s'authentifier
version française rss feed
Fiche détaillée HDR
Université Pierre et Marie Curie - Paris VI (08/12/2011), Edwige Godlewski (Pr.)
Liste des fichiers attachés à ce document : 
PDF
memoire.pdf(3.1 MB)
Étude d'équations aux dérivées partielles hyperboliques en mécanique des fluides
Nicolas Seguin1

Ce mémoire est dédié à l'étude d'équations aux dérivées partielles de type hyperbolique intervenant en mécanique des fluides. Suivant les problèmes, on entend par étude la modélisation, l'analyse ou l'approximation numérique des modèles considérés. Le premier chapitre de ce mémoire traite des systèmes hyperboliques et de leur approximation par des schémas volumes finis. On présente notamment des schémas numériques simples pour approcher les solutions de systèmes de lois de conservation généraux. On étudie de plus la notion de hiérarchie de modèles, c'est-à-dire de connexion entre différents modèles à travers des procédés asymptotiques (relaxation, asymptotique parabolique et contrainte sur l'espace des états admissible), d'un point de vue théorique et/ou numérique, suivant le type de hiérarchie considéré. Le deuxième chapitre est consacré à la modélisation, l'analyse et l'approximation numérique d'écoulements diphasiques. Les modèles diphasiques envisagés ici sont les modèles compressibles avec deux vitesses et deux pressions, les modèles de dérive, les modèles pour un fluide avec transition de phase, ainsi que les modèles d'écoulements d'eau à surface libre. Pour la plupart des cas, on propose une analyse et une approximation numérique des modèles et quand c'est possible, on donne les liens les unissant. Le dernier chapitre compile différents travaux sur des modèles de fluides dans lesquels apparaissent des interfaces ayant une origine extérieure à l'écoulement lui-même. Les premiers travaux sont dédiés aux lois de conservation incluant une discontinuité, soit due à un changement brusque du milieu environnant, soit due à la présence d'une contrainte locale sur la solution. On présente ensuite l'analyse et l'approximation numérique d'un modèle de particule ponctuelle évoluant dans un fluide unidimensionnel. Enfin, on aborde le couplage de systèmes hyperboliques issus de la connexion interfaciale de codes de calcul, avec pour application l'adaptation dynamique de modèle, qui consiste à remplacer localement et dynamiquement un modèle par un modèle simplifié pour optimiser d'un code.
1 :  LJLL - Laboratoire Jacques-Louis Lions
Analyse des EDP – Approximation des EDP – Modélisation – EDP hyperboliques – lois de conservation – résonance – fluides compressibles – écoulements diphasiques – équations de Saint-Venant – problèmes à interfaces – couplage – adaptation de modèles – relaxation – limites asymptotiques


tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...