses. �

Theorem 3.2.1 (Complexity of local choices). Deciding if an HMSC is local is in

co − NP .

Proof: The objective is to find a counter example, that is two paths originating from

the same node with distinct deciding instances. One can choose in linear time in the

size of H a node c and two finite acyclic paths ρ1, ρ2 of H starting from c, that is

sequences of bMSCs of the form M1 . . . Mk. One can also compute a concatenation

O = M1 ◦ · · · ◦ Mk in polynomial time in the total size of the ordering relations.

Note that to compute minimal events of a sequencing of two bMSCs, one does not

have to compute the whole causal ordering ≤, and only has to ensure that maximal

and minimal events on each instance in two concatenated bMSCs are ordered in the

resulting concatenation. Hence it is sufficient to recall a covering of the local ordering

≤p on each process p ∈ I plus the message relation m. Then finding the minimal events

(or equivalently the minimal instances) of O can also be performed in polynomial time

in the number of events of O, as Min(M) = E \ {f | ∃e, e ≤p f ∨ f = µ(e)}. �

From theorem 3.2.1, an algorithm that checks locality of HMSCs is straightforward.

It consists in a width first traversal of acyclic paths starting from each choice node

of the HMSC. If at some time we find two paths with more than one minimal in-

stance, then the choice from which these paths start is not local. Note that the

set of minimal instances on a path ρ (or the whole bMSC Oρ labeling this path)

needs not be recomputed everytime a path is extended, and can be updated at the

same time as paths. Indeed, if ρ = ρ1.ρ2 is a path of H, then φ(Min(Mρ)) =

φ(Min(Mρ1
)) ∪ (φ(Min(Mρ2

)) \ φ(Mρ1
)). It is then sufficient for each path to main-

tain the set of instances that appear along this path, and the set of minimal instances,

without memorizing exactly the scenario that is investigated.

Algorithm 1 presented next page describes this procedure. It was originally proposed

in [37]. It builds a set of acyclic paths starting from each node of an HMSC. A non-

local choice is detected if there is more than one deciding instance for a node c. The

algorithm remembers a set of acyclic paths P , extends all of its members with new

transitions when possible, and places a path ρ in MAP as soon as the set of transi-

tions used in ρ contains a cycle. The correctness of the algorithm is guaranteed by

theorem 3.2.1, and as we consider a finite set of maximal acyclic paths, termination

is guaranteed.

55

Algorithm 1 LocalChoice(H)

for c choice node of H do
P = {(t, I, J) | t = (c, M, n) ∧ I = φ(min(M)) ∧ J = φ(M)}
/*P contains acyclic paths*/
MAP = ∅ /*Maximal acyclic paths*/

while P Ó= ∅ do

MAP = MAP ∪

{

(w.t, I) | ∃(w, I, J) ∈ P, ∃t = (nk, M, n) ∈ w,
w = t1...tk ∧ tk = (nk−1, Mk, nk)

}

P =











(w.t, I ′, J ′) | ∃(w, I, J) ∈ P, ∃t = (nk, M, n) ∈−→,
w = t1...tk ∧ tk = (nk−1, Mk, nk),
∧t Ó∈ w ∧ J ′ = J ∪ φ(M) ∧ I ′ = I ∪ (φ(min(M))− J)











end while
DI =

⋃

(w,I)∈MAP

I /*Deciding Instances*/

if | DI |> 1 then
H contains a non-local choice c

end if
end for

3.3 The Synthesis Problem

The objective of the synthesis algorithm from an HMSC H is to obtain a CFSM A

that behaves exactly as H. An obvious solution is to project the original HMSC on

each instance, that is if H is defined over a set of instances I, we want to build a

CFSM A = ‖
i∈I

Ai such that L(H) = L(A).

The principle of projection is to copy the original HMSC on each instance, and to

remove all the events that do not belong to the considered instance. This operation

preserves the structure of the HMSC automaton: Starting from an automaton labeled

by bMSCs, we obtain an automaton labeled by (possibly empty) sequences of events

located on the considered instance. This object can be considered as a finite state

automaton by adding intermediary states in sequences of events. Empty transitions

can be removed by the usual ε-closure procedure for finite state automata (see for

instance chapter 2.4 of [41]).

Definition 3.3.1 (Projection). Let us consider an HMSC H = (I, N, →, M, n0). The

set of events of a bMSC M is denoted by EM , and the set of events of M located on

56

instance i by EM i. The set EM i is totally ordered by ≤i. We denote its elements by

e1, · · · , e|EM i|. The finite state automaton Ai, result of the projection of H onto the

instance i is Ai = (Qi, →i, Ei ∪ {ε}, n0). We encode states of Ai as:

• tuples (n, M, n′, k) ∈ N×M×N×N, where: the first three components designate

an HMSC transition labeled by a bMSC M defined over a set of events EM , and

the last component k is an index ranging from 1 to |EMi
| indicating the progress

of instance i during M ,

• or simply as a reference to an HMSC node n (designating a configuration in

which Ai has not yet started the execution of a bMSC from n).

We then have Qi = {n} ∪ {(n, M, n′, k) | (n, M, n′) ∈−→ ∧ k < |EMi
|}, and

Ei =
⋃

M∈M EM i. We can then define the transition relation −→i as

−→i= {(n, ǫ, n′) | ∃(n, M, n′) ∈−→ ∧|EMi
| = 0} (i)

∪{(n, t(e1), n′) | ∃(n, M, n′) ∈−→ ∧|EMi
| = 1} (ii)

∪{(n, t(e1), (n, M, n′, 1)) | (n, M, n′) ∈−→ ∧|EMi
| ≥ 2} (iii)

∪{((n, M, n′, k − 1), t(ek), (n, M, n′, k)) | (n, M, n′) ∈−→ ∧2 ≤ k < |EMi
|} (iv)

∪{((n, M, n′, k − 1), t(ek), n′) | (n, M, n′) ∈−→ ∧k = |EMi
|} (v)

In the previous definition(i) corresponds to cases when the instance is not concerned

by the bMSC M , (ii) is for when a single event e1 occurs on the instance i in M ,

(iii), (iv) and (v) correspond to when the set of events occurring on the instance i

when running M is at least two events: (iii) corresponds to the transition after the

execution of the first event, (v) corresponds to the transition after the execution of

the last event, and (iv) corresponds to the transitions after the execution of the in-

termediate events.

The synthesis by projection from the HMSC of Figure 3.1 produces the CFSM of Fig-

ure 3.5. Note that as instance D is not active in bMSC M1, there is an ǫ-transition in

the automaton associated to D. The synthesis from the HMSC of Figure 3.2 produces

the CFSM of Figure 3.4. In this model, the CFSM can behave as specified in scenarios

M1 and M2. However, Aclient can also decide to send a Data message while AServer

sends a logout message. This situation was not specified in the HMSC of Figure 3.2,

so the CFSM of Figure 3.4 cannot be considered as a correct implementation. In

general, the projection of an HMSC on its instances can define more behaviors than

57

�
�

��

�������
��	��
�

�
�

��

�����
�

��	�����
�

��

�����
�

�
�

��

�
	����
�

�

	������

�
 �������

�

Figure 3.5: The instance automata projected from the HMSC of Figure 3.1

the original specification, but can also deadlock (as the run that we have presented

in chapter 2 Figure 2.22). Hence, synthesis by projection on instance is not correct

for any kind of HMSC. It was proved in [37] that the synthesized language contains

all runs of the HMSC specification.

Theorem 3.3.1 ([37]). Let H be an HMSC and let A be the CFSM obtained by

projection of H on its instances. Then L(H) ⊆ L(A).

In the rest of the chapter, we will only consider local HMSCs. However, we can show

that this locality is not sufficient to ensure correctness of synthesis. Let us consider

the projection of H in Figure 3.1 on all its instances given in Figure 3.5. A correct

behavior of H is shown in Figure 3.6-a), while a possible but incorrect behavior of the

synthesized automata is shown in Figure 3.6-b). We can see that message m4 sent by

machine D can arrive at machine C while m2 sent by machine B is still in transit.

According to the HMSC semantics, machine C should delay the consumption of m4

to receive message m2 first. However, C does not have enough information to decide

to delay the consumption of m4, and hence exhibits an unspecified behavior.

As we consider prefix closed semantics, i.e. we disallow CFSM to deadlock, this

behavior is part of the language of the synthesized CFSM.

This example proves that in general, even for local HMSCs, the synthesis by projection

is not correct. Problems arise when an instance does not have enough information on

the sequences of choices that have occurred in the causal past of a message reception

event. In some sense, the projection of an HMSC on local components breaks the

global coordination between deciding instances and the other instances in the system.

Definition 3.3.2. Let H be a local HMSC and c be a choice node of H. Let ρ be

a cyclic path starting from c, and ρ′ be any acyclic path starting from c. Let Hc be

58

� �

��

��

�

��

��

	 � �

��

��

�

��

��

	

��� ���

Figure 3.6: a) A correct behavior of M1 ◦ M2 of Fig. 3.1 a possible distortion due to
the loss of information on projected instances.

the HMSC with two nodes c, c′, two transitions (c, Oρ, c) and (c, O′
ρ, c′). Let Ac be

the CFSM obtained by projection from Hc. We will say that c, ρ, ρ′ is a sequence-loss

witness iff L(Hc) Ó= L(Ac).

We will say that an HMSC is reconstructible if and only if it is local and has no

sequence-loss witnesses. The class of reconstructible HMSCs was proposed in [37].

This work also shows that it is sufficient to consider simple cycles leaving a choice

to detect sequence-loss witnesses, which allows for the definition of a terminating

algorithm. Furthermore, one does not have to simulate all runs of communicating au-

tomata in Ac to detect that L(Hc) Ó= L(Ac). Indeed, sequence losses can be detected

by checking if the sequential ordering of events along a non-deciding instance in prefix

Oρ ◦ Oρ′ can be lost during projection.

Before showing how to decide the reconstructibility of an HMSC, let us first give the

definition of the message-transitive closure. The message-transitive closure is defined

as follows:

Definition 3.3.3. The message-transitive closure (or mt − closure, for short) of a

partial order relation R is written R∗mt, and is a relation R′ such that (e,e’) ∈ R′ if

and only if:

• i) (e, e′) ∈ R, or

• ii) ∃e” ∈ E such that eR′e” ∧ e”R′e′, or

• iii) ∃e1, e2 ∈ E2 such that φ(e1) = φ(e2) ∧ e1R
′e2 ∧ µ(e1) = e ∧µ(e2) = e′

∧φ(e) = φ(e′) ∧ (e′, e) /∈ R. (µ(ex) = ey means that ex is a message emission

and ey is the corresponding reception).

59

For instance, in Figure 3.7 e1 and e2 are two messages sending occurring on the

same instance and e and e′ are their respective corresponding messages receptions

on another intance. The two events e1 and e2 are ordered as they occur on the

same instance then based on the rule (i) of the mt − closure definition, (e1, e2) is an

element of R∗mt. Figure 3.7 also illustrates an example on rule (ii) that considers the

transitivity on the causality relation between events. The events e1 and e2 ordered,

and the events e2 and e′ (a sending and receiving of the same message) are ordered,

then e1 and e′ are ordered. Finally, based on the rule (iii) the events e and e′ are

ordered and the order between message receptions is the same as the order between

the corresponding emissions (e precedes e′).

The message-transitive closure R∗mt (or mt−closure, for short) is a closure operation

then any element e1, e2 ∈ E2, (e, e′) ∈ R,(R is a partial order relation) must be in

R∗mt (in Figure 3.7 e1 and e2 are ordered as they are message emissions occurring

on the same instance, then (e1, e2) is also an element of R∗mt). R∗mt is a transitive

on the causality relation between events (in figure 3.7 we have the e1 and e2 ordered,

and the events e2 and e′ are ordered then e1 and e′ are ordered). Finally, for e1 and

e2 were message emissions, and e and e′ are the corresponding reception . As no

ordering between e and e′ exist, and as any pair of events of the same instance must

be ordered, the order between message receptions is the same as the order between

the corresponding emissions (in Figure 3.7 e and e′ are then ordered). The formal

definition of R∗mt is given in the appendix.

��

��

�

��

Figure 3.7: Order on events

As for local choices, reconstructibility property can be decided on cycles and paths

originating from a choice.

Proposition 2. ∀ c, choice of H, c is reconstructible if for any pair of branches Bi,

Bj such that ∃p, path from c and Op = Bi ◦ Bj, for any non-deciding instance x,

(minx(Bi), minx(Bj)) is reconstructible from ≤Bi◦Bj
- (Ei|x

× Ej|x
) by mt-closure.

60

The algorithm 2 is to decide the reconstructibility of an HMSC:

Algorithm 2 Reconstructible(H)

for c choice node of H do
P = {(c.n, M) | c

M
−→ n}

C = ∅ /* Cycles */
MAP = ∅ /*Maximal acyclic paths*/
while P Ó= ∅ do

C = C ∪ {M ◦ M ′ | (w = c.n1..nk, M) ∈ P ∧ nk
M ′

−→ c}

MAP = MAP ∪{M ◦ M ′ | (w = c.n1..nk, M) ∈ P ∧ nk
M ′

−→ n ∧ n ∈ w}

P = {(w.n, M ◦ M ′) | (w = c.n1..nk, M) ∈ P ∧ nk
M ′

−→ n ∧ n /∈ w}
end while
for (Bi, Bj) ∈ C × (MAP ∪ C) do

if ∃x ∈ I | (minx(Bi), minx(Bj)) /∈ (Bi ◦ Bj - (Bi|x
× Bj|x

))∗mt then
Order cannot be reconstructed

end if
end for

end for

Let us consider the example of Figure 3.1, with a single choice node n0, and the path

(n0, M1, n0).(n0, M2, n1). According to the semantics of HMSCs, reception of messages

m2 and m4 on instance C should occur in this order in a correct implementation of

the example. Now let us consider the automata obtained by projection of H on its

instances, as in Figure 3.5. After executing:

A!B(m1).B?A(m1).B!C(m2).A!D(m3).D?A(m3).D!C(m4),

the CFSM is in configuration (L = q1,A.q0,B.q0,C .q2,D, W = {ǫ, . . . wBC = m2, wDC =

m4, . . . ǫ}). From this configuration, the automaton corresponding to instance C can

receive m2, which is the expected behavior, or conversely receive m4 which is wrong ac-

cording to the choices that were performed by instanceA. Hence n0, (n0, M1, n0), (n0, M2, n1)

is a sequence loss witness. This can be easily seen from M1 ◦ M2: If one removes the

ordering between the reception of m2 and the reception of m4, there is no way to

infer this ordering from remaining causalities. One important fact is that synthesis

by projection is correct for the subclass of reconstructible HMSCs.

Theorem 3.3.2 ([37]). Let H be a reconstructible HMSC, and A be the CFSM ob-

tained from H by projection. Then, L(H) = L(A).

As for local HMSCs, one can easily show that detecting if an HMSC is reconstructible

is a co-NP problem. According to theorem 3.3.2, the communicating automata synthe-

61

sized by projection from reconstructible HMSCs are correct implementations. How-

ever, we show in the next section, that all local HMSCs can be implemented with the

help of additional controllers. This allows for the following synthesis approach: first

check if an HMSC is reconstructible. If the answer is yes, then synthesize the CFSM

by simple projection as proposed in section 3.3. If the answer is no, then synthesize

the CFSM with their controllers, as proposed in section 3.4.

3.4 Implementing HMSCs with message controllers

The class of reconstructible HMSCs shown in section 3.3 is contained in the class of

local HMSCs. This subclass is quite restrictive (for instance, the HMSC of Figure 3.1)

is not reconstructible, and hence cannot be implemented by a simple projection). Note

also that the difference between the languages of an HMSC and of the synthesized

machines comes from the fact that some communicating automata consume a wrong

message instead of waiting for the arrival of the message specified by the HMSC. Yet,

the correct behavior still exists in the synthesized machines, as proved by theorem

3.3.1. Hence, a major objective to achieve correct synthesis is to prevent unspecified

behaviors.

In this section, we address the synthesis problem in a different setting, that is we add

a local controller to each communicating machine that can tag messages and delay

their delivery. As synthesis fails because of reception of messages in the wrong order,

each controller will receive messages destinated to the machine it controls, and decide

whether it should deliver it or delay its delivery. This decision is taken depending

on additional information carried by messages, namely a vector clock. Vector clocks

is a well known mechanism [62, 26], and helps keeping track of global progress in

distributed systems.

This new mechanism allows for the implementation of any local HMSC H, without

syntactic restriction. The architecture is as follows: For each process, we compute an

automaton, as shown in section 3.3 by projection of H on each of its instances. The

projection is the same as previously, with the slight difference that the synthesized

automaton communicates with his controller, and not directly with other processes.

To differentiate, we will denote by K(Ai) the “controlled version” of Ai, keeping in

mind that Ai and K(Ai) are isomorphic machines. Then, we add to each automaton

K(Ai) a controller Ci, that will receive all communications from K(Ai), and tag them

62

with a stamp. In every automaton K(Ai), we replace each transition of the form

((n1, M1, k, n2), p!q(m), (n3, M2, k′, n4)) (respectively ((n1, M1, k, n2), p?q(m),

(n3, M2, k′, n4))) in Ai, by a transition of the form ((n1, M1, k, n2), p!Cp(q, m, b),

(n3, M2, k′, n4)) (respectively ((n1, M1, k, n2), p?Cp(q, m, b), (n3, M2, k′, n4))), where b

indicates the branch to which the sending or the reception belongs. A controller Ci can

receive messages of the form (q, m, b) from his controlled process K(Ai). In such cases,

it tags them with a clock (the contents of this clock is defined later in this section),

and sends them to controller Cq. Similarly, each controller Ci will receive all tagged

messages destinated to K(Ai), and decide with respect to its tag whether a message

must be sent immediately to K(Ai) or delayed (i.e. left intact in buffer). Note that

this possibility of reading buffers contents without consumption slightly extends the

expressive power of CFSM, without changing their mere automata. Their controllers

communicate via FIFO channels, which defines a total ordering on message receptions

or sendings. Controllers also exchange their tagged messages via FIFO buffering. In

this section, we first define the distributed architecture and the tagging mechanism

that will allow for preservation of the global specification. We then define control

automata and their composition with synthesized automata. We then show that for

local HMSCs the controlled local system obtained by projection behaves exactly as the

global specification (up to some renaming and projection that hides the controllers).

3.4.1 Distributed architecture

We consider the n = |I| automata {K(Ai)}1≤i≤n obtained by projection of the original

HMSC on the different instances, and a set of controllers {Ci}1≤i≤n. Each commu-

nicating automaton K(Ai) is connected via a bidirectional FIFO channel to its as-

sociated controller Ci. The controllers are themselves interconnected via a complete

graph of bidirectional FIFO channels. We will refer to these connections among com-

municating automata as ports. A machine K(Ai) communicates with its controller

via a port Pi, and for all i Ó= j, port Pi,j of controller Ci is connected to the port

Pj,i of controller Cj. This architecture is illustrated in Figure 3.8 for three processes

i, j, k. This architecture is quite flexible: All the components run asynchronously and

exchange messages, without any other assumption on the way they share resources,

memory or processors.

63

���� �����

�����

�� ��

��

��� ��� �

���

	�
�

�

	�
�

	�
�

	�
�

	�
�

	�
�

	�
	�

	�

Figure 3.8: The distributed controlled architecture.

3.4.2 Tagging mechanism

Vector clocks are a standard mechanism to record faithfully executions of distributed

systems (see for instance [25, 61]), or to enforce some ordering on communication

events [74]. Usually, vector clocks count events that have occurred on each process.

In the architecture that we defined, each controller maintains a vector clock that

counts the number of occurrences of each branch of an execution it is aware of.

To allow for faithful recording of branches chosen along an execution we have to set

up a total ordering on branches of HMSCs. Let H be an HMSC. We will denote by

BH the branches of H, and fix an arbitrary total ordering ⊳ on BH . We use this

arbitrary order on branches to index integer vectors that remember the number of

occurrences of branches that have occurred during an execution of an HMSC. Let us

consider the example of Figure 3.2, that contains two branches b1 = (n0, M1, n0) and

b2 = (n0, M2, n1). We can fix b1 ⊳ b2, and associate to every execution a vector τ of

two integers, where τ [bi], i ∈ 1, 2 represents the number of occurrences of branch bi in

the execution.

Definition 3.4.1 (Choice clocks). A choice clock of an HMSC H is a vector of NBH .

Let ρ = n0
M1−→ n1

M2−→ n2 . . .
Mk−→ nk be a path of H. The choice clocks labeling of

Oρ is a mapping τ : EOρ
−→ N

BH such that for every i ∈ 1..k, e ∈ Mi, τ(e)[b] is the

number of occurrences of branch b in M1 ◦ · · · ◦ Mi.

Intuitively, choice clocks count the number of occurrences of each choice in a path of

H. In the rest of this section, we will show that communicating automata and their

controllers can maintain locally a choice clock along the prefix that they are executing,

and that choice clocks carry all the needed information to forbid the execution of

prefixes that are not in L(H). The usual terminology and definitions on vectors

64

apply to choice clocks. A vector V2 is an immediate successor of a vector V1 of same

size, denoted V1 ⋖ V2, if there is a single component b such that V1[b] + 1 = V2[b], and

V1[b
′] = V2[b

′] for all other entries b′. We will say that vectors V1 and V2 are equal,

denoted V1 = V2, if V1[b] = V2[b] for every entry b. We will say that V2 is greater than

V1, denoted V1 ≺ V2, iff V1[b] = V2[b] for some entries b, and V1[b] < V2[b] for all others.

For a given path ρ = n0
M1−→ n1

M2−→ n2 . . .
Mk−→ nk, we will call the choice events of

Oρ the minimal events in every Mi, i ∈ 1..k. It is rather straightforward to see that

when an HMSC H is local, then for every path ρ of H, the set of choice events in Oρ

is totally ordered. Note also that for a pair of events e, f in Oρ, τ(e) = τ(f) if and

only if e, f belong to the same bMSC Mi. From these facts, the following proposition

is straightforward:

Proposition 3. Let H be a local HMSC, ρ be a path of H, and τ be the choice clock

labeling of Oρ. Then, (τ(EOρ
), ≺) is a totally ordered set.

This proposition is important: maintaining locally a consistent tagging of messages

allows a controller that has two tagged messages available in two of its buffers to

decide which one should be delivered first.

Definition 3.4.2 (Concerned instances). Let b = (c, M, n) be a branch of an HMSC

H. We will say that instance p ∈ I is concerned by branch b if and only if there exists

an event of M on p (EM p Ó= ∅). Let K ∈ N
BH be a choice clock, and let p ∈ I be an

instance of H. The vector of choices that concern p in K is the restriction of K to

branches that concern p, and is denoted by [K]p.

In the example in Figure 3.1, the choice clock is an integer vector indexed by b1, b2,

where b1 = (n0, M1, n0) and b2 = (n0, M2, n1). In M1 and M2, instances A, C are

concerned by both branches (they are active in M1 and M2), but instance B is con-

cerned only by b1 and instance D is concerned only by b2. For a given instance i ∈ I,

the controller Ci associated with the projected automaton K(Ai) will receive the

messages sent by K(Ai) and by the other controllers. Messages exchanged between

the automata and the controllers are triples (j, m, b) where j ∈ I is the destination

automaton, m ∈ C is the message name, and b the branch in which the sending

event has occurred. In other words, in our controlled architecture, an automaton

executes p!Cp(q, m, b) instead of p!q(m). The messages exchanged between controllers

are tagged and represented by pairs (m, τ) where m is a message name and τ ∈ N
BH

a choice vector. In addition, the controller Ci maintains several local variables:

• τi ∈ N
BH , its locally known choices vector. It is initialized to the null vector,

and updated upon consumption of incoming messages.

65

• numEvt, which counts the remaining number of communication events of the

instance i to be treated in the current branch that is being processed.

• Rec is a sequence of reception events. numEvt and Rec are initialized with

constant values (that depend on the chosen branch) when dealing with the first

event of a branch on process i.

• currentb, which memorizes the branch of H that is currently executed by the

process i.

In the rest of the chapter, we will denote by πi(M) the sequence of events obtained by

projection of M on instance i ∈ I, and by πi,?(M) the restriction of this sequence to

receptions. For a sequence of events w, we will denote by tail(w) the sequence of events

obtained by removing the first event from w, that is if w = a.v, then tail(w) = v. The

generic algorithm for a controller Ci is composed of two rules, which are always active

(see Algorithm 3). Rule 1 applies to communications from K(Ai) to Ci. First case

corresponds to minimal events controlled by the projected automaton K(Ai). When

dealing with the first event of the bMSC (branch b) to be processed, the only role of the

controller is to compute the tag (increment of the corresponding component of τi) and

to initialize the variables numEvt and Rec. The currently processed branch is stored

in variable currentb. The other case deals with communications from K(Ai) that are

not choices of K(Ai). These events are generated in correct order by construction of

the projection.

The second rule applies for every port Pi,j, j Ó= i, and aims at controlling the order

of the different receptions of messages arriving in the buffers between each controller

Cj, j ∈ I \ {i} and controller Ci. This is the main objective of the controller. Note

that these messages arrive in a distinct buffer for each neighbor controller. There are

three cases:

• The first case (see Figure 3.9) occurs when a branch of H has already been

started, that is a controller Ci has received (i.e. consumed) a message indicating

the choice performed by the deciding instance of this branch, and a valid message

arrives. In this situation, all the components concerning K(Ai) of the current

tag τi and of the tag τ labeling the incoming message must be equal, and this

incoming message must be the next expected message (i.e. the next reception in

Rec) in the currently executed branch. Then the message can be consumed by Ci

and forwarded to K(Ai). The fact that there is only one FIFO channel between

the controller Ci and the projected automaton K(Ai) ensures the correct order

of receptions on this automaton.

66

• The second case (see Figure 3.10) is when the incoming message is the first

communication signaling a new choice. The controller then checks if the received

message defines the next branch of H that must be executed by K(Ai). This is

done by verifying if the received tag is the next tag to be treated (considering

only the components that concern K(Ai)), that is [τi]i ⋖ [τ]i. In that case, the

current tag can be updated. The current branch is retrieved by considering the

component that differs between [τ]i and [τi]i. Then the remaining number of

events that should be executed within this branch (the number of events on the

instance i in the bMSC of the current branch, minored by one) is set, as well

as the expected sequence of receptions, before transmission of the message to

K(Ai).

• The third case applies when none of the above situations hold, that is the

incoming message on port Pi,j cannot yet be consumed, either because it is not

the next reception expected (another reception on another port should occur

before this one) or the incoming message signals that a new choice has been

started, but more events must occur before consuming it. In such case, the

controller does nothing, and waits for other messages on other ports.

����� ����
���

�������

��� ����

Figure 3.9: The first case showing a state of the buffer of the controller Ci

����� �� �
���

�������
�
�

����

Figure 3.10: The second case showing a state of the buffer of the controller Ci

Now that we have defined controlled automata and their controllers, we can define

formally how they compose. Recall that K(Ai) is a finite state machine with the same

states as Ai, but in which each transition (q, i!j(m), q′) is replaced by a transition

(q, i!Ci(j, m, b), q′) (where b denotes the name of the branch currently executed by Ai,

and each transition (q, i?j(m), q′) is replaced by a transition (q, i?Ci(j, m), q′). Each

67

Algorithm 3 Controller Ci

RULE 1: when (j, m, b) available on port Pi

/* There is a message from K(Ai) in the buffer from K(Ai) to Ci*/
consume (j, m, b)
/* (j, m, b) is the first message of a new branch*/
if numEvt = 0 then

τi[b]++
numEvt := |Πi(Mb)| − 1
Rec = Πi,?(Mb)
send (m, τi) to Cj via port Pi,j

else
numEvt - -
send (m, τi) to Cj via port Pi,j

end if

RULE 2: when there exists a port Pi,j with (m, τ) available on port Pi,j

/* There is a message from controller Cj in the buffer between Cj and
Ci*/
if ([τi]i = [τ]i) ∧ (Rec = Ai?Aj(m).w) then
/* continuation of an already started branch */
consume (m, τ)
numEvt - -
send (j, m) to K(Ai) via port Pi

Rec = w
else

if (numEvt = 0) ∧ ([τi]i ⋖ [τ]i) then
/* A new branch b was started, and this is the next */
/* branch that Ai should execute (i is concerned by b)*/
consume (m, τ)
τi := τ
currentb := b s.t. [τ][b]− [τi][b] Ó= 0
numEvt := |Πi(Mcurrentb)| − 1
Rec := tail(Πi,?(Mcurrentb))
send (j, m) to K(Ai) via port Pi

end if
/* The last situation is when the message cannot be consumed be-
cause it does not have the right sequence number */

end if

controller Ci is not a communicating automaton, but yet it is a machine that sends

and receives messages. The composition K(Ai) | Ci of a machine with its controller is

a pair of communicating machines with a FIFO buffer from K(Ai) to Ci, and another

68

from Ci to K(Ai). Then, the composition of controlled machines ‖
i∈I

(K(Ai)|Ci) is the

union of all K(Ai)|Ci, with communication buffers from each Ci to each Cj, for i Ó= j

in I. Note that K(Ai)
′s communicate only with their controllers. This composition is

illustrated in Figure 3.8, where the depicted architecture is
(

K(Ai) | Ci

)

‖
(

K(Aj) |

Cj

)

‖
(

K(Ak) | Ck

)

. At this point, let us note that our controlled implementation

is not a CFSM anymore. Note that our controllers are defined with several lines of

code, but that they simply recall a local state plus an increasing vector of integers.

The number of local states that a controller can record is finite (they are simply

the states of the finite automaton obtained by projection on the instance). So, the

infinite part of the controller only comes from the vector. Another light modification

with respect to standard communicating machines is that the controller needs to read

messages without consuming them. Note however, that variables, message reading,

etc. are allowed in extended state machine models such as SDL [43]. Hence, our

controlled automata could be easily encoded as an SDL specification. Last, note that

adding controllers to our synthesis architecture does not really increase the expressive

power of the network of machines, as CFSMs can already simulate Turing machines.

Considered individually, processes descriptions obtained after controlled synthesis are

represented by an automaton plus its controller. However, the correctness result

presented hereafter shows that the synthesis does not change the individual behavior

of an instance, which remains regular. The major difference between the standard

architecture and the controlled one is that the controlled automata ‘simulate’ the

original specification (controllers are allowed to play additional hidden sequences of

events before delivering a message), while the automata obtained by projection in

the standard synthesis framework of section 3.3 have to play exactly the sequences of

events described by the original HMSC to be a correct implementation. Note that as

CFSM are Turing powerful, one could simulate the behavior of each controller with a

CFSM. However, this would result in a less concise and less intuitive model.

3.4.3 Correctness of controlled synthesis

Let us show correctness of the synthesis with local controllers. Of course, adding con-

trollers to the system means adding the controllers actions to the executions. Hence,

we cannot require that L(H) = L(‖
i∈I

(K(Ai)|Ci)) anymore. We propose another

notion of correctness, namely language equality up to abstraction of controllers. Ab-

straction erases controllers actions, and considers communications (q, m, b) from a

process p to its controller as a communication of a message m from p to q.

69

Definition 3.4.3. Let O = (E, ≤, t, φ, µ) be a prefix in L(‖
i∈I

(K(Ai)|Ci)). The

restriction of O to non-control events is a restriction of O to events located on K(Ai)’s.

We will denote this restriction by Unc(O). The uncontrolling of O = (E, ≤, t, φ, µ)

is a renaming function Ru() that replaces communications to and from the controller

of a process by direct communications with the process concerned by the sent/received

message, and builds the message mapping. Ru(O) = (E, ≤, t′, φ, µ′), where t′(e) =

p!q(m) if t(e) = K(Ap)!Cp(m, q, c), t′(e) = p?q(m) if t(e) = K(Ap)?Cp(m, q), and

t′(e) = t(e) otherwise. Function µ′ maps the ith sending from p to q with the ith

reception on q from p for every pair of processes.

Note that for a prefix O in L(K(Ai)|Ci) (i.e. located on a single instance), the message

mapping in Unc(O) is an empty relation.

Theorem 3.4.1. Let H be an HMSC, and let ‖
i∈I

K(Ai)|Ci be its controlled synthesis.

Then, Ru(Unc(L(‖
i∈I

K(Ai)|Ci))) = L(H).

Proof sketch: we want to show that the original specification given as an HMSC

and the synthesized controlled machines exhibit the same behaviors. We proceed in

several steps. We first show that in the synthesized machines, all choices (i.e. events

corresponding to the first event of some bMSC) are causally ordered in any execution

of the network of synthesized machines and controllers. We then show that for every

configuration of an HMSC H reachable after an execution O, there exists a finite set

of configurations of the synthesized machines reachable by observing the same execu-

tion. The last steps of the proof show inclusion of specification and implementations

languages in both directions by contradiction. Supposing that there exists a confi-

guration of H reached after executing a prefix O that allows firing of an event a but

that there exists no corresponding configuration of the CFSM reachable after O that

allows a leads to a contradiction. We consider each type of events for a and show that

allowing a in one language but not in the other contradicts either the fact that O is a

prefix of both the original specification and the synthesized language, or the fact that

choices are ordered. A complete proof of this theorem can be found in appendix 7.1.

This result shows correctness of synthesis up to renaming, and erasing of controllers’

moves. As a consequence, the behavior of an instance i ∈ I in an HMSC, and

the behavior of the CFSM K(Ai) are isomorphic. Hence, even after adding infinite

controllers, the behaviors of processes remains regular.

70

3.5 Conclusion and future work

We have proposed a synthesis framework that produces an implementation for local

choice HMSCs into a CFSM model. This synthesis works with additional processes

that tag messages and delay them to ensure correct ordering of message receptions.

Actually, the proposed synthesis technique is to project an HMSC on each process

participating to the specification. This technique is correct for a sub-class of local

HMSCs, namely the reconstructible HMSCs, but may produce programs with more

behaviors than in the specification for local HMSCs that are not reconstructible [37].

When an HMSC is not reconstructible, we compose the projections with controllers,

that intercept messages between processes. For each process there is a controller that

tags the outgoing messages with sufficient information about ordering of messages

coded as vectors, or delay some messages receptions according to their tag. This

avoids the additional behaviors that appear in the sole projection. The derived CF-

SMs are correct and complete by construction, i.e. they exhibit exactly the same

behaviors as the original description.

Based on the criteria presented by Liang et al [55] and compared to the presented ap-

proaches,our approach uses High-level MSCs as input language, and supports compo-

sition operators such as loops, sequence, and choices. We consider parallelism among

agents, but there is no support of parallel frames. The reasons for this restriction are

discussed in section 3.1.4: parallel frames introduce non-determinism leading to in-

correct synthesized behaviors, and may force implementations to have an unbounded

number of control states. The synthesis proposed in this chapter derives local finite

state machines, which are controlled asynchronously by machines able to delay some

messages. As for the criteria of whether the synthesis technique checks correctness

and completeness of the synthesized model: Our synthesis approach is not concerned

by these criteria, as the derived CFSMs are correct and complete by construction. On

the other side, based on the criteria presented by Amyot et al [11] and compared to

the presented approaches in [11], the HMSCs considered in our approach emphasize

distribution of actions over agents, and allows for description of internal behaviors

using internal actions. HMSCs are both a graphical and textual language. Though

the whole HMSC language allows for abstraction, time (use of timers and expression

of time constraints on scenarios), decomposition, dynamic process creation, or defi-

nition of abstract instances, are not addressed in our synthesis solutions. The most

important and interesting (but also the most difficult) issues to address using such

71

techniques are certainly time and dynamic process creation. However, defining time

constraints, for instance can completely change the interpretation of a specification,

and even make it inconsistent. Furthermore, time constraints involving events located

on distinct instances (for instance the maximal delay allowed between the sending of a

message and its reception) are hard to implement. Dynamicity is also hard to address,

as there is a lack of formal distributed models allowing dynamic process creation. A

first attempt to propose a dynamic communicating automaton model appeared in [16],

but the proposed model must be highly non-deterministic in order to implement dy-

namic MSCs.

We note that to keep the construction of CFSM simple, we have supposed FIFO

semantics of communications, and we will hence suppose that the HMSCs that we

implement do not contain message overtaking. However, the extension of our imple-

mentation to models that allow message overtaking should be easy. One fact worth

mentioning again is that the controllers are purely asynchronous, which leaves a lot

of freedom to choose a particular architecture. In a real implementation, one may

suppose that a process and its controller are implemented on the same machine, but

this is not mandatory. The use of controllers allows us to make only minor changes

to the CFSMs (tagging outgoing messages). Besides, controllers are designed to need

as little information as possible to ensure that the processes they control are always

executing a valid run of the specification: each process executes its task as defined in

the projection of the specification, and controllers ensure coordination.

We think that the class of local HMSCs is a good compromise between the abstraction

that is required in a specification formalism, and the preciseness that is needed for

a model to be implementable. Indeed, imposing local choices avoids considering in

the synthesis some heavy synchronization mechanisms among instances to ensure that

distant processes behave according to the same chosen scenario. The class of local HM-

SCs seems expressive enough to model many interesting protocols, and furthermore,

locality of HMSCs is decidable. The synthesis algorithms have been implemented in

the tool SOFAT [36], to generate a formal description of the CFSM from an HMSC,

Promela code, or even java code for all the instances and controllers needed in the

system (see chapter 5).

In terms of future work concerning the synthesis algorithm, there exist various oppor-

tunities for extending our work:

• The integration of data is challenging issue. The techniques proposed in this the-

72

sis only address the control flow as a high-level description, and do not consider

data. Inserting manipulation of local data in the internal actions of processes

can be done easily by mixing the language of bMSCs with a data manipulation

language. The code attached to actions can then be copied as it is in the gener-

ated code, which does not really impact the synthesis process. However, if data

are shared and used to guard choices in HMSCs, the projection technique does

not necessarily work, and additional synchronization and consistency mecha-

nisms are needed to ensure that the synthesized processes work with the same

data values.

• Time issues are also complex to handle. If we consider for instance as an in-

put model a time-constrained MSC [4], synthesizing a correct model means

synthesizing machines that meet all the time constraints expressed in the speci-

fication. This imposes in particular that controllers should also play the role of

timed schedulers. In such a context, using timed languages equality as a notion

of correctness for synthesis seems too constraining, and one should probably

restrict to timed languages inclusion as correctness criterion.

• A more technical perspective is to optimize our algorithm to reduce the size

of tags. A first challenge is to reduce the number of branches that a controller

have to consider. A first intuition is that only non-reconstructible choices should

be remembered, but yet this has to be demonstrated. A second possibility is

that all branches of a choice need not be remembered if they cannot be used

as witnesses for non-locality. Another aspect is to try to bound the integers

used in choice clocks. This could be done by general decrease of all entries of

clocks when every entry has exceeded some threshold k, but with additional

synchronization among controllers.

• Another possible perspective can be to study whether asynchronous controllers

can in addition enforce properties such as boundedness of buffers, avoidance of

a given configuration, etc.

73

Chapter 4

Localization of HMSCs

As already shown, in the previous chapters, HMSCs are not correctly implementable

in general, and the question of whether an HMSC specification can be implemented by

communicating machines is undecidable in general [56, 7]. However, several subclasses

of HMSCs can be implemented using a simple projection operation and controllers,

such as local HMSCs for which we have presented a correct implementation technique

in chapter 3.

In this chapter we propose a new technique to transform an arbitrary HMSC specifi-

cation into a local HMSC, hence allowing a correct implementation. In other terms,

we propose to extend the possibility of automated production of CFSMs by the use

of a localization procedure that transforms any non-local HMSC into a local one.

It guarantees that every choice in the transformed local HMSC has a leader process,

which chooses one scenario and communicates its choices to the other processes. This

can be achieved by adding new messages and processes in scenarios.

Trivial but uninteresting solutions to the localization problem exist, like extending

bMSCs of the HMSC in such a way that: They all contain a fixed process, designated

as a leader for all choices, and messages from this process to all other instances pre-

ceding any event in the bMSC. This solution is trivial but it may cause many changes

to the specification namely the set of messages and processes in the bMSCs. We are

thus interested in finding solutions with the minimal changes to the specification. For

instance we can search for the solution that adds the minimal number of messages

to the original specification. We propose to address the localization problem with

74

a constraint optimization technique. We build a constraint model where variables

represent leader processes and processes contributing to a scenario and constraints

ensure that an HMSC is local. A cost function is then proposed to evaluate the cost

of a solution (This cost function must then be minimized by solutions). for instance

the number of added messages.

This chapter is organized as follows: Section 4.1 gives an example on how to make an

HMSC a local one. Section 4.2 defines localization of HMSCs. Section 4.4 proposes

an encoding of minimal localization as a constraint optimization problem, and shows

the correctness of the approach. Section 4.5 describes an experimentation conducted

to evaluate the performance of our localization procedure, and comments the results.

Section 4.6 concludes this work.

4.1 Example

Let us consider the example of Figure 4.1, the HMSC Hnl is a non-local HMSC.

Replacing M1 by the bMSC M3 of Figure 4.2 solves the non-local choice problem.

Similarly, replacing M1 and M2 respectively by M4 and M5 solves the the non-locality

problem, but needs more messages.

�� ��

�
�

�
�

���	�
 �	�
	�

��
�

�������
�
��	

��
�

���	�
 �	�
	�

����	

�������
�
��	

����	

���

Figure 4.1: Example of a non-local HMSC

This example raises several remarks. First, the proposed transformations are purely

syntactic, and modifying the set of minimal instances does not always produce a

meaningful specification. For this reason, the examples exhibit changes involving a

single message type m. A meaning for additional message has to be chosen adequately

75

������ ���	��

���

�
���
�

�����

���

������ ���	��

�����

�
���
�

�����

�����

������ ���	��

���

�
���
�

�����

���

�

�
�

�

Figure 4.2: Solutions for localization of HMSC in Figure 4.1

by the designer once an HMSC is localized. The second remark is that there are

several possibilities for localization. The first solution proposed adds one message

in bMSC M1 to obtain M3. The second solution adds one message to M1 and two

messages to M2, and one can notice that in M5, the message between Store and Client

is useless. Indeed, there exists an infinite number of transformations to localize an

HMSC. This calls for the following solutions: We want to restrict to cheapest solutions

(for instance solutions with a minimal number of added messages). As we will show

later, once a deciding instance for a choice is fixed, one can compute the minimal

number of messages needed to localize this choice. As a consequence, the solutions to

a localization problem can be given in terms of choosing a deciding instances at each

choice, and instances participating to bMSCs. Then, the localization can be easily

tuned using different cost functions.

4.2 Localization of HMSCs

In this section, we show how to transform a non-local HMSC into a local one. This

procedure called localization consists in choosing a single deciding instance for each

bMSC M in the HMSC so that all choices become local, and then ensuring that all

other instances execute their minimal events only after the first event (the choice) of

76

the deciding instance. This is done by adding messages, as in the examples of Fig. 4.2.

Definition 4.2.1. Let M be a bMSC over a set of events E and processes P , with

minimal events e1, . . . , ek. A localized extension of M is a bMSC M ′ over a set of

events E ′ ⊇ E and over P ′ ⊇ P , such that there exists a minimal event emin ∈ E ′

(that is emin ≤′ f for every f ∈ E ′) and for every e ≤ f ∈ E, we have e ≤′ f . The

unique minimal instance in a localized bMSC M is called the leader of M .

Note that as there exists an infinite number of extensions for a bMSC M , choosing

extensions that are as close as possible to the original model is desirable. The impact

of localization can be simply measured as the number of added messages. A more

generic approach is to associate a cost to communications between processes, and

to choose extensions with minimal cost. This makes sense, as for instance the cost

and delays for communications via satellite are higher than with ground networks.

Similarly, the configuration of a system may prevent two processes p and q from ex-

changing messages. To avoid solutions with communications between p and q, one

can design a cost function that associates a redhibitory (or even infinite) cost to such

forbidden communications.

For a given bMSC M with k minimal events, there exists a localized extension over

the same set of processes that contains exactly k − 1 additional messages. This local-

ized extension is built when one picks up a deciding instance d among the minimal

instances of M , and create causal dependencies from the minimal event on instance d

to all other minimal events with additional messages. Only k − 1 messages are neces-

sary in this case, regardless of their respective ordering and place of insertion in the

original bMSC. The figure 4.3 presents two propositions Ma and Mb of localization

for the bMSC M1, both with k −1 additional messages. Another possibility is to pick

up another non-minimal process among those of M that do not carry a minimal event

as a leader, or even add a new process to M . In such cases, a localized extension can

always be built with exactly k additional messages. The figure 4.3 presents Mc as a

proposition of localization for the bMSC M1, with k additional messages.

Localization of HMSCs is more complex than localization of bMSCs. For each non-

local choice c, we have to ensure that every branch leaving c has the same leader.

Hence, this is not a property purely local to bMSCs. As for bMSCs, we can define a

notion of localized extension of a HMSC as follows:

Definition 4.2.2. Let H = (I, N, −→, M, n0) be an HMSC. H ′ = (I, N, −→′, M′, n0)

is a localized extension of H iff

77

� �

��

�

��

�

��
�	

� �

�

�

��

�

��
�	

� �

��

�

��

�

��

�	

�

��

�

��

� �

��

�

��

�

��
�	

�

��

��

Figure 4.3: localization of a bMSC

78

• there is a bijection f : M → M′ such that ∀M ∈ M, f(M) is a localized

extension of M ,

• −→′= f(−→),

• and H ′ is a local HMSC.

Localizing an HMSC H consists in finding M′ and the bijection f . As mentioned

above, as there exists a (potentially) infinite number of solutions, we consider the

solutions with the smallest number of changes to the original model. We propose

to address this problem with a cost function F that evaluates the cost of each possi-

ble transformation of H. The goal of our localization algorithm is thus to minimize F .

The cost function F is defined based on the criteria that we want to consider. For

instance we can affect a cost to each communication channel based on economic cri-

teria (for instance because of the type of the communications: satellite, ethernet, or

others), security and safety criteria (for instance some channels are safer than oth-

ers, etc.), time criteria (the delay induced by each channel might be different from

the others). For the sake of simplicity in the rest of the chapter, F counts the total

number of messages and instances added in M′.

4.3 Messages and processes counting cost function

The cost function F that we will consider counts the total number of messages and

instances added in M′. In this case, F is defined as a sum of individual costs of

modifications. Formally,

F(H, H ′) ,
∑

M∈M

cM,f(M)

where cM,M ′ is the individual cost to transform M into M ′. When H is clear from

the context, we will write F(H ′) instead of F(H, H ′). Let Mi ∈ M be a bMSC,

M ′
i = f(Mi), IMi

, IM ′
i
be the set of instances in Mi and M ′

i . Let k = |min(Mi)| be the

number of minimal instances in Mi, l be the leader instance of M ′
i , and x = |IM ′

i
|−|IMi

|

be the number of new instances in M ′
i . We choose the constants θ1 ∈ [0, 1] and

θ2 ∈ [0, 1] and define the cost cMi,M
′
i
for transforming Mi into M ′

i as follows:

79

cMi,M
′
i
,



















x ∗ θ1 + (k + x − 1) ∗ θ2 if l ∈ φ(min(Mi)) or l /∈ IMi

x ∗ θ1 + (k + x) ∗ θ2 otherwise

We already know that the number of messages to add is at most k−1 if we have k min-

imal instances. Adding x instances to Mi hence yields adding (k+x−1) messages if l

is chosen among the minimal instances of Mi or among the new instances. Similarly,

if the leader instance is chosen among instances that are not minimal w.r.t the causal

ordering, one needs to add k+x messages to localize Mi. The values θ1 and θ2 are cho-

sen to penalize more the number of added processes or the number of added messages.

Let us illustrate the computation of F on an example. Let Hc be the HMSC of

Figure 4.4-a) with the bMSCs of Figure 4.4-b), and let H ′
c (presented in Figure 4.4-

a) with the bMSCs of Figure 4.4-c)) be a localization of Hc. As mentioned above,

F(Hc, H ′
c) = cM1,M ′

1
+ cM2,M ′

2
+ cM3,M ′

3
. The leader of M ′

1 is A and, as A is not an

instance of M1, then cM1,M ′
1
= θ1+θ2 (there is a single message and an instance added

in M ′
1). There is no changes in M ′

2 and M ′
3 compared to M2 and M3 then cM2,M ′

2
= 0

and cM3,M ′
3
= 0. As a result, F(Hc, H ′

c) = θ1 + θ2. One can easily notice that H ′
c

is local. If we compare Hc with another localization H ′′
c , presented in Figure 4.4-a)

with the bMSCs of Figure 4.4-d), we get that cM1,M ′′
1
= θ2, cM2,M ′′

2
= θ2, cM3,M ′′

3
= 0

and finally, F(Hc, H ′′
c) = 2 ∗ θ2. The values of θ1 and θ2 decide which one of two

proposed localization is better. If θ1 = 0.5 and θ2= 1 then F(Hc, H ′
c) < F(Hc, H ′′

c)

and thus, localization H ′
c shoud be preferred to H ′′

c . On the other side if θ1 = 1 and

θ2= 0.5 then F(Hc, H ′′
c) < F(Hc, H ′

c) and thus, localization H ′′
c shoud be preferred to

H ′
c. This example shows that the cost function influences the choice of a particular

localization solution.

The graphs of Figure 4.5 shows how the values of θ1 and θ2 affects which localization

H ′
c or H ′′

c is better (θ1 is used a x coordinates, θ2 as y coordinates, and z axis as the

cost). For a pair of values (x,y), the lowest function is the best.

The cost function F defined above that counts the number of new messages and

processes in bMSCs is only an example, and other functions can be considered. For

instance, a cost function can consider concurrency among events as an important

property to preserve, and thus impose a penality everytime a pair of events e, e′ is

causally ordered in f(M), but not in M .

Note also that several localization solutions can have the same cost. For instance, if

80

�� ��

�
�

�
�

�

���	
��

	

��

��

 �

��

���	
��

	

��

�	

��

���	
��

�

��

���������������	
��������

 �

��

���	
���
	

���	
���

���	
���

���	
���

���	
���

���	
���

�
�������������	
��������
� ���������������	
��������
��

��

 �

��

	

��

�	

��

�

��

� 	

��

 �

��

	

��

��

��

�	

��

�

��

�������������
�����
	��������
����
�������
�

Figure 4.4: Localizing the HMSC Hc

81

Figure 4.5: The two cost functions F(Hc, H ′
c) and F(Hc, H ′′

c)

F is used, the order in which messages are exchanged to obtain localized bMSCs is

not significant. Considering that the cost function is influenced only by the number of

added messages and added processes, we define F(H, {(IM ′ , lM ′)}M∈M) as being the

cost of a localization of H that satisfies IM ′ = If(M), where f(M) has lM ′ as leader

for every M ∈ M. The localization problem can be formally defined as follows:

Definition 4.3.1. Let H = (I, N, −→, M, n0) be a non-local HMSC, and F be a cost

function. The localization problem for H, F consists in returning solutions s1, . . . , sk,

where each si is of the form si = {(IM ′ , lM ′)}M∈M such that F(H, {(IM ′ , lM ′)}M∈M)

is minimal, and where for each M ∈ M, IM ′ ⊆ I is a set of instances appearing in

M ′ = f(M) and lM ′ ∈ IM ′ is the leader of M ′.

4.4 Localization as a constraint optimization prob-

lem

This section explains how a finite domain constraint optimization model is constructed

from a given HMSC, to minimize the cost of the localization.

82

4.4.1 Constraint solving over finite domains

A constraint solving problem is composed of a finite set of variables X1, . . . , Xn, where

each variable Xi ranges over a finite domain, noted D(Xi). An assignment of a vari-

able is a choice of a value from its domain. A set of constraints C1, . . . , Cm is defined

over the variables and the goal in a constraint solving problem is to find solutions, i.e.,

assignments for all variables, that satisfy all constraints. A constraint solving problem

is satisfiable if it allows at least one solution. When a cost function F is associated

to each assignment, the problem becomes a constraint optimization problem (COP)

where the goal is to find a solution that optimizes the cost. Such a solution is called

an optimal solution. Constraint solving frequently uses filtering and propagation.

Roughly speaking, the underlying idea is to consider each constraint in isolation, as

a filter over the domains. Filtering a domain means eliminating inconsistent values

w.r.t. a given a constraint. For example, if D(X) = {1, 3, 4} and D(Y) = {2, 3, 4, 5},

the constraint X > Y filters D(X) to {3, 4} and D(Y) to {2, 3}. Once a reduction

is performed on the domain of a variable, constraint propagation awakes the other

constraints that hold on this variable, in order to propagate the reduction.

Constraint propagation is a polynomial process: It takes O(n ∗ m ∗ d) where n is the

number of variables, m is the number of constraints and d is the maximum number

of possible values in the domains. Constraint propagation and filtering alone do not

guarantee satisfiability, and just prune the domains without trying to instantiate vari-

ables. For example, considering the constraint system shown above, the constraint

X > Y prunes the domains D(X) to {3, 4} and D(Y) to {2, 3} but (3, 3) is not a

solution of the constraint. The constraint system may even be unsatisfiable, while

constraint propagation and filtering does not detect it (i.e., they ensure only partial

satisfiability). Hence, an additional step called labeling search is needed to exhibit

solutions. Labeling search consists in exploring the search space composed of the

domains of uninstantiated variables. Interestingly, a labeling procedure can awake

constraint propagation and filtering, allowing an early pruning of the search space. In

the previous example, if X is labeled by 3 then the constraint X > Y is awoken and

automatically reduce the domain of Y to {2}. A labeling search procedure is complete

when the whole search space is explored.

Complete labeling search can eventually determine satisfiability (or unsatisfiability)

of a constraint solving problem over finite domains. However, it is an exponential

procedure in the worst case. This is not surprising as determining satisfiability of a

83

constraint problem over finite domains is NP-hard [85].

During labeling search, when a solution s is found, the value m = F(s) of the cost

function can be recorded, and backtracking can then be enforced by adding the con-

straint F(...) < m to the set of constraints (or F(...) ≤ m if one wants to explore all

optimal solutions). If another solution is found, then the cost function F will nec-

essarily have a cost smaller than m. This procedure, called branch&bound [60], can

be controlled by a timeout that interrupts the search when a given time threshold is

reached. Of course, the current value of F in this case may not be a global minimum,

but it is already an interesting value for the cost function, something that we call a

quasi-optimum.

For localization of HMSCs, selecting the local HMSC with the smallest cost is desirable

but not always essential. On the other hand, mastering the time spent for localization

is essential to scale to real-size problems.

4.4.2 From HMSC to COP

To simplify notations, we will consider that in the HMSCs we consider, all nodes are

either initial nodes, end nodes or choice nodes. Any HMSC can be transformed in an

equivalent HMSC of this kind.

Variables. Localizing an HMSC H consists in selecting a set of participating in-

stances and a minimal process for each bMSC appearing in H, such that every choice

in the HMSC becomes a local choice. As this selection is not unique, we use constraint

optimization techniques to provide characteristics of localized HMSCs with minimal

cost. We propose to transform any HMSC into a constraint optimization problem, as

follows: A couple of variables (Xi, Yi) is associated to each bMSC Mi ∈ M, where

Xi represents the set of instances chosen for the bMSC f(Mi), and Yi represents the

leader in f(Mi). If I is the set of instances of H, every Xi takes its possible values in

2I while Yi takes a value in I.

Constraints.

Our constraint model is composed of domain, equality and inclusion constraints. Do-

main constraints, noted DOM , are used to specify the domains of Xi and Yi. Obvi-

ously, if a bMSC Mi is defined over a set of processes Pi, we have Pi ⊆ Xi ⊆ I. Equal-

ity constraints, noted EQU , enforce the locality property. For two bMSCs Mi, Mj such

that there exists two transitions (n, Mi, n1) and (n, Mj, n2) in → originating from the

84

same node n, f(Mi) and f(Mj) must have the same leader, i.e., Yi = Yj. We write

Mi ⊗ Mj, when such choice between Mi and Mj exists in H. Locality of HMSCs is

also enforced by using inclusion constraints, noted INCL. Let Mi, Mj ∈ M be two

bMSCs. We write Mi ⊲ Mj when there exists a path (n, Mi, n′)(n′, Mj, n′′), i.e., when

Mi is the predecessor of Mj in H. In such case, in any localization of H, the minimal

instance of f(Mj), represented by variable Yj, must appear in the set of instances of

f(Mi), represented by variable Xi. In our constraint model, this is expressed by the

constraint Yj ∈ Xi. Similarly, the leader of a bMSC in the localized solution can only

be one of its instances, so we have Yi ∈ Xi for every Mi ∈ M.

It is worth noticing that the localization problem is always satisfiable, as there exists

at least one trivial solution: Select an instance in I as leader for all bMSCs, then add

this instance if needed to every bMSC, and messages from this instance to all other

instances. However, this trivial and uninteresting solution is not necessarily minimal

w.r.t. the chosen cost function.

We can now prove that our approach is sound and complete by considering the fol-

lowing definition:

Definition 4.4.1. Let H = (I, N, →, M, n0) be an HMSC, the constraint optimiza-

tion model associated to H is CPH = (X , Y , C) where X = {X1, . . . , X|M|} asso-

ciates a variable to the set of instances appearing in each bMSC of f(M), Y =

{Y1, . . . , Y|M|} associates a variable to the leader selected for each bMSC of f(M),

and C = DOM ∪ EQU ∪ INCL is a set of constraints defined as follows:

• DOM =
∧

i∈1...|M|
Xi ∈ 2I ∧ Pi ⊆ Xi ∧ Yi ∈ I ;

• EQU =
∧

Mi,Mj |Mi⊗Mj

Yi = Yj

• INCL =
∧

Mi,Mj |Mi⊲Mj

Yj ∈ Xi ∧
∧

i∈1...|M|
Yi ∈ Xi

Then, solving the localization problem for an HMSC H amounts to find an optimal

solution for CPH , w.r.t. cost function F . We have:

Theorem 4.4.1. Computing solutions for a localization problem using an optimal

solution search for the corresponding COP is a sound and complete algorithm.

This result is not really surprising, as CPH represents what is needed for an HMSC to

become local. For the sake of completeness, a formal proof of this theorem is available

in appendix 7.2.

85

4.5 Implementation and experimental results

To evaluate the approach proposed in the chapter, we implemented a systematic trans-

formation from HMSC descriptions to COPs and conducted an experimental analysis

over a large number of randomly generated HMSCs. This effort is justified by the

absence of such important collection of problems or HMSCs that will allow a signif-

icant experimental analysis. Our implementation contains three main components

G, A and S and is described in Figure 4.6. G is a random HMSC generator, A is an

analyzer that transforms a localization problem for a given HMSC into a COP , as

described in the previous section. Finally S is a constraint optimization solver: We

used the clpfd library of SICStus Prolog [21].

The generator G takes an expected number of distinct HMSCs to generate (nbH),

a number of bMSCs in each HMSC(nbB), and a number of active processes in each

HMSC (nbP) as inputs. As output, it produces an xml file containing nbH randomly

generated HMSCs (Check the appendix for further details about the generator).

� �

������	
�

����
�������	��

���

���

���

�

��

�

����������

������

Figure 4.6: The input and outputs of the generator, the analyzer and the solver.

The analyzer A takes Th, the set of parameters θ1 and θ2 of the messages and processes

counting cost function F (defined in section 4.3), a sequence of time-out values T ,

the generated HMSCs (the xml file HMSCs.XML) as inputs, and a set of heuristics

R such that a heuristic is a rule or a strategy that we use to make a good decision.

It provides a shortcut to solving difficult problems (A simple example of heuristic

is deciding to use a toothpaste A rather than toothpaste B only because A is more

expensive).

The generator’s output xml file will be the first entry of the analyzer as presented in

figure 4.6. The aim of this analyzer is to help us to decide for a simple and efficient

way to resolve our localization problem, and to evaluate the influence of some parame-

ters on the runtime execution. To solve the problems, and so to localise the generated

HMSCs, the analyzer transforms those generated partial HMSCs into COPs. To solve

86

the COPs, the analyzer uses a well known solver named SICStus Prolog. Prolog

is a well-established declarative and high-level programming language, besides it is a

simple but powerful constraint logic programming language. Prolog have many devel-

opement environment and one of them which is the SICStus Prolog developement

system [21]. SICStus Prolog is used in a wide range of domains (Speech applications,

Telecom, Biotech,Logistics, Data Mining , ...) and by many important customers(the

NASA Intelligent Systems Division, Ericsson AB, Pyrosequencing AB, RedPrairie,

...) and it have proven its efficiency. The analyzer generates, for each CSP, a prolog

file that defines the problem (variables, domains and constraints) with a constraint

model implemented in clpfd(Constraint Logic Programming over Finite Domains), a

library of the SICStus Prolog environment. The clpfd library is an important reason

for us to choose Prolog, since it allows us to benefit from a very efficient implementa-

tion of constraint propagation [21]. The constraint propagation consists in explicitly

forbidding values or combinations of values for some variables of a problem because

a given subset of its constraints cannot be satisfied otherwise. The idea behind this

technique is to reduce the search tree so that the backtrack search commits into less

inconsistent instantiations. The clpfd library contains also the branch and bound

algorithm that we are planning to use.

As presented in figure 4.6, the analyzer takes a second entry R that represents the set

of heuristics that we might want to apply to solve the COPs. To run a COP with a

given heuristic the analyzer first edits this heuristic in the prolog file (named "Code

files" in Figure 4.6) of the COP then it calls the solver to compile and run the prolog

code. When the execution ended the results (the solution, the time of execution, ...)

are edited in a text file (named "Results" in Figure 4.6). The analyzer reads these

results and save them to be collected with the other results that it might get later.

All the results are then collected in the file "All Results.xls" presented in Figure 4.6.

In the experiments, we considered several labeling heuristics to choose the variable

and the value to enumerate first, e.g., leftmost, first-fail, ffc, step or bisect. Leftmost is

a variable-choice heuristic that selects the first unassigned variable from a statically

ordered list. First-fail is a dynamic variable-choice heuristic that selects first the vari-

able with the current smallest domain. Ffc is an extension of first-fail that uses the

number of constraints on a given variable as a tie-break when two variables have the

same domain size. Step is choice-value heuristic that consists in traversing incremen-

tally the variation domain of the current variable. Finally, bisect implements domain

splitting which consists in dividing a domain into two subdomains and propagating

the subdomain information. For example, if x takes a value in an interval [a, b], then

87

bisect will propagate first x ∈ [a, a+b
2
], and then x ∈ [a+b

2
, b] upon backtracking. For

each generated HMSC H and each heuristic hi ∈ R, the analyzer creates a prolog

file that contains the corresponding COP and the heuristics to apply during search.

For efficiency reasons, a special attention has been paid to the encoding of variation

domains and constraints. Subset domains were encoded using a binary representation

and sets inclusion using efficient div/mod operations.

Another entry of the analyzer, the sequence T represents the various instants at which

the optimization process must temporarily stop, and return the current best value

found for the cost function. These values are quasi-optima, representing approxima-

tions of the global optimum. The combination between heuristics and time-out values

is useful to compare different labeling strategies. Finally, the analyzer A collects all

the results returned by the solver with the time needed to provide a solution, and

stores them for a systematic comparison.

The first step of the experiment consisted in a systematic evaluation of the perfor-

mance of several heuristics to guide the solver. During this step, we considered several

heuristics and time-outs. We do not report here all the results, but show only the

results for one representative model of 7 bMSCs with 7 instances (We chose this model

randomly between many others just to show how the results may be affected by the

heuristics). Figure 4.7 shows the time-aware minimization of the cost value with 12

different heuristics and time-outs between 1s and 14s for a chosen localization prob-

lem. Heuristics descriptions use the following syntax: [b | u] / [left | ff | ffc] / [bisect

| step] / [XYC | YXC | CXY | CYX], where b and u stand resp. for bounded costs

and unbounded costs. The heuristic bounded cost evaluates a lower bound Lowb on

the cost of a solution that can be reached from a given state. We can compute the

lower bound Lowb on the cost of a solution as we know that for each bMSC Mi we

need minimum ki − 1 messages to establish the localization, where ki is the number

of minimal processes in Mi, then Lowb is computed as follows:

Lowb =
∑

i∈|M |

(ki − 1)

Left, ff and ffc stand for a variable-choice heuristic, bisect and step stand for value-

choice heuristic, and XYC, etc. stand for the static order in which variables are fed

to the solver. Bold values indicate proved global minima, non-bold values indicate

quasi-optima, – indicates absence of result in the given time contract.

88

heuristics \ runtime 1 s 2 s 3 s 4 s 5 s 6 s 7 s 12 s 13 s 14 s
0 u/left/step/XYC 23 23 22 22 22 22 19 19 19 19
1 u /left/step/YXC 19 19
2 b/left/step/XYC 19 19
3 b/left/step/YXC 19
4 b/left/step/CYX - - - - - - - - 21 19
5 b/ff/step/XYC 22 19 19 19 19 19
6 b/ff/step/YXC 30 19 19 19 19 19
7 b/ff/step/CYX 30 19 19 19 19 19
8 b/ffc/step/CYX 27 22 19 19 19 19 19
9 b/left/bisect/XYC 19
10 b/left/bisect/YXC 19
11 b/left/bisect/CYX - - - - 21 19

Figure 4.7: Comparing heuristics with one representative example.

In Figure 4.7, heuristics 3,9,10 give the best results as they find the optimal solution

in less than one second. The series of experiment that we run on many test examples

shows that heuristics with an estimation of cost, and a static ordering of variable

evaluations have the best performance. Overall, the heuristics number 10 combining

bisect (domain splitting), left (static variable ordering), and a cost evaluation exhibited

the best results based on the statistics of many test examples we have run. We selected

this heuristic for the next steps of the experiment.

As next steps, we generated 11 groups of 100 random HMSCs each. Each generated

HMSCs contains 10 bMSCs, which is a reasonably large number, according to the

existing literature on HMSCs. We then let the number of processes grow from 4 to

14. We also generated 12 groups of 100 HMSCs, containing exactly 8 processes, and let

the number of bMSCs grow from 4 to 15. The goal of these series of experiments was

to evaluate the influence of both the number of processes and the number of bMSCs on

the runtime of our localization approach. We expected these parameters to influence

the performance of localization, as increasing the number of bMSCs increases the

number of variables, and increasing the number of processes increases the size of

variables’ domains. We have obtained solutions for all HMSCs, which allowed us to

evaluate the impact of both parameters. The evaluation was performed on a machine

equipped with INTEL P9600 core2 Duo at 2, 53 Ghz, with 4Go of RAM. Results

of both experiences are given in Figure 4.9 and Figure 4.10, using box-and-whiskers

plots to show the statistical distribution of datasets.

The Box-and-Whiskers is an exploratory graphic used to show the distribution of a

dataset. The Figure 4.8 shows how to read it.

• The outliers presents problems where data where more(/less) than 1.5 times of

upper(/lower) quartile.

89

• The Maximum is the greatest value, excluding outliers.

• The Upper Quartile: 25 percent of data are greater than this value.

• The Median:50 percent of data are less than this value.

• The Lower Quartile: 25 percent of data are less than this value.

• The Minimum is the least value excluding outliers

��������

��	
���

���������	�
�

������

����������	�
�

�������

��	
���

Figure 4.8: A Box and Whisker Plot

Both plots in Figure 4.9 and Figure 4.10, use logarithmic scales to tackle the big

variance between runtime measurements. The horizontal axis represents Box-and-

Whiskers plot of each group of problems. As expected, the plots show exponential

curves but the runtime for each group remains quite low. For randomly generated

HMSCs of reasonable size (such as the ones found in the literature), our experimental

results show that localization using constraint optimization takes a few minutes in the

worst cases, and an average duration of a few seconds. Actually, even for the largest

cases (15 bMSCs with 14 processes), the runtime of our localization approach did

not exceed 40 minutes. Although solving COPs over finite domains is NP-hard [85],

as examples of existing HMSCs usually contain less than 15 bMSCs, our localization

process appears to be of practical interest. Our results are encouraging, and show that

the approach is fast enough to be used in practice. However, experimental results have

been obtained on random instances only, and thus further experiments on non-random

instances are necessary to confirm this judgment.

90

Figure 4.9: Influence of the number of processes on the runtime execution

Figure 4.10: Influence of the number of bMSCs on the runtime execution

91

4.6 Conclusion and future work

In this chapter, we have proposed a sound and complete method to transform arbi-

trary HMSCs into implementable ones. We first generate a constraint optimization

problem from the non-local HMSC.

The solution returned by a solver can be used to build an optimal localized version

of the original specification, without changing the overall architecture of the HMSC.

Once an HMSC is localized by addition of messages and processes in bMSCs, auto-

matic implementation techniques can generate code for communicating processes.

This approach has been implemented and tested on a benchmark of 2300 randomly

generated HMSCs. The experimental results show that our approach is of practical

interest: It usually takes less than a few minutes to localize an HMSC.

There are four foreseen extensions of this work. First, other cost functions can be con-

sidered as our approach does not depend on the choice of a particular cost function

(For instance, localization with cost functions that accounts for the cost of commu-

nications between instances). Second, we plan to allow modifications of the HMSC,

in addition to those brought to the bMSCs of the specification. Considering archi-

tectural constraints that disallow communications between some processes is another

challenging issue, as in this case existence of a solution is not guaranteed. Finally,

noticing that localization is a rather syntactic procedure, the question of designating

a process as a leader or adding messages should also be addressed in more semantics

terms. Further work also includes the experimentation of our approach on industrial

case studies, to evaluate its performance on non-random HMSCs. We have started a

collaboration with a company that develops communicating systems and wants to gen-

erate test cases based on requirements design. Our approach will be useful to derive

automatically test cases from HMSCs that were designed without any requirement on

implementability.

92

Chapter 5

SOFAT tool

In the previous chapters, we have presented two approaches: first the correct synthe-

sis of any local HMSC, and then the localization of a non-local HMSC. With these

two algorithms, any HMSC is either implementable, or can be transformed in a cor-

rectly implementable HMSC with minimal changes to the original specification. In

this chapter, we present the implementation work related to these approaches.

We have implemented these approaches to allow the use of the algorithms in practice,

and all these functionalities are added into an existing tool called SOFAT presented

in section 5.1. Then, in section 5.2, we give a use case example presenting a simple

transmission protocol in a distributed system based on the Morse Code. Then, in

sections 5.3, 5.4, and 5.5, we present respectively the implementation of the synthesis

algorithm that allows the projection of an HMSC into a CFSM with controllers and

tagged messages, the code generation of the corresponding Promela code, and the

code generation of a JAVA code for a REST platform. In section 5.6, we present the

implementation of the localization procedure.

5.1 Description of SOFAT

SOFAT [36] is the acronym for Scenario Oracle and Formal Analysis Toolbox. SO-

FAT allows the edition and analysis of distributed systems specifications described

using Message Sequence Charts. It is a formal toolbox for manipulation of scenarios.

The main functionalities proposed by SOFAT are the textual edition of Message Se-

93

quence Charts, their graphical visualization, the analysis of their formal properties,

and their simulation. The analysis of the formal properties of a Message Sequence

Chart specification determines if a description is regular, local, or globally coopera-

tive. Satisfaction of these properties allow respectively for model-checking of logical

formulae in temporal logic, implementation, or comparison of specifications. Classify-

ing an HMSC according to its properties is important, as a choosen application might

be an undecidable problem in general, but become tractable for some sub-classes of

HMSCs. The SOFAT toolbox implements most of the theoretical results obtained on

Message Sequence Charts this last decade. The purpose of this software is twofold:

• Provide a scenario based specification tool for developers of distributed appli-

cations

• Serve as a platform for theoretical results on scenarios and partial orders

SOFAT provides several functionalities, that are: syntactical analysis of scenario de-

scriptions, formal analysis of scenario properties, interactive simulation of scenarios

(when possible) [59], and diagnosis from scenario models (starting from an HMSC and

an observation collected by partially monitoring a system, find all runs of the HMSC

that can explain the observation).

In this thesis, we have extended SOFAT with code synthesis functionalities, allowing

to generate communicating automata, promela code, rest based web services from

HMSCs, and the localization procedure. Next we will detail each of these new func-

tionalities.

5.2 Use Case

In this section, we design a case study, namely a simple transmission protocol in a

distributed system based on the Morse Code.

Morse code was invented by Samuel F. B. Morse and his assistant Alfred Vail in 1832.

It allows to transmit information by using a sequence of dots and dashes that repre-

sent letters. To achieve a high efficiency of information transmission, the inventors of

the Morse code assigned shorter sequences of dots and dashes to the more frequently

used characters in English and longer sequences to the less common English charac-

ters. Figure 5.1 shows the graphical description of the Morse code example HMSC

H1, and the textual description is given in Figure 5.2. This HMSC is a local HMSC

94

and we can test its locality.

��

��

� �

����	

��

�� ��

�

��

�

����	��

����	��	�

������

� �

�������	

��
�

�������	��

�������	��	�

���������

� �����

�	���

��
�

�	��

� �����

�	���

��
�

��	

� �

����

��

� �

���

�

��

Figure 5.1: The Morse code example HMSC and its bMSCs

In H1, the process A wants to transmit Morse coded information to the process B. A

proceeds by requiring a connection to B via the Morse Coder C (bMSC M0). Once

the connection is established A sends the information to the Morse Coder C (bMSC

M1). C translates the information received from A into a sequence of binary digits

0s and 1s (bMSC M2) that we will use to represent respectively the dots and the

dashes of the Morse code. Then C can send the elements of this sequence to B via

two channels. We will consider that all the 0s are sent via the channel chan0 (bMSC

M3) and all the 1s are sent via the channel chan1 (bMSC M4). Once the coded

information is completely transmitted to B, the process C sends an acknowledgment

to the process A that can choose either to send a new information or to close the

95

����������	
�����
�����������

���
�����
���
�

����
���

�����
��������

���
������	
���

�����

���
��
���
����
�

���
������	
���

���
��	
����

�����
���
�� ��

�����
���
�� ��

� �������	
�����!
��	
����

�!���
�����"��

�"�������	
������
��	
�����

������
���
������

����������	
�������
��	
����

��������

�������

���
���

#��	
$%
%&
�

#��	����
$�

��	

��'��
	�

�

#�

��$�(
)���

�

���#��	�����

#��	����

�

#�

��'��
)���
$�

��	

�����	
	�
&�

#�

�����	��
)���
&�

��	

��$�(
	�
$�

���#��	�����

#��	����
&�

#�

�����	
)���

�

��	

�����	��
	�

�

���#��	�����

�������

���
���

#��	
$%

�

#��	����
$�

��	
#�)�
	�

�

���#��	�����

#��	����

�

#�
#�)�
)���
$�

���#��	�����

�������

���
���

#��	

%
*���%&
�

#��	����

�

��	
�����
	�

*����

���#��	�����

#��	����

*����

#�
�����
)���

�

��	
+���
	�
&�

���#��	�����

#��	����
&�

#�
+���
)���

*����

���#��	�����

�������

���
���

#��	

%
*���%&
�

#��	����

�

��	
�����
	�

*����

���#��	�����

#��	����

*����

#�
�����
)���

�

��	
���
	�
&�

���#��	�����

#��	����
&�

#�
���
)���

*����

���#��	�����

�������

���
���

#��	
$%

�

#��	����
$�

#�
$�(
)���

�

���#��	�����

#��	����

�

��	
$�(
	�
$�

���#��	�����

�������

���
���

#��	
$%
%&
�

#��	����
$�

��	
�#�
��'��
	�

�

#�
�#�
��$�(
)���

�

���#��	�����

#��	����

�

#�
�#�
��'��
)���
$�

��	
�#�������	
	�
&�

#�
�#�������	��
)���
&�

��	
�#�
��$�(
	�
$�

���#��	�����

#��	����
&�

#�
�#�������	
)���

�

��	
�#�������	��
	�

�

���#��	�����

�������

�������������	�

Figure 5.2: The textual description of the Morse code example of Figure 5.1

96

connection. Figure 5.5 presents the projection of the HMSC H1 on all the instances

of the system. The method used in the projection is the one described in chapter

3. Each process interacts with its controller and controllers interact as presented in

Figure 5.3. The Figure 5.4 presents an example of a message sending of a message

m1 from an automaton A into the automaton B via CA and CB the respective con-

trollers. Note that these automata can be generated automatically by SOFAT as well.

We will give a number to each process going from 0 to 4 associated respectively to

the processes A, B, C, Chan0 and Chan1.

Let us explain the structure of the exchanged messages between the automata and

their controllers: for example A wants to send to C the message ConReq, then A sends

to its controller the message {2, ConReq, M1} that corresponds to the {i, m, j} struc-

ture described in the algorithm. The 2 in this message corresponds to the destination

process, so when the controller receives the messages it knows to which controller it

should be sent (the process number 2 is C). ConReq represents simply the data part

of the message that should be sent by the controller, M1 means that the process A

wants to execute a new branch that begins with bMSC M1, so the controller have to

update its local tag. The new tag is concatenated to the message that will be sent.

In the example of execution presented in Figure 5.6, we can see the execution of the

sequence : M0, M1, M2 and finally M3. In M0 the connection is established between

the processes A and B via C, then process A sends to C the information to be coded

and sent to process B. C codes the information and in the example the information

is coded as a sequence of two bits: 0 1. C runs the bMSC M2 then the bMSC M3. A

difference in the performance between chan0 and chan1 causes a delay and a message

overaking in the diagram: the message one arrives at the controller of B ContB

before the message zero. When the message one tagged with [111000] arrives at the

controller ContB, ContB compares this tag with the local tag that is equal to [100000]

after the execution of the bMSC M1 where B was concerned. The tag [111000] is not

the direct successor of the local tag by projection on the components concerning B, so

the controller delays the delivery of the message one to the automaton B. When the

message zero arrives at ContB, the controller of B, ContB finds that the tag of this

message ([110000]) is the direct successor of the local tag ([100000]) so ContB sends

the message to B and updates its local tag to [110000]. ContB compares again the

tag of the delayed message one ([111000])with its local tag, now this tag is the direct

successor of the local tag so ContB sends the message to B and updates its local tag.

On this example, one can easily see that the tags allowed for the messages zero, one,

97

�
��� ��

�� �

������

��������

������
��������

Figure 5.3: The architecture of the Morse code example of Figure 5.1

��

������

��

� �� 	�	

Figure 5.4: Automaton A sends a message m1 to the automaton B via the controllers

98

��

��

��

��

��

��	
���
���	
�������

��	
���
���	
������

��	
���
���
�	����

��	
���
���������

��	
���
���
�	����

��	
���
������	
�������

��	
���
������	
������

��

��

��

��

��

��	
���
���	

�������

��	
���
���	

��������

��	
���
���� 	����

��	
���
��	
�����

��	
���
������	

����

��	
���
������	

��������

��

��

��

��

��

��

�!

�"

��	
���
���	
��#����

��	
���
���	

������

��	
���
���	

��������

��	
���
���	
������

��	
���
���
�	����

��

��	
���
����
������
��	
���
����
������

��	
���
����
��������	
���
����
������

��	
���
���������

��	
���
���
�	����

��	
���
������	

��������

�$#
��

�$#
��

�$#
��

��	
���$#
�
����
������

��	
���
������	
�������

��	
���$#
�
����
������

�$#
��

��	
���$#

��	
����

��	
���$#
�
���� 	���

�%

��	
���
������	

������

���

��	
���
������	
������

Figure 5.5: The CFSM obtained by projection of the HMSC Figure 5.1

99

� ������ � ������ � ������ ��	�
 ������
 ��	�� �������

����������
�

�����������
�
�
�
�
��

��������

������������

����������
�����������
�
�
�
�
��

��������������

�������������
�
�
�
�
���

������������

����������
����������
�
�
�
�
��

���������

����������

����������
�
�
�
��

������

������
����

 ����������
����
������
�
�
�
��

�������������
�
�
��

������
�

��!������

��������

��������

�����������
�
�
��

!���������
�
�
�
��

��!����

 �����

Figure 5.6: An execution of the CFSM of Figure 5.5 with their controllers

100

to be received in the order choosen by process A.

5.3 CFSM generation

In SOFAT, we have also implemented both projections of an HMSC into a CFSM:

the direct projection, and the projection with tags and controllers of the synthesis

algorithm introduced in chapter 3. Note that the CFSM is only an abstract model.

Once we have the equivalent CFSM, the actual generation of code for simulation tools

like XSPIN or for a particular target platform like REST for example is another task.

The code generation of Promela and JAVA code will be respectively presented in

sections 5.4 and 5.5.

5.4 Promela code generation

In addition to automata synthesis, SOFAT can output the equivalent Promela code.

Promela is the input language of the model-checker SPIN [39]. It provides a flexible

and abstract view of a distributed system, that we call our “high-level” implementa-

tion. In Promela, we can easily describe the distributed architecture and the behavior

of each component using the notion of Promela process and guarded commands. Us-

ing SPIN, it is then possible to simulate the target code (to simulate an execution of

the specification, presented in SPIN by basic MSCs). and also to model-check some

properties. The Promela code generated by SOFAT for the Mose Code example of

Figure 5.1 is given in the appendix 7.3.1.

Figure 5.7, shows an execution of our Promela code produced by SOFAT and run

by XSPIN. This simulation shows clearly the exchanged messages, the different tags

stamping the messages and their evolution with respect to the executed choices. It

also shows that the algorithm preserves a correct ordering of message receptions.

5.5 Java code generation for Rest platforms

Web services, and more in general service-oriented architectures (SOAs), are emerg-

ing among the technologies and architectures of choice for implementing distributed

systems for which they provide many fundamental features and benefits.

101

Figure 5.7: An example simulation for the promela code

102

Web services are software components that communicate using pervasive, standards-

based Web technologies including HTTP and XML-based messaging. Their main

goal is to enhance the interoperability of distributed systems over networks, espe-

cially internet by allowing applications written in different programming languages

and running on different platforms to seamlessly exchange data. For further informa-

tion we refer interested readers to [5] that present a clear state of the art about Web

Services.

We choose to generate web services code to be able to run and test our synthesis

algorithm in a real application. Besides web services allows us to use communi-

cating machines over the internet instead of creating a specific network, and the

generated code is not complicated. We have decided to generate a java code for a

REST platforms from HMSCs. REST (Representational State Transfer) designates

an architecture style used to create networked applications over the web. The terms

“representational state transfer” and “REST” were introduced in 2000 in the doc-

toral dissertation of Roy Fielding, [28] one of the principal authors of the Hypertext

Transfer Protocol (HTTP) [27] specification. REST uses a stateless, client-server,

cacheable communications protocol which is almost always the HTTP protocol. Its

original feature is to work by using mere HTTP to make calls between machines

instead of choosing complex mechanisms such as CORBA, RPC [64] or SOAP [76].

REST presents several advantages we can list:

• REST applies many existing well-known standards (HTTP, XML, URI, and

MIME) and need only infrastructure that has already become pervasive.

• HTTP clients and servers are compatible with all programming languages and

operating system/hardware platforms, and the default HTTP port 80 is usually

left open by default in most firewall configurations. Such lightweight infras-

tructure, where services can be built with minimal tooling, is inexpensive to

acquire.

• REST allows discovering Web resources without any discovery or registry repos-

itory.

Note that, we have chosen REST for the advantages that it presents [5] but we could

have used SOAP as well to implement our controlled processes.

In the rest of the section, we present the synthesis of REST based services to im-

plement local HMSCs. This synthesis uses as intermediate step the CFSM models

synthesized in chapter 3.

103

5.5.1 Implemented model

Typically, a RESTful Web service define the following aspects: The base/root URI for

the Web service (such as http://host/appcontext/resources), the MIME type of the

response data supported (which are JSON/XML/ATOM and so on), and the set of

operations supported by the service (for example, POST, GET, PUT or DELETE).

JAX-RS provides a standardized API for building RESTful web services in Java. The

API basically provides a set of annotations and associated classes and interfaces. Jer-

sey, that we used in our implementation, is a reference implementation of JAX-RS

[76, 5]. REST uses the HTTP protocol which is synchronous, and so the communica-

tions between the different automata and their controllers and between the controllers

become synchronous communications. For instance let us consider two machines P

� �

��

��

� ��

��

��

�� �

��

��

��	
��

��	
��

��

��

��

��

��� ���

��

� �

��

��

��

���

Figure 5.8: Example of run over a Rest platform with two different architectures.

and Q communicating over a Rest platform (using the HTTP protocol), and where

the machine P wants to send two requests m1 then m2 to Q, as defined in the HMSC

F of Figure 5.8-a). If we consider the architecture of the Figure 5.8-b) the event e1

(which is sending the request m2 from P to Q) can not occur before the event e2

(which is receiving m1) and this is because P should wait for the Acknowledgement

from Q that m1 has been received before it continues. This is not the case in the

architecture with controllers of Figure 5.8-c) where the two events e1 and e2 are in-

dependent. The controllers can be considered as "intelligent buffers", they delay the

sending of requests. The controllers allow to preserve the behaviors defined in the

original specification (modulo the acknowledgements) without adding new ordering

between events. In the architecture of the Figure 5.8-b), which tries to match http

invocation and MSCs messages, the sequence of events e1, e2 is not allowed. However

104

it is allowed in the semantics of the HMSC H of Figure 5.8-a)) The acknowledgements

will add a small delay to the initial behaviors. In practice, these additional acknowl-

edge messages are transparent for our automata as they occur at the Transport layer

(not at the application layer).

Figure 5.9 shows the model that we chose as the implementation model for the code

generation. The Automaton is considered as Server with a JFrame client as a graph-

ical interface. The Controller is also a Server. The server of the Automaton is also a

client for the Server of the controller. And the sever of the controller is also a client

of the server of the other controllers and of the automaton.

Figure 5.10 shows a global view on the architecture and the exchanges of messages

and data. One can immediately notice that controllers need not to be placed close to

the machines they control in the network to play their role. Automata and controllers

are generic programs, that are initialized by reading a description of the automaton

they implement, and of the architecture. Automata and controllers are at the same

time REST clients and servers.

������� �������

���		�
�������
�

������
���������

���		�
��������������		�
��
�������

���������

���������

������� �������

���		�
�������
�

������
���������

���		�
��������������		�
��
�������

���������

���������

���������

���������

�
���������

�
���������

������������

������������

Figure 5.9: The implemented model

105

���

�����

�	
���

�����

�	
���

�
��
���������

�������
�����	
�����

�����	
��	��
������

�
��
����������

�����	
��	��
������

�
��
����������

�
��
���������

�������
�����	
�����

Figure 5.10: Architecture of automata and controllers with REST platform

106

5.5.1.1 Automaton’s generated code

For each automaton we generate an xml file named “all_transitions.xml” that con-

tains the details about this the automaton. It contains a set transitions descriptions

that gives the type of the transition (!,?, or local), the origin and the destination of

the message, the bMSC or choice that is concerned. An example of a transition is

described as follows:

<transition>

<number>0</number>

<from>0</from>

<to>1</to>

<type>!</type>

<message>m1</message>

<destination>2</destination>

<choice>0</choice>

</transition>

In this example, we have one transition from the state number 0 to the state number

1. This transition consists in sending one a message “m1” to the automaton number

2. This transition is the first action to perform in the branch number 0 of the HMSC

from which the automaton was projected.

Another xml file, “Serv_Aut.xml” contains the address of the Server of the automaton

itself and that of the Controller.

Figure 5.11 shows the class diagram of the JAVA code generated for each autmaton.

The description of the generated classes for an automaton is as follows:

• “Message” class presents the messages that will be exchanged between the Au-

tomaton and its Controller.

• “buffer_Aut” class is the FIFO input buffer of the messages coming from the

Controller.

• Both “Transition” and “TransitionHandler” classes are used to read the xml file

of transitions of the automaton .

• “AutomatonData” class is used to read the “Serv_Aut.xml” and to get the data

about the server.

107

��������	
��
��
���
�

��
���
�����

������	
��

�������

��������
��������

��������
�

Figure 5.11: Class diagram of the generated code for each Automaton

• “Automaton” class is used to build the graphical interface of the automaton.

• “Serv_Aut” class is the REST Server of the automaton.

• “Main” is the main class.

5.5.1.2 Controller’s generated code

As for of the automaton, we generate an xml file for the controller, “Server_data.xml”,

that contains mainly the address of the Server of the automaton. Another xml file

“BDD_Controllers.xml” contains the addresses of all controllers to allow a controller

to communicate with its peers.

�����������	
������������

������������
�

����������

�����������	���
��

Figure 5.12: Class diagram of the generated code for a Controller

Figure 7.13 shows the class diagram of the JAVA code generated for each controller.

The description of the generated classes for a controller is as follows:

108

• “buffer_Cont” is the buffer of the controller

• “inter_Cont_Message” class is the messages’type that will be exchanged be-

tween Controllers

• “Controller_Data” class is used to read the “Server_data.xml” and to get the

data about the server

• “Controller” class is the REST Server of the automaton

• “Controlle_Main” is the main class.

The generated code is the same for all the automata and it is the same for the

controllers. The major changes are the global architecture of the synthesized REST

system, which is driven by the original specification, and then the xml files that are

generated by SOFAT. A standard synthesis procedure is as follows:

• SOFAT first read the HMSC textual description entered by the user,

• When the user choose the synthesis of JAVA code for REST Platform:

– the abstract model is created

– the addresses of the servers are entered via a popup window before gen-

erating the code for the Rest platform. Figure 5.13 shows this graphical

interface for the Morse code example.

– once the addresses are validated, the xml files and the code are generated.

Running the system simply consists in running the generated JAVA code on each

machine, and interacting via interfaces to send messages from a process to another.

Figure 5.14 shows the states of the frames presenting the automata after running the

generated code and several interactions with the frames.

109

Figure 5.13: Enter the data about the servers

110

Figure 5.14: Example of a run showing the frame of the automaton A and its controller

A step-by-step execution of the Morse Code example is given in the appendix 7.3.2,

and shows the evolution of the servers while running the execution presented in Figure

5.6.

5.6 localization of HMSC

We implemented the localization process presented in chapter 4. To illustrate the

localization process we will use an example based on the toaster example from [53].

Figure 5.15 shows the graphical view of the HMSC and bMSCS of this example.

111

���� ������	

���
��

�
���
�������

���	

���

�����

����� �����

�����

����������	

���� ������	

�����

������
�������

����

���

���� ������	

��������

������
�������

���

����

���� ������	

���
�

������
�������

����

��������

���� ������	

���������

������
�������

����

����

Figure 5.15: The toaster example

The specification consists of the HMSC Toaster which describes the composition of

bMSCs IDLE, Eject, Error, Start, and Toast. Each of the bMSCs contains three

processes User, Control and Heating. From a global perspective, the behavior of the

toaster can be explained as follows. In IDLE the Control asks the User for a command

112

(ComReq) and advices Heating not to heat (Cool). Once the user decides to toast

(Strt) the start is acknowledged (StartAck) and the Heating receives a command to

start heating (Hot). In bMSC Toast, the beginning of the toasting process is reported

to the user (ToastAck) and the heating is switched to keep the toast warm (Warm)

and the user is asked by message (ComRq) to choose between another toasting period

or ejecting the slice of bread. The Ready message will cause an Eject message (Ejct)

to the heating which will respond with an EjectDone. The toaster returns to bMSC

IDLE. When user asks for the toasting process to start, heating will check whether

there is a slice of bread in the toaster or not. If not, it will send an Error message in

bMSC Error and Control will tell the user that the toaster is empty (Empty). The

Prolog code generated by SOFAT for the localization of this example can be found in

the appendix 7.3.3.

This HMSC is clearly not local. We use SOFAT to generate the prolog code for the

equivalent COP (Constraint Optimization Problem) of this HMSC. Then we execute

this code using Sicstus prolog We got the solution in 16 ms (with the most performant

heuristic between the tested ones “b/left/bisect/YXC”, based on the statistical results

presented in chapter 4). It consists simply in choosing the process Control as the leader

in the bMSC Error. This can mean that for instance it is up to the control to check if

there is no slice of bread and then it will signal it to the Heating process by sending

a message. The solution proposed is not satisfactory. Note that in this case, the

cost function is the one described in chapter 4, so it only cares about minimizing the

number of messages. We can code another cost function that fits more with the desired

result. On the other hand, this example shows the importance of the perspective that

we have presented in chapter 4 that consists in adding constraints on the semantics.

Then in the Toaster example adding constraints on the semantics may lead the solver

to give an acceptable result.

113

Chapter 6

Conclusion and perspectives

6.1 Summary of contributions

In this thesis, we have studied the correct synthesis of High-level Message Sequence

Charts (HMSC) models, that describe a global view of interactions in distributed

system, into Communicating Finite State Machines (CFSMs) models that describe

the behaviors for each process. We summarize our main contributions below:

• First we have considered the local HMSCs sub-class. The synthesis of CFSMs

by a projection mechanism (the most intuitive way to implement an HMSC) is

correct for a sub-class of local HMSCs, namely the reconstructible HMSCs. For

local HMSCs that are not reconstructible projection mechanism may produce

programs with more behaviors than in the HMSC specification. Then, we have

proposed a solution to synthesize correct implementation for the local HMSCs

that are not reconstructible: Additional controllers simply tag messages and

delay them to ensure correct ordering of message receptions. These controllers

need only a little information to ensure that the processes runs with respect to

the specification: Each process executes its task as defined in the projection of

the specification, and controllers ensure coordination. The results of Chapter 3

show that the projection of the behaviors of the controlled system on events of

the original processes is equivalent (up to a renaming) to the behaviors of the

original HMSC. One important aspect of this work is that processes and con-

trollers are independent processing units, which communicate asynchronously

and can be implemented on any distributed architecture. This provides a great

114

genericity for the method.

• Second, we have focused on solutions to synthesize CFSMs from non-local HM-

SCs. Indeed, a non-local HMSC can be transformed into a local HMSC by

adding new synchronization messages. We have shown in Chapter 4 that this

transformation can be automated as a constraint optimization problem. We al-

low additional active instances and new messages in bMSCs, but do not change

the structure of the HMSC. The impact of modifications brought to the original

specification can be minimized with respect to a cost function. This results in

slight modifications of the original specification. The approach was evaluated

on a large number of randomly generated HMSCs. The results of this experi-

mentation show an average runtime of a few seconds, which demonstrates the

applicability of the technique.

• We have implemented the previous approaches to allow the use of the algorithms

in practice, and all these functionalities are added into an existing tool called

SOFAT presented in Chapter 5. In this thesis, we have extended SOFAT with

code synthesis functionalities, allowing generating communicating automata,

Promela code, REST based web services from HMSCs, we have also imple-

mented the localization procedure.

6.2 Future work

In the future, we envisage working in several different directions. First, we intend to

continue to improve the algorithms and techniques that we have presented: Several

perspectives were presented in Chapters 3 and 4 (like the integration of data and time,

the reduction of tags, etc.) and for the localization procedure (the definition of new

cost functions, add constraints on the semantics, etc.). These extensions are rather

straightforward improvement of the techniques proposed in Chapter 3 and 4. We also

plan to consider more involved extensions:

• consider how we can use HMSCs in a Software Product Line (SPL) context. SPL

captures commonality and variability between a set of software products sharing

a common, managed set of features that satisfy the specific needs of a particular

market segment. Commonality designates the elements that are common to all

products while variability designates the elements that may vary from a product

to another one. For instance we might have a set of distributed systems S that

115

have the similar HMSCs specifications except for some specific bMSCs that vary

from one system to another (this can be due to: the type of connection, type

of machine that are used, etc.). In this case, the commonality designates all

the bMSCs that are common to all the HMSCs of the systems and variability

designates the bMSCs that varies from one HMSC to the other. The use of SPL

in such cases aims at improving productivity and decreasing realization times

by gathering the analysis, synthesis and implementation activities of all the set

of distributed systems S.

• consider several types of communication channels (lossy, etc.).

Finally, we would like to highlight that our proposed synthesis work provides many

important advantages that we can summarize in two points: First, the skeleton code

generation, representing the interactions within the distributed system, helps the de-

velopers to avoid the problems caused by the concurrency in distributed systems.

This eases, for instance, the generation of correct protocols. Furthermore, the use

of optimization techniques in this synthesis results in more efficient protocols (min-

imizing the traffic over the network, etc.). Second, the controllers, required in such

distributed environment, strengthen the advantages provided by the code synthesis

approach. This is mainly due to their flexibility (there is no need to implement them

on the same machines of their controlled entities) and the reduced amount of infor-

mation required on the controlled entities.

116

Chapter 7

Appendix

7.1 Chapter 3

This section provides a proof for theorem 3.4.1, that is we want to show that the orig-

inal specification given as a HMSC and the synthesized controlled machines exhibit

the same behaviors. We proceed in several steps. We first show (lemma 7.1.1 that

in the synthesized machines, all choices (i.e. events corresponding to the first event

of some bMSC) are causally ordered in any execution. We then show (Lemma 7.1.2)

that for every configuration of a HMSC H reachable after an execution, there ex-

ists a finite set of configurations of the synthesized machines reachable by observing

the same execution. The last steps show inclusion of specification and implementa-

tions languages in both directions by contradiction. Supposing that one can reach a

configuration (after executing a prefix O), where H allows firing of an event a but

not corresponding configuration of the CFSM allow a leads to a contradiction for all

types of events. We consider each type of events and show that the allowing a in one

language but not in the other contradicts either the fact that O is a prefix of both

the original specification and of the synthesized language, or the fact that choices are

ordered.

Let us first show that all choices in the synthesized machines are causally ordered.

Lemma 7.1.1. For each local HMSC H, the choices events in any behavior of the

synthesized communicating machines are totally ordered.

Proof: We prove this property by induction. Let us denote by Pn the property: For

all H, local HMSC, the choices in any behavior of the synthesized communicating

117

machines in a run containing n choices are totally ordered.

Let us first verify this property for n = 2. As H is local, then there is only one CFSM

that can perform an action (a message sending) from the initial configuration. The

next choice can then only be performed after the first one. Hence, the first two choices

are ordered.

Let us suppose that the property is verified up to n, and prove that it also holds for

n + 1. Let us suppose a prefix O ◦ O′ from L(‖ K(Ai)|Ci) with n + 1 choices, such

that O contains n choices. Then, O is of the form O = {c1} ◦ O1 . . . {cn} ◦ On, where

each ci is a choice event, and such that {c1}◦O1 is an execution of a prefix of the first

bMSC M1 appearing in this run. Then, O ◦ O′ can be completed by piece P1 such

that O ◦ O′ ◦ P1 contains a complete execution of the first bMSC M1 by the controlled

CFSM (so far, nothing forces M1 to be completely executed in O ◦ O′).

We can now use a nice property of FIFO bMSCs: every bMSC M can be represented

by one of its linearizations. Hence, knowing the respective ordering of actions on each

process is sufficient to draw a bMSC. Let us now consider any bMSC of the form

M = P ◦ Pa ◦ Pb ◦ P ′, where P, P ′ are pieces of bMSC, Pa and Pb are pieces containing

only actions a and b, respectively. Then, if a and b are located on distinct instances,

then M can also be written as M = P ◦ Pb ◦ Pa ◦ P ′. This property also applies to

pieces of bMSCs, and also to CFSM executions, which can be seen as bMSC pieces.

In the behavior O ◦ O′ ◦ P1, all actions of P1 are concurrent with actions from

{c2} . . . On ◦ O′, as otherwise at least one action in do not need to wait for the exe-

cution of an event in P1 to be fireable, and O ◦ O′ would not be an execution of our

CFSM.

So, O◦O′◦P1 can be equivalently rewritten as O◦O1,1◦. . . O1,n◦P1◦{c2}◦O′
2 . . . {cn}◦

O′
n ◦ O′, where each O1,i is the part of Oi that belongs to M1 and O′

i = Oi \ O1,i. Note

that P1 is ensured to be a legal continuation of O ◦ O′ as no machine can start

executing events with tags greater than 0BH before executing all its tasks in M1. This

also means that one does not have to change the tag of messages appearing in P1 to

rewrite O ◦O′ ◦P1 into O ◦O1,1 ◦ . . . O1,n ◦P1 ◦{c2}◦O′
2 . . . {cn}◦O′

n ◦O′ (all messages

between controllers in P1 will be tagged by a vector associating 0 to all branches

except the branch labeled by M1 in H).

Let us denote by P2,n = {c2} . . . {cn} ◦ O′
n ◦ O′ the tagged piece starting at choice

event c2, and by P ′
2,n the same piece, where all tags are decremented on component

M1. P ′
2,n is a run with n choices of an HMSC H ′, which is a copy of H where the

initial node is the node reached in H after M1. Hence, all choices in P ′
2,n are ordered,

and so are choices in w′. Hence, all choices in O ◦ O′ are totally ordered.

As choice events are the only moment when a tag is updated, this lemma also means

118

that the set of tags that can appear in an execution is the set of tags labeling choice

events, and hence that the tags produced in any run that belongs both to L(H) and

L(‖ K(Ai)|Ci) are the same. A configuration of an HMSC H is an element of L(H)

(i.e. a bMSC piece). Note that each configuration in L(H) is a prefix of a bMSC

generated by a unique minimal path ρP of H, as choice events uniquely designate

chosen branches (this is ensured by our restrictions). We will say that an action a

is fireable from a configuration P of H iff P ◦ {a} ∈ L(H) (where {a} is the bMSC

piece that contains only action a. This means that either P ◦ {a} is a prefix of OρP
,

or that there exists a path ρ′ = ρP .(n, M, n′) such that P ◦ {a} is a prefix of Oρ′ .

We can now show that for every prefix O that belongs to the language of H and to

the language of the synthesized machines, one can find a finite sets of executions of

the controlled architecture that are equivalent to O after renaming and erasing of

controllers’ events.

Lemma 7.1.2. Let O ∈ Ru(Unc(L(‖ K(Ai)|Ci))) ∩ L(H) be an execution. Then,

there exists a finite set of executions X = {O1, . . . , Ok} of (‖ K(Ai)|Ci) such that

Ru(Unc(X)) = {O}.

Proof: The events of the controlled automata in executions of the CFSM can be ob-

tained from O by replacing every action on a process p by an action labeled by RU−1

in the CFSM execution (for instance p!q(m) becomes p!Cp(q, m, b) for some branch

b). The behavior on each controller simply consists in receiving messages from the

automaton it controls, and forwarding them to the next controller, or conversely re-

ceiving messages from a controller and forwarding them to the automaton they control

in the order specified by the branches. Then, every complete message from p to q in O

can be mapped to a sequence of 3 messages that "simulate" the sending from a process

p to a process q. So, if O has no unreceived message, then all automata in (‖ K(Ai)|Ci)

are in a configuration with empty communication buffers, and each automaton and

controller can only be in one state. Now if there is at least one message m sent from

p to q in O but not received, then this means that (‖ K(Ai)|Ci) is in a configuration

where a message (q, m, b) can be transiting between p and Cp, a message (m, τ) can

be transiting between Cp and Cq, or last a message (p, m, b) can be transiting between

Cq and q. Figure 7.1-a) shows an execution of some HMSC in which a message m3

is sent but not yet received. There can be three configurations corresponding to such

situation, and Figure 7.1-b) shows one of them in which a message of type m3 is

transiting between the controllers of B and A. Hence, the number of configurations

in which CFSMs can be while observing O ∈ Ru(Unc(L(‖ K(Ai)|Ci))) ∩ L(H) and

the size of X are finite and depend on the number of unreceived messages.

119

From this lemma, one can also deduce that there exists a correspondence between

each configuration reachable in the semantics of H and a finite set of configurations

of the synthesized machines.

� �

��

�

��

��

(a)

���������

����	����

�
�����	�

����	�

�
����

�����
������

��	��
������

�����
������

������

������
�

������
�

��

��
�

��
�

(b)

Figure 7.1: Relating HMSCs executions and CFSMs

We are now ready to prove language equality, by showing two inclusions.

Lemma 7.1.3. Let H be a HMSC, {Ai}i∈I and {Ai}i∈I be respectively the pro-

jection of H on its instances, and the synthesized controllers. Then, Ru(Unc(L(‖

K(Ai)|Ci))) ⊆ L(H)

Proof: For short, we write L1 ⊆ L2 instead of Ru(Unc(L(‖ K(Ai)|Ci))) ⊆ L(H).

Suppose that there exists a prefix O ◦ {a} ∈ L1 such that O ∈ L2, but O ◦ {a} Ó∈ L2.

O is a configuration of H, and as O ∈ L1, there exists a set XO of possible executions

of the synthesized CFSM such that RU(Unc(XO)) (from lemma 7.1.2). There also

exists at least one execution Oi ∈ XO such that after executing Oi, the CFSM is

in a configuration CA in which automaton K(Ap) is in a state allowing firing of a

transition (s, σ, s′) with Ru(σ) = a.

Suppose that a is a sending event from p to q, i.e. a = p!q(m) for some m, and

σ = K(ap)!Cp(m, b) for some branch b. The sequence of events in O on p and in Oi on

K(Ap) are identical, up to renaming. Hence, this means that p and K(Ap) follow the

same path ρ of H until the end of Oi (recall that transitions of projected automata

are defined from transitions of H). Then, all predecessors of σ in Oi allowing to reach

state s have been executed, and all predecessors of a in Oρ have been executed too in

O. Hence, O is a configuration of H that allows for the firing of action a on process

p, as projection preserves (up to renaming due to control) sequences of events on each

process. This contradicts the fact that a is a sending event. A similar case holds for

atomic actions. Hence, a can only be a receive action, i.e. a is of the form a = p?q(m)

for some q, m, and σ = K(Ap)?Cp(q, m). This means that Oi is an execution that

120

brings the CFSM in a configuration in which the FIFO queue from Cp to K(Ap) has

a message m as head (otherwise (q, σ, q′) can not be fired).

As mentioned in lemma 7.1.2, messages in Ru(Unc(Oi)) are simulated by three mes-

sages in Oi. Then, Oi is of the form O1 ◦ {σ1} ◦ {σ2} ◦ {σ3} ◦ {σ4} ◦ {σ5} ◦ O2, where

O1 is a prefix and O2 is a piece. We furthermore have σ1 = K(Aq)!Cq(p, m, b) for

some branch b, σ2 = Cq?K(Aq)(p, m, b),σ3 = Cq!Cp(m, τ), σ4 = Cp?Cq(m, τ), and

σ5 = Cp!K(Ap)(q, m, b). If any of these actions is missing in Oi, then σ can not be

fired. Such situation is depicted in Figure 7.3-a).

Let us now consider O as a configuration of H. There is a message m sent from q

to p but not yet received in O. Event a is not allowed by H from configuration O,

however, message m was sent. Hence, a is forbidden because according to the chosen

path in H, there are some events α1, . . . αk to execute on instance p before a (i.e. there

is piece of bMSC Pa such that O ◦ {a} is not a configuration of H, but O ◦ Pa ◦ {a}

is). This situation is depicted in Figure 7.3-b).

After execution Oi, the automaton K(Ap) has reached a state s, which means that

s is reachable in K(Ap) by reading the controlled version of the actions appearing

on p in O (i.e. the sequence Ru−1(πp(O))). As there exists a transition by (s, σ, s′)

in K(Ap) and as we know that α1, . . . αk can be executed by process p after O, then

state s is a choice, from which at least two transitions (s, σ, s′) and (s, c, s1), where

c is an action of the automata corresponding to α1 (i.e. RU(c) = α1), can be fired.

Note that as all choices in H are local, c is necessarily a message reception event.

Events c and σ belong to different branches of the same choice of H, and we have

that τ(c) Ó= τ(a), as events of Pa located on p have to be executed before a. From

lemma 7.1.1 we know that all choices in an execution of the CFSM are totally ordered.

Furthermore the tags associated to an execution of an HMSC and to an execution of

the synthesized communicating automata are the same. We then have τ(c) < τ(a).

As c and a are events of choices that concern p, the communication σ4 = Cq!Cp(m, τ =

τ(a), b) that must occur in Oi before σ can not be executed by K(Ap) as the message

received by Cp at event σ4 is tagged by a vector τ which is not the expected successor

tag on Cp. Hence Cp can not consume it and forward m to K(Ap), unless it has

received and forwarded the messages corresponding to the second branch of H, which

does not appear in O. Then, receptions on this branch must be executed by K(Ap)

before σ. We then have a contradiction, and L1 ⊆ L2.

Lemma 7.1.4. Let H be a HMSC, {Ai}i∈I and {Ai}i∈I be respectively the projection

of H on its instances, and the synthesized controllers. Then, L(H) ⊆ Ru(Unc(L(‖

K(Ai)|Ci)))

121

����� ������� ��

�

�	

�

�

�����
�

���
� ��
��

��

��

��

(a)

� �� �

�

��

�

�

��

��

(b)

Figure 7.2: Illustration of the proof of Lemma 7.1.3

����� ������� ��

�	

�
�����

�
���
�

�

��

��

�
��

�

��

�

��

��

(a)

� �� �

�

�

�

(b)

Figure 7.3: Illustration of the proof of Lemma 7.1.4

122

Proof: For short, we write L2 ⊆ L1 instead of L(H) ⊆ Ru(Unc(L(‖ K(Ai)|Ci))).

Let us suppose there exists O ◦ {a} such that O ◦ {a} ∈ L2, O ∈ L1 but O ◦ {a} Ó∈ L1.

From lemma 7.1.2, there exists an execution Oi of the CFSM such that Ru(Unc(Oi)) =

O. If a is a sending of a message or an atomic action on process p, then K(Ap) must

be in a state q from which an transition (q, σ, q′) with RU(σ) = a is fireable, as the

sequence of controlled events corresponding to the projection of O on p is recognized

by K(Ap), and as K(Ap) is a deterministic machine. Transition (s, σ, s′) is fireable as

soon as K(Ap) is in state s, which is the case, and Oi ◦{σ} is a behavior of the CFSM.

So, if a is a sending event or an atomic action, O ◦ {a} ∈ L1, which contradicts the

initial hypothesis.

Then, a is a reception a = p?q(m), an O looks like the execution represented in

Figure 7.3-d). As shown in lemma 7.1.2, a message m from p to q in a configuration

of H corresponds to a sequence of three messages in the CFSM execution: s1 =

K(Aq)!Cq(p, m, b), r1 = Cq?K(Aq)(p, m, b), s2 = Cq!Cp(m, τ), r2 = Cp?Cq(m, τ),

s3 = Cp!K(Ap)(q, m, b), r3 = K(Ap)?Cp(q, m, b) (with Ru(Unc(r3 = a))). As the

sending of m from q to p appears in execution O, the corresponding sending event s1

executed by K(Aq) also appears in Oi.

We can now proceed as follows: we first prove that there exists an execution O′ of the

synthesized CFSM such that Ru(Unc(O′)) = O, and such that in the configuration

reached by the CFSM after O′, controller Cp is ready to execute event r2 if a message

is buffered with appropriate tag. We then show that such message exists, and that it

is correctly tagged, and hence allows for the reception of r2, followed by s3 and r3.

Execution O is a prefix of a concatenation of bMSCs labeling branches of H, i.e. a

sequence of bMSCs M1 ◦ M2 ◦ . . . Mn. Among these bMSCs, process p is concerned

only by a subset Mi1, . . . Mik of them, and process q by another subset Mj1, . . . Mjk′ .

Sending and reception of message m is O belongs to a bMSC Mpq appearing in both

sets. From Lemma 7.1.2, as O ∈ L1 ∩ L2, there exists an execution Oi of the CFSM

such that Ru(Unc(Oi)) = O. After Oi, the CFSM is in a configuration in which

automaton K(Ap) can fire a transition (s, r3, s′) provided the head of the queue from

Cp to K(Ap) is a message m.

One can note that the controller Ck of an automaton K(Ak) systematically receives

messages sent by K(Ak) (rule R1) and forwards them to another controller. Similarly,

if Ck receives a message from another controller, it forwards it to K(Ak). This means

that when Ak receives a message and this reception belongs to a branch b of H,

then Ck has necessarily counted this branch in its vectorial clock τk, that remembers

the number of occurrences of choices concerning k that have occurred so far. This

also means that Ck has accepted an incoming message (m, τ) coming from another

123

controller, and that τ was a valid tag at the time of this message reception.

Let us consider again Oi. This execution is a partial execution of M1 ◦ . . . Mn by

the CFSM, and contains some elements of Mpq, including event s1. Considering the

sequence of events executed by K(Ap) and K(Aq) in Oi, one can also get the sequence

of sendings/receptions executed by the controllers Cp and Cq, as for every event of the

form p!q(m) in O there exists a pair of events K(Ap)!Cp(m, b).Cp?K(Ap)(m, b), and for

every event of the form p?q(m) in O there exists a pair of events Cp!K(Ap)(i, m, b).K(Ap)?Cp(i, m, b)

in Oi. However, this does not mean that Cq is ready to execute(or has already exe-

cuted) r1 or Cp is ready to execute (or has already executed)r2 , as some messages

may still need to be consumed in the message queues of Cp and Cq. Let us suppose

that Cq must receive at least one message, either from another controller, or from

K(Aq) before receiving message m. Let us call this reception β and the following

retransmission β′. In the first case, β must be executed before r1 if and only if it is a

reception of a message that have to be executed to comply with the sequence of recep-

tions defined in some branch of H. In this case, β′ is a sending of a message to K(Ap),

and as it has to be executed before r1, then it means that some reception on K(Aq)

must be executed before s1, and then we cannot have Ru(Unc(Oi)) = O ∈ L1 ∩L2. In

the latter case, as reception of messages from controlled automata can be performed

without waiting (according to rule R1 of the controllers), then there exists an exe-

cution Oi ◦ {β} ◦ {β′} of the CFSM from which r1 can be executed, and such that

Ru(Unc(Oi ◦{β}◦{β′})) = O. Similarly, if Cp is in a configuration from which r3 can

not be fired because a reception α followed by a retransmission of message α′ must oc-

cur before r3, then one can show that either this implies that Ru(Unc(Oi)) Ó∈ L1 ∩L2,

or that there exists an execution Oi◦{α}◦{α′} such that Ru(Unc(Oi◦{α}◦{α′})) = O.

Figure 7.3-c) illustrates this situation. The argumentation extends for arbitrary se-

quences of actions wp = α1.α
′
1 . . . αi.α

′
i and wq = β1.β

′
1 . . . βj.β

′
j, i, j ∈ N that have to

be executed by Cp and Cq before the execution of r1 and r2: mandatory reception from

a controller implies Ru(Unc(Oi)) Ó∈ L1 ∩ L2, and mandatory reception from K(Ap) or

K(Aq) can be performed to obtain a larger execution. Note that in the sequences of

missing events wp and wq Cp and Cq can not be forced to exchange a message, which

would imply a reception from another controller, and hence Ru(Unc(Oi)) Ó∈ L1 ∩ L2.

So events in wp are independent from events in wq, and one can find an execution of

the CFSM O′ that includes Oi, the sequences wp, wq, and the two events r1 and s2.

Hence, after O′, controller Cp is in a configuration allowing it to receive the message

(m, τ) sent by Cq if τ is a correct tag. This reception corresponds to rule (R2) of the

controller. If r2 can not be executed by Cp but [τp]p = [τ]p, then it usually means

that r2 is not the next reception to perform according to the chosen branch, and

124

that there are remaining actions to perform on Cp before allowing r2. However, we

have ruled out this possibility after execution of O′. Hence, the only case remaining

is when [τp]p Ó= [τ]p, and [τ]p is not an immediate successor of [τp]p. However, we

know that s1 is a causal consequence of all choices that have been performed in O′

up to bMSC Mpq, as one can establish a correspondence between messages in O and

sequences of messages in O′. So, τ [b] is exactly the number of occurrences of branch

b in M1 ◦ · · · ◦ Mpq. As Cp has executed all events in wp required before execution

of r2, that is corresponding to events in M1 ◦ · · · ◦ Mpq−1 in execution O′, and more

precisely all receptions of messages coming from other controllers, we necessarily have

[τp]p[b
′] = [τ]p[b

′] for every branch b′ Ó= b of H, and [τp]p[b] + 1 = [τ]p[b]. This contra-

dicts the fact that r2, necessarily followed by s3 and r3 can not be executed from O′,

and hence contradicts O ◦ {a} Ó∈ L1.

Theorem 7.1.4. Let H be an HMSC, and let ‖
i∈I

K(Ai)|Ci be its controlled synthesis.

Then, Ru(Unc(L(‖
i∈I

K(Ai)|Ci))) = L(H).

Proof: The proof of this theorem is is straightforward, as we have inclusion of lan-

guages in both directions (lemmas 7.1.3 and 7.1.4).

7.2 Chapter 4

7.2.1 Proof of correctness of theorem 4.4.1

Theorem 7.2.1. Computing solutions for a localization problem using an optimal

solution search for the corresponding constraint model is both a sound and complete

algorithm.

To establish soundness and correctness, we first need a technical lemma establishing

correspondence between solutions of CPH and localized HMSCs.

Lemma 7.2.1. Let H be a HMSC, and CPH be the associated constraint problem.

For every (not necessarily minimal) solution s of CPH of cost F(s), there exists a

localized extension Hs of H such that F(Hs) = F(s).

Proof : Obviously, for every solution s = {Xi, Yi}i∈1..|M|, there exists a localized

extension Hs such that for every Mi ∈ M, f(Mi) has Xi as instance set, and Yi

as leader instance. The cost F(Hs) of any localized extension Hs is
∑

c(Mi, f(Mi)).

The value
∑

c(Mi, f(Mi)) be achieved by designing each M ′
i as follows: set M ′

i =

prefixi ◦ Mi, where prefixi is:

125

• a bMSC containing messages from Yi to any instance in
(

φ(min(Mi)) \ {Yi}
)

∪
(

φ(M ′
i) \ φ(Mi)

)

if Yi ∈ φ(min(Mi))

• a bMSC containing messages from Yi to any instance in φ(min(Mi))∪
(

φ(M ′
i) \

φ(Mi)
)

\ {Yi} if Yi ∈
(

φ((M ′
i)) \ φ(Mi)

)

• a bMSC containing messages from Yi to any instance in φ(min(Mi))∪ (φ(M ′
i) \

φ(Mi)) if Yi ∈ φ(Mi) \ φ(min(Mi))

Obviously, taking as leaders and instance sets the choices indicated by solution s

to CPH , and designing M′ = {M ′
i}i∈1..|M| as defined above, we necessarily have

that Hs is localized: all bMSCs are localized, and equality constraints impose that

two transitions originating from the same node are labeled by bMSCs with the

same leaders. Inclusion constraints has as a consequence that for every path ρ =

(n, M ′
1, n1) . . . (nk−1, M ′

k, nk), φ(min(Mρ)) = φ(min(M ′
1)).

Proof (of Theorem 4.3.1): We can now proceed in two directions, showing first

soundness, i.e for every optimal solution {Xi, Yi} to a constraint problem CPH , there

exists a localized extension H ′ which is minimal w.r.t the cost function F . Let s be

an optimal solution. By lemma 7.2.1, we know that there exists a localized extension

Hs with the same cost as s. Now, suppose that there exists H ′ a localized extension

of H, such that F(H ′) < F(Hs). Let f ′ be the relation mapping bMSCs of M to

bMSCs of M′. Then there are several bMSCs Mi1
, . . . , Mik

such that c(Mi, f ′(Mi)) <

c(Mi, f(Mi)), i.e. they are defined over sets of instances Xi1
, . . . , Xik

with leaders

Yi1
, . . . , Yik

, and still satisfy equality and inclusion constraints. Hence, the solution s

cannot be optimal as s′ obtained by replacing each Xi (resp Yi) by φ(f ′(Mi)) (resp

φ(min(f ′(Mi))) is better than s. Contradiction.

Let us now prove completeness, that is that every optimal localized extension H ′ of H

is defined over a set of bMSCs {M ′
i = f(Mi)}i∈1..|M| is such that s = {(φ(M ′

i), φ(min(M ′
I)))}i∈1..|M|

is also an optimal solution for CPH . Obviously, as H ′ is localized, s satisfies all equal-

ity and inclusion constraints imposed by CPH , otherwise one can find a path ρ in H

with |φ(min(Mρ))| > 1, or two paths with distinct minimal instances. Now, let us

suppose that s is not optimal, that is, there exists s′ = {(Xi, Yi)}i∈1..|M| such that

F(s′) < F(s). Using lemma 7.2.1, we know that there exists a localized extension Hs′

with the same cost F(Hs′) = F(s′). Hence H ′ is not optimal, contradiction.

126

7.3 Chapter 5

7.3.1 Promela code generated for the Morse Code example

Now, let us explain the generated Promela code of the Morse Example in details: The

Promela program instantiates a process for each instance of the HMSC at system-setup

time. This is implemented in the init section in Promela. Messages in Promela can

be typed. We choose mtype to construct the message types. To model the message

exchanges, we use channels with a given capacity (this is mandatory in Promela).

Note that in HMSCs, a bound on the maximal number of messages sent and not yet

received does not necessarily exists. Such a maximal bound exists when the considered

HMSC is not divergent [15]. In practice, imposing a bound on channels is a good way

to prototype a protocol, and get extensive analysis of the behaviors of a protocol “up

to some bound”. In Promela, implementation of an HMSC has the following overall

syntactic structure [52]:

• the Promela code first gives the necessary data definitions, including the global

channels declarations denoted by the keyword chan.

• Next, the definition of the process bodies indicated by the keyword proctype.

• Finally, the instantiation of the whole system using an init statement.

In the example below, we define three sets of channels. The set denoted by Aut_Cont

represents the channels going from the automaton to its controller, and the set

Cont_Aut represents the channels going from a controller to its automaton. Hence

channel Aut_Cont[i] denotes the channel going from the process Pi to its controller

Ci. The set of channels denoted by P is a matrix of channels connecting all the pairs

of controllers. For example, the channel P [i].PP [j] is the channel carrying messages

from the controller of the process Pi to the controller of the process Pj.

The Mask structure represents the existence of a process in a choice. It is used filter

branches of a choice vector which do not concern a particular process. For instance

Mask[0].T [5] = 1 means that the process P0 exists in the choice (or bMSC) M5,

and the statement Mask[3].T [1] = 0 means that the process P3 does not exist in the

choice M1. We do not write this last statement in the code because in Promela all

the variables are set to zero by default.

The structure defined by PI[NBC].T [AUTNUM] represents the number of events

that a process should do in a branch. For instance PI[0].T [0] = 2 means that the

process P0 (A) is executing two actions in the branch M0 (these actions are the

127

sending of the message conReq and the reception of the message conAck). The struc-

ture PIC[NBC].theAUT [AUTNUM].recpt[MAXEV TNUM] indicates the order in

which receptions should occur within a bMSC.

For instance, PIC[0].theAUT [2].recpt[0] = 0 means that in the choice M0 the pro-

cess P2 (C) should first receive a message coming from the process P0 (A), and

PIC[0].theAUT [2].recpt[1] = 1 means that the second reception that the process

P2 should do is from the process P1 (B).

Executing a statement of the form xy?b means that the reception of a message of type

b via the channel xy is performed (consumed). The other form is xy? < b > is just to

test if the message b is present at the head of the channel. It is not consumed. This

construct is used to test the received tag. The control of the order of receptions is

done by an active waiting.

Similarly, the statement wz!t means the sending of a message of type t via the

channel wz. We define two types of exchanged messages {byte, mtype, byte} and

{mtype, tagtype} respectively for the messages exchanged between automata and their

controller, and another one for the exchanges among controllers.

The construct → serves as an enabling operator such that the operation on its right

is only enabled if the guard on its left is true. The macro next takes the value true

if the projections of tag of the received message on the choices where the controlled

process exists is the direct successor of the local tag on the controller that receives

the message. Similarly the macro same is true if the projections of the received tag

and the local tag are the same. The macro diff returns the value of the new choice

that is currently executed.

We will explain the code of the process A, and then it will be the same for the code of

the other processes. The proctype Cont(int i) represents the controller of the process

i. It implements the generic controller algorithm previously shown in the paper. At

the end of the code, instruction run Cont(3), for instance, creates the controller for

process 3 (the process chan0). Each controller have its local variables: t is used to get

the tag of the received message over channels communicating with other controllers.

tau is used for the local tag. nbevt is set at each time we have a new choice to

be executed. It helps the controller to know how many messages stamped with the

current tag it should receive before allowing the reception of messages tagged with

the direct successor tag. Rec is used to tell the controller in which order it should

receive these events tagged with the same tag. Once a reception is done the controller

shifts to the next channel on which it should receive a message by using the macro

Shift_Rec. Variable j is to perform a round-robin test of messages on different

channels.

128

In the init section we initialize the values of the different structures and we create

the processes. Note that the global variables (like NBC and AUTNUM) contain some

static information about the HMSC that have been extracted during the compilation

phase. They are used by the processes but do not serve as a communication mean.

/* Promela generated code of a CFM generated from an HMSC entry */

#define CMAX 5 /* max size of channels */

#define NBC 6 /* number of MSCs (choices) */

#define AUTNUM 5 /* the number of automata */

#define next ((t.T[0]-tau.T[0])*Mask[i].T[0]+t.T[1]-tau.T[1])

*Mask[i].T[1]+t.T[2]-tau.T[2])*Mask[i].T[2]+t.T[3]-tau.T[3])

*Mask[i].T[3]+t.T[4]-tau.T[4])*Mask[i].T[4]+t.T[5]-tau.T[5])

*Mask[i].T[5])==1)

#define same ((t.T[0]-tau.T[0])*Mask[i].T[0]+t.T[1]-tau.T[1])

*Mask[i].T[1]+t.T[2]-tau.T[2])*Mask[i].T[2]+t.T[3]-tau.T[3])

*Mask[i].T[3]+t.T[4]-tau.T[4])*Mask[i].T[4]+t.T[5]-tau.T[5])

*Mask[i].T[5])==0)

#define update tau.T[0]=t.T[0];tau.T[1]=t.T[1];tau.T[2]=t.T[2];

tau.T[3]=t.T[3];tau.T[4]=t.T[4];tau.T[5]=t.T[5]

#define diff (t.T[0]-tau.T[0])*Mask[i].T[0]*0+(t.T[1]-tau.T[1])

*Mask[i].T[1]*1+(t.T[2]-tau.T[2])*Mask[i].T[2]*2+(t.T[3]-tau.T[3])

*Mask[i].T[3]*3+(t.T[4]-tau.T[4])*Mask[i].T[4]*4+(t.T[5]-tau.T[5])

*Mask[i].T[5]*5

#define MAXEVTNUM 2/*the max numb of rec in a bMSC*/

#define Shift_rec Rec.recpt[0]=Rec.recpt[1]; Rec.recpt[1]=-1

typedef tagtype { byte T[NBC]; }

typedef com_Num { byte T[AUTNUM]; }

com_Num PI[NBC] /* number of com events in a bMSC */

typedef order_recpt{byte recpt[MAXEVTNUM] } /* required seq */

typedef aut_choice{order_recpt theAUT[AUTNUM] }

aut_choice PIC[NBC]

typedef chan_col { chan PP[AUTNUM]=[CMAX] of {mtype,tagtype};}

chan_col P [AUTNUM];

chan Aut_Cont[AUTNUM]=[CMAX] of {byte,mtype,byte};

chan Cont_Aut[AUTNUM]=[CMAX] of {byte,mtype};

mtype = {ConReq, Connect, ConAck, Connected, info, send0, zero,

send1, one, Ack, disConReq, disconnect, disConAck, disconnected }

/*messages types in the system */

129

tagtype Mask[AUTNUM]; /* selection of concerned instances */

proctype A

{

sA0 : if

:: Aut_Cont[0]!C,ConReq,0; goto sA1

fi;

sA1 : if

:: Cont_Aut[0]?C,ConAck; goto sA2

fi;

sA2 : if

:: Aut_Cont[0]!C,info,1; goto sA3

fi;

sA3 : if

:: Cont_Aut[0]?C,Ack; goto sA4

fi;

sA4 : if

:: Aut_Cont[0]!C,disConReq,5; goto sA5

:: Aut_Cont[0]!C,info,1; goto sA3

fi;

sA5 : if

:: Cont_Aut[0]?C,disConAck; goto sA0

fi;

}

proctype B()

{

sb0: if

:: Cont_Aut[1]?2,Connect;goto sb1

fi;

sb1: if

:: Aut_Cont[1]!2,Connected,-1; goto sb2

fi;

sb2: if

:: Cont_Aut[1]?3,zero; goto sb2

:: Cont_Aut[1]?4,one; goto sb2

:: Cont_Aut[1]?2,disconnect; goto sb3

fi;

130

sb3: if

:: Aut_Cont[1]!2,disconnected,-1; goto sb0

fi;

}

proctype C()

{

sc0: if

:: Cont_Aut[2]?0,ConReq;goto sc1

fi;

sc1: if

:: Aut_Cont[2]!1,Connect,-1;goto sc2

fi;

sc2: if

:: Cont_Aut[2]?1,Connected;goto sc3

fi;

sc3: if

:: Aut_Cont[2]!0,ConAck,-1;goto sc4

fi;

sc4: if

:: Cont_Aut[2]?0,info;goto sc5

fi;

sc5: if

:: Aut_Cont[2]!4,send1,3; goto sc6

:: Aut_Cont[2]!3,send0,2;goto sc6

fi;

sc6: if

:: Aut_Cont[2]!4,send1,3; goto sc6

:: Aut_Cont[2]!3,send0,2;goto sc6

:: Aut_Cont[2]!0,Ack,4;goto sc7

fi;

sc7: if

:: Cont_Aut[2]?0,info;goto sc5

:: Cont_Aut[2]?0,disConReq;goto sc8

fi;

sc8: if

:: Aut_Cont[2]!1,disconnect,-1;goto sc9

131

fi;

sc9: if

:: Cont_Aut[2]?1,disconnected;goto sc10

fi;

sc10: if

:: Aut_Cont[2]!0,disConAck,-1;goto sc0

fi;

}

proctype chan0()

{

schan00: if

:: Cont_Aut[3]?2,send0;goto schan01

fi;

schan01: if

:: Aut_Cont[3]!1,zero,-1;goto schan00

fi;

}

proctype chan1()

{

schan10: if

:: Cont_Aut[4]?2,send1;goto schan11

fi;

schan11: if

:: Aut_Cont[4]!1,one,-1;goto schan10

fi;

}

proctype Cont(int i) /* The generic controller */

{tagtype tau,t; byte nbevt, currentb; byte j=0; byte b;

mtype m; order_recpt Rec;

do

/* RULE 1 */ :: Aut_Cont[i]?<j,m,b>;Aut_Cont[i]?j,m,b ->

if :: (nbevt==0) -> tau.T[b]++; nbevt=PI[b].T[i]-1;

Rec.recpt[0]=PIC[b].theAUT[i].recpt[0];

Rec.recpt[1]=PIC[b].theAUT[i].recpt[1];

132

P[j].PP[i]!m,tau;

:: else -> nbevt--; P[j].PP[i]!m,tau

fi;

/* RULE 2 */ :: P[i].PP[j]?<m,t> ->

if :: (same && (Rec.recpt[0]==j)); P[i].PP[j]?m,t ->

nbevt--; Cont_Aut[i]!j,m ; Shift_Rec;

:: else -> if :: ((nbevt==0) && next); P[i].PP[j]?m,t ->

currentb=diff; update;nbevt=PI[currentb].T[i]-1;

Rec.recpt[0]=PIC[currentb].theAUT[i].recpt[1];

Cont_Aut[i]!j,m

::else->skip

fi;

fi;

:: j=(j+1)%AUTNUM;

od

}

init{ /* Constant values obtained from the HMSC parsing */

PI[0].T[0]=2;PI[0].T[1]=4;PI[0].T[2]=2;PI[1].T[0]=1;

PI[1].T[1]=1;PI[2].T[0]=1;PI[2].T[1]=2;PI[2].T[2]=1;

PI[3].T[0]=1;PI[3].T[1]=2;PI[3].T[2]=1;PI[4].T[0]=1;

PI[4].T[1]=1;PI[5].T[0]=2;PI[5].T[1]=4;PI[5].T[2]=2;

PIC[0].theAUT[0].recpt[0]=1;PIC[0].theAUT[0].recpt[0]=-1;

PIC[0].theAUT[1].recpt[0]=0;PIC[0].theAUT[1].recpt[1]=2;

PIC[0].theAUT[2].recpt[0]=1;PIC[0].theAUT[2].recpt[0]=-1;

PIC[1].theAUT[0].recpt[0]=-1;PIC[1].theAUT[0].recpt[1]=-1;

PIC[1].theAUT[1].recpt[0]=0;PIC[1].theAUT[1].recpt[0]=-1;

PIC[2].theAUT[0].recpt[0]=-1;PIC[2].theAUT[0].recpt[1]=-1;

PIC[2].theAUT[1].recpt[0]=1;PIC[2].theAUT[1].recpt[0]=-1;

PIC[2].theAUT[2].recpt[0]=3;PIC[2].theAUT[2].recpt[0]=-1;

PIC[3].theAUT[0].recpt[0]=-1;PIC[3].theAUT[0].recpt[1]=-1;

PIC[3].theAUT[1].recpt[0]=1;PIC[3].theAUT[1].recpt[0]=-1;

133

PIC[3].theAUT[2].recpt[0]=4;PIC[3].theAUT[2].recpt[0]=-1;

PIC[4].theAUT[0].recpt[0]=1;PIC[4].theAUT[0].recpt[0]=-1;

PIC[4].theAUT[1].recpt[0]=-1;PIC[4].theAUT[1].recpt[1]=-1;

PIC[5].theAUT[0].recpt[0]=1;PIC[5].theAUT[0].recpt[0]=-1;

PIC[5].theAUT[1].recpt[0]=0;PIC[5].theAUT[1].recpt[1]=2;

PIC[5].theAUT[2].recpt[0]=1;PIC[5].theAUT[2].recpt[0]=-1;

Mask[0].T[0]=1;Mask[0].T[1]=1;Mask[0].T[2]=1;

Mask[1].T[0]=1;Mask[1].T[1]=1;

Mask[2].T[1]=1;Mask[2].T[3]=1;Mask[2].T[2]=1;

Mask[3].T[1]=1;Mask[3].T[4]=1;Mask[3].T[2]=1;

Mask[4].T[0]=1;Mask[4].T[1]=1;

Mask[5].T[0]=1;Mask[5].T[1]=1;Mask[5].T[2]=1;

run Cont(0);run Cont(1);run Cont(2);run Cont(3);run Cont(4);

run A;run C;run B;run Chan0;run Chan1;

}

7.3.2 A step-by-step execution of the Morse code example

Here is a step-by-step execution of the Morse code example’s execution as it is pre-

sented in Figure 5.6.

134

Figure 7.4: The status of the frames presenting the automata of the Morse Code
example

We can see that at this level the only possible action can be done by the Automaton

A which can send the message “ConReq” to the automaton C.

135

Figure 7.5: A sends ConReq to C

Figure 7.6: C sends Connect to B

136

Figure 7.7: B sends Connected to C

Figure 7.8: C sends ConAck A

137

Figure 7.9: A sends Info to C

138

Figure 7.10: C sends send0 to Chan0

139

Figure 7.11: C sends send1 to Chan1

Figure 7.12: Chan1 sends one to B

140

Figure 7.13: Chan0 sends zero to B

7.3.3 The generated Prolog Code for the localisation of the

toaster example

The code presented below is the prolog code generated to solve the localisation of the

toaster example. Each bMSC Mi present in the HMSC will be concerned by three

variables Xi,Yi, and Ci. Xi is for the leader process that we chose, Yi is for the set

of active processes, and Ci designat the cost of the changes we make for the original

bMSC. Having |I| processes in the HMSC, the value of Xi ∈ [20, 2|I|]. Yi is then the

sum of the values of the active processes in the bMSC. Ci is the cost of the changes

based on the cost function “cost”. the cost function is the one described in chapter 4.

the predicate “w_in_c(A1,B2, R)” tells if a set of processes B2 contains the process

B2. the predicate “w_eq((A1,B1), (A2, B2))” tells if the processes A1 and A2 are

the same. these two predicates are used mainly to define the original sets of processes

in each bMSC and to define the constraints to respect between the different bMSCs

to have a local HMSC. We bound the costs Ci and there bound are processed and

generated by SOFAT based on the HMSC’s specification. the solving algorithm using

labeling and bisect, is described in chapter 4.

141

hmsc((X0,Y0),(X1,Y1),(X2,Y2),(X3,Y3),(X4,Y4),C0,C1,C2,C3,C4,F) :-

% Encoding singleton with bitwise data structure

list_to_fdset([1,2,4],FD_SET),

X0 in_set FD_SET,

X1 in_set FD_SET,

X2 in_set FD_SET,

X3 in_set FD_SET,

X4 in_set FD_SET,

% Encoding subsets with bitwise data structure

domain([Y0,Y1,Y2,Y3,Y4],0 , 7),

% ************* CSP Constraints : *************

%The domains of variables must contain at least the initial

%set of active processes

w_in_c(1, Y0 ,1),

w_in_c(2, Y0 ,1),

w_in_c(4, Y0 ,1),

w_in_c(1, Y1 ,1),

w_in_c(2, Y1 ,1),

w_in_c(4, Y1 ,1),

w_in_c(1, Y2 ,1),

w_in_c(2, Y2 ,1),

w_in_c(4, Y2 ,1),

w_in_c(1, Y3 ,1),

w_in_c(2, Y3 ,1),

w_in_c(4, Y3 ,1),

w_in_c(1, Y4 ,1),

w_in_c(2, Y4 ,1),

w_in_c(4, Y4 ,1),

% Each Xi shoul belong to Yi

w_in_c(X0, Y0 ,1),

w_in_c(X1, Y1 ,1),

142

w_in_c(X2, Y2 ,1),

w_in_c(X3, Y3 ,1),

w_in_c(X4, Y4 ,1),

%The constraints between variables :

w_in_c(X1 , Y0, 1),

w_eq((X1,Y1) , (X3,Y3)),

w_in_c(X2 , Y1, 1),

w_in_c(X4 , Y1, 1),

w_eq((X2,Y2) , (X4,Y4)),

w_in_c(X0 , Y2, 1),

w_in_c(X0 , Y3, 1),

w_in_c(X3 , Y4, 1),

w_in_c(X1 , Y4, 1),

%The constraints of costs : with theta = 0.3

cost(a0,X0,Y0,C0,0.3),

cost(a1,X1,Y1,C1,0.3),

cost(a2,X2,Y2,C2,0.3),

cost(a3,X3,Y3,C3,0.3),

cost(a4,X4,Y4,C4,0.3),

sum([C0,C1,C2,C3,C4],#=, F),

C0 #> -1 ,

C0 #< 3 ,

C1 #> -1 ,

C1 #< 3 ,

C2 #> -1 ,

C2 #< 3 ,

C3 #> -1 ,

C3 #< 3 ,

C4 #> -1 ,

C4 #< 3 ,

labeling([bisect,minimize(F),time_out(60000,Flag)],

[X0,X1,X2,X3,X4,C0,C1,C2,C3,C4]).

w_eq((A1,B1), (A2, B2)) :-

A1 #= A2.

143

w_in_c(A1,B2, R) :-

R #<=> ((B2 / A1) mod 2 #= 1).

card(Y,Card):-

Y#=A0*1 + A1*2 + A2*4 ,

domain([A0 , A1 , A2], 0, 1),

sum([A0 , A1 , A2], #= ,Card).

iter([X],[1]):-!.

iter([X|Xs],[M|Ls]):-

iter(Xs,Ls),

Ls=[N|_],

M is 2*N.

cost(A,X,Y,C,Theta):-

domainBase(A,Ybase),

card(Ybase,CardBase),

card(Y,CardNew),

Nb_Processes #= CardNew - CardBase,

numberOfMinimum(A,Nb_minim),

w_in_c(X, Ybase, C_dec1),

the_minimum_local(A,MiniLocal),

w_in_c(X, MiniLocal, C_dec2),

C_dec #= (C_dec1 + (1-C_dec2)) / 2,

C #= Nb_minim + Nb_Processes*(Theta+1) -1 + C_dec.

144

Bibliography

[1] Series z: Languages and general software aspects for telecommunication systems.

Editor. 2011.

[2] M. Abdalla, F. Khendek, and G. Butler. New results on deriving SDL specifica-

tions from MSCs. In SDL Forum, pages 51–66, 1999.

[3] R. Abdallah, C. Jard, and L. Hélouët. Distributed implementation of message

sequence charts. Software and Systems Modeling, page to appear, 2013.

[4] S. Akshay, M. Mukund, and N.K. Kumar. Checking coverage for infinite collec-

tions of timed scenarios. In CONCUR’07, pages 181–196, 2007.

[5] A. Albreshne, P. Fuhrer, and J. Pasquier-Rocha. Web services tech-

nologies: State of the art. Technical Report no 09-04, Depart-

ment of Informatics, University of Fribourg, Switzerland, September 2009.

http://diuf.unifr.ch/drupal/softeng/sites/diuf.unifr.ch.drupal.softeng/files/file

/publications/internal/WP09-04.pdf.

[6] B. Algayres, Y. Lejeune, F. Hugonment, and F. Hantz. The avalon project: a

validation environment for SDL/MSC descriptions. In Proc. of SDL’93, pages

221–235, 1993.

[7] R. Alur, K. Etessami, and M. Yannakakis. Inference of message sequence charts.

IEEE Trans. Softw. Eng., 29(7):623–633, July 2003.

[8] R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of msc

graphs. Theor. Comput. Sci., 331(1):97–114, February 2005.

[9] R. Alur, G. J. Holzmann, and D Peled. An analyser for mesage sequence charts.

In TACAS, pages 35–48, 1996.

145

[10] R. Alur and M. Yannakakis. Model checking of message sequence charts. In Pro-

ceedings of the 10th International Conference on Concurrency Theory, CONCUR

’99, pages 114–129, London, UK, UK, 1999. Springer-Verlag.

[11] D. Amyot and A. Eberlein. An evaluation of scenario notations and construc-

tion approaches for telecommunication systems development. Telecommunication

Systems, 24(1):61–94, 2003.

[12] P. Baker, S. Loh, and F. Weil. Model-driven engineering in a large industrial

context – motorola case study. In Proceedings of the 8th international conference

on Model Driven Engineering Languages and Systems, MoDELS’05, pages 476–

491, Berlin, Heidelberg, 2005. Springer-Verlag.

[13] N. Baudru and R. Morin. Safe implementability of regular message sequence

chart specifications. In SNPD, pages 210–217, 2003.

[14] N. Baudru and R. Morin. Synthesis of safe message-passing systems. In Proceed-

ings of the 27th international conference on Foundations of software technology

and theoretical computer science, FSTTCS’07, pages 277–289, Berlin, Heidelberg,

2007. Springer-Verlag.

[15] H. Ben-Abdallah and S. Leue. Syntactic detection of process divergence and

non-local choice in message sequence charts. In Proc. Intl. Conf. on Tools and

Algorithms for the Construction and Analysis of Systems TACAS’97, pages 259–

274. Springer, 1997.

[16] B. Bollig and L. Hélouët. Realizability of dynamic MSC languages. In Proc. of

CSR (Computer Science in Russia), volume 6072 of LNCS, pages 48–59. Springer,

2010.

[17] D. Brand and P. Zafiropoulo. On communicating finite state machines. Technical

Report no RZ1053, IBM Zurich Research Lab, 1981.

[18] D. Brand and P. Zafiropulo. On communicating finite-state machines. J. ACM,

30(2):323–342, April 1983.

[19] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-

oriented Software Architecture - A System of Patterns. John Wiley & Sons,

Chichester, 1996.

[20] B. Caillaud, P. Darondeau, L. Hélouët, and G. Lesventes. Hmscs as partial

specifications ... with pns as completions. In MOVEP, pages 125–152, 2000.

146

[21] M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain con-

straint solver. In PLILP, pages 191–206, 1997.

[22] M. L. Crane and J. Dingel. Uml vs. classical vs. rhapsody statecharts: Not all

models are created equal. In Proc. 8th International Conf. on Model Driven

Engineering Languages and Systems, Oct, pages 2–7, 2005.

[23] W. Damm and D. Harel. Lscs: Breathing life into message sequence charts.

Formal Methods in System Design, 19(1):45–80, 2001.

[24] H. Dan, R. M. Hierons, and S. Counsell. A framework for pathologies of message

sequence charts. Inf. Softw. Technol., 54(11):1283–1295, November 2012.

[25] C. Fidge. Logical time in distributed computing systems. IEEE Computer,

24(8):28–33, August 1991.

[26] C. J. Fidge. Timestamps in message-passing systems that preserve the partial or-

dering. In Proc. of the 11th Australian Computer Science Conference (ACSC’88),

pages 56–66, February 1988.

[27] Fielding, Gettys, Mogul, Frystyk, Masinter, Leach, and Berners-Lee. Hypertext

transfer protocol – http/1.1, 1999.

[28] R. T. Fielding. Architectural styles and the design of network-based software

architectures. PhD thesis, 2000.

[29] B. Genest. Compositional message sequence charts (cmscs) are better to imple-

ment than mscs. In TACAS, pages 429–444, 2005.

[30] B. Genest, D. Kuske, and A. Muscholl. A kleene theorem and model checking

algorithms for existentially bounded communicating automata. Inf. Comput.,

204(6):920–956, June 2006.

[31] B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state high-level mscs:

Model-checking and realizability. J. Comput. Syst. Sci., 72(4):617–647, June

2006.

[32] J. Grabowski. Test Case Generation and Test Case Specification Based on Mes-

sage Sequence Charts. PhD thesis, Dissertation, Universität Bern, Institut für

Informatik, Februar 1994, February 1994.

[33] D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput.

Program., 8(3):231–274, June 1987.

147

[34] O. Haugen. Comparing uml 2.0 interactions and msc-2000. In Proceedings of the

4th international SDL and MSC conference on System Analysis and Modeling,

SAM’04, pages 65–79, Berlin, Heidelberg, 2005. Springer-Verlag.

[35] O. Haugen. Message sequence charts (msc). In ITU, Z.120, Editor. 1999, ITU-T:

Geneva. p. 126.

[36] L. Hélouët, R. Abdallah, and D. Bhatia. SOFAT : Scenario formal analysis tool-

box. Technical report, 2011. www.irisa.fr/distribcom/Prototypes/SOFAT/.

[37] L. Hélouët and C. Jard. Conditions for synthesis of communicating automata

from hmscs. In 5th International Workshop on Formal Methods for Industrial Cr

itical Systems (FMICS), Berlin, April 2000. GMD FOKUS.

[38] L. Hélouët, C. Jard, and B. Caillaud. An effective equivalence for sets of scenarios

represented by hmscs. Technical Report 3499, INRIA, September 1998.

[39] G. J. Holzmann. The model checker spin. IEEE Trans. Software Eng., 23(5):279–

295, 1997.

[40] G. J. Holzmann, D. A. Peled, and M. H. Redberg. Design tools for requirements

engineering. Bell Labs Technical Journal, 2:86–95, 1997.

[41] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages

and Computation. Addison-Wesley, 1979.

[42] IBM. Telelogic tau, version 4.2. Technical report,

http://publib.boulder.ibm.com/infocenter/rsdp/v1r0m0/index.jsp?topic=

/com.ibm.help.download.tau.doc/topics/taudownload42.html.

[43] ITU-T. Z.100 : Specification and description language (SDL). Technical report,

International Telecommunication Union, 2011.

[44] R. J. Anderson. Security engineering - a guide to building dependable distributed

systems (2. ed.). Wiley, 2008.

[45] I. Jacobson. Object-Oriented Software Engineering: a Use Case driven Approach.

Addison–Wesley, Wokingham, England, 1995.

[46] C. Jervis. Message sequence charts (msc). In ITU, Z.120, Editor. 2004, ITU-T:

Geneva.

148

[47] O. Kluge. Petri nets as a semantic model for message sequence chart specifica-

tions, 2004.

[48] K. Koskimies and E. Mäkinen. Automatic synthesis of state machines from trace

diagrams. Softw. Pract. Exper., 24(7):643–658, July 1994.

[49] I. Krüger, R. Grosu, P. Scholz, and M. Broy. From mscs to statecharts. In

Proceedings of the IFIP WG10.3/WG10.5 international workshop on Distributed

and parallel embedded systems, DIPES ’98, pages 61–71, Norwell, MA, USA,

1999. Kluwer Academic Publishers.

[50] R. L. Krikhaar and J. G. Wijnstra. Product development with the building block

method , a process perspective. Technical report, Philips Research Information

and Software Technology, 1994-12-06.

[51] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Commun. ACM, 21(7):558–565, July 1978.

[52] S. Leue and P. B. Ladkin. Implementing and verifying msc specifications using

promela/xspin. In Proceedings of the DIMACS Workshop SPIN96, the 2nd In-

ternational Workshop on the SPIN Verification System, volume 32 of DIMACS,

pages 65–89, 1997.

[53] S. Leue, L. Mehrmann, and M. Rezai. Synthesizing room models from message

sequence chart specifications, 1998.

[54] S. Leue, L. Mehrmann, and M. Rezai. Synthesizing software architecture de-

scriptions from message sequence chart specifications. In ASE, pages 192–195,

1998.

[55] H. Liang, J. Dingel, and Z. Diskin. A comparative survey of scenario-based to

state-based model synthesis approaches. In Jon Whittle, Leif Geiger, and Michael

Meisinger, editors, SCESM, pages 5–12. ACM, 2006.

[56] M. Lohrey. Safe realizability of high-level message sequence charts. In Proceedings

of the 13th International Conference on Concurrency Theory, CONCUR ’02,

pages 177–192, London, UK, UK, 2002. Springer-Verlag.

[57] M. Lohrey. Realizability of high-level message sequence charts: closing the gaps.

Theor. Comput. Sci., 309(1):529–554, December 2003.

149

[58] B. Lüdemann. Synthesis of Human-readable Statecharts from Sequence Diagrams

in the ROOM Environment. 2005.

[59] N. Mansurov and D. Zhukov. Automatic synthesis of sdl models in use case

methodology. In SDL Forum, pages 225–240, 1999.

[60] K. Marriott and P.J. Stuckey. Programming with Constraints: An Introduction.

MIT Press, 1998.

[61] F. Mattern. Time and global states of distributed systems. in Proc. Int. Workshop

on Parallel and Distributed Algorithms , Bonas, France , North Holland, pages

215–226, 1988.

[62] F. Mattern. Virtual time and global states of distributed systems. In Parallel

and Distributed Algorithms, pages 215–226. North-Holland, 1988.

[63] S. Mauw and M. A. Reniers. Refinement in interworkings. In Proceedings of

the 7th International Conference on Concurrency Theory, CONCUR ’96, pages

671–686, London, UK, UK, 1996. Springer-Verlag.

[64] Sun Microsystems. Rpc: Remote procedure call protocol specification. RFC

1050, Apr 1988.

[65] B. Mitchell, R. Thomson, and C. Jervis. Phase automaton for requirements

scenarios. In Daniel Amyot and Luigi Logrippo, editors, FIW, pages 77–84. IOS

Press, 2003.

[66] R. Morin. Recognizable sets of message sequence charts. In STACS 2002, LNCS

2030, pages 523–534. Springer, 2002.

[67] M. Mukund, K. N. Kumar, and M. A. Sohoni. Synthesizing distributed finite-

state systems from mscs. In Proceedings of the 11th International Conference

on Concurrency Theory, CONCUR ’00, pages 521–535, London, UK, UK, 2000.

Springer-Verlag.

[68] T. Murata. Petri nets: Properties, analysis and applications. In Proceedings of the

IEEE, pages 541–580, April 1989. NewsletterInfo: 33Published as Proceedings

of the IEEE, volume 77, number 4.

[69] A. Muscholl and D. Peled. Deciding properties of message sequence charts. In

Scenarios: Models, Transformations and Tools, pages 43–65, 2003.

150

[70] A. Muscholl, D. Peled, and Z. Su. Deciding properties for Message Sequence

Charts. In FoSSaCS, volume 1378 of LNCS, pages 226–242, 1998.

[71] OMG. UML 2.0 : Unified Modeling Language. Object Management Group,

August 2005.

[72] J. Padberg, O. Kluge, and H. Ehrig. Modeling train control systems: From

message sequence charts to petri nets, 2000.

[73] C.A. Petri. Kommunication mit Automaten. PhD thesis, Technischen Hoschule

Darmstadt, 1962.

[74] M. Raynal, A. Schiper, and S. Toueg. The causal ordering abstraction and a

simple way to implement it. Inf. Process. Lett., 39(6):343–350, 1991.

[75] M. A. Reniers. Message sequence chart: Syntax and semantics. Technical report,

Faculty of Mathematics and Computing, 1998.

[76] L. Richardson and S. Ruby. RESTful Web Services. O’Reilly, May 2007.

[77] E. Rudolph. Message sequence charts (msc). In ITU, Z.120, Editor. 1996, ITU-T:

Geneva. p. 78.

[78] E. Rudolph, J. Grabowski, and P. Graubmann. Towards a harmonization of

uml-sequence diagrams and msc. In SDL Forum, pages 193–208, 1999.

[79] B. Selic, G. Gullekson, and P.T. Ward. Real-time object-oriented modelling.

John Wiley & Sons, Inc, 1994.

[80] A. S. Tanenbaum and M. V. Steen. Distributed Systems: Principles and

Paradigms (2nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA,

2006.

[81] S. Uchitel and J. Kramer. A workbench for synthesising behaviour models from

scenarios. In ICSE, pages 188–197, 2001.

[82] S. Uchitel, J. Kramer, and J. Magee. Detecting implied scenarios in Message

Sequence Chart specifications. In ESEC / SIGSOFT FSE, pages 74–82, 2001.

[83] S. Uchitel, J. Kramer, and J. Magee. Incremental elaboration of scenario-based

specifications and behavior models using implied scenarios. ACM Trans. Softw.

Eng. Methodol., 13(1):37–85, January 2004.

151

[84] H. Vafaie. Application of petri-nets in the hermes data flow machine: an overview.

In Circuits and Systems, Proceedings of the 32nd Midwest Symposium, 1989.

[85] P. Van Hentenryck, V.A. Saraswat, and Y. Deville. Design, implementation, and

evaluation of the constraint language cc(fd). J. Log. Program., 37(1-3):139–164,

1998.

[86] VERILOG. Objectgeode 4.0, 1997.

http://www.control.aau.dk/ henrik/undervisning/embedd/tutorial.pdf.

[87] G. Von Bochmann. Finite State Description of Communication Protocols. Re-

ports Montreal Univ Canada. 1976.

152

List of Publications

International Journal

[1] R. Abdallah, C. Jard, and L. Hélouët, Distributed implementation of

message sequence charts. Software and Systems Modeling, page to ap-

pear, 2013.

[2] B. Daya, H. Akoum, and R. Abdallah, Vehicule Detection Using Horizon Base

Approaches for the Real Time System , International Journal of Sciences and Tech-

niques of Automatic control & computer engineering IJ-STA, Volume 4, No 2, pp.

1284-1297, December 2010.

International Conference

[1] R. Abdallah, A. Gotlieb, L. Hélouët, and C. Jard, Scenario realizability

with constraint optimization, FASE 2013, pp. 194-209, March 2013.

[2] R. Abdallah and C. Jard, An experiment in automatic generation of

protocols from HMSCs, Notere 2011, pp. 1-8, May 2011.

[3] M. Dib, R. Abdallah, A. Caminada, Arc-consistency in Constraint Satisfaction

Problems: A survey, 2nd International Conference on Computational Intelligence,

Modeling and Simulation, Bali, Indonesia, 2010.

[4] B. Daya, H. Akoum, R. Abdallah, and L. Prevost. Vehicle Detection Using New

Approach for the Real Time System. International Conference on Sciences and Tech-

niques of Automatic control & computer engineering, 2009.

National Conference

[1] M. Dib, A. Caminada, and R. Abdallah, Tabu-Ng: Une Approche De Résolution

Hybride Pour La Coloration De Graphes".ROADEF 11, Saint-Etienne, Mars 2011.

153

