login
english version rss feed
Detailed view PhD thesis
INSA de Toulouse (06/11/2009), S.TARBOURIECH (Dir.)
Attached file list to this document: 
PDF
these_finale_Tais_fr.pdf(2 MB)
Commande de systèmes dynamiques: stabilité absolue, saturation et bilinéarité
Calliero Tognetti1

Cette thèse présente des contributions aux problèmes d'analyse de stabilité et de synthèse de contrôleurs par retour d'état pour des systèmes dynamiques qui ont des éléments non-linéaires, à partir de conditions sous la forme d'inégalités matricielles linéaires et de fonctions de Lyapunov. Pour les systèmes à commutations soumis à saturation sur les actionneurs, sont fournies des conditions convexes pour le calcul des gains commutés et robustes. La saturation est modélisée comme une non-linéarité de secteur et une estimation du domaine de la stabilité est déterminée. Pour les systèmes linéaires avec des incertitudes polytopiques et des non-linéarités de secteurs, sont fournies des conditions convexes de dimension finie pour construire des fonctions de Lur'e avec dépendance polynomiale homogène en les paramètres. Si elles sont satisfaites, les conditions garantissent la stabilité pour tout le domaine d'incertitudes et pour toutes les non-linéarités dans le secteur, et permettent le calcul de contrôleurs stabilisants robustes par retour linéaire et non-linéaire. Pour les systèmes bilinéaires instables, continus et en temps discret, est fournie une procédure pour calculer un gain stabilisant de commande par retour d'état. La méthode est basée sur la solution alternée de deux problèmes d'optimisation convexe décrits par des inégalités matricielles linéaires, et caractérise une estimation du domaine de la stabilité. Des extensions pour traiter les contrôleurs robustes et linéaires variants avec des paramètres sont aussi présentées.
1:  LAAS - Laboratoire d'analyse et d'architecture des systèmes [Toulouse]
LAAS-MAC
Systèmes bilinéaires homogènes Systèmes à commutations Saturation sur les actionneurs Fonctions de Lyapunov Inégalités matricielles linéaires Non-linéarité de secteur Domaine de stabilité

This thesis presents contributions to the solution of the problems of stability analysis and synthesis of state feedback controllers for dynamic systems with non-linear elements, by means of conditions based on linear matrix inequalities and Lyapunov functions. For switched systems subject to saturation in the actuators, convex conditions to design switched and robust controllers are presented. The saturation is modeled as a sector non-linearity and an estimate of the domain of stability is determined. For linear systems with polytopic uncertainties and sector non-linearities, convex conditions of finite dimension to build Lur'e functions with homogeneous polynomially parameter dependence are provided. If satisfied, the conditions guarantee the stability of the entire domain of uncertainty for all sector non-linearities, allowing the design of linear and non-linear robust state feedback stabilizing controllers. For continuous and discrete-time unstable bilinear systems, a procedure to design a state feedback stabilizing control gain is proposed. The method is based on the alternate solution of two convex optimization problems described by linear matrix inequalities, providing an estimate of the domain of stability. Extensions to handle robust and linear parameter varying controllers are also presented.
Bilinear systems Switching systems Saturation of actuators Lyapunov functions Linear matrix inequalities Sector non-linearities Stability domain

all articles on CCSd database...
all articles on CCSd database...
all articles on CCSd database...
all articles on CCSd database...
all articles on CCSd database...