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Chapter 1

Introduction

1.1 General introduction

Let ; C be a simply connected domain containing 0: by the Riemann Mapping theorem,
there is a unique conformal map f from the unit disk D = {|z| < 1} onto © such that
f£(0) =0, f/(0) > 0. In this thesis we are interested in domains with fractal boundary and
more precisely in the Hausdorff dimension of these boundaries. Well-known examples of
fractal curves which have deserved a lot of investigations and attentions are the Julia sets
and the limit sets of quasifuchsian groups because of their dynamical properties.

For instance, let us consider the family of quadratic polynomials

Pi(z)=2*+t,teC

in the neighborhood of ¢+ = 0. There is a smooth family of conformal maps ¢; from C\ D
onto the basin of infinity of the polynomial P;(z) (the component containing oo of its Fatou
set) with ¢o(z) = z and conjugating Py to P, on their basins of infinity. We thus have:

¢¢(Po) = Pi(¢y(2)), z € C\ D. (1.1)

Each ¢; extends to a quasiconformal map on the sphere C. Taking the derivative of the
equation (1.1) with respect to ¢, we obtain the equation:

Gi(2%) = 201(2) e (2) + 1,

where ¢; = (;)f Let V(z) denote the holomorphic vector field of V(z) = (");?
=0

=
thermodynamic formalism, Ruelle [Rue82| (see also [Zin96| and [MMO8|) proved that

. Using

® 1 dim(I(P) lim 1
—= 1.d1im = 11im —
dt? Yy r—14mlog +

[ vere (1.2

Using then the explicit formula of V', he could proved that
t?

H.dim(J(F)) =1+ 4log?2

+ o([t%). (1.3)

for this particular family. For more details, see Chapter 2.



1.2. THE SETTING OF THE PROBLEM

Passing to the disc instead of its complement, in [MMO08], Mc Mullen asked the following
question: Under what general circumstances does a smooth family of conformal maps
¢ : D — C with ¢g = id satisfy
T Haim (@) | = 1 ! WP 2 (1)
—H.dim = lim ——— z z| .
dt? ¢ o r—1drflog(l—1)| Ji 0

The question addresses the problem of how much formula (1.4) owes to dynamical
properties. In [MMOS§|, again Mc Mullen confirmed that this formula holds for all the
smooth family of polynomial Fy = 2% 4 t(by2%2 4 ... + bg). In more details, the Julia set
I'y = J(Fy) is a Jordan curve, with I'g = J(Fy) = T and there is a unique smooth family
of conformal maps ¢; : C\ D — C conjugating the action of Fy to Fy, satistying ¢g = id
and extending quasiconformal on the whole plane C. The Hausdorff dimension §; of I'; is
real analytic and moreover by Bowen formula [Bow79] ¢; is the unique zero of the pressure
function P(—d;log |¢;(z)|). Then (1.4) could be derived from the equation

P(=6log |6}(2)]) = 0.

1.2 The setting of the problem

Let us consider a general analytic one-parameter family (¢;), t € U (a neighborhood of
t = 0), conformal maps with ¢g = id and ¢,(0) = 0, V¢t € U. Then

¢t(2):/ elog 4t () gy,
0

and

g o N Q / log ¢} (u)
6t¢t(z) —/0 5 <log ¢t(u)> e du.

From which follows that
4 a ( ,
= [ | log¢ (U)>
o /0 ot t

belongs to the Bloch space B which is defined as
t=0

0

Viz) = e

du
t=0

b(2)

and b(z) = V/(2) = % (log #(2) )

follows:

B :{ b holomorphic in D; sup(1—|z])|b'(2)|< oo } .
D

A subspace of Bloch space is the little Bloch space By which is defined as

By :{ b holomorphic in D;  lim (1—|2])[6'(2)]=0 } .

|z]—1
It follows from Mané-Sad-Sullivan’s theorem (see [GL00]) ¢; has a quasiconformal extension
to the plane if ¢ is small enough. In particular I'; = ¢;(9D) is well-defined.

Conversely, starting from a function b € B, it is known that if we put

oi(2) :/0 *Wdu, beB, (1.5)



1.2. THE SETTING OF THE PROBLEM

is an analytic family and there exists a neighborhood U of 0 such that if t € U then ¢ is a
conformal map with quasiconformal extension and we denote by I'; the image of the unit
circle by ¢y.

The natural framework for this study is the universal Teichmiiller space. Let us defined
a version of its as

T :{ log ¢, ¢ : D — C holomorphic and injective with quasiconformal extension to C } .

It is known since Ahlfors-Beurling’s work that 7 is an open set of B and in particular a
neighborhood of 0. Given b € B, seen as a vector of the tangent space of 7 at 0, the
present work studies the asymptotic properties of A(tb) as t goes to 0, where A(b) stands
for Minkowski dimension of T'y where I'y = ¢;(0D), ¢, = .

In this situation, although one can not use thermodynamic formalism to treat the
problem anymore, it does not mean that Ruelle’s result is unhelpful in this case. On the
contrary, Ruelle’s formula still takes an important role as a prediction that (1.4) may work
for some other cases. The problem we first meet when we leave the dynamical context is
that the Hausdorff dimension of the quasicirle I'; is quite difficult to handle analytically. We
use another notion of fractal dimension: the Minkowski dimension, that can be derived from
the spectrum of the integral means of ¢;(z) and thereby we obtain some positive answers
for Mc Mullen’s open question. More precisely, we first point out a condition which is
stated in the term of square function of the dyadic martingale of the Bloch function b(z)
for which the smooth family of conformal map

Oi(z) = / Wy, zebDtelU
0

satisfies (1.4) where the Hausdorff dimension replaced by the Minkowski dimension. In
other words, we prove, using a probability argument, that for a relatively large class of
functions in B

2 02,70 +2
b do
M.dim(T;) = 1 + lim sup =2 |b(re')] t?

+ o(t?). 1.6
M g L 2 (t9) (1.6)

In dynamical context, the two formulas coincide. We also show that a similar result can
be derived for the case of b being a lacunary series by using a classical analytic argument.

On the other hand, we prove that (1.6) cannot hold for all b € B by constructing a coun-
terexample. This construction is reminiscent of Kahane’s construction of a non Smirnov
domain.

For the reader’s convenience, let us describe briefly the content of each chapter of this
thesis. In this first chapter we have already given motivation and the principal points of
this thesis.

The purpose of Chapter 2 is to reproduce the calculation due to Ruelle [Rue82| (see
also [Zin96], [MMO8]) of the Hausdorff dimension of the Julia set of the family of quadratic
polynomial P;(z) = 2% +t with ¢ in the principal cardioid C. Concretely, we’ll show that
in the neighborhood of t = 0, Hausdorff dimension of the Julia set has the development:

t]?

H.dim(J(PR)) =1+ Tlog2

+o(|t]%).




1.2. THE SETTING OF THE PROBLEM

Although this result is well-known, we still would like to write it down here so as to
introduce to the reader the original problem and how the above formula is obtained by
using thermodynamic formalism from which in [MMO08] Mc Mullen could generalize this
result to the Julia sets of the family of hyperbolic rational maps and the limit sets of the
family of quasifuchsian groups and then he asked the above question.

The third chapter consists in the first principal result of this thesis. We will describe a

large family of Bloch function b for which if ¢4(z) = / Wy, z € Dt € U, then (1.6) is

true. This class will be defined in term of the squareofunction of the associated of dyadic
martingale of Reb.

In the following chapter, we study a particular case of Bloch function: we show that if
b is given by a lacunary series, then (1.6) holds for the conformal map ¢, (defined above).
The method that we use in this part is based on Kayumov’s work (|[Kay01]|). In the next
section of this chapter, we give an example about the Bloch series brg which is constructed
from the Rudin-Shapiro polynomials. By using similar technique as for lacunary series, it
give us an upper bounded for the spectrum of integral means of ¢’ = exp brs.

The last chapter will be reserved to the second principal result of this thesis. It consists
in a counterexample for the formula (1.6). The starting point is the construction by
Kahane and Piranian of a so-called “non-Smirnov” rectifiable domain. These authors have
constructed a Bloch function b such that if we consider the associated family (¢¢) as above
the ¢(0D) is rectifiable for ¢ < 0. This function is very singular in the sense that

o) = [ S aulo).

where p is singular with respect to Lebesgue measure on the circle. We use this feature to
prove that there exists ¢ > 0 such that

M.dim(Ty) > 1+ ct?, >0 small

M.dim(Ty) — 1

which contradicts lim 2 =0 by (1.6).

t—0



Chapter 2

Thermodynamic formalism and
holomorphic dynamical systems of
quadratic polynomials

In this chapter, we first introduce the holomorphic dynamical systems of the quadratic
polynomials P;(z) = 22 + ¢, z,t € C. If t stays in the principal cardioid C of the Mandel-
brot set M then the Julia set J(F;) is a Jordan curve on which the polynomial P; acts as
an expanding conformal repeller. Base on this fact, we make use of thermodynamic for-
malism to compute the Hausdorff dimension of the Julia set J(P;). More precisely, in the
neighborhood of ¢t = 0, the Hausdorff dimension of the Julia set J(P;) has the development:

t]?

+ o(|t]%).

2.1 Holomorphic dynamical systems of quadratic polynomi-
als.

Let
Pi(z) =22 +t, (2teC).

We will study the behaviour of the sequence of the iterations

P"(z) = (PyoPyo...oP)(z).

n times

First, let us recall some notions. The forward orbit of z € C is the finite or infinite sequence
(2, Pi(2), PP?(2),...). A point z € C is called a fized point of the polynomial P; if P;(z) = z.
And a point z € C is called a periodic point of period k of P if there exists a positive
integer k such that PP¥(z) = 2z and P,’(z) # 2 for 1 < j < k — 1. This periodic point z of
period k is attracting; repelling or indifferent if its multiplier A = |(PF(2))'| is strictly less
than 1; strictly bigger than 1 or equal to 1. The point 0 which satisfies P/(z) = 0 is called
the critical point.



2.1. HOLOMORPHIC DYNAMICAL SYSTEMS OF QUADRATIC POLYNOMIALS.

2.1.1 The Fatou set and the Julia set.
We define the basin of infinity as the set of points escaping to infinity:
D(x) ={z€C: P"(z) — oo}.

We call its complement the filled Julia set and denote it K(FP;) = C\ D(o0). The filled
Julia set is never void since P; always have a repelling cycle. We define the Julia set as the
common boundary of K;(P) and D(oc0): J(FP;) = 0K (P;) = 0D(00). The Fatou set which
is denoted by Q(F;) is defined as the complement of Julia set: Q(P;) = C\ J(F).

Proposition 2.1. Let r =1+ [t|. Then K(FP) =(),>0 PP7™(D,), where D, = {|z| < r}.
Proof: First let us recall the fact that for |z| > r =1+ |¢|, we have

[P (2)] = e} (2.1)

o

{ Ll R el
> 2|2 —L > [2]2 > =,
= I ( w)-’z‘ < T+m? )i W v

We observe that K(F) D (), P "(Dy) follows from the definition.

Moreover, if we assume that K(FP) \ (>0 P "(Dr)) # , then let z € K(F) \

Because

t
2+t =1+ 5

Nnso P77 " (Dy). It means that there exists a positive integer ng such that z ¢ P, "°(D,.)
or in order words, |P " (z)| > r. This implies from (2.1) that for all n > ny we have

|Pon0 ‘2 n—no
| P (2)] >< —t ) . It follows that P/"(z) — oo as n — oo. This yields to
r

z & K(F) which contradicts the assumption. Thus, K(P) = (1,50 " (Dr).

Because in this thesis we are just interested in connected Julia sets, we will restrict
our attention to the case where the Julia set of P, is connected. The following important
theorem due to Fatou and Julia will show us how the connectedness of the Julia set J(P;)
depends on the parameter ¢.

Theorem 2.2. (JuLiA, FATOU) If the critical point 0 stays in the filled-in Julia set K(P)
then K (P,;) is connected. Otherwise, K(P;) is homeomorphic to a Cantor set.

Proof: [DH| Let » > 1+ |t|. Denote V,, = P, "(D,) and Vj = D,. It is easy to see
that V11 C V.

In the case 0 stays in K (P;), if we consider one ramification of the inverse function P; !
of P, then P, : V11 — V,, is a homeomorphism. Therefore, V,, is homeomorphic to a
disk D, and then K(P;) = ﬂn>07n is connected.

In the case 0 doesn’t stay in K (P;), there exists a integer number m such that 0 € V,
and t = P;(0) ¢ V,,,. Then, V,, is homeomorphic to a disk, but forn > m, P, : V11 — V,
is a double ramification. It follows that for k, the open set Vj, 1 has 2¥ connected compo-
nents which is homeomorphic to a disk. Let d; be the maximum diameter ( with respect
to the Poincaré metric on the sphere) of these components. We know that the two non
ramification of Pt_1 9o Let 91 !'is the A—Lipschitz continuous functions ( with respect to



2.1. HOLOMORPHIC DYNAMICAL SYSTEMS OF QUADRATIC POLYNOMIALS.

the Poincaré metric on the sphere). Thus, 6, < A*~16;. In particular, the fact that & tends
to 0 as k — oo implies that K (P;) is non-connected and moreover it is homeomorphic to
a Cantor set.

If K(P,) is connected then the basin of infinity D(o0) is simply connected. Therefore,
J(P) = OK(P,) = 0D(c0) is connected. We define Mandelbrot set M as a set of all the

parameters ¢ such that the Julia set J(P;) is connected.

2.1.2 Conformal representation of C\ K(P,).

Suppose that K (P;) is connected: there exists then a conformal map ; : D(c0) — C\ D
of the form ¢;(z) = z + ... which conjugates P; to Py. Indeed, if we chose one branch of
(2™)th roots of Pf™(z) = 22" (1 + ...) and denote it by ¢, (2) = z(1+...)2 ", it follows that
©2 = 10 P. The fact that for |z| > r =1+ [t|, |P(2)| > r implies that P?"(z) doesn’t
vanish on {|z| > r}. Moreover, we have

Ony1 [ ¢1o P 27”- 1 t
- on - + on )2
Pn P (o)

9—(n+1)

Put () =110 ( 1+ ot ) - Then

@t(Z)ZZGXP{ignillog@JrWt(z))?>}'

n=0

9—(n+1)

1

o0
Since the sum Z SIS

n=0
We call ¢, Boéttcher map. This map is conformal and satisfies the functional equation

pi(Pr) = (01)?.

t
log < 14+ = > converges on D(00), then ¢; is well-defined.
(Pon(z))?

In the following, we will consider the hyperbolic component of M consisting in the set
of parameters ¢ such that P, has an attracting fixed pointed.

Principal Cardioid.

Fatou and Julia observed that if P, admits a attracting fixed point zgp, then it attracts
the critical point 0 of P;. Indeed, let U be the connected component of Fatou set which
contains the fixed point zp . Immediately, we see that U contains the attraction basin of
20: D(z9) = {2 € C: P"(2) — zp,n —> oo}. Let V be a closed disk for the Poincaré
metric on U centered at zp. The map P" induces a holomorphic map from U into itself,
which is not a isomorphism, so which is A-Lipschitz on V with A < 1; it follows that
every point in V is attracted by zg. Hence, U = D(zp). In other words, the connected
component of Fatou set which contains the fixed point is the attracting basin of the fixed
point. Moreover, as P; is a proper map on the Fatou components; P,(U) C U and both
two inverse images of z € D(zp) stay in D(zp), then P,(U) = U. Assume that if the critical
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point 0 ¢ U, then P, is a covering map and hence is an isometry map (respect to hyperbolic
metric) of the open simply connected set U because Pto_1 admits zg as a fixed point, then
by applying the Schwartz lemma to one branch of P[l : U — U we deduce that for z € U,
|(P271)(2)| = 1 which contradicts the existence of the attracting fixed point zg. Thus, the
critical point 0 € U.

If 2o is a attracting fixed point then |P/(z0)| = |220| < 1. Thus the parameter ¢ stays
in the cardioid denoted by C = {t : t = z(1 — z), z € {|u| < }}. We call this component C
of Mandelbrot set M the principal cardioid. Conversely, if t € C, then the polynomial P;
has a attracting fixed point and it can be shown that J(F;) is a Jordan curve, actually a
quasicircle, as we now explain:

Let t € C and ¢; be the smooth family of conformal map ¢; from C \ D onto the basin
of infinity of the polynomial P;(z) = 2%+t (the component containing oo of its Fatou set)
defined as ¢ = <p;1, where ¢y is the Bottcher map. Then ¢g(z) = z and conjugates Py to
P; on their basins of infinity. We thus have:

bi(22) = (¢(2))? +t, 2 € C\ D. (2.2)

By construction, for each z € {|z| > 1}, the function ¢ — ¢;(z) is holomorphic in C.
Then, ¢:(z) is a holomorphic motion on {|z| > 1} x C. By Mané-Sad-Sullivan’s theorem,
each ¢; extends to a quasiconformal map on the whole plane C. If we take the derivative
of the equation (2.2) with ¢, we obtain the equation:

$i(2%) = 204(2) e (2) + 1, (2.3)

where ¢, = (?;f Let V(z) denote the holomorphic vector field of (¢) V(z) = a;:t .

t=0
Letting t = 0 in the equation (2.3), we get that the holomorphic vector field V' satisfies the
functional equation:

V(%) =22V (2) + 1. (2.4)

If we replace z by 22 in the preceding equation, we obtain that

V(21 =222V (2?) + 1. (2.5)
1 1 V(z*
Injecting V' (2?) in (2.4) into (2.5), one gets V(2) = — < % + 5,9.2 > +22(2zzg. And by
n—1 n n
N . 1 V() V)
induction we can obtain V(z) = — Z 59,7 2.2 T 2,92 9,01 The term ST,z T

k=1
tends to 0 as n tends to co. Therefore V(z) can be written as an infinite sum

= 1
V(z) = =23 o
k=0

In the next paragraph we show how thermodynamic formalism allows to compute Haus-
dorff dimension of J(P).



2.2. THERMODYNAMIC FORMALISM.

2.2 Thermodynamic formalism.

2.2.1 Expanding map

Definition: Let (X, p) be a compact metric space. A continuous mapping f : X — X is
said to be expanding on X (with respect to the metric p) if there exist constants A > 1, > 0
and n > 0 such that for all z,y € X

p(r,y) < 2v = p(f(x), f(y)) = Ao(x,y).

Ezample: The map f(z) = 22 is expanding on T with the usual metric p on the circle.

2.2.2 Topological entropy and topological pressure

Let A= {1,2,....,d} and X = AN.We call A the alphabet and X the set of infinite words
on A. If 1,29, ...,z, € A we denote by x1xs...x, the set of all words starting with these n
letters. We call it a cylinder of the order n. Let o be the shift map on X which is defined
as o((xi)) = (Tiy1)-

Denote by A,, be the set of all the cylinders of order n . Let B be the o—algebra
generated by the cylinders. We can define a natural filtration of B by defining B, as a
o—algebra generated by A,,.

A measure 4 is said to be o—invariant on X if A € B we have (o 1(A)) = u(A).

For example, if A = {0, 1} then the measure u = ,uf]@N is o—invariant, where

10(0) = po(1) = !

Denote by M (X, o) # () the space of o—invariant measure on X. The above example
says that M (X, o) # . Then we can define the topological entropy of the shift map o with
respect to a measure u € M(X, o) by

- A)l A
o) — i ~Sea, KA oB(n(4)
n—soo n
hu(o) is well-defined because the sequence u,, = — Z 1(A)log(u(A)) satisfies the prop-
AeA,

Un,
erty that u,1, < u, + u, and therefore the sequence — converges as n — 0.
n

For each continuous function ¢ on X, we define the topological pressure P(p, o) is the

limit:
o= B 3 00
CeAn
where S, (¢) = sup { Z (0% (2 } The topological pressure of ¢ = 0 is simply the
zeC

topological entropy of u Wlth respect to o.

We recall the following important result about the topological pressure.



2.2. THERMODYNAMIC FORMALISM.

Theorem 2.3. (Variational principle)

P(p,0) = sup {hu(a)“‘/(ﬂdﬂ}
pneEM(X,o0) X

Proof: see |Zin96|.

2.2.3 Ruelle operator

Let M with M(i,7) € {0;1} Vi, be a aperiodic matrix (i.e there exists n > 0 such that
Vi, j M™(i,j) > 0). Let A ={1,2,...d}. The associated 1-sided shift space of type finite
is defined as

E = {(x()w%.lu )7VZ Z 07[131' c A a.nd M(xiuxi—‘,-l) — 1}

We equip ¥ with the metric d((z;), (y;)) = 1/2", where n is the smallest index such that
Ty, # Yn. The shift map o is such that o(3) C X. (£,d) is a Cantor set and the map o is
locally expanding on ¥ by a factor of 2.

For a > 0, let C%(X) denote the Holder space with exponent « (the space of functions
f such that: 3C,Vz,y € &, |f(x) — f(y)| < Cd(x,y)*). Then C*(¥) is a Banach space
with the norm
|f(z) — f(y)]

d(z,y)>

Given ¢ € C*(X), we define the transfer operator (or Ruelle operator) on C*(X) by

| flla = sup|f(x)] + sup
z T#Y

L) = 3 @fa) = 3 e f(iy).

z€o—1(y) i€ Ajiyed

The function ¢ is called a potential function. It is a positive linear operator (i.e it maps
a positive function to a positive function). Its adjoint operator denoted by L£* acts linearly
on the space of positive measure . For all n > 1,

Ly = Y PO ().

r€o " (y)

Theorem 2.4. (Perron-Frobenius-Ruelle) Let ¢ be a Holder continuous function with ex-
ponent a and L, be the associated Ruelle operator.

(i) The operator Ly, as acting on C* admits a strictly positive eigenvalue [, with
eigenspace of dimension 1 generated by g, > 0.

(17) There exists a probability measure p,; eigenvector of L, with eigenvalue By, such

o(h hd
that Vh € C*(X) # converges uniformly on X to g, J hdpg . Moreover the topological

B3 S 90dp,
pressure of the potential ¢ is : P(p,0) = log(B,).

10



2.2. THERMODYNAMIC FORMALISM.

Proof: see |Zin96]. Suppose that P(¢) = 0 ie B, = 1. Let g be the associated
eigenfunction of the eigenvalue 1 of the Ruelle operator L, then there exists a unique
positive probability measure p on ¥ satisfying

[ codn= | fau

for all f € C%(X) and [ gdp = 1. Moreover this measure has the following property.

Definition: Let ¢ € C(X) (the space of continuous function). A probability measure
w is called a Gibbs measure with respect to ¢ if there exist constants A, B > 0 and C € R

such that
p(xy...xn) <B.

< 4~ -
Ve e X,Vn>0,A< S ()@ +Cn =

Proposition 2.5. The measure p is the unique o—invariant Gibbs measure satisfies

P(p) = hyu(o) + /E wdp = 0.

Proof: see [Zin96]. Now, return to the general case with the same notation g, i, 8, in
as Theorem 2.4, we then have my, = g, p, is the unique o— invariant measure such that

P(p) = hm,(0) +/Ecpdm¢.

See [Zin96|. The measure which satisfies the last equality is called equilibrium measure. In
particular, if P(p) = 0 then my, = g, is the unique o— invariant equilibrium measure
on .

2.2.4 Conformal repeller.

Definition: Let f be a holomorphic map in the neighborhood of the compact set J. (J, f)
is a conformal repeller if there exists an open set V' such that J C V C C and:

(1) There exists C' > 0 and « > 1 such that |(f™)(z)] > Ca™ for all z € J; n > 1,

(i6) T = Mysa S (V);

(i17) For any open set U such that UNJ # (), there exists n > 0 such that J C f*(UUJ).
Note that the condition (i) implies that the conformal map f is expanding on J with respect
to the hyperbolic metric on V' O J. Sometime, we call (f,J) by conformal expanding
repeller.

Example: (P(z) = 2¢,T) is a conformal repeller with the open set V = {3 < |z| < 2}.

2.2.5 Markov partition.

Definition: A Markov partition of J is a finite covering of J by the sets J;,1 < j < k
with the associated Markov map f : J — J verified the following conditions:

(Z) int(Jj) = Jj for all 1 S_] S k

(1) int(J;) Nint(J;) =0 for 1 < 5,1 <k

(ti) If z € int(J;) and f(z) € int(J;) then J; C f(J;)

11



2.3. THE COMPUTATION OF HAUSDORFF DIMENSION OF JULIA SET J(Pr)

(iv) f|s; is injective, and extends to a conformal map f; on the neighborhood of J;.

Let (f,J) be a conformal repeller and assume that J has a Markov partition Ji, ..., Jk.
Let M(i,7) = 1 if f(J;) D J; and 0 otherwise. Since (f,J) is repeller i.e there exists a
positive integer such that for every non-empty open set U C J such that f™(U) = J.
In other words, there exists an m > 0 such that M™(i,7) > 0 or M is aperiodic. The
associated shift space ¥ admits a Holder continuous projection

Ty —J

where each = = (z¢, 21, 22, ..., Tp, ...) € X gives the sequence of tiles {Jy, Ji, ..., Ji} visited
by the forward orbit (z, f(2), f°2(2), ..., f°*(2),...) of z = mo(z), see [PU]. We define
cylinders zoz1...z,, as the set of all z € J such that f°/(z) € J; for j = 0,...,n. Denote by
A, the set of cylinders of the order n of the Markov partition.

Put II(p) = Z sup |(f°")'|7P(z2). Applying the Koebe distortion theorem to all the

CeA, z€C
cylinders of order n, we then have: there exists a constant K > 1 (independent of z and

n) such that:
%diam(Cn)(z) < (fMY(2)] 7t < Kdiam(Cy)(2),

where (), is the cylinder of order n containing z .
As a consequence, the limit

Mp) = fim 081 ®)

n—s00 n

exists. In addition, the function II(p) is a convex on R strictly decreasing from —oo to oo,
therefore there exists a unique real number denoted by d such that II(6) = 0. It has been
shown by Bowen (in [Bow79]) that § is the Hausdorff dimension of the set .J.

As an application of the whole theory above, we will give in the next section the
computation of the Hausdorff dimension of the Julia set J(P;), t € C.

2.3 The computation of Hausdorff dimension of Julia set J(F;)

The Julia set of the of polynomial Py(z) = 22 has a natural Markov partition J(Pp) = JoU.J;
where Jy, Jq1 are the upper and the lower semi unit circle. Let A be a matrix of rank 2 x 2
with A(7,5) = 1 if Py(J;) D J; and 0 otherwise, then A = (i 1) and A is a aperiodic
matrix. Then ¥ = (Z/2)N. We recall the Hélder continuous projection (for some exponent
a>0)
o - Y — J(Po)

where each © = (xg,x1,x2,...) € X gives the sequences of tiles {Jy, J1} visited by the
forward orbit (z, 22, 24, ..., z2k, ...) of z = my(x).

This projection allows us to define a family of projection m; : ¥ — J(P;) satisfying
mi(x) = ¢i(mo(x)). According to theory of holomorphic motion, for [t| small, ¢; has a

12
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homeomorphic extension from J(FPpy) to J(P;), which allows us to define a Markov partition
for all J(P;) and moreover it is Holder continuous on .Jy then it implies that the function
oi(z) = log | P/(m(x))| = log |2mm(x)| is a Holder continuous function with some exponent
a on . Denote I',(t) the set of all cylinders of order n for J(P).

In this case IL,(p) = >, e, ) [(E7")'[ 7P () becomes

y€l,(0)

Then the function II(p) turns out to be the pressure of the potential —plog |27 (x)| on 2.
By Bowen’s formula, the Hausdorff dimension §; = H.dim(J(F;)) is the unique real number
such that

P(=5,log | P}(m(a))]) = P(=5; log |264(2)]) = 0.

Apply Perron-Frobenious-Ruelle’s theorem to the potential —d;log |[2¢:(mo(x))| on X,
there exist a positive eigenfunction g; and a unique positive measure p; on ¥ satisfying

L,(gt) = gt;

[ o0y = [ fam, vse e
2 >

and [y, g, dpy = 1. We define the associated equilibrium measure on ¥ by m(¢;) = gi, -
Note that in the case of ¢ = 0, the potential ¢ = —log2, then the measure v = m(myg)
on the circle ( the pushforward of equilibrium measure mg = m(yg) of @ by mp) is the

: L dz
normalized Lebesgue measure on the unit circle ’2|
™

Theorem 2.6. Let ¢; be a smooth path in C*(X) and let o = dpy/dt|i—o. We then have

= / Podmyg
t=0 by

and if the first derivative at t = 0 is zero, then

dpP (<Pt)
dt

d*P . .
# = Var(po, mo) +/ Bodmy,
dt =0 E
where my is the equilibrium measure for ¢o and Var(¢, mp) = lim —HZ dolat(z))|3.

n—oo N

Proof: See [PP90]. Note that [PP90] treats the second derivative in the case where
fz prdmyg is constant. Here we can obtain the general formula above by using the fact that

P(p — [x ordmg) = P(¢) — [s @idmo.

-~ d21/t
Put g = —5- .
dt? t=0

standing, we write Var(¢p, mg) by Var(¢). Since P(—d; log |2¢:|) = 0, then

We change the variable z = mp(x), = € ¥ and without misunder-

dP(—(St 10g‘2¢t‘) _
dt =0

13
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d dzP(—(St 10g’2¢t’)

0
an 2

‘ = 0. If we replace ¢y by —d;log|2¢;| in the above theorem

t=0
d2P(—5t 10g |2¢t‘)
dt?

and compute the quantity , we obtain that:

t=0
2p(—6,1og |2 —log |2 .
P(=dlog[2¢4]) | _ . ( d(=log|264]) +50/_10g,2z||dz|
dt2 t=0 dt =0 T 27T

b [ (Bl ) L
T dt2 =0 271"

Since J(F;) is homeomorphic to the unit circle, then 6; > dp = 1 and therefore 50 = 0.
And since ¢;(2) is holomorphic on C\ D and continuous up to the boundary dD , by the
mean value’s theorem we have

S / log(2]éu(¢)))d0 = log 2 Vit.
27[' T

<d2(—10g!2¢t|)| ) |dz|
t=0

— o = 0. Moreover, we have

This implies that /
T

/log(2|ei9|)d9 = log 2
T

and .
o 26) _ (6
dt o
Therefore
. d’H.dim(J(P)) Var(Re(V(z)/z2))
dp = = : (2.6)
dt? o log 2
where .
Re(V(2)) \ 1 Vi) 1 . 1, VED),
Var ( EPAGE G = D
- 1
In addition, the implicit formula of V(z): V(z) = —ZZW implies that
k=0
V(2)/z = V'(z) — V'(2?). This fact helps us to deduce that
n—1 k n—1
V Z2 k kE+1 n
C oS V) v = Vi) - VIE.
k=0 k=0
This yields to
Var(V(2)/z) = lim — / V) = Ve ag
n—o0o 27 0
N Y 0] F R U = _k _(k
= lim e S SN (1= 27h) = (1 - 2 (k)2
T e P g (=27 )
o IV
= lim .
n—>o0 2mn

14
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Because 2377 (1 —27%) — (1 —2=®)))2 = L3 — 1)2 5 0as n — oo,
Moreover, if we put r = 1 — 2™, we have

V! 02 / 10 21002
A T B o .
n—>00 n r—1 |10g(1 - ’f’)|
Indeed,
' 4 n—1 . o0

‘ V! () = V'(re?) ‘ <> 1-27Ma-r)+ 2(1 — ok
k=0
n—1

<N ok “+1+Z -2k <2—|—Zexp —2") < C + .
k=1 k=n k=0

By triangle’s inequality, we have

‘ IVae)llz = [V (re)ll2 |< [Va(e”) = VI (re®)||2 < C.

Thus, if we divide both sides by y/n then

Va1 (e®)ll2 = IV (re®) |2

Since
lim ——— V'(2)|d )22 =
e 47| log(1l —r)| ‘Z|:T| (2)Fldz] = —>1 2]10g ]Z ~ 2log?2

k>0

oy Vs (€13
n

tinuous on some compact set of [0, +00) we deduce (2.7). Therefore we have

2

is also bounded. Using the fact that the function z* is uniformly con-

Var(Re(V(z)/2)) .. 1 1

/ 2
— - dz| = _
log 2 o 4| log(1 —7)[ Jiz)=r V' (z)[ldz] 2log 2

The above equality and (2.6) imply that

d? 1
—H.di T lim —————— "(2)?|dz| = ,
dt? dim (¢(T)) = r—1 4m|log(1 —r) / V' (z)[ldz] 2log2

This yields to Ruelle’s formula (|[Rue82|)

t]?

4log?2

H.dim(J(P)) =1+ + o(|t%).

The general similar result for the family of polynomial Fy = 2% 4 t(by29=2 + b32?3 +
..+ bg), t € C and near zero can be found in [MMOS|.
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Chapter 3

Martingale condition

As introduced in Chapter 1, the main result of this chapter is Theorem 3.7. We aim to prove
this theorem by using a probability argument, namely dyadic martingale. In this chapter,
first we will give the construction of the dyadic martingale of a Bloch function, then by
the means of dyadic martingale we prove Theorem 3.7. The proof of this theorem will
be separated into two steps: in the first one we derive the Minkowski dimension from the
spectrum of integral means S3(p, ¢’) for p small; in the second one by using the exponential
transformation of a dyadic martingale, we obtain the spectrum of the integral means §(p, ¢')
for p small. In the end of this chapter, we’ll point out a non-trivial application of Theorem

3.7.

3.1 Bloch function and dyadic martingale

3.1.1 Preliminaries on Bloch function

Proposition 3.1. Ifb € B and b(0) = 0 then

1 2 2
= " de|< nlllb|E ( 1
o [oRael< nt ((tos

) -

Proof: [Pom92| The case n = 0 is trivial. Suppose that (3.1) holds for some n. Hardy’s
identity shows that

S () (3 [wwrmias )= 2L [ e

1
1—r2

forO<r<landn=0,1,..

Put A(r) = log < > Since b € B , then

d d 1
dr <d ) ( o /T [bre)[*+2de| > <4(n+ 1%l B F =) b
2n+2d i n+1
< (n+ D! b1 dr<7“dﬁ<” )

17



3.1. BLOCH FUNCTION AND DYADIC MARTINGALE

Hence we obtain by integration that

d 1 2n 2n+-2 d n+1
(55 [oeoria)< wr oz £ (a0

and then (3.1) for the case n + 1 follows by another integration because both sides vanish
for r = 0.

This proposition implies that if b € B,b(0) = 0,

27 i0Y(2
b(r do
lim sup fo [blre”)]

< |Ip]|% < +o0. 3.2

This proposition can be generalized as follows.

Corollary 3.2. Ifb € B and b(0) = 0 then there exists a constant C such that

1 p/2
[ e <c (o2, )

for0O<r<1andp>0.

Proof: For p > 0, there exists a positive integer n such that 0 < 2£ < 1. Applying
n

Holder’s inequality for o = 2£ <1,
n

1 1 /e
27T/T|b(7“€)l2"|cl£| 2( %/le(ré)\zmldél) :

Then Proposition 3.1 implies that

(o [oooria )=( 5 [weoreia )<( 5 [ oo ) <o (o >/

where C = (n!||b]|%")°.

A complex-valued continuous function on the unit circle T is called a Zygmund func-
tion if there exists a constant C' such that

sup |h(e?z) — 2h(z) + h(e ?2)| < CO, for 6 > 0.
|z|=1

Let A, denote the Zygmund class which consists of all the Zygmund functions.

Theorem 3.3. (Zygmund) Let b be analytic on the disk D and let h(z) be a primitive
Junction of b. Then b belongs to Bloch space B if and only if h is continuous in the closed
disk D and h is a Zygmund function.

18



3.1. BLOCH FUNCTION AND DYADIC MARTINGALE

Proof: [Dur70] If h(z) is continuous in |z| < 1, it can be represented as a Poisson

integral:
1 /7 . .
h(z) = — P(r,0 — t)h(e®)dt, z=re”. (3.3)

T o _7r

Since the second derivative Pgy(r,6) is an even function of § and

/ Poo(r,4)dt = Py(r,7) — Py(r,0) = 0,
0

it follows that

hgg(z) = 1 /27r ng(T, t) < h(ei(0+t)) — Qh(ee) + h(ei(e—t)) > dt.
0

T om

The hypothesis h(e?) € A, therefore implies

|hea| < A/Oﬂtpee(ht)dtZA(P(ﬂO) - P(rm) =0 ( 1ir )’

since Pyg(r,0) > 0for 0 <O <mandr <2-— \/3, as a calculation shows. On the other
hand, (3.3) and the boundedness of h(e®) easily show

hg(z):(9<11r>.

h”(Z) _ r72€*219(ih9(2) — hgg(z)) =0 < 1 i . > .

Thus

In other words, b(z) = h/(z) is a Bloch function.

Conversely, by Hardy-Littlewood’s theorem (see Theorem 5.1 in [Dur70]), the primitive
of the Bloch function is continuous in the closed disk ID. We need to show that h € A,.
For 0 <t < 1, let us use the notation

Ar =GO +1t) — G(0),
A? = G0+ 2t) — 2G(0 +t) + G(0).

We are required to show that A? = O(t), uniformly in 6, as t — 0. Our strategy is to
write

AZh(e) = A2 (h(e") — h(pe™®)) + AZh(pe) (3.4)

(0 < p<1),toset p=1—t, and to show that as ¢ — 0, each of the two in terms (3.4)
is uniformly O(t). The identity

1
h(e) — h(pe?) = (1 — p)e N (pe) + e%g/ (1 —r)h" (re)dr (3.5)
p

is easily verified through integration by parts. Now set p = 1 —¢t. Under the hypothesis
that h”(re®) = O < = > the integral in (3.5) is then uniformly O(h). Thus

r )

AF(h(e”) = h(pe”)) = tAF (R (pe™)) + O(1). (3.6)
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3.1. BLOCH FUNCTION AND DYADIC MARTINGALE

But
At(ewh’(pew)) _ At(eiG)hl(pei(Gth)) + eiHA(h/(peiH))

1 L A
=0 < tlog n ) —l—ipeze/ OB (et O+ 2 dz = O(1) (3.7)
0
uniformly in 6. Hence the expression (3.6) is uniformly O(¢). Finally,
t . .
A?h(pez(G—t)) _ ilo/o < ei(9+x)h/(p€z(9+x)) - ez(O—x)h/(pez(O—z)) > dr.

Analyzing the integrand as in (3.7), we see that
ei(@-ﬁ-x)h/(pei(ﬂ-i—a:)) o ei(@—:c)h/(pei(ﬁ—x)) — Ax(eieh’(pei(e))) + Ax(ei(e_’:)h’(pei(e_x))).

Similarly as (3.7), we have
. A A , 1 1
AL (€1 (pe" D)) + Ay (2R (pe'@=)Y) 'g Czlog — 4 C" < Ctlog -+ c’,
x
where C,C’ are independent of # and 0 < z < t < 1 small. Hence

. 1 t
0
and the proof is complete.

Let I = (e, ¢2) be a subarc of JD. We can define b7, the mean value of b on the
arc I C JD, as the limit liml(bqn)j7 where b,(z) = b(rz), z € D. Integration by parts shows
r—
that
1 ) s —i@gh 102 . —i91h 1601 1 ) )
by = lim — /b(re’g)dﬁ _ ZieTRAE) H i) | L o0y g
1] J1 1] 1] J1

r—1

and by the property of continuity up to the boundary of the primitive function h(z), the
limit exists. Hence the mean value of Bloch function is well-defined.

Let h(z) be a primitive function of 271b(z), z € D, where b(0) = 0 and b € B.
Proposition 3.4. Ifb € B,b(0) =0, for |z| <1 and 0 < |t| < 7, then
h(e'z) — h(z) i
PSP - < .
(-2 ) = )= b s, (39

where C is absolute constant.

1
Proof: [Pom92| Without loss of generality, we assume that 5 < 2| <land 0 < [t| < g

Now let 0 < t < g, let |7| <t and choose o such that ¢t = 7(1 — e~ 7). Integration by parts
shows that

/e (€)log < e; ) 4 = h(e'"z) — h(e™72) — (o + iT)b(e~72).
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10 ( eiTZ > . ( eiTZ >
5\ ¢ m AN

for C" absolute constant and for £ € [z, e'"2]. Thus the integrand is bounded by C” ||
b ||z - Hence,

Also,
< C'(1- &),

log —

|h(e2) —h(e™72) — (o +iT)b(e 72)| < C"a || b |5, (3.9

and we obtain (3.8) if we choose 7 =¢ and 7 = 0 and then subtract.

Corollary 3.5. Ifbe B,b(0) =0, for |z| <1, 0 < |t| <7 and for 0 < a < |t|, then

ijtM@_b«@_g)a%>kcuw& (3.10)

where C is absolute constant.

Proof: We use the same assumption of the proof of Proposition 1. Now let 0 <t < 7,
let |7| <t and choose o such that t = 7(1 — e~ 7). First, we fix 29 and put z; = €'z then
we will obtain (3.10) by choosing a suitable value of 7 in the formula (3.9) and subtracting
as follows:

Choose z = z1,7 =t — «, (3.9) implies that:

A =V21) = h(e™721) — (0 +i(t —a))b(e 7z1)] < C"o || b3,

" Ih(eitz0) — h(e™"2) — (o + it — a))b(e™20)] < " | b |15 (3.11)
and choose z = z1,7 = 0, (3.9) implies that:
|h(z1) — h(e ™ 721) —oble 721)| < C"a || b ||5 - (3.12)
Then subtracting (3.11) and (3.12) implies that:
[h(e"20) — h(z1) +i(a = )b(e™721)| < 20" || b || - (3.13)

Choose z = z1,7 = —a, (3.9) implies that:
|h(e™2) — h(e % 2) + (0 —ia)b(e 7 2)| < C"a || b ||,

" |h(20) — h(e™721) — (0 —ia)b(e 721)| < C"a || b |3, (3.14)
then subtracting (3.12) and (3.14) implies that:
|h(21) — h(20) + iab(e 7 21)| < 2C"0 || b |5 - (3.15)
Finally, subtracting (3.13) and (3.15) implies that:
\h(e20) — h(zp) —ith(e 721)| < 4C"a || b ||5,
or

h(e“zo)it— h(zo) << 1_ \2’1 > 2 ) ‘< Cbs, (3.16)

We recall now the notion of dyadic martingale of a Bloch function.
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3.1.2 Dyadic martingale.

On the probability space (9D, |.|) (|d¢| = df/2m, & = € € OD), we consider the increasing
sequence of o-algebras {F,,n > 0} generated by the partitions of the unit circle by the
intervals bounded by the (2")th roots of the unity.

Let b be a Bloch function, b(0) = 0. We defined S = (S,, F,,) by setting S, |I = by on
each dyadic interval I of rank n. In other words S,, = E(b|F},). Then

VE € OD, Su(€) = > brxa(8).

IeFy

This sequence is a martingale in the sense that E(S,41|F,) = Sp. And it has the property:
Vi€ OB, | Su(6) - U(1-27)6) < Clble 3.17
where C' is an absolute constant. The property (3.17) follows from Corollary 3.5.

We consider the increasing sequence (S)2 = > i E((AS;)?|Fj-1), where AS; = S; —
S;—1. In the dyadic case ASJ2 is Fj_1—measurable. Indeed, in order to show that ASJZ €

m2mi (m+1)274

Fj—1, we observe that each dyadic interval I = [ e T e 271 >€ Fici,m=1,.., =1

L. . m2mi (7n+%)27\'i (m+%)27r (m«!‘»l)Qﬂ'
1, can be split into two intervals Iy, =| e27-T e 271 and Igp =| e 27T e 27T

which are the left and right part of I respectively and I, Ir € F;. We regard that every
interval J € Fj is either an Iy, or Ir for some unique I € F;_1. Thus we can write

S;(€) = Z brxr(§)

JEJTj

= > (bILXIL(§)+bIRXIR(€)>-

IG}—jfl

1
And as by = §(bIL + br,,), then we can write S;_; in form

Si1(€) = Y brxu(§)

IE]:jfl
—3 5 (o ) (xn©4xn© ).
16.7'—]'—1

The substraction implies that

1
ASJ(E) - 5 Z [ (bIL - bIR)XIL(g) + (bIR - bIL)XIR(g) :| :
I1eF; 1
1 2
From this we deduce that AS?({) =1 Z (bIL —brp, > x1(&), so that ASJZ € Fj_1.
I1eF; 1
2 _ n 2 2 _ 2 :
Then, (S); = >_7_1(AS;)%, and we call (S)5, = Z(ASj) the square function.

j>1
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3.2. THE MAIN THEOREM.

The following theorem characterizes the orthogonality property in L?(T) of the dyadic
martingale S,,.

Theorem 3.6. Let b be a Bloch function and S, be its dyadic martingale, then we have

I S 1172¢m)= ZHAS ) 72y - (3.18)

Proof: [Gra08] We first observe that we can rewrite AS;(b) as

AS;() =Y Oixi— Y. (Buxs

IEF; JEF; 1

-y ( S G- m)

JEF; 1 IEFJ,ICJ

= ( >« 1x1—§ > (b)m>

JEF; 1 N IEF;ICT I€F;,ICT

=Y Y G- )

JEF; 1 Ie]—'],ICJ

Using this identity we obtain that for given integer j > j’ we have

JESCGIHOICIESESD SR DI CVED SRS DI UMY [ (I

JEF; 1 Ie]—'j,ICJ J/efj,,l I'eF;Ict

Based on the property of dyadic partition, if j # j’, then J C J' or J C J’ so we can assume

1 1
that J C J'. If J C I’ then /(XI - §XJ)(XI/ - §XJ/)|d§] =0andif JNI'= we also de-
T

1 1
duce that /11‘(XI — §XJ)(XI/ - §XJ/)|d£| = 0. Thus, we conclude that (AS;(b), AS}(b)) =0

whenever j # j'. Now, we can obtain (3.18).

The principal result of this chapter is based on the computation of the integral means

/ etRe® ?D|dz|, b € B in which there is only the real part of a Bloch function b that
|2|=r

appears, so that we just need the dyadic martingale which arises from a real part of the
Bloch function. Let us state this result.

3.2 The main Theorem.

3.2.1 Statement of Theorem 3.7.

Let b be a Bloch function and b,, be the dyadic martingale of Re(b). Let us assume the

following condition for its square function (S)2 :

1

- /2W<S>i(ei9)d0 ’g nd(n), (%)

Vo € [0, 27], ' (S)n(e”) — 27 Jo
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3.2. THE MAIN THEOREM.

where d(n) is a positive function which depends only on n and which tends to zero as n
tends to co. Let us also write d(t) = M.dim(I').

Theorem 3.7. If b belongs to B and satisfies the condition (x) then the Minkowski dimen-
sion of I'y has the following development at zero:

2 i0Y(2 70 12
b dot
M.dim(T';) = 1 + limsup Jo” Ib(re”)] —

+o(t?), 3.19
S og L 2 (t%) (3.19)

\b(rew) 2do
By Proposition (3.1), limsup exists |.
r—s1 log 1=

Put Qt = ¢t(]D>)

3.2.2 The first step of the proof.

Let f be a conformal map from DD into C. For p € R we define

log <f | ! (re'?) |pd9>
I S =B s d )

be the spectrum of integral means of f/(z). It means that S(p, f’) be the smallest number
such that, for every € > 0

2m ) 1
/ 0\ |p _
/0 |f (re™)| d9—0<(1_r)ﬂ(p’f,)+e> as 7 — 1.

Recall the family of conformal maps of D into C (¢¢): ¢¢(2) = / Wt € U, a

0
neighborhood of 0. The spectrum of integral means of ¢, satisfies B3(p,®}) = B(tp, ¢),
where ¢ = expb(z) (z € D;b € B), because

/ log (f02ﬂ(exp{tReb(rei9)})pd9) log <f02ﬂ exp{tpReb(reia)}cw)
,¢y) = limsu = limsu '
B(p, ¢y) = limsup Mog(1 — )] o [log(1 — )]

This implies that for p small and ¢'(2) = exp(b(z)),b € B

log ( JET exp{pReb(re’?)}d )
Blp,#) = (1, ¢,) = limsup [log(1 — )] '

In other words, B(p, ¢') is well-defined for p small.

Next, we reproduce the crucial result of the Minkowski dimension of quasicircles (bound-
aries of quasidisks).

24



3.2. THE MAIN THEOREM.

Theorem 3.8. Let f map D conformally onto a bounded domain Q and let 1 < p < 2. If

N(e,00)=0("?) as e—0 (3.20)
then . .
! P —
[1reepia -o ( T > as T — 1. (3.21)
If (3.21) holds and if Q is a quasidisk then
1 1)?
N(e,00) =0 > log - as € — 0. (3.22)

Proof: [Pom92| Let M, Mj, ... be suitable constants. For n = 1,2, ... let

1 2im(v — 1
Zow :( 1-— 2n> exp(Qn)(l/: 1,..,2"n=12..)

denote the dyadic points and I, the corresponding dyadic arcs

>t >

L2 —1 2
Iy = I1(zn) :{ e’tzﬂ(;n) _anu}

We first assume that (3.20) holds. By Corollary 1.6 [Pom92] it suffices to prove (3.21) for
the case that r =7, =1 —27". For fixed n = 1,2, ... we write e_1 = 0 and
e =2F1 —r)/P =2k for k=0,1,... (3.23)
Let my, denote the number of points z,, (v = 1,...,2") such that
€h—1d ¢ (zny) = dist(f(zny), 0) < €. (3.24)

Since d¢(z) is bounded we have my, = 0 for & < Mn. It follows from Corollary 1.6 and the
fact that (1 — |2])|f'(z)| < 4ds(z) that

2m 2" p
i M, Mse;my,
|1 etrae < e < S
v=0

27(1 — 1y )P
k<Mn
= M2 N ohr, (3.25)
k<Mn
(3.26)

by (3.23). Now let k£ > 1. We see from (3.20) that 02 can be covered by
Ni = N(6,09) < Mse™? (3.27)

disks of diameter €;/3; we may assume that each disk contains a point of Q2. Let Vj be
the union of these disks.

Consider an index v such that (3.24) holds. Then f(z,,) ¢ V}. Hence we can find a
connected set Ay, C I connecting [0, e27(“~1/2"] with [0, e27/2"] such that f(A,)0Vj.
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3.2. THE MAIN THEOREM.

It follows from Corollary 4.19 [Pom92| that df(zn,) < M4A(f(Aky)) + €/3. Summing over
all v such that (3.24) holds we see that

mke/ﬁ = mk(ek,l - 6/3) < M4 ZA(f<Aky)) § M4A(8Vk) S 7TM4Nk6k/3 (3.28)

because the sets Ay, are essentially disjoint. Hence my < M5e,;pM52_kp+” by (3.27) and
(3.23) so that, by (3.25),

2
/ | (rpe)Pdt < Mz2P=2" ( 2y 2brRgrhedn >< Mgn2(P~1n
0 1<k<Mn

which proves (3.21) because 1 — 7, = 27".
Conversely we assume that (3.21) holds and that € is a quasidisk. Let 0 < € < d¢(0)
be given and let ¢, denote the number of v € {1,2,...,2"} such that

e/c < df(zm) < ec (3.29)

where ¢ will be chosen below. Since 2 is a quasidisk we see from Theorem 5.2 [Pom92] (iii)
with z = 0 that ¢, = 0 for n > Mylog(c/e). Furthermore

2m 27
2T . M 1
> dylem )P < Mg / (1= rP1f (ra€)Pdt < =2 log ——
v=1 0 n

by Corollary 1.6 and by (3.21) so that ¢, < Mja(c/e)P. It follows that

> " an < Mi3(c/e)Plog(c/e)]>. (3.30)

n=1

Let £ € T. Since € < dy(0) there exists r = r(£) such that ds(r§) = € and thus n = n(§)
and v = v(§) such that

where we have again used Corollary 1.6 [Pom92]. Hence (3.29) holds if we choose ¢ = My.
Since €2 is a quasidisk it follows from corollary 5.3 [Pom92| that diam(f(,,)) < Misds(2n,)
so that f(I,,) lies in at most Mjg disks of diameter e. If we consider all £ € T we deduce
that N(e,00) < Mg ), gn and (3.22) follows from (3.30).

Corollary 3.9. If f maps D conformally onto a quasidisk Q) then
M.dimdQ) = p
where p is the unique solution of B(p, f') =p — 1.

Proof: [Pom92| Since Q2 is a quasidisk it follows from Theorem 5.2 (iii)|[Pom92| that
Bp+0,f") < Bp, )+ qd(d > 0) for some ¢ < 1. Hence 3(p, f') = p — 1 has a unique
solution p and

[1r6ersla = o=t —o (@i L)
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3.2. THE MAIN THEOREM.

for suitable n > 0 so that (3.21) holds with p replaced by p+4d. Therefore M.dimd$2 < p+9
by (3.22) and thus M.dimof2 < p. The converse follows similarly from the fact that (3.20)
implies (3.21).

As a consequence of Corollary 3.9, we deduce the next proposition.

Proposition 3.10. Let b be a Bloch function. If the spectrum of integral means of ¢'(z) =
expb(z) (z € D) has the development at p = 0:

B(p,¢') = ap® + o(p®)
then the Minkowsk: dimension of I'y has the development at t = 0:
d(t) = 1+ at® + o(t?).

Proof: We observe that d(t) — 1, as t — 0. Put z(t) = d(¢) — 1. Corollary 3.9 implies
that

Bd(t), dy) = d(t) — 1.
Since B(d(t), ¢}) = B(td(t),¢'), we get
Bt(1+ (1)), ¢) = (). (3.31)

And by the assumption we have B(t(1+x(t)),¢’) = at?>(1+z(t))* + o(t?(1 + (¢))?). Since
z(t) — 0 as t — 0, then t2(1 4+ x(¢))? = t> + o(¢?). This implies that

Bt(1+z(t), ¢) = at® + o(t?) (3.32)
From (3.31) and (3.32), we obtain x(t) = at? + o(t?). The result follows.

Next we proceed to the second step of this proof.

3.2.3 The second step of the proof.

According to Proposition 3.10, in order to finish the proof of Theorem 3.7, we need to
show that the family of conformal maps ¢(z) = [ e du, where the Bloch function b(z)
satisfies the condition (x) is such that the spectrum of integral means of ¢'(z) = exp b(z)
has the development: B(p,@') = ap® + o(p?) at p = 0. This will be shown in the following
theorem.

Theorem 3.11. If b belongs to B and satisfies the condition (x) then the spectrum of the
integral means of function ¢'(z) = expb(z) has the following development at p =0 :

2 i0Y]2
b do
B(p,¢') = 1lim sup Jo " (e 2

+ O(p*).
4 . 27T10g(ﬁ) (")

Proof of Theorem 3.11: Let us give some remarks and the strategy for the proof of
this theorem. First, we note that if v = Re(b(0)) # 0, then put bi(z) = b(z) — b(0) and we
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3.2. THE MAIN THEOREM.

have
1o 2 p'y—i-pRebl(rei@)de 1o 2 PRebl('l‘Ew)dg
8(p, &) = timsup B0 — limsup { th 7 + }
r—1 log 1= r—s1 log = log —
IOg f27r epRebl (reig)dg
= lim sup 0 T .
r—1 log "

This says that we do not loose generality if we assume that b(0) = 0. Moreover, we observe
that for each r € (0,1), there exists n such that 1/2"t! <1 —# < 1/2" and from (3.17)

( b (e?) — Re(b(re))| < C|bllg, (r=1-27") >, we deduce that

1 2 pb(reie)de 1 27 pbn(eie)de
B(p,d") = limsup 0g(Jy " € - ) — lim sup og([y e )
r—1 log(1=) n—so0 nlog?2
2 "
Then, Theorem 3.11 will follow from the estimation of the integral P (€) gg.

0
The principal idea of this estimation is to make use of the exponential transformation
of dyadic martingale b,, (the dyadic martingale of Reb) which is defined as a sequence

Zy = exp(pbo);
exp(pby,)
Zn = —=m ,n > 1.
[ 15—, cosh(pAby)

Checking the condition E(Z,|F,—-1) = Z,—1, we see that Z = (Z,,F,) is a positive
2

martingale. The integral / P (@) 40 will be derived from the following equality which

0
follows from the martingale’s property that

1 27 exp pbn (eie)
YneN, E(Z,)=-— ——df = E(Zy) =
neh, (Zn) 2w Jo  T1i_; cosh(pAby(e®)) (Zo)
In other words,
2m . )
L[ b —tog([Tjy cosh(pAba () gg — 1. (3.33)
2T 0

27 .
The rest part of the estimation of / ePor(€) 49 i quite simply. We just apply the

0
following inequalities and the condition (x) to (3.33).

n 2
tog([ cosh(pab,)) - £-(5)2
k=1

< P ST (ab)t < O bIRS)2,  (334)

where C’ is an absolute constant. The first inequality of (3.34) follows from the estimate

log(cosh(z)) —




3.2. THE MAIN THEOREM.

2z

- "1 We see that ¢”(z) = —(tanhx)? — 22
x x

0, Vo € R. Hence, ¢'(z) = / g"(u)du < 0, Vz > 0. Therefore, g(x) = / g (u)du <

N

Indeed, put g(z) = log(cosh(x)) —

IN

0 0
0, V& > 0 and since g(z) is a even function, then g(z) < 0, Vz € R. Similarly, put
2
h(z) = log(cosh(zx)) — % + % We observe that h”(z) = —(tanhz)? + 22 > 0, Vz € R
because |tanhz| < |z|, Vz € R. Analogously, we obtain that Vx € R, h(xz) > 0.
Besides, (3.17) (V¢ € T, |Ab,(&)| < C||b||g) implies that

n n n

D (Db =) (Ab)*(Abk)? < C2JblIE Y (Abk)* = C?|Jb][(5)7-
k=1 k=1 k=1

Then the second inequality of (3.34) follows.
Finally, we apply the following lemma to conclude that for p small

27 o pbn(e'?) 4
IOg < fO € do > p2 fOQ |b(7“629)’2d9 N

/ :1 :71
Blp, @) = lim sup nlog 2 45 orlog 11

o(p")

Lemma 3.12. Let b be a Bloch function and (S)? be the square function of the dyadic
martingale by, of Re(b). Then
Jy"(S) (") de Jo" b(re®)?d6

lim sup =Y n = lim sup = T
n—oo NI0g2 r—s1 210g i

< mbll3-

Proof: Recall b = Reb and b, is a dyadic martingale of b. We have:
27 2r N 27
Italls = [ 018 = [ (ano)as = [ (s)e)a0.
0 C—— 0

The second equality follows from Theorem 3.6 and the third one follows from the definition
of the square function of the dyadic martingale b,. Moreover, the fact that b (e'?) —
b(rei?)| < C||b||g if r =1 — 27" (see (3.17)) implies that:

‘ 1o () ll2 — [1b(re™®)ll2 < [1ba(e™) = b(re®)[|2 < 27 (Cl[b]5).

Therefore if we divide both sides by (nlog2)'/2 of the above inequalities and take the limit
as n — 00, then we obtain:

2 i 2m —n)el
. 27 (b, (e19))2d0 \ /2 o Jo (1 =2"")e %))2d 1/2: 0 (3.35)
n—soo nlog2 nlog?2 . -
om 7 —ny i0))2 2T (b (€19))?
b((1—2 df br, do
By Proposition 3.1, Jo” (5 og 2)6 ) is bounded and then by (3.35) Jo( 1(0€g 2))
" n

2

is also bounded. Moreover since the function x is continuous uniformly on some compact

set of [0,400), then (3.35) implies that

p Jo On(@)?dd [T - 27)e))do

0.
n—so0 nlog?2 nlog 2
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3.2. THE MAIN THEOREM.

Thus,
2m 0\ 2 2m (7 n 2
by, do b((1 -2~ d0
oy G0 (126 ))
n—s00 nlog 2 n—s o0 nlog 2
Then,
2 2 27 /7 0N\ 2
SHY2(0)do b do
lim sup 20 A mA (S (0) = lim sup 0 ( (7’61 ) (r=1-27").
n—so0 nlog2 r—1 log(ﬁ)

Furthermore, since b is holomorphic in the unit disk D and by Proposition 3.1, we have:

2m 012 2
Reb do do
lim sup fo (Reb(re™)) 4f )

— < 7llb 2
S log (1) S LOD Y (1) 8]l

The lemma is proven.

The proof of Theorem 3.11 remains the main step: that is to estimate the integral

21 .
/ ePon(€) g,
0

The main step of the proof.
log(T17 h(pAb, (e Z(S)2 (e :
o8([Tizy cosh(pAb() = F(SIHE) 1 ooy g
Put €,(6) = 2-(S)2(e) , (6 €10, 27]).
0, otherwise

It follows that

n 2
log ( H cosh(pAb, (e)) >: %(Sﬁl(eie) ( 1+ €e,(0) ), (3.36)
k=1
where |e,(0)| < C”p2||b||3 by (3.34).
27r
Put I, = / 0)dh. By (3.36), (3.33) is equivalent to
2w

o

2
exp { pbn(e?) — %<s>3(ei9)(1 + €, (0)) } do =1.

2
By subtraction and adding the term %In(l +€,(0)), we can rewrite the preceding equality

as follows
1 o i0 P2 p2 2/ 0 _
— exp < pbp(€Y) — I (1 + €,(0)) — —=((S)r (") — I,) (1 + €,(0)) p df = 1.
21 Jo 2 2

2
Remark that I,, is a number, so we can take the term exp < %In > out of the above

integral and then the equality turns out to be

1 2

2 2 2
o [Texp { pha(ei®) — OP"p P (162 (60 1)1 1 en(0)) } 46 = exp ( - ) |
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27 € 2 2 ,
Put I = % /0 exp { pbu(e®)— 2O D762 0y 1y e (0)) } df. Next,

we will estimate the integral I. Combining the condition (x) ' (S)2(e) — I, |< né(n)

with the fact that |e,(0)] < C'p?|b||%, it follows that
(1 + C'p?||b||%)nd(n). Then, this implies that:

o { - nd(n)

2
ISexp{C’4

(1 + ealB)(S)2(e?) — L) ]g

1 [ i
pQ(l +C/p2||b||123) } 2/ epbn(e 9)d9 <I
mJo

and

né(n) o 10211512 1 /27T bn (e
1 b — pbn(€) gg.
5 p (14 C'p*||b]|5) o f, ©

Replacing I by exp < %In > and then taking logarithm of two sides of the above inequal-

ities, we deduce that

21 i ) 2
log ( | e eas ) IO 21 4 ) — O bl log(2m) < I,
0

and

2 27 )
Gt <tog ([T e g ) LU R4 €2 bls) + O bIRL, — tos(2),
0

In the following, if we divide both sides of the inequalities by nlog2, we obtain the in-
equalities

log <f ePbn (e’ )d9>

2
pr In 2 s o2y no(n) ) a2 An log(2m)
— — 14+C'p7||b +C'p
2 nlog2 — nlog?2 <p L+ ”8)27110 oIl nlog2+nlog2
and
log (f ePn (e’ )d0>

2
p° I 2 1,2 né(n) a2 dn log(27r)
— < 1 b .
2 nlog2 — nlog 2 + <p 1+ ”8)2 log +C b1l nlog2 nlog?2

Taking the limsup as n tends to oo of these inequalities, we get

p2 I log < f??‘( epbn(ezg)dg >
( E—C”plebH% ) hmsupTg2 < lim sup

n—»o0 n—> 00 n IOg 2

%—i—C’plebH%; ) lim sup

Finally, we obtain the estimation

log <f277 oPbn (e ’9)d9> ) ;

lim su — “limsup —— |< C"p*||b||% lim su ,
n_mop nlog2 2 n_mop log 2 ‘ ol HB n_mop 1g2

(3.37)
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3.2. THE MAIN THEOREM.

2w 2 i
S)2(0)do b(re?)|2do b||7
where lim sup = lim sup M = lim sup fo [bre™)] < b1l < 400 by

n—soo M log2 n—oo  2mnlog2 r——s1 4w log(ﬁ) - 2
Lemma 3.12. Thus, the estimation (3.37) gives us the desired formula for the spectrum of

integral means

10g (f?ﬁ pb(ele)d0> b 2d9
B(p,d") = limsup hm sup f‘#

+0(ph),
mew Ty = e Sy O

as p tends to zero. This finishes the proof of Theorem 3.11.

From Theorem 3.11 and Proposition 3.10, we conclude Theorem 3.7.

Corollary 3.13. Let b belong to little Bloch space By then H.dim(T'y) = M.dim(T';) = 1

Remark: More information about Bloch function. Let b belong to little Bloch space By
then there exists a positive decreasing function 7(d) depending on b, tending to zero as §
tends to zero and satisfying

'(2)] < (1= [2)) "' (1 = [2])). (3.38)
We observe that the property
Yo, €e oD, |5 -u(1-2) |< Clbl
can be improved more precisely that

vn, € oD, \sn—b«l—z“)é)\scfy(z”>HbuB,

see [Mak90]. And as a consequence of the preceding inequality, the increments ASy of
martingale S are bounded by Cy(27%), k = 1,2, ... Then the square function (S)2 is equal

12
to the sum > 7_, (ASk)? which is less than C' > 7_ [v(27%)]? < C’/ 7 (S)ds. So we

S

have
(S _ i ®(0) o2
n o —logé

9

y(s)?
where ®(0) = / Tds and § = 27", We observe that
6

19(s)?
®(6)log2 lim Js %dslog?

§—0 —logd 5—0 —logd

Applying L’Hopital’s rule, we deduce that

fl () dslog 2

= li §)%log2 = 0.
61—H>10 log5 65107() o8
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3.2. THE MAIN THEOREM.

It follows that (S), < o(n).

Proof of Corollary 3.13: Since b belongs to little Bloch space By, then (S), < o(n).
It means that (S),, satisfies the condition (%) and the corollary follows from the proof of
Theorem 3.11 and the fact that 1 < H.dim(I';) < M.dim(I').

If Corollary 3.13 gives us a trivial example of Bloch function which satisfies the condition
(%), then in the following we will give a non-trivial example for this condition.

3.2.4 An example with constant square function.

First, we define the independent Bernoullian random variables &, on 0D by the formula
- -1, =0or 3,
En (€M) = =Y =1,2,..)
1, T, =1 or 2,
where z,, denotes the 4-adic nth digit of z € [0, 1].
Proposition 3.14. For any bounded sequence of a real numbers {a,}, the 4-adic martin-
n

gale Sy, = Z axey 18 a dyadic martingale (if considered as dyadic) of some Bloch function.
k=1

Proof: See [Mak90].

TLi aQ
Let {aj} be a bounded sequence of real number, then lim sup @
n—oo

Proposition 3.14, there exists a Bloch function b which generates the dyadic martingale .S,,.
z

= a < +o0. By

Let ¢u(2) = / ™) du: these are conformal mappings from I onto €. The Minkowski

0
dimension of I'y = 02 has the following development at 0:

[27 |b(rei) |2d6 ¢2

M.dim(I';) = 1 + lim sup : + o(t?)
r—s1 471' log i—r 2
8]
=1 12 t2). 3.39
+ 3log 2 + o(t?) (3.39)

n
Indeed, since AS,(e??) = apep(e?) then (S)2(e?) = Z a? is a constant square function.
k=1

e - o | 7182 ()0 -

Therefore

Thus, certainly the square function (S)2 satisfies the condition (*). Besides, we have

b(rei?)|2d6 7 (S)2(0)db na? 2
limsup“—‘—QIimsupM_ﬂunsuka 19 _ 2% 7
r—s1  2mlog( 177«) n—oo  2mnlog?2 n—soo nlog2 log 2

(r=1-2").

Then, (3.39) follows from Theorem 3.7.
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Chapter 4

Bloch series

In this chapter we consider some special functions b in Bloch space giving rise to conformal
map and we address the question of Minkowski dimension of the related quasicircles.

4.1 Lacunary series

4.1.1 Lacunary series

Definition: A lacunary series is a series which has form:
[e.9]

b(re“g) = Z akr”’“emke,
k=1

where {n;} is a gap sequence. A series is called by Hadamard lacunary series if the
n

kAL qg (k= 1,2,..) for some real ¢ > 1. The
Nk
following proposition shows that lacunary series naturally give rise to Bloch function.

sequence {ny} has the property

Proposition 4.1. If b is a lacunary series then b belongs to Bloch space B if and only if
sup |ag| is bounded. Also b belongs to little Bloch space By if and only if ay tends to zero
k

as k tends to oco.

Proof: [Pom92| The implications = hold for all Bloch functions. Any Bloch function
can be written down as a Fourier series b(z) = ) ° ;a,2". By Cauchy integral formula,

we have 5 "
1 4 bl (1
Inan| < / Mrdg_
271' 0 rn

Let r =1 — 1/n, we deduce that (1) < . Then by the assumption that b € B:

-

C
1—r

¥/ (re™)| <

implies that |a,| < M, where M chosen to be absolute constant.
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4.1. LACUNARY SERIES

For the implications <, let |agy| < M and |z| = r < 1. It follows from the definition of

b that - -
rl'(z)] _ M
1—r §1_T;nkT"’“=Mn;) > o)™,

nEg<m

furthermore that n; < qk_jnj for k < j and ng > qk_jnj for k > j. We conclude that

/ o0
r|b'(2)| <M qm o Mg r
1—r f=q—1 g—1(1—r)?

so that (1 — )|/ (2)] < QMLI. Hence b € B.
q —_—

If a;, — 0 then we choose N so large that |a;| < e for k£ > N and write
oo
be) =p(z) + 3w,
k=N

where p is a polynomial. As above we see that

2eq
qg—1

limsup(1 — )|t/ (2)| < lim (1 —72)|p'(2)| +
r—>1

r—1

for every € > 0. Hence the limes superior is equal to zero and thus b € By.

As introduced in this section we will compute the spectrum of integral means of ¢'(z) =
expb(z),z € D:

log ( Jo 1) Pl )
B(p, ¢') = limsup

i
r—s1 log =

, p small

. , n
where b(re??) = >27° | apr™ e and ML g>1,k=1,2,..
ng

This work was almost done by Kayumov in [Kay01]. In more details, he proved that
for a general lacunary series b(re??) = ey apr™ e Y the spectrum of integral means
B(p, ¢') has the development at p = 0:

2 o) 2,.2n
b .. —1 1Qk|"T
5(p.¢/) = 2 timsup Z=L BT o2
r—s1 0g 17—

Furthermore, he also pointed out that the better estimation could be obtained in the
particular case ng = qk , ¢ > 2 integer:

2 00 &

Py _1 log Io(plag|r?
ﬁ(p> (Z)/) — thsup Zk 1 (1 ‘ | )
r—1 log i

+0(?), q¢>2

as p — 0. As a consequence of this result, we have

2 \oo 2,.2¢"
. p —1 |Ak|"T
B(p. &) = limsup & 2=t 15T 0y
r—l1 logﬁ
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4.1. LACUNARY SERIES

as p —> 0. However, the latter result does not work for the case: n; = 2*. In this section
we first reproduce the Kayumov’s work [Kay01] in details, then by inheriting Kayumov’s
method, we will give the expansion of B(p, ¢') at p = 0 up to the cube term p? for the case
of g=2.

4.1.2 The general lacunary series.
Theorem 4.2. (Kayumov)[Kay01] Let b(u) = > 77, apz"* with the sequence {ay}
bounded and the sequence {ny} satisfying Phet1 > q > 2. Then the spectrum of integral
Nk
means B(p, @) has the development at p = 0:
2 ;
log [y |¢'(re®)[Pd _ p? Doy lag[Prne

B(p, ¢') = limsup T = — limsup T
r—s1 log(g) r—s1 log "

+0(p"?).

To prove this theorem, we need the following lemmas. Let ¢ : D — C be a conformal
map and let

K = sup(1 — [2[?)
zeD

z

By Becker univalence criterion, x < 6, see [Pom75].

Lemma 4.3. Let ¢ be a conformal map from D into C and k defined as above. Then the
spectrum of integral means B(p, ¢') satisfies the following inequality

2
p
B(p7 90/) S I{QZv pE R.

Proof: We consider that u(r) = / |’ (&) [Pr|d€], for 0 < r < 1. If we take derivative
€l=1
of function u(r) by r i.e differentiating under the integral sign with variable r, then we

have
/ o /7" P e SD/I(TE) r
vy =p [ Iprorne (€50 ) o

Applying Hardy’s identity for an arbitrary analytic function g and p € R

i i P — 2 =2/
i (i [ Jovoria )=sir [ iotreyp g oo

to the function ¢’, we obtain

2

Soll(ré) ’dg‘.

@' (ré)

§

)+ ) Ly = 2 /Ig e

2
We observe that the right hand side of the equality above is less than p? 5 5 which
r

0

for some 7. In addition that the left hand side of the equality

H2U

is equal to p2m,
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4.1. LACUNARY SERIES

above is positive thus it implies that the function ru/(r) is increasing function and therefore
u'(r) is also positive. We observe that the equation

p2 K,2U p2 KJQU,

G —r2  @-ma-n

V'(r) =
p2r<,2
has a solution v(r) = (1 — )~ 4=7. Since u/(r) is positive , then
p2/<2u p2,{2ul

G—ni—n G-ni-n

Moreover since u/(0) < v'(0),u(0) < v(0), then by differential’s inequality we deduce that
u(r) <wo(r) for 0 <r < 1. Let r tend to 1, then 7 tends to zero, so we get the inequality

u//(r) <

Remark: Let b € B and assume that b(0) = 0 then

" " b b 1
0 _

=l e [ v -

In general for b € B, then there exists C' > 0 such that
2
:)| < Clog .

Lemma 4.4. Letlog ¢',log f’ belong to Bloch space B. Then there exists a positive constant
C' such that

1 Cpi/2 27 . 27 , 1 /27r ,
(1 — < <O - D
= [gpan < [Cigan < 0o [T iovan

where ¢'P = ¢' P and 0 < p < 1.

Proof: Since plog¢’,p®log f',logg’ € B, then by the above remark and Lemma 4.3
there exists a positive constant C' such that

1 \¢P
r¢'|P,rg'|Psc( )

1—r

27 2 o 1 C’p2
/ |¢>’|pd9,/ f’|ipd9,/ lJ'|do < C < — > .
0 0 0 1—7r
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4.1. LACUNARY SERIES

2
Now we estimate the integral / |¢'|Pdf by using the Hélder’s inequality as follows
0

2 27
| weras= [ ig11s1 s
0 0
21 1 1-p 27 1 p
(frursa)™(fira)
0 0
3 2w 1_]7% 1 Cp
gmmww>(/|ww) c( )
|21<1 0 L=r
1 QCp% 27 2m p%
et (755 ) (e ) ()
1 — T 0 0
%

3 1 3Cp 2m ,
<C ( 11—, ) / lg'|do.
—_r 0

2m
Analogously, applying the Holder inequality to / |&'|P] f’|_p2 df we obtain
0

27 27 ) 1 3CP% 27
[ = [Cirirrrases (L) [Tiera
0 0 1—r 0

3 3
2 2

5
2

[e.9]
Corollary 4.5. Let log ¢’ = Zakzn"‘ € B. Then there exists a constant C' > 0 such that
k=1

5

1 Cp% o /p 1 “v?
5(1_7") I(r,p) < ; lp'Pdo < C 1=~ I(r,p)

2w &0 P
where I(r,p) = / H |1+ gakz”’“\QdH.
O k=1

2

Proof: By the inequality that for x small | log(1l + z) — x + % < |z|3, the function

plog ¢’ can be rewritten as

oo 9] 9 00
plog¢'(z) = ;pakz"’c = ; 2log(1 + gakznk) + % ; azzzn’C + Ry(2),

[e.e]
where |Rp(z)| < Z lparr™[3. Put log f'(z) = S_02, a222" then log f' € B. It is easy to
k=1

[e.9]
see that Z(!ak\rnk)g =0 ( log
k=1

1 > Then the corollary follows by Lemma 4.4.
—r
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4.1. LACUNARY SERIES

Proof of Theorem 4.2: If we apply Corollary 4.5, then the only task remains for the
proof is to compute the integral I(r,p). We observe that

o0

[0

k=1

oo

2 2 2
dh = / H < 1+ p—]aklr%’f + plag|r™* cos(nib + 6y) ) do,
0 k=1 4

p n
1 k
+ 2akz

where 0}, is the argument of coefficient ai. We multiply out and integrate term-by-term.
j—1 pj—1
Using the properties of lacunary series that ank < Z ng < —— < nyp,, we deduce

k=1 k=1 B
that the integral of each term

1
ZCOS((nPI £ np, £ Enp, )0 + )

cos(np, + Op, ) cos(np, + 0p,)...cos(ny, +6,,) = 5

00 2
on the interval [0, 27| vanishes. Therefore I(r,p) = 27 H(l + pz|ak|2r2”’“). Furthermore

k=1
for p small this product equals to

1 Or*) 2 &
2#(1_T) exp{4;]aklr2"’“}.

This concludes the proof.

4.1.3 The lacunary series with gap sequence {n;} = {¢*}, ¢ > 3 integer.

Theorem 4.6. With the same assumption of Theorem 4.2, the spectrum of integral means
B(p, @) has the development at p = 0:

: % Nog Io(plag|r?
B(p, ¢’) = lim sup > k=1 log 0(1 |ag|r?)
r—1 10gﬁ

+0@("), ¢=>2

as t tends to zero, where Iy is a modified Bessel function (see definition below).

Proof: Let

T n 0 xQV
In(x):<2) I;OWZ/—FTL)" (reR;n=0,1,2,3,...)

be modified Bessel functions. They appear in the Fourier series

exp(z cos(0)) = Ip(x) + 2 Z I,(x) cos(nf).

g o R N |
The definition of I, implies that I,,(z) < o o Using this inequality, we obtain
n!
that
x cos(f) — log(lo(x) + 22] ) cos(nf)) ‘< C|z|9. (4.1)
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4.1. LACUNARY SERIES

We have

[e.e]

2 27
/ o7 = / Hexp{p|ak|rq’“cos<q’fe+0k>}d9’
0 0 k=1

where 0, is the argument of coefficient a;. Combining the inequality (4.1) with the fact

> 1
that ; r" =0 < log 1=, ) , we deduce that

2 1 O(p?) ox 00 . q—1 X .
/ |¢'|PO :< T > / H <Io(pak\rq )+2ZIj(t\ak\rq ) cos j(q 9+9k)> de.
0 - 0

k=1 j=1

Using the analogue argument as Theorem 4.2, after multiplying and integrating term-by-
term, the integral above equals to 2w [[,~, Io (t|ak|qu). The theorem follows.

Corollary 4.7.

2 N0 2,.2¢%
. P” > ke lax|r
B(p, ¢) = limsup — ==L = —— L 1‘ +0(p%),
r—1 log 1=

as t tends to zero, where o = min{q,4} > 3.
Proof: By the following inequality for Iy(z)

2

log(Iy(x)) — % <z, z small,
we obtain
>° k 2> k s k s k
glog(fo(p\akvq ) — pz I; \ak\QrQq ’g p4 ; ]ak]47'4q < Cp4 27’29 )

It follows that

2 0o 2,.q%
2 ~1 laglr
B(p, ¢/) = lim sup Zkl 1| 1
r—1 Og 1—r

+O(p),

where o = min{q,4} > 3.

4.1.4 The lacunary series with gap sequence {n;} = {2*}.
Recall Ty be the image of the unit circle by the conformal map ¢, = foz et du, where
b(z) = 352, 2%

Theorem 4.8. With the same assumption as above, the spectrum [3(p,¢’) has the devel-
opment at p=20:

+0(p"),

2 n 2 3 n—1 2 0, — 6
Blp, &) = b~ lim sup > k=1 lak| + b lim sup > k1 |ak|*|ag+1] cos(Ok k1)

where O, = arg(ay).

41



4.1. LACUNARY SERIES

In order to prove this theorem, we need the following proposition.

1
Proposition 4.9. Let b be a lacunary series. If rj =1 — — for j =1,2,... then
nj

ap + Zakf”’“ - '< K(q )sgp lag| (£ €T) (4.2)

forrj <r <rji1 where iz’ >q (k=1,2,...) and K(q) depends only on q > 1.
Nk

Proof: [Pom92| We may assume that |a;| < 1. We have

J J oo
ot D ag -0 [< -+ Y
k=1 k=1 k=j+1

n "k )
Since 1 — 1" < ng(l —1;) = —* and " < e™i+l, we see from ny < qk_ynj for k < j and
15
ng > qk_jnj for k > j that the right hand side is less than

J 00
k—j h=j=1y q _
S 3 el < Y
=1 v=0
It concludes the proof.

Proof of Theorem 4.8: The reason that Theorem 4.6 doesn’t work for ¢ = 2 is in
its proof the inequality (4.1) is not a good estimation for ¢ = 2. Thus in this one, instead

of using (4.1) for ¢ = 2, we apply it for ¢ = 4. A difficulty in the computation of the inte-
2m

gral PP re'”) g is b(re') being an infinite sum. Accordingly, this integrand turns out

0
to be incontrollable while we multiply out and integrate term by term as above. However
we can handle this difficulty by making use of Proposition 4.9: |b(r{) — b,(&)| < K, where
bn(&) = 1y apé?, 1 =1—2"" and K is an absolute constant. We then have

lOg ( f027r |€pb(rei9)|d9 > log < f027r |€pbn(6i9)|d9 >
B(p,¢') = limsup = limsup

r—s1 log 11T7“ n—»00 nlog2

. By

27 )
(4.1), the integral / |epb"(619)|d0 equals to
0

1 2 .
(1_7")0(274)/0 kl;[l (Io(p|ak|) + 211 (plak|) cos(2°6 + 0k)

+215(plag|) cos(2.2%0 + 6;) + 213(p|ak|) cos(3.2%6 + 6;) > do.

From now on, we will use the similar argument as Theorem 4.6 to conclude the proof.
Using the property of this lacunary series while we multiply out and integrate term-by-term
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4.1. LACUNARY SERIES

the integrand, we then deduce that the above integral is equal to

n

TT fotvlas) + 3 { 45a(pkos D s plassal)
k=1

k=1

n

2m
H Ip(plai]) / cos(28710 4 61,) cos(2810 + 0y 1)df
1£{k,k+1} 0

+ 41y (plar)) I (plags]) T ] To(plas))
J<k

21
« / cos(ZH10 + ) cos(210+ 0s1)  [] 2i(plar]) cos(28 + 6,)d
0

n>1>k+1
n

+ 80 (plar) Is(plari DI (Placa)) [ Zo(plal)
1£{k k+1,k+2}

2m
X / 08(2.20 + 0),) cos(3.25710 + 04y 1) cos (28720 4 0y, 2)dO
0

+ 4L (pla) Isplaeal) T To(lasl)
J<k-1

2
X / c0s(2.2%0 + 0;,) cos(3.25710 + 0;,..1) H 21 (plag|) cos(2'0 + 6;)d6
0 n>1>k+2

+8L(plar) Is(plar DI (planss) [ To(pla)
1#{k,k+1,k+3}

27
X / 05(2.280 4 01.) cos(3.28410 + 054 1) cos(28360 + 60,.1.3)db
0

+ 4L (plak) Is(plak1 D To(plarsal) T To(plas))
j<k—1

2m
X / c0s(2.2%0 + 6;,) cos(3.25710 + 0)..1) H 211 (p|ay|) cos(2'0 + 6;)df }
0 n>1>k+2

Put

n

Ay = Al (plag) L (Plara))  [] To(plad]);
1£{k k1)

2
By, = / cos(2k+10 + 0r) COS(QkHH + Op11)d0;
0

Ao = 4l (plag) D (plara)) [[ Toplas) T[] T(pla);
i<k n>I>k+1
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4.1. LACUNARY SERIES

27
Boy — / cos(25410 4 0) cos(2110 + 041) [ 2cos(2'0 + 6,)db;
0 n>I>k+1

Az = 8L (plar) Is(plaxpi Vi (plarsal) [ To(pla);
£ {1 k+2}

2
By, = / c0s(2.2%0 + 0;,) cos(3.25710 + 0.41) cos(28120 + 0;,15) d);
0

Aue = AL (plax) B(plarna)) T] Tl ] Helal);
j<k—1 n>1>k+2

2m
By, = / c0s(2.280 4 01,) cos(3.2810 + 0,4 1) H 2 cos(2'0 + 6;)db;
0 n>I>k+2

Asi = 8L (plar) Is(plaxpi NV (plargs) [ To(pla);
1£{kk+1,k+3}

27
By, = / c0s(2.280 + 0;,) cos(3.28410 + 0.4 1) cos(2530 + 0;.13)db;
0

Agr = 4L (plar)) Is(plar1 N To(plars2l) [ Tolelas) [ Lplail);
j<k—1 n>1>k42

2m
Bgi, = / c0s(2.280 4 0;,) cos(3.2810 + 0,4 1) H 2cos(2'0 + 6;)d6.
0 n>1>k+2

By a simple computation, we have

2T
By = / COS<2k+19 + 6) cos(28H10 + 0,,11)do = mcos(Ok — Opt1);
0

2
Bgy, = / c0s(2.2%0 + 6,) cos(3.25710 + 0),.1) cos(28120 + 04, 10)do = gcos(0k+2 — Oky1 + O)
0

and

27
Bsy, = / c0s(2.280 4 01,) cos(3.28710 + 0. 1) cos(28F30 + 0,43)db = gcos(ek + 01 — Orys).
0

Moreover, |Bag| < 7. Indeed, we have

2
By, = / cos(28710 + 6;,) cos(2k+19 +011) H 2cos(210 + 0;)do
0 n>1>k+2
B /27r (cos(B) — Opy1) + cos(2F420 + 0, + 0p1)
N 2
0

II 2cos(2'0+ 6,)do
n>1>k+2
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4.1. LACUNARY SERIES

2 —0
:/ 0080 = Ov+1) H 2 cos(2'0 + 6;)db
0 2
n>1>k+4-2

1 27
+ 3 / cos(25720 4 0y, + 0111)2 cos(2820 + 0.4 2) H 2cos(20 + 60;)db
0 n>l>k+3

27
— / c08(25720 + O + O 1) cos(2120 + Ok 1n) [ 2cos(20 + 6,)d6.
0 n>1>k+3

By induction, we can see that |Bog| < w. Similarly, |Byx| < 7 and |Bgi| < m. The above
result can be simplified to be

27 . n n—1
/ ;epbn<e”>|de:2w{Hfo<pak\>+22{( I Io<p|az\>>fz<p\ak|>h<p|ak+lr>coswkekm
0 k=1 k=1

1£{k k+1}

1
+ %(AQ]CB2]€ + ...+ A6kBGk) }} .
If we take logarithm of two both sides, we then have

2m
log/ |ePbn(e’ |d0 = log(27) + log { H Ip(plak])
0

n

+2Z {( IT folplar) ) Fattos) s plasial)cos(Oh — Ous)

1£{k k+1}
1
+ %(A%ng + ... + Asr Ber,) }} .
Put
log { [T ot +2Z {( [T fotplard ) Feolosh R cost — )
k=1 I {k,k+1}

?(A%B% + ... + AerBei) }}

Put C = [];_, Io(plag|). Then J can be rewritten as follows:

- Iy(plak|)I1(pla
J —{ Zloglg(p]ak\) } +log { 1 —i-QZ { 2(plak)) D (plak+1]) cos(O — Or11)
k=1

To(plax|)Io(plax|)

A B A
+ 2k 2k+...—|— ok Dok }}:Jl—l-JQ.

2nC 27 C

Let M; = supy, |ag|. Then M; < +oo because (ay) is bounded. By the inequality

2§$4

)

1
log Ip(x) — Vi
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n
we can easily estimate J; = Z log In(plag|) for p small as follows
k=1

n p2 n
> log Io(pla]) — "y > Jaxl?
k=1 k=1

In order to estimate Jo, we need the following inequalities.

n
<p" Y fak|* < Mip'n.
k=1

First, it follows from the definition of Bessel functions that for small p ‘ 9 '< Mp*,
7r
where 7 = 2,..,6 and M is an absolute constant.
Second, for a,b < M;
I(az) I1(bz)  a’bx® 5005
— <M . 4.3
To(az) Tow) ~ 16 |~ Ml (43)

(4.3) follows from the two following inequalities. For a small real z,

Il(x) _Zz < |x‘3
I()(.Q}) 2

and
Ir(z) _ xj 4
Io(x) 8 |7

These two inequalities follow from the differential inequality.

Third, for x small | log(1 + x) — 2 |< 22. Next, by using triangle inequality and these

above inequalities we deduce that

n—1
’ Jy — ]983 Z |ak|?|ar41] cos(Or — Ory1) |< Cpt(n — 1),
k=1
Then we obtain the following inequality
p2 - 2 p3 = 2 4
’ J— 5 ; lag|? — T ; lag|”|aki1| cos(Op — Opi1) ’< Kp™n,

where K is absolute constant.

Jo ™ lertn ()| do )

log (
27 .
Now if we divide log ( / |epb"(e19) |deo > by nlog 2 and take the lim sup of

0 nlog2

as n tends to oo, then we deduce that the spectrum of integral means 3(p, ¢’) has the de-
velopment at p = 0:

2 n 2 3 n—1 2
p ket lakl® p > hei lakllagy1] cos(Ok — Oky1)

k=1 k=1 + O(p4).

N =20 i
Blp, @) = 7 limsup =30 5 + 75 limsup log2
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4.2. BLOCH SERIES GENERATED BY RUDIN-SHAPIRO POLYNOMIALS

Remarks: First, let ¢/(z) = exp(b(z)), where b is a Bloch function satisfying the con-
dition (*). By Theorem 3.7 the spectrum of integral means 3(p, ¢') has the development
at p=20:

B(p,d') = ap® + O(p"),

1. [2Tb(re®)2dl .
where ¢ = - limsup il . This says that the cube term p° in the above ex-
r—s1 og 17—
pansion at p = 0 of 3(p, ¢') vanishes while if b(z) = > "7, 22 then by Theorem 4.8, the
spectrum (p, ¢') has the development at p = 0:

2 3

n__ P p 4

o0
It follows that the lacunary series b(z) = Z 22" does not satisfy the condition (x). Because
k=1

2k

oo
if we assume that the lacunary series b(z) = Z 2" satisfies condition (*) then it follows

k=1
from the above argument that
3

p- _ 4
8log 2 = 0w

This yields to the contradiction if we divide the above equality by p? and let p — 0.

The second remark is concerned about the connection between the dynamics of quadratic
polynomial P(z) = 22 4 t, (¢ stays in the principal cardioid C) and the lacunary series
b(z) = >0, apz?". As discussed in Chapter 2, there is a conformal map ¢; from C \D
onto the basin of infinity of the polynomial P;(z) with ¢g(z) = z and conjugating Py to P,
on their basin of infinity and ¢; has a quasiconformal extension to the whole plane C. The

9 _
derivative of the holomorphic vector field V(z) = % on C\ D is a lacunary series
t=0
o
1 ok
V'(2) = <1—2k>z2
k=0

= 1 IR 1 :
on C\D in the sense that by changing variable z — ~: b(z) = V'(=) = Z ( 1-— > 22
z z

being a lacunary series on the unit disk D.

4.2 Bloch series generated by Rudin-Shapiro polynomials

As talked before, this section is reserved for an interesting Bloch series which is generated
by Rudin-Shapiro polynomial
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4.2. BLOCH SERIES GENERATED BY RUDIN-SHAPIRO POLYNOMIALS

4.2.1 Rudin-Shapiro polynomials
Definition: We define the trigonometric polynomials P, and @, inductively as follow:
Py=Qo=1
Pry1(t) = P(t) + "' Qui(t)
Qm1(t) = Pun(t) — €1 Qun(t).

After finding the construction of these polynomials in 1959 [Rud59|, Walter Rudin dis-
covered that it was also constructed before by H. S. Shapiro in 1951 in his PhD’s thesis,
see [Shab51|. Therefore we call them Rudin-Shapiro polynomials. These polynomials have
the properties: for m =0,1,2, ...

(a)
| Pt 1 (D) + Qi1 (1)1 = 2(1P (D) + 1Qm (1)]?),

(b)
[P (8)] + [P (t — )|* = 27T,
1Qum (D] + | Qe (t — 7)|? = 27T

Consequences of (a) by induction are
[P () + |Qu (B)* = 27+

and
+1

sup [P (t)], sup [Qm(t)] <272
te[0,27] te[0,27]

We observe that (a) easily follows from the parallelogram law that
‘Pm—l-l(t)‘z + |Qm+1(t)‘2 = ‘Pm(t) + eiQMtQm(t)’2 + ’Pm(t) - €i2MtQm(t)‘2
= 2| P (t)* + 2|Qum (t)[*.
The property (b) obviously holds for n = 0 and then it follows from induction as follows
[P (O = [P () + | Qu(t)* + €™ P ()Qum (1) + €7 P (1) Qu(£)
= 2™t P (t— )2 + 2™ —|Quu(t — )2 + 2Re{e? " P (1) Qum (1)}
=22 — | Pt — ) = |Qum(t — m)|* — 2Re{e®" "B, (t — 7)Qu(t — )}
= 2m*2 _ | P (t— )%

The third equality above is given by a calculation that involves the equality cos(t) =
—cos(t — m), see [CHOS|.

Now we will construct a Bloch function from the Rudin-Shapiro polynomials. This

construction is similar to the one of the function which belongs to Lipschitz space Lipsi(T)
2
but does not belong to the space of absolute convergence Fourier series in [Kat68].
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4.2. BLOCH SERIES GENERATED BY RUDIN-SHAPIRO POLYNOMIALS

4.2.2 Bloch function generated by Rudin-Shapiro polynomials.
Let
(m+1) m
bRS Z Qm?2 2 Qm( )
m=0

where @), is a Rudin-Shapiro polynomial. Then bgrg is a Bloch function. This follows from
the next proposition.

Proposition 4.10. For (a,,) € [°°, the series

o

brs(z) = 3 an2™ "7 22" Qu(2)

m=0

belongs to Bloch space B.

Proof: If we denote each term a,,2~ b 22" Qum(z) of the series by b,,(z), then the

function bprg(z) = > o7 bm(2). In this proof, we'll use the Bernstein’s inequality of
polynomial whose proof is omitted here.
Bernstein’s inequality: If P(z) is a trigonometric polynomial of degree n, then it
satisfies the inequality
1P loe < 7| Plloc-

Let z € D, and n € N such that 2=+ <1 — |z| < 27™. By the assumption, we have
lam| < M. In order to estimate the derivative of function brs(z), we separate it into two

sums
n—1 00
2) =Y b))+ D b(2)
m=0 m=n

then we handle each one.
For the first one, Bernstein’s inequality gives that |b, (2)| < 2™ (b, (2)| because by, ()
is a polynomial of degree 2 +1. Moreover a consequence of property (a) above gives us

the estimation that for all m, Q. (2)] <272 Ea , then |b,,(2)] < M. Therefore, the first sum

n—1

Z|b’ <MY ot < M(2n - 1),

m=0

The estimation of the second one can be obtained from the observation that

S22 T Qu(2) + Ql(2)22),

by (2) = am
Since |Qm(2)] < 2 and Q" (2)] < 2™[|Qum (2) ||l < 27272 3, then
5 ()] = lam 27 (|27 71 4 |2*7) < a2 2271
Moreover, for m > n where 1 — 27" < |2| <1 — 27" we have

]b;n(z)] < M2m+1(1 _an)2mfl < M2m+1672*"(2m71)
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4.2. BLOCH SERIES GENERATED BY RUDIN-SHAPIRO POLYNOMIALS

Thus

oo
Z ’b/ | <M Z 2m+1 —2mmn42=n M2n+1€27" Z 2m6—2m < €2n+1MC,

= m=0

where C' is a constant obtained from the following

Z 2me=2" ~ / e 2" 2% dy = / e “du = C < +oo,
0 1 1

(by changing variable 2% = u). It follows that
(1— |2/ ()| < 27(M(2" — 1) + eM2"T1C) < +o0.

In other word, brg belongs to Bloch space.

4.2.3 The spectrum of integral means of ¢ = expbrs(2).

With the same spirit of the preceding section, we will compute the spectrum of inte-

gral means of ¢/(z) = exp(brs(z)), where brs = Z cm2 —pty 22" Qum(2). Let by(z) =
m=0
cm2 2 =5 2" Qum(2). It follows from the proof of Proposition 4.10 that
(1 —1z]) ‘ pC (1= [21) D 200 ()b ()] < (1= [2]) Y 2M b, (2)] < +oco.
m=0 m=0 m=0

It means that Z b2 ) belongs to Bloch space. Similarly, the series Z b z) also belongs

m=0 m=0
.’IJ2
log(1+9c)—a:+?

to Bloch space. By the inequality that for z small < |x|3, we can

write the function pbrs(z) as

oo 9 00
p p 2
pbrs(z Z b ( mz:o2log ( 1+ ibm(z) > +4mZ:0bm<Z) + R,(2),

where |Ry(z)] < C Z |pbim(2)]2. Now if we apply Lemma 4.4 to the function ¢/(z) then

we obtain that

/271'
0

2
P Cm L2
1 -
+ 2 2771,;»1 Qm('z)

5
D 1 O(p2) 2w
o-(i) [

m=0

¢'(2)
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4.2. BLOCH SERIES GENERATED BY RUDIN-SHAPIRO POLYNOMIALS

We observe that

2 2 2m+1
p C m C m C
14220, | =14 Pl io, o+ p 0l T cosho +0,0)
27 2 g=2m41
<1+&2’Cm|2|212m(|62 O] + 1Qm(m = 0)]*)
= g gml m m
eml om
C
e Y encos(kf + Oy)
272 p=gmyn
eml om0
C
=1+ 2 |Cm‘ 22" +p & Z ex cos(kO + 0,,),
272 pgmp

where ¢, is the coefficient of polynomial @,,(z) and 6, is the argument of ¢,,. The third
equality above is obtained by using the property that |@Q.,(0)|? + |Qm (0 — m)[? = 2m+L.
We note that the sum » 7 o +k; < >0 2J = ontl 1 < 27+ thus the integral of all the
products [[}_ cos(k;0) vanishes on [0, 27]. So by the similar argument as lacunary series,
if we multiply out and integrate term-by-term, then we obtain the upper bound for the

integral
2w X
Jal

m=0

p c om
1+§ mTfLH Qm(

d0<27r H <1+|cm gmt )

where

oo 2 O(p?) 9 0
m—+1 ]. m—+1
[] <1+p4\Cm|r2 ' )—( 1_r> eXp{p4§ ™ }

m=0 k=1

Theorem 4.11. Let (¢p,) € loo. Then the spectrum of integral means of ¢' = exp(brs)
satisfies the following inequalities

p? fo |brs(re??)|2do 5
< —1i
Blp,¢') <5 fm sup 2 log L + O(p?),
> Cm m
where brs(z) = Z 721%7“ 22" Qum(2).
m=0 2

Proof: By the above argument in order to conclude the proof, we need to show that

°n i0y (2 T \Cm|2 gm+1 2 S gm+1
| Dors(re?)Pds = | Dot |QmlPd0 =7y lem|r¥
k=1

k=1

’Cm|
2m+1

2
If we change variable 6 by (0 — ) of the integral / Z r2m |Qum(6)]? then it turns
T =

out to be

Cm m—+1
/ ’lel 2|00 — ) 6.
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4.2. BLOCH SERIES GENERATED BY RUDIN-SHAPIRO POLYNOMIALS

Using the property that |Q,(0)|? + |Qm (0 — 7)|* = 2™ of Rudin-Shapiro polynomials,
we deduce that

2 e —— m+1
| bastreypa - [° Zwﬂ (12n (@) +1Qn(0-m? ) e—wZ\cmH

It finishes the proof.

Recall T'y be the image of the circle by the conformal map ¢; = foz etbrs(W) dy,. Then the
Minkowski dimension of I'; satisfies the following inequality.

Corollary 4.12.

t? 27 b i0 2d9
M.dim(T'y) <1+ — limsup Jo" | Rs(rel)\
2 1 27 log T

o(t?).

Proof: It follows from the analogous argument as the proof of Proposition 3.10.

52



Chapter 5

Counterexample

The aim of this chapter is to construct a counterexample to the formula (1.6) (mentioned
in Chapter 1). This construction is reminiscent of Kahane’s construction of a non-Smirnov
domain. The first section of this chapter will be devoted to Kahane measure and its
Herglotz transform. Then, based on this construction, in the next section we build a
family of conformal maps (¢:) (¢ being real and small) for which the formula (1.6) still
holds on the left (¢ < 0) and turns out to be a counterexample to the formula (1.6) on
the right (¢ > 0). These facts will be proved in the two following sections. More precisely,
in the case of t negative, by applying the theory of Hardy space H', we’ll prove that
I'y = ¢+(0D) is a rectifiable curve, therefore the H.dim(I';) = M.dim(I';) = 1. In the case
of t positive by making use of the random walk argument, we’ll prove that there exists a
constant ¢ > 0 such that M.dim(I';) > 1 + ct? from which we obtain the contradiction to
the formula (1.6).

5.1 Kahane measure and its Herglotz transform.

First of all, let us recall the construction of Kahane measure.

5.1.1 Kahane measure.

Denote by wy the interval [0, 1] and by w; one of intervals of form 4-adic [p4~7, (p + 1)4 7]
contained in wy. We construct simultaneously a sequence of measure p; and their supports
E; as follow:

1o is the Lebesgue measure on interval wy;

5 is proportional to the Lebesgue measure on each w.

We denote by Dj(w;) its density on a given interval w; and its support Ej; is the union
of intervals w; where D;(w;) # 0. In order to obtain ;11 from 1, we divide each interval
w = wj of rank j contained in F; into four equal subintervals wh w?, w3, w* of rank j + 1
and put

D
Djia(

<
+
=
—~
—
I
S
+
—
—~
\f
I
5
S
~
|
\'D—‘



5.1. KAHANE MEASURE AND ITS HERGLOTZ TRANSFORM.

oo
Put p= lim p; and E = m E;. We call this measure p Kahane’s measure.
j—o0 0
J_
There is another way to define the set E. Recall the independent Bernoullian random

<

variables g, on 9D (defined in 3.2.4): put %;(e*™) = Zsk(ezﬂm) and let N be the first
k=1

J
number such that 1 + Z ex(e?™®) = 0 (z € [0,1]). By the definition of Dy, we have :
k=1

Vz €[0,1], Do(x) =1; Di(x) = (Dy_1(x) + Ek(eQTr”))lEk_l(:U).

Therefore for = € [0, 1]

Dy (x) —<<(< 14£q(e2™7) > 1, (x)4e(e*™) ) g, (2)+...4+ ) 1g, ,(x)+ep(e?™®) ) lg, ,(x).
Since Fgp O Ey O ... D Ej_q then 1g,...1,_ , = 1g, _,, therefore
Dule) = (1 + S4(™)) 1, (x).
This implies that the support of Dy: Ey = Ex_1 N {1+ X; > 0}. Then,
Ep={1+%>0,.,1+%, >0}, (k=1,2,..).
Moreover, for x € [0, 1],

Dy(x) = (1 + Zp(e*™))1g, , (2)
= (1 + Sp(e”™))1p, (2) + (1 + Bk (e¥™)1g,_\g, (2)
= (1+ Zk(e*™))1p, (2).
Because on the set E;_1 \ Ex we have 1+ X (z) = 0.
[ee]
In his paper [Kah69|, Kahane showed that the set E' = ﬂ E) (support of the measure
k=0
1) has a null Lebesgue measure. Therefore this measure is totally singular.
5.1.2 Herglotz transform of Kahane measure
Let b(z) be Herglotz transform of Kahane measure u: that is

el 4 0
b(2) :/ ()
0 Y

el — 2

Kahane proved that b € B. Put Aj(e%“) =1+ Zj(e%m) and

1+ %;(e?™™), if z € {N >j} =E;

, (x€]0,1)).
0, otherwise ( 0,1))

Sj (627”'27) — Aj/\N(€27rix) _ {

Similarly to the example of the square constant function in 3.2.4, A; is a dyadic martin-
gale (if considered as dyadic). By the construction of p, {N = j} = Jw; = Ej_1\ E; € Fj,
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5.2. STATEMENT OF THEOREM 5.2.

where w; is an interval 4-adic of rank j — 1 i.e dyadic of rank j. Therefore N is a stop-
ping time with respect to the o-algebra {F;,7 > 0} (defined in 3.1.2). Thus, S;(e*™*) =
Anpj(e¥™®) = Dj(x), (x € [0,1]) is a dyadic martingale as well. Moreover, we have the
following lemma.

Lemma 5.1. S; is the dyadic martingale of the Bloch function Re(b).

Proof: Indeed, let h(f) be the cumulative distribution function of Kahane measure p,
(ie. h(p) = u({s= > 0}) (¢ €[0,27]) and h(0) = 0. We observe that for z € D

1 2T _ip 1 2m & )
b(z) / et Zh'(cp)d«p — ( 1+2 Z e e ) B (¢)de. (5.1)
0 n=1

o e — 2z 21

By Schwartz integral formula and Imb(0) = 0, we have

1 2 €Z¢ +z i 1 2 - —inp n %
b(z) = 27r/0 - zReb(e P)dp = 277/0 ( 1+ QZ e "Mz ) Reb(e'?)dp. (5.2)

n=1

27 ) )
From (5.1),(5.2) we obtain / e " (Reb(e'?) — W (¢))dp =0 (n=0,1,2,...). Since the
A 0
sequence {¢™%}(n =0,1,2,...) is a basis of L?([0,27]), then
Reb(e™) — W (p) =0 in L*([0,27)).

Thus, Reb(e?) = h/() a.e in [0, 27]. We observe that for each subarc 4-adic w; = [£2, £2 +
52| of rank j of the interval [0, 1], since D; is a dyadic martingle then

i 1
jwil sl o
1 .
= — S, (™) dx
‘w]’ wj !

_ Sj(e27ria:) |UJj7

while #lw;) = hg + ¢o) — h(goo)' Therefore,

|wjl ]

4 h —h 1 ,

Sj(eQﬂ'Zx)‘wj _ ((P + 900) (QOO) _ / Reb(e%m)dx _ (Reb)wj.
[ |wil o,

It means that S; is the dyadic martingale of the Bloch function Reb. Now, let us state

concretely the second principal result of this thesis.

5.2 Statement of Theorem 5.2.

Let o be Kahane’s measure and b(z) its Herglotz transform. We recall that I'; is the image

of the unit circle T by the conformal map ¢;(z) which is defined as ¢}(z) = €®®(*), ¢ small

enough. We recall again (1.6) that if a family of conformal maps ¢;(z) = [; Wy, (z €

D; b € B) satisfies (1.4) with Hausdorff dimension replaced by Minkowski dimension, then
" |b(re?)|2do ¢2

2
M.dim(T';) = 1 + lim sup =2 —— +o(t?).
r—1  dmlog 1= 2
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5.3. NEGATIVE T.

Theorem 5.2. The behaviour of the curve I'y differs with the sign of t:

In the case of negative t, the singular property of the Kahane’s measure u (the density
function of the probability measure p is non negative and zero almost everywhere) makes
¢, € H'. This is equivalent to the rectifiability of Ty and then H.dim(T;) = M.dim(T;) = 1.
On the other hand, in the case of positive t, I'y is a fractal curve and its Minkowski dimen-
sion satisfies the following inequality:

2

d(t) > 1

> 1+ Slog2’ vVt > 0 small enough,

as a consequence the family of conformal map (¢¢) gives a counterezample to (1.6).

Proof: First of all, we use the singularity of Kahane measure to show that in the case
of small negative ¢, H.dim(I';) = M.dim(I';) = 1.

5.3 Negative t.

We recall now the two theorems on HP(p > 0) functions and then we’ll show how they
imply the first part of Theorem 5.2. Let us introduce some notions. First of all, we give
the definition of Hardy space HP(p > 0).

5.3.1 Hardy space
Definition: Let f be analytic in the unit disk D and f is said to be of class HP(p > 0) if

the integral means
1 27 " 1/p
) =( 5 [ lrwepan )
mJo

remains bounded as r — 1. Thus, H* is the class of bounded analytic functions in the
unit disk. The class HP(p > 0) forms a vector space. We call HP(p > 0) by Hardy space.
Given a function f(z) # 0 of class HP(p > 0). Let (a,) (may be finite, or even empty) be
the sequence zeroes of the function f. Then the associated Blaschke product of f is

lan| an — 2

E; _ m
(2) == II an, 1 —anz
n

And the associated outer function of class HP of f is defined as

) 1 27 30 )
F(z):ewexp{ / ¢ +zlog|f(eze)]d9 },
0

21 el —

where v is a real number. Let S(z) = f(2)/(F(2)B(z)). Then S(z) is the singular inner
function of f with the form

= — . du(t
st =exo { - [ 5 2o |,

where u(t) be a bounded non-decreasing singular function (x/(¢) is non-negative and equal
to zero a.e), see [Dur70|. Furthermore, we have the following theorem.
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5.3. NEGATIVE T.

Theorem 5.3. (Canonical factorization theorem). FEvery function f(z) #Z 0 of class
HP(p > 0) has a unique factorization of the form f(z) = B(z)S(z)F(z) where B(z) is
a Blaschke product, S(z) is a singular inner function and F(z) is an outer function of
class HP. Conversely, every such product B(z)S(z)F(z) belongs to HP.

Proof: See [Dur70].

5.3.2 Rectifiable curve

A continuous complex-valued function w = w(t)(0 < t < 27) such that w(0) = w(27)
and w(t1) # w(te) for 0 <t < to < 27 is said of bounded variation on [0, 27] if the total
variation

Viw) =sup { Y- () ~ wuv] <+
k=1

where the supremum is taken over all the finite partitions 0 = tg < t1 < ... < t,, = 27 of
[0, 27].

A Jordan curve I is the image of a continuous complex-valued function w = w(t)(0 <
t < 2m) such that w(0) = w(27) and w(t;) # w(te) for 0 < t; < to < 2m. The curve T is
said to be rectifiable if w(t) is of bounded variation.

A complex-valued function w on [0, 27] is said to be absolutely continuous on [0, 27]
if for all € > 0, there exists a 6 > 0 such that for every finite collection {(z;,z})} of
non-overlapping sub-intervals of [0, 27] with

m
Z |z — x| < &
i=1
then
m
Z lw(z}) — w(x;)| < e.
i=1

Assume that w(t) is absolutely continuous on [0, 27]. Let € = 1 and then there exists
0 > 0. Let K be the biggest integer less than 1+ 27 /0. Then each subdivision [t,t5+1) of
a partition of [0, 27] can be split into K sets of intervals with total length less than 6. By
the definition of absolutely continuous, the total variation V' (w) is less than K. Therefore
w(t) is of bounded variation. See [Roy87|. Furthermore, let f is conformal mapping the
unit disk D onto a Jordan domain €. Then we have two following theorems

Theorem 5.4. If f € H' and its boundary function f(e') is equal almost everywhere to a
function of bounded variation, then f(2) is continuous in the closed unit disk D and f(e*)
1s absolutely continuous.

Proof: See [Dur70|.

Theorem 5.5. A function f(z) analytic in the unit disk D and continuous upto boundary
is absolutely continuous on the circle |z| = 1 if and only if f' € H".

Proof: See [Dur70|.
Theorem 5.4 and Theorem 5.5 imply the following theorem.

Theorem 5.6. Let f(z) maps the unit disk D conformally onto a Jordan domain Q. Then
the boundary 0S) is rectifiable if and only if f' € H'.
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5.4. POSITIVE T

5.3.3 The first part of the proof

Since t small enough and b(z) is a Bloch function, then by Becker univalence criterion ¢;(z)
maps conformally the unit disk D onto a quasidisk §2;. And its derivative has the form

2 160
61(2) = exp { " /0 2 (o) }

e — 2

where ¢ < 0 and p is a positive singular measure i.e the density function h'(f) of Kahane
measure £ is non negative and zero almost everywhere on [0, 27| (mentioned above). Then,
Theorem 5.3 yields ¢, € H'.

Since ¢, € H! is equivalent to the rectifiability of the boundary I'; by Theorem 5.6,
then obviously by the definition of Hausdorff dimension

H.dim(T';) = M.dim(T';) = 1. (5.3)
The first part of Theorem 5.2 follows.

Now, we go to the second part of the proof of Theorem 5.2: the case of small positive

5.4 Positive t.

2

8log2’
prove this, we need to show that the spectrum of integral means 3(p, ¢') where ¢ = exp b(z)
satisfies the following inequality

We want to show that d(t) > 1+

t > 0 small. Analogously to part 2, in order to

Bp,¢") >

>0 11. 5.4
8log2’ b s (54)

First, from the fact that |S;(e?) — Re(b(re'))| < C||bl|lg, (r =1—277) (see (3.17)), we
deduce that

log ( fozﬂ ePRed(re™) gg

log < JoTerSiedg )
B(p,¢') = limsup = lim sup

r—1 log ﬁ j—s00 7log2

This leads us to estimate the integral / epsj(ew)de, (Sj = Ajan), p > 0small. The difficult

point is that S; is not a sum of independent random variables. However, we’ll go around
this difficulty by using the stopping time of the random walk argument of the dyadic
martingale S; which will be introduced in the following.

5.4.1 Random walk argument.

Let us describe this random walk on graph. On the lattice ZT x Z, we consider that a
particle moves in the direction parallel to two diagonals of the unit square. We denote the

1
individual steps generically by £1, €9, ..., &, with the probability p = 3 (defined in 3.2.4)
and the position of the particle by ¥y, 3o, ..., 3.
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5.4. POSITIVE T

Theorem 5.7. (The ballot theorem) Let n and r be positive integers. There are exactly

;(ﬁ) paths (31, ..., X, = 1) from the orgin to the point (n,r) such that X1 > 0, ..., %, >
2

0, where

n! n4r

< n ) _ ) i, — ), if( 5 ) 1S a positive integer less than n
= ! 5 )!

n+r 2
2 0 otherwise.

Proof: See [Fel67].

Denote the event at epoch n the particle is at the point r by {¥,, = r}. We observe
that there are 2" paths with the length n, thus the probability for the particle moves from
the origin to the position (n,r) on the graph is P({¥, =r}) = nﬁr 27",
2

Denote py, , = P({3, = r}). We have the following lemma.

Lemma 5.8. The probability that no return to the origin occurs up to and including epoch
2n 1s the same as the probability that a return occurs at epoch 2n

PUS1 # 0, ..., Son # 0}) = P({Zan = 0}) = %

Proof: Remark that the event on the left occurs either all the X; are positive, or all
are negative. The two events are equality probable, then we just need to show that

103,

It is clear that

n
P({S1>0,..,52, > 0}) =Y P({Z1>0,...,89,1 > 0, Loy, = 2r}) (5.5)

r=1

By ballot theorem the number of paths satisfying the condition indicated on the right
side equals to (n{";ll) — (2:;1), and so the rth terms of the sum equals to %(an_Lgr_l —
D2,—1,2r+1)- The negative part of the rth term cancels against the positive part of the
(r+1)st term with the result that the sum in (5.5) reduces to pa,_1,1. It is easily verified

CTZ
that pop—11 = 272: and this concludes the proof.

For a path of length 2n with all verticals strictly above the horizontal axis y = 0 passes

through the point (1,1). Taking this point as new origin we obtain a path of length 2n — 1

with all verticals above or on the new axis y = 1. It follows that
1
P({El >0,..., 29, > O}) = §P({El >0,..,2%9,1 > O})

But Y9,_1 is an odd number, and hence X5, 1 > 0 implies that also Yo, > 0. This
concludes the following lemma.
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5.4. POSITIVE T

Lemma 5.9. For a random walk 3, = 1+¢e92+...+¢&,, where g, are Bernoulli independent

random variable with the probability p = %, we have:

Cn
P(X1 >0, >0,...,%8, >0) = P(Xy, =0) = 272:

; ~ L

Moreover by Stirling’s formula P(N > 2n) ~ NoTH

According to the assumption of this dyadic martingale, the particle will stop as it
reaches to the horizontal axis y = 0 on the lattice. We can write the event {N > k}
by {1+%; >0,...,1+ 3, > 0} and then by {¥; > 0,...,3; > 0}. We note that for k,
{N > 2k + 1} = {N > 2]{} Indeed, {Zl >0,.., 2 > 0} = {21 >0,.., 20 > 0,X0541 >
0}N{%1 >0,..., 39, > 0,%9,11 < 0}. By the assumption of the stopping time, the particle
will stop as it reaches to the axis y = 0, hence the particle cannot move to the position
{21 >0,..., 29 >0, 22k+1 < 0} Thus, {N > 2k + 1} = {N > 2]{}}
Now we proceed to the main step of the proof of Theorem 5.2.

5.4.2 The main step of the proof.

We estimate the integral / e?%1(*) 9. First we note that on the set {N < j} Si(e?) =

, T
Ajan(e?) =0, then

1/ pSi(e”) gp — 1 ePSi(¢”) gp + 1/ ePSi(€) gg
2m Jr 21 J{n>j) 21 Jin<jy
1 i
. e?Si€)do + P({N < j}), (5.6)
2T J(v >3y
1 , 1 ,
where / ePSi€) gy = — PUHE5(E)) g9 We observe that
2 J(N>g) 21 J{N>j}
1 (5 g9 — L / (155 gg _ L / P(1+55(6)) 4.
27 {N>j} 27 T 2m {N<j}

Since ¥; = 2‘11:1 €, where e with £ = 1,2, ... are the independent random variables, then
the integral

1

| j j '
o /T P55 () gy — ep H E(eP*) = ¢? H coshp = e (coshp)’.

k=1 k=1

Besides, the integral f{N<j} eP(1455(¢) 49 can be rewritten as:

/ eP(1+25(e) gp —
{N<j}

The fact that 1 + g (e') is equal to zero on each set {N = k} makes the value of the
integral 5, f{ N=k} eP1+Z5(€) g9 unchanged if we divide the integrand eP(+Zi(¢") by

J

Z/ eP435(€) g9
i1’ {N=Kk}
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the term e!*=#(¢”) Thus we have:
j .
Z/ p(145,(¢) dG_Z/ (45, () - 1- () gg
=1 /{N= k} N= k}

_ Z/ =Sk(e) g,
N= k}

In addition, if we rewrite the integral f{N K eP(Z5(€)=2k(e")) 4 as Jp 1= k}ep(z i) =Br(e)) g,

then by the independence of two random variables 1{ N=k} and eP(i—2k) it follows that
% /T 1{N:k}ep(2j(e“’)—Ek(e“’))de =P({N = k})E(ep(Ej(ew)_zk(eia)))
= P({N = k})(coshp)’*.
Hence we obtain

1

— ePSi€)gp = P cosh(p)? ( 1—
21 Jin >}

PAN =k}) )

(cosh p)kep

- EM~

> eP(cosh p)’ < 1— P({N =k}) >7 (p>0)

it)s  (p>0). (5.7)

The inequality above follows from the fact that for p > 0 (coshp)fe? > 1, k=1,2, .., 5.
From (5.6), (5.7) and Jensen’s inequality, we deduce that

log </epsj<€”>d9> > Liog <2/ epsﬂff“’)de) +L10g <47TP({N < j}))
T (N>5} 2

P+ log(dm) + ; log(cosh(p)') + 3 og(P({N > j})) + 3 oa(P({N < j}))

1

ST

= eP(cosh p)’ P({N

\]

l\J'U

log j 1
By Lemma 5.9: log(P(N > j)) ~ — O§‘7 and log(P(N < j)) ~ 7 as j —» oo, thus
J

when we divide the above inequality by jlog 2 and take the lim sup as j — oo, we obtain

log(cosh(p)?)  logcosh(p)

) > i = > 0.
Blp,¢) 2 En;s&p 2jlog 2 2log2 ’ p
2?2 2t
Moreover, the inequality logcosh(z) > 5 T 13 (x > 0) (proved in 3.2.3) implies that

) 2
log cosh(z) > % for x > 0 small enough, which implies (5.4): B(p,¢’) > 8lp » P>

0 small. As a consequence of (5.4), the spectrum of integral means £(d(t), ¢;) of the family
of the conformal maps ¢,(z) = exp tb(z) satisfies the following inequality:

t2d(t)?

B(d(0). 6f) = B(td(1). ) = G o

t > 0 small,
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where d(t) = M.dim(I';) > 1.
Finally, by Corollary 3.9: d(t) = 8(d(t), #}) + 1, we deduce that :

2

d(t) > 1+

t>0 11. 5.8
> Slog2’ >0 sma (5.8)

This means that (1.6) fails for the family of conformal map (¢;), ¢ > 0 because if this
family holds for (1.6) then the fact that

2 N 2 i0\|2
b(re')|=do Reb(re do
lim sup fo 15 ) = 2lim sup 0 | ( T ) =
r—s1 log —F r—1 10g 1—r

0 (5.9)

which follows from the following results would contradict (5.8). Theorem 5.2 is proven.

Theorem 5.10. Let <S>j2 be the square function of the dyadic martingale S; of Reb (‘b de-
fined above) and p be a real positive. Then there exist positive constants My, Mo, K1, Ko, T1, T
do not depend on j such that:

ifp>1,
21
Myjtr-D/2 < 2i / ((S)2(0))P/2d0 < MyjP=1/2;
™ Jo
ifp=1,
R T .
Kilogj < 2W/ ((8)2(6))72d8 < Ky log j:
0
ifp <1,
1 2T
T< o ((S)2(0))P/*d6 < To.
™ Jo
Proof: First we’ll show that
1 27 J—1
— [ (8302 = ((k+ 1)P? = k") PN > k}) (5.10)
271' 0 J el

and then we’ll prove that there exist positive constants A, Ao do not depend on j such

that
l o l

MY G € | (SROPR0 < Y i ()

n=1 0 n=1

l
1
The proof will follow from the estimation of the sum Z That is the strategy
— (2n)(

3-p)/2°
of the proof.

Now, let us begin with the first step. We separate the unit circle into two sets {N > j}
and {N < j}, then

L . 2 /200 _ L 2(0\\p/2 1 2\p/2
oo ARy NN RO BN HET
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J
We observe that on the set {N > j}, ( Z (S;—S;—1)* = 7, hence / >] (0))P/2df =

=1 {N>3}
FP2P({N > j}). Besides,

0))P/2do = / 0))P/%dg.
frgtior =X [

Since S; = 0,Vl > k on the set {N = k}, then

k
=> (S - 5-.1)° =k

I=1
This implies that
1
— 0))P/2do = / 0))P/2do = kPPP({N =k
o {NSj}(< Z% o k} Z S 1)
By using summation by parts, we have
J Jj—1
D KEPUAN = k}) =Y ((k+ 1)P? = k") P({N > k}) = j"*P({N > j}).
k=1 k=1

This implies (5.10).
We see that if p > 2 then

QL % z_: (p/2)kP=22P({N > k})
T Jo pt
and -
2w J—
% ; ((8)3(0))d0 <> " (p/2)(k + )PP PN > k}),
k=1

and since (k +1)P=2/2 < (P=2/2;,(=2)/2 | — 1 2 . then

T 7j—1
% 02 ((Sﬁ(@))d@ < P=2)/2 Z(p/Q)k(p*Z)/QP({N > kD).
k=1

Thus,

i—1 (102)291

DS K p(n > k) < [ < TS R > ),
k=1

Ed
—_

If p < 2 we have the inverse inequality

i-! (p-2)/2 171

PN~ L(0-2)/2 L T L L (-2)2
52/{ P({N > k}) > 277/0 ((S)2(0))P/*do > TZ!@ P({N > k}).

o
—_
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Using the remark in 3.3.3 that P({N > 2n +1}) = P({N > 2n}), therefore without loose
generality we assume that j = 2(I +1). If p > 2 then

l 27
_ 1
/2 +p§ :(Qn)(p D2PUN > 2n}) < 27r/0 (<S>?(0))p/2d9
n=1
(r—2)/2 !
pe 2) 2 2)/2
<S5 (1+e<P )/ n§_12n1’ /P{N>2n})+1/2)

If p < 2 then

l 27
_ 1
/2 +p§ :(Qn)(p 22PN > 2n}) > 27r/0 (<S>?(0))p/2d9
n=1
(r—2)/2 !
pe 2) 2 2)/2
> <1+e<P )/ n§_12n1’ /P{N>2n})+1/2)

By Lemma 5.9, there exist absolute positive constants C, Co such that

01\/127& < P(N > 2n) = P({3s, = 0}) < Oy \/1271 vn.
This implies that
! ! ! 1
z:: ggn(p 2/2P{N>2n})<02;W.

This implies (5.11).

1
Now, we have if p > 3 the function f(z) =

(22)G-P)/2

gy [ o Lt
T ), Ga)E Rz “"—Zl(gn)(s—m/z =) QoGP

o 1 (r=1)/2 _ o(p-1)/2 R
I © o\(p— _ olp— —dx =
where /1 (2:5)(3*1”)/2 dr = p—1 < (J—2) 2 ) and /1 (Qx)(?)fp)/?dx -

% < (j)P-D/2 _ o-1)/2
p —

is increasing on [1,00), then

If p < 3 the function f(x) = is decreasing on [1,00), then :

1
on(3-p)/2
3 —
ipr<1<:>p>1then
!

I+1 1 l 1 1
/1 (22)B~ 10)/2 Z (2n)B3-»)/ —/ (29;)(3fp)/2d$+2(37p)/2’
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here L g 1 =02 _ 902 ) and [ L g
where | et = ;o (02 - M) oy et T

1
L (ﬁwlvz_gpnn>;
p—1<
3 —

if

p:1<:>p:1then

1 [ N | 1
i Zdr < < | Zdp+ =
2/1 xx_;2n_2/1:vx+2’

I+1 1 l 1
where / —dz = log(j) — log2 and / —dx = log(j — 2) — log2;
1 T 1T

3—p

!
>1<=p<1then »

n=1

if W converges as j — 0o because
n

L ’ 1 Lo 1
[ @@@pmﬂxgiganwzwzgzm@@@zwf“+2@pvw

here [t g 1 o1 _ 912\ and [ e
where | e = ;=1 (U2 M) @ er® T

1
p— ( (j)(p_l)/2 —2=D/2 ) converges as j — oo.
p —
Now we can go to the conclusion that there exist positive constants My, Mo, K1, Ko, 17,15
do not depend on j such that:

ifp>1,
21
Mlj(pfl)/2 < QL ((Sﬁ(g))p/?dg < sz(pfl)/{
T Jo
if p=1,
‘ 1 2m ) /o .
Kilogj < o— | ((5);(9))""d6 < K3 log j;
0
if p<l,
1 2 ) )
<o ((S)3(0))P/*d6 < To.
T Jo

The theorem is proven.
Corollary 5.11. Let b be the Bloch function (defined above) and p be positive. Then

27 i0
Reb Pdo
lim sup fo | Reb(re™)| _

0
r—s1 (log ﬁ)p/2

Proof: The proof will be given as follows. First of all, we’ll show that for p > 0

2 — i\ 0 2w
Reb((1 — 277 Pdp Si|Pdo
lim sup 0 [Reb(( )e”) = lim sup fo | J‘

—_- 5.12
e [ log 27 ISP Tog 272 (5.12)
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R

(7 log 2)r/2
exist absolute positive constants b, and B, such that

Then we estimate by using the fact that: for 1 < p < oo (see [Bur66|) there

bpll{S)illp < 155l < Bpll(S);llp

and for 0 < p <1 (see [Gan9l]|) there also exists a positive absolute constant v, such that
11S51lp < vpll(S);llp, where (S); = /> r_1(ASk)?. Then the proof will follow by Theorem
5.10. That is the main idea of the proof.

First, let us prove (5.12). The fact that |S;(0) — Reb(re?)| < C||b||g if r = 1 — 277 (see
(3.17)) implies that for p > 1

‘ 1S5llp = IReb(re®) |, | < [1S; = Reb(re®)]|,, < 27(C|b|5).

Therefore if we divide both sides by (jlog 2)1/ 2 of the above inequalities and take the limit
as j tends to oo, then we obtain

27 27 —iN\ i
o (R ISIPAENYT(JTIRMA 2 DG NS
j—roo \ (jlog2)r/2 (j log 2)r/2 ' '
27 —i\ 0 2m
Reb((1 —277 Pdf S;|Pde
According to Corollary 3.2 fo [Re (( )e”)l is bounded and then by (5.13) M
(4 log 2)P/2 (4 log 2)P/2

is also bounded. Moreover since the function z? is continuous uniformly on some compact
set of [0, +00), then (5.13) implies that

JET1SPd0 [T [Reb((1 — 277)ei)[Pdg B

i 0 —0
j—oo (jlog2)r/2 (jlog 2)r/2
Thus,
2 2 . i0
S;[Pdo Reb((1 — 279)ei?)|Pdg
hm sup M — hm sup fO ’ e (( )6 )’
j—oo (jlog 2)p/2 j—s00 (jlog 2)10/2

In the case of 0 < p < 1, again the fact that |S;(0) — Reb(re?)| < C||b||p if r =1 — 277
(see (3.17)) implies that

2 2 o 2 o
‘/ ysj|1’d9—/ |Reb((1—2_7)ew)|pd9'§/ |Sj—Reb((1-279)e™)|Pdo < 2m(C||b]|5)P.
0 0 0

Analogously, if we divide the above inequalities by (jlog 2)P/? and take the limit as j tends
to 0o, then we have

JET1SPde [T [Reb((1 — 277)ei)[Pdg B

li o — 0
j—3s0 (jlog 2)P/2 (jlog 2)/?
which implies that
2 2 —iN d
lim sup Jo " |SilPdo Jo " IReb((1 = 279)ei?)[rdp
j—oo (flog2)P/2 i (jlog 2)p/?
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Then (5.12) follows.

1 2m
According to Theorem 5.10, if we divide the integral o / ((S)?(Q))p/2d9 by (j log 2)P/?
0

and let j — oo, then we have

— O HO
TSP T g2

This finishes the proof.
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Appendix A

Hausdorff dimension and Minkowski
dimension.

Let @ > 0. The a-dimensional Hausdorff measure of a Borel set E C C is defined by

Ao(E) = lim inf ) (diamBjy)?,

where the infimum is taken over the covers (Bj) of E with diamBy < e for all k. The
Haudorff dimension is defined by

H.dimFE = inf{a : Ao (E) = 0}.
sets of non-integer number dimension are called “fractals”.
Proposition A.1. The Hausdorff dimension H.dim(E) is the unique real d > 0 such that
Ao(E) =400 if 0<a< Hdim(E)

and

Au(E)=0 if o> H.dim(E).

Proof: see [Pom92|.

Let E be a bounded set in C and let N(g, E) denote the minimal numbers of disks of
diameter £ that are needed to cover . Up to bounded multiplies it is the same as the
number of squares of grid of mesh size ¢ that intersect /. We defined the Minkowski
dimension of E by

log N(e, B
M.dimE = lim sup 22V & E). (A1)
e—0 10g(1/€)
Proposition A.2. If E is any bounded set in C then
log N(e, B
Hodimp < limint 2V EE) g, (A.2)

e—0 log(l/e)
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Proof: Let 8 be any number greater than the limes inferior in (A.2). Then there are
en, — 0 such that N,, = N(ep, F) < 5,?8. If E is covered by the discs Dy, Ds,...Dy,, of
diameter ¢, then, for a > g3,

Np,
Z(diaka)a =Npe® <P 50 as n— o0
k=1
and thus H.dimF < « which implies (A.2).
The two following examples will illustrate for Proposition A.2.

[\

Ezample 1: Let E = {1,n <1} U0. Then H.dim(E) = 0 while M.dim(E) = 1.
Proof. Indeed, for all € > 0, there exist n such that % - n%rl <e< ﬁ - % Then, we

cover the set {2, m > n(n+1)} by a ball with diameter &; the set {X,n <m <n(n+1)}

by [ é -1 ] balls with diameter ¢ and each points of the set {%,m =1,2,..,n—1} by

balls with diameter . Thus, N(e, F) = 1+ [ % -1 } +n —1 :[ % ] +n — 1. Since,

nin—1) < [ L ] < n(n+1). Therefore, 2(n — 1) < N(e, F) < 2n and,

log2(n —1) - log N(e, E) - log 2n
logn(n+1) = log?l

~ logn(n—1)

1
Hence, let n — oo, we deduce that M.dim(F) = 3 and since F is countable set thus
H.dim(E) = 0.

Ezample 2: Let K be a self-similar curve with 0 < Ay iy sy < +00, then H.dim(K) =
M.dim(K).
Proof. Since K is a self-similar curve, then there exist finite similitude maps (.S;,7 =

n
1,...,n) such that we have the partition K = U Si(K). Put K; = S;(K).
i=1
Let f = M.dim(K'). Then there exists a positive sequence (&,,) such that: N (g, K) ~
n
5;{8, as m tends to +oc. This implies Z N(em, K;) ~ 5;?, as m tends to +oo. Cover K;
i=1
by the balls with diameter &;,, = 7€y, where r; = Lip(S) called similitude ratio of the
map S;. It follows from the self-similarity of K that r; < 1 and

N(é‘im, Kz) = N(Em, K)

Moreover,

N(gjm, K;) ~ 6;75
and

N(em, K;) ~ el
Thus,

= ’[”57
Eim

v ()
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as m tends to +oo. It follows that

n

n n
> N(em Ki) = Y 1/ N(em, K) = Nem, K) Y1)
=1 =1

i=1

Divide two sides by N (g, K) and let m tend to +00. Then we obtain

n
er =1.
i=1

Let @« = H.dim(K). We recall Ap(K) = lim inf Y (diam(By))®.

Aa(K) =) Au(K5).
i=1

Moreover,

A (K;) = 811_H}101é1kf k (diam(r;By))
=7 6h_n}o %15 (diam(By))* = ri' Ao (K).

This implies that

n n

Aa(K) =D Aa(Ki) =) rfAa(K) = Ao(K) Y rft.
i=1

i=1 i=1

By the assumption that 0 < Ay (K) < 400, we deduce that

(A.3)

Since A, is a

(A.4)

From (A.3) and (A.4), we obtain a = . Since the function f(t) = >0 7t — 1 is

continuous and f(0) =n—1 > 0 and

lim f(t)=0—-1=-1<0,

t— 00

i=1"1

n
then the equation er = 1 has the unique solution. It follows that H.dim(K) =

i=1
M.dim(K).
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Thanh Hoang Nhat LE : Sur la dimension de Minkowski des quasicercles

Résumé: Cette thése a pour origine une question de Mc Mullen: A quelle(s) condition(s) est-ce suive famille lisse
d’applications conformes ¢; : D — C avec ¢g = id Vvérifie

2

9 1 dim (6 (9D))

. 1 .,
- —tim ————— [ [$)Pld (@)

r—1 47T| log(l - ’I")‘ |z|=r

t=0

Mc Mullen a montré (a) pour des familles (¢;) provenent d’'un systeme dynamique. Afin de répondre a cette question,
on considére une famille a 1-parametre analytique générale (¢;), t € U, un voisinage de 0, d’applications conformes

avec ¢ = id et ¢,(0) = 0, Vt € U définies par ¢;(z) = / e®@du, b e B, ol B estlespace de Bloch. En utilisant un

argument de probabilité, tout d’abord on exhibe une clasose relativement grande des fonctions de Bloch pour lesquelles
(¢1)ieu satisfait (a) ou la dimension de Hausdorff est remplacée par la dimension de Minkowski. Cette classe est définie
en terme de la fonction carée de la martingale dyadique associée a Re(b). En utilisant un argument d’analyse classique,
on démontre aussi qu’un résultat similaire peut étre obtenu dans le cas ou b est une série lacunaire. Le second résultat
principal de cette thése est un contre-exemple. Le point de départ est la construction par Kahane et Piranian de ce
qui est appelé un domaine rectifiable “non-Smirnov". Ces auteurs ont construit une fonction de Bloch singuliére b telle
que si 'on considere la famille associée (¢;) comme ci-dessus, alors ¢;(9D) est rectifiable avec ¢ < 0. En utilisant les
propriétés de cette fonction de Bloch b, on prouve qu'il existe une constante ¢ > 0 telle que M.dim(¢; (D)) > 1 + ct?,
(t > 0 petit) ce qui contredit (a), ou la dimension de Hausdorff est remplacée par la dimension de Minkowski.

Mots clés: la dimension de Minkowski, la dimension de Hausdorff, fonction de Bloch, la question ouverte de Mc Mullen,
martingale dyadique, mesure de Kahane, serie lacunaire.

On Minkowski dimension of quasicircles

Abstract: This thesis has its origin in a question raised by the Mc Mullen’s open question: Under what general circum-
stances does a smooth family of conformal maps ¢; : D — C with ¢y = id satisfy

2

d—H.dim (¢:(0OD))

e Gh(2)Pldzl  (a)?

lim —m——
t=0 r—1 47T| IOg(l - T)‘ |z|=r

Mc Mullen has shown that (a) is true for some families (¢;) arising from some dynamical systems. In order to answer
this question, we consider a general analytic 1-parameter family (¢,), t € U, a neighborhood of 0, conformal maps with

$o = id and ¢;(0) = 0, Vt € U defined as ¢;(z) = / e ™@du, b e B, where B is the Bloch space. By using a

probability argument, we first describe a relatively Iargeoclass of functions in B for which (¢;):cy satisfies (a), where
Hausdorff dimension is replaced by Minkowski dimension. This class is defined in terms of the square function of the
associated dyadic martingale of Re(b). We also show that a similar result can be derived for lacunary series by using
a classical analytic argument. The second principal result of this thesis is a counter-example. The starting point is the
construction by Kahane and Piranian of a so-called “non-Smirnov" rectifiable domain. These authors have constructed
a singular Bloch function b such that if we consider the associated family (¢,) as above then ¢,(9D) is rectifiable for
t < 0. Using the properties of this Bloch function b, we prove that there exists ¢ > 0 such that M.dim(¢;(0D)) > 1+ ct?,
(t > 0 small) thus contradicting (a), where the Hausdorff dimension replaced by the Minkowski dimension.

Keywords : Bloch function, dyadic martingale, Hausdorff dimension, Kahane measure, lacunary series, Mc Mullen’s
open question, Minkowski dimension.
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