Etude du repliement des protéines par RMN temps réel et autres méthodes biophysiques : l'exemple de la Beta-2-microglobuline - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2012

Folding of proteins studied by real time NMR and other biophysical methods : the example of Beta-2-microglobulin : the example of Beta-2-microglobulin

Etude du repliement des protéines par RMN temps réel et autres méthodes biophysiques : l'exemple de la Beta-2-microglobuline

Résumé

Beta-2-microglobulin is a 12kDa protein, involved in a misfolding disease: dialysis related amyloidosis. It is therefore a model for amyloid fibril formation and protein folding studies. B2M is both a fruitful and difficult object of study. B2M production is complex, requiring optimization to obtain a well folded protein and reach yields suitable to NMR and SAXS studies. B2M folding is highly sensitive on buffer, temperature, concentration and often preparation conditions. Yet our studies, using several biophysical methods, revealed several essential facts of the folding mechanism and of the structure and dynamics of folding intermediates. A first outcome of our studies is that folding and oligomerization are co-existing processes. A major finding is the existence of a monomer-oligomer equilibrium between I1 and I2 folding intermediate states. Indirectly detected using real time NMR methods like SOFAST, I2 was directly detected and characterized using SAXS: I2 is likely to be a dimer. Folding intermediate states of B2M had been shown to favor fibril formation: this is easily explained by the existence of a dimeric folding intermediate state with an important population. A combination of biophysical methods allows the characterization of this monomer-oligomer equilibrium. Using SAXS, and later confirmed by NMR relaxation experiments, stoichiometry is shown to be a monomer-dimer equilibrium. Further work based on the methodology applied to the folding of the W60G-B2M mutant, including a further optimization of the sensitivity of the experiment, will give a sharper picture of the I1-I2 equilibrium for the WT protein, and may provide information on the timescale of the equilibrium. The thorough study of the folding of B2M pushes biophysical methods to their limits: sensitivity and acquisition time for NMR, polydispersity for SAXS. Yet in both cases a large oligomer (I3) that disappears within minutes was detected, and confirmed using UV-fluo. Characterization of I3 will demand further methodological developments, a new experimentation plan including a full dilution scale, or double jump experiments, for example. A question that arises is the comparison of this large oligomer and oligomeric intermediate states that are populated during the formation of fibrils. Other biophysical methods, such as ESI mass spectroscopy, may be an interesting input. Tackling the limits of biophysical methods leads to methodological developments. For example, to study the structure and dynamics of I1, the continuous data acquisition method allowed the assignment of this species that has a half-lifetime of tens of minutes. A conformational exchange was discovered for the I1 state of the W60G-B2M mutant, through the development of a spin relaxation measurement experiment: R2-BEST-TROSY. The methods developed for this study may be later used to study the folding and folding intermediate states of other proteins, such as alpha-lactalbumin , or in other contexts in which the short lifetime of the protein is an issue, as for in-cell NMR experiments. Our studies are of course far from an application or a concrete result in the fight against misfolding diseases such as dialysis related amyloidosis or Parkinson's. But the discovery of oligomeric folding intermediate states underlines that oligomerization (including fibril formation) and folding should not be studied separately, and are processes that are closely related. Methodological developments included in our work can be applied to other proteins as well as other contexts. Hopefully these questionings and developments will constitute a step forward a better understanding of this diseases.
La Beta-2-microglobuline est une protéine de 12kDa, impliquée dans une maladie dûe à un mauvais repliement: l'amylose liée à la dialyse. Elle constitue donc un modèle pour la formation de fibrilles amyloides et pour le repliement des protéines. La B2M est un objet à la fois difficile et fructueux à étudier. La production de B2M est complexe et demande une optimisation important pour obtenir une protéine correctement repliée et atteindre des rendements approprié pour des études de RMN et SAXS. Le repliement de la B2M est sensible au solvent, à la température, à la concentration et souvent aux conditions de préparation. Pourtant notre étude, à l'aide de plusieurs méthodes biophysiques, a pu révéler plusieurs faits essentiels de son mécanisme de repliement et de la structure et propriétés des intermédiaires. Un premier résultat est que le repliement et l'oligomérisation sont deux processus concourants. Une découverte majeure est l'existence d'un équilibre monomère oligomère entre deux états I1 et I2 intermédiaires du repliement. Détecté indirectement à l'aide de RMN temps réel comme SOFAST, I2 a été directement charactérisé en SAXS: Il s'agit probablement d'un dimère. Les états intermédiaires de repliement de B2M avaient été pointés comme favorisant la formation de fibrilles: cela s'explique facilement avec l'existence d'un intermédiaire dimérique. Une combinaison de méthodes biophysiques permet la caractérisation de cet équilibre monomère-oligomère. En SAXS, puis confirmé en RMN, la stoichiométrie de l'équilibre est celle d'un monomère-dimère. Des travaux complémentaires utilisant les techniques développées pour cette étude pourront servir à caractériser plus finement cet équilibre. L'étude approfondie du repliement de B2M pousse les techniques biophysiques dans leurs retranchements: la sensibilité et le temps d'acquisition pour la RMN, la polydispersité pour le SAXS. Pourtant dans les deux cas un grand oligomère I3, qui disparait en quelques minutes, a pu être détecté, ce qui fut confirmé par UV-Fluo. La caractérisation d'I3 demandera des dévelopements méthodologiques supplémentaires, ainsi qu'un nouveau plan d'expérience. D'autres méthodes comme la spectrométrie de masse nano-ESI pourraient représenter des sources d'information utiles. S'attaquer aux limites des méthodes biophysiques pousse au développement méthodologique. Ainsi pour étudier la structure et dynamique d'I1, la méthode d'acquisition continue des données a permis l'attribution des résonnances de cette espèce qui a une demi vie de quelques dizaines de minutes. Un échange conformationnel a été découvert pour l'état I1 du mutant W60G, en développant une méthode de relaxation RMN: R2-BEST-TROSY. Les méthodes développées pour cette étude pourront servir des études sur le repliement d'autres protéines, mais aussi dans d'autres contextes où la demi-vie des objets étudiés est courte, comme dans les expérience RMN intracellulaires. Cette étude est évidemment éloignée d'une application directe dans le combat contre les maladies du mauvais repliement des protéines. Pour autant, la découverte d'états intermédiaires oligomériques souligne que l'oligomérisation et le repliement ne devraient pas être étudiés séparément, mais sont des processus liés. Les développements méthodologiques de cette étude pourront aussi être appliqués à d'autres protéines comme à d'autres contexte. Il est donc permis d'espérer que ces questionnements et développements permettront d'avancer vers une meilleure compréhension de ces maladies.
Fichier principal
Vignette du fichier
23007_CUTUIL_2012_archivage.pdf (45.15 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-00849137 , version 1 (30-07-2013)

Identifiants

  • HAL Id : tel-00849137 , version 1

Citer

Thomas Cutuil. Etude du repliement des protéines par RMN temps réel et autres méthodes biophysiques : l'exemple de la Beta-2-microglobuline. Autre [cond-mat.other]. Université de Grenoble, 2012. Français. ⟨NNT : 2012GRENY097⟩. ⟨tel-00849137⟩
384 Consultations
200 Téléchargements

Partager

Gmail Facebook X LinkedIn More