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Università degli Studi di Palermo

Dipartimento di Matematica e Applicazioni

Dottorato di Ricerca in Matematica e Informatica

XXIII◦ Ciclo - S.S.D. Inf/01

Université Paris-Est
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Summary

Dictionary-based compression algorithms include a parsing strategy to

transform the input text into a sequence of dictionary phrases. Given a text,

such process usually is not unique and, for compression purposes, it makes

sense to find one of the possible parsing that minimize the final compres-

sion ratio. This is the parsing problem. An optimal parsing is a parsing

strategy or a parsing algorithm that solve the parsing problem taking into

account all the constraints of a compression algorithm or of a class of ho-

mogeneous compression algorithms. Compression algorithm constraints are,

for instance, the dictionary itself, i.e. the dynamic set of available phrases,

and how much a phrase weights on the compressed text, i.e. the number

of bits of which the codeword representing such phrase is composed, also

denoted as the encoding cost of a dictionary pointer.

In more than 30 years of history of dictionary-based text compression, de-

spite plenty of algorithms, variants and extensions have appeared and while

dictionary approach to text compression became one of the most appreciated

and utilized in almost all the storage and communication processes, only few

optimal parsing algorithms were presented. Many compression algorithms

still lack optimality of their parsing or, at least, proof of optimality. This

happens because there is not a general model of the parsing problem includ-

ing all the dictionary-based algorithms and because the existing optimal

parsing algorithms work under too restrictive hypotheses.

This work focuses on the parsing problem and presents both a general

model for dictionary-based text compression called Dictionary-Symbolwise

Text Compression and a general parsing algorithm that is proved to be op-

timal under some realistic hypotheses. This algorithm is called Dictionary-
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Symbolwise Flexible Parsing and covers almost all of the known cases of

dictionary-based text compression algorithms together with the large class

of their variants where the text is decomposed in a sequence of symbols and

dictionary phrases.

In this work we further consider the case of a free mixture of a dictio-

nary compressor and a symbolwise compressor. Our Dictionary-Symbolwise

Flexible Parsing covers also this case. We have indeed an optimal parsing

algorithm in the case of dictionary-symbolwise compression where the dic-

tionary is prefix closed and the cost of encoding dictionary pointer is vari-

able. The symbolwise compressor is one the classic variable-length codes

that works in linear time. Our algorithm works under the assumption that

a special graph that will be described in the following, is well defined. Even

if this condition is not satisfied, it is possible to use the same method to ob-

tain almost optimal parses. In detail, when the dictionary is LZ78-like, we

show how to implement our algorithm in linear time. When the dictionary

is LZ77-like our algorithm can be implemented in time O(n log n). Both

have O(n) space complexity.

Even if the main purpose of this work is of theoretical nature, some

experimental results will be introduced to underline some practical e↵ects

of the parsing optimality in terms of compression performance and to show

how to improve the compression ratio by building extensions Dictionary-

Symbolwise of known algorithms. A specific appendix reports some more

detailed experiments.
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Résumé

Les algorithmes de compression de données basés sur les dictionnaires

incluent une stratégie de parsing pour transformer le texte d’entrée en une

séquence de phrases du dictionnaire. Étant donné un texte, un tel processus

n’est généralement pas unique et, pour comprimer, il est logique de trouver,

parmi les parsing possibles, celui qui minimise le plus le taux de compression

finale.

C’est ce qu’on appelle le problème du parsing. Un parsing optimal est

une stratégie de parsing ou un algorithme de parsing qui résout ce problème

en tenant compte de toutes les contraintes d’un algorithme de compression

ou d’une classe d’algorithmes de compression homogène.

Les contraintes de l’algorithme de compression sont, par exemple, le dic-

tionnaire lui-même, c’est-à-dire l’ensemble dynamique de phrases disponibles,

et combien une phrase pèse sur le texte comprimé, c’est-à-dire quelle est la

longueur du mot de code qui représente la phrase, appelée aussi le coût du

codage d’un pointeur de dictionnaire.

En plus de 30 ans d’histoire de la compression de texte par dictionnaire,

une grande quantité d’algorithmes, de variantes et d’extensions sont ap-

parus. Cependant, alors qu’une telle approche de la compression du texte

est devenue l’une des plus appréciées et utilisées dans presque tous les proces-

sus de stockage et de communication, seuls quelques algorithmes de parsing

optimaux ont été présentés.

Beaucoup d’algorithmes de compression manquent encore d’optimalité

pour leur parsing, ou du moins de la preuve de l’optimalité. Cela se produit

parce qu’il n’y a pas un modèle général pour le problème de parsing qui

inclut tous les algorithmes par dictionnaire et parce que les parsing optimaux
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existants travaillent sous des hypothèses trop restrictives.

Ce travail focalise sur le problème de parsing et présente à la fois un

modèle général pour la compression des textes basée sur les dictionnaires

appelé la théorie Dictionary-Symbolwise et un algorithme général de pars-

ing qui a été prouvé être optimal sous certaines hypothèses réalistes. Cet

algorithme est appelé Dictionary-Symbolwise Flexible Parsing et couvre pra-

tiquement tous les cas des algorithmes de compression de texte basés sur

dictionnaire ainsi que la grande classe de leurs variantes où le texte est

décomposé en une séquence de symboles et de phrases du dictionnaire.

Dans ce travail, nous avons aussi considéré le cas d’un mélange libre

d’un compresseur par dictionnaire et d’un compresseur symbolwise. Notre

Dictionary-Symbolwise Flexible Parsing couvre également ce cas-ci. Nous

avons bien un algorithme de parsing optimal dans le cas de compression

Dictionary-Symbolwise où le dictionnaire est fermé par préfixe et le coût

d’encodage des pointeurs du dictionnaire est variable. Le compresseur sym-

bolwise est un compresseur symbolwise classique qui fonctionne en temps

linéaire, comme le sont de nombreux codeurs communs à longueur variable.

Notre algorithme fonctionne sous l’hypothèse qu’un graphe spécial, qui

sera décrit par la suite, soit bien défini. Même si cette condition n’est

pas remplie, il est possible d’utiliser la même méthode pour obtenir des

parsing presque optimaux. Dans le détail, lorsque le dictionnaire est comme

LZ78, nous montrons comment mettre en œuvre notre algorithme en temps

linéaire. Lorsque le dictionnaire est comme LZ77 notre algorithme peut être

mis en œuvre en temps O(n log n) où n est le longueur du texte. Dans les

deux cas, la complexité en espace est O(n). Même si l’objectif principal

de ce travail est de nature théorique, des résultats expérimentaux seront

présentés pour souligner certains e↵ets pratiques de l’optimalité du parsing

sur les performances de compression et quelques résultats expérimentaux

plus détaillés sont mis dans une annexe appropriée.
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Introduction

Data compression concerns with transformations through a more con-

cise data representation. When such transformation is perfectly invertible

we have a lossless data compression, otherwise, a lossy compression. Since

data preservation is usually required for textual data, lossless data compres-

sion is often called text compression. On the opposite, usually working on

visual data, such as the images or video, on sound data and on data from

many other domains, a certain degree of approximation is allowed to the

compression-decompression process in favour of a stronger compression, i.e.

a smaller compression ratio.

Roughly speaking, compression ratios greater than a certain threshold

given by the percentage of information contained in the data, are reachable

by text compression techniques as they strip just redundancy in the text.

Stronger compressions imply data approximation because part of their infor-

mation is lost along the compression process. The quantity of information

in a certain data or, more precisely, the average information inside the data

provided by a source, is called entropy. The entropy ratio is then a limit for

text compression, i.e. it is a lower bound for the compression ratio.

Entropy, data complexity and data compression are therefore bidden all

together. Indeed, fundamental and seminal methods for dictionary-based

compression, such as the Lempel’ and Ziv’s methods, were firstly introduced

as text complexity measures.

Lempel’ and Ziv’s methods are still the basis of almost all the recent

dictionary compression algorithms. More in detail, they are the LZ77 and

the LZ78 compression methods, i.e. the Lempel and Ziv compression meth-

ods presented in 1977 and 1978 years. They are the first relevant dictionary
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methods that use dynamic dictionaries. Static dictionary compression was

already known as it is a side e↵ect of the code and the transducer theories.

Static dictionary compression was the topic of many works around ’70, as

the text substitution methods in Schuegraf’ and Heaps’s work (1974) or in

the Wagner’s work (1973).

Dictionary-based compression include, more or less explicitly, a parsing

strategy that transforms the input text into a sequence of dictionary phrases.

Since that usually the parsing of a text is not unique, for compression pur-

pose it makes sense to find one of the possible parsing that minimizes the

final compression ratio. This is the parsing problem.

In the foundational methods (such as the work of Lempel and Ziv), the

parsing problem was not immediately clear as it was confused with the dic-

tionary building strategy. The overall compression algorithms have strictly

imposed the parsing of the text. As soon as many variants of such methods

appeared along the sequent years, like the Storer’ and Szymanski’s vari-

ant (1982) or the Welch’s variant (1984), the maintenance of the dynamic

dictionary was clearly divided from the text parsing strategy and, in the

meantime, the importance of coupling a kind of compression on the sym-

bols di↵erent from the compression for the dictionary phrases taken place.

This last feature was initially undervalued in the theoretical model of the

compression processes.

One of the first parsing problem models is due to Schuegraf et al. (see

[33]). They associated a graph with as many nodes as the characters that

form the text and one edge for each dictionary phrase. In this model, the op-

timal parsing is obtained by using shortest path algorithms on the associated

graph. But this approach was not recommended for practical purpose as it

was considered too time consuming. Indeed, the graph can have quadratic

size with respect to the text length.

A classic formalization of a general dictionary compression algorithm

was proposed by Bell et al. in the late 1990, focusing on just three points:

the dictionary definition, the dictionary phrases encoding method and the

parsing strategy. This model does not acquire all the richness of many ad-

vanced dictionary-based compression algorithms as it does not take account

of the symbolwise compression.
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Recently, in chronological order, [12], [25], [8] and [9] revised both a

more general dictionary compression algorithms definition and the graph-

based model for the parsing problem and they also introduced a new optimal

parsing algorithm. A similar result for the LZ77-like dictionary case, were

independently presented in [17], where the symbolwise feature is still not

considered.

The study of free mixtures of two compressors is quite involved and it

represents a new theoretical challenge. Free mixture has been implicitly or

explicitly used for a long time in many fast and e↵ective compressors such

as the gzip compression utility (see [30, Sect. 3.23]), the PkZip Archiving

Tool (see [30, Sect. 3.23]), the Rolz Compressor1, and the MsZip cabi-

net archiving software (see [30, Sect. 3.7]), also known as CabArc. In

order to glance at compression performances see the web page of Mahoney’s

challenge2 about large text compression. In detail, there are two famous

compression methods that can work together: the dictionary encoding and

the statistical encoding, which are also called parsing (or macro) encoding

and symbolwise encoding, respectively. The fact that these methods can

work together is commonly accepted in practice even if the first theory of

Dictionary-Symbolwise methods started in [12].

This work focus on the parsing problem and introduce a twofold result;

a general model for dictionary-based text compression called Dictionary-

Symbolwise theory and a general parsing algorithm that is proved to be

optimal under some realistic hypothesis. The Dictionary-Symbolwise model

extend both the Bell dictionary compression formalization and the Schuegraf

parsing model based on graphs to fit better to the wide class of common

compression algorithms.

The parsing algorithm we present is called Dictionary-Symbolwise Flex-

ible Parsing and it covers almost all the cases of the dictionary-based text

compression algorithms together with the large class of their variants where

1For an example see the RZM Order-1 ROLZ Compressor by Christian Martelock

(2008) web site: http://encode.ru/threads/1036. Last verified on March 2012.
2Matt Mahoney’s Large Text Compression Benchmark is a competition between lossless

data compression programs. See the web page: http://mattmahoney.net/dc/text.html.

Last verified on March 2012.
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the text is parsed as a sequence of symbols and dictionary phrases. It

exploits the prefix closed property of common dictionaries, i.e. both the

LZ77 and LZ78-like dictionaries. It works for dynamic dictionaries and

variable costs of dictionary phrases and symbols. His main part concerns

with the construction of a smallest subgraph that guarantees parsing op-

timality preservation, and then a shortest path is found by using a classic

single source shortest path approach.

The symbolwise encoding can be any classical one that works in linear

time, as many common variable-length encoders do. Our algorithm works

under the assumption that a special graph that will be described in the fol-

lowing is well defined. Even if this condition is not satisfied it is possible to

use the same method to obtain almost optimal parses. In detail, when the

dictionary is LZ78-like, we show that our algorithm has O(n) complexity,

where n is the size of the text. When the dictionary is LZ77-like our algo-

rithm can be implemented in time O(n log n). Both above solutions have

O(n) space complexity.

This thesis is organized as follows. Chapter 1 is devoted to background

notions for data compression. Chapter 2 defines and explores the dictionary-

symbolwise model for dictionary compression as well as the graph-based

model for the parsing problem. Chapter 3 is an overview about historic

parsing solutions and contains the generalization to the dynamic case of

the classic Cohn’s theorem on greedy parsing optimality for suffix-closed

dictionaries. Chapter 4 concerns with the new optimal parsing algorithm

called dictionary-symbolwise flexible parsing. Chapter 5 presents a new

indexing data structure that solves efficiently the rightmost position query

of a pattern over a text. This problem is involved in the graph building

process for LZ77-like algorithms, where edge labels, i.e. dictionary pointers

costs, are not uniquely determined. Chapter 6 contains the conclusions of

this thesis and some open problem.

Even if the main aim of this work is theoretical, some experimental

results are introduced in the Appendix A to underline some practical e↵ects

of the parsing optimality in compression performance. We have experimental

evidence that many of the most relevant LZ77-like commercial compressors

4



use an optimal parsing. Therefore this thesis contains both a good model

for many of the commercial dictionary compression algorithms and a general

parsing algorithm with proof of optimality. This fills the gap between theory

and best practice about text compression.

5



6



Chapter 1

Background

This chapter concerns with some well known concepts from the field of

the Information Theory, that are fundamental to deal with data compres-

sion. Information Theory literature is quite large by now. We remand to

[30], [31] and [32] books for a comprehensive look on background notions

and standard techniques of data compression. We report here just few pre-

requisites to make readers comfortable with notation and concepts we will

use in the rest of this thesis.

1.1 Self-Information and Entropy

A foundational concept for Information Theory is the Shannon’s self-

information definition. It is a quantitative measure of information. Let

A be a probabilistic event, i.e. A is the set of outcomes of some random

experiment. If P (A) is the probability that the event A will occur, then the

self-information associated with A is given by: i(A) = − log2 P (A) bits.

If we have a set of independent events Ai, which are sets of outcomes of

some experiment S, which sample space is S = [Ai, then the average self-

information associated with the random experiment S is given by H(S) =
P

P (Ai)i(Ai) = −P

P (Ai) log2 P (Ai) bits. This quantity is called the

entropy associated with the experiment.

Now, if the experiment is a source S that emits a string S of symbols

over the alphabet ⌃ = {1, . . . ,m}, i.e. S = s1s2s3 · · · with si 2 ⌃, then the
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sample space is the set of all the strings the source can produce, i.e. the set

of all the possible sequences of alphabet symbols of any length. The entropy

of the source S is given by

H(S) = lim
n!1

1

n
Gn

with

Gn = −
m
X

i1=1

· · ·
m
X

in=1

P (s1 = i1, . . . , sn = in) logP (s1 = i1, . . . , sn = in).

If each symbol in the string is independent and identically distributed (iid),

then we have that

Gn = −n
m
X

i=1

P (i) logP (i) and H(S) = −
m
X

i=1

P (i) logP (i).

When the symbol probabilities are not independent from each other, the

distribution follow an intrinsic model of probability of the source. In this

case, the above two entropy equations are not equal and we distinguish them

calling the latter first order entropy.

The probability distribution over the symbols of a source is not usually

a priori known and the best we can do is to infer the distribution looking

inside some sample strings. Obviously, the underlay assumption is that

the source is an ergodic source, i.e. its output at any time has the same

statistical properties.

The Markov process is the common way to model the source distribution

when symbols are not independent each other. In this case we have that

each new outcome depends on all the previous one. A discrete time Markov

chain is a special type of Markov model for those experiments where each

observation depends on just the k previous one, i.e.

P (sn|sn−1, sn−2, . . .) = P (sn|sn−1, sn−2, . . . , sn−k)

where the set {sn−1, sn−2, . . . , sn−k} is the state of the k-order Markov pro-

cess. The entropy of a Markov process is defined as the average value of the

entropy at each state, i.e.

H(Mk) = −
X

sn−k

P (sn−k)
X

sn−k+1

P (sn−k+1|sn−k)
X

sn−k+2

P (sn−k+2|sn−k+1, sn−k) · · ·
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· · ·
X

sn−1

P (sn−1|sn−2, . . . , sn−k)
X

sn

P (sn|sn−1, . . . , sn−k)logP (sn|sn−1, . . . , sn−k)

where si 2 ⌃. In the data compression field is common to refer to the state

{sn−1, . . . , sn−k} of previous symbols by using the string sn−k . . . sn−1 called

the context of length k of sn.

Empirical Entropy

The k-order empirical entropy (see [16]) is the measure of information

of a text T based on the number of repetitions in T of any substring w of

length k. Let be

Hk(T ) = −
1

n

X

w2Σk

nw

"

X

σ2Σ

nwσ

nw
log

✓

nwσ

nw

◆

#

where n = |T |, ⌃ is the alphabet, w 2 ⌃k is a string over ⌃ of length k, wσ is

the string w followed by the symbol σ and nw is the number of occurrences

of w in T .

This quantity does not refer to a source or to a probabilistic model, but it

only depends from the text T . The empirical entropy is used to measure the

performance of compression algorithms as a function of the string structure,

without any assumption on the input source.

1.2 Entropy Encoding

Entropy encoding, statistical codes or symbolwise codes, as they are

also called, are those compression methods that use the expectation value

to reduce the symbol representation. There are static model as well as

adaptive or dynamic models. They are usually coupled with a probabilistic

model that is in charge of providing symbol probability to the encoder.

Common models use symbol frequencies or the symbol context to predict

the next symbol.

The most simple statistical encoder is the 0-order arithmetic encoding.

It considers all the symbols as if they are independent each other. The

adaptive version use to estimate symbol probability with the frequency of

occurrence of any symbol in the already seen text.
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Hu↵man code keeps count of the symbol frequencies while reads the

input text or by preprocessing it, and then assigns shorter codewords of a

prefix-free code to the most occurring symbols accordingly with the Hu↵man

tree. Notice that the notation k-order used in this thesis refers to models

where k is the length of the context, i.e. a 0-order model is a model where

the symbol probabilities just depend on the symbol itself.

Arithmetic coding

The basic idea of arithmetic coding is to represent the entire input with

an interval of real numbers between 0 and 1. The initial interval is [0, 1)

and then it is divided in slots accordingly to the symbol probability. Once

that a symbol is encoded, the corresponding slot of the interval is divided

again accordingly with the adapted symbol distribution. While the active

slots becomes finer and finer, its internal points bit representation grows.

As soon as the extremal points of the slot have an equal upper part in

their bit representation, these bits are outputted and the slot is scaled to

be maintained under the finite precision of the representation of real values

inside the machine. As any point of a slot represents an infinite set of infinite

strings, all having the same prefix, one of them is chosen when the input

string terminate to be outputted. The termination ambiguity is usually

handled by using a special terminal symbol or by explicitly giving the text

length at the beginning.

The output length of arithmetic codes can be accurately estimated by

using the Markov process entropy or the empirical entropy. Moreover, it is

proved that their compression ratio converges in probability to the entropy

of any i.i.d. source. A similar result can be stated in the case of Markov

chains. In practice, when the source is unknown, better results are obtained

when higher order models are used, because the models get “closer” to the

real source. On the other side, higher order models need more time and

space to be handled.
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1.3 Encoding of Numbers and Commas

Encoding is a fundamental stage of many compression algorithms which

consists of uniquely representing a sequence of integers as a binary sequence.

In the most simple case the encoder makes use of a code, that is a mapping

of the positive integers onto binary strings (codewords), in order to replace

each value in input with its corresponding codeword. Codewords can be

of variable-lengths as long as the resulting code is uniquely decodable, e.g.

the prefix-free codes. Prefix-free property requires that no codeword can be

equal to a prefix of another codeword. Several codes have been proposed

that achieve small average codeword-length whenever the frequencies of the

input integers are monotonically distributed, such that smaller values occur

more frequently than larger values.

The unary encoding of an integer n is simply a sequence of n 1s followed

by a 0. Unary encoding is rarely used as stand-alone tool and it is often

component of more complex codes. It achieves optimality when integer

frequencies decrease exponentially as p(i+ 1)  p(i)/2.

The Elias codes is a family of codes where codewords have two parts. The

first one is devoted to states the codeword length and the second one is the

standard binary representation of the integer, without the most significant

bit. The first Elias encoder is the well-known γ-code, which stores the prefix-

part in unary. Elias δ-code di↵ers from γ-code because it encodes also first-

part of the codewords with a γ-code, rather than using the unary code. This

is an asymptotically optimal code as the ratio between the codeword length

and the binary representation length asymptotically tends to 1. The Elias

!-code can be seen as the iteration of as many δ-code nested encodings until

a length of two or three bits is reached.

1.4 Dictionary Methods

Dictionary compression methods are based on the substitution of phrases

in the text with references to dictionary entries. A dictionary is an ordered

collection of phrases, and a reference to a dictionary phrase is usually called

dictionary pointer. The idea is that if the encoder and the decoder share
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the same dictionary and, for most of the dictionary phrases, the size of the

representation in output of a dictionary pointer is less than the size of the

phrase itself, then a shorter representation of the input text is obtained

replacing phrases with pointers. In order to proceed to the phrase substitu-

tion, the text has to be divided into a sequence of dictionary phrases. Such

decomposition is called parsing and is not usually unique. For compression

purpose it makes sense to find one of the possible parsing that minimizes

the final compression ratio. This is the parsing problem.

The foundational methods in dictionary compression class are Lempel’

and Ziv’s LZ77 and LZ78 algorithms that will be extensively considered

along this thesis. Lempel’ and Ziv’s methods are the basis of almost all the

dictionary compression algorithms. They are the first relevant dictionary

methods that use dynamic dictionaries.

The LZ77 method consider the already seen text as the dictionary, i.e.

it uses a dynamic dictionary that is the set of all the substrings of the text

up to the current position. Dictionary pointers refer to occurrences of the

pointed phrase in the text by using the couple (length, offset), where the

offset stand for the backward o↵set w.r.t. the current position. Since a

phrase is usually repeated more than once along the text and since pointers

with smaller o↵set are usually smaller, the occurrence close to the current

position is preferred. Notice that this dictionary is both prefix and suffix

closed. The parsing strategy use the greedy approach to find the longest

phrase in the dictionary equal to a prefix of the rest of the text.

The LZ78 dictionary is a subset of the LZ77 one. It is prefix-closed but

it is not suffix-closed. Each dictionary phrases is equal to another dictionary

phrase with a symbol appended at the end. Exploiting this property, dictio-

nary is implemented as an ordered collection of couples (dictionary pointer,

symbol), where the dictionary pointer refers to a previous dictionary phrase

or to the empty string. As long as the input text is analyzed, the longest

match between the dictionary and the text is selected to form a new dic-

tionary phrase. Indeed, a new couple is formed by this selected dictionary

phrase and the symbol in the text that follows the occurrence of this phrase.

This new dictionary phrase is added to the dynamic dictionary and it is

chosen also to be part of the parsing of the text accordingly with the greedy

12



parsing.

More detail about these method will be reported in next chapters.
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Chapter 2

Dictionary-Symbolwise Text

Compression

Many dictionary-based compression algorithms and their practical vari-

ants use to parse the text as a sequence of both dictionary phrases and

symbols. Di↵erent encoding are used for those two kinds of parse segments.

Indeed, many variants of the classic Lempel and Ziv algorithms allow to

parse the text as a free mixture of dictionary phrases and symbols. This

twofold nature of the parsing segments was not caught in classic formula-

tion of the dictionary-based compression theory. In this chapter we recall

the classical dictionary compression algorithm formulation and the classic

model of the parsing problem before presenting the more general framework

for Dictionary-Symbolwise compression that better fits to almost all the

dictionary-based algorithms.

2.1 Dictionary Compression

In [4] it is possible to find a survey on Dictionary and Symbolwise

methods and a description of the deep relationship among them (see also

[3, 11, 30, 31]).

Definition 2.1. A dictionary compression algorithm, as noticed in [4], can

be fully described by:

1. The dictionary description, i.e. a static collection of phrases or a
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complete algorithmic description on how the dynamic dictionary is

built and updated.

2. The encoding of dictionary pointers in the compressed data.

3. The parsing method, i.e. the algorithm that splits the uncompressed

data in dictionary phrases.

We notice that any of the above three points can depend on each other,

i.e. they can be mutually interdependent.

As the reader can notice, above three points are general enough to de-

scribe both static and dynamic dictionary and both static and variable costs

for the dictionary phrase representation in the output data. We want now

to focus on its third point where the parsing is defined as just a sequence of

dictionary pointers. The drawback of this constraint is to lead to an overuse

of formalism as it is not easy to describe the role played by symbols. Let us

show this e↵ect by examples. The characterization of the classic LZ77 and

LZ78 algorithms according to the above Definition 2.1 are stated in what

follows.

LZ77 characterization

Given an input text T 2 ⌃⇤, it is processed left to right. At time i, Di

is the current state of the dictionary and Ti = T [1 : i] is the prefix of T of

length i that has been already parsed. T [i−P : i] is called the search buffer

and T [i+1 : i+Q] is called the look-ahead buffer, where P is the maximum

o↵set for text factors, Q is the maximum length for dictionary phrases.

1. Let be Di = {wa, such that w 2 Fact(T [i − P : i]), a 2 ⌃ and

|wa|  Q}, where Fact(x) is the set of all the factors (or substrings) of
the text x. Let us notice that this dictionary is essentially composed

by the factors having length less than or equal to Q that appear inside

a sliding window of size P ending at position i over the text.

2. The dictionary phrase wa = T [i− p : i− p+ q]a is represented by the

vector (p, q, a) where p is the backward o↵set in the search bu↵er of

an occurrence of w and q = |w|. The vector (p, q, a) is coded by using
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three fixed length sequences of bits where p has length log2(P ), q has

length log2(Q) and a is represented with 8 bits by using the ascii code

for symbols.

3. An online greedy parsing is used. At time i, i is the position in the

text at which the parsing ends up. At this point, the longest match

between a dictionary phrase wa 2 Di and a prefix of the look-ahead

buffer T [i+1 : i+Q] is added to the parsing. The new parsing covers

now the text up to the position i+ |wa|. The next parsing phrase will

be chosen at position i+|wa|. For instance if the parsing of the text up

to the position i is the sequence of phrases w1a1 w2a2 . . . wjaj , then

the parsing up to the position i+|wa| is w1a1 w2a2 . . . wjaj wj+1aj+1,

with wj+1aj+1 = wa.

LZ78 characterization

Let us suppose that we have a text T 2 ⌃⇤ and that we are processing it

left to right. We also suppose that at time i the text up to the ith character

has been encoded. The algorithm maintains a dynamic table Mi of phrases,

initialized with the empty word M0 = [✏].

1. The dictionary Di is defined as Di = {wa such that w 2 Mi and

a 2 ⌃}. At time i, the longest dictionary phrase wa 2 Di that matches

with the text at position i is chosen to be part of the set Mi+|wa|,

while Mi = Mj with i  j < i + |wa|. Then, wa is added at the first

empty row of Mi that becomes Mi+|wa| = Mi [ wa. Consequently,

Di+|wa| = Di [ wa⌃ and Di = Dj with i  j < i + |wa|. Di is prefix

closed at any time by construction. Many practical implementations

use a bounded size dictionary by keeping fixed the dictionary once it

gets full or by using a prune strategy that preserves the prefix-closed

property.

2. The dictionary phrase wa 2 Di is represented by the couple (x, a)

where x is the index of w over Mi. The couple (x, a) is encoded by

using a fixed length encodings for the integer x followed by the ascii

value of a.
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3. The parsing is the greedy parsing. It is the sequence of the longest

matches between the dictionary and a prefix of the uncompressed part

of the text. The parsing phrases are equal to the dictionary phrases wa

used as support for dictionary extension. For instance if the parsing

of the text up to the position i is the sequence of dictionary phrases

w1a1 w2a2 . . . wpap = T [1 : i], then the parsing up to the position

i+ |wa| is w1a1 w2a2 . . . wpap wa with wa 2 Di.

2.2 Dictionary-Symbolwise Compression

We propose a new definition for the class of dictionary-based compression

algorithms that takes account of the presence of single characters beside

to dictionary phrases. For this reason we chose to name them dictionary-

symbolwise algorithms. The following definition is an extension of the above

Definition 2.1 due to Bell et al. (see [4]) and it refines what was presented

in [8, 12, 25].

Definition 2.2. A dictionary-symbolwise compression algorithm is specified

by:

1. The dictionary description.

2. The encoding of dictionary pointers.

3. The symbolwise encoding method.

4. The encoding of the flag information.

5. The parsing method.

A dictionary-symbolwise algorithm is a compression algorithm that uses

both dictionary and symbolwise compression methods. Such compressors

may parse the text as a free mixture of dictionary phrases and literal char-

acters, which are substituted by the corresponding pointers or literal codes,

respectively. Therefore, the description of a dictionary-symbolwise algo-

rithm also includes the so called flag information, that is the technique used

to distinguish the actual compression method (dictionary or symbolwise)

used for each phrase or factor of the parsed text. Often, as in the case of
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LZSS (see [36]), an extra bit is added either to each pointer or encoded char-

acter to distinguish between them. Encoded information flag can require less

space than one bit according to the encoding used.

For instance, a dictionary-symbolwise compression algorithm with a fixed

dictionary D = {ab, cbb, ca, bcb, abc} and the static symbolwise codeword as-

signment [a = 1, b = 2, c = 3] could compress the text abccacbbabbcbcbb as

Fd1Fs3Fd3Fd2Fd1Fd4Fd2, where Fd is the flag information for dictionary

pointers and Fs is the flag information for the symbolwise code.

More formally, a parsing of a text T in a dictionary-symbolwise algorithm

is a pair (parse, F l) where parse is a sequence (u1, · · · , us) of words such

that T = u1 · · ·us and where Fl is a boolean function that, for i = 1, . . . , s

indicates whether the word ui has to be encoded as a dictionary pointer

or as a symbol. See Table 2.1 for an example of dictionary-symbolwise

compression.

LZ77 characterization

Given a text T 2 ⌃⇤ and processing it left to right, at time i the text up

to the ith character has been read.

1. Let be Di = {w, such that w 2 Fact(T [i−P : i]) and |w| < Q}, where
P is the maximum o↵set for text factors, Q is the maximum length

for dictionary phrases. Let T [i−P : i] be called the search buffer and

T [i+ 1 : i+Q] be called the look-ahead buffer.

2. The dictionary phrase w = T [i − p : i − p + q] is represented by the

vector (p, q) where p is the backward o↵set in the search bu↵er at

Input ab c ca cbb ab bcb cbb

Output Fd1 Fs3 Fd3 Fd2 Fd1 Fd4 Fd2

Table 2.1: Example of compression for the text abccacbbabbcbcbb by a simple

Dictionary-Symbolwise algorithm that use D = {ab, cbb, ca, bcb, abc} as a

static dictionary, the identity as a dictionary encoding and the mapping

[a = 1, b = 2, c = 3] as a symbolwise encoding.
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which the phrase w appears. The vector (p, q), also called dictionary

pointer, is coded by using two fixed length sequences of bits, where p

has length log2(P ) and q has length log2(Q).

3. Any symbol a 2 ⌃ is represented with 8 bits by using the ascii code

for symbols.

4. The flag information is not explicitly encoded because it is completely

predictable. Indeed, after a dictionary pointer there is a symbol and

after a symbol there is a dictionary pointer.

5. The parsing impose a strictly alternation between dictionary pointers

and symbols. At any time i, if i is the position in the text at which the

already chosen parsing ends up, then the match between the longest

prefix of the look-ahead buffer T [i+1 : i+Q] and a dictionary phrase

w 2 Di is chosen to be outputted followed by the mismatch symbol.

For instance, if w is the longest match between the dictionary and

the look-ahead bu↵er, with w represented by the couple (p, q), then

Fd p q Fs Ti+|w| are concatenated to the parsing. Otherwise, the

already chosen parsing overpass position i in the text and nothing has

to be added to the current parsing.

This new formalization allows to describe dictionary algorithms in a more

natural way. Moreover, it allows to easily describe those variants where just

a single point of the algorithm is di↵erent. For instance, let us focus on

LZSS, the LZ77-based algorithm due to Storer and Szymanski of the ’82

(see [36]). The main idea of this algorithm is to relax the parsing constrain

of LZ77 about dictionary pointers and symbols alternation, allowing to use

dictionary pointers every time that it is possible and to use symbols just

when it is needed.

LZSS characterization

Given a text T 2 ⌃⇤ and processing it left to right, at time i the text up

to the ith character has been read.
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1. Let be Di = {w, such that w 2 Fact(T [i−P : i]) and |w| < Q}, where
P is the maximum o↵set for text factors, Q is the maximum length

for dictionary phrases. Let T [i−P : i] be called the search buffer and

T [i+ 1 : i+Q] be called the look-ahead buffer.

2. The dictionary phrase w = T [i − p : i − p + q] is represented by the

vector (p, q) where p is the backward o↵set in the search bu↵er at

which the phrase w appears. The vector (p, q), also called dictionary

pointer, is coded by using two fixed length sequences of bits, where p

has length log2(P ) and q has length log2(Q).

3. Any symbol a 2 ⌃ is represented with 8 bits by using the ascii code

for symbols.

4. The flag information is explicitly encoded by using 1 bit with conven-

tional meaning. For instance, Fd = 0 and Fs = 1.

5. At any time i, if i is the position in the text at which the already

chosen parsing ends up, the match between the longest prefix of the

look-ahead buffer T [i + 1 : i + Q] and a dictionary phrase w 2 Di

is chosen to be outputted. For instance, if w is the longest match

between the dictionary and the look-ahead bu↵er, with w represented

by the couple (p, q), then {Fd p q } are concatenated to the parsing.

If there is no match between dictionary and look-ahead bu↵er, then a

single symbol is emitted, i.e. Fs T [i+1]. Otherwise, the above chosen

parsing overpass position i in the text and nothing has to be added to

the current parsing.

Dictionary-Symbolwise Scheme

Let now focus on the parsing point. For any dictionary compression

algorithm we can build a class of variants taking fixed the first four points

and changing the parsing strategy or, if it is needed, arranging a bit the

first four points to allow using a di↵erent parsing. Usually the variants of

the same class maintain decoder compatibility, i.e. their outputs can be

decoded by the same decoding algorithm. Algorithms of the same class can
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be compared looking for the best parsing, i.e. the parsing that minimizes

compression ratio. We call scheme such class of algorithms.

Definition 2.3. Let a dictionary-symbolwise scheme be a nonempty set

of dictionary-symbolwise algorithms having in common the same first four

specifics, i.e. they di↵er from each other by the parsing methods only.

A scheme does not need to contain all the algorithms having the same

first four specifics. Let us notice that any of the above points from 1 to

5 can depend on all the others, i.e. they can be mutually interdependent.

The word scheme has been used by other authors with other meaning, e.g.

scheme is sometimes used as synonymous of algorithm or method. In this

thesis, scheme always refers to the above Definition 2.3.

Remark 2.1. For any dictionary-symbolwise scheme S and for any parsing

method P , a dictionary-symbolwise compression algorithm AS,P is com-

pletely described by the first four specifics of any of the algorithms belonging

to S together with the description of the parsing method P .

Let us here briefly analyze some LZ-like compression algorithms. The

LZ78 algorithm is, following the above definitions, a dictionary-symbolwise

algorithm. It is easy to naturally arrange its original description to a

dictionary-symbolwise complaint definition. Indeed, its dictionary build-

ing description, its dictionary pointer encoding, its symbolwise encoding,

its parsing strategy and the null encoding of the flag information are, all

together, a complete dictionary-symbolwise algorithm definition. The flag

information in this case is not necessary, because there is not ambiguity

about the nature of the encoding to use for any of the parse segments of

the text as the parsing strategy imposes a rigid alternation between dictio-

nary pointers and symbols. Similar arguments apply for LZ77. Later on

we refer to these or similar dictionary-symbolwise algorithms that have null

flag information as “pure” dictionary algorithms and to scheme having only

“pure” dictionary algorithms in it as “pure” scheme.

LZW (see [30, Section 3.12]) naturally fits Definition 2.1 of dictionary

algorithms and, conversely, LZSS naturally fits Definition 2.2 on dictionary-

symbolwise algorithms as well as the LZMA algorithm (see [30, Section

3.24]).
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(ab)
(c) (c) (c)

(ab)
(c) (c)

(bcb)

(abc) (ca) (cbb) (bcb) (cbb)

Figure 2.1: Graph GD,T for the text T = abccacbbabbcbcbb and for the

static dictionary D = {ab, cbb, ca, bcb, abc, c}. The dictionary phrase

associated with an edge is reported near the edge label within parentheses.

Let us notice that sometimes the flag information may be implicitly

represented. For instance, in the deflate compression method, characters

and part of the dictionary pointers (i.e. the length part of the couples

(length,distance) that represent the dictionary pointers) are firstly mapped

into a single codeword space (together with few control characters), and

then encoded via Hu↵man code belonging to just a single Hu↵man tree.

This mapping hides the flag information that has to be considered implicitly

represented, but still existing. It is easy to show how in this case the flag

information is involved in the compression process. Indeed the frequency of

any character related code is equal to the frequency of the character on the

character space, times the frequency of the flag information for the character

encoding. The same argument applies to the length-codeword frequencies.

In this way, the compressed stream is a sequence of character codewords and

dictionary pointer codewords bringing implicitly the flag informations.

2.3 The Graph-Based Model

Extending the approach introduced for static dictionaries in [33] to the

dynamic dictionary case, similarly to what it is already done in [12, 25, 8, 9],

we show how to associate a directed weighted graph GA,T = (V,E, L) with

any dictionary compression algorithm A, any text T = a1a2a3 · · · an and

any cost function C : E ! R
+ in the following way.

The set of vertices is V = {0, 1, . . . , n}, where vertex i corresponds to ai,

i.e. the i-th character in the text T , for 1  i  n and vertex 0 corresponds

to the position at the beginning of the text, before any characters. The
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empty word " is associated with vertex 0, that is also called the origin of

the graph. The set of directed edges is

E = {(p, q) ⇢ (V ⇥ V ) | p < q and 9 wp,q = T [p+ 1 : q] 2 Dp}

where T [p + 1 : q] = ap+1ap+2 · · · aq and Dp is the dictionary relative to

the p-th processing step, i.e. the step in which the algorithm either has

processed the input text up to character ap, for p > 0, or it has begun, for

p = 0. For each edge (p, q) in E, we say that (p, q) is associated with the

dictionary phrase wp,q = T [p+1 : q] 2 Dp. In the case of a static dictionary,

Di is constant along all the algorithm steps, i.e. Di = Dj , 8i, j = 0 · · ·n.
Let L be the set of edge labels Lp,q for every edge (p, q) 2 E, where Lp,q is

defined as the cost (weight) of the edge (p, q) when the dictionary Dp is in

use, i.e. Lp,q = C((p, q)).

Let us consider for instance the case where the cost function C associates

the length in bit of the encoded dictionary pointer of the dictionary phrase

wp,q to the edge (p, q), i.e. C((p, q)) = length(encode(pointer(wp,q))), with

wp,q 2 Dp. In this case the weight of a path P from the origin to the node

n = |T | on the graph GA,T corresponds to the size of the output obtained

by using the parsing induced by P. The path of minimal weight on such

graph corresponds to the parsing that achieves the best compression. The

relation between path and parsing will be investigated in Section 2.4.

If the cost function is a total function, then Lp,q is defined for each edge

of the graph.

Definition 2.4. Let us say that GA,T is well defined i↵ Lp,q is defined for

each edge (p, q) of the graph GA,T .

For instance, the use of common variable-length codes for dictionary

pointers, as Elias or Fibonacci codes or a static Hu↵man code, leads to a

well defined graph. Sometimes the cost function is a partial function, i.e.

Lp,q is not defined for some p and q, and GA,T in such cases is not well

defined. For instance, encoding the dictionary pointers via statistical codes,

like a Hu↵man code or an arithmetic code, leads to partial cost functions.

Indeed the encoding of pointers and, accordingly, the length of the encoded

dictionary pointers may depend on how many times a code is used. For

24



instance, when a dynamic code like the online adaptive Hu↵man code is

used, the codeword lengths depend on how frequently the codewords have

been used in the past. In the case of a semi static Hu↵man code, since it

is an offline encoding, the codeword lengths depend on how frequently the

codewords are used in the compression process of the whole text. In these

cases, the cost function obviously depends on the parsing and the labels of

the graph edges are not defined until a parsing is fixed. Moreover, the cost

function may be undefined for edges that represent phrases never used by

the parsing. The latter case is still an open problem, i.e. it is not known

how to find an optimal parsing strategy when the encoding costs depend on

the parsing itself.

Remark 2.2. We call GA,T the “Schuegraf’s graph” in honour of the first

author of [33] where a simpler version was considered in the case of static-

dictionary compression method.

We can naturally extend the definition of the graph associated with an

algorithm to the dictionary-symbolwise case. Given a text T = a1 . . . an,

a dictionary-symbolwise algorithm A, and a cost function C defined on

edges, the graph GA,T = (V,E, L) is defined as follows. The vertices set is

V = {0 · · ·n}, with n = |T |. The set of directed edges E = Ed

S

Es, where

Ed = {(p, q) ⇢ (V ⇥ V ) | p < q − 1, and 9w = T [p+ 1 : q] 2 Dp}

is the set of dictionary edges and

Es = {(q − 1, q) | 0 < q  n}

is the set of symbolwise edges. L is the set of edge labels Lp,q for every edge

(p, q) 2 E, where the label Lp,q = C((p, q)). Let us notice that the cost

function C hereby used has to include the cost of the flag information to

each edge, i.e. C((p, q)) is equal to the cost of the encoding of Fd (Fs, resp.)

plus the cost of the encoded dictionary phrase w 2 Dp (symbolwise aq, resp.)

associated with the edge (p, q) where (p, q) 2 Ed (Es, resp.). Moreover, since

Ed does not contain edges of length one by definition, GA,T = (V,E, L) is

not a multigraph. Since this graph approach can be extended to multigraph,

with an overhead of formalism, one can relax the p < q − 1 constrain in the
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definition of Ed to p  q − 1. All the results we will state in this thesis,

naturally extend to the multigraph case.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

8 (ab)

12 (abc)

8 (ca)
8 (ca)

8 (ab)
12 (bcb) 12 (bcb)

14 (cbb)

5 (a) 4 (b) 5 (c) 3 (c) 4 (a) 3 (c) 4 (a) 5 (b) 4 (b) 6 (c) 3 (b) 4 (c) 5 (b) 4 (b)

Figure 2.2: Graph GA,T for the text T = abccacabbcbcbb, for

the dictionary-symbolwise algorithm A with static dictionary D =

{ab, abc, bcb, ca, cbb} and cost function C as defined in the graph. The

dictionary phrase or the symbol associated with an edge is reported near

the edge label within parenthesis.

2.4 On Parsing Optimality

In this section we assume that the reader is well acquainted with LZ-like

dictionary encoding and with some simple statistical encodings such as the

Hu↵man code.

Definition 2.5. Fixed a dictionary description, a cost function C and a

text T , a dictionary (dictionary-symbolwise) algorithm is optimal within a

set of algorithms if the cost of the encoded text is minimal with respect to

all others algorithms in the same set. The parsing of an optimal algorithm

is called optimal within the same set.

When the bit length of the encoded dictionary pointers is used as a cost

function, the previous definition of optimality is equivalent to the classical

well known definition of bit-optimality for dictionary algorithm. Notice that

the above definition of optimality strictly depends on the text T and on a

set of algorithms. A parsing can be optimal for a certain text but not for an

other one. Obviously, we are mainly interested on parsings that are optimal

either for all texts over an alphabet or for classes of texts. Whenever it is

not explicitly written, from now on when we talk about optimal parsing we
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mean optimal parsing for all texts. About the set of algorithm it makes

sense to find sets as large as possible.

Classically, there is a bijective correspondence between parsings and

paths in GA,T from vertex 0 to vertex n, where optimal parses correspond to

minimal paths and vice-versa. We say that a parse (path, resp.) induces a

path (parse, resp.) to denote this correspondence. This correspondence was

firstly stated in [33] only in the case of sets of algorithms sharing the same

static dictionary and where the encoding of pointers has constant cost.

For example the path along vertices (0, 3, 4, 5, 6, 8, 11, 12, 13, 14) is the

shortest path for the graph in Fig. 2.2. Authors of [12] were the first

to formally extend the Shortest Path approach to dynamically changing

dictionaries and variable costs.

Definition 2.6. A scheme S has the Schuegraf property if, for any text T

and for any pair of algorithms A,A0 2 S, the graph GA,T = GA0,T with

GA,T well defined.

This property of schemes is called property of Schuegraf in honor of the

first of the authors in [33]. In this case we define GS,T = GA,T as the graph

of (any algorithm of) the scheme. The proof of the following proposition is

straightforward.

Proposition 2.4.1. There is a bijective correspondence between optimal

parsings and shortest paths in GS,T from vertex 0 to vertex n.

Definition 2.7. Let us consider an algorithm A and a text T and suppose

that graph GA,T is well defined. We say that A is graph optimal (with

respect to T ) if its parsing induces a shortest path in GA,T from the origin

(i.e. vertex 0) to vertex n, with n = |T |. In this case we say that its parsing

is graph optimal.

Let A be an algorithm such that for any text T the graph GA,T is well

defined. We want to associate a scheme SCA with it in the following way.

Let S be the set of all algorithms A such that, for any text T , GA,T exists

(i.e. it is well defined). Let B and C be two algorithms in S. We say that B
and C are equivalent or B ⌘ C if, for any text T , GB,T = GC,T .
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We define the scheme SCA to be the equivalence class that has A as a

representative. It is easy to prove that SCA has the Schuegraf property.

We can connect the definition of graph optimal parsing with the pre-

vious definition of SCA to obtain the next proposition, which proof is an

easy consequence of the Proposition 2.4.1 and of the Schuegraf property

of SCA. Roughly speaking, the graph optimality within the scheme SCA
implies scheme (or global) optimality.

Proposition 2.4.2. Let us consider an algorithm A such that for any text T

the graph GA,T is well defined. Suppose further that for a text T the parsing

of A is graph optimal. Then the parsing of A of the text T is (globally)

optimal within the scheme SCA.

Figure 2.3: Locally but not globally optimal parsing

We have simple examples (see Figure 2.3), where a parsing of a text is

graph optimal and the corresponding algorithm belongs to a scheme that has

not the Schuegraf property and it is not optimal within the same scheme.

For instance, let us now consider the text T = ab and two algorithms

A and A0 in the same scheme, where A is the algorithm that uses the

greedy parsing and A0 uses the anti-greedy parsing, as in Figure 2.3. The

parsing of A is the greedy parsing, that at any reached position chooses the

longest match between text and dictionary. The graph GA,T for this greedy

algorithm has three nodes, 0, 1, 2, and only two edges, both outgoing 0, one

to node 1 that costs 10 and another to node 2 that costs 20. The greedy

parsing reaches the end of the text with this second edge which has global

cost 20 and then it is graph optimal. The parsing ofA0 is the anti-greedy that

at any reached position chooses the shortest nonempty match between text

and dictionary. The graph GA0,T for this anti-greedy algorithm has three

nodes, 0, 1, 2, and three edges, two outgoing 0, one to node 1 that costs 10
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and another to node 2 that costs 20 and a third outgoing 1 to node 2 that

costs 5. The parsing of the anti-greedy algorithm is (a)(b) and it costs 15.

The dictionary is composed by ha, abi if the parsing of the processed text has

reached an even position (starting from position 0) with a cost of 10 and 20

respectively. The dictionary is ha, bi if the parsing of the processed text has

reached an odd position with a cost of 5 each. Notice that now the dictionary

phrase “a” has a di↵erent cost than before. The dictionary and the edge

costs are changing as a function of the reached position, depending if this

position is even or odd, and, in turn, it depends on the parsing. Therefore,

we have that GA,T and GA0,T are well defined but they are di↵erent from

each other and the scheme has not the Schuegraf property. Therefore both

the greedy and the anti-greedy parsing are graph optimal but none of them

is (globally) optimal.

2.5 Dictionary-Symbolwise Can Be Better

So, why should we use dictionary-symbolwise compressors?

From a practical point of view, coupling a fast symbolwise compressor

to a dictionary compressor gives one more degrees of freedom to the pars-

ing, increasing compression ratio without slowing up the entire compression

process. Or, on the contrary, a dictionary compressor coupled with a power-

ful symbolwise compressor can speed up the decompression process without

decreasing the compression ratio. This approach that mixes together dic-

tionary compression and symbolwise compression methods is already widely

used in practical compression software solutions, even if its scientific ba-

sis were not clearly defined and it was treated just as a practical trick to

enhance compression ratio and to take under control and improve the de-

compression speed. Several viable algorithms and most of the commercial

data compression programs, such as gzip, zip or cabarc, are, following our

definition, dictionary-symbolwise. Still from a practical point of view, some

experimental results are showed and discussed in next section.

In this section instead we study some theoretical reasons for using dictionary-

symbolwise compression algorithms.

First of all, it is not difficult to give some “artificial” and trivial example

29



where coupling a dictionary and a symbolwise compressor give rise to a

better optimal solution. Indeed let us consider the static dictionary D =

{a, b, ba, bb, abb} together a cost function C that could represents the number

of bits of a possible code: {C(a) = 8, C(b) = 12, C(ba) = 16, C(bb) =

16, C(abb) = 4}.

A greedy parsing of the text babb is (ba)(bb) and the cost of this parsing

is 32. An optimal parsing for this dictionary is (b)(abb) that has cost 16.

This example shows, as also the one of Figure 2.3, that a greedy parsing is

not always an optimal parsing in dictionary compressors.

Let us consider further the following static symbolwise compressor that

associates with the letter a a code of cost 8 and that associates with the

letter b a code of cost 4 that could represent the number of bits of this code.

The cost of coding babb following this symbolwise compressor is 20.

If we connect them in a dictionary-symbolwise compressor then an opti-

mal parsing is S(b)D(abb) where the flag information is represented by the

letter S for symbolwise and by D for dictionary. The cost of the trivially

encoded flag information is one bit for each letter or phrase. Therefore the

cost of this parsing is 10.

In this subsection, however, we will prove something more profound than

artificial examples such the one above. Indeed, from a theoretical point of

view, Ferragina et al. (cf. [17]) proved that the compression ratio of the

classic greedy-parsing of a LZ77 pure dictionary compressor may be far

from the bit-optimal pure dictionary compressor by a multiplicative factor

⌦(log n/ log log n), which is indeed unbounded asymptotically. The family

of strings that is used in [17] to prove this result, is a variation of a family

that was used in [24].

In next two subsections we show a similar result between the bit optimal

dictionary compressor and a dictionary-symbolwise compressor. Therefore a

bit optimal dictionary-symbolwise compressor can use, in some pathological

situation, the symbolwise compressor to avoid them and be provably better

than a simple bit optimal dictionary compressor.
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LZ77 Case

Let us define these two compressors. The first is a LZ77-based compres-

sor with unbounded window size as dictionary and with a Hu↵man code on

lengths and an optimal parser. It allows overlaps between the search bu↵er,

i.e. the dictionary, and the look ahead bu↵er. The encoding of pointers can

be any of the classical encoding for integer. We just impose a Hu↵man code

on the lengths.

We further denote by OPT-LZH(s) the bit length of the output of this

compressor on the string s.

The same LZ77 is used as dictionary compressor in the dictionary-

symbolwise compressor. Clearly we do not include the parser in the dictionary-

symbolwise compressor, but, analogously as above, we suppose to have an

optimal parser for the dictionary-symbolwise compressor, no matter about

the description. The flag information {D,S} is coded by a run-length en-

coder. The cost of a run is subdivided over all symbolwise arcs of the run,

i.e. if there is a sequence of n consecutive symbolwise arcs in the optimal

parsing then the cost of these n flag information S (for Symbolwise) will be

in total O(log n) and the cost of each single flag information in this run will

be O( logn
n

).

It remains to define a symbolwise compression method.

In the next result we could have used a PPM* compressor but, for sim-

plicity, we use a longest match symbolwise. That is, the symbolwise at

position k of the text searches for the closest longest block of consecutive

letters in the text up to position k − 1 that is equal to a suffix ending in

position k. This compressor predicts the k + 1-th character of the text to

be the character that follows the block. It writes a symbol ‘y’ (that is sup-

posed not to be in the text) if this is the case. Otherwise it uses an escape

symbol ‘n’ (that is supposed not to be in the text) and then writes down

the correct character plainly. A temporary output alphabet has therefore

two characters more than the characters in the text. This temporary output

will be subsequently encoded by a run-length encoder (see [15]).

This is not a very smart symbolwise compressor but it fits our purposes,

and it is simple to analyze.
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We further denote by OPT-DS(s) the bit length of the output of this

dictionary-symbolwise compressor on the string s.

Theorem 2.5.1. There exists a constant c > 0 such that for every n0 > 1

there exists a string s of length |s| ≥ n0 satisfying

OPT-LZH(s) ≥ c
log |s|

log log |s|OPT-DS(s).

Proof. For every n0 let us pick a binary word w of length 3n, n ≥ n0, w =

a1a2 · · · a3n that has the following properties.

1. For any i, i = 1, 2 · · ·n, the compressor OPT-LZH(s) cannot compress

the word aiai+1 · · · a2i+n−1 of length n + i with a compression ratio

greater than 2.

2. every factor (i.e. every block of consecutive letters) of w having length

3 log 3n of w is unique, i.e. it appears in at most one position inside

w.

Even if it could be hard to explicitly show such a word, it is relatively

easy to show that such a word exists. Indeed, following the very beginning

of the Kolmogorov’s theory, the vast majority of words are not compressible.

A simple analogous counting argument can be used to prove that Property

1 is satisfied by the vast majority of strings of length 3n, where, for vast

majority we mean that the percentage of strings not satisfying Property 1

decreases exponentially in n. Here, to play it safe, we allowed a compression

“two to one” for all the n considered factors.

A less known result (see [2, 7, 13, 14, 18, 37]) says that for random strings

and for any ✏ > 0 the percentage of strings of length n having each factor

of length 2 log n+ ✏ unique grows exponentially to 1 (i.e. the percentage of

strings not having this property decreases exponentially). Here we took as

✏ the number 1. Therefore such a string a1 · · · a3n having both properties

surely exists for some n ≥ n0.

Let us now define the word s over the alphabet {0, 1, c} in the following

way.

s = a1a2 · · · an+1c
2n · · · aiai+1 · · · a2i+n−1c

2n · · · anan+1 · · · a3n−1c
2nan+1an+2
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Let us now evaluate OPT-LZH(s). By Property 1 each binary word that

is to the left or to the right of a block of 2n c’s cannot be compressed in less

than 1
2n bits in a “stand-alone” manner. If one such a string is compressed

by a pointer to a previous string then the o↵set of this pointer will be greater

than 2n and, so, its cost in bit is O(n). We defined the string s in such a

manner that all “meaningful” o↵sets are di↵erent, so that even a Hu↵man

code on o↵sets (that we do not use, because we use a Hu↵man code only

for lengths) cannot help. Therefore there exists a constant c0 such that

OPT-LZH(s) ≥ c0n2.

Let us now evaluate OPT-DS(s). We plan to show a parse that will give

a string of cost P-DS(s)  ĉn log n as output. Since OPT-DS(s)  P-DS(s)

then also OPT-DS(s)  ĉn log n.

The blocks of 2n c’s have all the same length. We parse them with the

dictionary compressor as (c)(c2
n − 1). The dictionary compressor is not

used in other positions in the parse P of the string s. The Hu↵man code

on lengths of the dictionary compressor would pay n bits for the table and

a constant number of bits for each occurrence of a block of 2n c’s. Hence

the overall cost in the parse P of all blocks of letters c is O(n). And this

includes the flag information that consists into two bits n times.

Parse P uses the symbolwise compressor to parse all the binary strings.

The first one a1a2 · · · an+1 costs O(n) bits. Starting from the second a2a3 · · ·
· · · an+3 till the last one, the symbolwise will pay O(log n) bits for the first

3 log 3n letters and then, by Property 2, there is a long run of ‘y’ that will

cover the whole string up to the last two letters. This run will be coded by

the run-length code of the symbolwise. The overall cost is O(log n) and this

includes the flag information that is a long run of S coded by the run-length

of the flag information. The cost of the symbolwise compressor including

the flag information over the whole string is then O(n log n), that dominates

the cost of the dictionary-symbolwise parse P.

The length of the string s is O(n2n+n2) and therefore log |s| = n+o(n)

and the thesis follows.

Remark 2.3. In the theorem above it is possible to improve the constants in

the statement. This can be done simply using for instance a word a1 · · · an2
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instead of a1 · · · a3n. It is possible to optimize this value, even if, from a

conceptual point of view, it is not important.

We want to underline that the Hu↵man code on the lengths is essential in

this statement. At the moment we are not able to find a sequence of strings

s where the dictionary-symbolwise compressor is provably better than the

optimal dictionary version without using a Hu↵man code. It is an open

question whether this is possible.

We finally notice that if the dictionary is coupled with a ROLZ technique

then the optimal solution of the pure dictionary compressor reaches the same

level of the dictionary-symbolwise compressor. This is not surprising because

the ROLZ technique is sensible to context and do not “pay” for changing

the source of the text.

LZ78 Case

Matias and Sahinalp in [28] already shown that Flexible Parsing is op-

timal with respect to all the prefix-closed dictionary algorithms, including

LZ78, where optimality stands for phrase optimality. Flexible Parsing is also

optimal in the suffix-close dictionary algorithm class. Phrase optimality is

equal to bit optimality under the fixed length codeword assumption, so we

say just optimality. From now on we assume FP or its extension as optimal

parsing and the bit length of the compressed text as coding cost function.

In this subsection we prove that there exists a family of strings such that

the ratio between the compressed version of the strings obtained by using

an optimal LZ78 parsing (with constant cost encoding of pointers) and the

compressed version of the strings obtained by using an optimal dictionary-

symbolwise parsing is unbounded. The dictionary, in the dictionary-symbol-

wise compressor, is still the LZ78 dictionary, while the symbolwise is a simple

Last Longest Match Predictor that will be described later. We want to notice

here that similar results were proved in [28] between flexible parsing and the

classical LZ78 and in [17] between a compressor that uses optimal parsing

over a LZ77 dictionary and the standard LZ77 compressor (see also [24]).

Last but not least we notice that in this example, analogously as done in

[28], we use an unbounded alphabet just to make the example more clear.
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An analogous result can be obtained with a binary alphabet with a more

complex example.

Let us define a Dictionary-Symbolwise compressor that uses LZ78 as dic-

tionary method, the Last Longest Match Predictor as symbolwise method,

Run Length Encoder to represent the flag information and one optimal pars-

ing method. Let us call it OptDS-LZ78. We could have used a PPM* as

symbolwise compressor but Last Longest Match Predictor (LLM) fits our

purposes and it is simple to analyze. LLM Predictor is just a simple sym-

bolwise compression method that uses the last longest seen match to predict

next character.

The symbolwise searches, for any position k of the text, the closest

longest block of consecutive letters up to position k − 1 that is equal to

a suffix ending in position k. This compressor predicts the (k + 1)-th char-

acter of the text to be the character that follows the block. It writes a

symbol ‘y’ (that is supposed not to be in the text) if this is the case. Oth-

erwise it uses an escape character ‘n’ (that is supposed not to be in the

text) and then writes down the correct character plainly. A temporary out-

put alphabet has therefore two characters more than the characters in the

text. This temporary output will be subsequently encoded by a run-length

encoder. This method is like the Yes?No version of Symbol Ranking by P.

Fenwick (see [15]).

It costs log n to represent a substring of n characters that appear after

the match. For each position i in the uncompressed text if mi is the length of

the longest match in the already seen text it produces n that costs O(log n)

bits as output, i.e. C(T [i+ 1 : i+ n]) = n and Cost(n) = O(log n) where

8m, j mi = maxm(T [i−m : i] = T [j −m : j] with j < i and

T [i−m− 1] 6= T [j −m− 1])

Let us consider a string S

S =
Pk

z=1 1 + · · ·+ z = [1 + 12 + 123 + · · ·+ 1..z + · · ·+ 1..k]

that is the concatenation of all the prefixes of 1..k in increasing order. Let

us consider the string T 0 that is the concatenation of the first
p
k suffixes

of 2..k, i.e. T 0 = 2..k · 3..k · . . . ·
p
k..k and a string T = S · T 0. We
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use S to build a dictionary formed by just the string 1..k and its prefixes

and no more. We assume that both the dictionary and the symbolwise

methods work the same up to the end of the string S, so they produce an

output that is very similar in terms of space. It is not difficult to prove

that an optimal LZ78 compressor would produce on T a parse having cost

at least O(k+k log k) = O(k log k) while the optimal dictionary-symbolwise

compressor (under the constant cost assumption on encoding pointers) has

a cost that is O(k +
p
k log k) = O(k).

Proof. (Sketch) An optimal constant-cost LZ78 compressor must uses k

phrases to code S. Then each phrase used to code the subword 2 . . . k of T 0

has length at most 2 and therefore the number of phrases that it must use

to code 2 . . . k is at least (k−1)/2 ≥ 1
2k/2. Analogously, each phrase used to

code the subword 3 . . . k of T 0 has length at most 3 and therefore the num-

ber of phrases that it must use to code 3 . . . k is at least (k − 2)/3 ≥ 1
3k/2.

We keep on going up to conclude that number of phrases that it must use

to code
p
k . . . k is at least (k −

p
k + 1)/

p
k ≥ 1p

(k)
k/2. Adding all these

numbers we get that the total number of phrases is smaller than or equal to

O(k + log
p
k ⇥ k/2) = O(k log k).

Let us now prove that an optimal dictionary-symbolwise compressor has

a cost that is O(k) by showing that there exists at least one parse that has

cost O(k).

The parse that we analyze parses S with the LZ78 dictionary and spend

for this part of the string O(k). Then it uses the LLM Predictor to compress

the subword 2 . . . k of T 0. Firstly it outputs a symbol ’n’ followed by the

symbol 2 because it is unable to predict the symbol 2 and then it outputs

k − 2 symbols ’y’ that, in turn, are coded by the run length encoder with

a cost that is O(log k). The whole cost of subword 2 . . . k is then O(log k).

Then the LLM Predictor compresses sequentially the subword i . . . k of T 0 ,

with 3  i 
p
k and any time it spends at most O(log k). The total cost of

this parse is then O(k +
p
k log k) = O(k).
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Chapter 3

About the Parsing Problem

In this chapter we survey some of the milestone results about the pars-

ing problem, starting from those concerning static dictionaries through the

dynamic case. In the last section we present a small new contribution that

complete the picture of fixed costs case. It is the generalization of the greedy

parsing of Cohn for static dictionary to the dynamic dictionary case.

3.1 The Optimal Parsing Problem

Optimal with respect to what? Obviously in data compression we are

mainly interested to achieve the best compression ratio, that corresponds

to minimizing the size of the compressed data. This notion of optimality is

sometimes called bit-optimality. But our question has a deeper sense. When

can we say that a parsing algorithm is an optimal parsing algorithm? We

could say that a parsing is optimal with respect to the input data or with

respect to the compression algorithms in which it is involved.

Following Proposition 2.4.2, we say that, fixed a compression scheme,

e.g. the LZ77-like algorithms, an optimal parsing is the parsing algorithm

that applied to the scheme gives the compression algorithm (see the Remark

2.1) with the best compression ratio for any input text with respect to all

the compression algorithms in the same scheme.

Therefore, given a dictionary-based compression algorithm, e.g. LZW,

we take the largest compression scheme that contains this algorithm. This
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scheme is the set of all the algorithms that use the same dictionary de-

scription and the same encodings (e.g. the LZW-like algorithms or LZW

scheme). All the algorithms in this scheme di↵er each other in just the pars-

ing method. If the scheme has the Schuegraf property (see Definition 2.6),

then an optimal parsing will be any parsing that minimize the compression

ratio within the algorithms of the scheme, i.e., from Proposition 2.4.1, any

parsing that induces a shortest path on the graph associated to the scheme.

Notice that if the scheme has not the Schuegraf property, then it is not clear

how to obtain an optimal parsing that is optimal for the entire scheme.

3.2 An Overview about Theory and Practice

In this section we do not want to give an exhaustive dissertation about

the parsing problem as there is a vast literature concerning this topic and

there are many practical solutions. We want just to recall some of the

milestones in the data compression field that are strongly relevant with the

scope of this thesis.

In ’73, the Wagner’s paper (see [38]) shows a O(n2) dynamic program-

ming solution, where a text T of length |T | = n is provided at ones.

In ’74 Schuegraf (see [33]) showed that the parsing problem is equal to

the shortest path problem on the graph associated to both a text and a static

dictionary (see Section 2.3 for the graph-based model of the parsing prob-

lem). Since that the full graph for a text of length n can have O(n2) edges

in the worst case and the minimal path algorithm has O(V +E) complexity,

we have another solution for the parsing problem of O(n2) complexity.

In ’77 and ’78 years the foundational dynamic dictionary-based com-

pression methods LZ77 and LZ78 have been introduced. They both use an

online greedy parsing that is simple and fast. Those compression methods

use both an uniform (constant) cost model for the dictionary pointers. The

online greedy approach is realized by choosing the longest dictionary phrase

that matches with the forwarding text to extend the parsing, moving on the

text left to right, until the whole text is covered.

In ’82, the LZSS compression algorithm, based on the LZ77 one, was

presented (see [36]). It improves the compression rate and the execution
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time without changing the original parsing approach. The main di↵erence

is that a symbol is used only when there is no match between dictionary

and text. But when there is any match, the longest one is always chosen. It

uses a flag bit to distinguish symbols from dictionary pointers. In the same

paper Storer proved the optimality of the greedy parsing for the original

LZ77 dictionary with unbounded size (see Theorem 10 in [36] with p = 1).

In ’84, LZW variant of LZ78 was introduced by Welch (see [39]). This is,

to our best knowledge, the first theoretical compression method that uses a

dynamic dictionary and variable costs of pointers.

In ’85, Hartman and Rodeh proved in [20] the optimality of the one-

step-lookahead parsing for prefix-closed static dictionary and uniform pointer

cost. The main point of this approach is to chose the phrase that is the first

phrase of the longest match between two dictionary phrases and the text,

i.e. if the current parsing cover the text up to the ith character, then we

chose the phrase w such that ww0 is the longest match with the text after

position i, with w,w0 belong to the dictionary.

In ’89 and later in ’92, the deflate algorithm was presented and used

in the PKZIP and gzip compressors. It uses a LZ77-like dictionary, the

LZSS flag bit and, for some options, a non-greedy parsing. Both dictionary

pointers and symbols are encoded by using a Hu↵man code.

In ’95, Horspool investigated in [21] about the e↵ect of non-greedy pars-

ing in LZ-based compression. He showed that using the above one-step-

lookahead parsing in the case of dynamic dictionaries leads to better com-

pression. Horspool tested this parsing on the LZW algorithm and on a new

LZW variant that he presented in the same paper.

In ’96 the greedy parsing was ultimately proved by Cohn et al. (see

[5]) to be optimal for static suffix-closed dictionary under the uniform cost

model. They also proved that the right to left greedy parsing is optimal

for prefix-closed dictionaries. Notice that the greedy approach is linear and

online. These results will be reported and extended in the next section.

In ’99, Matias and Sahinalp (see [28]) gave a linear-time optimal parsing

algorithm in the case of prefix-closed dynamic dictionary and uniform cost

of dictionary pointer, i.e. the codeword of all the pointers have equal length.

They extended the results given in [20], [21] and [23] to the dynamic case.
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Matias and Sahinalp called their parsing algorithm Flexible Parsing. It is

also known as semi-greedy parsing.

In ’09, Ferragina et al. (see [17]) introduced an optimal parsing algorithm

for LZ77-like dictionary and variable-length code, where the code length is

assumed to be the cost of a dictionary pointer.

In ’10, Crochemore et al. (see [8]) introduced an optimal parsing for

prefix-closed dictionaries and variable pointer costs. It was called dictionary-

symbolwise flexible parsing and it is extensively treated and extended in this

thesis. It works for the original LZ77 and LZ78 algorithms and for almost

all of their known variants.

3.3 A Generalization of the Cohn’s Theorem

A static dictionary D is prefix-closed (suffix-closed) if and only if for any

phrase w 2 D in the dictionary all the prefixes (suffixes) of w belong to the

dictionary, i.e. suff (w) ⇢ D (pref (w) ⇢ D). For instance, the dictionary

{bba, aba, ba, a} is suffix-closed.

The classic Cohn’ and Khazan’s result of ’96 (see [5]) states that if D is a

static suffix-closed dictionary, then the greedy parsing is optimal under the

uniform cost assumption. Symmetrically, the reverse of the greedy parsing

on the reversed text, i.e. the right to left greedy parsing, is optimal for

static prefix-closed dictionary. Roughly speaking, the original proof concerns

with suffix-closed dictionaries and shows that choosing the longest dictionary

phrases guarantees to cover the text with the minimum number of phrases.

The main idea is that, fixed a point a on the text, the greedy choice is the

longest match with the dictionary and text on the right of a, e.g the phrase

that cover the text from a to b. Now, b is the rightmost point that can be

reached from a or from any point on the left of a. For absurd, given ↵ on

the left of a, if in the dictionary there is a phrase equal to the text from ↵

to β on the right of b, then, for the suffix-closed property, the phrase a− β

is in the dictionary too. This contradicts that a− b is the longest match.

Notice that the optimal greedy solution for suffix-closed static dictionary

can be computed online.

Let us compare these results to the LZ family of algorithms. We notice
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that above results concern with static dictionaries and cannot be directly

applied in these cases. Moreover, the greedy parsing of the LZ-78 algorithm

is not the one that was proved to be optimal for the prefix-closed case.

For the LZ77 algorithm, which dictionary is both prefix-closed and suffix-

closed, we need to generalize the Cohn’ and Khazan’s result for suffix-closed

dictionary to the dynamic case. Within this thesis we refer to the Cohn’ and

Khazan’s result on suffix-closed dictionary simply as the Cohn’s theorem in

honour of its first author.

Let us start focusing on the prefix and suffix-closed definition of dynamic

dictionaries. The classic definition of suffix-closed dynamic dictionary just

require that the dictionary is suffix-closed at any time. Therefore, given a

suffix-closed dynamic dictionary D, if Di is the dictionary D at the time

i, then Di is suffix-closed, for any i. The prefix-closed case is analogously

defined. Notice that this definition does not make any assumption on the

relationship between dictionaries in two di↵erent moments. We call above

properties weak suffix-closed property and weak prefix-closed property re-

spectively. We introduce the strong suffix-closed property and the strong

prefix-closed property of dynamic dictionary as follows.

Definition 3.1. A dynamic dictionary D has the strong prefix-closed prop-

erty iff, for any dictionary phrase w 2 Di, for any k in [0..|w|], wk is in Di

and in Di+k, where wk is the prefix of w of length k.

Definition 3.2. A dynamic dictionary D has the strong suffix-closed prop-

erty iff, for any dictionary phrase w 2 Di, for any k in [0..|w|], wk is in Di

and in Di+k, where wk is the suffix of w of length |w| − k.

Notice that the strong prefix-closed property implies the weak prefix-

closed property. Analogously, the strong suffix-closed property implies the

weak property.

We say that a dictionary is non-decreasing when Di ⇢ Dj for any i, j

points in time, with 0  i  j. A static dictionary is obviously non-

decreasing. Practically speaking, a dynamic dictionary is non-decreasing

when it can only grow along the time, as for instance the original LZ78

where, at each algorithm step, at most one phrase is inserted in the dy-

namic dictionary.
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Remark 3.1. For non-decreasing dictionaries, the weak suffix-closed property

and the weak prefix-closed property are equal to the strong suffix-closed

property and to the strong prefix-closed property, respectively.

Notice that while the original LZ78 dictionary is non-decreasing, many

of its practical implementation and its variants are not. This is because the

size of the dictionary is bounded in practice for space saving purpose. Since

the original LZ77 dictionary is defined as the set of the substrings of the

search bu↵er, i.e. the backward text up to a certain distance, LZ77 has not

the non-decreasing property at all.

Proposition 3.3.1. The LZ77 dictionary is both weak prefix-closed and

weak suffix-closed. The LZ77 unbounded dictionary is non-decreasing. The

original LZ77 dictionary is strong suffix-closed.

Proof. We refer to the LZ77 dictionary definition given in Section 2.2. The

dictionary at time i is defined as Di = {w, such that w 2 Fact(T [i− P : i])

and |w| < Q}, where P is the maximum o↵set for text factors, Q is the

maximum length for dictionary phrases.

Since any set of factors is prefix and suffix closed and since for any phrase

w each of its suffixes or prefixes has length less than or equal to |w|, then
LZ77 dictionary is weak prefix-closed and weak suffix-closed by definition.

The LZ77 dictionary is unbounded when P ≥ |T |. In this case the

dictionary is equal to the set {w, such that w 2 Fact(T [0 : i]) and |w| < Q}
that is obviously non-decreasing.

Let us focus on the general set Fact(T [i − P : i]). This is a sliding

window of size P over the text T . For any value i, let be T [i − P : i] = au

and T [i − P + 1 : i + 1] = ub with a, b in ⌃ and u in ⌃⇤. Since all the

proper suffixes of au are also suffixes of u, then for any w 2 Fact(T [i− P :

i]) the proper suffixes wk of length |w| − k where 1 < k  |w| are also

in Fact(T [i − P + 1 : i + 1]). Therefore this property also holds for the

dictionaries Di and Di+1 and it easy to see that this property is equivalent

to the strong suffix-closed property defined in Definition 3.2.

Corollary 3.3.2. The LZ77 dictionary has the strong suffix-closed property

in both the bounded and the unbounded variants.
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The proof of the above proposition comes straightforward from the Propo-

sition 3.3.1, the Remark 3.1 and the dictionary definition.

Let us now show the e↵ect of the suffix-closed and the prefix-closed

properties on the Schuegraf graph to visualize those concepts. Given a text

T and an algorithm A that uses a dictionary D, we have that if D has

the strong suffix-closed property, then for any edge (i, j) of the graph GA,T

associated with the phrase w 2 Di, with |w| = j − i and w = T [i + 1 : j],

then all the edges (k, j), i < k < j are into GA,T . In the case of prefix-

closed dictionaries, as prefix edges start from the same node, the prefix of a

dictionary phrase are all represented in the graph if the dictionary has just

the weak prefix-closed property.

We want now to extend the elegant proof of Cohn et al. (see [5]) to the

case of strong suffix-closed dynamic dictionaries.

Given a text T of length n and a dynamic dictionary D where, at the

moment i-th with 0  i < n, the text Ti has been processed and Di is the

dictionary at time i. Recall that we are under the uniform cost assumption.

Theorem 3.3.3. The greedy parsing of T is optimal for strong suffix-closed

dynamic dictionaries.

Proof. The prove is by induction. We want to prove that for any n smaller

than or equal to the number of phrases of an optimal parsing, there exists an

optimal parsing where the first n phrases are greedy phrases. The inductive

hypothesis is that there exists an optimal parsing where the first n − 1

phrases are greedy phrases. We will prove that there is an optimal parsing

where the first n phrases are greedy and, therefore, any greedy parsing is

optimal.

Fixed a text T and a strong suffix-closed dynamic dictionary D, let

O = o1o2 · · · op = T be an optimal parsing and let G = g1g2 · · · gq = T be

the greedy parsing, where, obviously, p  q.

The base of the induction with n = 0 is obviously true. Let us prove the

inductive step.

By inductive hypothesis, 8 i < n we have that oi = gi. Since gn is

greedy, then the n-th phrase of the greedy parsing is longer than or equal
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· · · · · · · · · · · ·

on+1

gn+1

oh

Figure 3.1: Detail of the di↵erences between parsing O and parsing G over a

text T between positions |o1 · · · on| and |o1 · · · oh|. Nodes and dots represent

the text and edges represent parsing phrases as reported on edge labels.

to the n-th phrase of the optimal parsing, i.e. |gn| ≥ |on| and therefore

|o1 · · · on|  |g1 · · · gn|.
If |gn| = |on|, then the thesis follows. Otherwise, |gn| > |on| and on is the

first phrase in the optimal parsing that is not equal the n-th greedy phrase.

Let h be the minimum number of optimal parsing phrases that overpass

gn over the text, i.e. h = min{i | |o1 · · · oi| ≥ |g1 · · · gn|}. Since |gn| > |on|,
then h > n. If |o1 · · · oh| = |g1 · · · gn|, then the parsing g1 · · · gnoh+1 · · · op
uses a number of phrases strictly smaller than the number of phrases used by

the optimal parsing that is a contradiction. Therefore |o1 · · · oh| > |g1 · · · gn|.
The reader can see this case reported in Figure 3.1.

Let |o1 · · · oh−1| = Tj be the text up to the j-th symbol. Then oh 2 Dj ,

where Dj is the dynamic dictionary at the time j. Let okh the k-th suffix of

oh with k = |o1 · · · oh|−|g1 · · · gn|. For the Property 3.2 of D, okh 2 Dj+k and

then there exists a parsing o1 · · · on−1gno
k
hoh+1 · · · op, where gnokh = on · · · oh.

From the optimality of O, it follows that h = n + 1, otherwise there

exists a parsing with less phrases than an optimal one. See Figure 3.2.

Therefore o1 · · · on−1gno
k
n+1on+2 · · · op is also an optimal parsing. Since

o1 · · · on−1 is equal to g1 · · · gn−1, the thesis follows.

Corollary 3.3.4. The greedy parsing is an optimal parsing for any version

of the LZ77 dictionary.

The proof of the above corollary comes straightforward from the Theo-

rem 3.3.3 and the Corollary 3.3.2.

To our best knowledge, this is the first proof of optimality of the greedy
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· · · · · · · · ·

on+1

gn+1

oh

okh

Figure 3.2: Detail of the di↵erences between parsing O and parsing G over a

text T between positions |o1 · · · on| and |o1 · · · oh|. Nodes and dots represent

the text and edges represent parsing phrases as reported on edge labels. The

dashed edge okh represents a suffix of oh.

parsing that cover the original LZ77 dictionary case and almost all of the

practical LZ77 dictionary implementations where the search bu↵er is a slid-

ing windows on the text.
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Chapter 4

Dictionary-Symbolwise

Flexible Parsing

In this chapter we consider the case of dictionary-symbolwise algorithms

where the parsing is a free mixture of dictionary phrases and symbols.

We present the dictionary-symbolwise flexible parsing that is a dictionary-

symbolwise optimal parsing algorithm for prefix-closed dictionaries and vari-

able costs. This is a generalization of the Matias’ and Sahinalp’s flexible

parsing algorithm (see [28]) to variable costs.

The algorithm is quite di↵erent from the original Flexible Parsing but it

has some analogies with it. Indeed, in the case of LZ78-like dictionaries, it

makes use of one of the main data structures used for the original flexible

parsing in order to be implemented in linear time.

In next sections we will show some properties of the graph GA,T when

the dictionary of the algorithm A is prefix-closed and the encoding of the

dictionary pointers leads to a nondecreasing cost function. We will call c-

supermaximal some significant edges of GA,T and we will use those edges

to build the graph G0
A,T that is a subgraph of GA,T . Then, we will show

that any minimal path from the origin of G0
A,T is a minimal path in GA,T .

We will introduce the dictionary-symblwise flexible parsing algorithm that

build the graph G0
A,T and then find a minimal weight path on it in order

to parse the text. We will prove that this parsing is optimal within any

scheme having the Schuegraf Property. We will show that the dictionary-
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symbolwise flexible parsing has linear time complexity w.r.t. the text size

in the LZ78-like dictionary cases. In the case of LZ77-like dictionaries, the

same algorithm has O(n log n) time complexities and uses O(n) space, where

n is the size of the text.

4.1 The c-supermaximal Edges

We suppose that a text T of length n and a dictionary-symbolwise algo-

rithm A are given. We assume here that the dictionary is prefix closed at

any moment.

Concerning the costs of the dictionary pointer encodings, we recall that

costs are variable, that costs assume positive values and that they must

include the cost of the flag information. Concerning the symbolwise encod-

ings, the costs of symbols must be positive, including the flag information

cost. They can vary depending on the position of the characters in the text

and on the symbol itself. Furthermore, we assume that the graph GA,T is

well defined following our Definition 2.4, i.e. we assume that all edges have

a well defined cost.

We denote by d the function that represents the distance of the vertices

of GA,T from the origin of the graph. Such a distance d(i) is classically

defined as the minimal cost of all possible weighted paths from the origin

to the vertex i, with d(0) = 0. This distance obviously depends on the cost

function. We say that cost function C is prefix-nondecreasing at any moment

if for any u, v 2 Dp phrases associated with edges (p, i), (p, q), with p < i < q

(that implies that u is prefix of v), one has that C((p, i))  C((p, q)).

Lemma 4.1.1. Let A be a dictionary-symbolwise algorithm such that for any

text T the graph GA,T is well defined. If the dictionary is always prefix-closed

and if the cost function is always prefix-nondecreasing then the function d is

nondecreasing monotone.

Proof. It is sufficient to prove that for any i, 0  i < n one has that

d(i)  d(i + 1). Let j  i be a vertex such that (j, i + 1) is an edge

of the graph and d(i + 1) = d(j) + C((j, i + 1)). If j is equal to i then

d(i + 1) = d(i) + C((i, i + 1)) and the thesis follows. If j is smaller than
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i then, since the dictionary Dj is prefix closed, (j, i) is still an edge in Dj

and d(i)  d(j) + C((j, i))  d(j) + C((j, i + 1)) = d(i + 1) and the thesis

follows. The last inequality in the previous equation comes from the prefix-

nondecreasing property of the cost function.

Let us call vertex j a predecessor of vertex i () 9(j, i) 2 E such

that d(i) = d(j) + C((j, i)). Let us define pre(i) being the smallest of the

predecessors of vertex i, 0 < i  n, that is pre(i) = min{j | d(i) = d(j) +

C((j, i))}. In other words pre(i) is the smallest vertex j that contributes

to the definition of d(i). Clearly pre(i) has distance smaller than d(i). We

notice that a vertex can be a predecessor either via a dictionary edge or via

a symbol edge. It is also possible to extend previous definition to pointers

having a cost smaller than or equal to a fixed c as follows.

Definition 4.1. For any cost c we define prec(i) = min{j | d(i) = d(j) +

C((j, i)) and C((j, i))  c}. If none of the predecessor j of i is such that

C((j, i))  c then prec(i) is undefined.

If all the costs of pointers are smaller than or equal to c then for any i

one has that prec(i) is equal to pre(i).

Analogously to the notation of [27], we want to define two boolean op-

erations Weighted-Extend and Weighted-Exist.

Definition 4.2. (Weighted-Extend) Given an edge (i, j) in GA,T and a

cost value c, the operation Weighted-Extend((i, j), c) finds out whether the

edge (i, j + 1) is in GA,T having cost smaller than or equal to c.

More formally, let (i, j) in GA,T be such that w = T [i + 1 : j] 2 Di.

OperationWeighted-Extend((i, j), c) = “yes” () waj+1 = T [i+1 : j+1] 2
Di with j < n such that (i, j + 1) is in GA,T and C((i, j + 1))  c, where C

is the cost function associated with the algorithm A. Otherwise Weighted-

Extend((i, j), c) = “no”. Let us notice that Weighted-Extend always fails to

extend any edge ending at node n.

Definition 4.3. (Weighted-Exist) Given i, j with 0  i < j  n and a

cost value c, the operation Weighted-Exist(i, j, c) finds out whether or not

the phrase w = T [i + 1 : j] is in Di and the cost of the corresponding edge

(i, j) in GA,T is smaller than or equal to c.
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Let us notice that doing successfully the operation Weighted-Extend on

((i, j), c) means that waj+1 2 Di is the weighted extension of w and the

encoding of (i, j+1) has cost less or equal to c. Similarly, doing successfully

a Weighted-Exist operation on (i, j, c) means that an edge (i, j) exists in

GA,T having cost less than or equal to c.

Definition 4.4. (c-supermaximal) Let Ec be the subset of all the edges

of the graph having cost smaller than or equal to c. For any cost c, let the

set Mc ✓ Ec be the set of c-supermaximal edges, where (i, j) 2 Mc ()
(i, j) 2 Ec and 8p, q 2 V , with p < i and j < q, the arcs (p, j), (i, q) are not

in Ec. For any (i, j) 2 Mc let us call i a c-starting point and j a c-ending

point.

Proposition 4.1.2. Suppose that (i, j) and (i0, j0) are in Mc. One has that

i < i0 if and only if j < j0.

Proof. Suppose that i < i0 and that j ≥ j0. Since the dictionary Di is

prefix closed we have that (i, j0) is still in Di and therefore it is an edge

of GA,T . By the prefix-nondecreasing property of function C we have that

C((i, j0))  C((i, j)) = c, i.e. (i, j0) 2 Ec. This contradicts the fact that

(i0, j0) is in Mc and this proves that if i < i0 then j < j0. Conversely suppose

that j < j0 and that i ≥ i0. If i > i0 by previous part of the proof we must

have that j > j0, that is a contradiction. Therefore i = i0. Hence (i, j) and

(i, j0) both belongs to Mc and they have both cost smaller than or equal to

c. This contradicts the fact that (i, j) is in Mc and this proves that if j < j0

then i < i0.

By previous proposition, if (i, j) 2 Mc we can think j as a function

of i and conversely. Therefore it is possible to represent Mc by using an

array Mc[ ] such that if (i, j) is in Mc, then Mc[j] = i otherwise Mc[j] =

Nil. Moreover the non-Nil values of this array are strictly increasing. The

positions j having value di↵erent from Nil are the ending positions.

We want to describe a simple algorithm that outputs all c-supermaximal

edges scanning the text left-to-right. We call it Find Supermaximal(c). It

uses the operations Weighted-Extend and Weighted-Exist. The algorithm

starts with i = 0, j = 0 and w = ✏, i.e. the empty word. The word w is
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indeed implicitly defined by the arc (i, j) when i < j or it is the empty word

when i = j. Therefore w will not appear explicitly in the algorithm. Since

the values of i and j are only increased by one and i is always less than or

equal to j, the word w can be seen as a sliding window of variable size that

scans the text left-to-right. w is moved along the text either by extensions

or by contractions to its suffixes.

At each step of the algorithm, j is firstly increased by one. This extends

w concatenating it to T [j]. The algorithm executes then a series ofWeighted-

Exist increasing i by one, i.e. it contracts many times w. This series of

Weighted-Exist ends when w is the empty word or an edge (i, j) 2 Ec is

found such that (i, j) is not contained in any already found c-supermaximal

edge (see 4.1.4). Indeed, since the increment on j at line 3, if such edge (i, j)

exists, then we have that 8 (p, q) 2 Mc with p < i, (i, j) 2 Ec. Moreover,

if such edge (i, j) exists, i is a c-starting point and a series of Weighted-

Extend is executed looking for the corresponding c-ending point. After

each Weighted-Extend positive answer, j is incremented by one. Once that

Weighted-Extend outputs “no”, i.e. once that (i, j) cannot be weighted-

extended any more, (i, j) is a c-supermaximal and it is inserted into Mc to

be outputted later. The step of the algorithm ends when a c-supermaximal

is found or when w is equal to the empty word. The algorithm runs as long

as there are unseen characters, i.e. until j reaches n.

The algorithm is stated more formally in Table 4.1.

Proposition 4.1.3. Given a cost value c, the Find Supermaximal algorithm

correctly computes Mc.

Proof. First of all let us prove that if (̂ı, ⌘̂) is inserted by the algorithm in

Mc then (̂ı, ⌘̂) is c-supermaximal.

If (̂ı, ⌘̂) is inserted into Mc at line 11, then an edge (̂ı, j0) at line 4 was

previously proved to exist and to have cost C((̂ı, j0))  c. It caused the

termination of the loop at lines 4 − 6. For the line 7 we know that ı̂ < j0

and by the loop 8 − 10 we know that all the edges (̂ı, q) with j0  q  ⌘̂

exist and they all are such that C((̂ı, q))  c. Therefore (̂ı, ⌘̂) costs at most

c and then the first part of the definition is verified. Since the Weighted-

Extend((̂ı, ⌘̂), c) = “no” at line 8, that was the exit condition of that loop,
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Find Supermaximal(c)

01. i 0, j  0,Mc  ;
02. WHILE j < n DO

03. j  j + 1

04. WHILE i < j AND Weighted-Exist(i, j, c) = “no” DO

05. i i+ 1

06. ENDWHILE

07. IF i < j THEN

08. WHILE Weighted-Extend ((i, j), c) = “yes” DO

09. j  j + 1

10. ENDWHILE

11. INSERT ((i, j),Mc)

12. ENDIF

13. ENDWHILE

14. RETURN MC

Table 4.1: The pseudocode of the Find Supermaximal algorithm. The func-

tion INSERT simply insert the edge (i, j) in the dynamical set Mc.

then (̂ı, ⌘̂ + 1) /2 Ec. Since Di is prefix closed and the cost function C is

prefix-nondecreasing 8q 2 V with ⌘̂ < q the arc (̂ı, q) is not in Ec, because

otherwise (̂ı, ⌘̂ + 1) would be in Ec.

It remains to prove that 8p 2 V with p < ı̂ the arc (p, ⌘̂) is not in Ec.

Suppose by contradiction that such arc (p, ⌘̂) exists in Ec. Since the

variables i, j never decrease along algorithm steps, the variable i reaches the

value p before that (̂ı, ⌘̂) is inserted in Mc. Let jp be the value of j when i

reached the value p. Since the variable i is increased only inside the loop

at lines 4 − 6, we have that p  jp. If p = jp the algorithm terminates the

current step by the conditions at lines 4 and 7 and it enters the next step

with j = jp+1 due to line 3. Therefore j will reach the value jp+1 for p = jp

otherwise j will be equal to jp. In both cases, since i < j, the condition at

line 7 is satisfied and the loop 8 − 10 is reached. Since Dp is prefix closed

and the cost function is prefix-nondecreasing then 8q such that j  q < ⌘̂,

Weighted-Extend((p, q)) = “yes”. Then, the loop 8 − 10 increases the j up
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to at least the value ⌘̂, i.e. the algorithm reaches the line 11 with ⌘̂  j. At

this point, an edge (p, j) is inserted in Mc and the algorithm moves on the

next step. Since the increment of the variable j at line 3, we have that in the

rest of the algorithm only edges where j is greater than ⌘̂ may be considered

and then (̂ı, ⌘̂) will not be inserted. That is a contradiction. Therefore, if

(̂ı, ⌘̂) is inserted by the algorithm in Mc then (̂ı, ⌘̂) is c-supermaximal.

We have now to prove that if (̂ı, ⌘̂) is c-supermaximal then it is inserted

by the algorithm in Mc.

Suppose that variable i never assumes the value ı̂. The algorithm ends

when variable j is equal to n. Let in be the value of variable i when j becomes

n, then we have that in < ı̂ < ⌘̂ < n = j. If the variable j reaches the value

n inside the loop 8− 10 then the operation Weighted-Extend((in, n− 1), c)

has outputted “yes” just before. At line 11 the edge (in, n) is inserted into

Mc and then (in, n) is c-supermaximal. This contradicts that (̂ı, ⌘̂) is c-

supermaximal. Otherwise, if the variable j reaches the value n at line 3,

then we have two cases. In the first one, Weighted-Exist(in, n, c) outputs

“yes”, i.e. the edge (in, n) is in Ec. Since i = in < n = j line 7 condition

is satisfied, Weighted-Extend((in, n), c) outputs “no” by definition and then

(in, n) is in Mc, i.e. it is a c-supermaximal. That is a contradiction again.

In the second case, Weighted-Exist(in, n, c) outputs “no” one or multiple

times while i grows up to a value i0n < ı̂ by hypothesis. Using the same

argumentation as before, (i0n, n) in Mc leads to a contradiction.

Therefore at a certain moment variable i assumes the value ı̂. Let ĵı be

the value of variable j in that moment. We suppose that ĵı  ⌘̂. Since the

dictionary Dı̂ is prefix closed and the cost function is prefix nondecreasing,

Weighted-Exist (̂ı, ĵı, c) outputs “yes” causing the exit from the loop at lines

4− 6. At this point, inside the loop 8− 10, the variable j reaches the value

⌘̂ since Weighted-Extend((̂ı, j), c) outputs “yes” for any j less than ⌘̂, while

Weighted-Extend((̂ı, ⌘̂), c) outputs “no”. Finally, (̂ı, ⌘̂) is inserted into Mc at

line 11. Suppose by contradiction that ĵı > ⌘̂ when i assumes the value ı̂ at

line 5. This may happen only if the edge (̂ı−1, ĵı) has been inserted in Mc in

the previous step of the algorithm. Since ı̂− 1 < ı̂ < ⌘̂ < ĵı this contradicts

the hypothesis that (̂ı, ⌘̂) is c-supermaximal.
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Proposition 4.1.4. For any edge (i, j) 2 Ec there exists a c-supermaximal

edge (̂ı, ⌘̂) containing it, i.e. such that ı̂  i and j  ⌘̂.

Proof. We build (̂ı, ⌘̂) in algorithmic fashion. The algorithm is described

in what follows in an informal but rigorous way. If edge (i, j) is not c-

supermaximal then we proceed with a round of Weighted-Extend((i, j), c)

analogously as described in algorithm Find Supermaximal and we increase j

of one unit until Weighted-Extend outputs “no”. Let j0 be the value of j for

which Weighted-Extend output “no”. Clearly (i, j0) 2 Ec and (i, j0 + 1) is

not. If (i, j0) is not c-supermaximal the only possibility is that there exists

at least one i0 < i such that (i0, j0) 2 Ec. At this point we keep iterating

previous two steps starting from (i − 1, j0) instead of (i, j) and we stop

whenever we get a c-supermaximal edge, that we call (̂ı, ⌘̂).

By previous proposition, for any node v 2 GA,T if there exists a node

i < v such that C((i, v)) = c and d(v) = d(i) + c then there exists a

c-supermaximal edge (̂ı, ⌘̂) containing (i, v) and such that ⌘̂ is the closest

arrival point greater than v. Let us call this c-supermaximal edge (̂ıv, ⌘̂v).

We use ı̂v in next proposition.

Proposition 4.1.5. Suppose that v 2 GA,T is such that there exists a pre-

vious node i such that C((i, v)) = c and d(v) = d(i) + c. Then ı̂v is a

predecessor of v, i.e. d(v) = d(̂ıv) + C((̂ıv, v)) and, moreover, d(̂ıv) = d(i)

and C((̂ıv, v)) = c.

Proof. Since (̂ıv, ⌘̂v) contains (i, v) and the dictionary at position ı̂v is prefix

closed then (̂ıv, v) is an edge of GA,T . Since (̂ıv, ⌘̂v) has cost smaller than

or equal to c then, by the suffix-nondecreasing property, also (̂ıv, v) has

cost smaller than or equal to c. Since the distance d is nondecreasing we

know that d(̂ıv)  d(i). By very definition of the distance d we know that

d(v)  d(̂ıv) + C((̂ıv, v)).

Putting all together we have that

d(v)  d(̂ıv) + C((̂ıv, v))  d(i) + c = d(v).

Hence the inequalities in previous equation must be equalities and, further-

more, d(̂ıv) = d(i) and C((̂ıv, v)) = c.
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Corollary 4.1.6. For any vertex v, the edge (̂ıv, v) is the last edge of a path

of minimal cost from the origin to vertex v.

Proof. Any edge x in GA,T such that d(v) = d(x)+C((x, v)) is the last edge

of a path of minimal cost from the origin to vertex v.

Remark 4.1. Let us notice that the variable i is increased only at line 05

along the Find Supermaximal algorithm.

4.2 The Subgraph G
0A,T

In the following we describe a graph G0
A,T that is a subgraph of GA,T

and that is such that for any node v 2 GA,T there exists a minimal path

from the origin to v in G0
A,T that is also a minimal path from the origin to

v in GA,T . The proof of this property, that will be stated in the subsequent

proposition, is a consequence of Proposition 4.1.5 and Corollary 4.1.6.

We describe the building of G0
A,T in an algorithmic way.

The set of nodes of G0
A,T is the same of GA,T . First of all we insert all

the symbolwise edges of GA,T in G0
A,T . Let now C be the set of all possible

costs that any dictionary edge has. This set can be built starting from GA,T ,

but, in many meaningful cases, the set C is usually well known and can be

ordered and stored in an array in a time that is linear in the size of the text.

For any c 2 C we use algorithm Find Supermaximal to obtain the set Mc.

Then, for any (i, j) 2Mc, we insert inGA,T all the prefix of (i, j) except those

which are contained in another c-supermaximal edge (i0, j0) 2Mc. In detail,

for any c-supermaximal edge (i, j) 2Mc, let (i
0, j0) 2Mc be the previous c-

supermaximal edge overlapping (i, j), i.e. j0 = maxh{(s, h) 2Mc|i < h < j}.
Notice that this j0 could not exist but, if it exists then by Proposition 4.1.2

there exists a unique i0 such that (i0, j0) 2 Mc. If (i0, j0) exists, then we

add in G0
A,T all the edges of the form (i, x), where j0 < x  j, with label

L(i,x) = c. If (i0, j0) does not exist, then we add in G0
A,T all the edges of the

form (i, x), where i < x  j, with label L(i,x) = c. In both cases, If such an

edge (i, x) is already in G0
A,T , we just set the label L(i,x) to min{L(i,x), c}.

This concludes the construction of G0
A,T .

The algorithm Build G0
A,T is formally stated in the Tabel 4.2.
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Build G0
A,T

01. CREATE node 0

02. FOR v = 1 TO |T |
03. CREATE node v

04. CREATE symbolwise edge (v − 1, v)

05. L(v − 1, v) C((v − 1, v))

06. ENDFOR

07. FOR ANY increasing c 2 C
08. Mc  Find Supermaximal (c)

09. j0  0

10. FOR ANY (i, j) 2Mc left-to-right

11. FOR ANY x | max{j0, i} < x  j

12. IF (i, x) /2 G0
A,T THEN

13. CREATE edge (i, x)

14. L(i, x) c

15. ELSE

16. L(i, x) min{L(i, x), c}
17. ENDIF

18. ENDFOR

19. j0  j

20. ENDFOR

21. ENDFOR

Table 4.2: The pseudocode of the Build G0
A,T algorithm.

Remark 4.2. Notice that for any cost c the above algorithm add in G0
A,T at

most a linear number of edges. For any node in G0
A,T there is an incoming

symbolwise edge and there also can be at most one incoming dictionary edge

for any cost c.

Let us notice that the graph G0
A,T is a subgraph of GA,T . Nodes and

smbolwise edges are the same in both graphs by definition of G0
A,T . The

edges (i, x) we add to G0
A,T , are the prefix of a c-supermaximal edge (i, j)

of GA,T . Since that the dictionary Di is prefix closed, then all the edges

(i, x) are also edges of GA,T .
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Proposition 4.2.1. For any node v 2 GA,T , any minimal path from the

origin to v in G0
A,T is also a minimal path from the origin to v in GA,T .

Proof. The proof is by induction on v. If v is the origin there is nothing

to prove. Suppose now that v is greater than the origin and let (i, v) be

the last edge of a minimal path in GA,T from the origin to v. By inductive

hypothesis there exists a minimal path P from the origin to i in G0
A,T that

is also a minimal path from the origin to i in GA,T . If (i, v) is a symbolwise

arc then it is also in G0
A,T and the concatenation of above minimal path

P with (i, v) is a minimal path from the origin to v in G0
A,T that is also a

minimal path from the origin to v in GA,T .

Suppose now that (i, v) is a dictionary arc and that its cost is c. Since

it is the last edge of a minimal path we have that d(v) = d(i) + c. By

Proposition 4.1.5 d(v) = d(̂ıv) + C((̂ıv, v)) and, moreover, d(̂ıv) = d(i) and

C((̂ıv, v)) = c. By Corollary 4.1.6, the edge (̂ıv, v) is the last edge of a

path of minimal cost from the origin to vertex v. By inductive hypothesis

there exists a minimal path P from the origin to ı̂v in G0
A,T that is also a

minimal path from the origin to ı̂v in GA,T . Since (̂ıv, v) has been added

by construction in G0
A,T , the concatenation of above minimal path P with

(̂ıv, v) is a minimal path from the origin to v in G0
A,T that is also a minimal

path from the origin to v in GA,T .

Let us notice that it is possible to create the dictionary edges of G0
A,T

without an explicit representation in memory of all the Mc arrays. This is

just an implementation detail that enhances speed and the usage of memory

of the Build G0
A,T algorithm in practice, without changing its order of com-

plexity. The point is that we can insert the c-supermaximal edges and their

prefix directly in the graph as soon as they are found along a Find Super-

maximal execution. The correctness of this approach is a direct consequence

of the following remark.

Remark 4.3. Given a cost c, the edges (i, x) used by the Build G0
A,T algo-

rithm inside the block at lines 10− 20 are those which the Weighted-Extend

and the Weighted-Exist operations of the Find Supermaximal(c) algorithm

report a positive answer for.
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4.3 The Dictionary-Symbolwise Flexible Parsing

We can now finally describe the Dictionary-symbolwise flexible parsing.

The Dictionary-symbolwise flexible parsing algorithm firstly uses the al-

gorithm Build G0
A,T and then uses the classical Single Source Shortest

Path (SSSP) algorithm (see [6, Ch. 24.2]) to recover a minimal path from

the origin to the end of graph GA,T . The correctness of the above algorithm

is stated in the following theorem and it follows from the above description

and from Proposition 4.2.1.

Theorem 4.3.1. Dictionary-symbolwise flexible parsing is graph optimal.

Notice that graphs GA,T and G0
A,T are directed acyclic graphs (DAG)

and their nodes from 1 to n, where 1 is the origin or the unique source of the

graph and n = |T | is the last node, are topologically ordered and linked by

symbolwise edges. Recall that, given a node v in a weighted DAG, the clas-

sic solution to the SSSP is composed by two steps. The first one computes

the distance and a predecessor of any node in the graph. It is accomplished

by performing a visit on all the nodes in topological order and making a

relax on any outgoing edge. Therefore, for any node v from 1 to n and for

any edge (v, v0) in the graph, the relax of (v, v0) sets the distance and the

predecessor of v0 to v if d(v)+C((v, v0)) < d(v0). The classic algorithm uses

two arrays, ⇡[] and p[], to store distance and predecessor of nodes.

The second step recovers the shortest path by following backward the prede-

cessors chain from the last node to the origin of the graph and reverting it.

From this simple analysis it follows that if we know all the outgoing edges

of any node in topological order then we can do directly the relax operation

on them without having an explicit representation of the graph.

Let us suppose to have an online version of the Build G0
A,T algorithm,

where for any i from 1 to |T |, only edges (i, j) are created on the graph. We

want now to merge the online Build G0
A,T algorithm to the relax step of

the SSSP algorithm. We maintain the two arrays ⇡[] and p[] of linear size

w.r.t. the text size, containing the distance and the predecessor of any node

and we replace any edge creation or label updating with the relax operation.

About the online version of the Build G0
A,T , we can use the Remark

4.1 to make a kind of parallel run of the Find Supermaximal algorithm
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for any cost c, maintaining the variables i synchronized on the same value.

Moreover, we use the Remark 4.3 to directly handle the edge creation as soon

as they are found. We address all of these variations to the Build G0
A,T , the

Find Supermaximal as well as the merge with the SSSP algorithm in order to

obtain the Dictionary-Symbolwise Flexible Parsing algorithm. The

pseudocode of theDictionary-Symbolwise Flexible Parsing algorithm

is reported in Table 4.3.

Let us notice that above algorithm uses only one dictionary at one time

and it never needs to use previous version of the dynamic dictionary. Recall

that the dictionary is used by the Weighted-Exist and the Weighted-Extend

operations. This is a direct consequence of the fact that any edge (i, j) refers

to the dictionary Di and that after edge (i, j) creation, only edge (p, q) with

p ≥ i can be created.

Proposition 4.3.2. Any practical implementations of the Dictionary-symbol-

wise flexible parsing does not require to explicitly represent the graph G0
A,T

regardless of its size. Since G0
A,T nodes are visited in topological order by

classic SSSP solutions, the algorithm needs to maintain just two linear size

arrays, i.e. the array of node distances and the array of node predecessors,

in order to correctly compute an optimal parsing.

Let us summarize the Dictionary-Symbolwise Flexible Parsing algorithm

requirements. Given a text T of size n the Dictionary-Symbolwise Flexible

Parsing algorithm uses

• O(n) space for the ⇡[] and p[] arrays, regardless of the graph G0
A,T

size that is not really built, plus the dictionary structure.

• O(|E|) time to analyze all the edges of the graph G0
A,T .

• it is not online because the backward recovering of the parsing from

the p[] array.

With respect to the original Flexible Parsing algorithm we gain the fact

that it can work with variable costs of pointers and that it is extended to

the dictionary-symbolwise case. This covers for instance the LZW-like and
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Dictionary-Symbolwise Flexible Parsing

01. FOR i FROM 0 TO |T | − 1

02. Relax (i, i+ 1, C((i, i+ 1)))

03. FOR ANY c 2 C
04. IF i = jc THEN

05. jc  1 + jc

06. ENDIF

07. IF jc  |T | AND Weighted-Exist (i, jc, c) = “yes” THEN

08. Relax (i, jc, C((i, jc)))

09. WHILE Weighted-Extend ((i, j), c) = “yes” DO

10. jc  1 + jc

11. Relax (i, jc, C((i, jc)))

12. ENDWHILE

13. jc  1 + jc

14. ENDIF

15. ENDFOR

16. ENDFOR

17. RETURN Reverse (v)

Relax (u, v, c)

01. IF ⇡[u] + c < ⇡[v] THEN

02. ⇡[v] ⇡[u] + c

03. p[v] u

04. ENDIF

Reverse(v)

01. IF v > 0 THEN

02. Reverse (p[v])

03. ENDIF

04. RETURN v

Table 4.3: The pseudocode of Dictionary-Symbolwise Flexible Parsing algo-

rithm, the Relax and the Reverse procedures. The distance array ⇡[] and

the predecessor array p[] are initialized to 0. Notice that the algorithm uses

a di↵erent jc variable for any c value.
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the LZ77-like cases. But we lose the fact that the original one was “on-

line”. A minimal path has to be recovered, starting from the end of the

graph backward. But this is an intrinsic problem that cannot be eliminated.

Even if the dictionary edges have just one possible cost, in the dictionary-

symbolwise case it is possible that any minimal path for a text T is totally

di↵erent from any minimal path for the text Ta, that is the previous text T

concatenated to the symbol a. The same can happen when we have a (pure)

dictionary case with variable costs of dictionary pointers. In both cases,

for this reason, it is unlikely that there exists an “on-line” optimal parsing

algorithm, and, indeed, the original flexible parsing fails being optimal in

the dictionary case when costs are variable.

On the other hand our algorithm is suitable when the text is divided in

several contiguous blocks and, therefore, in practice there is not the need to

process the whole text but it suffices to end the current block in order to

have the optimal parsing (relating to that block).

4.4 Time and Space Analyses

In this section we analyze the Dictionary-symbolwise flexible parsing in

both LZ78 and LZ77-like algorithm versions.

LZ78 Case

Concerning LZ78-like algorithms, the dictionary is prefix closed and it

is implemented by using the LZW variant. We do not enter into the details

of this technique. We just recall that the cost of pointers increases by one

unit whenever the dictionary size is “close” to a power of 2. The moment

when the cost of pointers increases is clear to both encoder and decoder. In

our dictionary-symbolwise setting, we suppose that the flag information has

a constant cost. We assume therefore that it takes O(1) time to determine

the cost of a dictionary edge.

The maximal cost that a pointer can assume is smaller than log2(n)

where n is the text size. Therefore the set C of all possible costs of dictionary
edges has a logarithmic size and it is cheap to calculate.
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In [27] the operations Extend and Contract are presented. It is also

presented a linear size data structure called trie-reverse-trie-pair that allows

to execute both those operations in O(1) time. The operation Extend(w, a)

says whether the phrase wa is in the currently used dictionary. The op-

eration Contract(w) says whether the phrase w[2 : |w|] is in the current

dictionary.

Since at any position we can calculate in O(1) time the cost of an edge,

we can use the same data structure to perform our operations of Weighted-

Extend and of Weighted-Exist in constant time as follows. In order to

perform a Weighted-Extend((i, j), c) we simply execute the operation Ex-

tend(w, aj+1) with w = T [i + 1 : j], i.e. the phrase associated to the

edge (i, j), and then, if the answer is “yes”, we perform a further check

in O(1) time on the cost of the found edge (i, j + 1). Therefore, Weighted-

Extend((i, j), c) is equal to Extend(T [i+1 : j], aj+1) AND C((i, j +1))  c.

In order to perform a Weighted-Exist((i, j), c) we simply use the contract

on the phrase aiw, where w = T [i + 1 : j], and, if the answer is “yes” we

perform a further check in O(1) time on the cost of the found edge (i, j).

Therefore, Weighted-Exist(i, j, c) is equal to Contract(aiT [i + 1 : j]) AND

C((i, j))  c.

At first glance, the algorithm Build G0
A,T seems to take O(n log n)

time. But, since there is only one active cost at any position in any LZW-

like algorithms, then if c < c0 then Mc ✓ Mc0 , as stated in the following

proposition.

Definition 4.5. We say that a cost function C is LZW-like if for any i

the cost of all dictionary pointers in Di is a constant ci and that for any i,

0  i < n one has that ci  ci+1.

Proposition 4.4.1. If the cost function C is LZW-like, one has that if

c < c0 then Mc ✓Mc0.

Proof. We have to prove that for any (i, j) 2 Mc then (i, j) 2 Mc0 . Clearly

if (i, j) 2 Mc then its cost is smaller than or equal to c < c0. It remains

to prove that (i, j) is c0-supermaximal, e.g. that 8p, q 2 V , with p < i and

j < q, the arcs (p, j), (i, q) are not in Ec0 . Since (i, j) 2Mc and since the cost

of (i, j) is by hypothesis equal to ci, we have that ci  c. If arc (p, j) is in
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Ec0 then its cost is cp  ci  c and therefore it is also in Ec contradicting the

c-supermaximality of (i, j). If arc (i, q) is in Ec0 then its cost is ci  c and

therefore it is also in Ec contradicting the c-supermaximality of (i, j).

At this point, in order to build G0
A,T we proceed in an incremental way.

We build Mc for the smallest cost. Then, we start from the last built Mc to

build Mc0 , where c
0 is the smallest cost grater than c. And so on until all the

costs are examined. We insert any edge (i, j) only in the set Mc where c is

the real cost of the (i, j) edge. In this way, we avoid to insert the same edge

(i, j) in more than one Mc since that the algorithm will insert eventually

the edge (i, j) from the set Mc with the minimal cost c = C((i, j)).

A direct consequence of above approach, we have that only a linear

number of edges are inserted in the graph G0
A,T .

The overall time for building G0
A,T is therefore linear, as well as its

size. The Single Source Shortest Path over G0
A,T , that is a DAG

topologically ordered, takes linear time (see [6, Ch. 24.2]).

In conclusion we state the following proposition.

Proposition 4.4.2. Suppose that we have a dictionary-symbolwise scheme,

where the dictionary is LZ78-like and the cost function is LZW-like. The

symbolwise compressor is supposed to be, as usual, linear time. Using the

trie-reverse-trie-pair data structure, Dictionary-Symbolwise flexible parsing

is linear.

LZ77 Case

Concerning LZ77, since the dictionary has the weak prefix-closed prop-

erty, i.e. the dictionary is always prefix closed, we have that the Dictionary-

Symbolwise Flexible Parsing is an optimal parsing. We exploit the dis-

creteness of the cost function C when it is associated to the length of the

codewords of a variable-length code, like Elias codes or a Hu↵man code, to

bound the cardinality of the set C to O(log n). Indeed let us call ĉ the max-

imum cost of any dictionary pointer, i.e. the length in bits of the pointer

with the maximum possible o↵set and the maximum possible length.

Even if the cost actually depends on the text T , it usually has an upper
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bound that depends on the encoding and on the dictionary constrains and

we can assume it being ĉ = O(log n), with |T | = n.

Operations Weighted-Exist and Weighted-Extend can be implemented

in linear space and constant time by using classical suffix tree or other

solutions when the dictionary is a LZ77-like one. For instance, in [10] it is

shown how to compute the Longest Previous Factor (LPF) array in linear

time. Recall that T [i : LPF [i]] is the longest factor already seen in the text

at some position i0 < i. It is easy to see that following relations hold. The

operation Weighted-Exist (i, j, c) outputs “yes” () j  i+ LPF [i] AND

C((i, j))  c and the operation Weighted-Extend ((i, j), c) outputs “yes”

() j < i + LPF [i] AND C((i, j + 1))  c. We recall that we are also

assuming that it is possible to compute the cost of a given edge in constant

time. Therefore, we use linear time and space to build the LPF array and

then any operation Weighted-Exist or Weighted-Extend take just constant

time.

Suppose to have a dictionary-symbolwise scheme, where the dictionary

is LZ77-like and the dictionary pointer encoding, the symbolwise encoding

and the flag information encoding are any variable-length encoding one. The

use of the codeword length as cost function leads to a function that assumes

integer values. Given ĉ the maximum cost of any dictionary pointer with

ĉ  log(n), the Dictionary-Symbolwise Flexible Parsing runs in O(n log n)

time and space.

Let us notice that in most of the common LZ77 dictionary implemen-

tation, as it is in the deflate compression tool, our assumption about the

computation of edge cost in O(1) time is not trivial to obtain.

Obviously, we are interested, for compression purpose, to the smallest

cost between all the possible encoding of a phrase. For instance, the use of

the length-distance pair as dictionary pointer leads to multiple representa-

tion of the same (dictionary) phrase since this phrase can occur more then

once in the (already seen) text.

Since the closest occurrence uses the smallest distance to be represented,

the cost of encoding the phrase using this distance is usually the smallest

one, accordingly to the used encoding method.
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A practical approach that looks for the above smallest distance makes

use of hash tables, built on fixed length phrases.

A new data structure able to answer to the edge cost query in constant

time and able to support the Weighted-Exist and the Weighted-Extend op-

eration in the case of LZ-77 dictionaries will be introduced in next chapter.
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Chapter 5

The Multilayer Suffix Tree

We introduce here an online full-text index data structure that is able to

find the rightmost occurrence of any factor or an occurrence which bit repre-

sentation has equal length (Query 1). It has linear space complexity and it is

built inO(n log n) amortized time, where n is the size of the text. It is able to

answer to the Query 1, given a pattern w, in O(|w| loglog n). Furthermore,

we will show how to use this structure to support the Weighted-Exist and

the Weighted-Extend operations used by the Dictionary-Symbolwise Flexible

Parsing algorithm in O(1) amortized time.

5.1 Preliminary Definitions

Let Pos(w) ⇢ N the set of all the occurrences of w 2 Fact(T ) in the text

T 2 ⌃⇤, where Fact(T ) is the set of the factors of T . Let Offset(w) ⇢ N

the set of all the occurrence o↵sets of w 2 Fact(T ) in the text T , i.e. x 2
Offset(w) iff x is the distance between the position of an occurrence of w

and the end of the text T . For instance, given the text T = babcabbababb

of length |T | = 12 and the factor w = abb of length |w| = 3, the set of

positions of w over T is Pos(w) = {4, 9}. The set of the o↵sets of w over T

is Offset(w) = {7, 2}. Notice that x 2 Offset(w) iff exists y 2 Pos(w) such

that x = |T | − y − 1. Since the o↵sets are function of occurrence positions,

there is a bijection between Pos(w) and Offset(w), for any factor w.

Given a number encoding method, let Bitlen : N ! N a function that
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associates to a number x the length in bit of the encoding of x. Let us

consider the equivalence relation having equal codeword bit-length on the

set Offset(w). The numbers x, y 2 Offset(w) are bit-length equivalent iff

Bitlen(x) = Bitlen(y). Let us notice that the having equal codeword bit-

length relation induces a partition on Offset(w).

Definition 5.1. The rightmost occurrence of w over T is the o↵set of the

occurrence of w that appears closest to the end of the text, if w appears at

least once over T , otherwise it is not defined.

Notice that for any factor w 2 Fact(T ), the rightmost o↵set of w is

defined as follows.

rightmost(w) =

(

min{x | x 2 Offset(w)} if Offset(w) 6= ;
not defined if Offset(w) = ;

Let us notice that referring to the rightmost occurrence of a factor in an

online algorithmic fashion, where the input text is processed left to right,

corresponds to referring to the rightmost occurrence over the text already

processed. Indeed, if at a certain algorithm step we have processed the first

i symbols of the text, the rightmost occurrence of w is the occurrence of w

closest to the position i of the text reading left to right.

Definition 5.2. Let rightmost i(w) be the rightmost occurrence of w over Ti,

where Ti is the prefix of the text T ending at the position i in T . Obviously,

rightmostn(w) = rightmost(w) for |T | = n.

In many practical algorithms, like in the data compression field, the text

we are able to refer to is just a portion of the whole text. Let T [j : i] be the

factor of the text T starting from the position j and ending to the position

i. We generalize the definition of rightmost(w) over a factor T [j : i] of T as

follows.

Definition 5.3. Let rightmost j,i(w) be the rightmost occurrence of w over

T [j : i], where T [j : i] is the factor of the text T starting at the position j

and ending at the position i of length i−j+1. Obviously, rightmost1,n(w) =

rightmost(w) for |T | = n.
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The online full-text index we are going to introduce is able to answer to

the rightmost equivalent length query in constant time, also referred hereby

as Query 1. The Query 1 is more formally stated as below.

Definition 5.4. (Query 1) Let us suppose that we have a text T 2 ⌃⇤, a

pattern w 2 ⌃⇤ and a point i in time. Assume that the prefix Ti of the text

has been read. If w appears at least once in Ti, then the rightmost equivalent

length query provides an occurrence of w which o↵set is in [rightmost i(w)],

where [rightmost i(w)] is the equivalence class induced by the relation having

equal codeword bit-length containing rightmost i(w). Otherwise the rightmost

equivalent length query provides the value nil.

5.2 The Data Structure

There are many classic full-text index able to represent the set Fact(T [1 :

i]), like the suffix tree, the suffix array, the suffix automaton and others.

Many of them can easily be preprocessed in the offline fashion to make

them able to find efficiently the rightmost occurrence of any factor over the

whole text, but none of them can directly answer to the above Query 1.

The main idea of this new data structure, is based on two observations.

The first one is that the equivalence relation having equal codeword bit-length

that induces a partition on Offset(w), for any w, also induces a partition on

the set of all the possible o↵sets over a text T independently of a specific

factor, i.e. on the set [1..|T |]. The second observation is that for any en-

coding method for which the Bitlen function is a monotonic function, each

equivalence class in [1..|T |] is composed by contiguous points in [1..|T |]. In-
deed, given a point p 2 [1..|T |], the equivalence class [p] is equal to the set

[j..i], with j  p  i, j = min{x 2 [p]} and i = max{x 2 [p]}.
Putting these observations all together suggests that the Query 1 can be

addressed by a set of classic full text indexes, each one devoted to one or

more classes of equivalence of the relation having equal code bit-length.

Fixed an encoding method for numbers and a text T , we assume that

Bitlen is a monotonic function and that we know the set B = {b1, b2, . . . , bs},
with b1 < b2 < · · · < bs, that is the set of the Bitlen values of all the
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possible o↵sets over T . We define the set SW = {sw1, sw2, . . . , sws}, with
sw1 < sw2 < · · · < sws, where swi is the greatest integer (smaller than or

equal to the length of the text T ) such that Bitlen(j) is less that or equal

to bi. More formally, swi = max{j  |T | | Bitlen(j)  bi}. Notice that

sws = |T |.
All the known standard non-unary representation of numbers satisfy the

following property.

Property 5.1. There exists a constant k > 1 and an integer k̂ such that

for any k̂  i < s one has swi ≥ k swi−1

Remark 5.1. A similar result can be stated about the lengths. Let B0 =

{b01, b02, . . . , b0j}, with b01 < b02 < · · · < b0j , that is the set of the Bitlen values

of all the possible lengths over T . Notice that if we use the same encoding

for the lengths and the o↵sets then B0 = B and j = s. Analogously we

can define the set SW 0. In what follows within this thesis we will use the

same encoding for the lengths and the o↵sets and therefore the set SW 0 is

equal to SW and previous property holds for the lengths too with the same

constants k̂ and k.

Let us consider an example.

The Table 5.1 reports the Elias γ codes and the Bitlen values for integers

from 1 to 18. Suppose, for instance, that our cost function is associated to

this Elias codes and that we have a text T of length 18. The set B therefore

is B = {b1 = 1, b2 = 3, b3 = 5, b4 = 7, b5 = 9} and we have that sw1 = 1,

sw2 = 3, sw3 = 7, sw4 = 15 and sw5 = 18. Notice that, indeed, Property

5.1 is satisfied for k̂ = 2 and k = 2.

Let us now introduce the Multilayer Suffix Tree data structure.

We suppose that a text T is provided online and at time i the first i

characters of T have been read, i.e. at time i the prefix Ti of length i of the

text T has been read.

Definition 5.5. The Multilayer Suffix Tree is a data structure composed by

the set S = {Ssw1
, Ssw2

, . . . , Ssws
} of suffix trees where, for any ↵ 2 SW and

at any moment i, S↵ is the suffix tree for sliding window of Ti with sliding
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i γ(i) Bitlen(γ(i))

1 1 1

2 010 3

3 011 3

4 00100 5

5 00101 5

6 00110 5

7 00111 5

8 0001000 7

9 0001001 7

10 0001010 7

11 0001011 7

12 0001100 7

13 0001101 7

14 0001110 7

15 0001111 7

16 000010000 9

17 000010001 9

18 000010010 9

Table 5.1: Elias γ code for integers from 1 to 18 and their Bitlen value.

window of size ↵ such that S↵ represents all the factors of T [i − ↵ : i]. We

call S↵ simply the layer ↵ or the layer of size ↵.

From now on we will refer to suffix trees or layers indi↵erently.

We use a online suffix tree for sliding window introduced by Larson in

[26] and later refined by Senft in [34], in order to represent each layer of our

multilayer suffix tree. Therefore, for any S↵ 2 S = {Ssw1
, Ssw2

, . . . , Ssws
},

S↵ is a full-text index for T [i−↵ : i], where T is a given text and i is a point

in time.

We think that it is possible to adapt our data structure to work with

other classic indexes for sliding window (see for instance [22, 29, 35]).

Let us recall that in [26] an online and linear time construction for the
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suffix tree is reported. The suffix tree uses linear space w.r.t. the text size,

i.e. S↵ uses O(↵) space. Moreover, any common full-text index allows to

find an occurrence of a given pattern in constant time, but cannot be directly

used to answer to the Query 1.

Proposition 5.2.1. 1. If a pattern w is in layer ↵ with ↵ 2 SW , then w

is also in layer β for any β 2 SW with ↵  β. 2. If a pattern w is not in a

layer ↵, ↵ 2 SW , then w is not in layer β with β  ↵

Proof. The proof of the property at point 1 comes immediately from suffix

trees properties. Since layer ↵ is a full text index for T [i − ↵ : i] and layer

beta is a full-text index for T [i− β : i], for any ↵, β 2 SW with ↵  β and

for any i, T [i− ↵ : i] is a suffix of T [i− β : i]. The property at point 2 can

be deduced by point 1.

Proposition 5.2.2. Fixed a text T of size |T | = n, at any moment i with

0  i  n and for any standard variable-length code, the multilayer suffix

tree uses O(i) space.

Proof. Since at time i the maximum o↵set of all the occurrences in the text

Ti is O(i), for any standard variable-length code the maximum value of the

set SW is O(i). Since Property 5.1 holds for the set SW and since the

multilayer suffix tree space is equal to the sum of the space of its layers, as

an immediate consequence we have that space used by the multilayer suffix

tree is
P

↵2SW

↵ = O(i).

From the linear time of the online construction of the suffix tree for

sliding window and since the number of layers is |SW | = O(log |T |), we can

immediately state the following proposition.

Proposition 5.2.3. Given a text T of length |T | = n, for any standard

variable-length code, it is possible to build online the multilayer suffix tree in

O(n log n) amortized time.
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Figure 5.1: The Multilayer Suffix Tree for the text T = ababaa and for

the Elias γ-code, where B = {1, 3, 5}, SW = {1, 3, 6}. The solid edges are

regular ones and the dashed links are the suffix-links of internal nodes. For

convenience, we added edge labels with the substring of T associated to

edges. The node value is the position over the text of the incoming edge.

We omitted the string depth of nodes. Let consider, for instance, the phrase

w = “ba” with Pos(w) = {1, 3}, Offset(w) = {4, 2}, rightmost(w) = 2 and

γ(2) =010. Since w is in layer sw2 = 3 and is not in layer sw1 = 1, we have

that Bitlen(rightmost(w)) = 3 is equal to Bitlen(sw2 = 3) = b2 = 3.

5.3 On the Query 1

We want now to show how to answer to the Query 1 for a given pattern

in O(|pattern| loglog n), with n equal to the length of the text.

Proposition 5.3.1. If a pattern w is in layer β and is not in layer ↵, where

↵ is the maximum of the values in SW smaller than β, then any occurrence

of w in the layer β correctly answer to the Query 1.

Proof. If a pattern w is in layer β and is not in layer ↵, where ↵ is the
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maximum of the values in SW smaller than β, then from Prop. 5.2.1, it

follows that β is the smallest layer where it appears w. Therefore w has at

least one occurrence in T [i− β : i− ↵− 1], i.e. rightmost i(w) 2 (↵..β].

Since (↵..β] is the equivalence class [β] of the having equal codeword bit-

length relation, we have that any occurrence of w in the layer β correctly

answer to the Query 1.

Remark 5.2. Let us notice that if Sswx
is the smallest layer where rightmost i(w)

appears, then the Bitlen value of the o↵set of rightmost i(w) is equal to bx.

Using above proposition, we are able to answer to the Query 1 once we

find the smallest layer containing the rightmost occurrence of the pattern,

if any, otherwise we just report nil.

What follows is the trivial search of the smallest layer that contains an

occurrence of a given pattern.

Given a pattern w at time i, we look for w in the layer sw1, i.e. the

smallest layer. If w is in Ssw1
, then all the occurrences of w in T [i− sw1 : i]

belong to the class of the rightmost occurrence of w over T . If w is not

in Ssw1
, then we look for any occurrence of w is in Ssw2

, the next layer in

increasing order. If w is in Ssw2
, since it is not in Ssw1

, for the Prop. 5.3.1,

any occurrence of w in this layer belong to the rightmost occurrence of w

over Ti. Continuing in this way, as soon as we found an occurrence of w in

a layer, this occurrence correctly answer to the Query 1.

Proposition 5.3.2. Using the trivial search of a given pattern in the layers

on the multilayer suffix tree we are able to answer to the Query 1 in time

proportional to the pattern size times the cardinality of the set SW .

Since many of the classic variable-length codes for integers, like the

Elias’s γ-codes, produce codewords of length proportional to the logarithm

of the represented value, we can assume that the cardinality of SW is

O(log |T |). Since that |Ti| = i, in the online fashion, we have that above

proposition becomes as follows.

Proposition 5.3.3. Using any classic variable-length code method, the above

data structure is able to answer to the Query 1 in O(|pattern| log i) time.

74



A similar result can be obtained by using a variant of the Amir et al. al-

gorithm presented [1], but it does not supportWeighted-Exist andWeighted-

Extend operations in constant time.

Since Prop. 5.2.1 holds for the layers of our data structure, we can use

the binary search to find the smallest layer containing a given pattern. Since

for any classic variable-length code |SW | = O(log i), the number of layers

in our structure is O(log i) and the proof of following proposition comes

straightforward.

Proposition 5.3.4. Using any classic variable-length code, at any time i

the multilayer suffix tree is able to answer to the Query 1 for a given pattern

in O(|pattern| log log i) time.

5.4 On Weighted-Exist and Weighted-Extend

Let us now focus on the Weighted-Exist and on the Weighted-Extend op-

erations used by the Dictionary-Symbolwise Flexible Parsing algorithm. We

want to show how to use the multilayer suffix tree to support the Weighted-

Exist and the Weighted-Extend operations in amortized constant time when

the dictionary is LZ77-like. For simplicity in the following we focus on the

case of LZ77 dictionary with unbounded size. The case of LZ77 dictionary

with bounded size, like in the original LZ77 case, is a simple generalization

of the unbounded case that comes from the sliding window capability of the

layers of the multilayer suffix tree. Indeed, the unbounded case is the special

case of the bounded dictionary where the search bu↵er size is greater than

or equal to the text size.

We assume that the Dictionary-Symbolwise Flexible Parsing has to parse

the text T and that at any time i with 0  i  |T |, the dynamic dictionary

Di is represented by the multilayer suffix tree of Ti.

Let us consider a run of the Find Supermaximal algorithm described in

Section 4.1 and reported for convenience in Table 5.4, where c is a fixed

value.

Recall that the cost of any dictionary phrase w 2 Di associated to the

edge (i, j) 2 GA,T is given by the cost of the flag information Fd for the dic-
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Find Supermaximal(c)

01. i 0, j  0,Mc  ;
02. WHILE j < n DO

03. j  j + 1

04. WHILE i < j AND Weighted-Exist(i, j, c) = “no” DO

05. i i+ 1

06. ENDWHILE

07. IF i < j THEN

08. WHILE Weighted-Extend ((i, j), c) = “yes” DO

09. j  j + 1

10. ENDWHILE

11. INSERT ((i, j),Mc)

12. ENDIF

13. ENDWHILE

14. RETURN MC

Table 5.2: The pseudocode of the Find Supermaximal algorithm as in the

Table 4.1 of Page 52.

tionary phrases plus the cost of the encoding of the dictionary pointer. Let

us consider Fd constant within this section. Moreover, since any dictionary

pointer in LZ77-like algorithms is encoded by the couple (length,offset) as

described in Section 2.2, the cost of the encoding of a dictionary pointer

is equal to the cost of the encoding of the length of the dictionary phrase

plus the cost of the encoding of the o↵set of the rightmost occurrence of the

phrase inside the dictionary.

Let us recall that for any cost value c and for any phrase w 2 Di as-

sociated to the edge (i, j) in GA,T with w = T [i + 1 : j], the operation

Weighted-Extend((i, j), c) finds out whether the phrase wa = T [i+1 : j+1]

is in Di and the cost of the edge (i, j + 1) in GA,T is smaller than or equal

to c. Let us also recall that given i, j with 0  i < j  n and a cost value

c, the operation Weighted-Exist(i, j, c) finds out whether or not the phrase

w = T [i+1 : j] is in Di and the cost of the corresponding edge (i, j) in GA,T

is smaller than or equal to c.
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Therefore, we can summarize as it follows.

C((i, j)) = C(Fd) + Bitlen(|w|) + Bitlen(rightmost i(w))

Weighted-Exist(i, j, c) = “yes” () T [i+ 1 : j] is in Di and C((i, j))  c

Weighted-Extend((i, j), c) = “yes” () T [i+ 1 : j + 1] is in Di and C((i,

j + 1))  c

Notice that previous statements depend on rightmost i(w) that cannot be

found in constant time. Notice also that we could use Query 1 of w instead

of rightmost i(w), since they have equal Bitlen values. Unfortunately, also

the Query 1 cannot be done in constant time. Indeed, using the Query 1 we

can perform any of the needed operations in O(|w| log log i) time.

The idea to perform these operations in constant time is based on the

observation that we don’t actually need to know the cost of the given edge,

but we can just check if a phrase is in a specific layer of our data structure

that is the greatest layer that satisfy the C((i, j))  c inequality.

Since for any swk 2 SW there is a bk 2 B associated to it by definition

of SW , we can restate the operations as it follows.

Weighted-Exist(i, j, c) = “yes” () 9 k such that T [i+ 1 : j] = w is in the

layer swk and C(Fd) + Bitlen(|w|) + bk  c

Weighted-Extend((i, j), c) = “yes” () 9 k such that T [i+ 1 : j + 1] = wa

is in the layer swk and C(Fd) + Bitlen(|wa|) + bk  c

Definition 5.6. Let be L(w, c) = max{k | C(Fd) + Bitlen(|w|) + bk  c}.

Let us notice that an edge has cost less than or equal to c if and only if

the phrase associated to this edge is in the layer swL(w,c). More formally,

Proposition 5.4.1. Let be (i, j) 2 GA,T . We have that for any c, C((i, j)) 
c () w = T [i+ 1 : j] is in the layer swL(w,c).

Proof. The phrase w is the dictionary phrase associated to the edge (i, j).

If (i, j) is in GA,T , then w is in Di. Let us call swp 2 SW the smallest
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layer where w appears. For the Prop. 5.2.1 we have that w is also in all

the layers swx with swx ≥ swp. If C((i, j))  c, then for some value bk we

have that C(Fd) + Bitlen(|w|) + bk  c. From the definition of L(w, c) we

have that bL(w,c) is the greatest cost that satisfies the cost inequality and

swL(w,c) is the layer associated to it. We have that swL(w,c) ≥ swp. Indeed,

by contradiction, if swL(w,c) < swp, then bL(w,c) < bp and bp does not satisfy

the cost inequality, i.e. C(Fd) + Bitlen(|w|) + bp > c. This contradicts

C((i, j))  c. This completes the “if” part of the proof.

If w is in layer swL(w,c), then w is in Di and by definition of L(w, c), we

have that C(Fd) +Bitlen(|w|) + swL(w,c)  c. Therefore, we have that (i, j)

is in GA,T by definition of GA,T and since bL(w,c) is the maximum cost that

satisfies the cost inequality, we have that C((i, j))  C(Fd) + Bitlen(|w|) +
swL(w,c)  c. This concludes the proof.

Corollary 5.4.2.

Weighted-Exist(i, j, c) = “yes” () T [i+ 1 : j] = w is in the layer

swL(w,c)

Weighted-Extend((i, j), c) = “yes” () T [i+ 1 : j + 1] = wa is in the

layer swL(wa,c)

Let us show how to associate a point in our data structure to a pattern.

Since that edges in suffix trees may have labels longer than one character,

the ending point of a pattern may be either a node or a point in the middle

of an edge. A classic notation to refer to a general point in a suffix tree is a

triple composed by a locus, a symbol and an o↵set. The locus is the node

closest to the point on the path from the root, the symbol is the discriminant

character between the outgoing edges of the locus, and the o↵set tells how

many characters in the edge precede the point.

More formally, given a pattern w 2 Fact(T ), let ST be the suffix tree

for the text T . Let be w = uv, with u, v 2 Fact(T ), where u is the longest

prefix of w ending at a node p in ST and v is the prefix of the edge where

the pattern w ends out. Let call p the locus of w, |v| the o↵set and v[1] the

discriminant character between the outgoing edges of p. If w ends to a node
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in ST , then w = u✏, this node is the locus p, the length is equal to 0 and the

symbol is any c 2 ⌃.

In the multilayer suffix tree we denote by P (pattern, x ) the point of the

given pattern in the layer swx.

Constant Case

Let us notice that if, for any w 2 ⌃⇤, C(Fd) and Bitlen(|w|) are constant
along a run of the Find Supermaximal(c) algorithm, then also L(w, c) = L

is a constant. It would be easy to obtain an amortized constant time for

our operations. Let us take a closer look to this case and let us show how

to perform the Weighted-Exist and the Weighted-Extend operations.

Let suppose to have a pointer to P (w,L) in our data structure for the

text Ti, with w = T [i+ 1 : j]. Let us define the procedure Find as in Table

5.3. In order to perform a Weighted-Extend((i, j), c) we use the procedure

Find(j + 1). In order to perform a Weighted-Exist(i, j, c) we use the pro-

cedure Find(j). The correctness of this approach immediately follows from

Corollary 5.4.2.

Essentially, we handle a point p in the layer swL. A Weighted-Extend

corresponds to read a character in the layer swL. A Weighted-Exist corre-

sponds to follow a suffix-link from the locus of the point p together with the

skip-count trick (see [19, Sec. 6.1.3]) and to read one character. The time

spent to do the two operations Weighted-Extend and Weighted-Exist in this

way turns out to be amortized constant.

We are here using standard techniques concerning suffix trees.

For the purists, we report in the Appendix B all the details concerning

how to use the procedure Find inside the algorithm Find Supermaximal

together with the adapted pseudocode and the proof of correctness and

time analysis.

From the time analysis in Appendix B next proposition directly follows.

Proposition 5.4.3. Let c be a cost value and L a constant. The Weighted-

Exist and the Weighted-Extend operations of the Find Supermaximal(c)

algorithm are performed in amortized constant time by using the multilayer

suffix tree data structure.
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Find(k)

1. a T [k]

2. IF Succ(p, a) 6= nil THEN

3. p Succ(p, a)

4. RETURN “yes”

5. ELSE

6. p Suff (p)

7. RETURN “no”

8. ENDIF

Succ(P (w, k), a)

1. IF wa is in layer swk THEN

2. RETURN P (wa, k)

3. ELSE

4. RETURN nil

5. ENDIF

Suff (P (aw, k))

1. RETURN P (w, k)

Table 5.3: The pseudocode of the Find procedure and its subroutines. The

Succ(p, a) routine reads the character a starting from the point p in constant

time. The Suff (p) routine finds the point of the longest proper suffix of p

by using one suffix-link and the skip-count trick in O(1) amortized time.

General Case

In previous subsection we showed how to perform the two operations

Weighted-Extend and Weighted-Exist used inside the algorithm Find Super-

maximal in amortized constant time by using the multilayer data structure

under one hypothesis. The hypothesis is that Bitlen(|w|) (and therefore

L(w, c)) is constant.

In this subsection we want to extend this result to the general case.

Here we consider just one cost c. The algorithm that we will describe in the
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following is immediately parallelizable to all costs to support the Dictionary-

Symbolwise Flexible Parsing algorithm.

In the general case, along a run of the Find Supermaximal algorithm,

since L(w, c) may change following Bitlen(|w|) changes, we may have to

change layer while we move the point p. The main goal of what we are going

to describe is that we can handle the layer changes in amortized constant

time by using just two points instead of one. The following description is

informal but rigorous.

Let p, q be two points in our data structure. Fixed a cost c, the Find

Supermaximal algorithm set i = 0 and j = 0 (that means that the text is

just starting). The points p and q are set to be equal to the root of the layer

swL(✏,c), where ✏ is the empty word. Let be L(✏, c) = L. We assume that

we can calculate L(w, c), Bitlen(|w|) and therefore bL(w,c) in constant time,

that is an absolutely natural hypothesis that is verified for standard Variable-

Length Codes. The algorithm starts to perform the operations Weighted-

Extend((i, j), c) and Weighted-Exist(i, j + 1, c) in the order described by

the algorithm Find Supermaximal. As described in previous subsection, we

support these operations and we maintain p = q = P (w,L) in the same

layer swL until L(w, c) changes, i.e. until when L(w, c) = L0 with L 6= L0.

Whenever L(w, c) changes from L to L0, we maintain q on the layer L and

we move p to the layer L0. Roughly speaking, swL0 is the current layer and

swL is the previous layer. This simple dynamic programming trick allows

to save time when L(w, c) turns back to its previous value. In this case we

just swap p and q. Otherwise, when swL0 is di↵erent from the layer of q,

we firstly save p by using q, i.e. we set q equal to p, and then we set p to

be equal to P (w,L0). In order to reach the point P (w,L0), we simply start

reading w from the root of the layer swL0 in O(|w|) time. We will see in

the time analysis that this quantity can be amortized to a constant in the

overall run of the algorithm.

Notice that for L0  L, i.e. when the new layer swL0 is smaller than the

layer swL, we have that if w is in swL0 , then w is also in swL for the Prop.

5.2.1. In this case, we can maintain p = P (w,L0) and q = P (w,L) as stated

before. Otherwise, for L0 > L and w is in sw0
L, we have not guarantees that

81



w is in swL. In this case we let q points to the longest prefix of w in swL.

Therefore, if v is the longest prefix of w in swL, then we set q = P (v, L).

As soon as a new Weighted-Extend or a new Weighted-Exist operation is

accomplished, we maintain q to the longest prefix of w.

Since v is a prefix of w, the number of steps used to reach P (v, L) in

the layer swL is less than or equal to the number of steps needed to reach

P (w,L). Furthermore, the number of steps used later to keep q to the

longest prefix of w is less or equal to the number of steps saved before.

The redefined Find procedure in Table 5.4 is in charge of handling the

p, q points as described. The same table reports also some subroutines.

We present the time analysis of the overall pointer handling.

From the above description and from the results of previous subsection,

we have that the overall time to move two pointers p and q inside the mul-

tilayer suffix tree inside two fixed layers is linear on the size of the text. Let

Lp be the cost of the phrase pointed by p and Lq the cost of the phrase

pointed by q. Let us now focus on the steps used to move p and q from a

layer to another. Since q simply follows point p, we focus just on the pointer

p. Two cases are possible. If L(w, c) = Lq, then p is set to q in constant

time. Otherwise, L(w, c) 6= Lq and we have to move p from P (✏, L(w, c))

to P (w,L(w, c)) in O(|w|) time. We want to show that these O(|w|) steps

are amortizable over the number of algorithm steps between two consecutive

change of L(w, c).

Suppose that a change of L(wt, c) happens at time it with j = jt, wt =

T [it + 1 : jt] of length h = |wt|. Suppose that the first changes after time it

happens at time it0 with j = jt0 , wt0 = T [it0 + 1 : jt0 ] of length h0 = |wt0 |.
If h0 > h, then, from the Property 5.1 and the Remark 5.1, we have

that h0 ≥ k h unless h0  k̂, where k̂ is a constant and there is no need of

amortizing. Notice that, from time it to time it0 , the algorithm do (it0 −
it + jt0 − jt) ≥ (h0 − h) steps. We amortize the O(|wt0 | = h0) steps of the

pointer p over the (h0 − h) steps of the Find Supermaximal algorithm. For

each algorithm step we make at most

h0

h0 − h
 k

k − 1
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steps on the multilayer suffix tree. Indeed, from h0 ≥ k h follows

h

h0
 h

k h
=

1

k
) 1− h

h0
≥ 1− 1

k
) 1

1− h
h0

 1

1− 1
k

) h0

h0 − h
 k

k − 1

where k
k−1 is the amortization constant over the h0 − h last algorithm

steps.

If h0 < h, then h0  1
k
h. Therefore, for each algorithm step we make at

most
h0

h− h0
 1

k − 1

steps on the multilayer suffix tree. This complete the time analysis. The

following theorem is an immediate consequence of this time analysis.

Proposition 5.4.4. The total number of steps on the multilayer suffix tree

used to perform all the Weighted-Exist and the Weighted-Extend operations

of a run of the Find Supermaximal(c) algorithm is linear on the size of the

text. Therefore, the multilayer suffix tree uses amortized constant time for

any operation.

Analogously to what done in Subsection 5.4 concerning cost paralleliza-

tion, we extend above proposition to the Dictionary-Symbolwise Flexible

Parsing as it follows.

Corollary 5.4.5. The multilayer suffix tree supports the Weighted-Exist

and the Weighted-Extend operations inside the Dictionary-Symbolwise Flex-

ible Parsing algorithm in amortized constant time.
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Find(k)

01. L L(T [i+ 1 : k], c)

02. IF Lp = L THEN

03. RETURN Sub-Find(k)

04. ELSE

05. IF Lq 6= L THEN

06. gap k − 1− i+ 1

07. Lq  L

08. q  P (✏, L)

09. Fillgap(k − 1)

10. ENDIF

11. IF gap = 0 THEN

12. Swap()

13. RETURN Sub-Find(k)

14. ELSE

15. p Suff (p)

16. q  Suff (q)

17. Fillgap(k − 1)

18. RETURN “no”

19. ENDIF

19. ENDIF

Succ(P (w, k), a)

1. IF wa is in layer swk THEN

2. RETURN P (wa, k)

3. ELSE

4. RETURN nil

5. ENDIF

Sub-Find(k)

01. a T [k]

02. IF Succ(p, a) 6= nil THEN

03. p Succ(p, a)

04. gap gap+ 1

05. Fillgap(k)

06. RETURN “yes”

07. ELSE

08. p Suff (p)

09. q  Suff (q)

10. Fillgap(k − 1)

11. RETURN “no”

12. ENDIF

Fillgap(k)

1. t Succ(q, T [k − gap+ 1])

2. WHILE gap > 0 & t 6= nil DO

3. q  t

4. gap gap− 1

5. t Succ(q, T [k − gap+ 1])

6. ENDWHILE

Swap()

1. Swap p and q

2. Swap Lp and Lq

Suff (P (aw, k))

1. RETURN P (w, k)

Table 5.4: The pseudocode of the redefined Find procedure and its subrou-

tines. Variables Lp, Lq, p, q, gap and i are variables of the Find Supermaxi-

mal algorithm. Lp and Lq are initialized to L(✏, c), p and q are initialized

to P (✏, Lp) and the gap counter is initialized to 0. Notice that Find begins

always with p = P (T [i− 1 : k− 1], Lp) and q = P (T [i− 1 : k− 1− gap], Lp).
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Chapter 6

Conclusion

In this thesis we present some advancement on dictionary-symbolwise

theory. We describe the Dictionary-Symbolwise Flexible Parsing, a parsing

algorithm that extends the Flexible Parsing (see [28]) to variable costs and

to the dictionary-symbolwise domain. We prove its optimality for prefix-

closed dynamic dictionaries under some reasonable assumption. Dictionary-

Symbolwise Flexible Parsing is linear for LZ78-like dictionaries. In the case

of LZ77-like dictionary, we obtain the O(n log n) complexity as authors of

[17] recently did by using a completely di↵erent subgraph, where n is the

text size.

We introduce the Multilayer Suffix Tree data structure that is able to

represent the LZ77 dictionary in O(n) space and O(n log n) building time.

This data structure is also able to perform the cost-based queries of the

Dictionary-Symbolwise Flexible Parsing algorithm in amortized constant

time.

We also prove that dictionary-symbolwise compressors can be asymptot-

ically better than optimal pure dictionary compressors in terms of compres-

sion ratio.

Furthermore, we ultimately prove the optimality of the greedy parsing for

LZ77-like dictionary under the uniform cost assumption about the encoding

of dictionary-phrases.

Last but not least, ourDictionary-Symbolwise Flexible Parsing algorithm

allows to couple classical LZ-like compressors with several symbolwise meth-
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ods to obtain new dictionary-symbolwise algorithms with proof of parsing

optimality.

We conclude this thesis with two open problems.

1. Theoretically, LZ78 is better on memoryless sources than LZ77. Ex-

perimental results say that when optimal parsing is in use it happens the

opposite. To prove this fact both in pure dictionary case and in dictionary-

symbolwise case.

2. Common symbolwise compressors are based on the arithmetic coding

approach. When these compressors are used, the costs in the graph are al-

most surely noninteger and, moreover, the graph is usually not well defined.

The standard workaround is to use an approximation strategy. A big goal

should be finding an optimal solution for these important cases.

86



Bibliography

[1] Amihood Amir, Gad M. Landau, and Esko Ukkonen. Online times-

tamped text indexing. Information Processing Letters, 82(5):253 – 259,

2002.

[2] Richard Arratia and Michael S. Waterman. The Erdös-Rényi strong law
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[28] Yossi Matias and Süleyman Cenk Sahinalp. On the optimality of pars-

ing in dynamic dictionary based data compression. In SODA, pages

943–944, 1999.

[29] Joong Chae Na, Alberto Apostolico, Costas S. Iliopoulos, and Kunsoo

Park. Truncated suffix trees and their application to data compression.

Theor. Comput. Sci., 304:87–101, July 2003.

[30] David Salomon. Data compression - The Complete Reference, 4th Edi-

tion. Springer, 2007.

[31] David Salomon. Variable-length Codes for Data Compression. Spring-

er-Verlag, 2007.

[32] Khalid Sayood. Introduction to Data Compression. Morgan Kaufmann,

1996.

[33] Ernst J. Schuegraf and H. S. Heaps. A comparison of algorithms for data

base compression by use of fragments as language elements. Information

Storage and Retrieval, 10(9-10):309–319, 1974.

[34] Martin Senft. Suffix tree for a sliding window: An overview. In Pro-

ceedings of WDS’05, Part 1, pages 41–46, 2005.
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Appendix A

Experiments

We now discuss about some experiments. Readers must keep into ac-

count that the results of this thesis are mainly theoretical and that they

apply to a very large class of compression algorithms. Due to this, the use

of di↵erent methods of encoding for dictionary pointers as well as for sym-

bolwise encoding and for the flag information encoding together with the

dictionary constrains leads to di↵erent performances. Performances about

time and space are strongly dependent on the programming language in use

and on the programmers abilities. Therefore we decided to focus only on

compression ratio.

Here we discuss two particular cases that allow to compare our results

with some well know commercial compressors. The first one is related to

LZ78-like dictionary and a Hu↵man code. The second one concerns LZ77-

like dictionaries with several window sizes and a Hu↵man code. We compare

the obtained compression ratio with the gzip, zip and cabarc compression

tools. The encoding method in use is a semi static Hu↵man code.

In the first experiment, using a simple semi static Hu↵man code as sym-

bolwise compressor, we improved the compression ratio of the Flexible Pars-

ing with LZW-dictionary by 3 to 5 percent on texts such as the bible.txt file

or the prefixes of English Wikipedia data base (see Table A.1). We obtain

that the smaller is the file the greater is the gain.

We have experimental evidence that many of the most relevant LZ77-like

commercial compressors are, following our definition, dictionary-symbolwise
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File (size) bible.txt (4047392 Byte) enwik (100 MB)

gzip -9 29.07% 36.45%

lzwfp 30.09% 35.06%

lzwhds 25.84% 31.79%

Table A.1: Compression ratio comparison of some LZW-like compressors

and the gzip tool. (gzip -9 is the gzip compression tool with the -9 pa-

rameter for maximum compression. lzwfp is the Flexible Parsing algo-

rithm of Matias-Rajpoot-Sahinalp with a LZW-like dictionary. lzwhds is

our Dictionary-Symbolwise Flexible Parsing algorithm with LZW-like dic-

tionary and a Huffman code.)

File (size) bible.txt (4047392 Byte) enwik (100 MB)

gzip -9 29.07% 36.45%

gzip by 7zip 27.44% 35.06%

zip by 7zip 25.99% 33.72%

cabarc 22.13% 28.46%

lzhds-32KB 27.47% 35.02%

lzhds-64KB 26.20% 33.77%

lzhds-2MB 22.59% 28.82%

lzhds-16MB 22.51% 26.59%

Table A.2: Compression ratio comparison of some LZ77-like compressors.

(gzip -9 is the gzip compression tool with the -9 parameter for maximum

compression. gzip by 7zip is the gzip compression tool implemented in the

7-Zip compression suite. zip by 7zip is the 7-Zip implementation of the zip

compression tool. cabarc is the MsZip cabinet archiving tool also known as

cabarc (version 5.1.26 with -m lzx:21 option used). lzhds-x is our Dictionary-

Symbolwise Flexible Parsing with LZ77-like dictionary of different dictionary

sizes, as stated in the suffix of the name, and a Huffman code.)
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File (size) bible.txt (4047392 Byte) enwik (100 MB)

gzip -9 / lzhds-32KB 105.82% 104.08%

gzip by 7zip / lzhds-32KB 99.89% 100.11%

zip by 7zip / lzhds-64KB 99.19% 99.85%

cabarc / lzhds-2MB 97.96% 98.75%

Table A.3: Ratio between the compression ratio of different LZ77-like com-

pressors. All the involved compressors, except for the gzip one, seam to

have an optimal parsing strategy. (See Table A.2 caption for compressor

descriptions.) Notice that on each row there are compressors having the

same windows size.

algorithms and they use an optimal parsing (see Table A.2 and Table A.3).

In Table A.3 is shown the ratio between compression performances of com-

pressors with similar constrains and encoding. Indeed, gzip and lzhds-32KB

use a LZ77-like dictionary of 32KB, zip and lzhds-64KB have dictionary size

of 64KB. cabarc and lzhds-2MB use 2MB as dictionary size. They all use

a Huffman code. We notice that a difference of about 5 percent is due to

parsing optimality while small differences of about 2 percent are due to im-

plementation details like different codeword space and different text block

handling. We think that gzip and zip implementations in the 7-Zip com-

pression suite and cabarc have an optimal parsing, even if this fact is not

clearly stated or proved.

95



96



Appendix B

Time Analysis of the

Constant Case

We present the time analysis of the Find Supermaximal algorithm vari-

ant for the constant Bitlen(|w|) case, defined as in Table B.1, where the

Weighted-Exist and the Weighted-Extend operations are done by using the

Find procedure of the Multilayer Suffix Tree of Ti.

For a fixed text T , let us define the set J = {j0, j1, . . . , jq} ⇢ [0..n] to

be the set of the j values after each of the positive answer of the Weighted-

Exist(i, j, c) operations in the Find Supermaximal algorithm for a fixed inte-

ger (c). Notice that, since at each step of the Find Supermaximal algorithm

either i or j is increased and they are never decreased, we have that for each

jp 2 J there exists one and only one value i such that Weighted-Exist(i, j, c)

gives a positive answer. For any jp 2 J , let us call ip such corresponding

value.

We want to show how to perform the Weighted-Exist and the Weighted-

Extend operations from the generic step jp to the step jp+1 with 0  p < q.

In the meantime, we want to proof following proposition.

Proposition B.0.6. If at time ip we have a pointer P (w,L) such that

w = T [ip + 1 : jp], then at time ip+1 we will have correctly computed the

pointer P (w,L) with w = T [ip+1+1 : jp+1] using at most ip+1−ip+jp+1−jp
steps on our data structure.
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Proof. The proof is by induction on p. For p = 0, let j0 be the first element

in J .

When i = j, T [i + 1 : j] = ✏ by definition. P (✏, L) is the pointer

to the root of the layer swL. From a simple analysis of the pseudocode

of Find Supermaximal in Table 4.1 we have that i0 = j0 − 1. Therefore,

Weighted-Exist(i, i + 1, c) returns a positive answer as soon as there is a

character T [i + 1] 2 Di. In order to perform this check, we maintain the

pointer P (✏, L) fixed to the root of the layer L and we just check for an

outgoing edge starting with the character a = T [i+ 1] in constant time for

0  i  i0 = j0 − 1. Once that i = i0, we move in constant time P (✏, L)

to P (a, L). So, for p = 0 and consequently at time i0, we have the pointer

P (a, L) such that a = T [i0 + 1 : j0] and Weighted-Exist(i0, j0, c) gives a

positive answer. This is the base of the induction.

The inductive hypothesis is that for a generic p < q, i.e. at time ip, we

have the pointer P (w,L) to w in the layer swL with w = T [ip + 1 : jp] and

L = L(w, c) for any w. At time ip, the Find Supermaximal algorithm has

successfully done Weighted-Exist(ip, jp, c), i.e. the edge (i, j) is in GA,T and

C(i, j)  c with i = ip and j = jp.

We want to proof for p+ 1 that we can find P (T [ip+1 + 1 : jp+1], L).

We consider the steps from time ip to the time ip+1. At time ip we

have P (w,L) with w = T [ip + 1 : jp] by inductive hypothesis. Since that

the algorithm has yet successfully done Weighted-Exist(i, j, c) with i = ip

and j = jP , it now performs a series of Weighted-Extend((i, j), c) operations

for increasing values of j, until it found a j such that (i, j) is in GA,T

with C(i, j)  c and (i, j + 1) is not. In order to perform such series of

operations we have just to check, for any j, if wa is in the layer L(wa, c),

where a = T [j + 1] is the j + 1-th character of T . Since we are assuming

L(w, c) constant, we have that L(wa, c) = L(w, c) = L and we have just

to check if an a can be read starting from the point P (w,L). If there

is an a after P (w,L), then (i, j + 1) is in Di with C(i, j + 1)  c and

the Weighted-Extend((i, j), c) returns ”yes”. We also let P (w,L) become

P (wa,L) and the algorithm increase the value of j of an unit. If there is

not an a after P (w,L), then Weighted-Extend((i, j), c) returns ”no” and the

series of Weighted-Extend terminate.
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At this point, the algorithm starts a series ofWeighted-Exist(i+1, j+1, c)

increasing the value of i, until Weighted-Exist(i+ 1, j + 1, c) returns ”yes”.

Notice that the edge (i + 1, j) represents the longest proper suffix of w

and since the dictionary has the strong suffix-closed property (see Corollary

3.3.2), (i+ 1, j) is in Di. Let u be such suffix of w. Since the cost function

C is prefix-nondecreasing, we know that C(i + 1, j)  C(i, j) and then u is

in the layer swL(w,c). We move P (w,L) to P (u, L) in amortized constant

time by using standard property of suffix trees.

Since we have P (u, L), in order to perform the operation Weighted-

Exist(i+1, j+1, c), we have just to check if there is an a after P (u, L), where

a is equal to T [j+1]. As we have already seen, we can check this in constant

time. If there is not an a after P (u, L) the Weighted-Exist(i + 1, j + 1, c)

returns ”no”. The algorithm increases the value of i of an unit and we move

again P (u, L) to its longest proper suffix. Otherwise, If there is an a after

P (u, L) the Weighted-Exist(i+ 1, j + 1, c) returns ”yes”.

The algorithm now increases i and j by one. Since last Weighted-Exist

operation returned ”yes”, we know that ua 2 Di, where ua is the dictionary

phrase associated to the edge (i, j). Therefore we can move P (u, L) to

P (ua, L). Since this is the first positive Weighted-Exist answer after ip, we

know that current value of i, j are i = ip+1 and j = jp+1. Since ua is equal

to T [i+ 1 : j], this concludes the proof.
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Find Supermaximal(c, L)

01. i 0, j  0,Mc  ;, p P (✏,L)

02. WHILE j < n DO

03. j  j + 1

04. WHILE i < j AND Find(j) =“no” DO

05. i i+ 1

06. ENDWHILE

07. IF i < j THEN

08. WHILE Find(j + 1) = “yes” DO

09. j  j + 1

10. ENDWHILE

11. INSERT ((i, j),Mc)

12. ENDIF

13. ENDWHILE

14. RETURN MC

Find(k)

1. a T [k] 1. IF Succ(p, a) 6= nil THEN

2. p Succ(p, a)

3. RETURN “yes”

4. ELSE

5. p Suff (p)

6. RETURN “no”

7. ENDIF

Succ(P (w, k), a)

1. IF wa is in layer swk THEN

2. RETURN P (wa, k)

3. ELSE

4. RETURN nil

5. ENDIF

Suff (P (aw, k))

1. RETURN P (w, k)

Table B.1: The pseudocode of the Find Supermaximal algorithm for the

constant Bitlen(|w|) case, together with the Find procedure and its subrou-

tines. The Succ(p, a) routine reads the character a starting from the point

p in constant time. The Suff (p) routine find the point of the longest proper

suffix of p by using one suffix-link and the skip-count trick in amortized

constant time.
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