login
english version rss feed
Detailed view PhD thesis
Université Montpellier II - Sciences et Techniques du Languedoc (21/10/2011), Séverin Pistre (Dir.)
Attached file list to this document: 
PDF
THESELine.pdf(12.3 MB)
Modélisation des crues de bassins karstiques par réseaux de neurones. Cas du bassin du Lez (France)
Line Kong A Siou1, 2

Les karsts sont l'une des formations aquifères les plus présentes au monde. Exploités, ils fournissent de l'eau potable pour près de 25% de la population mondiale. Cependant la forte hétérogénéité de leur structure implique un comportement non-linéaire particulièrement difficile à simuler et à prévoir. Les réseaux de neurones formels sont des modèles d'apprentissage statistique qui ont été largement utilisés en hydrologie de surface depuis les années 1990, grâce à leurs propriétés de parcimonie et d'approximation universelle. Dans cette thèse, il est proposé d'utiliser les réseaux de neurones pour étudier le comportement des aquifères karstiques. L'aquifère du Lez est choisi pour appliquer le modèle par réseaux de neurones. Cet aquifère, situé près de l'agglomération de Montpellier (400 000 habitants), est exploité pour fournir de l'eau potable à une grande partie de l'agglomération. Dans un premier temps, un réseau de neurones " classique ", de type boîte noire, est appliqué à la simulation et à la prévision des débits de la source du Lez. Une méthode de sélection des entrées de pluie est proposée, couplant analyse par corrélations croisées et méthode de validation croisée. Les résultats montrent l'adéquation du modèle neuronal pour la simulation et la prévision du débit de la source d'un aquifère karstique complexe. Le test du modèle est effectué sur les deux cycles hydrologiques comportant les crues les plus intenses de la base de données. Les hydrogrammes montrent que le modèle neuronal a été capable de correctement prévoir les débits des crues majeures en test, qui sont supérieurs aux débits présents dans la base d'apprentissage du modèle. La prévision est acceptable jusqu'à un horizon de prévision de un jour. Dans un second temps, une méthode d'extraction des données contenues dans la boîte noire est proposée. Afin de contraindre le modèle neuronal à donner des valeurs physiquement interprétables, des connaissances a priori sur la géologie de l'aquifère sont incluses dans l'architecture du réseau de neurones. La méthode KnoX (Knowledge eXtraction) proposée dans cette étude permet d'extraire du modèle les contributions des différentes zones géologiques à la source du Lez ainsi que les temps de réponse correspondants. L'application de la méthode KnoX à un hydrosystème fictif dont on contrôle en particulier les temps de réponse et contributions des différents sous-hydrosystèmes fictifs a permis de valider cette méthode. Les résultats obtenus sur le bassin du Lez sont très satisfaisants et en adéquation avec les connaissances actuelles que l'on a sur ce système. De plus la méthode a permis d'affiner ces connaissances, notamment l'infiltration retardée par des aquifères perchés et les limites du bassin d'alimentation de la source du Lez. Enfin, la méthode KnoX est générique et applicable à tout hydrosystème pour lequel on dispose de mesures de pluie et de débit.
1:  HSM - Hydrosciences Montpellier
2:  CMGD - Centre des Matériaux de Grande Diffusion
KARST – MODELISATION HYDRODYNAMIQUE – RESEAUX DE NEURONES – LEZ – CRUE

Karst is one of the most widespread aquifer formations in the world. Their exploitation provides fresh water to practically 25% of the global population. The high level of structure heterogeneity in these aquifers however makes them complex and their behavior is difficult to study, simulate and forecast. Artificial neural networks are machine learning models widely used in surface hydrology since the 90's thanks to their properties of parsimony and universal approximation. In this thesis, artificial neural networks are used to study karst aquifer behavior. Application is done on the Lez. This aquifer situated near Montpellier conurbation (400 000 inhabitants) provides fresh water for a large part of this population. First, a "classical" black box neural network is applied to simulate and forecast Lez spring discharge. A rainfall input selection method is proposed, using cross correlation analysis and cross validation method at the same time. Results show neural model efficiency in order to simulate and forecast the spring discharge of a complex karstic aquifer. The model was tested using two hydrologic cycles including the two most intense floods of the database. Hydrographs shows that neural model was able to forecast correctly the maximum flood discharge of these intense floods when they are higher than all discharges of the learning database. Forecasting is satisfactory until a one-day horizon. In a second time, extraction of the knowledge included in the black box is proposed. In order to constrain the model to provide physically plausible solution, a priori knowledge about aquifer geology is included into the network architecture. KnoX (Knowledge eXtraction) method proposed in this study aims at extract geological zone contributions to the Lez spring and corresponding response times. The KnoX methodology was applied to a fictitious hydrosystem built using a model with controlled parameters, in particular contributions of subbasin to the outlet and lag time of each subbasin. This application permitted to validate the KnoX methodology. Results obtained on the Lez basin are satisfactory and agree with current knowledge about this hydrosystem. In addition, the KnoX methodology allows refining this knowledge, in particular concerning delayed infiltration because of infiltration in perched aquifer and concerning Lez spring alimentation basin boundaries. Lastly the KnoX methodology is a generic methodology that can be applied on any basin with available discharge and rainfall data.
KARST – HYDRODYNAMIC MODELING – NEURAL NETWORKS – LEZ – FLOOD

all articles on CCSd database...
all articles on CCSd database...
all articles on CCSd database...
all articles on CCSd database...
all articles on CCSd database...