Ionization impact on molecular clouds and star formation Numerical simulations and observations - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2012

Ionization impact on molecular clouds and star formation Numerical simulations and observations

Impact de l'ionisation sur les nuages moléculaires et la formation des étoiles Simulations numériques et observations

Pascal Tremblin

Résumé

At all the scales of Astrophysics, the impact of the ionization from massive stars is a crucial issue. At the galactic scale, the ionization can regulate star formation by supporting molecular clouds against gravitational collapse and at the stellar scale, indications point toward a possible birth place of the Solar System close to massive stars. At the molecular cloud scale, it is clear that the hot ionized gas compresses the surrounding cold gas, leading to the formation of pillars, globules, and shells of dense gas in which some young stellar objects are observed. What are the formation mechanisms of these structures? Are the formation of these young stellar objects triggered or would have they formed anyway? Do massive stars have an impact on the distribution of the surrounding gas? Do they have an impact on the mass distribution of stars (the initial mass function, IMF)? This thesis aims at shedding some light on these questions, by focusing especially on the formation of the structures between the cold and the ionized gas. We present the state of the art of the theoretical and observational works on ionized regions (H ii regions) and we introduce the numerical tools that have been developed to model the ionization in the hydrodynamic simulations with turbulence performed with the HERACLES code. Thanks to the simulations, we present a new model for the formation of pillars based on the curvature and collapse of the dense shell on itself and a new model for the formations of cometary globules based on the turbulence of the cold gas. Several diagnostics have been developed to test these new models in the observations. If pillars are formed by the collapse of the dense shell on itself, the velocity spectrum of a nascent pillar presents a large spectra with a red-shifted and a blue-shifted components that are caused by the foreground and background parts of the shell that collapse along the line of sight. If cometary globules emerge because of the turbulence of the molecular cloud, the velocity spectrum of these globules is shifted at different velocities than the velocity of the shell, pillars and clumps that follow the global expansion of the H ii region. An other diagnostic is the impact of the compression on the probability density function (PDF) of the cold gas. The distribution is double peaked when the turbulent ram pressure is low compared to the ionized-gas pressure. This is the signature of the compression caused by the expansion of the ionized bubble. When the turbulence is high, the two peaks merge and the compression can still be identified although the signature is less clear. We have used Herschel column density maps and molecular-line data to characterize the density and velocity structures of the interface between the ionized and the cold gas in several regions: RCW 120, RCW 36, Cygnus X, the Rosette and Eagle Nebulae. In addition to the diagnostics derived from the simulations, analytical predictions of the shell and pillar parameters was tested and confronted to the observations. In all the regions, we have seen that there is a good agreement with the analytical models and with the simulation diagnostics. The velocity structure of a nascent pillar in the Rosette Nebula suggests that it has been formed by the collapse of the shell on itself and the bulk velocity of cometary globules in Cygnus X and in the Rosette Nebula tends to confirm their turbulent origin. The compression caused by the ionized gas can be seen on the PDF of the cold gas in most of the regions studied. This result is important for the link between the IMF and the global properties of the cloud. If the IMF can be derived from the PDF of a cloud, the impact of the massive stars on the PDF has to be taken in account. Furthermore, we present dedicated simulations of RCW 36 that suggest that the dense clumps at the edge of the ionized gas are not pre-existing, it is likely that their formation was triggered by the compression caused by the ionization. Therefore the ionization from the massive stars is a key process that has to be taken into account for the understanding of the IMF. We also present in appendix other works that have been done in parallel of this thesis: the charge exchange in colliding planetary and stellar winds in collaboration with Prof. E. Chiang during the ISIMA summer school 2011 in Beijing; and the sub-millimeter site testing at the Concordia station in Antarctica with the CAMISTIC team (PI: G. Durand).
À toutes les échelles de l'Astrophysique, l'impact de l'ionisation venant des étoiles massives est une question cruciale. A l'échelle galactique, l'ionisation peut réguler la formation des étoiles en soutenant les nuages moléculaires contre l'effondrement gravitationnel et à l'échelle stellaire, diverses indications pointent vers une naissance possible du système solaire à proximité des étoiles massives. À l'échelle du nuage moléculaire, il est clair que le gaz chaud et ionisé comprime le gaz froid qui l'entoure, conduisant à la formation des piliers, des globules, et des coquilles de gas dense dans lesquelles des coeurs pré-stellaires sont observés. Quels sont les mécanismes de formation de ces structures? La formation de ces coeurs pré-stellaires est-elle déclenchée par l'ionisation ou préexistante ? Les étoiles massives ont-elles un impact sur la distribution en densité du gaz environnant ? Ont-elles un impact sur la distribution des étoiles en fonction de leur masse (la fonction de masse initiale, IMF) ? Cette thèse vise à apporter des éléments de réponse à ces questions, en se concentrant en particulier sur la compréhension de la formation des structures entre le gaz froid et ionisé. Nous présentons l'état de l'art des travaux théoriques et des observations des régions ionisées (régions Hii) et nous introduisons les outils numériques qui ont été développés pour modéliser l'ionisation dans les simulations d'hydrodynamique turbulente effectuées avec le code HERACLES. Grâce aux simulations, nous présentons un nouveau modèle pour la formation des piliers basés sur la courbure et l'effondrement de la coquille dense sur elle-même et un nouveau modèle pour la formation de globules basé sur la turbulence du gaz froid. Plusieurs diagnostics ont été développés pour tester ces nouveaux modèles sur les observations. Si les piliers sont formés par l'effondrement de la coquille dense sur elle-même, le spectre en vitesse d'un pilier en formation présente un spectre avec une composante décalée vers le rouge et une composante décalée vers le bleu correspondant aux parties de la coquille en avant-plan et en arrière-plan qui rentrent en collision sur la ligne de visée. Si les globules émergent en raison de la turbulence du nuage moléculaire, le spectre en vitesse de ces globules est décalé à des vitesses différentes de celles de la coquille, des piliers et des coeurs denses qui suivent l'expansion globale de la région H ii. Un autre diagnostic est l'impact de la compression sur la fonction de densité de probabilité (PDF) du gaz froid. La distribution a un double pic lorsque la pression dynamique turbulente est faible par rapport à la pression du gaz ionisé. Il s'agit de la signature de la compression causée par l'expansion de la bulle ionisée. Quand la turbulence est élevée, les deux pics fusionnent et la compression peut encore être identifiée, mais la signature est moins claire. Nous avons utilisé des cartes de densité de colonne Herschel et des données de raies moléculaires pour caractériser la structure en densité et vitesse de l'interface entre le gaz ionisé et le gaz froid dans plusieurs régions : RCW 120, RCW 36, Cygnus X, la Nébuleuse de la Rosette et de l'Aigle. En plus des diagnostics issus des simulations, des prédictions analytiques des paramètres de la coquille et des piliers ont été testées et confrontées aux observations. Dans toutes ces régions, les modèles analytiques et les diagnostics issus des simulations donnent des résultats concluants. La structure en vitesse d'un pilier en formation dans la nébuleuse de la Rosette suggère qu'il a été formé par l'effondrement de la coquille sur elle-même et la dispersion des vitesses moyennes des globules dans Cygnus X et dans la Nébuleuse de la Rosette tend à confirmer leur origine turbulente. La compression due au gaz ionisé est visible sur la PDF du gaz froid dans la plupart des régions étudiées. Ce résultat est important pour le lien entre l'IMF et les propriétés globales du nuage. Si l'IMF peut être déduite de la PDF d'un nuage, l'impact des étoiles massives sur la PDF doit être pris en compte. En outre, nous présentons des simulations dédiées de RCW 36 qui suggèrent que les coeurs denses au bord du gaz ionisé ne sont pas pré-existants, leur formation a été déclenchée par la compression due à l'ionisation. En conséquence, l'ionisation des étoiles massives est un processus clé qui doit être pris en compte pour la compréhension de l'IMF. En annexe, nous présentons également des travaux réalisés en parallèle de cette thèse : l'échange de charge dans la collision entre vents planétaires et stellaires, en collaboration avec le professeur E. Chiang, à l'école d'été ISIMA 2011 à Pékin; et le test de site en sub-millimétrique sur la station Concordia en Antarctique avec l'équipe CAMISTIC (PI : G. Durand).
Fichier principal
Vignette du fichier
2012_Tremblin_ThesisV2.pdf (21.36 Mo) Télécharger le fichier

Dates et versions

tel-00786668 , version 1 (09-02-2013)
tel-00786668 , version 2 (09-05-2013)

Identifiants

  • HAL Id : tel-00786668 , version 2

Citer

Pascal Tremblin. Ionization impact on molecular clouds and star formation Numerical simulations and observations. Solar and Stellar Astrophysics [astro-ph.SR]. Université Paris-Diderot - Paris VII, 2012. English. ⟨NNT : ⟩. ⟨tel-00786668v2⟩
549 Consultations
548 Téléchargements

Partager

Gmail Facebook X LinkedIn More